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 The Internet infrastructure is severely stressed. Rapidly growing overheads associated with 
the primary function of the Internet — routing information packets between any two computers 
in the world — cause concerns among Internet experts that the existing Internet routing 
architecture may not sustain even another decade. In this paper, we present a method to 
map the Internet to a hyperbolic space. Guided by a constructed map, which we release with 
this paper, Internet routing exhibits scaling properties that are theoretically close to the best 
possible, thus resolving serious scaling limitations that the Internet faces today. Besides this 
immediate practical viability, our network mapping method can provide a different perspective 
on the community structure in complex networks.         
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 In the information age, the Internet is becoming a  de facto  public 
good, akin to roads, airports or any other critical infrastructure 1 . 
According to the Internet World Stats, more than a thousand 

million people are estimated to use the Internet every day, to com-
municate, search for information, share data or do business. Online 
social networks are becoming an integral part of human social 
activities, increasingly aff ecting human psychology 2 . Underlying all 
these processes is the Internet infrastructure, composed, on a large 
scale, of connections between autonomous systems (ASs). An AS is, 
roughly, a part of the Internet owned and administered by the same 
organization 3 . ASs range in size from small companies, or even pri-
vate users, to huge international corporations. No central Internet 
authority exists that dictates to any AS what other ASs to connect 
to. Connections between ASs are results of local independent deci-
sions based on business agreements between AS pairs. Th is lack 
of centralized engineering control makes the Internet a truly self-
organized system, and poses many scientifi c challenges. Th e one we 
address here is the sustainability of Internet growth. 

 Th e Internet has been growing fast according to all measures 4,5 . 
For example, the number of ASs increases by  ~ 2,400 every year 4 . 
Despite its growth, the Internet must sustainably perform its pri-
mary task — routing information packets between any two comput-
ers in the world. But can this function be really sustained? To route 
information to a given destination in the Internet today, all ASs must 
collectively discover the best path to each possible destination, based 
on the current state of the global Internet topology. As the number 
of destinations grows quickly, the amount of information each AS 
has to maintain becomes a serious scalability concern, endangering 
the performance and stability of the Internet 6 . Worse yet, the Inter-
net is not static. Its topology changes constantly because of the fail-
ure of existing links and nodes, or because of the appearance of new 
ones. Each time such a change occurs anywhere in the Internet, the 
information about this event must be diff used to all ASs, which have 
to quickly process it to recompute new best routes. Th e constantly 
increasing size and dynamics of the Internet thus leads to immense 
and quickly growing routing overheads, causing concerns among 
Internet experts that the existing Internet routing architecture may 
not sustain even another decade 6 – 9 ; parts of the Internet have started 
sinking into black holes already 10 . 

 Th e scaling limitations of the existing Internet routing stem from 
the requirement to have a current state of the Internet topology 
distributed globally. Such global knowledge is unavoidable, as rout-
ing has no source of information other than the network topology. 
Routing in these conditions is equivalent to routing using a hypo-
thetical road atlas, which has no geographical information but 
merely lists road network links, which are pairs of connected road 
intersections, abstractly identifi ed. Th is analogy with road routing 
suggests that there are better ways to fi nd paths in networks. Let 
us assume that we want to travel from one geographical place to 
another. Given the geographical coordinates of our starting point 
and destination, we can readily determine which direction brings 
us closer to our destination. We see that a coordinate system in a 
geometric space, coupled with a representation of the world in this 
space, drastically simplifi es our routing task. Th us, for simple and 
effi  cient network routing we need a map. Constructing such a map 
for the Internet boils down to assigning to each AS its coordinates in 
some geometric space, and then using this space to forward infor-
mation packets in the right directions towards their destinations. 
Greedy forwarding implements this routing in the right direction: 
on reading the destination address in the packet, the current packet 
holder forwards the packet to its neighbour that is closest to the 
destination in the space. Th is greedy strategy to reach a destination 
is effi  cient only if the network map is congruent with the network 
topology. In the analogy with road routing, for example, this con-
gruency condition means that there should exist a road path that 
stays approximately close to the geographical geodesic between 

the trip ’ s starting and ending points. If the congruency condition 
holds, then the advantage of greedy forwarding is twofold. First, the 
only information that ASs must maintain is the coordinates of their 
neighbours. Th at is, ASs do not have to keep any perdestination 
information. Second, once ASs are given their coordinates, these 
coordinates do not change on topological changes of the Internet. 
Th erefore, ASs do not have to exchange any information about ever-
changing Internet topology. Taken together, these two improve-
ments essentially eliminate the two scaling limitations mentioned 
above. 

