
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

This content was downloaded by: count0

IP Address: 134.102.186.160

This content was downloaded on 19/08/2014 at 14:31

Please note that terms and conditions apply.

Model selection for degree-corrected block models

View the table of contents for this issue, or go to the journal homepage for more

J. Stat. Mech. (2014) P05007

(http://iopscience.iop.org/1742-5468/2014/5/P05007)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-5468/2014/5
http://iopscience.iop.org/1742-5468
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J.S
tat.M

ech.(2014)P
05007

ournal of Statistical Mechanics:
An IOP and SISSA journalJ Theory and Experiment

Model selection for degree-corrected
block models

Xiaoran Yan1, Cosma Shalizi2, Jacob E Jensen3,
Florent Krzakala4, Cristopher Moore5, Lenka Zdeborová6,
Pan Zhang5 and Yaojia Zhu7

1 Information Sciences Institute, University of Southern California, Marina
del Rey, CA 90292, USA
2 Statistics Department, Carnegie Mellon University, Pittsburgh, PA 15213,
USA
3 Computer Science Department, Stanford University, Stanford, CA 94305,
USA
4 Ecole Normale Supérieure, F-75005 Paris, France
5 Santa Fe Institute, Santa Fe, NM 87501, USA
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Abstract. The proliferation of models for networks raises challenging problems
of model selection: the data are sparse and globally dependent, and models are
typically high-dimensional and have large numbers of latent variables. Together,
these issues mean that the usual model-selection criteria do not work properly
for networks. We illustrate these challenges, and show one way to resolve
them, by considering the key network-analysis problem of dividing a graph into
communities or blocks of nodes with homogeneous patterns of links to the rest
of the network. The standard tool for undertaking this is the stochastic block
model, under which the probability of a link between two nodes is a function
solely of the blocks to which they belong. This imposes a homogeneous degree
distribution within each block; this can be unrealistic, so degree-corrected block
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models add a parameter for each node, modulating its overall degree. The
choice between ordinary and degree-corrected block models matters because
they make very different inferences about communities. We present the first
principled and tractable approach to model selection between standard and
degree-corrected block models, based on new large-graph asymptotics for the
distribution of log-likelihood ratios under the stochastic block model, finding
substantial departures from classical results for sparse graphs. We also develop
linear-time approximations for log-likelihoods under both the stochastic block
model and the degree-corrected model, using belief propagation. Applications to
simulated and real networks show excellent agreement with our approximations.
Our results thus both solve the practical problem of deciding on degree correction
and point to a general approach to model selection in network analysis.

Keywords: message-passing algorithms, random graphs, networks, clustering
techniques, statistical inference
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1. Introduction

In many networks, nodes divide naturally into modules or communities, where nodes in
the same group connect to the rest of the network in similar ways. Discovering such
communities is an important part of modeling networks [31], as community structure
offers clues to the processes which generated the graph, on scales ranging from face-to-
face social interaction [39] through social-media communications [1] to the organization
of food webs [3, 24].
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The stochastic block model [2, 5, 15, 19, 35] has, deservedly, become one of the most
popular generative models for community detection. It splits nodes into communities or
blocks, within which all nodes are stochastically equivalent [36]. That is, the probability
of an edge between any two nodes depends only on which blocks they belong to,
and all edges are independent given the nodes’ block memberships. Block models are
highly flexible, representing assortative, disassortative and satellite community structures,
as well as combinations thereof, in a single generative framework [5, 28, 29]. Their
asymptotic properties, including phase transitions in the detectability of communities,
can be determined exactly using tools from statistical physics [10, 11] and random graph
theory [26].

Despite this flexibility, stochastic block models impose real restrictions on networks;
notably in large graphs, within each block, vertex degrees asymptotically follow identical
Poisson distributions. This makes the stochastic block model implausible for many
networks, where the degrees within each community are highly inhomogeneous. Fitting
stochastic block models to such networks tends to split the high- and low- degree nodes
in the same community into distinct blocks; for instance, dividing both liberal and
conservative political blogs into high-degree ‘leaders’ and low-degree ‘followers’ [1, 23].
To avoid this pathology, and to allow degree inhomogeneity within blocks, there is a long
history of generative models where the probability of an edge depends on node attributes
as well as their group memberships (e.g., [25, 32]). Here we use a natural generalization
of the stochastic block model due to [23], called the degree-corrected block model8.

We often lack the domain knowledge to choose between the ordinary and the degree-
corrected block model, and so face a model-selection problem. The standard methods of
model selection are largely based on likelihood ratios (possibly penalized), and we follow
that approach here. Since both the ordinary and the degree-corrected block models have
many latent variables, calculating likelihood ratios is itself non-trivial; the likelihood must
be summed over all partitions of nodes into blocks, so (in statistical physics terms) the
log-likelihood is a free energy. We extend the belief-propagation framework for estimating
the free energy [10, 11] to the degree-corrected block model.

Our algorithm is particularly scalable when dealing with sparse networks, which come
naturally in the real world from various preferences and limits in the underlying generating
processes [13, 18, 22]. However, even with the likelihoods in hand, it turns out that the
usual χ2 theory for likelihood ratios is invalid in our setting, because of a combination of
the sparsity of the data and the high-dimensional nature of the degree-corrected model.
To address these situations, which are so prevalent in practice, we derive the correct
asymptotics, under regularity assumptions, recovering the classic results in the limit of
large, dense graphs. We find that substantial corrections are needed for sparse graphs,
corrections that grow with graph size. Simulations confirm the validity of our theory, and
we apply our method to both real and synthetic networks.

