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spective permits us to outline the dynamical theory required for a description of the
macroscopic evolution of the Internet. The presence of such a theoretical frame-
work appears to be a revolutionary and promising path towards our understanding
of the Internet and the various processes taking place on this network, including,
for example, the spread of computer viruses or resilience to random or intentional
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The presentation focuses on statistical regularities observed in the large-scale
structure of the network, the so-called “global Internet” as well as on the impor-
tance of dynamics in the formulation of adequate models. Using this approach it is
possible to provide a unified picture of results obtained on the Internet in the con-
text of different scientific communities. This makes use of methods and concepts
that have proven to be extremely useful in the analysis of more classical statisti-
cal physics systems, such as percolation theory, mean-field methods, and cellular
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This book will be of interest to graduate students and researchers in statistical
physics, computer science, and mathematics studying the structure and evolution
of the internet.

ROMUALDO PASTOR-SATORRAS received his Ph.D. at the University of
Barcelona. He has been a research fellow at Yale University and at the
Massachusetts Institute of Technology in Cambridge, MA. He spent two years
as a research fellow at the International Center for Theoretical Physics (UNESCO)
and then moved back to Spain in 2000 as Assistant Professor at the University of
Barcelona. Since 2001, Pastor-Satorras has been a research scientist and lecturer at
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Preface

For the majority of people the word “Internet” means access to an e-mail account
and the ability to mine data through any one of the most popular public web search
engines. The Internet, however, is much more than that. In simple terms, it is
a physical system that can be defined as a collection of independently adminis-
tered computer networks, each one of them (providers, academic and governmen-
tal institutions, private companies, etc.) having its own administration, rules, and
policies. There is no central authority overseeing the growth of this networks-of-
networks, where new connection lines (links) and computers (nodes) are being
added on a daily basis. Therefore, while conceived by human design, the Internet
can be considered as a prominent example of a self-organized system that com-
bines human associative capabilities and technical skills.

The exponential growth of this network has led many researchers to realize that
a scientific understanding of the Internet is necessarily related to the mathemati-
cal and physical characterization of its structure. Drawing a map of the Internet’s
physical architecture is the natural starting point for this enterprise, and various
research projects have been devoted to collecting data on Internet nodes and their
physical connections. The result of this effort has been the construction of graph-
like representations of large portions of the Internet. The statistical analysis of
these maps has highlighted, to the surprise of many, a very complex and hetero-
geneous topology with statistical fluctuations extending over many scale lengths.
These are the typical signatures of emergent phenomena, as we observe in nature
in many complex systems which are subject to dynamical evolution.

When looking at networks from the point of view of complex systems, the focus
is placed on the microscopic processes that rule the appearance and disappearance
of nodes and links. Then, since the system is composed of very many interacting
units, a detailed evaluation of the dynamics of each unit is avoided in favor of
the understanding of the cooperative phenomena originated by their dynamical
interactions and the statistical laws governing the system. Such a methodology is
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x Preface

akin to the statistical physics approach that has been successfully applied to link
the microscopic dynamics and interactions of atoms and matter to the statistical
regularities of macroscopic physical systems.

Following this path, an intense research activity has been devoted in recent times
to apply the statistical physics approach to the study of complex growing networks
in general, and the Internet in particular. In the statistical physics approach the
Internet is viewed as a growing system that evolves in time by adding and remov-
ing nodes and links. This perspective is somehow opposite to the traditional static
graph modeling and allows the identification of some basic models that, while still
missing many details, appear to outline the dynamical theory required for the de-
scription of the macroscopic Internet’s evolution. The presence of such a theoreti-
cal framework appears as a revolutionary and promising path in our understanding
of the Internet and other complex technological and natural networks.

The introduction of the statistical physics approach into the field of network
studies has also provided new techniques and methods with which to approach
problems related to network topology, such as resilience to damage and diffu-
sion or searching processes. In this case, well-established techniques in statistical
physics, such as percolation theory, mean-field methods, cellular automata simula-
tions, etc., can be used to gain a deeper understanding of the Internet’s properties.

The purpose of this book is to provide a unified picture of the results obtained
about the Internet in the context of different scientific communities by privileging
the use of methods and concepts that have proven to be extremely useful in the
analysis of more classical statistical physics systems. We shall therefore make a
strong emphasis on the statistical regularities observed in the large-scale structure
of the network, the so-called global Internet, and the importance of the dynam-
ics in the formulation of adequate models. In doing this, we have made a special
effort to bridge the language gap that might occur among different communities
by devoting the two initial chapters to an outline of the Internet’s history and an
elementary description of its functioning. This will allow us to build up a basic
Internet glossary and outline the main elements that make the Internet work. We
also provide an appendix summarizing the main concepts of graph theory, which
are used in the topological description of Internet maps.

The road map of the book can be schematized in two main parts. The first six
chapters are essentially devoted to the physical Internet. In these chapters we re-
view the various experimental projects dealing with data collection, focusing on
the various mapping strategies and the level of description achieved with differ-
ent tools. Following this, we present the statistical analysis of the most recent
data available, discussing in detail the main topological features characterizing the
Internet’s large-scale topology. The ensuing chapter contains an overview of mod-
els which propose to represent the Internet. Here we emphasize the “physicist”
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Preface xi

point of view by introducing the reader to the modern field of growing network
models. Finally, we report in Chapter 6 an analysis of the Internet’s resilience to
damage by casting the problem in the general framework of phase transitions and
percolation phenomena.

The second part consisting of Chapters 7, 8, and 9 is instead focused on the
virtual networks hosted by the Internet, such as the World Wide Web, peer-to-peer
systems, and other social communities, and to dynamical phenomena that occur
on them, such as search processes and epidemic spreading. Finally, Chapter 10 is
a short discussion of important features that are likely going to represent the main
challenges for a full understanding of the Internet in the near future.

The systematic study of the large-scale properties of the Internet and its view as
a complex evolving network, while a relatively recent field, has generated quite a
large number of works and a vast literature on the subject. We have made every
effort to account and mention all the works relevant for a proper understanding of
each chapter. It is, however, quite impossible to discuss in detail all the contribu-
tions to the field and we have therefore made some choices based on our perception
of what is more relevant to the focus of the present book. We apologize to all the
colleagues who feel that their specific contributions have been overlooked. We
hope that our effort will result in a comprehensive and useful presentation of the
subject to everybody working in the field, and, more specially, to any researcher or
student who intends to enter it. In this sense, by conveying the idea that the Internet
is a paradigmatic example of complex system, we believe that the book can be of
interest to computer scientists, physicists, and mathematicians alike.

Many people have contributed to the preparation of this book, specially by
shaping our own understanding of the subject. Most of what we know about the
Internet is the result of past and present scientific collaborations with M. Boguñá,
G. Caldarelli, Y. Moreno, R. Percacci, R. V. Solé, and A. Vázquez. Many of
the subtle technicalities of the Internet working has been explained to us by
I. Alvarez-Hamelin and S. Visintin to whom goes our deepest gratitude. Our views
and knowledge of complex networks have been refined through invaluable scien-
tific discussions with L. Adamic, I. Alvarez-Hamelin, A.-L. Barabási, A. Barrat,
G. Bianconi, C. Castellano, A. Flammini, A. Krzywicki, S. Havlin, M. Latapy,
A. Lloyd, R. May, F. Menczer, A. Maritan, M. E. J. Newman, R. Percacci,
L. Pietronero, N. Schabanel, R. V. Solé and F. van Wijland. The first drafts
of the book were read and criticized by I. Alvarez-Hamelin, A.-L. Barabási,
A. Barrat, M. Barthelemy, G. Caldarelli, L. Fabbian, A. Flammini, D. Iaschi,
C. Magnien, F. Menczer, M.-C. Miguel, Y. Moreno, T. Pernice, A. Vázquez, and
M. Vergassola. The book would look very different, and much worse, without
their thorough revisions and comments. Many of the figures and plots reported
in the book would not be there without the kind help and raw data retrieval
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of G. Caldarelli, G. Bianconi, S. Bornholdt, H. Ebel, H. Jeong, S. Leonardi,
E. Ravasz and A. Vázquez. Particularly, we want to express our warmest gratitude
to A.-L. Barabási for the encouragement and the warm hospitality in the University
of Notre Dame, where parts of the book were written. We are also grateful to the
friends at the International Center for Theoretical Physics in Trieste, where the
book writing was initiated. We wish to thank the constant editorial guidance of
Simon Capelin and the continuous help and support of the outstanding editorial
staff at Cambridge University Press. We also thank the various institutions which
have made possible our work through their generous support at the various stages
of this project: the FET Open project “COSIN” IST-2001-33555, the Ministerio de
Ciencia y Tecnologı́a (Spain) through its program “Ramón y Cajal” and grant BFM
2001–2154, the Action Specifique CNRS/STIC “Dynamo” and the BQR “Graphes
du Web” of Orsay University.

Romualdo Pastor-Satorras
Alessandro Vespignani
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1

A brief history of the Internet

The Internet is the result of the bold effort of a group of people in the 1960s, who
foresaw the great potential of a computer-based communication system to share
scientific and research information. While in the early times it was not a user-
friendly environment and was only used by a restricted community of computer
experts and scientists, nowadays the Internet connects more than one hundred mil-
lion hosts1 and keeps growing at a pace unknown in any other communication
media. From this perspective, the Internet can be considered as one of the most
representative accomplishments of sustained investment in research at both the
basic and applied science levels.

The success of the Internet is due to its world-wide broadcasting capability that
allows the interaction between individuals without regard for geographic location
and distance. The information exchanged between computers is divided into data
packets and sent to special devices, called routers, that transfer the packets across
the Internet’s different networks. Of course a router is not linked to every other
router. It just decides on the direction the data packets take. In order to work reli-
ably on a global scale, such a network of networks must be very slightly affected
by local or even extensive failures in the network’s nodes. This means that if a site
is not working properly or it is too slow, data packets can be rerouted, on the spot,
somewhere else. Surprisingly, such a network communication system is realized
by a complex interplay of communication protocols, hardware infrastructures, and
connectivity architecture that is the outcome of an evolution lacking any central
authority. Things have always been changing on the Internet, sometimes gradually
and sometimes very rapidly, but always evolving without a precise general design.
The Internet is in this sense a major example of a self-organizing system, combin-
ing human needs and technological capabilities in a cooperative way.

1 A host is defined as a computer that allows individual users to communicate with other computers through the
Internet.
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2 A brief history of the Internet

In this chapter we want to provide a brief history of the Internet’s development
and growth, introducing at the same time the basic terminology and concepts used
to describe this system. The main scope of the following pages is to allow the
reader to understand the complex nature of the evolution of the Internet, and to
highlight its most important technological and organizational ingredients. From
this perspective, and for the sake of simplicity, the present chapter is necessarily a
sketchy presentation of the Internet’s history. The interested reader can dig deeper
into this subject in the works of Gillies and Cailliau (2000), Abbate (2000), the
Hobbes’ Internet Timeline (2000)2, and the online history by Leiner et al. (2000)3.

1.1 The early times

1.1.1 Distributed communication networks

The history of the Internet began in the early 1960s, at the height of the cold war,
when ARPA,4 an agency created in 1958 by the US Department of Defense to
sponsor research projects related to military problems, started to fund programs
at universities and corporations concerning the creation of a computer network to
access and share data and programs among computers located in different places.
This was an appealing project, specially from the perspective of providing secure
control over information in the event of large-scale international conflicts.5

It is important to recall that at that time computer communications were only
point to point, with each network link depending upon the link before it. In such
a structure, any part of the system could easily be isolated by knocking out just
one of the links. A different and obvious topology for a computer network in the
1960’s was a highly centralized one, in which all computers were connected to a
central unit handling all data exchanges, the so-called “star-shape” topology. Those
centralized systems, however, are even more vulnerable to attacks and failures,
since knocking out the central node is enough to disconnect the whole network.

It is possible to devise several other regular topologies, such as those represented
in Figure 1.1, though their respective vulnerability to external attacks or internal
failures was uknown. With this prospect at hand, Paul Baran at RAND corporation
was given a US Air Force grant to investigate how the US military could protect its
communication systems from serious damage. In his conclusions, Baran outlined
the principle of “redundancy of connectivity” and explored various models for de-
signing communication systems and evaluating their vulnerability. In the ensuing

2 http://www.zakon.org/robert/internet/timeline/
3 http://www.isoc.org/internet/history/brief.shtml.
4 Advanced Research Project Agency. ARPA was renamed DARPA, the Defense Advanced Research Project

Agency, in 1972.
5 Despite the fact that the later studies on survivability and robustness considered explicitly the nuclear threat

(Baran, 1964), the initial ARPA was not officially related to building a network resistant to nuclear war.
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1.1 The early times 3

Fig. 1.1 Examples of regular topologies: from left to right, linear, ring, star, and
mesh.

report, Baran (1964) proposed a distributed communication system, in which there
would be no obvious central unit, every node having the same routing capabilities.
With such a configuration, all points surviving a large-scale attack would be able
to maintain the contact with the surviving part of the network.

The best design for such a decentralized network is obviously a highly inter-
connected, distributed network in which each node is connected to all the others.
This is a fully connected network with the highest degree of redundancy. The first
plan was indeed to connect the mainframe computers at each site directly to all
others, but it was soon realized that such a level of redundancy was far too compli-
cated and expensive to be handled. A different approach was thus pursued, design-
ing a distributed network with sufficient redundancy, but far from a fully connected
topology.

1.1.2 Packet switching technology

The technology capable to handle communications in a distributed network was
provided by the work on data packet switches initiated by several groups in the
mid-1960s.6 The group led by Frank Heart, at the Bolt, Beranek, and Newman
(BBN) corporation, was awarded, by ARPA in 1968, a contract to develop the
Interface Message Processors (IMPs), small machines – the ancestors of modern
routers – which were designed to be a part of each mainframe dedicated to form
the subnetwork between computers. The IMPs used a technology called packet-
switching, which parcels data in small chunks called packets, labeled with the des-
tination address. Packets can be sent in any order through any path leading to the
same destination and reassembled on arrival. The advantage of a packet-switching
system is evident: in a centralized network, such as a star-shaped system, all the
information is channeled to the central unit, to be processed and redistributed. In
a distributed network with packet-switching technology, however, each node has
the authority to originate, pass, and receive messages. In particular, if a node is
not working, or working too slowly, a packet can be rerouted through some other
nodes. This dynamical rerouting implies that each packet finds its own way through

6 The first report on packet switching theory, dated in 1961, was written by Leonard Kleinrock while a graduate
student at MIT.
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4 A brief history of the Internet

the network and allows all nodes to be equivalent, i.e. peers. With every node hav-
ing the same routing capabilities, the network can fully exploit its connectivity
redundancy: Only a failure affecting nearly all computers can disable communica-
tions over the whole network.

1.1.3 The ARPANET

In 1966 the MIT researcher Lawrence G. Roberts started for ARPA the design
of ARPANET, a network initially intended to wire up four major mainframes
at universities in Southwestern US: the University of California at Los Angeles
(UCLA), the University of California at Santa Barbara, the Stanford Research
Institute (SRI), and the University of Utah. In 1968 the ARPANET specifications
were laid down, based on the IMP technology, and the first host-to-host message
was sent from UCLA to SRI in October 1969. The four planned mainframes were
connected by the end of 1969, forming ARPANET, the precursor of the present
Internet.

During the 1970–71 period, ARPANET grew to 23 nodes, while work pro-
ceeded quickly on designing a functionally host-to-host protocol called Network
Control Protocol (NCP), which became fully implemented in 1971–72. Once a
reliable working protocol was established, researchers started to develop applica-
tions, and in 1972 Ray Tomlison at BBN wrote the basic e-mail message software,
which with time has become probably the most widely used application on the
network. The same year the Internetworking Working Group (INWG) became the
first standard-setting entity to govern the growing network. In 1973 the first in-
ternational nodes were set up in England and Norway. In 1977 the ARPANET
encompassed 107 nodes. Its growth was slow but steady, the scientific community
recognizing that the new communication network was going to become something
wider than they had ever imagined. This fact called for designs and technologies
intended for a larger network and the Internet took off.

1.2 The rapid growth

1.2.1 More networks

In a short time, the ARPANET example was absorbed by other communities,
such as the US Department of Energy, which established the MFENET for its re-
searchers in magnetic fusion energy, and the HEPNET for high energy physicists.
NASA space physicists followed with SPAN, enlarging the number of purpose-
built networks for academic and research communities. Private companies soon
also made their first move into the electronic world when BBN opened in 1975
Telenet, a commercial network based on the ARPANET model.
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1.2 The rapid growth 5

At the same time, other networking technologies were being developed by the
computer science community. One such alternative was the CSNET (Computer
Science Research Network), providing networks for computer science depart-
ments. CSNET benefited specially from the dissemination of the Unix operative
system and its built-in Unix User Control Protocol (UUCP). In the early 1980s
other important networks based on this technology, such as USENET (Unix User
Network)7 and BITNET (Because It’s Time Network), sprang up. The reason for
the surge in UUCP-based networks was that UUCP, modems, and the existing
telephone lines were a ready-to-use technology of data transport. Also, computer
facilities and institutions which were not part of the ARPANET were increasingly
aware of the benefits of belonging to a large linked computer system. UUCP net-
works were, however, rather different than the ARPANET, providing essentially
store-and-forward facilities and e-mail, in order to create discussion groups and
provide two-way and one-to-many communication. In other words, the user’s com-
puter connects to another machine which has filed users’ postings in separate top-
ical discussion groups (newsgroups). The user may issue a command requesting
the full text of a particular posting, post a follow up or even start a new newsgroup.
These e-mail discussion lists constituted another major element in the building
of the Internet community, heavily contributing to the international growth of the
internetworking principles.