 In our recent work 11 – 15 , we have shown that greedy forwarding 
is indeed effi  cient in Internet-like synthetic networks embedded in 
geometric spaces, and that this effi  ciency is maximized if the space 
is hyperbolic. However, putting these ideas in practice needs a cru-
cial piece of information: a map of the real Internet in a hyperbolic 
space. Here, we present a method to fi nd such a map. Our method 
uses statistical inference techniques to fi nd coordinates for each 
AS in the hyperbolic space underlying the Internet. Guided by the 
inferred coordinates, greedy forwarding in the Internet achieves 
effi  ciency and robustness, similar to those in synthetic networks. 
We also fi nd that the method maps geo-politically close ASs close 
to each other in the hyperbolic space. Th is fi nding suggests that our 
mapping method can be used for soft  community detection in real 
networks, where by soft  communities we mean groups of geometri-
cally close nodes.  

 Results 
 To build a geographical map, one fi rst has to model the Earth sur-
face, for example, by assuming that it is a sphere. Similarly, we also 
need a geometric model of the Internet space to build our map. 
Th e simplest candidate space is also a sphere, or even a circle, on 
which nodes are uniformly distributed and connected by an edge, 
with probability  p ( d ) decreasing as a function of distance  d  between 
nodes, conceptually similar to random geometric graphs 16 . However, 
this model fails to capture basic properties of the Internet topology, 
including its scale-free node degree distribution. In an earlier study 17 , 
we showed that to generate realistic network topologies in this geo-
metric approach, we fi rst have to assign to nodes their expected 
degrees   κ   drawn from a power-law distribution, and then connect 
pairs of nodes with expected degrees   κ   and   κ   ′  with probability  p (  χ  ), 
where   χ   is distance  d  rescaled by the product of the expected degrees, 
  χ ~  d /  (  κ  κ  ′  ). We thus have a hybrid model that mixes geo metry and 
topology — geometric characteristics, distances  d  used in random 
geometric graphs, come in tandem with topological characteristics, 
expected degrees   κ   used in classical confi guration models of ran-
dom power-law graphs 18 . If we associate the expected degree   κ   of 
a node with its mass, then the connection probability  p ( d /  (  κ  κ  ′  )), 
which is a measure of the interaction strength between two nodes, 
resembles Newton ’ s law of gravitation. Th erefore, we call this model 
 Newtonian.  However, according to Einstein, we can treat gravity in 
purely geometric terms if we accept that the space is no longer fl at, 
that is, if it is non-Euclidean. Following this philosophy we showed 
in an earlier study 13  that the Newtonian model is isomorphic to a 
purely geometric network model, with node degrees transformed 
into a geometric coordinate, making the space hyperbolic, that is, 
negatively curved. We call this model  Einsteinian.  

 Th e main property of hyperbolic geometry is the exponential 
expansion of space illustrated in  Figure 1 . For example, the area 
 A ( r ) of a two-dimensional hyperbolic disc of radius  r  grows with  r  
as  A ( r ) ~  e   r  . Consequently, the uniform node density in a hyperbolic 
space appears as exponentially growing with the distance  r  from the 
origin (see  Figure 2,  illustrating the Einsteinian model). In the model, 
nodes are indeed distributed (quasi-)uniformly on a hyperbolic 
disc, and one can show 13  that the resulting average degree of nodes 
exponentially decreases with  r . Th is combination of two exponen-
tials, node density and average degree, leads to the emergence of a 
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scale-free degree distribution in the network. Th e model is described 
in the Methods section, and can generate synthetic scale-free net-
works with any power-law degree distribution exponent and any 
clustering. Given a real network, our network mapping method, also 
in the Methods section, reverts the network synthesis in the model. 
Th e method uses statistical inference techniques to identify the 
hyperbolic coordinates for each node in the given network, which 
would maximize the likelihood that the network is generated by 
the model. Specifi cally, the method attempts to fi nd node positions 
such that the resulting empirical probability of node connections as 
a function of the hyperbolic distance between nodes would be con-
gruent with the theoretical connection probability in the model.  