8 From a different perspective, the famous p1 model of [20], and the [6] model, allow each node to have its own
expected degree, but otherwise treat nodes as homogeneous [33]. The degree-corrected block model extends these
models to allow for systematic variation in linking patterns, and is mathematically more convenient for statistical
analysis.
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2. Poisson stochastic block models

Let us set the problem on an observed, stochastic graph with n nodes and m edges;
we assume edges are undirected, though the directed case is only notationally more
cumbersome. The graph is represented by its symmetric adjacency matrix A. We want to
split the nodes into k communities, taking k to be a fixed constant that is the same for
both models. (Choosing k is a difficult model-selection problem of its own, and we shall
address it elsewhere.)

Traditionally, stochastic block models are applied to simple graphs, where each entry
Auv of the adjacency matrix follows a Bernoulli distribution. Following, e.g., [23], we use
a multigraph version of the block model, where the Auv are independent and Poisson-
distributed. (For simplicity, we ignore self-loops.) In the sparse network regime we are
most interested in, this Poisson model differs only negligibly from the original Bernoulli
model [30], but the former is statistically easier to analyze, especially when compared with
its degree-corrected generalization.

In this paper, we shall follow the notion of sparseness as it is defined in [10, 11], that
is, when m = O(n), i.e. the number of edges scales (sub)linearly as the network grows; in
denser graphs, the average degree diverges as n→∞.

2.1. The ordinary stochastic block model

In all stochastic block models, each node u has a latent variable Gu ∈ {1, . . . , k} indicating
which of the k blocks it belongs to. The block assignment is then G = {Gu}. The Gu are
independent draws from a multinomial distribution parameterized by γ, so γr = P (Gu = r)
is the prior probability that a node is in block r. Thus Gu ∼ Multi(γ). After it assigns
nodes to blocks, a block model generates the number of edges Auv between the nodes u
and v by making an independent Poisson draw for each pair. In the ordinary stochastic
block model, the means of these Poisson draws are specified by the k × k block affinity
matrix ω, so

Auv|G = g ∼ Poi(ωgugv).

The complete-data likelihood (involving G as well as A) is

Pcomplete(A = a,G = g|γ, ω) =
∏
u

γgu
∏
u<v

ωauvgugve−ωgugv

auv!

=
∏
r

γnr
r

∏
rs

ωmrs/2
rs e−(1/2)nrnsωrs

∏
u<v

1

auv!
. (1)

Here nr is the number of nodes in block r, and mrs the number of edges connecting block
r to block s, or twice that number if r = s. The last product in (1) over u and v is constant
in the parameters, and 1 for simple graphs. We shall refer to the following equation as the
log-likelihood for the rest of the paper:

logP (A = a,G = g|γ, ω) =
∑
r

nr log γr + 1
2

(∑
rs

mrs logωrs − nrnsωrs

)
. (2)
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Maximizing (2) over γ and ω gives

γ̂r =
nr
n
, ω̂rs =

mrs

nrns
. (3)

Of course, the block assignments G are not observed, but rather are what we want to
infer. We could try to find G by maximizing (2) over γ, ω and g jointly; in terms borrowed
from statistical physics, this amounts to finding the ground state ĝ that minimizes the
energy −logP (a, g|γ, ω). When this ĝ can be found, it recovers the correct g exactly if
the graph is dense enough (denser than) [5]. But if we wish to infer the parameters γ, ω,
or to perform model selection, we are interested in the total likelihood of generating the
graph a at hand. This is

P (A = a|γ, ω) =
∑
g

P (A = a,G = g|γ, ω),

summing over all kn possible block assignments. Again following the physics lexicon, this
is the partition function of the Gibbs distribution of G, and its logarithm is (minus) the
free energy.

As is usual with latent variable models, we can infer γ and ω using an EM algorithm
[12], where the E step approximates the average likelihood overG with respect to the Gibbs
distribution, and the M step estimates γ and ω in order to maximize that average [27].
One approach to the E step would use a Monte Carlo Markov chain algorithm to sample
G from the Gibbs distribution. However, as we review below, in order to determine γ and
ω it suffices to estimate the marginal distributions of Gu of each u, and joint distributions
of (Gu, Gv) for each pair of nodes u, v [4]. As we show in section 3, belief propagation
efficiently approximates both the log-likelihood −logP (A = a|γ, ω) and these marginals,
and for typical networks it converges very rapidly. Other methods of approximating the
E step are certainly possible, and could be used with our model-selection analysis.

2.2. The degree-corrected block model

As discussed above, in the Poisson version of the stochastic block model, all nodes in
the same block have the same degree distribution. Moreover, their degrees are sums
of independent Poisson variables, so this distribution is Poisson. As a consequence, the
stochastic block model resists putting nodes with very different degrees in the same block.
This leads to problems with networks where the degree distributions within blocks are
highly skewed.

The degree-corrected model allows for heterogeneity of degree within blocks. Nodes
are assigned to blocks as before, but each node also gets an additional parameter θu, which
scales the expected number of edges connecting it to other nodes. Thus

Auv|G = g ∼ Poi(θuθvωgugv).