1.2.2 The TCP/IP development

The launch and growth of several different networks was a further stimulus for
the development of the key technical idea underlying the modern Internet, namely
that of open architecture networking. In an open architecture network, the indi-
vidual networks may be designed in accordance with specific requirements that
can be freely selected by each administration entity. Each network, however, com-
municates with the other networks through a set of protocols that are the same
regardless of which network the user or service operates in. In other words, each
network stands on its own and no internal changes are required to connect it to the
Internet. In this respect, the NCP communication protocol used in ARPANET was
not a viable solution, since it did not deal with end-to-end host errors and desti-
nations different than the IMPs on the ARPANET. The first effort to develop an
open-architecture network was led by Robert E. Kahn at BBN and Vinton G. Cerf
at Stanford. Their research yielded as a final result the TCP/IP protocol. The TCP,

7 USENET was developed by T. Truscott and J. Ellis while graduate students at Duke University and North
Carolina University, respectively. At first it was just a graduate students activity but eventually grew until
accommodating a link to join the ARPANET mailing list. Doubtless, USENET has been one of the main
factors driving the physical and social self-organized nature of the Internet.
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6 A brief history of the Internet

or Transmission Control Protocol, converts messages into a bunch of packets at
the source and reassembles them back into messages at the destination. The IP, or
Internet Protocol, however, handles the addressing and routing of single packets
across nodes and different networks, providing a unique address space for the In-
ternet. The TCP/IP was adopted as a standard of the US Department of Defense
and was shared by other agencies, and in 1983 ARPANET experienced a complete
transition from NCP to TCP/IP. The new protocol allowed the original ARPANET
to split into two different networks, its military part, MILNET, and an ARPANET
supporting only research needs. At the same time the TCP/IP, which was public-
domain software, was adopted by other networks, such as the CSNET, to route
information exchange with the ARPANET. As the use of the TCP/IP became more
and more common, other entire networks began to interconnect and the network
of networks was finally born.

1.2.3 The NSF acceleration

Another turning point in the history of the Internet was the National Science
Foundation (NSF) program to establish a new transcontinental network and five
super-computing centers. The program was driven by the idea that networking and
computer resources were indispensable tools for the research community, and the
NSF philosophy was to serve the entire higher education community, regardless
of discipline. In order to allow all institutions to link up to the network, NSF
agreed to pay for the establishment of a connection to its high-speed network
(the backbone) only if universities provided connections to smaller educational
and research institutions. A critical decision of the NSFNET (NSF Network) pro-
gram was the mandatory use of the TCP/IP protocol, triggering the marginaliza-
tion of other wide-area network protocols. Another NSF decision, which con-
tributed to the shape of today’s Internet, was to encourage commercial network
traffic at the local/regional level along with the ban of the commercial use of the
NSFNET backbone. This stimulated the establishment of long-haul private net-
works (national-scale providers) offering alternative backbones for the commercial
traffic.

The NSFNET had an enormous impact on the Internet’s evolution. The mas-
sive funding and the establishment of policy guidelines triggered the transition
from a small network limited to the research environment to a full-scale network
of networks with solids links also in the commercial community. The hardware
technology received an impressive thrust as well, and the TCP/IP was put on its
way to becoming the standard of the present. NSFNET co-opted the ARPANET
in 1989 and finally, in 1995, reverted back to a pure research network, leaving the
national-scale connectivity to private backbone providers.
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1.3 The network of networks 7

1.3 The network of networks: a growing self-organized system

1.3.1 A large-scale infrastructure

From 1990 the Internet has experienced explosive growth. The number of hosts
nowadays are counted in tens of millions and new networks and providers are
connecting to the Internet on a daily basis (see Figure 1.2). The reasons for this
phenomenon are partly due to the fact that personal computers have become an
household item, and partly to the advent of the World Wide Web (see Chapter 7),
which allows easy access to the huge amount of information stored in the Internet.
This increase in scale of the Internet necessarily introduced several new concepts
and changes in the underlying technologies. The shift from a few networks with a
modest number of hosts to a large number of networks with a wide range of con-
nected hosts has led to the definition of three possible classes of networks. Class
A represents large national-scale networks (there are a few of these networks and
they have a large number of hosts). Class B networks are regional-scale networks.
Class C comprises small local area networks with a limited number of hosts.8 Since
hosts have a unique numeric address, a related name is assigned to each of them,
to make it easier for people handling the addresses.

However, with millions of hosts it is impossible to have a single table of all the
hosts and their associated names and addresses. This has led to the introduction
of the Domain Name System (DNS) that allows the resolution of host names into

Fig. 1.2 Number of hosts in the Internet starting from 1970. The inset reports the
number of hosts as a function of the Internet’s age in a logarithmic-linear scale.
The linear behavior shows that in the last ten years of life the Internet has grown
exponentially, doubling annually. Data from the the Hobbes’ Internet Timeline
http://www.zakon.org/robert/internet/timeline/.

8 The class subdivision results in IP addresses allowing different numbers of networks and related hosts, as
explained in Chapter 2.
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8 A brief history of the Internet

Internet addresses. The same sort of problem has occurred also for routers. Origi-
nally, all routers implemented a single distributed algorithm for the routing of data
packets (a long list of paths to all addresses). As the number of networks grew, a
hierarchical model of routing split the protocol into an Interior Gateway Protocol
(IGP), used inside Internet regions, and an External Gateway Protocol (EGP) used
to link different regions. With time, new problems related to Internet scalability are
faced. New ideas continue to pop up as well, and new solutions to be envisioned.
The Internet behaves in this sense as an evolving system, whose appearance is
changing over the various phases of its life.

1.3.2 Self-organization and cooperation

During its growth the Internet has changed continuously, surviving dramatic
changes in technology and evolving to accommodate the exponential increase in
users. A key element for these “adaptive” features of the Internet is the dynamic
exchange of ideas and the open access to technical standards. A clear example
of this attitude is the Request For Comments (RFC) series of notes.9 Originally
these memos were intended to be a fast way to share and distribute ideas, with
online files accessible via the File Transfer Protocol (FTP). The very early RFCs
presented ideas developed by groups of researchers to the rest of the community,
or information on protocols and engineering issues. Nowadays, RFCs are more
focused on Internet protocols and are viewed as the “documents of record” for
Internet standards. RFCs have a centralized administration for the required proto-
col number assignment. Standards are set by the Internet Engineering Task Force
(IETF), that has working groups on different aspects of Internet engineering.10

IETF is not, however, a formal group of people but remains open to anyone inter-
ested in participating. Indeed, each working group has a mailing list where draft
documents are discussed, and only when a large consensus is reached are the doc-
uments distributed as RFCs. Once a standard is set, it becomes a sort of com-
mandment on the Internet, since this is the only way to ensure that people using
different hardware and software can communicate. This illustrates fairly well the
level of self-organization present in the Internet community.

Another amazing example of cooperation in the Internet community is how
networks are physically connected together. No governing office determines how
routers must be connected. Each network organization, from small campuses to
large national-scale providers, decides autonomously its connections and makes ar-
rangements to pass along other’s network traffic. From this perspective, it is natural

9 http://www.rfc-editor.org/.
10 The IETF has grown in time and resulted in further substructure, such as the Internet Steering Group (IESG)

formed by working group directors.
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1.3 The network of networks 9

that non-functional network connections (excessive loads, spam e-mail, denied ser-
vices) are in a short time cut-off by their peers. In other words, a working Internet
requires network managers to cooperate, and, despite its seemingly chaotic devel-
opment, the Internet acts as an efficient communication medium.

The functioning of the Internet also requires large-scale control of many compli-
cated organizational issues and many important entities set the proper guidelines
and policies. Examples can be found in the registration authorities that regulate
the assignment of domain names and IP addresses,11 or the handling of security-
related problems. As we have shown, however, not one of the organizational or
technical groups has ever plotted a global project of the Internet. The Internet is
not driven by any supervising agent or authority, nor follows the blueprint of a
pre-established architecture. It grows and develops because of cooperation and
self-organization, to conform to technical standards and associative needs. Indeed,
if we look at the Internet on a coarse grained scale, we see a spontaneously grow-
ing system, whose large-scale dynamics and structure are a cooperative effect due
to many interacting units aimed at optimizing local communication efficiency.

11 There are currently four Regional Internet Registries: the Réseaux IP Européens Network Coordination Centre
(RIPE), the American Registry for Internet Numbers (ARIN), the Asia Pacific Network Information Centre
(APNIC), and the Latin American and Caribbean IP address Regional Registry (LACNIC).



2

How the Internet works

While the scope of this book is to look at the Internet as a self-organizing complex
system and to study its large-scale properties by using a statistical approach, a
general knowledge of how the Internet works is necessary to identify the main
elements forming the Internet, as well as their respective interactions. To give a
physical analogy, if we want to understand the properties of a certain material we
first have to know the atomic elements it is composed of, and how they interact.
Similarly, it is impossible to approach the Internet without first having some hint
of what a router is and how it communicates with its peers.

In this chapter we provide a brief description of the different elements, both
hardware and software, at the basis of the Internet’s functioning, to allow the non-
expert readers to familiarize themselves with the general mechanisms that make it
possible to transfer data from host to host. These mechanisms will turn out to be
very relevant for understanding problems related with measurement infrastructures
and other communication processes taking place in the Internet. Our exploration
of the Internet’s workings will be necessarily non-technical and, needless to say,
the expert reader can freely skip this chapter and use it later on for convenient
reference.

2.1 Physical description

In providing a general picture of the Internet, the starting point is the concept of
a computer network. A network is any set of computers – usually referred to as
hosts – connected in such a way that each one of them can inter-operate with all
the others. The connection among hosts is made possible by two major compo-
nents: hardware and software. The hardware refers to the physical components of
the networks, such as computers and communication lines, ranging from the local
telephone lines to fiber optic cables, and even satellite connections, that transfer

10
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data between computers. Software refers to the set of computer programs that rule
the exchange of data through the hardware components. The software defining the
network operations are often called protocols, since they define the set of standards
that allows the handling of communications.

The Internet itself is a network of heterogeneous networks mutually intercon-
nected. Among the various types of networks, we can identify two basic configu-
rations, mainly determined by their geographical size:

• Local Area Networks (LANs). These kind of networks are used to connect hosts inside
limited areas (buildings, university departments, etc.). They can use different technolo-
gies and protocols, such as the Ethernet, token rings, etc.

• Metropolitan Area Networks (MANs) and Wide Area Networks (WANs), on the other
hand, connect computers which are scattered over wide geographical areas by using fiber
optics cables, long distance land lines, radio, or satellite transmission.

The various networks composing the Internet are connected via specific devices
called routers, that rule the communication among hosts in both the same and
different networks. Routers play a key role in the Internet since they are not simple
data forwarders but provide the physical connectivity of the Internet. They also
continuously exchange updates on the network status, routing paths, and other
vital information needed to keep alive the Internet, and choose the best routing for
data.

There are other important components of the Internet, such as bridges, repeaters,
switches and public exchange points. Bridges are devices that connect two or more
networks by forwarding only a certain kind of traffic, i.e. they act as filters. Re-
peaters are devices that just propagate the signal from a cable to another, without
taking any routing decisions. Switches are devices that join multiple hosts together
in LANs.1 While the previous components usually work at the LAN level, ex-
change points interconnect autonomously administered networks in public points
where several routers are interconnected by the so-called shared media.

The large heterogeneity of the Internet is reflected also at the software level,
since each network can rely on different protocols. Internet routers therefore have
to be able to translate from one protocol to another, by working on the basis of
a general protocol that plays the role of the universal language and addressing
system of the Internet. The Internet is indeed built on a whole family of cooperative
protocols often referred to as the Internet protocol suite.

1 Switches are essentially high performance hubs for the local connection of hosts. Technically speaking, when
a set of computers is connected to a hub and two of those computers communicate with each other, hubs
simply pass through all network traffic to each of the two computers. Switches, instead, are capable of deter-
mining the destination of each individual traffic element, selectively forwarding data to the actual destination
host.
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2.2 Protocols

The Internet is a packet switched network. This implies that whoever is using the
Internet does not have a dedicated piece of the network working exclusively for
him. This philosophy is the opposite to circuit switched networks – such as, the
telephone system – in which, when a call is operated, a section of the network is
specifically assigned to establish a dedicated connection, or circuit, between two
points. This implies that that specific part of the network is unavailable to all other
users, even when the call is put on hold. In a packet switched network instead, all
the communications between two hosts are mixed together with everyone else’s
data, put in common pipes, delivered to the specified destination address, and only
there finally sorted out again. The entities supervising this process are Internet
routers, which perform all these operations by following a set of standard proto-
cols.

The Internet TCP/IP protocol suite2 contains a family of protocols of which
the Transmission Control Protocol (TCP) and the Internet Protocol (IP) are the
most important ones. The IP defines a unique address space for the Internet in
which each host receives its own IP number, also called IP address. When a host
sends a packet of data to a given address, the router forwards it to the destination
address. Necessarily, routers do not have a physical connection to all other routers
in the Internet. The router handles the packet by looking at the destination address
and sending it to the neighboring router3 closer to the destination address, i.e.
the best next hop toward the final destination. The way the router decides which
is the next hop router is determined by the routing protocol algorithms, which
shall be discussed in Section 2.4. This feature provides the network with the great
advantage that all routers are equally important: The failure of any one of them
does not preclude the network functioning, since routers can decide in real time to
forward packets through a different path.

In a packet switched network large blocks of data are segmented into smaller
parcels of similar size, which are sent separately. In this way all users equally
share the resources, and, in case of heavy traffic, the performance becomes demo-
cratically worse for everybody. The main role of the TCP is to break the in-
formation down into packets of small and manageable size, stamped with the origin
and destination IP.4 Each data packet is numbered and labeled by the TCP so that

2 There exist two main models of packet switched network in the Internet. One gets its name from its two main
protocols and is referred to as the TCP/IP suite. A second one is the Open System Interconnection (OSI) suite.
The latter has been developed by the International Organization for Standardization (ISO) on a conceptual
model that defines seven layers: the application layer (the higher), the presentation layer, the session layer, the
transport layer, the network layer, the data link layer, and the physical layer. In this framework the TCP and IP
protocols work at the transport and network layer of the OSI protocol, respectively.

3 The neighbors of a router are all the routers to which it is physically connected, i.e. the router’s peers.
4 For information about the statistics of IP packet sizes, see Claffy, Miller and Thompson (1998).
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= =

Sending host
Destination host

Fig. 2.1 Sketch of a packet switched network. The TCP breaks information from
the sending host into packets that are transmitted by the routers (hollow circles) to
the destination host, where the TCP reassembles them back into the original data.

the TCP software can collect and reassemble the data packets in the proper order
on receipt by the destination host, see Figure 2.1. The TCP thus allows the packets
to be sent through different paths or unsequentially, providing further flexibility
to Internet data transmission. Things, though, are not always ideal on the Internet;
packets can be lost or suffer large delays. Indeed, when a router gets overloaded,
it starts to build up a queue of data packets to be handled. If the number of pack-
ets in the queue becomes excessively large – overflowing the memory buffer – the
router just discards newly arrived packets. The TCP handles these situations by
sending re-transmission messages and executing checks of the transmission delays
that allow the sending host to re-send packets only if really necessary.

While ensuring that messages are correctly transmitted, the setting up of a TCP
communication requires a lot of overhead in the amount of traveling packets and
CPU time. For this reason, the Internet protocol suite also implements other stan-
dard transport protocols, especially convenient for programs that only send short
messages. For instance, the User Datagram Protocol (UDP) does not take care of
missing packets or keeping data in the right order. UDP just sends short messages
without waiting for a reception answer. We shall see that light packets transport
protocols, such as the UDP and the Internet Control Message Protocol (ICMP),5

are generally used to send packets with the purpose of probing the Internet’s
structure.

The Internet protocol suite also contains other application-level protocols,
many of them well known to Internet users. Among them we can name the
File Transfer Protocol (FTP), the Telnet Protocol, and the Simple Mail Transfer
Protocol (SMTP). These are higher-level software that control large file trans-
fers between hosts, remote sessions on a given host, and e-mail exchange, respec-
tively.

5 This transport protocol is specifically devised as a tool for network maintenance and control.
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2.3 Internet addressing

In order to join the Internet, each host must possess a unique address that is used
by routers and Internet protocols to identify the host and dialog with it. An Internet
IP address is a 32-bit number divided into four fields.6 Each field, separated by a
period, is specified by a 8-bit chunk (octet) of the 32 binary digit. Each IP address
thus consists of four decimal numbers between 0 and 255 like

140.105.16.8,
197.12.33.128.

Since the Internet is a network of networks, each address is divided into a net-
work portion and a local portion. The first part of the address (the network prefix)
tells the routers what network the computer belongs to, while the last part spec-
ifies which host the address is referring to. IP addresses are divided into classes,
depending on how many octets define the network portion. Commonly there are
three classes of addresses:

Class A These addresses are assigned to very large networks with many hosts. Only the
first octet is reserved for the network portion and the last three octets are for the local
part. For this class the first octet ranges from 0 to 127. It must be noted that the zeros
in the local portion are usually disregarded; for instance, the number 46.0.0.0
will be referred to as network 46.

Class B For this class the first two octets represent the network portion and the last two
octets the local portion. This class is used for large networks, such as campuses or
some WANs. The first octets range from 128 to 191, while the last octets are fully
available in the range 1–254 (255 is a reserved number for global broadcasting).
Class B networks can support in principle up to 65,532 hosts.

Class C These addresses are usually assigned to LANs. The first three octets are re-
served for network identification and only the last octet for the local part. The first
octet of class C networks is in the range 192–223 and allows in principle a limited
number of hosts (up to 254).

In addition, there are two special network classes, D and E, reserved for Internet
multicast and experimental use.

The network prefix is assigned by registration entities that keep registries of used
numbers.7 The local part of the number is assigned to the actual hosts by the net-
work administrators. Individual networks can expand in different extensive LANs

6 The IP address system described here, also known as IPv4 protocol, allows in principle up to 232 − 1 =
4, 294, 967, 295 different addresses. The next generation of IP address (already implemented in some net-
work applications), the IPv6 protocol designed by the IETF, works instead with 128-bit numbers, thus allowing
a much larger number of hosts (Morton, 1997).

7 The IP address space is distributed in a hierarchical way. The Internet Assigned Numbers Authority (IANA)
allocates blocks of IP address space to Regional Internet Registries (RIRs). RIRs allocate blocks of IP address
space to Local Internet Registries, who assign the addresses to the networks.
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that, for routing convenience, should be considered as a single network showing
a single address to the Internet. A solution to this demand is provided by the im-
plementation of subnetting. Subnetting provides an additional level between the
network and local portion of the IP address, in such a way that part of the octet of
the local address is used to identify different subnets. At the practical level, this is
done by means of a net mask that specifies the total number of bits identifying the
network.

Finally, we want to introduce a different kind of network identification that
refers to autonomously administered networks. Each autonomous system (AS)
is a single administered entity, that may correspond to many routers and net-
works, which autonomously determines internal communication and routing poli-
cies. As a first approximation we can assign each AS to an Internet Service
Provider (ISP). It is worth stressing that an AS may be geographically very de-
localized. The increasing complexity of the Internet has led to the separation of
the routing internal to each AS from the routing among ASs; i.e. intra-domain
from inter-domain routing. Each AS has thus been assigned an identifying 16-bit
number. AS numbers are used by the inter-domain routing to choose paths com-
plying with service agreements among the various ASs as we shall see in the next
section.