  Mapping results   .   We apply our mapping method to the Internet 
AS topology extracted from the Archipelago project data 19  in June 
2009, and visualize the results in  Figure 3 . We observe striking simi-
larity between this visualization and the synthetic Einsteinian net-
work in  Figure 2 . To confi rm that the Internet map we have obtained 
is indeed congruent with the Einsteinian model, we juxtapose 
in  Figure 4  the empirical connection probability between ASs in the 
obtained Internet map against the theoretical one in  Equation (4)  
of the Methods section. We observe a clear similarity between the 
two. Neither is the sphere a perfect model of the Earth nor is the 
Einsteinian model an ideal abstraction of the Internet structure. 
Yet, the observed similarity between the empirical and theoretical 
connection probabilities in  Figure 4  suggests that hyperbolic metric 
spaces are reasonable representations of the real Internet space. 

 To investigate further the connections between the obtained 
map and Internet reality, we show in  Figure 3  the average angu-
lar position of all ASs belonging to the same country, whereas in 
 Figure 5  we draw the angular distributions of those ASs. Surpris-
ingly, we fi nd that even though our mapping method is completely 
geography agnostic, it discovers meaningful groups or communities 
of ASs belonging to the same country. Furthermore, in  Figure 3,  

we fi nd many cases of geographically or politically close countries 
placed close to each other in our hyperbolic map. Th e explanation 
of these surprising eff ects is rooted in the peculiar nature of our 
mapping method. If ASs belonging to the same country, geographic 
region or geo-political or economic group are connected more 
densely to each other than to the rest of the world, then this higher 
connection density translates to a higher attractive force that tries 
to place all such ASs close to each other in our map. Indeed, the 
term  p xij

aij( )    in  Equation (7)  of the Methods section corresponds 
to the attractive force between connected nodes, whereas the term 
 [ ( )]1 1− −p xij

aij    is the repulsive force between disconnected ones. 
Th is peculiar interplay between attraction within densely connected 
regions and repulsion across sparsely connected zones eff ectively 
maps the ASs belonging to densely connected AS groups closely. 
Th ese observations build our confi dence that our mapping method 
provides meaningful results refl ecting peculiarities of the real 
Internet structure, and suggest that the method can be adapted to 
discover the community structure 20 – 22  in other complex networks.   

  Routing results   .   Th e obtained Internet map is ready for greedy 
forwarding. An AS holding a packet reads its destination AS 
coordinates, computes the hyperbolic distances between this 
destination and each of its AS neighbours using  Equation (3)  of the 
Methods section and forwards the packet to the neighbour closest 
to the destination. To evaluate the performance of this process, we 
perform greedy forwarding from each source to each destination 
AS, and compute several performance metrics. 

 Th e fi rst metric is success ratio, which is the percentage of greedy 
paths that successfully reach their destinations. Not all paths are 
expected to be successful, as some might run into local minima. 
For example, an AS might forward a packet to its neighbour who 
sends the packet back to the same AS, in which case the packet will 
never reach the destination. We declare a path unsuccessful if the 
packet is sent to the same AS twice. Th e average success ratio of 
simple greedy forwarding in our Internet map is remarkably high, 
97 % , and more sophisticated greedy forwarding techniques, such as 
those described in Cvetkovski and Crovella study 23 , can boost it to 
100 % . Given the discussed connections between our Internet map 
and geography, one may conjecture that greedy forwarding simply 
mimics geographical routing following the geographically shortest 
paths. However, this conjecture is not true. Geography is refl ected in 
our map only along the angular coordinate, whereas the radial coor-
dinate is a function of the AS degree, making the space hyperbolic 
(see the Methods section). Th e geographical space is not hyperbolic, 
and if we use it for greedy forwarding, we obtain a much lower 
success ratio of approximately 14 % . We also tested modifi ed geo-
graphic routing that tries to intelligently use AS degrees, in the spirit 
of our Einsteinian model. Nevertheless, this modifi cation, although 
improving the success ratio to 30 % , still falls short compared 
with the results obtained using our hyperbolic map. Th e details of 
these experiments with geographical routing can be found in  
Supplementary Methods . 