Varying the θu gives any desired expected degree sequence. Setting θu = 1 for all u recovers
the stochastic block model, making the latter a special case of the former. In statistical
terms, the two form a pair of nested models. This is crucial for our theoretical analysis.

doi:10.1088/1742-5468/2014/05/P05007 5
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The likelihood stays the same if we increase θu by some factor c for all nodes in block
r, provided we also decrease ωrs for all s by the same factor, and decrease ωrr by c2. Thus
identification demands a constraint, and here we use the one that forces θu to sum to the
total number of nodes within each block,∑

u:gu=r

θu = nr. (4)

This constraint allows us to write the complete-data likelihood of the degree-corrected
model in a similar mathematical form to that of the ordinary stochastic block model,

Pcomplete(A = a,G = g|γ, ω, θ) =
∏
u

γgu
∏
u<v

(θuθvωgugv)auv

auv!
e−θuθvωgugv

=
∏
r

γnr
r

∏
u

θduu
∏
rs

ωmrs/2
rs e−(1/2)nrnsωrs

∏
u<v

1

auv!
, (5)

where nr and mrs are as in (1). Again dropping constants, the log-likelihood is

logP (A = a,G = g|γ, ω, θ)

=
∑
r

nr log γr +
∑
u

du log θu + 1
2

(∑
rs

mrs logωrs − nrnsωrs

)
. (6)

Maximizing (6) yields

θ̂u =
du
dgu

, γ̂r =
nr
n
, ω̂rs =

mrs

nrns
, (7)

where

dr =
1

nr

∑
u:gu=r

du

is the average degree of the nodes in block r. Notice how (7) agrees with (3) under the
same assignment g, with the only difference being the additional parameter θu.

However, as with the ordinary stochastic block model, we will estimate θ, γ and ω not
just for a ground state ĝ, but using belief propagation to find the marginal distributions
of Gu and (Gu, Gv).

3. Belief propagation

We referred above to the use of belief propagation for computing log-likelihoods and
marginal distributions of block assignments; for our purposes, belief propagation is
essentially a way of performing the expectation step of the expectation-maximization
algorithm. Here we describe how belief propagation works for the degree-corrected block
model, extending the treatment of the ordinary stochastic block model in [10, 11].

The key idea [37] is that each node u sends a ‘message’ to every other node v, indicating
the marginal distribution of Gu if v were absent. We write µu→vr for the probability that u

doi:10.1088/1742-5468/2014/05/P05007 6
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would be of type r in the absence of v. Then µu→v gets updated in light of the messages
u gets from the other nodes as follows. Let

h(θu, θv, ωrs, auv) =
(θuθvωrs)

auv

auv!
e−θuθvωrs (8)

be the probability that auv takes its observed value if Gu = r and Gv = s. Then

µu→vr =
1

Zu→v γr
∏
w 6=u,v

k∑
s=1

µw→us h(θw, θu, ωrs, awu), (9)

where Zu→v ensures that
∑

r µ
u→v
r = 1. Here, as usual in belief propagation, we treat the

block assignments Gw of the other nodes as independent, conditioned on Gu.
Each node sends messages to every other node, not just to its neighbors, since non-

edges (where auv = 0) are also informative about Gu and Gv. Thus we have a Markov
random field on a weighted complete graph, as opposed to just on the network a itself.
However, keeping track of n2 messages is cumbersome. For sparse networks, we can restore
scalability by noticing that, up to O(1/n) terms, each node u sends the same message to
all of its non-neighbors. That is, for any v such that auv = 0, we have µu→vr = µur where

µur =
1

Zu
γr
∏
w 6=u

k∑
s=1

µw→us h(θw, θu, ωrs, awu).

This simplification reduces the number of messages to O(n+m) where m is the number
of edges. We can then write

µu→vr =
1

Zu→v γr
∏
w

k∑
s=1

µws h(θw, θu, ωrs, 0)
∏

w 6=v,auw 6=0

∑k
s=1 µ

w→u
s h(θw, θu, ωrs, awu)∑k

s=1 µ
w
s h(θw, θu, ωrs, 0)

.

Since the second product depends only on θu, we can compute it once for each distinct
degree in the network, and then update the messages for each u in O(k2du) time. Thus,
for fixed k, the total time needed to update all the messages is O(m+ `n), where ` is the
number of distinct degrees. For many families of networks the number of updates necessary
to reach a fixed point is only a constant or O(log n), making the entire algorithm quite
scalable (see [10, 11] for details).

The belief-propagation estimate of the joint distribution of Gu, Gv is

buvrs ∝ h(θu, θv, ωrs, Auv)µ
u→v
r µv→us ,

normalized so that
∑

rs b
uv
rs = 1. The maximization step of the expectation-maximization

algorithm sets θ, γ and ω

θ̂u =
du
d̄gu

, γ̂r =
n̄r
n

=

∑
u µ

u
r

n
, ω̂rs =

mrs

nrns
=

∑
u6=v:auv 6=0 auvb

uv
rs∑

u µ
u
r

∑
u µ

u
s

, (10)

where nr is the average size of block r, and d̄r is the average degree of block r, with respect
to the belief-propagation estimates. These are very similar to the most likely estimates in
(7), and they again share exactly the same formulation as those for the ordinary stochastic
block model, with θu = 1.

Finally, belief propagation also lets us approximate the total log-likelihood, summed
over G but holding the observed graph a fixed. The Bethe free energy is the following

doi:10.1088/1742-5468/2014/05/P05007 7
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approximation to the log-likelihood [38]:

logP (A = a|γ, ω, θ)

≈
∑
u

logZu + 1
2

∑
rs

ωrsdrds −
∑

u6=v,auv 6=0

log

[∑
rs

h(θu, θv, ωrs, auv)µ
u→v
r µv→us

]
. (11)

An alternative to belief propagation would be the use of Markov chain Monte Carlo
maximum likelihood, which is often advocated for network modeling [21]. However, the
computational complexity of Monte Carlo maximum likelihood is typically much worse
than that of belief propagation; it does not seem to be practical for graphs beyond a
few hundred nodes. We reiterate that while we use belief propagation in our numerical
work, our results on model selection in the next section are quite indifferent as to how the
likelihood is computed.