2.4 Routing packets

Routers deliver data packets by forwarding them to a peering router along the
most convenient path from the origin to their final destination. In order to know
what is the most convenient path, routers must have a rather global knowledge of
the Internet. In order to manage and update this knowledge, routers continuously
exchange information on the status and connectivity of the network. Information
propagates from the router to its neighbors, in a hop-by-hop propagation process.
Routing protocols rule this process, ensuring that all routers converge to a best
estimate of the path leading to each destination address.

At present, Internet routing is split into two parts. The Interior Gateway Pro-
tocol (IGP) is used within LANs and single administered domains. The Exterior
Gateway Protocol (EGP), alternatively, routes information among different net-
works. Both protocols provide great network stability by guaranteeing that if a
connection is malfunctioning, the network can rapidly adapt to send data packets
to the destination along a different path. Figure 2.2 provides an illustration of the
global Internet routing architecture.

The standard IGP within networks is the Routing Information Protocol (RIP). It
is based on three main elements: (i) a database that stores information on the short-
est route from computer to computer; (ii) a propagation mechanism for routers
to exchange their databases; (iii) an updating algorithm that allows the router to
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Fig. 2.2 In the Internet, autonomous systems are interconnected by a private
peering relation (routers R1 and R6) or public exchange points (routers R5
and R9). Routers R1, R5, R6, and R9 use an exterior gateway protocol such
as the BGP, while the remaining routers adopt an IGP only aimed at internal
routes.

update its database when a shorter path is announced by its neighboring routers.
The database stores, for every address in the same RIP network, the address prefix,
the neighboring routers to which to send a message addressed to IP addresses
within that prefix, and the number of routers between the given router and the one
that can ultimately deliver the message directly to its destination. In addition, a
flag is added to all the information that has recently changed in the database, so
that communicating routers can update their own databases. At regular intervals
each router sends an update message containing its routing database to the routers
directly connected to it. When a router finds that a neighbor has a shorter path
to any other router, it will update its own database following a pre-established
mathematical algorithm and, in turn, it will communicate the update to its neigh-
boring routers. In this way the update is quickly propagated to the whole network,
allowing the adaptation to rapid changes in connectivity due to outages or the ap-
pearance/disappearance of computers.

If a data packet is sent outside the RIP network, it is directed to the router
responsible for the EGP. This router will send it across the Internet to the EGP
router of the destination address network, that will forward the packet to its fi-
nal destination using the local RIP. Beyond the simple shortest path selection,
however, inter-domain routing has to consider policy and commercial agreements
among ISPs. For economy reasons, the routing paths in the EGP are specified in
terms of AS numbers, avoiding in this way the use of long lists of intermediate
routers.
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*> 192.9.9.0 134.24.127.3 1740 701 90
* 204.212.44.128 234 266 237 3561 701 90
* 205.238.48.3 2914 1 90
* 144.228.240.93 1239 701 90
* 204.70.4.89 3561 1 90
* 194.68.130.254 5459 5413 1 90
* 202.232.1.8 2497 701 90
* 158.43.133.48 1849 702 701 90
* 131.103.20.49 1225 2548 1 90

Fig. 2.3 Example of a BGP routing table from http://moat.nlanr.net/ ASx/.

The most used EGP is the Border Gateway Protocol (BGP). When a BGP router
is turned on, it establishes a peering session8 with the directly connected BGP
routers and downloads their entire routing tables. After that operation, all other
information exchanges are just simple update messages. Update messages contain
the withdrawal of certain routes or a new preferred route for a certain network
prefix. In the latter case, the BGP router announces to all its peers the reachability
of a particular prefix, through a certain path traversing one of its neighbor BGP
routers after prepending its own AS number to the AS path. If the update contains
new information, the receiving BGP routers run a decision algorithm to decide
which peering router has the best routing path for the prefix address specified in
the update. The algorithm for the decision process contains a cost field that allows
to take into account specific policy criteria determined by the local administrator,
considering in particular the mutual agreements reached among ISPs. Finally, if
the new path is adopted, the receiving router will announce in its turn the new path
to its peers.

This nearest neighbor spreading procedure finally converges, and BGP routing
tables appear as collections of entries, such as the one shown in Figure 2.3. In this
example, the BGP router can reach the address space 192.9.9.0 through nine
different paths. In the first column the address of the next hop router is specified.
The remaining columns lists the ASs in the path which are traversed to reach the
destination. For each address prefix the best path is marked with a ‘>’ sign. Alter-
native paths can be used in the case of outages or other circumstances. We shall see
in Chapter 3 that BGP tables are extremely important to derive a map of Internet
connectivity at the AS level.

Other important information exchanged among BGP routers is the keepalive
message. Each router sends to its peers a keepalive message every 3–30 seconds. If
a larger time elapses between two consecutive keepalive messages, the neighboring

8 Peering refers to physically connected routers that agree to exchange traffic and routing information.



18 How the Internet works

routers close the peering session and proceed to announce the change to the whole
network. This allows the rapid handling of transient network damages.

2.5 The domain name system

So far we have depicted a rather complex address and routing system. While it is
not crucial for the rest of this book, we want to mention here what makes the In-
ternet easier to navigate by the common users. In fact, while numbers are perfectly
fine for the communications among machines, it is not easy for humans to handle
IP addresses. For this reason, computers on the Internet are given names, that are
in a one-to-one correspondence with their IP address.

As it is easy to imagine, the naming of IP addresses introduces its own prob-
lems. The name administration is handled by a system called domain name system
(DNS), which gives to different groups the responsibility for various subsets of
the names. Each level in this system is called a domain, and they are separated
by periods. For instance, the name lyre.th.u-psud.fr corresponds to a spe-
cific host with a precise IP address. The name lyre is assigned by the theory
group (th), member of the University of Paris-Sud (u-psud), that belongs to the
French national domain (fr). Each group is responsible for assigning the names at
the lower levels. For instance, the u-psud group can create another group called
smt.u-psud.fr because they need to name a new laboratory. This hierarchi-
cal responsibility in giving names ensures the uniqueness of the correspondence
between IP address and DNS name. When routers need to translate names in IP
numbers they ask some dedicated machines, called name servers, that look at their
own list of correspondences. If the name server does not find the named address in
its database, it asks the root server, that is a name server of the higher level zone,
and so on up and down the hierarchical levels until the necessary information is
retrieved.

It is important to stress that domains do not necessarily have a direct corre-
spondence with single administered domains or networks, and that computers may
have multiple names. Most importantly, the DNS is not necessary for communi-
cation and should be just considered as something that helps the Internet to be a
comfortable place to work in.
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Measuring the global Internet

The characterization of how routers, computers, and physical links interconnect
with each other in the global Internet is a very difficult task due to several key
features of network development. A first one is the Internet’s size and continued
growth. The Internet is growing exponentially and its size has already increased by
five orders of magnitude since its birth. In other words, the Internet is a large-scale
object whose global properties cannot be inferred, in general, from local ones. A
second difficulty is the intrinsic heterogeneity of the Internet, that is it is composed
of networks engineered with large technical and administrative diversity. The dif-
ferent networking technologies are merged together by the TCP/IP architecture
that, while providing connectivity, does not imply uniform behavior. Moreover,
networks range from small local campuses to large transcontinental backbone
providers. This difference in size is reflected in different administrative policies
that make routing through the Internet a highly unpredictable and heterogeneous
phenomenon. Also very important is the fact that the Internet is a self-organizing
system, whose properties cannot be traced back to any blueprint or chart. It evolves
and drastically changes over time according to evolutionary principles dictated by
the interplay between cooperation (the network has to work efficiently) and compe-
tition (providers wish to earn money).1 This means that routers and links are added
by competing entities according to local economic and technical constraints, lead-
ing to a very intricate physical structure that does not comply with any globally
optimized plan.

The combination of all these factors result in a general lack of understanding
about the large-scale topological structure and performance properties of the In-
ternet. In its turn, this poor knowledge of the Internet is also starting to affect
providers, who do not have the tools available to evaluate and forecast growth

1 This also implies that, in general, Internet providers are not willing to share topological information on the
networks they administer.
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trends and performance problems. For these reasons, in recent years, several re-
search groups have started to deploy technologies and infrastructures in order to
obtain a more global picture of the Internet. Several studies aimed at tracking and
visualizing Internet large-scale topology and/or performance are now providing
Internet mapping projects at different resolution scales. These projects typically
collect data on Internet nodes (routers, domains, etc.) and links in order to create a
graph-like representation of large parts of the Internet. Along with these topolog-
ical measurements, performance analyses are carried out by measuring transmis-
sion times among hosts as a function of the path, traffic load, or other parameters.

In the present chapter we focus on measurements of the global structure and
performance of the Internet, and the corresponding graph-like representation. We
will describe several measurement projects at different resolution levels (Murray
and Claffy, 2001), with particular emphasis on the different probes and methods
used to obtain information on Internet topology, the data they actually provide, and
their positive and negative sides. The datasets obtained from these measurements
will be at the core of the statistical analysis of the topological properties presented
in Chapter 4.

3.1 Mapping of the Internet

As we have seen in the previous chapters, routers are the basic elements for In-
ternet traffic. Therefore, the Internet is usually viewed as an undirected graph,2 in
which vertices (nodes) represent routers and edges (links) represent the physical
connections between them. This picture does not model individual hosts, as they
are too numerous, and neglects the characteristics of the links, such as bandwidth,
actual traffic load, and geographical distance. For these reasons, the graph-like rep-
resentation must be considered as an overlay of the basic topological structure, the
skeleton of the Internet.

Despite the fact that the Internet grows without any central administration, an
underlying hierarchy can be identified, for administrative and technical reasons.
Today the Internet can be partitioned into autonomously administered domains,
called autonomous systems (AS), which vary in size, geographical extent, and
function. Each AS may exercise traffic restrictions or preferences, and handle inter-
nal traffic according to different autonomous policies. In general these autonomous
regions can be classified either as transit or stub ASs. Transit ASs correspond
to large backbones providing national or inter-continental connectivity, or to re-
gional providers serving metropolitan areas. Stub ASs generally corresponds to
campus networks, small local dial-up providers, or other collections of local area

2 See Appendix A1 for an introduction to graph theory.



3.1 Mapping of the Internet 21

Fig. 3.1 The Internet domain structure. Filled circles represents individual
routers. Hollow regions and shaded regions correspond to stub and transit ASs,
respectively. Figure adapted from Zegura et al. (1997).

networks (LANs). The main purpose of transit ASs is to provide connectivity to
stub ASs without having stubs directly connected to each other. For this reason,
routers in transit regions are well interconnected and link a number of stub ASs at
their gateway nodes. We can therefore topologically depict the Internet as a core of
interconnected backbones to which regional, campus, and corporate networks are
linked. Figure 3.1 represents a scheme of the Internet’s domain structure.3 This
picture, however, is a very schematic approximation. For instance, multi-homed
stub ASs connect to more than one transit AS. As well, stub-to-stub edges and
transit ASs that only connect to other transit ASs are also present in the Internet.
All these possibilities have led to more complicated hierachical characterizations,
usually based on the level of connectivity (see Section 4.5).

A basic characteristic of the domain hierarchy is that traffic paths between nodes
in the same domain stay entirely within that domain. For instance, stub ASs just
handle traffic that originates and terminates inside the AS borders, while a routing
path between two nodes in different stub ASs goes through one or more transit
AS.4 This introduces a more precise identification of AS classes based on their

3 It is worth mentioning that the early Internet was quite different, with an essentially tree-like inter-domain
hierarchy. The NSFNET provided long-distance connectivity to regional providers. The latter in their turn
were offering connectivity to campuses and other LANs.

4 Exceptions to this general picture can be found in the case of stubs connected by a stub-to-stub link.
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Fig. 3.2 Different granularity representations of the Internet. The hosts are in-
cluded in the LAN that connect to routers and are excluded from the maps.

traffic handling policy. A stub is an AS that carries only local traffic and refuses
transit traffic. A transit AS carries both local and transit traffic. This traffic division
has stimulated the separation of inter-domain routing from intra-domain routing
and the introduction of the AS numbers. Each AS is identified in the Internet by
a 16-bit AS number used for routing purposes by the Exterior Gateway Protocol
(see Section 2.4). ASs were originally only a routing concept, but have eventually
led to a more general abstract representation of the Internet. Also in this case we
can use a graph-like representation to study the inter-AS connectivity, in which
vertices represent ASs and edges are peering relationships5 among them.

Mapping projects focus essentially on two levels of topological description.
First, by inferring router adjacencies it has been possible to measure the Inter-
net Router (IR) level graph. The second mapping effort concerns the AS level
graph of the Internet obtained from AS routing path information. Although these
two graph representations are related, it is clear that they describe the Internet at
rather different levels (see Figure 3.2). In fact, the collection of ASs and the inter-
domain routing system defines a coarse-grained picture of the Internet in which
each AS groups many routers together, and links are the aggregation of all the
individual connections between the routers of the corresponding ASs. This differ-
ence in scale implies that the corresponding graphs at the IR and AS levels can
show quantitatively different properties, although we expect them to show similar
large-scale statistical behavior. Data collection techniques for the two levels are
also different and both representations may be incomplete or partial to different
degrees. In particular, measurements may not capture all the nodes present in the
actual network and, more often, they do not include all the links among nodes. It

5 AS peering is the relationship between two ASs that agree to exchange traffic and routing information through
one or more directly connected routers.
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is therefore important to review the various data collection projects and discuss
their limitations and their reliability when obtaining realistic representations of the
Internet’s structure.

3.2 A Ptolemaic view

In order to obtain Internet connectivity information we can inspect routing tables
and paths stored in each router (passive measurements) or directly ask the network
with a software probe (active measurements). In the latter case we can send IP
packets on the Internet that elicit a reply from the targeted host. By collecting the
information on the packets’ path to the various destinations it is possible to build
the graph of router adjacencies. This kind of probe has long been used by system
administrators and is embodied in the traceroute tool. The traceroute
command sends out hop-limited IP packets toward a given destination. Each packet
is assigned a specific time-to-live (TTL) that is decreased by one at each hop. If the
TTL becomes zero, the network kills the packet and forwards a death message to
the sender. By incrementing the TTL by one at each successive trial, it is possible
to progressively explore intermediate IP hops in the forward path to any given
address, while avoiding the chance of packets wandering around indefinitely. Each
hop in a traceroute path thus corresponds to a router that echoed the packet
by sending back its IP address. Collecting all the response IP addresses allows
the determination of the path the packet followed to reach the target machine.
Figure 3.3 shows a typical output from the traceroute command.

Mapping efforts are generally based on computing router adjacencies from
traceroute-like sequences sent to a list of networks in the Internet. The sim-
plest choice is to trace paths to a list of destinations from a single network node.
Early projects were using databases with 103–104 different hosts (Pansiot and

sinera:˜> /usr/sbin/traceroute lyre.th.u-psud.fr
traceroute to lyre.th.u-psud.fr (129.175.117.133), 30 hops max, 38 byte packets
1 * * *
2 phc3 (147.83.54.1) 1.603 ms 1.237 ms 1.144 ms
3 sistole-routing (147.83.124.125) 1.612 ms 1.467 ms 1.676 ms
4 10.10.124.30 (10.10.124.30) 1.838 ms 3.247 ms 2.981 ms
5 10.10.124.14 (10.10.124.14) 2.659 ms 2.700 ms 1.763 ms
6 AT0-2-0-0.EB-Barcelona0.red.rediris.es (130.206.202.77) 3.493 ms 5.022 ms 4.854 ms
7 AT6-2-1-0.EB-IRIS4.red.rediris.es (130.206.224.1) 15.606 ms 15.733 ms 13.913 ms
8 GE1-0-0.EB-IRIS1.red.rediris.es (130.206.220.25) 17.345 ms 15.039 ms 22.508 ms
9 rediris.es1.es.geant.net (62.40.103.45) 21.434 ms 22.056 ms 26.842 ms
10 es.fr1.fr.geant.net (62.40.96.70) 52.637 ms 57.271 ms 60.588 ms
11 renater-gw.fr1.fr.geant.net (62.40.103.54) 62.144 ms 58.640 ms 54.860 ms
12 orsay-a0-0-500.cssi.renater.fr (193.51.179.158) 53.077 ms 54.794 ms 52.920 ms
13 univ-paris-sud-orsay.cssi.renater.fr (193.51.183.29) 49.734 ms 48.302 ms 46.284 ms
14 129.175.127.35 (129.175.127.35) 41.557 ms 41.629 ms 33.746 ms

Fig. 3.3 IP sequence output of a traceroute command from the host
sinera.upc.es to the host lyre.th.u-psud.fr.
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Grad, 1998), while recent extensive measurements are sending IP packets to
about 105–106 registered networks (Burch and Cheswick, 1999; Govindan and
Tangmunarunkit, 2000; Huffaker, Plummer, Moore and Claffy, 2002). With such
large scanning efforts, the traceroute technique is cast into a customized pro-
gram that selects target hosts and executes many traces in parallel. Packets are
usually sent to public access sites on the selected network or to a valid address
guessed by the program.6

An important issue in mapping projects is that the used packet probes must not
be confused with hacking attempts. For this reason, paths are usually discovered
one hop at a time by progressively increasing the packet TTL, and tracing attempts
are repeated over long time intervals. Once the packet reaches the host, the path is
stored and the target address is saved for routinely repeating the tracing process.
In fact, the path may very well vary between different traces at different times,
because of momentary outages, congestions, network reconfigurations, or routing
policy changes. The tracing program thus executes a full scan in a time window that
varies from one day for intranetworks to weeks for large sections of the Internet.
The collection of all the paths finally provides a picture of the physical Internet
connectivity that, in the case of intranets, can be refined up to the host level.

It must be clear, however, that tracing routes from a single source does not pro-
vide a complete map of the Internet. At least one path from the source to each node
of the graph is found, but the interconnections among the addressed nodes are not
necessarily discovered, see Figure 3.4. In other words, in a shortest path routed
network, one might expect that path probing results in a tree structure rooted at
the source host, missing all the cross-links among intermediate nodes in the paths
(sometimes referred to as lateral connectivity). Technically speaking the resulting
map is a collection of spanning trees to the targeted addresses. This amounts to
a “Ptolemaic” point of view, in which the Internet map is centered at the probing
source; a very partial and source-based view of the Internet world indeed. This
problem is mitigated by two technical facts that help path probing to actually dis-
cover a richer connectivity structure (see Figure 3.4). First, inter-domain routing is
policy based, and it may imply that different paths cross the same IP addresses. In
addition, the probing is routinely repeated on time windows spanning several days,
thus potentially discovering backup paths to several target addresses (Govindan
and Tangmunarunkit, 2000). Despite these “bonuses,” however, it is clear that map-
ping the Internet from a single location misses a large number of cross-links in the
Internet map.