 Th e second metric is stretch, which tells us how much longer 
the greedy paths are compared with the shortest paths in the Inter-
net topology. Th e average stretch is low, 1.1. Th e average hop-wise 
length of the shortest paths between selected sources and desti-
nations is 3.49, so that the average length of greedy paths is 3.86. 
Th e low value of stretch indicates that greedy paths are close to opti-
mal, that is, they are the shortest paths. Th e shortest path between 
nodes  a  and  b  in  Figure 2 , for example, is also the path found by greedy 
forwarding. Somewhat unexpectedly, the greedy stretch is asymp-
totically optimal, that is, equal to 1, in scale-free, strongly clustered 
networks, regardless of what underlying space is used for greedy for-
warding 12 . Low stretch also implies that greedy forwarding causes 
approximately the same traffi  c load on nodes as shortest-path 

   Figure 1    |         Hyperbolic geometry at a glance. The exponentially growing 
number of people lying on the hyperbolic fl oor illustrates the exponential 
expansion of the hyperbolic space. All people are of the same hyperbolic 
size. The Poincar é  tool developed by Bill Horn is used to construct the 
tessellation of the hyperbolic plane in the Poincar é  disc model with the 
Schl ä fl i symbol {9, 3}, rendering an image of the last author.  
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forwarding. Given that shortest-path forwarding does not lead 
to high traffi  c load in scale-free networks 24 , this fi nding allays 
concerns that hyperbolic forwarding may cause traffi  c congestion 
abnormalities 25  (see  Supplementary Methods) . 

 Th e two metrics above characterize the performance of greedy 
forwarding in the static Internet topology. More important than 
that is how greedy forwarding performs in the dynamic topology, 
in which links and nodes can fail. We randomly select a percent-
age of links and nodes, remove them from the mapped Internet, 
recompute the success ratio and stretch aft er the removal and fi nally 
present the result in the top plots of  Figure 6 . Even on simultane-
ous failures of up to 10 %  of AS links or nodes — catastrophic events 
never happened in Internet history — we observe only minor de-
gradation of the performance of greedy forwarding. Th at is, even 
catastrophic levels of damage to the Internet do not signifi cantly 
aff ect the performance of greedy forwarding, even though no AS 
changes its position on the hyperbolic map. A widely popularized 
feature of complex networks is their robustness with respect to ran-
dom failures, and the lethality of failures of highest-degree hubs 26,27 . 
As expected, we observe in the bottom plots of  Figure 6  that 
removals of such hubs have a more detrimental eff ect on greedy 
forwarding as well. However, targeted removal of highest-degree 
ASs in the Internet is a rather unrealistic scenario, as these large ASs 

consist of thousands of routers the simultaneous failure of which is 
a very rare and unlikely event. Th e explanation for the surprising 
effi  ciency of greedy forwarding with respect to random failures lies 
in the unique combination of the following two properties exhibited 
by scale-free, strongly clustered networks: high path diversity 24 , and 
congruency between hyperbolic geodesics and topologically short-
est paths 13,15 . Th e latter is illustrated by the similar path patterns of 
the hyperbolic geodesic and topologically shortest path between 
nodes  a  and  b  in  Figure 2 : they both fi rst go to the high-degree core 
of the network, and then exit it in the appropriate direction to the 
destination. Owing to high path diversity, there are many disjoint 
shortest paths between the same source and destination, and thanks 
to the congruency, they all stay close to the corresponding hyper-
bolic geodesics. Link and node failures aff ect some shortest paths, 
but others remain, and greedy forwarding can still fi nd them using 
the same hyperbolic map. 