4. Model selection

When the degree distribution is relatively homogeneous within each block (e.g., [15, 19]),
the ordinary stochastic block model is better than the degree-corrected model, since
the extra parameters θu simply lead to over-fitting. On the other hand, when degree
distributions within blocks are highly heterogeneous, the degree-corrected model is better.
However, without prior knowledge about the communities, and thus the block degree
distributions, we need to use the data to pick a model, i.e., to do model selection.

It is natural to approach the problem as one of hypothesis testing9. Since the ordinary
stochastic block model is nested within the degree-corrected model given an assignment
g, any given graph a is at least as likely under the latter as under the former. Moreover,
if the ordinary block model really is the ground truth, the degree-corrected model should
converge to the same ground state, at least in the limit of large networks10. However, we
have averaged our models over the latent variables g, thus using the free energy instead
of the most likely ground state energy. Extra precautions are required when applying
classical statistical techniques.

Our null model H0 is the stochastic block model, and the larger, nesting alternative
H1 is the degree-corrected model. The test statistic we are interested in is the total log-
likelihood ratio,

Λ(a) = log
supH1

∑
g P (a, g|γ, ω, θ)

supH0

∑
g P (a, g|γ, ω)

, (12)

with the P functions defined in (1) and (5).
As usual, we reject the null model in favor of the more elaborate alternative when Λ

exceeds some threshold. This threshold, in turn, is fixed by our desired error rate, and
by the distribution of Λ when A is generated from the null model. When n is small, the
null-model distribution of Λ can be found through parametric bootstrapping [9, section

9 We discuss other approaches to model selection in the conclusion.
10 The stochastic block model recovers the ground state exactly in such a regime [5].
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4.2.3]: fitting H0, generating new graphs Ã from it, and evaluating Λ(Ã). When n is large,
however, it is helpful to replace bootstrapping with analytical calculations.

Classically [34, Theorem 7.125, p 459], the large-n null distribution of such log-
likelihood ratios approaches 1

2
χ2
` , where ` is the number of constraints that must be

imposed on H1 to recover H0. In this case we have ` = n − k, as we must set all n
of the θu to 1, while our identifiability convention (4) already imposed k constraints.

However, the χ2 distribution rests on the assumption that the log-likelihood of both
models is well-approximated by a quadratic function in the vicinity of its maximum, so
that the parameter estimates have Gaussian distributions around the true model [16].
The most common grounds for this assumption are central limit theorems for the data,
together with a smooth functional dependence of each parameter estimate on a growing
number of samples, i.e., being in a ‘large data limit’. This assumption fails in the present
case. The degree-corrected model has n node-specific θu parameters. Dense graphs have
an effective sample size of O(n2), so even with a growing parameter space the degree-
corrected model can pass to the large data limit. But in sparse networks, the effective
sample size is only O(n), and so we never get the usual asymptotics no matter how large
n grows.

Nevertheless, with some work we are able to compute the mean and variance of Λs null
distribution. While we recover the classical χ2 distribution in the limit of dense graphs,
there are important corrections when the graph is sparse, even as n → ∞. As we will
show, this has drastic consequences for the appropriate threshold in likelihood ratio tests.

4.1. Analysis of the log-likelihood ratio

To characterize and simplify the null distribution of Λ, we assume that the two models
based on the free energy also form a nested pair. That is, if the underlying data is generated
by the null model, both models converge to the same joint distributions of Gu. Under this
assumption, Λ gives the form of a Kullback–Leibler divergence,

Λ = log
supH1

∑
g

∏
u θ

du
u

∏
r γ

nr
r

∏
rs ω

mrs/2
rs e−(1/2)nrnsωrs

supH0

∑
g

∏
r γ

nr
r

∏
rs ω

mrs/2
rs e−(1/2)nrnsωrs

≈ log

∑
g

∏
u θ̂

du
u

∏
r γ̂

nr
r

∏
rs ω̂

mrs/2
rs e−(1/2)nrnsω̂rs∑

g

∏
r γ̂

nr
r

∏
rs ω̂

mrs/2
rs e−(1/2)nrnsω̂rs

= log
∏
u

θ̂duu = log
∏
u

(
du
d̄gu

)du
=
∑
u

du log
du
d̄gu

(13)

where we substitute in (10). Notice that under this assumption, most likely estimates of
the parameters under H0 and H1 agree, and each term in the sums in the numerator and
denominator cancels to the exact same ratio

∏
u θ̂

du
u . Keep in mind that d̄r is the empirical

mean degree of block r, not the expected degree µr =
∑

s γsωrs of the stochastic block
model. Using our belief-propagation algorithm, we can verify the above assumption based
on the marginal distributions of Gu and (Gu, Gv) (figure 1, left column).