The partial discovery of cross-connectivity is not the only problem related
to the measurement of the Internet’s router structure when using active probing

6 For instance, the network 140.105.16.0 very likely has a host named 140.105.16.1 on it.
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Fig. 3.4 (a) Single source spanning tree from the probing host P to destinations
A and B. Filled circles correspond to routers and shaded areas represent ASs.
The dashed edges represent non-detected router adjacencies. (b) Backup paths
are discovered in repeated measurements, providing supplementary topological
information. (c) Routing policies can lead to a more complete view by imposing
constraints on the possible paths. Figure adapted from Govindan and Tangmu-
narunkit (2000).

strategies (Burch, 1999; Govindan and Tangmunarunkit, 2000). Routers have by
definition several interfaces, each one corresponding to a different IP address. We
therefore have multiple aliases for the same router. Yet, the different IP addresses
of a router’s interfaces reported by the traceroute are assigned to different
nodes on the map, despite belonging to a single physical entity. This creates a
false connectivity that might introduce spurious results in the topological descrip-
tion of the graph. A detailed example of this effect is discussed in Appendix A2.
As well, some IP addresses are shared by more than one machine. This should
not happen, but sometimes it does, resulting in different physical routers being
grouped in a single node. This is the reason why the original maps collected
by path-probing methods can be more precisely considered as IP connectivity
graphs. A further problem is related to the choice of the addressable IP space;
i.e. which prefix might contain addressable nodes. While these disadvantages, as
we shall see in the following, can be minimized by developing some specific tools,
a final and more knotty problem concerns security measures and the existence of
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networks that are not willing to be traced. For instance, firewalls block tracerout-
ing of internal networks, and administrators sometimes ask their networks to be
excluded from the list of addresses routinely probed.

From the previous discussion it emerges that mapping the Internet with single
source probing produces a very partial and “ego-centered” picture of the Internet.
Even so, spanning tree maps are a fundamental step in obtaining a picture of the
physical fabric of the Internet. They can be quite complete in the case of large
intranetworks and provide a first measurement and visualization of the size and
complexity of the Internet.7

3.3 An x-ray scan of the Internet

In order to overcome the intrinsic limitations of single source probing, different
strategies have been proposed. The first consists in developing specific heuristics
for increasing the fidelity of the maps. Conversely, we can consider using differ-
ent probing sources, possibly a large number, in order to reconstruct the Internet
maps by merging all their partial views. While neither of the techniques allow us
to obtain a complete mapping of the Internet, a noticeable improvement in the
completeness of the resulting maps is achieved.

3.3.1 The heuristic approach

One of the largest efforts in using heuristics to improve Internet scanning
is represented by the Mercator Internet mapping program (Govindan and
Tangmunarunkit, 2000). To discover the Internet map, Mercator works by rou-
tinely selecting a prefix from its population of IP networks and probing the path
to an address selected within that prefix with a traceroute-like tool.8 Addi-
tionally, however, several heuristics are implemented to derive IP targets, discover
cross-links, and resolve router interfaces.

Since Mercator is intended to map the Internet with nearly zero initial informa-
tion, it does not use any external databases to drive the map discovery. While a
possible choice in this case could be to probe paths to randomly chosen addresses
from the entire IP address space, Mercator uses instead a heuristic defined as in-
formed random address probing. The goal of this method is to infer which portion
of the IP address space actually contains addressable nodes. The informed random
address probing starts from a seed prefix (usually the IP address of the source host),

7 See for instance the Internet Mapping Project at Lumeta Corporation, http://research.lumeta.com/
ches/map/index.html.

8 Mercator sends UDP packets with increasing TTLs, and termination conditions if a loop is detected in the path
or the probe fails to elicit a response.



3.3 An x-ray scan of the Internet 27

and increases its prefix population along with the mapping process. In practice,
whenever a path to a responding address A is found, Mercator assumes that the
prefix of A must contain addressable nodes and then expects that also neighboring
prefixes will likely contain addressable nodes.9 Thus, if in a given time window
the prefix population has not increased, Mercator selects a neighbor of an existing
prefix, chosen with a probability proportional to the number of successful probes
addressed to that prefix (a probe is considered successful if it discovers at least one
previously unknown router). The same preferential mechanism is applied to the
choice of prefixes selected for path probing. This feature biases the prefix discov-
ery and the mapping process towards prefixes densely populated with addressable
nodes.

Another important heuristic that Mercator implements is aimed at the discov-
ery of “cross-links.” As discussed in the previous section, single source probing
misses a conspicuous amount of cross-links which are not discovered in the tree-
like exploration of paths. In order to increase the likelihood of discovering links
in the Internet graph, Mercator makes use of another feature called source-routed
path probing. In simple words, the software directs path probes to its prefix pop-
ulation from detected source-route capable routers. These routers allow the use of
path probing as if they were the source of the packets and are somehow equiv-
alent to the acquisition of additional probes that scan the network from different
viewpoints. This different perspective allows the discovery of alternative paths to
already targeted address, see Figure 3.5. In principle, each source-route capable
router could provide the same amount of data as if Mercator were running at that
location. Unfortunately, source-route capable routers are very few, and their loca-
tions cannot be opportunely chosen. In addition they cannot be intensively used,
since a large probing overhead usually triggers the system administrator alarm,

Fig. 3.5 Source-routed path probing allows the discovery of cross-connectivity
by providing a different perspective for probing. The source-route capable routers
is marked as a filled square.

9 This technique is based on the assumption that address registries allocate the address space sequentially.
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which does not always imply a cooperative reaction. How much the use of these
routers is helping to map Internet connectivity is therefore related to several fac-
tors, including their number and location with respect to the original probing host,
which cannot be exactly quantified. Nevertheless, numerical experiments show
that, in sparse graphs, even a rather small fraction of source-route capable routers
can improve considerably the amount of discovered adjacencies (Govindan and
Tangmunarunkit, 2000; Vázquez, Pastor-Satorras, and Vespignani, 2003).

Finally, a last heuristic of Mercator is devoted to routers’ aliases resolution.
As discussed in the previous section, path probes discover router interfaces, thus a
router level map requires identification of all the interfaces (IP numbers) belonging
to the same router. A simple analysis of the IP numbers does not allow the aliases
of a given router to be distinguished. To solve this problem, Mercator sends alias
probes based on a common feature of IP implementations. In simple terms, the
IP packet is addressed to an unused port of the router interface. An error message
is then sent to the source address, from an eligible interface of the router. If the
interface is different from the one to which the original packet was addressed, then
the two interfaces belong to the same router. In addition, and in order to maximize
the number of resolved aliases, other refinements, such as repeating alias probes
in time and emitting alias probes also from source-route routers, have also been
implemented (Govindan and Tangmunarunkit, 2000).

Mercator has been used to collect one of the largest publicly available maps at
the IR level. As previously stressed there are many “caveats” indicating that the
resulting map could be still largely incomplete. However, validating tests on small
and medium-sized ISP networks have proven to be rather successful, and there
are reasons to believe that maps generated with well-developed heuristics could
provide realistic topologies for protocol simulations and statistical studies of the
Internet’s properties (Govindan and Tangmunarunkit, 2000).

3.3.2 Path-probing from multiple sources

An orthogonal approach to overcome the drawbacks of single source path probing
is the deployment of a large number of strategically placed probing monitors. In
principle, each monitor implements a path-probing software by which a spanning
graph of the Internet from its point of view is obtained. All the data are then cen-
trally collected and merged in order to obtain a graph that reduces the problems
due to single source probing and maximizes the estimates of cross-connectivity.
In view of the evident analogies, this mapping effort has been dubbed Internet
tomography (Claffy, Monk, and McRobb, 1999).

A large-scale project based on this philosophy is the Macroscopic Topology
Project developed at the Cooperative Association for Internet Data Analysis
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(CAIDA). Since 1998, this project has been performing measurements and
developing visualization tools to collect and analyze large-scale Internet topology
and performance. The primary measurement tool is represented by skitter that,
similarly to other customized probing programs, sends increasing TTL traceroutes
to collect forward paths from a monitor to addresses in a destination list. The
project consists of several monitors divided into groups which probe different
destination lists according to the different specific problems analyzed10 (Huffaker
et al., 2002). Each monitor stores the obtained data in files which are transferred
to a central repository. In turn the repository collector machine provides the des-
tination lists for each monitor. In order to maximize the number of detected links,
skitter monitors are placed strategically around the whole Internet and destinations
are probed with different cycle times depending on the monitors’ locations.

The IP graphs collected by skitter monitors reflect a significative part of the ad-
dressable space, and can be studied as a representative granularity of the Internet
(Huffaker et al., 2002; Broido and Claffy, 2001). However, since the goal is the
construction of an IR level map, interfaces with different IP addresses must be
identified with routers. Aliases resolution is crucial also in this framework since
it could happen that different monitors probe the same router on different inter-
faces. To avoid this problem, CAIDA developed a tool called iffinder that is able
to resolve aliases in a similar way as described previously for the Mercator pro-
gram (Huffaker et al., 2002).

CAIDA is producing an enormous amount of data sets that can also be used to
highlight the role of specific backbones, traffic exchange points, and traffic bottle-
necks. Skitter monitors probe the largest destination list available at the moment,
and data have been collected over several years forming a database ready for the
study of the Internet’s dynamical evolution.

3.3.3 Large graph visualization

One of the problems faced in the analysis of Internet maps at the very large-scale
level consists in their visualization. While there are several methods for looking at
network data sets, the logical layout based on connectivity shown in Figure 3.6 is
the most frequently used. Indeed, the first concern in a hypothetical Internet navi-
gation is the number of intermediate router hops, more than the effective mileage
between hosts. In addition, colors may be used to display link usage, ownerships,
and time changes. This may help to find anomalies, such as bottlenecks or failure
points.

10 In October 2002, the 21 monitors probe approximately 9 × 105 destinations spread over about 70% of the
globally routable network prefixes.
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Fig. 3.6 Two-dimensional image of a router level Internet map collected by H.
Burch and B. Cheswick, courtesy of Lumeta Corp. (http://www.lumeta.com).

Yet, the drawing of the macroscopic Internet structure is not an easy task, since
the resulting graph datasets are huge and push to the limit the CPU power and
resolution of current computers. For this reason, mapping projects allocate a large
amount of resources in developing specific visualization tools. Despite these ef-
forts, however, very large graph drawings, while visually appealing, are so dense
and intricate that they elude any attempt to find an intelligible organization at the
root of the seemingly disordered drawing of edges and vertices. This has stimu-
lated Internet representations at the coarser AS level, and eventually has led to a
more quantitative characterization based on statistical methods.

3.4 AS level maps

A coarser view of the Internet can be obtained by aggregating IP addresses or
routers into their corresponding ASs11 (see Figure 3.7). In this way CAIDA is

11 Conversely, it is also possible to explore and visualize the connectivity of individual ASs with tools such as
Hermes, http://www.dia.uniroma3.it/∼hermes/.
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Fig. 3.7 Two-dimensional image depicting the Internet’s AS connectivity
reconstructed from skitter traces. After Claffy et al. (1999).

providing a visualization of the AS core by converting each IP address in the AS
responsible for its routing. The mapping is made by using the BGP routing tables
collected by the Oregon route-views project. BGP tables contain the AS paths to
destination IP addresses, the AS at the end of each path being the administrative
responsible for the corresponding address. This data aggregation allows AS con-
nectivity maps to be reconstructed from active measurements and provides logical
layouts that can be used to study the role of specific ASs in routing traffic across
the Internet.

Interestingly, AS level graphs of the Internet can be obtained also by passive
measurements.12 In practice, AS graphs are reconstructed by collecting BGP rout-
ing tables from the routers in charge of the inter-domain protocol. BGP is a dis-
tance vector protocol that constructs paths by successively propagating path up-
dates between peering BGP routers. This process produces BGP routing tables
containing the list of all destination prefixes accessible from each BGP router.
For each destination prefix, the path vector – listing the traversed ASs – from the

12 A comparison between passive and active measurements, from the point of view of their respective accuracy
and reliability, is discussed by Broido and Claffy (2001).
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source AS to the destination is also reported. An explicit example of entries in a
BGP routing table is shown in Figure 2.3.

From the BGP tables of a router it is possible to obtain a map of AS connectivity
by considering that two consecutive ASs in a path define a peering connection. In
principle, the BGP routing tables of a BGP router should cover the whole known
address space,13 and will provide a complete view of the peering relations of the
AS to which the router belongs. Very likely, however, these BGP tables will pro-
vide only partial information on the interconnectivity among other ASs. Similarly,
BGP tables obtained from a different AS will see only some, but not all the connec-
tions among other ASs, because each BGP router has its own particular view due
to shortest path strategies and policy reasons. Therefore by considering the union
of the BGP tables stored in many routers belonging to different ASs, we can get a
more complete view of the AS interconnectivity. This consideration is at the basis
of the Oregon route-views project,14 where a dedicated router connects routinely
from 20 to 50 AS routers with the specific purpose of collecting their BGP tables.
The collection of these tables, the Oregon route-views, allows the reconstruction
of AS level topology maps of the Internet.15

Oregon route-views represent one of the very few publicly available data sets
allowing a dynamical analysis of the time evolution of the Internet over a relatively
long time span. For this reason, it is at the core of many studies of the Internet’s
AS connectivity structure. The Oregon route-views methodology is similar to a
multiple source probing of the Internet, where the probing paths of each BGP
monitor are just its own BGP paths. Oregon route-views, thus, may not reveal
many of the paths which are less advertised or not considered by the AS routers
peering with the Oregon server. As in active path probing, by considering larger
numbers of BGP tables these problems can certainly be minimized, but it is not
possible to evaluate the completeness of the map obtained from the union of many
BGP views. In other words, it is not known a priori how many BGP tables from
different AS routers are needed in order to obtain a complete view of the Internet’s
AS interconnectivity.

With the aim of establishing the completeness of the AS level topology captured
by the Oregon route-views, Qian et al. (2002) supplemented and compared these
data sets with BGP summary information from a number of different sources. In

13 This is not always the case. In particular when a BGP router does not have an AS path to a certain address,
it forwards all traffic for that address to another default router. BGP routers that for any particular reason
do not address a large section of the address space can be identified and not considered in the statistical
analysis (Qian, Chang, Govindan, Jamin, Shenker, and Willinger, 2002).

14 The University of Oregon’s Route Views project, http://www.antc.uoregon.edu/route-views/.
15 A daily archive of the Oregon route-views is made available from November 1997 to March 2001 at

http://moat.nlanr.net/Routing/rawdata/ by the National Laboratory for Applied Network Research (NLANR)
(McGregor, H-W.Braun, and Brown, 2000). From April 2001 raw data are available at the route-views archive
http://archive.routeviews.org.



3.5 Internet geography 33

particular, several ISPs residing in different ASs allow public access to their BGP
tables. Supplementary routing policy information can also be obtained from the
Internet Routing Registry (IRR). This new information can be aggregated to the
Oregon route-views to provide an extended AS graph of the Internet, to be com-
pared with the original one. The extended maps contain 20–50% more physical
connections (edges), but only 2% more ASs (vertices). This discovery demon-
strates that the graphs obtained from Oregon route-views, missing a noticeable
fraction of the Internet connectivity, might be rather incomplete. While this find-
ing is extremely important for specific local studies, Internet graphs derived from
Oregon route-views might still provide a reasonable statistical sampling of AS
physical connectivity, sufficient to capture the correct large-scale topological and
statistical properties of the Internet. Indeed, even large quantitative differences
do not necessarily imply different qualitative features at the large-scale statistical
level (see Chapter 4). The extended maps therefore become an essential bench-
mark from which to test the stability and consistency of the statistical proper-
ties of the original Oregon route-views maps in the case of larger connectivity
samplings.

3.5 Internet geography

Until now we have only considered Internet maps as graphs representing the phys-
ical connectivity, and lacking any real distance or location information. This topo-
logical layout is in opposition to geographical layouts in which Internet elements
are visualized through physical maps. The idea is therefore to find the geograph-
ical location of each vertex (router or AS), place the vertex at that very position,
and draw lines between physically connected vertices. This strategy sounds simple
enough but, unfortunately, determining the geographic location of a given IP ad-
dress is a non-trivial task. The problem in finding a router’s location resides in the
fact that, due to business and security reasons, many ISPs do not want the exact
positions of their machines to be publicly available. In many cases it is difficult to
extract even an approximate location from the host name, and many routers just
have an IP address.

Strategies to establish a correspondence between IP addresses, domain names,
and ASs depend on the whois database, which provides the registered headquar-
ter’s address of ISPs. This procedure can of course generate errors, since large ISPs
have sometimes routers scattered all over the world and not just at the headquar-
ter’s geographical location. Specific tools16 therefore combine different heuristics
and databases in order to minimize these problems.

16 See for instance the NetGeo tool developed at CAIDA, http://www.caida.org/tools/utilities/netgeo/.
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Besides map layout, geographic location represents very valuable information
in all studies that correlate Internet connectivity and performance with the actual
physical distance among routers (Yook, Jeong, and Barabási, 2002; Lakhina,
Byers, Crovella, and Matta, 2002). These correlations will turn out to be extremely
relevant when obtaining more realistic models of Internet graphs, as we will see
in Chapter 5.

3.6 The Internet’s global performance

Along with the study of topology, a large percentage of the activity in Internet mea-
surement infrastructures is devoted to the analysis of workloads and performance.
These are critical issues for assessing the overall health status of the network, since
they are a quantitative measure of the efficiency and stability of its communication
capabilities.

Traffic measurements focus on the number of IP packets generated by different
kind of traffic (TCP, WWW, etc.) on specific Internet links. Usually data constitute
the time series of traffic load at different resolution scale and in different time
windows. This kind of measurements have been the first to be performed regularly
to monitor the network behavior and have led to a large activity in the field of
traffic signal (Willinger, Taqqu, and Erramilli, 1996). Recently, measurements have
been extended to larger scales and data have been analyzed on the basis of source
and destination addresses, providing a first attempt to correlate traffic flows with
the network topology (Claffy, 1999; Huffaker, Fomenkov, Moore, Nemeth, and
Claffy, 2000; Uhlig and Bonaventure, 2001).