 Another form of Internet dynamics is its rapid growth over 
years 4,5,28,29 . We map the Internet of January 2007 to its hyper-
bolic space using the same mapping method, and then replay the 
historical growth of the Internet up to June 2009 with an inter-
val of 3 months. During this two and a half year replay, we keep 
the AS coordinates, as soon as they are computed, fi xed once and 
forever, whereas the ASs joining the Internet anew, aft er June 2007, 

a

b

O

R

      Figure 2    |         Synthetic network in the Einsteinian model. The modelled network illustrates the connection between hyperbolic geometry and scale-free 
topology of complex networks. All nodes lie within a hyperbolic disc of radius  R . The radial node density grows exponentially with the distance from the 
origin  O , whereas the average degree of nodes exponentially decreases. This combination of the exponentially increasing node density and exponentially 
decreasing average degree yields a power-law degree distribution in the network. The red lines show triangle  Oab  made of the hyperbolic geodesics (that 
is, shortest paths in the hyperbolic space) connecting origin  O  and two nodes  a  and  b . Geodesics  Oa    and  Ob   are the solid red lines, whereas geodesic 
 ab   is the dashed curve. The thick blue links show the shortest path between nodes  a  and  b  in the network.  
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compute their coordinates using a variation of the mapping method 
that requires only local topological information (see  Supplementary 
Methods) . In  Figure 7a,  we show the performance of greedy for-
warding in the resulting maps at each time step, and observe only 
minor performance degradation, even over long time scales. In a 
nutshell, the existing AS coordinates are essentially static, as once 
computed they can stay the same for years. 

 Existing Internet topology measurements including the Archi-
pelago data 19  are known to be incomplete and miss some AS 
links 28,29 . Th erefore, a natural question is how this missing informa-
tion aff ects the quality of the constructed map, and the performance 
of greedy forwarding in it. Intuitively, as the performance of greedy 
forwarding is robust with respect to link removals, we might expect 
it to be robust with respect to missing links as well. Moreover, if the 
constructed map is used in practice, then greedy forwarding will 
see and use those links that topology measurements do not see. We 
might thus also intuitively expect greedy forwarding to perform bet-
ter in practice than we report in this section, simply because those 
missing links, when used by greedy forwarding, would provide 

additional shortcuts between potentially remote ASs. We confi rm 
this intuition in  Figure 7b  with experiments emulating the missing 
link issue. Th e success ratio degrades only slowly as a function of the 
fraction of missing links, whereas if we add the emulated missing 
links back, then the success ratio increases as expected. Th erefore, 
the routing results reported here should actually be considered as 
lower bounds for greedy routing performance that can be achieved 
in practice using the constructed hyperbolic Internet map.    

 Discussion 
 We have constructed a hyperbolic map of the Internet, and release this 
map as part of the  Supplementary Data set . Th e map can be used for 
essentially infi nitely scalable Internet routing. Th e amount of rout-
ing information that ASs must maintain is proportional to the AS 
degree, which is theoretically best possible as ASs must always keep 
some information about their neighbours. Routing communication 
overheads are also minimized, as ASs do not exchange any rout-
ing information on dynamic changes of the AS topology. Th e pre-
sented solution thus achieves routing effi  ciency that is theoretically 

    Figure 3    |         Hyperbolic atlas of the Internet. The Internet ’ s hyperbolic map is similar to a synthetic Einsteinian network in  Figure 2 . The size of AS nodes is 
proportional to the logarithm of their degrees. For the sake of clarity, only ASs with a degree above 3 and only the connections with probability  p ( x )    >    0.5 
given by Equation (4) of the Methods section are shown. The font size of the country names is proportional to the logarithm of the number of ASs that 
the country has. Only the names of countries with more than 10 ASs are included. The methods used to map ASs to their countries are described in 
 Supplementary Methods .  
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close to optimal, and resolves serious scaling limitations that the 
Internet faces today. 