For further confirmation, we can justify (13) with an alternative assumption. If the
posterior distributions P (G = g | A = a, γ, ω) and P (G = g | A = a, γ, ω, θ) concentrate

doi:10.1088/1742-5468/2014/05/P05007 9
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Figure 1. Left column: 3D heat maps with top-view scatter plots of posterior
probabilities over block assignments, according to our belief-propagation
algorithm on one of the sample networks. It shows that the ordinary and the
degree-corrected block models converge to the same marginal distributions of Gu
(first assumption). Furthermore, the concentration of the marginals suggests the
strong dominance of the ground state (second assumption). The x- and y-axes in
both parts are the marginal probabilities of being in block 1 according to ordinary
and degree-corrected models, respectively. The Z-axes are logarithmic. Right
column: QQ plots (100 samples) for comparing the distributions of the ground
state energy difference to those of free energy difference under the null model. A
point in a QQ plot corresponds to one of the quantiles of the first distribution
(x-coordinate) plotted against the same quantile of the second distribution (y-
coordinate). Observe that here the points approximately lie on the line y = x,
which means that the two distributions are very similar. Top row: synthetic
network with n = 103, k = 2 equally-sized blocks (γ1 = γ2 = 1/2), average degree
µr = 11, and associative structure with ω12/ω11 = ω21/ω22 = 1/11. Bottom row:
bootstrapped networks with the assignments and parameters of the political blog
network.
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Figure 2. Comparison of asymptotic theory to finite-n simulations. We generated
networks from the stochastic block model with varying average degree µ (n = 104,
k = 2, γ1 = γ2 = 1/2, ω11 = ω22, and ω12/ω11 = ω21/ω22 = 0.15) and computed
Λ (the log-likelihood ratio) for each graph. Parts (a) and (b) show n−1E(Λ) and
n−1var(Λ), comparing 95% bootstrap confidence intervals (over 103 replicates)
to the asymptotic formulas (respectively f(µ) from (15) and v(µ) from (17)).
Part (c) compares the distribution of Λ from 104 replicates, all with µ = 3, to a
Gaussian with the theoretical mean and variance.

on the same block assignment g, the maximum-likelihood estimates for H0 and H1 are
then (3) and (7) respectively. Substituting these into (12), most terms cancel and we
recover (13)

Λ ≈ log
supH1

∏
u θ

du
u

∏
r γ

nr
r

∏
rs ω

mrs/2
rs e−(1/2)nrnsωrs

supH0

∏
r γ

nr
r

∏
rs ω

mrs/2
rs e−(1/2)nrnsωrs

= log sup
H1

∏
u

θduu = log
∏
u

(
du
dgu

)du
=
∑
u

du log
du
dgu

.

Either justification is a major approximation. Fortunately for us, while the free energy
differs from the ground state energy, the free energy difference between the two models
follows a very similar distribution to the ground state energy difference. According to our
simulations (figures 1 and 2(c)), both assumptions tend to hold on synthetic networks
with prescribed blocks as well as on bootstrapped networks with real world assignments
and parameters. For small average degree, which is the focus of our work, we will see that
the obtained analytical formulas agree well with the actual log-likelihood ratio evaluated
from simulations.

Given (13), the distribution of Λ follows from the distributions of the nodes’ degrees;
under the null model, all the Du in block r are independent ∼Poi(µr). (This assumption
is sound in the limit n → ∞, since the correlations between node degrees are O(1/n).)
Using this, we can compute the expectation and variance of Λ analytically (see appendix),
showing that Λ departs from classical χ2 asymptotics, as well as revealing the limits where
those results apply. Specifically,

E(Λ) =
∑
r

nrf(µr)− f(nrµr) (14)
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where, if D ∼ Poi(µ),

f(µ) = E(D logD)− µ log µ. (15)

For dense graphs, where µ → ∞, both f(µ) and f(nµ) approach 1/2, and (14) gives
E(Λ) = (n − k)/2 just as in the standard χ2 analysis. However, when µ is small, f(µ)
differs noticeably from 1/2.

The variance of Λ is somewhat more complicated. The limiting variance per node is

lim
n→∞

1

n
var(Λ) =

∑
r

γrv(µr), (16)

where, again taking D ∼ Poi(µ),

v(µ) = µ(1 + log µ)2 + var(D logD)− 2(1 + log µ)cov(D,D logD). (17)

Since the variance of χ2
` is 2`, χ2 asymptotics would predict (1/n)var(Λ) = 1/2. Indeed

v(µ) approaches 1/2 as µ → ∞, but like f(µ) it differs substantially from 1/2 for small
µ. Figure 2 plots f(µ) and v(µ) for 1 ≤ µ ≤ 10.

Figure 2 shows that, for networks simulated from the stochastic block model, the mean
and variance of Λ are very well fitted by our formulas. We have not attempted to compute
higher moments of Λ. However, if we assume that Du are independent, then the simplest
form of the central limit theorem applies, and n−1Λ will approach a Gaussian distribution
as n→∞. Quantile plots from the same simulations (figure 2(c)) show that a Gaussian
with mean and variance from (14) and (16) is indeed a good fit. Moreover, the free energy
difference and the ground state energy difference have similar distributions, as implied by
either of our assumptions when deriving equation (13). Interestingly, in figure 2(c), the
degree is low enough that this concentration must be imperfect, but our theory still holds
remarkably well. For ease of illustration, we assume that γr = 1/k and µr are the same
for all r.