The basic testing tool for evaluating Internet performance is the original ping
(Packet InterNet Groper) program. Based on the Internet Control Message Pro-
tocol (ICMP), ping sends packets that elicit a reply from the target host. The
program then measures the round-trip-time (RTT), i.e. how long it takes for each
packet to make the round trip to its destination. Other features, such as the mea-
sure of the number of packets lost in a certain time window, are also implemented.
The NLANR and CAIDA measurement infrastructures use ping-like probes from
their monitors to collect RTT and packet loss data for hundreds or thousands of In-
ternet destinations. Other organizations and projects, such as the PingER monitor-
ing infrastructure17 and the Réseaux IP Européens (RIPE),18 have also a number
of sites sending regularly ICMP probes to a few hundred targets to monitor the
end-to-end performance of Internet links.

RTT data quantify the speed at which IP packets travel across a specific path.
By comparing RTTs on different paths and at different times it is possible to point

17 http://www-iepm.slac.stanford.edu. 18 http://www.ripe.net.
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out the presence of congestion points and bottlenecks. This information helps to
identify specific areas in which routing policies and hardware modifications can
lead to an improvement of the local traffic. At the global level, it is also possible to
study the statistical fluctuations in performance at different points of the Internet
and their correlation with geographic areas.

A different measure of network performance is obtained by looking at rout-
ing instabilities. A routing instability (also referred to as a route flap) is defined
as a rapid change of network reachability. The origin of routing instabilities can
be traced back to router congestions, transient physical outages, or configuration
errors. When a router is unreachable, its peers send a BGP update, announcing
the withdrawal of the corresponding routing paths. The message is then spread
from peer to peer through a large number of BGP updates. The subsequent change
in routing paths may create other flaps and the routing instability can propagate
through the network and eventually lead to the transient loss of connectivity of
large regions of the Internet. Noticeably, the occurrence and propagation of rout-
ing instabilities can be passively measured by collecting BGP updates. For in-
stance, a large amount of data has been collected by the Internet Performance
Measurement and Analysis (IPMA) project,19 a joint effort by the University of
Michigan Department of Electrical Engineering and the Computer Science and
Merit Network. These data provide the basis for the study of the propagation of
routing instabilities, and the impact of policy and topology on Internet routing
performance (Labovitz, Malan, and Jahanian, 1998; Labovitz, Ahuja, Bose, and
Jahanian, 2001).

We want to emphasize at this point that performance measurements are fun-
damental in providing a picture of the global Internet that goes beyond the con-
nectivity layout obtained by studying the IR and AS level connectivity maps. The
Internet’s evolution and the various dynamical processes occurring in it are nat-
urally constrained by the need for global efficiency in terms of traffic and per-
formance. These elements are not usually considered in Internet modeling, that
mainly focuses on the bare skeleton of the Internet graph. Indeed, the measure-
ments of load, data traffic, and bandwidth at a global level are still at an infant
stage because of the technical problems inherent in the traffic evaluation tools,
which often impose a heavy load on the network, severely restricting their use.
It is natural to expect that in the next few years this will become a large area of
activity that will trigger a new understanding of the Internet’s structure.

19 http://www.merit.edu/ipma/.
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The Internet’s large-scale topology

We have seen in the previous chapter that the graphs representing the physical lay-
out of the large-scale Internet look like a haphazard set of points and lines, with
the result that they are of little help in finding any quantitative characterization or
hidden pattern underlying the network fabric. The intricate appearance of these
graphs, however, corresponds to the large-scale heterogeneity of the Internet and
prompts us to the use of a statistical analysis as the proper tool for a useful math-
ematical characterization of this system. Indeed, in large heterogeneous systems,
large-scale regularities cannot be found by looking at local elements or properties.1

Similarly, the study of a single router connectivity or history will not allow us to
understand the behavior of the Internet as a whole. In other words, we must aban-
don local descriptions in favor of a large-scale statistical characterization, taking
into account the aggregate properties of the many interacting units that compose
the Internet.

The statistical description of Internet maps finds its natural framework in graph
theory and the basic topological measures customarily used in this field.2 Here we
shall focus on some metrics such as the shortest path length, the clustering coef-
ficient, and the degree distribution, which provide a basic and robust characteri-
zation of Internet maps. The statistical features of these metrics provide evidence
of the small-world and scale-free properties of the Internet. These two properties
are prominent concepts in the characterization of complex networks, expressing in
concise mathematical terms the hidden regularities of the Internet’s structure. We
shall address as well – where data allow – the dynamical evolution of the various
measurements and their stability over time. Finally, we shall consider properties
related to the existence of hierarchy, correlations, and geography in the Internet.

1 The classical example of this fact in the field of physics is the theory of critical phenomena. From the simple
Hamiltonian describing most models, it is difficult to imagine the rich behavior they show close to a critical
point (Stanley, 1971; Binney, Dowrick, Fisher, and Newman, 1992; Yeomans, 1992).

2 A detailed presentation of the main concepts of graph theory can be found in Appendix A1.
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The data analysis presented here constitutes the starting point for any scientific
approach to the Internet’s evolution and structure. This will be particularly evident
in the following chapter, where the statistical physics modeling of the Internet will
necessarily lever on the empirical evidence and statistical laws provided here. A
final warning to the reader concerns the datasets used in the analysis presented.
We have collected and discussed the most recent Internet maps available in the
literature. Data gathering projects, however, are continuously making public larger
maps, and very likely more complete samples will be available by the time this
book is published.

4.1 The growth of the Internet

We start by reviewing the properties of Internet graphs, analyzing the most ba-
sic set of standard metrics. In the following, unless otherwise stated, the IR
graph corresponds to the data collected during October/November 1999 by the
SCAN project with the Mercator software (Govindan and Tangmunarunkit, 2000).
The AS level graph collected by the Oregon route-views and the extended AS+
graph collected by the Topology Project of the Computer Science Department at
Michigan University (Qian et al., 2002) are both dated May 26, 2001. The latter
map is obtained by enlarging the Oregon route-views data set by external BGP
information (see Chapter 3), and it will be used in the present chapter to assess
the stability of the topological and statistical properties of Internet graphs upon in-
creasing the completeness of the mapping process. First of all, we need to quantify
the size of the graphs by counting the total number of vertices (nodes) N and edges
(links) E , which are reported in Table 4.1 for all the different graphs considered.3

Then we can focus on local metrics by looking at the following properties of
each vertex i (see Figure 4.1):

• The degree ki defines the number of edges incident to the vertex i , i.e. the number of
connections of that vertex with other vertices in the network.

Map N E 〈k〉 〈c〉 〈�〉 〈b〉/N

IR 228,263 320,149 2.8 0.03 9.5 5.3
AS 11,174 23,409 4.2 0.30 3.6 2.3
AS+ 11,461 32,730 5.7 0.35 3.6 2.3

Table 4.1 Average metrics of the IR, AS, and AS+ level graphs
(See the text for the metrics’ definitions)

3 In the case of the IR level graph it has been considered the giant component of the graph (see Appendix A1).



38 The Internet’s large-scale topology

c = 0 c = 1c = 0.5

1

23

4

k

(c)

(b)(a)

Fig. 4.1 Basic metrics characterizing a vertex i in the network. (a) The degree
k quantifies the vertex connectivity. (b) The shortest path length identifies the
minimum connected path (dashed line) between two different vertices. (c) The
clustering coefficient provides a measure of the interconnectivity in the vertex’s
neighborhood. As an example, the central vertex in the figure has a clustering co-
efficient c = 1 if all its neighbors are connected and c = 0 if no interconnections
are present.

• The shortest path length �i j between a pair of vertices i and j measures the number of
edges forming the shortest path going from i to j .

• The betweenness bi of a vertex i defines the total number of shortest paths among pairs
of vertices in the network that pass through that vertex. If there are multiple shortest
paths between a pair of vertices, the path passing through vertex i contributes to the
betweenness with the corresponding relative weight (see Appendix A1).

• The clustering coefficient ci of the vertex i is defined as the ratio between the number
of edges ei among its nearest neighbors and its maximum possible value ki (ki − 1)/2,
i.e. ci = 2ei/ki (ki − 1).

The degree and shortest path length of the vertices in IR (AS) level graphs
have an immediate physical interpretation, quantifying how well a router (AS) is
connected, and its minimum distance to other routers (ASs), in terms of router
(AS) hops. The betweenness of a vertex gives a measure of the amount of traffic
that goes through it, if the shortest path length is used as the metric defining the
optimal path between pairs of vertices.4 The betweenness, sometimes referred to as
“load” (Goh, Kahng, and Kim, 2001), is thus a measure of the centrality of a vertex

4 This is not always the case, since policy agreements can indeed impose non-optimal paths in the routing tables.
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in the network. Furthermore, the clustering coefficient is a measure of the level
of local interconnectivity among neighboring routers (ASs). For instance, a high
clustering coefficient indicates a well interconnected local community of routers
(ASs), very likely within the same administrative domain or geographical region.

All the defined metrics correspond to local properties of the vertices. In or-
der to have a large-scale view of Internet graphs one has to shift the attention
to statistical measures that take into account the global behavior of these quan-
tities. A first global characterization of Internet maps can thus be obtained by
measuring the statistical averages of each metric xi over all the vertices in the
network, 〈x〉 = N−1 ∑

i xi . In Table 4.1 we report the average values measured at
both the IR and AS granularity.5 The average values reported in Table 4.1 read-
ily give some indications of the Internet’s overall structure. The average degree of
the three maps is very small if compared with the network sizes; they are there-
fore very sparse graphs. Despite this small average degree, however, the average
shortest path length is also very small. This feature points towards the so-called
small-world property, that will be discussed in detail in the next section. The differ-
ences among the metrics at different granularities are consistent with the fact that
the AS and AS+ maps are coarse-grained representations of the IR map. The IR
level map is sparser, and its average shortest path length is longer. Moreover, the
IR map has a smaller average degree because routers in general support a limited
number of connections (interfaces). On the contrary, ASs can have in principle
a larger number of connections, since they represent the aggregation of several
routers. Finally, both graphs have an appreciable number of vertices with a high
number of connections (hubs), providing the shortcuts needed to generate a very
small average shortest path length .

The National Laboratory for Applied Network Research (NLANR) (McGregor
et al., 2000) has been archiving since 1997 connectivity maps at the AS level, ob-
tained by the Oregon route-views project. This effort is an invaluable service to the
research community, allowing the analysis of the dynamical evolution of the AS
level metrics. From the NLANR data we can observe that the dynamical evolution
of Internet growth is a non-trivial process, which is not simply driven by the addi-
tion of new ASs. Inspecting the daily database, it is possible to check that changes
in the maps are due to both the addition (birth) and deletion (death) of ASs and their
peering relations (Pastor-Satorras, Vázquez, and Vespignani, 2001; Qian et al.,
2002; Vázquez, Pastor-Satorras and Vespignani, 2002b). In Figure 4.2 we show the
monthly number of new and deleted vertices in the range between November 1998
and November 2000 (Qian et al., 2002). This plot has been constructed analyzing

5 Note that, for the case of the clustering coefficient, it is possible to define a restricted average over the vertices
with degree ki ≥ 2 (Jin and Bestavros, 2002; Bu and Towsley, 2002). This restricted average yields values
larger that those reported in Table 4.1.
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Fig. 4.2 Monthly number of new and dead ASs in the period November 1998 to
November 2000. Data from Qian et al. (2002).

limited maps from the data obtained from the eight routers that have maintained
a steady relationship with the Oregon route server during the period considered.
Despite their smaller sizes, these limited maps have the advantage of considering
always the same view of the Internet, and are thus less prone to false birth/death
events due to temporal changes in the set of peer routers. This and other parallel
analyses (Pastor-Satorras et al., 2001; Vázquez et al., 2002b) provide evidence
that the AS’s birth rate is much larger than the corresponding deletion rate. More
interestingly, if we restrict our attention to the fraction of vertices deleted or added
as a function of their degree, Table 4.2, we observe that only poorly connected
nodes have an appreciable probability to disappear, while it is very unlikely to wit-
ness the addition of a heavily connected new AS. This fact is easily understandable
in terms of the market competition among ISPs, where the largest fraction of new
vertices correspond to small, little connected newcomers, which are at the same
time the ones that more likely go out of business due to the market pressure.

Similarly, it is possible to keep track of the number Enew of edges appearing be-
tween a newly introduced vertex and vertices already present, and the number Eold

of edges between already existing vertices (Vázquez et al., 2002b). From Table 4.3
we can observe that the rate of creation of new edges is governed by these two pro-
cesses at the same time. Specifically, the growth of the Internet’s connectivity is
dominated by the appearance of edges between already existing vertices. This fact
indicates that Internet growth is strongly driven by the need for wiring redundancy
and increasing available bandwidth for data transmission. A more detailed anal-
ysis (Qian et al., 2002) also allows us to distinguish between customer and peer
wiring events, in which a new edge is established between a small degree vertex
(the customer AS) and a large degree vertex (the provider AS) or between vertices
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Degree Number of dead ASs Number of new ASs

1 1,184 5,591
2 204 816
3 22 23
4 6 4
5 4 1
6 1 1
7 1 1
9 1 —
10 — 1
11 — 1
12 1 —
14 — 1
48 1 —

Table 4.2 Total number of new and dead ASs in the
period November 1998 to November 2000 (Data from
Qian et al., 2002)

Year 1998 1999

Enew 170(8) 231(11)
Eold 350(9) 450(29)

Enew/Eold 0.48(2) 0.53(3)

Table 4.3 Monthly rate of new edges connecting
existing vertices to new (Enew) and old (Eold)
vertices, in the years 1998 and 1999 (Data from
Vázquez et al., 2002)

with similar degrees, respectively. The identification of the so-called rewiring pro-
cesses is also very interesting. Rewiring an edge refers to an event in which a
specific AS shifts one of its previous connections to another existing AS. Empir-
ically, a birth/death process amounts to a rewiring process if it happens within a
rather short time scale. Qian et al. (2002) consider that a rewiring process occurs
if an edge birth happens within ten days of an edge disappearance (after or before)
on the same vertex. Still, birth/death processes might be just random coincidences
and it is possible to show that only 20% of all birth/death processes occurring on
the same vertex are meaningfully correlated, particularly if they occur within a one
day time window.
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N 3,700 4,500 5,200 6,300 6,500 8,900 9,100 10,500

〈k〉 3.6 3.7 3.8 3.9 3.9 4.0 4.1 4.1
〈c〉 0.21 0.23 0.24 0.25 0.25 0.29 0.29 0.29
〈�〉 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7

〈b〉/N 2.4 2.4 2.4 2.4 2.4 2.3 2.3 2.3

Table 4.4 Behavior of the average basic metrics as a function of the
number N of ASs recorded in the NLANR maps

The empirical observations reported so far show that the overall growth of the
Internet is the outcome of the net balance of a birth/death dynamics involving large
fractions of the system. However, despite these complex dynamics and the overall
growth of vertices and edges, the behavior in time of the various metrics charac-
terizing Internet graphs shows much smaller variations. Indeed, in Table 4.4 we
observe that, in the time span considered, the average values of all the metrics
do not show large fluctuations and seem to approach a stationary value at which
statistical properties are fairly stable in time. This evidence allows us to use the sta-
tistical properties previously defined in the characterization of the Internet. They
do not suffer from relevant changes with network size, and can be considered as
inherent properties of the Internet. Over the following sections we shall leverage
on these statistical properties to express in mathematical terms the complex pat-
terns emerging from the Internet maps.

4.2 Small-world properties

4.2.1 Degrees of separation

The average shortest path length among vertices found in Internet maps is very
small if compared with the size of the graphs. This empirical evidence was reported
in early analysis of Internet data (Faloutsos, Faloutsos and Faloutsos, 1999), and
it has been confirmed for all recent datasets (Huffaker et al., 2000; Huffaker,
Fomenkov, Moore, Plummer and Claffy, 2002; Pastor-Satorras et al., 2001; Qian
et al., 2002; Bu and Towsley, 2002). In particular, several measurements focused
on the IP path hop count; i.e. the number of IP addresses traversed by an IP packet
along the path between a source-destination host pair. While the actual IP hop
count is not always equivalent to the shortest path length due to routing policies,
small hop counts are consistently found in hosts all around the world.6

6 The CAIDA group reported in the first five months of 2001 an average hop distance LIP = 15.3 ± 4.2 between
their monitors and 313, 471 destinations in the IP space (Huffaker et al., 2002)
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A more precise characterization of the mild variation in the path distance is pro-
vided by the analysis of the probability P�(�) of finding two vertices separated by
a shortest path length �, Figure 4.3. For the IR, AS, and AS+ graphs the distri-
bution is sharply peaked around the average value 〈�〉, which can be considered as
the characteristic length of the networks. The distribution drops very rapidly away
from the peak value, as can be better seen from the hop plot M(�), Figure 4.4,
first introduced by Faloutsos et al. (1999), and defined as the average number of
vertices within a distance less than or equal to � for any given vertex (see Ap-
pendix A1). From Figure 4.4, for instance, it is possible to check that at the IR
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(AS) level, 97% of vertex pairs are at a distance � of 15 (8) or less (Vázquez
et al., 2002b; Qian et al., 2002).

The small separation among Internet routers and ASs is a striking example of the
so-called small-world effect. This concept describes in simple words the fact that it
is possible to go from one vertex to any other in the system, passing through a very
small number of intermediate vertices. The small-world effect has been popular-
ized in the sociological context – where it is sometimes referred as “six degrees of
separation” – by Milgram (1967), showing that a short number of acquaintances
(on the average six) is enough to create a connection between any two people
chosen at random. Since then, the small-world effect has been observed in many
natural networks (Watts and Strogatz, 1998; Watts, 1999) and appears to charac-
terize several infrastructure networks where the small average distance is crucially
important to speed up communications (Bush, Files, and Thompson, 2001). For
instance, if the Internet had the shape of a regular grid, its characteristic distance
would scale as 〈�〉 ∼ N 1/2; with the present Internet size, each IP packet would
pass through 103 or more routers, drastically depleting the Internet’s communi-
cation capabilities. The small-world property is therefore implicitly enforced in
the network architecture, which incorporates hubs and backbones, which connect
different regional networks, strongly decreasing the value of 〈�〉.