 Th e mapping method we have used is generic, and can be applied to 
other complex networks with underlying metric structures and hetero-
geneous degree distributions. We showed in an earlier study 17  that a 
good indicator for the presence of an underlying metric structure is 
self-similarity of clustering in the network, whereas in an earlier study 13  
we showed that as soon as a metric space is present, and the network 
has a heterogeneous degree distribution, the metric distances can be 
rescaled such that the underlying geometry is eff ectively hyperbolic. 
Roughly, self-similar clustering is responsible for the metric structure 
along the angular coordinate, whereas degree heterogeneity adds the 
radial dimension and makes the space hyperbolic. Applied to other 
networks, our mapping method can provide a diff erent perspective on 
the community structure in networks. Instead of trying to split nodes 
into discrete community sets 20 – 22 , it would naturally yield a continu-
ous measure of similarity between nodes on the basis of hyperbolic 
distances. More similar nodes would be located closer to each other, 
and form zones of higher connectivity density. Th ereaft er, it would be 
up to an experimenter to defi ne communities, if needed, as histograms 
of the node density in the hyperbolic space. Th e spectrum of potential 
applications of this network-mapping geometrization agenda is wide. 
Network mapping can reveal geometric forces eff ectively driving infor-
mation signalling in the network; examples include the brain 30  and cell 
signalling networks 31 . One can then potentially predict what network 
perturbations drive these networks to failure, such as brain disorders 
or cancer. Other applications range from recommender systems 32 , in 
which the right measure of similarity between consumers is a key, to 
epidemic spreading 33  and information theory of networks 34 . 

 We have shown that the Internet hyperbolic map is remarkably 
robust with respect to even substantial perturbations of the Inter-
net topology, implying that this map is essentially static. It does not 
signifi cantly depend on topology dynamics, and can thus be com-
puted only once. Th is property is desirable in view of long running 
times intrinsic to likelihood maximization algorithms. Our method 
improves their running times drastically, and the Internet map com-
putations take approximately a day on a modern computer. However, 
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  Figure 5    |         Angular positions of ASs belonging to the same country. 
Hyperbolic mapping of the Internet yields meaningful results, as ASs 
belonging to the same country are mapped close to each other. 
The angular distributions of ASs in the 30 largest countries in the world 
are shown. The  ‘ size ’  of the country is the number of ASs it has. Column  a  
corresponds to the fi rst 15 countries and column  b  to the next 15. 
The graph shows the percentage of ASs per bin of size 3.6 ° . For the 
majority of countries, their ASs are localized in narrow regions. Exceptions 
are the United States, the European Union and the United Kingdom. 
The fi rst two exceptions are because of the signifi cant geographic spread 
of ASs belonging to the United States or the European Union, the latter 
actually representing not one country but a collection of countries.  
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   Figure 6    |         Greedy forwarding in the mapped Internet. Greedy forwarding 
performs almost optimally in the mapped Internet, as indicated by the success 
ratio,  p   s  , and average stretch,  s   , after removal of a given fraction of AS nodes 
(panel  a ) or links (panel  b ). Bottom plots show these two metrics after 
removing a number of the highest-degree nodes (panel  c ), and a fraction of 
links among highest-degree nodes (panel  d ). The links are fi rst ranked by the 
product of node degrees that they connect, and then a fraction of top-ranked 
links are removed. The giant connected component is still present after all 
removals, but it drops to 85 %  of the original graph after the removal of 10 hubs.  
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   Figure 4    |         Empirical versus theoretical connection probability. Hyperbolic 
mapping of the Internet is successful, as the empirical connection 
probability between ASs of degree larger than 2 in the map closely follows 
the Einsteinian model prediction. The whole range of hyperbolic distances 
 x  � [0,   2 R ] is binned, and for each bin the ratio of the number of connected 
AS pairs to the total number of AS pairs falling within this bin is shown. 
The distances between AS pairs are computed using Equation (3). The blue 
dashed line is the connection probability given by Equation (4) with  R     =    27 
and  T     =    0.69, which are the values used by the mapping method.   
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for substantially larger networks, the running times may still be pro-
hibitive even for one-time mapping. Th erefore, alternative methods 
for network mapping, not relying on likelihood maximization, are 
highly desirable, and our work in this direction is underway.   