Fundamentally, Λ does not follow the usual χ2 distribution because the θ parameters
are in a high-dimensional regime. For each θu, we really have only one relevant observation,
the node degree Du. If θu is large, then the Poisson distribution of Du is well-approximated
by a Gaussian, as is the sampling distribution of the most likely estimate of θu, so that
the usual χ2 analysis applies. In a sparse graph, however, all the Poisson distributions
have small expected values and are highly non-Gaussian, as are the maximum-likelihood
estimates [40]. Stated differently, the degree-corrected model has O(n) more parameters
than the null model. In the dense-graph case, there are O(n2) observations, at least O(n) of
which are informative about each of these extra parameters. For sparse graphs, however,
there are really only O(n) observations, and only O(1) of them are informative about
each θu, so the ordinary large-n asymptotics cannot apply to them. As we have seen, the
expected increase in likelihood from adding the θ parameters is larger than χ2 theory
predicts, as are the fluctuations in this increase in likelihood.

This reasoning elaborates on a point made long ago by [14] regarding hypothesis
testing in the p1 model, where each node has two node-specific parameters (for in- and
out-degree); our calculations of f(µ) and v(µ) above, and in particular of how and why
they differ from 1/2, go some way towards meeting Fienberg and Wasserman’s call for
appropriate asymptotics for large-but-sparse graphs.
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Figure 3. The size n, as a function of the average degree µ, above which a
naive χ2 test commits a type I error with 95% confidence. Type I error means
incorrectly rejecting the ordinary stochastic block model for graphs that are
actually generated by it. Here we assume the asymptotic analysis of (14)–(17)
for the mean and variance of the likelihood ratio.

Ignoring these phenomena and using a χ2 test inflates the type I error rate (α),
eventually rejecting the stochastic block model for almost all graphs which it generates.
Indeed, since the χ2 distribution is tightly peaked around 0.5n, this inflation of α gets
worse as n gets bigger. For instance, if we use the standard rejecting criteria of p-value
<0.05, when µ = 5, a χ2 test commits a type I error with 95% confidence at roughly
n = 3000, while for µ = 3, this happens once n ≈ 700 (figure 3). In essence, the χ2

test underestimates the amount of degree inhomogeneity we would get simply from noise,
incorrectly concluding that the inhomogeneity must come from underlying properties of
the nodes.

5. Results on real networks

We have derived the theoretical null distribution of Λ, and backed up our calculations
with simulations. We now apply our theory to two examples, considering networks studied
in [23].

The first is a social network consisting of 34 members of a karate club, where undirected
edges represent friendships [39]. The network is made up of two assortative blocks, each
with one high-degree hub (respectively the instructor and the club president) and many
low-degree peripheral nodes. Karrer and Newman [23] compared the performance of the
ordinary and the degree-corrected block models on this network, and heavily favored
degree correction, because the latter leads to division into communities agreeing with
ethnographic observations.

While a classic data set for network modeling, the karate club has both low degree and
very small n. If we nonetheless use parametric bootstrapping to find the null distribution
of Λ, we see that it fits a Gaussian with our predicted mean and variance reasonably well
(figure 4(a)). The observed Λ = 20.7 has a p-value of 0.187 according to the bootstrap,
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Figure 4. (a) Complementary cumulative distribution function of the log-
likelihood ratio Λ for testing for degree correction. The distribution found by
parametric bootstrapping (blue shaded) fits reasonably well to a Gaussian (curve)
with our theoretical mean and variance. The observed Λ = 20.7 (marked with
the red line) has p-values of 0.186 and 0.187 according to the bootstrap and
theoretical distributions respectively, whereas the χ2 test (dashed) has a p-value
of 0.125. If we bootstrap the karate club using the degree-corrected block model
(orange shaded, CDF), the observed Λ = 20.7 has an even smaller p-value (0.02)
for being at most that much. (b) Query order chosen by the active learning
algorithm by [24]. Red nodes are the top priorities, followed by orange nodes.
Blue nodes are the last to query. Once the red nodes are placed into separate
blocks, the ordinary stochastic block model can find the correct block (indicated
by shape) for most of the nodes.

and 0.186 according to our Gaussian asymptotics. Thus a prudent analyst would think
twice before embracing the n additional degree-correction parameters. Indeed, using active
learning, [24] found that the stochastic block model labels most of the nodes correctly if
the instructor and the president are forced into different blocks (red nodes in 4(b)). This
implies that the degree inhomogeneity is mild, and that only a handful of nodes are
responsible for the better performance of the degree-corrected model.

Note that if we apply standard χ2 testing to the karate club, we obtain a lower p-value
of 0.125. As in figure 3, χ2 testing underestimates the extent to which an inhomogeneous
degree distribution can result simply from noise, causing it to reject the null model more
confidently than it should. This is further confirmed by the bootstrapping results under
the alternative model (Orange shade in figure 4(a)). With an even lower p-value of 0.02,
the karate club network is very unlikely to be generated by the degree-corrected block
model.

The second example is a network of political blogs in the US assembled by [1].
As in [23], we focus on the giant component, which contains 1222 blogs with 19 087
links between them. The blogs have known political leanings, and were labeled as either
liberal or conservative. The network is politically assortative, with a heavy-tailed degree
distribution (see figure 5(b)) within each block, so degree correction greatly assists in
recovering political divisions, as observed by [23]. This time around, our hypothesis testing
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Figure 5. (a) Complementary cumulative distribution function of the log-
likelihood ratio Λ for testing for degree correction. The bootstrap distribution
(shaded) is very well fitted by our theoretical Gaussian (curve) as well as the χ2

test (blue dashed). The actual log-likelihood ratio is so far in the tail (marked
with the red line) that its p-value is effectively zero (notice the break and indices
of the x-axis). If we bootstrap the political blogs using the degree-corrected block
model (orange shaded, CDF), the observed Λ = 8883 has a p-value of 0.876 for
being at most that much. (b) Degree distribution of political blogs. Both the
x-axis and the y-axis are logarithmic. This empirical distribution has a heavy
tail and is very different from the Poisson distribution predicted by the ordinary
stochastic block model.

procedure completely agrees with their choice of model. As shown in figure 5(a), the
bootstrap distribution of Λ is very well fit by a Gaussian with our theoretical prediction
of the mean and variance. The observed log-likelihood ratio Λ = 8883 is 330 standard
deviations above the mean. It is essentially impossible to produce such extreme results
through mere fluctuations under the null model. Thus, for this network, introducing n
extra parameters to capture the degree heterogeneity is fully justified. This is again
confirmed by the bootstrapping results under the alternative model (Orange shade in
figure 5(a)). With a respectable p-value of 0.876, the political blog network is very likely
to be generated by the degree-corrected block model.