4.2.2 Small-world yet clustered

To be more precise, the small-world property refers to networks in which 〈�〉 scales
logarithmically, or slower, with the number of vertices (see Chapter 5). This fea-
ture alone is not, however, the signature of a special organizing principle. For in-
stance, the small-world effect can be achieved by using random graphs in which
vertices are just randomly connected (see Section 5.1.1). More interesting is the
fact that, in close analogy to many social and technological networks (Watts and
Strogatz, 1998; Watts, 1999), the small-world effect goes along with a high level of
clustering. The clustering coefficient quantifies the fraction of pairs of neighbors
of a vertex which on their turn are neighbors of each other. In a random graph with
N vertices and average degree 〈k〉, the average clustering coefficient is 〈c〉 ∼ N−1

(see Section 5.1.1). The clustering coefficients for the AS, AS+, and IR maps
listed in Table 4.1 are two to four orders of magnitude larger than the correspond-
ing value for a random graph of the same size (vertices and edges). This large
clustering coefficient corresponds in the Internet to a large statistical abundance of
“communities” in which every router (AS) is connected to every other. This fact is
in turn related to both hierarchical and geographical factors that will be addressed
in the following sections. On the other hand, the finding of clustered networks with
small-world properties raises a very interesting issue: Random graphs feature the
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small-world effect but are not clustered, while regular grids tend to be clustered
but are not small-world. Is there a different kind of network, driven by different
organizing principles, able to capture both properties at the same time?

4.3 Heavy tailed distributions

4.3.1 Degree fluctuations and power-law behavior

The analysis of the average metrics presented in the previous sections rules out
the possibility of a purely random graph structure or a regular grid architecture.
In addition, even a visual inspection of the maps clearly shows a very high level
of heterogeneity in the connectivity properties (see for instance Figure 3.7). Many
vertices in the maps have just a few connections, while a few hubs collect hundreds
or even thousands of edges. Somehow, we cannot infer large-scale properties from
the very fluctuating local ones. The evidence suggests a peculiar topology that will
be more clearly identified by looking at the detailed statistical distributions of the
different metrics. In particular, Faloutsos et al. (1999) pointed out for the first
time that the connectivity properties of the IR and AS level maps are characterized
by heavy tailed probability distributions that can be reasonably approximated by
power-law forms. For instance, Figure 4.5 reports the probability P(k) that any
given vertex in the IR level map has degree k. The distribution is highly variable
in the sense that degrees vary over a range close to three orders of magnitude. This
behavior is very different from the case of the bell-shaped, exponentially decaying
distributions shown in Figure 4.3. At the AS level the same heavy tailed degree dis-
tribution is observed. Figure 4.6 shows the cumulative degree distribution Pc(k)
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Fig. 4.5 Degree distribution P(k) for the IR level graph in a double logarithmic
scale. The solid line is a power law decay k−γ with γ = 2.1.
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Fig. 4.6 Cumulative degree distribution for the Oregon route-views AS graphs
in the years 1997, 1999, and 2001. The power-law behavior is characterized by a
slope −1.1, which yields a degree exponent γ � 2.1.

of the AS maps obtained from the Oregon route-views for three different years.7

The AS level degree distribution is stable over the years and only the cut-off, fixed
by the maximum degree of the system, is increasing due to overall Internet growth.
At both the AS and IR level, the degree distribution appears to be well approxi-
mated by the linear behavior on the double logarithmic scale.8 More precisely, the
distribution can be fitted in a wide region of k values by the power-law form9

P(k) � ak−γ , (4.1)

with exponent γ � 2.1 and an opportune normalization constant a.
A peculiar fact about a distribution with a heavy tail is that there is a finite prob-

ability of finding vertices with degree much larger than the average 〈k〉. In other
words, the consequence of heavy tails is that the average behavior of the system is
not typical. The characteristic degree is the one that, picking up a vertex at random,
should be encountered most of the time. In the distributions shown in Figures 4.5
and 4.6 most of the time vertices will have small degree values, but there is an
appreciable probability of finding vertices with large degree values. Yet all inter-
mediate values are probable and the average degree does not represent any special
value for the distribution. This is clearly opposite to bell-shaped distributions with

7 The cumulative degree distribution is defined as Pc(k) = ∫ ∞
k P(k′) dk′. If the original probability distribution

has a power-law form P(k) ∼ k−γ , the cumulative distribution scales as Pc(k) ∼ k1−γ , with the advantage of
being considerably less noisy (see Appendix A3).

8 It is most noticeable the fact that the power-law regime in Figure 4.6 extends for more than three orders of
magnitude. Such a large range is not often encountered in real physical systems.

9 Power-law distributions are sometimes referred to as Pareto distributions, after the name of the economist that
observed this behavior in the income distribution (Pareto, 1896).
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fast decaying tails, in which the average value is very close to the maximum of
the distribution and represents the most probable value in the system. The power-
law behavior and the relative exponent thus represent a quantitative measure of the
level of heterogeneity of the network’s connectivity.

In more mathematical terms the heavy-tail property translates into a very large
level of degree fluctuations. This can be observed by inspecting the normalized
variance of the distribution, σ 2/〈k〉2. In the case of distributions with a power-law
tail with exponent 2 < γ < 3 we have that

〈k〉 =
∫ ∞

m
k P(k) dk = const., (4.2)

where m ≥ 1 is the lowest possible degree in the network.10 The average degree
is therefore well defined and bounded. However, the variance σ 2 = 〈k2〉 − 〈k〉2 is
dominated by the second moment of the distribution, that diverges with the upper
integration limit kc as

〈k2〉 ∼
∫

k2 P(k) dk ∼
∫ kc

m
k2−γ dk ∼ k3−γ

c . (4.3)

In the asymptotic limit kc → ∞, fluctuations are therefore unbounded and depend
only on the system size.11 The absence of any intrinsic scale for the fluctuations
implies that the average value is not a characteristic scale for the system. In other
words, we are in the presence of a scale-free network for what concerns the statis-
tical properties of the vertices’ degree. This reasoning can be extended to values
of γ ≤ 2, since in this case even the first moment is unbounded.

The absence of an intrinsic characteristic scale in a power-law distribution is
also reflected in the self-similarity properties of such distribution; i.e. it looks the
same at all length scales. This means that if we look at the distribution of de-
grees by using a coarser scale in which k → λk, with λ representing a magnifica-
tion/reduction factor, the distribution would still have the same form. This is not
the case if a well-defined characteristic length is present in the system.

Finally, from the previous discussion, it is possible to provide a heuristic char-
acterization of the level of heterogeneity of networks by defining the parameter

κ = 〈k2〉
〈k〉 . (4.4)

Indeed, fluctuations are denoted by the normalized variance that can be expressed
as κ/〈k〉 − 1, and scale-free networks are characterized by κ → ∞, whereas

10 For the sake of simplicity we consider a continuous variable k (see Section 5.4). The same results hold in the
discrete case, where the integral is replaced by a summation.

11 In statistical physics the infinite size limit is called the thermodynamic limit.
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homogeneous networks have κ ∼ 〈k〉. For this reason, we will generally refer all
networks with heterogeneity parameter κ 
 〈k〉 as scale-free networks.12 We shall
see in the following chapters that κ is a key parameter for all properties and phys-
ical processes in networks which are affected by the degree fluctuations.

4.3.2 Further evidence of scale-free behavior

The possibility that the Internet belongs to the class of scale-free networks, and the
eventual consequences of the scale-free behavior, has impacted on the networking
community and triggered off, after the first observations by Faloutsos et al. (1999),
a significant amount of activity aimed at the confirmation of this finding. Fur-
ther empirical evidence for the heavy-tailed behavior of the degree distribution has
since been collected both at the IR and AS level in several studies (Govindan and
Tangmunarunkit, 2000; Tangmunarunkit, Doyle, Govindan, Jamin, Shenker and
Willinger, 2001; Broido and Claffy, 2001; Pastor-Satorras et al., 2001; Magoni
and Pansiot, 2001; Chang, Jamin, and Willinger, 2001; Vázquez et al., 2002b;
Tangmunarunkit, Govindan, Jamin, Shenker and Willinger, 2002a; Willinger,
Govindan, Jamin, Paxson and Shenker, 2002; Qian et al., 2002; Yook et al., 2002;
Bu and Towsley, 2002). It must be noted that many of these works report as evi-
dence of the scale-free behavior of the degree distribution the power-law form of
Zipf’s plot. This is obtained by assigning a rank r to the vertices in terms of their
degree value. The vertex with the largest degree has rank r = 1, and so on in de-
creasing degree order. Zipf’s ranked distributions plot the degree k of vertices with
respect to their rank r . The plots obtained have a power-law behavior k ∼ r−α that
is common to many physical phenomena (Zipf, 1949; Faloutsos et al., 1999). This
power-law behavior is indeed a direct consequence of the power-law behavior of
the degree distribution. The probability of having a vertex with a degree larger
than k is given by the cumulative distribution Pc(k) ∼ k−γ+1. In a graph with N
vertices the rank of a vertex of degree k is therefore r ∼ Nk−γ+1. Inverting this
last relation yields the Zipf’s ranked distribution with α = (γ − 1)−1. This shows
that the two power-law exponents are not independent but provide different repre-
sentation of the same scale-free feature.

The scale-free behavior, in fact, does not show up only in the degree distribu-
tion. For instance, additional evidence can be observed in the power-law behavior
of degree correlation functions, as we shall see in Section 4.5. Furthermore, the be-
tweenness distribution Pb(b) (i.e. the probability that any given vertex is traversed
by b shortest paths between pairs of vertices) shows heavy tails with scale-free be-
havior. This latter fact is made evident in Figure 4.7, where we plot, for the IR, AS,

12 Obviously, in the real world κ cannot be infinite since it is limited by the network size.
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Fig. 4.7 Cumulative betweenness distribution Pc
b (b) for the AS, AS+, and IR

graphs. The solid line is a power law decay Pc
b (b) ∼ b1−γb with γb � 2.0.

and AS+ maps, the cumulative betweenness distribution Pc
b (b) = ∫ ∞

b Pb(b′) db′.
The betweenness distribution of the AS and AS+ maps is almost identical and
well approximated by the power law behavior Pb(b) ∼ b−γb with γb � 2.0. At the
IR granularity, the betweenness distribution varies over three orders of magnitude
with an initial power-law behavior followed by a faster decay at large values of
the betweenness. The large value truncation finds its origin in the routers’ finite
capacity, which is discussed in detail in the next section.

A different manifestation of the scale-free nature of the Internet is pro-
vided by the analysis of spanning tree graphs obtained by single probe experi-
ments (Caldarelli, Marchetti, and Pietronero, 2000). In this case, the probe host is
considered as the outlet of a river basin and the path connecting this point to all
the possible detected IP addresses can be considered to form the structure of this
basin (Rodriguez-Iturbe and Rinaldo, 1997). An interesting measure, customarily
used in river network studies, is the probability density function P(n) that any
vertex in the basin connects n other vertices uphill. The quantity n is usually re-
ferred to as the drainage area, and in the path-probing language corresponds to
the number of IP addresses reachable from the probing host by paths traversing
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Fig. 4.8 Cumulative probability distribution Pc(n) of vertices’ drainage area
n in the Internet spanning graphs collected by the Internet mapping project at
Lucent Bell Labs (Burch and Cheswick) during different monthly time windows.
The solid line is a power-law fit to the form Pc(n) ∼ n1−τ with τ � 2.0. Data
provided by G. Caldarelli.

that vertex. The statistical analysis of the spanning graphs collected by the
Internet mapping project at Lucent Bell Labs (Burch and Cheswick, 1999) reveals
a clear power law distribution P(n) ∼ n−τ with τ � 2.0 (see Figure 4.8). This ex-
ponent is different from those found in river networks (τ � 1.45) and uncorrelated
branching processes (τ = 1.5) (Rodriguez-Iturbe and Rinaldo, 1997), and not sur-
prisingly, it is in good agreement with the betweenness exponent γb. Somehow,
the drainage area is just the betweenness of a vertex restricted only to the shortest
paths connecting all the vertices with the probing host. The equivalence of the two
exponents should be expected in a system that has self-averaging properties; i.e.
the statistical properties of the system are independent of the specific observation
point. This is not an obvious fact, and should not be confused with a homogeneity
assumption. On the contrary, it states that whatever reference vertex we use for
measuring the statistical properties, we find the same amount of fluctuations.

Table 4.5 summarizes the numerical properties of the various heavy tailed prob-
ability distributions analyzed so far. The scale-free behavior is especially evident
when comparing the heterogeneity parameter κ and the wide variations in the vari-
ables range. For the sake of comparison we also report the same properties in the
case of the short-tailed distribution, observed for the shortest path length in the
various samples.

Finally, it is important to mention that other interesting power-law relations are
found by looking at the spectral analysis of Internet graphs. This analysis yields
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Variable x Sample 〈x〉 xmax σ κ exponent

IR 2.8 1,937 8.4 28 2.1 ± 0.1
k AS 4.2 2,389 33.0 264 2.1 ± 0.1

AS+ 5.7 2,432 35.1 222 2.2 ± 0.1

IR 5.3 6,878 57.5 249 2.0 ± 0.2
b/N AS 2.3 1,819 22.9 229 2.0 ± 0.1

AS+ 2.3 1,795 21.9 213 2.0 ± 0.1

n Lucent 10.9 91,419 467 19,991 2.0 ± 0.2

IR 9.5 32 2.37 10.1 ∞
� AS 3.6 10 1.45 4.2 ∞

AS+ 3.6 10 1.51 4.2 ∞

Table 4.5 Numerical summary of the probability distributions
analyzed in this chapter. xmax is the maximum value of the variable
observed in the sample. The parameter κ = 〈x2〉/〈x〉 and the mean
square root deviation σ estimate the level of fluctuations in the sample.
It is possible to appreciate that all heavy-tailed distributions show a
maximum value of the variable xmax 
 〈x〉 and a heterogeneity
parameter κ 
 〈x〉 (at least one order of magnitude larger). This is
not the case for the shortest path length distributions, where κ � 〈x〉.
For the sake of comparison we reported the values 〈x〉 already
presented in Table 4.1. The exponent is evaluated by a best fit
procedure in the linear region of the double logarithmic plot. The
value ∞ indicates a decay faster than any power-law

a structural classification of the Internet’s networks defining subgraphs of differ-
ent sizes and connectivity properties depending on the multiplicity of the eigen-
values of adjacency-like matrices (see Appendix A1). Noticeably, the statistical
analysis of the occurrence of subgraphs and their interconnections reveals several
interesting power-law relations (Faloutsos et al., 1999; Vukadinovic, Huang, and
Erlebach, 2002).

4.4 Critically examining scale-free properties

Along with the more extensive maps available and the more detailed analyses per-
formed, the scale-free behavior of the Internet has been carefully scrutinized and
some questions have been raised in the literature (Broido and Claffy, 2001; Qian
et al., 2002; Vázquez, Pastor-Satorras, and Vespignani, 2002a). It is therefore im-
portant to discuss the various objections to scale-free behavior that can be found
in the literature.
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4.4.1 Size and physical constraints

A first relevant criticism to the observed scale-free behavior of the Internet con-
cerns the fact that, in some cases, deviations and smoothing out of the pure
power-law behavior are found in the analysis of statistical distributions. For in-
stance, in Figure 4.5 the power-law fit of the form P(k) = ak−γ with exponent
γ = 2.1 ± 0.1 (a is a normalization constant) is fairly consistent for k < 60. For
k > 60, however, one can observe that the degree distribution follows a faster
decay. By using the cumulative distribution or binning procedures to reduce
noise (see Appendix A3), this effect becomes more evident and the power-law
is smoothed by a cut-off regime. This picture is consistent with a finite size scaling
of the form P(k) = k−γ f (k/kc) (Dorogovtsev and Mendes, 2002), where f (x)

has the asymptotic behavior f (x) = const. for x � 1 and f (x) � 1 for x 
 1.
Here kc is the degree above which the distribution decays faster than a power law,
and represents the natural integration limit in Equation (4.3). Deviations from the
power-law behavior at large connectivities are also clearly observed for the larger
IP level maps analyzed by Broido and Claffy (2001).13

The presence of truncations in power laws, however, should not be considered a
surprise, since it finds a natural place in the context of scale-free phenomena. Actu-
ally, the heavy tail truncation is the natural effect of the upper limit of the distribu-
tion that must necessarily be present in every real-world system. Indeed, bounded
power laws (i.e. power-law distributions with a cut-off) are also observed in other
real networks (Amaral, Scala, Barthélémy, and Stanley, 2000) and different mecha-
nisms have been proposed to account for the presence of large degree truncations.
Specifically, we can distinguish two different kinds of cut-offs in real networks.
The first is an exponential cut-off, f (x) = exp(−x), which can be explained in
terms of a finite connectivity capacity of the network elements (Amaral et al.,
2000) or incomplete information (Mossa, Barthélémy, Stanley, and Amaral, 2002).
In this case the cut-off value kc is a constant that depends upon the external phys-
ical and technological constraints. It is likely that is what is happening at the IR
level, where it is unlikely and technically unpractical to have an excessively large
number of interfaces in a single router. This is a finite capacity constraint that, in
our opinion, is the dominant mechanism affecting the tail of the IR degree distri-
bution. From this perspective, larger and more recent samples at the IR level could
present some shift in the cut-off, due to the improved technical router capabilities.
A second possibility is given by a very steep cut-off such as f (x) = θ(1 − x),
where θ(x) is the Heaviside step function.14 This is what happens in growing

13 In this work, however, the cumulative degree distribution was fitted to a Weibull distribution
Pc(k) = a exp[−(k/kc)

β ].
14 The Heaviside step function takes the value θ(x) = 0 for x < 0, and θ(x) = 1 for x > 1.
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networks with a finite number of elements. Since scale-free networks are often
dynamically growing networks, this case represents a network which has grown
up to a finite number of vertices N . The maximum degree is therefore a function
of the networks size kc(N ) < N (see Appendix A5). The scale-free behavior of the
degree distribution is evident up to kc(N ), above which it decays as a step func-
tion, since the network does not possess any vertex with degree larger than kc(N ).
Inspecting Figure 4.6, this second possibility appears to be realized at the AS level.
Interestingly, Tangmunarunkit et al. (2001) reported that the size of ASs in terms
of routers is linearly correlated with their measured degree. This fact indicates that
the dominant mechanism at the AS level is the finite size of the network, while
degree limits are not present, since large ASs can handle a very large connectivity
load.

The connection between finite capacity and bounded distributions also becomes
evident if we consider the betweenness. This magnitude is a static estimate of the
amount of traffic that a vertex supports. Hence, if a router has a bounded capac-
ity, the betweenness distribution should also be bounded for large betweenness.
However, this effect should be absent for the AS maps. The cumulative between-
ness distribution Pc

b (b) for the AS, AS+, and IR maps is shown in Figure 4.7. The
AS and AS+ distributions are practically equal, with an exponent γb � 2.0. In
the case of the IR map, however, the betweenness distribution follows a truncated
power law, in analogy to the behavior observed for the degree distribution.