 Methods  
  The Einsteinian and Newtonian models of complex networks   .   To synthesize a 
network with our Einsteinian model, one has to fi rst specify any desired network 
size  N , as well as average degree  k   , average clustering  C    and exponent   γ      >    2 of the 
power-law distribution  P ( k ) of node degrees  k ,  P ( k ) ~  k      −      γ   . Equipped with these 
target properties of the network topology, we fi rst distribute  N  nodes (quasi-)uni-
formly within a hyperbolic disc of radius  R     =    2log( N  /  c ), where  c  is given by  

c k
T

T
=

−

−

⎛
⎝⎜

⎞
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sin
,

p g

g2

2
2

1

  
(1)

  and  T  � [0,   1] is a function of  C   . In the hyperbolic plane, the quasi-uniform node 
density means that the node angular coordinates   θ   � [0,   2 π ] are 

distributed uniformly, whereas their radial coordinates  r  � [0,    R ] are distributed 
with density  

r a a( ) ( ),r r R= −e
  

(2)

  where   α      =    (  γ      −    1) / 2. Once all nodes are in place, specifi ed by their assigned coordi-
nates, the hyperbolic distance  x   ij   between each pair of nodes  i  and  j  located at ( r   i  ,  θ    i  ) 
and ( r   j  ,  θ    j  ) is computed using the hyperbolic law of cosines  

cosh cosh cosh sinh sinh cos ,xij ri rj ri rj ij= − Δq
  

(3)

  where  Δ   θ    ij   is the angle between segments connecting the origin and points  i  and  j . 
On distributing nodes over the disc as described, we form scale-free networks in 
the model by connecting each pair of nodes  i  and  j  located at hyperbolic distance  x   ij   
with the connection probability  

p xij
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  almost identical to the Fermi-Dirac distribution in statistical mechanics. It depends 
only on hyperbolic distances  x   ij   (link energies), the hyperbolic disc radius  R  
(chemical potential) and parameter  T  ≥ 0 (temperature) controlling network cluster-
ing. Aft er each node pair is examined and connected with probability  p ( x   ij  ), the 
network is formed and we can compute the average degree  k ( r ) of nodes located at 
distance  r  from the origin. Th e result is  

k r k R r( ) ( )/ ,=
−

−
−g

g

2

1
2e

  
(5)

  which, combined with  Equation (2),  yields the target degree distribution  P ( k ). Th e 
Newtonian model is isomorphic to the Einsteinian one through a simple change of 
variables reminiscent of  Equation (5) :  

k k= −
0

2e( )/ ,R r
  

(6)

  where   κ   is the expected degree of a node in the Newtonian model, and   κ   0  is the 
minimum expected degree. See Krioukov  et al.  13  for further details.   

  The mapping method   .   As our goal is to build a realistic Internet map, ready for 
routing and other applications, we have to fi nd for each AS its radial and angular 
coordinates ( r ,  θ  ), maximizing the effi  ciency of greedy forwarding. Th is specifi c task 
of maximizing greedy forwarding effi  ciency calls for a mapping method diff erent 
from existing techniques on embedding Internet distances and graphs 35 – 37 . In view 
of our previous fi ndings 11 – 15  that greedy forwarding is exceptionally effi  cient in In-
ternet-resembling synthetic networks, and that this effi  ciency is maximized in the 
Einsteinian model, our strategy for the Internet map construction is to maximize 
the congruency between the map and the model. In statistical inference 38 , this goal 
is equivalent to maximizing the likelihood that the observed data, that is, the Inter-
net topology, has been produced by the model. Th is likelihood is given by  

L p x p xij
a

ij
a

i j

ij ij= − −

<
∏ ( ) [ ( )] ,1 1    (7)

  where the elements  a   ij   of the Internet adjacency matrix are equal to 1 whenever 
there exists a connection between ASs  i  and  j , and to 0 otherwise. Whereas the 
adjacency matrix represents the observed data, the connection probability  p ( x   ij  ) 
depends, by means of  Equations (4, 3),  on the AS coordinates ( r ,  θ  ), which we try to 
infer. Our best estimate for these coordinates is then those maximizing the likeli-
hood in  Equation (7) . 