The blog network shows the advantage of theoretical approaches over bootstrapping.
As with many other real networks, n is too large for efficient bootstrapping. However, since
this is a relatively dense network, the naive χ2 test does just as well as our theoretical
approximation for Λ.

6. Conclusion

Deciding between ordinary and degree-corrected stochastic block models for sparse graphs
presents a difficult hypothesis testing problem. The distribution of the log-likelihood ratio
Λ does not follow the classic χ2 theory, because the nuisance parameter θ, only present
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in the alternative, is in a high-dimensional regime. We have nonetheless derived unbiased
estimations of Λ’s mean and variance in the limit of large, sparse graphs, where node
degrees become independent and Poisson. Simulations confirm the accuracy of our theory
for moderate n, and we applied it to two real networks.

Beyond hypothesis testing, two standard approaches to model selection are information
criteria and cross-validation. While we have not directly dealt with the former, the
derivations of such popular criteria as the Akaike information criterion or deviance
information criterion use exactly the same asymptotics as the χ2 test [7, chapter 2];
these tools will break down for the same reasons χ2 theory fails. As for cross-validation,
standard practice in machine learning suggests using multi-fold cross-validation, but the
global dependence of network data means there is (as yet) no good way to split a graph into
training and testing sets. Predicting missing links or tagging false positives are popular
forms of leave-k-out cross-validation in the network literature [8, 17], but leave-k-out does
not converge on the true model even for independent and identically-distributed data [7,
section 2.9]. Thus, while our results apply directly only to the specific problem of testing
the need for degree correction, they open the way to more general approaches to model
selection and hypothesis testing in a wide range of network problems.

Appendix. Behavior of Λ under the null hypothesis

For simplicity we focus on one block with expected degree µ. Independence between blocks
will then recover the expressions (14) and (16) where the mean and variance of Λ is a
weighted sum over blocks. We have

Λ =
n∑
i=1

Di log
Di

D

=
∑
i

Di logDi −
(∑

i

Di

)
log

(∑
i

Di

)
+

(∑
i

Di

)
log n, (A.1)

where D = (1/n)
∑

iDi is the empirical mean degree. We wish to compute the mean and
expectation of Λ if the data are generated by the null model.

If D ∼ Poi(µ), let f(µ) denote the difference between the expectation of D logD and
its most probable value µ log µ,

f(µ) =

( ∞∑
d=1

e−µµd

d!
d log d

)
− µ log µ. (A.2)

Assume that the Di are independent and ∼Poi(µ); this is reasonable in a large sparse
graph, since the correlation between degrees of different nodes is O(1/n). Then nD ∼
Poi(nµ), and (A.1) gives

E(Λ) = nf(µ)− f(nµ). (A.3)

To grasp what this implies, begin by observing that f(µ) converges to 1/2 when µ→∞.
Thus in the limit of large n, E(Λ) = nf(µ) − 1

2
. When µ is large, this gives E(Λ) =
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Figure A.1. (a) Asymptotic limit of n−1E(Λ), the f(µ) of (A.2). (b) Asymptotic
limit of n−1var(Λ), from (A.8). Here µ is the average degree, and Λ is the log-
likelihood ratio. Figure 2 compares these to simulations.

(n−1)/2, just as χ2 theory suggests. However, as figure A.1 shows, f(µ) deviates noticeably
from1/2 for finite µ. We can obtain the leading corrections as a power series in 1/µ by
approximating (A.2) with the Taylor series of d log d around d = µ, giving

f(µ) =
1

2
+

1

12µ
+

1

12µ2
+O(1/µ3).

Computing the variance is harder. It will be convenient to define several functions. If
D ∼ Poi(µ), let φ(µ) denote the variance of D logD,

φ(µ) = var(D logD) =
∞∑
d=0

e−µµd

d!
(d log d)2 − (f(µ) + µ log µ)2 . (A.4)

We will also use

c(µ) = cov(D,D logD) =
∞∑
d=1

e−µµd

d!
d2 log d− µ (f(µ) + µ log µ) . (A.5)

Finally, let ψ ≥ µ, and let D and U be independent and Poisson with mean µ and ψ − µ
respectively. Then let

r(µ, ψ) = cov(D logD, (D + U) log(D + U))

= E((D logD)((D + U) log(D + U)))− E(D logD)E((D + U) log(D + U))

= E((D logD)((D + U) log(D + U)))− (f(µ) + µ log µ) (f(ψ) + ψ logψ) , (A.6)

where we use the fact that D + U ∼ Poi(ψ).
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Again assuming that the Di are independent, we have the following terms and cross-
terms for the variance of (A.1):

var

(∑
i

Di logDi

)
= nφ(µ)

var((nD) log
(
nD
)
) = φ(nµ)

var(nD) = nµ

cov

(∑
i

Di logDi,
(
nD
)

log
(
nD
))

= nr(µ, nµ)

cov

(∑
i

Di logDi, nD

)
= nc(µ)

cov((nD) log nD, nD) = c(nµ).