4.4.2 Statistical reliability

A more radical objection is related to the possibility that the power-law behavior
could be an artifact of the map’s incompleteness. As we discussed in Chapter 3,
the collection of Internet maps suffers from biases at all granularity levels, and it
is not possible to ascertain precisely to what extent they provide a reliable picture
of the Internet’s connectivity. The number of vertices reported depends on the var-
ious collection methods, which in some cases is known to be very close to the full
number of vertices available (Broido and Claffy, 2001; Qian et al., 2002; Huffaker,
Fomenkov, Moore, Plummer, and Claffy, 2002). Concerning the interconnectivity
(edges), the situation is quite different, since the achieved level of sampling is not
known a priori. It is then natural to wonder if this incomplete information might
affect the statistical analysis, yielding spurious results. This question does not find
an easy answer. The reliability of the graphs depends on the number of probing
stations and targeted routers used to infer the physical connectivity (Barford,
Bestavros, Byers, and Crovella, 2001) (see Chapter 3). In the case of a very in-
complete sampling, it has been shown that statistical distributions can develop an
apparent long tail behavior even if the graph topology is not scale-free (Lakhina,
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Byers, Crovella, and Xie, 2002). It is possible to show, however, that the high clus-
tering coefficient observed in Internet graphs is generally associated with a fair
statistical sampling of the network interconnectivity, since a large enough number
of closed triangles must be detected in the graph in order to produce a substan-
tial value of 〈c〉 (Vázquez et al., 2003). This evidence, along with the very large
maximum degree of the graphs and the actual level of sampling achieved by most
recent projects (almost 70% of the addressable networks in the Internet) supports
the view that the highly variable distributions are a genuine feature of the Internet.

In this respect, Qian et al. (2002) obtained an important result by performing
an empirical analysis of the completeness of the BGP derived maps reconstructed
from the Oregon route-views and the reliability of the resulting graphs at the AS
level. Their study reveals that, being strictly BGP-based, the data provide a rather
incomplete picture of the Internet’s connectivity. The Oregon route-views collects
and merges the connectivity inferred from the BGP routing tables of 20 to 50 op-
erational routers. Each of them provides its routing tables, but for several reasons a
large amount of interconnections are missing.15 In particular, these maps typically
miss approximately more than 30% of the physical links that might be obtained
by using additional sources in the construction of the AS graphs. Indeed, by using
supplementary BGP information from a large number of Internet ASs and Inter-
net Routing Registries, Qian et al. (2002) constructed the extended AS+ graph,
which contains only 2% more vertices (ASs) but almost 40% more edges (peering
connections), as reported in Table 4.1. Obviously, such a conspicuous difference
is very relevant in a detailed quantitative analysis of the graph. It will provide very
different views of local regions of the Internet and the associated connectivity.
However, this result does not necessarily imply a different qualitative behavior of
the large-scale statistical properties.

In Figure 4.9 we compare the connectivity distribution for the AS and AS+
maps collected on the same date. Strikingly, the degree distribution obtained for the
AS+ map is clearly highly variable with a power-law tail very similar to that ob-
served in the more incomplete AS map. This is an extremely important result since
the degree distribution could be strongly affected by such a large increase in the
number of edges, especially if the sampling of standard maps suffered from unpre-
dictable biases due to routing policies or specific locations of the collecting routers.
Not surprisingly, a very careful inspection shows deviations from a pure power
law at intermediate degrees in the AS+ map, and this anomaly might or might not
be related to the biased enlargement of the Internet sampling (Qian et al., 2002).
However, while this represents an important point in the detailed description of the
connectivity properties, it is not crucial in what concerns the large-scale nature of

15 See Chapter 3 for a detailed discussion of mapping limitations.
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Fig. 4.9 Cumulative degree distribution Pc(k) for the AS Oregon route-views
graph and the extended AS+ graph, both collected on May 26, 2001.

the Internet. This fact emerges clearly by looking at Table 4.5, where it is possible
to appreciate the similar features of both statistical distributions. For instance, with
respect to the network’s physical properties, it is just the large connectivity region
that is actually effective. Indeed, the heterogeneity parameter κ , that controls the
network robustness to removal of vertices (see Chapter 6) and spreading phenom-
ena (see Chapter 9), is mainly determined by the tail of the distribution, and is
very similar for both maps. In particular, we estimate κ = 264 and κ = 222 for
the AS and AS+ maps, respectively. With such large values of κ , for all practical
purposes (resilience, virus spreading, traffic, etc.) the AS and AS+ maps behave
qualitatively in very similar ways.

Equally striking is the evidence purported by the scale-free properties of the
betweenness distribution, which is very similar for both AS and AS+ graphs as
shown in Figure 4.7. In this case no differences can be detected by visual inspec-
tion, and a clear power-law behavior is observed for both distributions. The equiv-
alence of the AS and AS+ graphs in respect to the betweenness distribution is
even more striking when we consider the origin of these graphs. The AS graph is
constructed on the exclusive base of BGP routing tables. The routing paths traced
in these tables represent a compromise between the shortest path length among
different routers and the policy agreements reached by the different ISPs. On the
other hand, the additional edges introduced in the AS+ graph correspond to alter-
native connections which are not frequently announced by the BGP peers probed
by the Oregon route-views server. If the AS map connectivity were exclusively
established on a shortest path length basis, it would not be surprising at all to
observe that the addition of new connections does not change the betweenness
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distribution. This is not the case, however, since routing policies can strongly bias
the paths layed by BGP routers.

The statistical equivalence of the AS and AS+ graphs represents thus a remark-
able and non-trivial observation, pointing out that at the AS level the large-scale
sampling of the Internet is already capable of capturing the global statistical prop-
erties of this network. This observation finds further confirmation in the next sec-
tion, in which several others metrics are proven to show qualitatively identical
properties in the AS and AS+ graphs.

4.4.3 The relevance of heavy tailed distributions

It is important to stress at this point that the change in perspective offered by the
presence of scale-free distributions has an impact that goes far beyond the discus-
sion concerning truncations and finite size effects, deviations from pure power-
laws, or the exact values of the exponents. Indeed, fittings to a power-law form
can yield slightly different results, depending on the range of values actually con-
sidered for the fit. In this sense, the exact value of the exponents is of secondary
importance, at least given the amount of noise in the present datasets. The really
crucial issue is that the observation of heavy tailed, highly variable distributions
provides new experimental input for a radical change of the Internet representation
and modeling.

Internet topology generators aim at representing the Internet by constructing
algorithms that incorporate the desired topological properties of the graph (see
Chapter 5). For years, topology generators have been inspired by homogeneous
random graph models (see Section 5.1), yielding synthetic networks with Poisson
degree distributions. However, the ubiquitous presence of heavy tailed distribu-
tions makes these generators inadequate. The differences introduced by power-
laws and large fluctuations in many properties of the graph are too significant to
be ignored: protocols designed for homogeneous random graphs perform badly
on networks with heterogeneous connectivity patterns; resilience to damage is ex-
tremely different in networks with heavy tailed degree distribution; spreading and
searching processes are greatly affected by degree fluctuations. These considera-
tions motivate the development of new Internet topology generators that incorpo-
rate connectivity patterns in agreement with the empirical observations.

Looking at the scale-free properties from a wider aspect makes the Internet one
of the most prominent examples of what appears as a general class of networks.
Scale-free degree distributions and heterogeneity have indeed been observed for a
large class of real-world networks belonging to the biological and social realms as
well as to the technological domain. In Chapter 7 we shall see that many virtual and
social networks (World Wide Web, peer-to-peer, e-mail) living in the Internet have
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scale-free properties. Similar features are also observed in the science collabora-
tion graph (Newman, 2001a; Newman, 2001b) and the scientific citation network
(Redner, 1998). Metabolic (Jeong, Tombor, Albert, Oltvai, and Barabási, 2000)
and protein interaction networks (Jeong, Mason, Barabási, and Oltvai, 2001) are
examples of scale-free networks from the biological world. The evidence that a
scale-free topology is shared by many complex evolutive networks cannot be con-
sidered as incidental. Rather, it points to the possibility of some general principle
that can possibly explain the emergency of this architecture in such different con-
texts (Dorogovtsev and Mendes, 2003).

With this picture in mind, it is possible to think on the more ambitious goal
of modeling complex networks, and thus the Internet, by understanding the main
dynamical principles at the basis of their evolution. At this level the presence of
heavy tailed distributions represents the fundamental signature of an emergent co-
operative behavior. In other words, the study of the collective behavior of the many
elements forming the network can shed light on the large-scale structures in which
it is eventually self-organized. As we shall see in the next chapter, this evidence
calls for a different framework in network modeling.

4.5 The hierarchical structure of the Internet

The presence of a scale-free degree distribution does not necessarily imply a pre-
cise structural organization or hierarchy. At the same time, we know that the In-
ternet is organized around some primary structure, such as the distinction between
stub and transit domains.16 This hierarchical organization is at the origin of the
high clustering coefficient of the Internet, but its relation with the power-law be-
havior of the degree distribution is not obvious. In addition, while the IR and AS
graphs represent the same overall structure of the Internet, the IR level contains a
much lower degree of structural and administrative organization than the AS level,
which is the outcome of a coarse graining strongly based on a modular construc-
tion. It is not clear, therefore, how much the two levels could have in common in a
hierarchical analysis.

4.5.1 Up–down organization

A heuristic way to quantify the level of hierarchy in the Internet revolves around
the concept of backbones. There is, in fact, little doubt that the Internet has a set
of backbone links that carries the traffic for a majority of source–destination pairs.
In other words, the traffic is not evenly spread over the various links but canalized

16 See the discussion in Chapter 3.
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through the more central links and hubs of the Internet. The hierarchical structure
is thus manifested in two main traits (Tangmunarunkit et al., 2002a). The first is
that some links are more used than others. The second is that a large proportion
of source–destination paths tends first to go up on the more used links and then
down again on the less used ones. This amounts to an up–down strategy, in which
a path in the Internet first finds its way up in the hierarchy, and once it has reached
the backbone starts to find its way down to its final destination. This two features
can be measured by studying the load of vertices (routers or ASs) and edges in the
series of connections and vertices traversed along the paths.

The actual load of vertices and edges is not a topological quantity, and therefore
cannot be directly computed from Internet maps.17 However, it can be quantita-
tively estimated as the number of shortest paths among source–destination pairs
that go through each edge and vertex. This definition corresponds to the vertex or
edge betweenness, which indeed quantifies the level of centrality in the network.
The vertex betweenness distribution shown in Figure 4.7 reveals that the load is not
uniformly distributed, but has a tendency to concentrate on a few vertices, while
a large number of peripheral vertices have a very small betweenness value. It is
possible to identify those vertices in which most of the load is concentrated by
analyzing the average betweenness b̄(k) of vertices with degree k, defined as

b̄(k) = 1

N P(k)

∑
i

bi δki ,k, (4.5)

where the sum is running over all vertices and δki ,k is the Kronecker symbol
with values δi, j = 1 if i = j , and δi, j = 0 if i �= j . Figure 4.10 shows that b̄(k)

is a monotonously increasing function for both the AS, AS+, and IR graphs, which
indicates that the vertices carrying the largest load are indeed those with the largest
degree. Those hubs, and the interconnections among them, compose a well-defined
backbone of vertices and edges where the load is concentrated.18 This conclusion
is supported by the up–down analysis of shortest paths. In this case, the frequency
of paths which first traverse vertices or edges strictly in order of increasing load
and then of decreasing load is measured. Indeed, valid paths from a hierarchical
point of view are all paths which go only down, only up, or stay flat in load values.
Contrary to the up–down hierarchy, are instead all paths that have a local mini-
mum for the load of edges or vertices within the path itself. Figure 4.11 shows
the fraction of up–down paths observed in the AS and IR level, compared with

17 The traffic load in the Internet is quite a subtle measure, depending strongly on the bandwidth of the physical
lines and the sending patterns of individual hosts. A discussion of these issues is deferred to Chapter 10.

18 A similar behavior is found by Tangmunarunkit et al. (2002a), using a more sophisticated value for the cen-
trality, based on a minimal covering of the “traversal set,” that is the set of vertex pairs whose shortest path
routing traverses the edge.
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a homogeneous random graph construction and a regular mesh (Tangmunarunkit
et al., 2002a). The results reported in this Figure refer to two definitions of an
up–down path: Strict up–down paths do not allow the presence of any local min-
ima in the load. However, relaxed up–down paths allow local minima, provided
that the minimum load along the path is larger than the value at the end points.
From Figure 4.11 we observe that the AS level map presents a larger amount of
up–down hierarchy (more than 80% of the paths) than the IR map, followed as
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expected by the random graph structure and the regular mesh, which shows the
smallest amount of hierarchical structure. It is worth noting also that, according to
the relaxed definition, the IR level map presents an appreciable level of hierarchy.
Indeed, a certain level of hierarchy is somehow embedded in the scale-free nature
of the Internet. By definition scale-free behavior implies the presence of important
hubs, which provide the large-scale connectivity backbone for the network.

4.5.2 The “rich-club” phenomenon

Another signature of the hierarchical nature of the Internet is represented by the
tendency of high degree nodes to be well interconnected among each other. In other
words, subgraphs formed by vertices of a degree higher than k are progressively
more interconnected (Zhou and Mondragon, 2003). This implies that high degree
vertices (the rich guys) form fairly well interconnected subgraphs (clubs), from
which the name, rich-club phenomenon.

A more quantitative assessment of this property is obtained by measuring the
rich-club coefficient φ(k), defined as the ratio of the actual number of edges E>k

among the N>k vertices with degree higher than k and their maximum allowed
number N>k(N>k − 1)/2. Measurements of the rich-club coefficient show a be-
havior φ(k) ∼ kv , with v = 1.1 ± 0.2 and 1.8 ± 0.2 for the AS and IR graphs,
respectively. In both cases, thus, we have that subgraphs containing progressively
higher degree vertices are more and more interconnected following approxima-
tively a power-law increase. This feature supports the picture in which important
hubs are well interconnected among them, with the aim of providing the transit
backbone of the Internet. Peripherical vertices, however, just care about local con-
nectivity and do not even know about far off Internet regions.

While the rich-club phenomenon states that hubs are usually well intercon-
nected, this feature does not imply that the majority of hubs’ edges are directed
to other hubs. Indeed, hubs have a very large number of edges and only a few of
them are enough to provide the connectivity to other hubs, whose number is any-
way small. On average, therefore, hubs have a large majority of edges connecting
to the large number of peripherical and smaller degree vertices for which they pro-
vide the connectivity to the global network. This characteristic is fully exploited
by the analysis of the degree–degree correlations and the mixing properties of the
graph.

4.5.3 Clustering and degree correlations

The identification of metrics able to characterize quantitatively the relation be-
tween scale-free topology and hierarchical organization has been the object of
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Fig. 4.12 Average clustering coefficient as a function of the vertex degree for the
IR, AS, and AS+ (in the inset) maps.

several works (Tangmunarunkit et al., 2002a; Vázquez et al., 2002b; Ravasz and
Barabási, 2003) and has prompted a detailed analysis of the clustering coefficient.
In particular, important information can be gathered by inspecting the average clus-
tering coefficient c̄(k) of vertices with degree k (Vázquez et al., 2002b; Ravasz and
Barabási, 2003)

c̄(k) = 1

N P(k)

∑
i

ci δki ,k, (4.6)

where the sum runs over all possible vertices and δki ,k is the Kronecker symbol.
As reported in Figure 4.12, in the case of the AS graph, this quantity exhibits a
very clear heavy tail as a function of k, that can be approximated by a power-law
decay with an exponent around 0.75. The plot corresponding to the AS+ graph
shows also a noticeable heavy tail in a range of k values of three orders of magni-
tude; the identification with pure power-law behavior is however not clear in this
case. The IR map, however, is almost constant and independent of k, with the ex-
ception of a sharp drop for large degrees, due to low statistics. These observations
imply that, in the AS and AS+ graphs, vertices with a small number of connec-
tions statistically have larger local clustering coefficient than those with a large
degree. This behavior is consistent with the picture of highly clustered regional
networks sparsely interconnected by national backbones and international connec-
tions. However, in the IR level graph these correlations are absent. Somehow the
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domain hierarchy does not leave any fingerprint at the single router scale, where
the geographic constraints and connectivity bounds are probably playing a more
relevant role.

These observations for the clustering coefficient are supported by another metric
related to the correlations between the degrees of connected vertices. These cor-
relations can be quantified by means of the conditional probability P(k′ | k) that,
given a vertex with degree k, is connected to a vertex with degree k′. A conve-
nient quantity to investigate the behavior of the degree correlation function is the
average degree of the nearest neighbors of vertices of degree k (Pastor-Satorras
et al., 2001)

k̄nn(k) =
∑

k′
k′ P(k′ | k). (4.7)

As shown in Appendix A4, if no degree correlations are present (i.e. for an un-
correlated random network), then k̄nn(k) is independent of k. On the contrary,
the plots for the AS and AS+ maps exhibit a heavy tail, that can be fitted by a
power-law decay for more than two decades, with a characteristic exponent close
to 0.55, clearly indicating the existence of strong correlations (see Figure 4.13).
This is a property referred to in physics and social sciences as disassortative
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Fig. 4.13 Nearest neighbors average degree for the IR, AS, and AS+ maps. The
horizontal dashed line marks the value in the absence of correlations, k̄0

nn(k) =
〈k2〉/〈k〉 = 26.9, computed for the IR map.
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mixing (Newman, 2002a); i.e. high degree vertices statistically have a major-
ity of neighbors with low degree, while the opposite holds for low degree ver-
tices. This property is another clear signature of the structural organization of
the Internet at the AS level. Vertices connectivity properties are arranged in a
hierarchy of levels, in which vertices at the top levels are more interconnected
with vertices at the bottom levels and vice-versa. Strikingly, there is not a fi-
nite amount of hierarchical levels. Rather we are in the presence of a contin-
uum of levels, in that statistically each degree class has a different value k̄nn(k).
Also in this case, the IR map displays a rather different behavior. It shows a
limited variation around a value very similar to that expected for an uncorre-
lated random network with the same degree distribution, k̄0

nn(k) = 〈k2〉/〈k〉 � 28
(see Appendix A4). Noticeably, the variation has an opposite trend than in the
AS level, exhibiting a mild degree of assortative behavior, i.e. high degree ver-
tices tend to be neighbors of highly connected vertices. Again, the sharp drop for
large k can be attributed to the low statistics for such large connectivities. There-
fore, also in this case the two granularity levels show different hierarchical fea-
tures.