 Although there are plenty of methods to fi nd maximum-likelihood solutions, 
for example, the Metropolis – Hastings algorithm 39 , they perform poorly and do not 
scale well on large data sets with abundant local maxima, which is the case with 
the Internet. Th erefore, as important as a likelihood maximization method is a 
heuristic approach helping the maximization algorithm to fi nd the optimal solu-
tion in a reasonable amount of time and with reasonable computational resources. 
Our method is based on the following remarkable property of networks in our 
model; the same property holds for the Internet 17 . Let  G  be a given network with 
average degree  k    and power-law degree distribution  P ( k ) ~  k      −      γ   , and let  G ( k   T  ) be 
 G  ’ s subgraph composed of nodes with degree larger than some threshold  k   T  , along 
with the connections among these nodes. Th e average degree in  G ( k   T  ) is then given 
by  k kT kT k( ) = −3 g   . 17  In scale-free networks with exponent   γ   between 2 and 3, 
this internal average degree is thus a growing function of  k   T  , which implies that 
subgraphs made of high-degree nodes almost surely form a single connected com-
ponent. Using this property, along with the statistical independence of the graph 
edges, it becomes possible to infer coordinates of ASs in  G ( k   T  ) ignoring the remain-
der of the AS graph. Th is property is practically important because the size of 
 G ( k   T  ) decreases very fast as  k   T   increases, which speeds up likelihood maximization 
algorithms tremendously. In a nutshell, our method starts with a subgraph  G ( k   T  ) 
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   Figure 7    |         Performance of greedy forwarding during the replayed 
historical growth of the Internet ( a ), and success ratio as a function of 
the fraction of missing links ( b ). The initial map quality degrades very 
slowly with time ( a ). The Internet is fully mapped only once, in June 2007. 
The ASs that appear after that date compute their coordinates using only 
local topological information. Once the coordinates of an AS are computed, 
they are fi xed forever. The average success ratio  p   s   and stretch  s    for 
greedy forwarding in the resulting collection of maps are shown for each 
snapshot at 3-month intervals, starting from January 2007 and ending 
in June 2009. See  Supplementary Methods  for further details. The success 
ratio also degrades slowly with the number of missing links ( b ), and if 
these missed links are added back, the success ratio increases — the 
larger the number of missing links, the more the success ratio increases. 
Scenario 1 (blue squares): (i) a fraction of random links among nodes of 
degree above 5 in the Internet are removed (30 %  of removed links in this 
subgraph correspond to 14 %  of the total number of links in the Internet); 
(ii) the resulting graph with emulated missing links is hyperbolically 
mapped using the same mapping method; (iii) the success ratio in the 
resulting map is computed. Scenario 2 (red circles): (i) and (ii) are the 
same as in Scenario 1; (iii) the removed links are added back; (iv) the 
success ratio is computed. See  Supplementary Methods  for further 
details.  
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small enough for standard maximization algorithms being able to reliably and 
quickly infer the coordinates of ASs in  G ( k   T  ). Once these are found, we gradually 
increase  k   T   to iteratively add layers of lower-degree ASs. While doing so, we use the 
already inferred AS coordinates as a reference frame to assign initial coordinates 
to newly added ASs. Th is initial coordinate assignment signifi cantly improves the 
convergence time of maximization algorithms. All other details of our mapping 
method can be found in  Supplementary Methods .   

  The archipelago Internet topology   .   We use the AS Internet topology of June 2009 
extracted from data collected by the archipelago active measurement infrastructure 
developed by Cooperative Association for Internet Data Analysis 19 . Th e AS topol-
ogy contains 23752 ASs and 58416 AS links, yielding the average AS degree 
 k = 4 92.   . Th e maximum AS degree is  k  max     =    2778. Th e average clustering measured 
over ASs of degree larger than 1 is  C = 0 61.   , yielding temperature  T     =    0.69, and 
hyperbolic disc radius  R     =    27. Th e exponent of the power-law AS degree distribu-
tion is   γ      =    2.1. Th is Internet topology is available as part of the  Supplementary 
Data set , along with the hyperbolic Internet map.                                                                                                         
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