Putting this all together, we have

var(Λ) = nφ(µ) + φ(nµ) + nµ log2 n− 2nr(µ, nµ) + 2 (nc(µ)− c(nµ)) log n. (A.7)

For large µ, Taylor-expanding the summands of (A.4) and (A.5) yields

φ(µ) = µ log2 µ+ 2µ log µ+ µ+
1

2
+O

(
log µ

µ

)
c(µ) = µ log µ+ µ+O(1/µ).

Also, when ψ� µ and µ = O(1), using log (D + U) ≈ logU +D/U lets us simplify (A.6),
giving

r(µ, λ) = E(D2 logD)(1 + log λ) + E(D logD)E(U logU)

−E(D logD)E((D + U) logD + U)) +O(1/λ).

In particular, setting ψ = nµ gives

r(µ, nµ) = c(µ)(1 + log nµ) +O(1/n).

Finally, keeping O(n) terms in (A.7) and defining v(µ) as in (16) gives

v(µ) = lim
n→∞

1

n
var(Λ) = φ(µ) + µ(1 + log µ)2 − 2c(µ)(1 + log µ). (A.8)

Using the definitions of φ and c, we can write this more explicitly as

v(µ) = µ(1 + log µ)2 + var(D logD)− 2(1 + log µ)cov(D,D logD), (A.9)

where D ∼ Poi(µ). We plot this function in figure A.1(b). It converges to 1/2 in the limit
of large µ, but it is significantly larger for finite µ.
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[11] Decelle A, Krzakala F, Moore C and Zdeborová L, 2011 Phys. Rev. Lett. 107 065701 [arXiv:1102.1182]

[12] Dempster A P, Laird N M and Rubin D B, 1977 J. R. Stat. Soc. B 39 1 (www.jstor.org/pss/2984875)

[13] Faloutsos M, Faloutsos P and Faloutsos C, 1999 ACM SIGCOMM Computer Communication Review

vol 29 (New York: ACM) pp 251–62

[14] Fienberg S E and Wasserman S, 1981 J. Am. Stat. Assoc. 76 54 (www.stat.cmu.edu/ fienberg/Stat36-835/

FienbergWasserman-HollandLeinhardt-JASA-1981.pdf)

[15] Fienberg S E and Wasserman S, 1981 Sociological Methodology 1981 ed S Leinhardt (San Francisco, CA:

Jossey-Bass) pp 156–92 (www.jstor.org/stable/270741)

[16] Geyer C J, 2005 Le Cam Made Simple: Asymptotics of Maximum Likelihood without the LLN or CLT or

Sample Size Going to Infinity Technical Report 643, School of Statistics, University of Minnesota

[arXiv:1206.4762]

[17] Guimera R and Sales-Pardo M, 2009 Proc. Nat. Acad. Sci. USA 106 22073 [arXiv:1004.4791]

[18] Hodas N and Lerman K, 2012 ASE/IEEE Int. Conf. on Social Computing arXiv:1205.2736

[19] Holland P W, Laskey K B and Leinhardt S, 1983 Soc. Networks 5 109

[20] Holland P W and Leinhardt S, 1981 J. Am. Stat. Assoc. 76 33 (www.jstor.org/pss/2287037)

[21] Hunter D R and Handcock M S, 2006 J. Comput. Graph. Stat. 15 565 (www.stat.psu.edu/∼dhunter/paper

s/cef.jcgs.pdf)

[22] Jeong H, Tombor B, Albert R, Oltvai Z N and Barabási A L, 2000 Nature 407 651

[23] Karrer B and Newman M E J, 2011 Phys. Rev. E 83 016107 [arXiv:1008.3926]

[24] Moore C, Yan X, Zhu Y, Rouquier J B and Lane T, 2011 KDD 2011: 17th ACM SIGKDD Conf. on

Knowledge Discovery and Data Mining ed C Apte, J Ghosh and P Smyth, pp 841–9 [arXiv:1109.3240]

[25] Mørup M and Hansen L K, 2009 NIPS Workshop on Analyzing Networks and Learning with Graphs

(http://snap.stanford.edu/nipsgraphs2009/papers/morup-paper.pdf)

[26] Mossel E, Neeman J and Sly A, Stochastic block models and reconstruction 2012 arXiv:1202.1499

[27] Neal R M and Hinton G E, 1998 Learning in Graphical Models ed M I Jordan (Dordrecht: Kluwer

Academic) pp 355–68 (www.cs.toronto.edu/∼radford/em.abstract.html)

[28] Newman M E J, 2002 Phys. Rev. Lett. 89 208701 [arXiv:cond-mat/0205405]

[29] Newman M E J, 2003 Phys. Rev. E 67 026126 [arXiv:cond-mat/0209450]

[30] Perry P O and Wolfe P J, Null Models for Network Data 2012 arXiv:1201.5871

[31] Porter M A, Onnela J P and Mucha P J, 2009 Not. Am. Math. Soc. 56 1082 [arXiv:0902.3788]

Porter M A, Onnela J P and Mucha P J, 2009 Not. Am. Math. Soc. 56 1164

[32] Reichardt J, Alamino R and Saad D, 2011 PLoS One 6 e21282 [arXiv:1012.4524]
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