In the statistical physics terminology, the average nearest neighbors degree
k̄nn(k) and the clustering coefficient c̄(k) correspond to the cumulative two-
and three-point correlation functions, respectively. A natural generalization of
these quantities uses higher-order metrics based on the analysis of larger cy-
cles, i.e. closed paths in which all edges and vertices are distinct (Bianconi and
Capocci, 2003; Caldarelli, Pastor-Satorras, and Vespignani, 2002). This kind of
higher-order metrics allows the detection of ordered patterns and mesh-like struc-
tures otherwise unnoticed. For instance, the density of cycles of order 4 quanti-
fies the statistical abundance of rectangular structures and their correlation with
the vertices’ degree. Noticeably, these metrics have a behavior similar to c̄(k),
strengthening the notion of an Internet in which the hierarchical properties are ex-
tremely interwoven with the connectivity pattern. Yet it is important to stress that,
at the same time, the power-law behavior of k̄nn(k) and c̄(k) at the AS level is
another signature of the scale-free nature of the Internet. These functions do not
identify a characteristic degree value at which correlations and clustering attain
a peak value. Likewise, they hint towards a continuum of hierarchies in which a
wide range of correlations and clustering is allowed.

Finally, the hierarchical structure can be highlighted also by analyzing the
eigenvalue spectrum of the Internet graph at the AS level. In particular, the
multiplicity of eigenvalues can be related to the size of classes of subgraphs, intro-
ducing a plausible hierarchical classification of the various vertices (Vukadinovic
et al., 2002).
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4.5.4 Hierarchical decomposition of AS graphs

The study of the inherent structural organization of the AS level has led to sev-
eral hierarchical representations of the Internet. These pictures mainly provide a
decomposition of the structural organization of the Internet by defining a certain
number of hierarchical levels or tiers, usually corresponding to different connectiv-
ity classes. An early attempt by Govindan and Reddy (1997) identifies four char-
acteristic levels on a degree scale. The lower level, the fourth one, contains all
vertices with degree smaller than 4. The third level is identified by vertices with
degree between 4 and 10. The second level groups all vertices with degree between
10 and 30 and the first level, the top one corresponding to national or international
backbones, contains all vertices with degree larger than 30. This picture is based on
a particular scale hierarchy of degree classes that is very likely not adequate for the
present structure of the Internet, as clearly pointed out by the highly variable de-
gree distribution. A different decomposition defines three hierarchy levels, Tier-1,
Tier-2, and Tier-3, where the degree of vertices in each level is one order of mag-
nitude larger than those of the following level (Chang, Govindan, Jamin, Shenker,
and Willinger, 2001). This is a logarithmic grouping in classes of connectivity that
might be more adequate in the case of scale-free networks.

The previous statistical analysis, however, has shown an even richer hierarchi-
cal structure. At each degree value, different statistical correlation and clustering
properties are found. These properties are highly variable, with power-law behav-
ior, defining a continuum of hierarchical levels, non-trivially interconnected. In
particular, there is no possibility to define any degree range representing a char-
acteristic hierarchical level. A schematic picture of such a hierarchical structure is
obtained by combining various modular structures into each other in a recursive
construction. More specifically, we can think of small groups of vertices organized
in larger groups that on their turn act as the modules for the next level grouping and
so on. A naı̈ve example of such a construction is shown in Figure 4.14, in which a
deterministic hierarchical network is generated by iteratively replicating an initial
core structure. Interestingly, this kind of modular construction leads naturally to
a scale-free degree distribution (Dorogovtsev, Goltsev, and Mendes, 2002; Jung,
Kim, and Kahng, 2002; Ravasz and Barabási, 2003), while retaining a clustering
hierarchy similar to that observed in the AS maps. Indeed, at the bottom level of
the hierarchy we find highly clustered modules, while at the top level hubs con-
nect different modules with low clustering, thus obtaining a clustering coefficient
anti-correlated with respect to the degree.

While the above construction is far from realistic for the Internet and must be
just considered as a simple conceptual example, the modular blocks from which
the Internet structures are built can be schematically identified with international
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(a) n=0, N=5

(b) n=1, N=25
(c) n=2, N=125

Fig. 4.14 Iterative construction leading to a hierarchical network. Starting from
a fully connected cluster of five vertices shown in (a) (note that, even though the
edges are not visible, the diagonal vertices are connected), four identical replicas
are created, connecting the peripheral vertices of each new cluster to the central
vertex of the original cluster, obtaining a network of N = 25 vertices (b). In the
next step four replicas of the obtained cluster are created, and the peripheral ver-
tices are again connected, as shown in (c), to the central vertex of the original
module, obtaining a N = 125 vertex network. The process can be iterated indefi-
nitely. After Ravasz and Barabási (2003).

connections, national backbones, regional networks, and local area networks. Nat-
urally, consistence with power-law distributions imposes several constraints to the
degree and clustering at the different levels of the hierarchy. Any attempt towards a
realistic modeling of the Internet must therefore take into account the interplay of
both properties, by merging structural and degree-based rules into the simulation
of Internet growth.

4.6 The Internet’s geographical layout

In the previous sections we have focused on the properties of the Internet obtained
from the topological layout of their maps. However, understanding of the funda-
mental mechanisms that drive the Internet’s large-scale evolution cannot disregard
the embedding of those topological properties in the physical world. The Inter-
net requires extensive resource and time investment that must play a role in the
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Fig. 4.15 (a) Router density map obtained by using the NetGeo tool
(http://www.caida.org/tools/utilities/netgeo) to locate the geographical position
of the routers mapped by the Mercator software (Govindan and Tangmu-
narunkit, 2000). (b) Population density map based on the CIESIN’s popula-
tion data (http://sedac.ciesin.org/plue/gpw). The resolution consists of boxes of
1◦ × 1◦. The color code bars indicates increasing density values from white to
black, with the highest population density of the order 107 people/box and the
highest router density of 104 routers/box. After Yook et al. (2002).

shaping of the network, and it is crucial to correlate the Internet’s topology with
its geographical layout.

As a first instance, the geographical deployment of routers and the real distance
among them can be inspected by identifying their geographical coordinates by us-
ing the NetGeo tool developed by CAIDA. Yook et al. (2002) obtained in this
way a map of the world-wide router density by locating all vertices of the Merca-
tor map. A visual inspection of the router density, Figure 4.15, shows an evident
correlation with the population density in economically developed regions. These
correlations can be more precisely quantified by studying the box counting dimen-
sion D f of the density distribution (Mandelbrot, 1982). This is performed by eval-
uating the number N (l) of boxes of size l × l with non-zero routers/inhabitants
as a function of l. The analysis of a correlated region such as the USA shows
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Population Interfaces People per
interface

Africa 837 8,379 100,011
Mexico 154 4,361 35,534
S. America 341 10,131 33,752
W. Europe 366 95,993 3,817
Japan 136 37,649 3,631
USA 299 288,048 1,061
Australia 18 18,277 975

Table 4.6 Correlation between population (in millions)
and number of router interfaces (Data from Lakhina,
Byers, Crovella and Matta, 2002)

that N (l) ∼ l−D f , with D f = 1.5 ± 0.1 for both sets of data (Yook et al., 2002).
This implies that the router and population distributions are not homogeneous, as
it would be if D f = 2. The spatial distributions of both routers and population
are thus fractal since they show a box counting dimension D f < 2, with the very
same scaling (Mandelbrot, 1982). This kind of correlation is also observed at the
interface router level. Lakhina, Byers, Crovella, and Matta (2002) report on the
ratio between the population and the number of interfaces in several regions of the
world (see Table 4.6). From these data we conclude that the density of interfaces is
strongly correlated with the wealth of the region, assuming its largest value at the
most developed countries. This evidence is altogether not surprising, and shows
that in technologically developed countries the Internet demand – its growth rate –
is proportional to the population density.

More surprising is the analysis of the small-world properties in terms of the ac-
tual geographical distance between routers. Huffaker et al. (2000) have correlated
the hop count with the physical distance among source–destination pairs. Inter-
estingly, the short average hop distance of any host with respect to the rest of the
network depends only very weakly on the particular vertex considered and the ge-
ographic distance among hosts. This last evidence points out that some routers
are physically connected over very long distances, in order to cover with a small
hop-count very large distances. This is not obvious since connecting two vertices
on the Internet requires a noticeable economical investment, and network design-
ers usually prefer to connect to the closest vertex which satisfies the bandwidth
requirements. In particular, this suggests the presence of a very small fraction
of long-distance connections (intercontinental cables, satellite connections) and
a large predominance of shorter physical links. This fact has led to the view of
an exponential decaying distance distribution on the Internet. In other words, the
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probability of finding two connected routers separated by a physical distance d is
an exponential function, P(d) ∼ exp(−d/d0), where d0 is a characteristic length
related to geographical constraints.19 The dependence of the router connectivity on
distance is still, however, a subject of empirical debate. Focusing on the probability
that two routers separated by a distance d are directly connected, Lakhina, Byers,
Crovella and Matta (2002) found clear exponential behavior for several maps and
continental regions, in agreement with the common view. However, Yook et al.
(2002) studied the probability distribution of the connections of length d, finding
good agreement with a power-law decay of exponent −1. Undoubtedly, this is a
quite controversial issue, which deserves further experimental analysis.

All these experimental evidences must be cast in the eventual final modeling of
the Internet. While in Internet topology generators these characteristics are to be
imposed from the outset, a real understanding and modeling of the Internet should
be able to reproduce the experimentally observed properties as the natural outcome
of a few general mechanisms ruling the Internet’s dynamics. The relative impor-
tance of each of these empirical finding and how much they are the manifestation
of a basic force shaping the Internet are questions that will be faced in the next
chapter.

19 The exponentially decaying of the length of physical links has been widely used in Internet topology genera-
tors based on the Waxman model, see Section 5.3.1.
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Modeling the Internet

At the large-scale level, the modeling of the Internet focuses on the construction
of graphs that reproduce the topological properties observed in the AS and IR
level maps. Representing the Internet as a graph implies ignoring the physical fea-
tures of routers and connections (capacity, bandwidth, etc.), in a effort to gain a
more simplified perspective that is still able to reproduce the empirical observa-
tions. From this perspective, Internet modeling initially relied on the traditional
framework where complex networks with no apparent regularities were described
as static random graphs, such as the model of Erdös and Rényi (1959). The graph
model of Erdös–Rényi is the simplest conceivable one, characterized by an abso-
lute lack of knowledge of the principles that guide the creation of connections be-
tween elements. Lacking any information, the simplest assumption one can make
is to connect pairs of vertices at random with a given connection probability p.

Based on the random graph model paradigm, the computer science community
has developed models of the Internet to test new communication protocols. The
basic idea underlying the use of models to test protocols is that these should be in-
dependent (at least in principle) from the network topology. However, it turns out
that their performance can be very sensitive to topological details (Tangmunarunkit
et al., 2002a; Labovitz, Ahuja, Wattenhofer, and Srinivasan, 2001; Park and
Lee, 2001). The use of an inadequate model can lead to the design of protocols
that run very efficiently on the model, but perform quite poorly on the real Inter-
net. In this context, several classical Internet topology generators were developed,
based on the Erdös–Rényi model (Waxman, 1988) or the observed hierarchical
structure of the Internet (Zegura, Calvert, and Bhattacharjee, 1996; Doar, 1996).
The observation of the scale-free nature of the Internet has recently prompted the
construction of new generators (Jin, Chen, and Jamin, 2000; Medina, Matta, and
Byers, 2000), which reproduce the correct degree distribution.

In Internet topology generators, the desired properties of the graph are im-
posed from the outset by designing ad hoc algorithms. In other words, topology

69
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generators are just a representation of our limited knowledge of the Internet. This
situation is rather unsatisfactory, from a more basic point of view, when aiming
to model, explain, and predict the large-scale properties and behavior of a system
on the basis of the attributes and interactions of its constituent units. This strategy
finds its inspiration in the statistical physics methodology, which has proved to be
extremely successful in explaining the properties of matter in terms of basic ele-
ments, such as molecules and atoms, and is currently viewed as a general paradigm
to bridge the gap between the local and the large-scale properties of complex sys-
tems. In the case of the Internet the ultimate goal of such an approach is to under-
stand the observed empirical laws in terms of emergent properties, spontaneously
developed from the microscopic dynamics of its elements.

The statistical physics approach to network modeling naturally focuses on dy-
namical evolution rules as the key elements responsible for the structural prop-
erties of the whole system. As a result of this change of perspective, a new
class of models has emerged, based on the realization of two fundamental facts:
(i) the Internet, as well as many other complex networks, is a growing network,
whose number of vertices and edges continuously increases with time; (ii) con-
nections are placed by following random processes biased by the local properties
of nodes. In view of the expectations and demands of the end users, edges are
established following preferential mechanisms related to the connectivity and cen-
trality of already existing vertices. These considerations have triggered the devel-
opment of degree driven growing models, whose paradigm can be found in the
Barabási and Albert (1999) model. This model recovers naturally the scale-free
behavior of the Internet, and from this a wealth of new models have grown up,
including more sophisticated rules that take into account additional dynamical
features.

In this chapter we will present a review of stochastic network models relevant to
our present understanding of Internet topology, emphasizing particularly similari-
ties to and differences from the empirical observations made on the real network.
The comparison of the properties of the models with those of the Internet will
help to pinpoint what are the main ingredients to be taken into account when prop-
erly modeling this complex network.

5.1 Static random graph models

The first class of models we shall consider are static, in the sense that they have
a fixed size. Starting with a constant set of N disconnected vertices, these models
are defined by the rules assigning edges between pairs of vertices. These models
share a random nature in the process of placing the edges, that it is in general
independent of the local properties of nodes. Despite this extreme simplification,
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however, they have provided for a long time the theoretical reference framework
in network modeling, including the Internet.

5.1.1 The Erdös–Rényi model

The first theoretical model of the random network was proposed by Erdös and
Rényi in the early 1960s (Erdös and Rényi, 1959, 1960, 1961). In its original
formulation, the undirected graph G N ,E is constructed starting from a set of N
different vertices, which are joined by E edges whose ends are selected at ran-

dom from among the N vertices. In this way, there is a total of
( N (N−1)

2
E

)
possible

different graphs, which form a probability ensemble in that each graph has the
same probability of occuring. In this respect, the previous construction resem-
bles the microcanonical ensemble in classical equilibrium statistical mechanics
(Pathria, 1996; Burda, Correia, and Krzywicki, 2001). A variation of this model
(Gilbert, 1959) is the graph G N ,p, constructed from a set of N different vertices
in which each of the N (N − 1)/2 possible edges is present with probability p (the
connection probability) and absent with probability 1 − p. The relation between
both constructions is straightforward: in the last case, the probability of obtaining
a given graph with N vertices and E edges is

P(G N ,E ) = pE (1 − p)
1
2 N (N−1)−E . (5.1)

In the following, we will consider the Erdös–Rényi graph G N ,p, defined by the
connection probability p.

Many of the properties of the Erdös–Rényi model can be easily derived. To com-
pute the average degree, we observe that the average number of edges generated in
the construction of the graph is 〈E〉 = 1

2 N (N − 1)p. Since each edge contributes
to the degree of two vertices

〈k〉 = 2〈E〉
N

= (N − 1)p � N p, (5.2)

a general formula which is valid for large N . From the previous equation we ob-
serve that the average degree is diverging with the number of vertices in the graph.
Since real-world graphs are most often characterized by a constant average degree,
in many cases it is a natural choice to consider the behavior of the model for a
wiring probability that decreases with N ; i.e. p(N ) = 〈k〉/N . The average degree
of the random graph is also a determinant parameter in establishing the connec-
tivity structure of the resulting network. If 〈k〉 < 1 the network is composed of
many small subgraphs not connected among them. For 〈k〉 > 1, a giant compo-
nent emerges, with size proportional to the number of vertices in the network. A
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more detailed account of the component structure of random graphs can be found
in Chapter 6.

In order to obtain the degree distribution P(k), we notice that, in a graph with
wiring probability p, the probability to create a vertex of degree k is equal to the
probability that it is connected to k other vertices and not connected to the remain-
ing N − 1 − k vertices. Since the establishment of each edge is an independent
event, this probability is simply given by the binomial distribution

P(k) =
(

N − 1

k

)
pk(1 − p)N−1−k . (5.3)

In the limit of large N and for pN = 〈k〉 constant, the binomial distribution can be
approximated by the Poisson distribution (Gnedenko, 1962)

P(k) = e−〈k〉 〈k〉k

k!
, (5.4)

recovering the result obtained from more rigorous arguments by Bollobás (1981).
The most characteristic trait of the degree distribution of the Erdös–Rényi model
is that it decays faster than exponentially for large k, allowing only very small
degree fluctuations. The Erdös–Rényi model represents, in this sense, the pro-
totypical example of an homogeneous random graph, in which, for the purpose
of the large-scale characterization of the heterogeneity of the network, the degree
of the different vertices can be approximately considered as constant and equal to
the average degree, k � 〈k〉. In Figure 5.1 we compare the analytical prediction
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Fig. 5.1 Numerical estimate of the degree distribution of the Erdös–Rényi model
for N = 5,000 and p = 0.001, average degree 〈k〉 = 5 (circles), and N = 10,000
and p = 0.001, 〈k〉 = 10 (squares), averaged over 100 different realizations, com-
pared with the predicted Poisson distribution, Eq. (5.4) (full lines).
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Eq. (5.4) with the result of numerical simulations of the Erdös–Rényi model. As
we observe, even for moderately large sizes (N = 5000), P(k) is very well ap-
proximated by the Poisson distribution.

The clustering coefficient 〈c〉 of the Erdös–Rényi model follows from the in-
dependence of the connections. For any vertex, the probability that any two of its
neighbors are also connected to each other is given by the connection probabil-
ity p. Therefore the clustering coefficient is equal to

〈c〉 = p = 〈k〉
N

. (5.5)

From this result we conclude that the clustering coefficient of the Erdös–Rényi
model, at fixed 〈k〉, decreases with the graph size, tending to zero in the limit of
an infinitely large network.

Finally, we provide some intuitions about the the scaling of the average shortest
path length � with the network size N , for graphs with 〈k〉 > 1, i.e. in the pres-
ence of a giant component (Newman, 2003). For a connected network of average
degree 〈k〉, the number of neighbors at distance 1 of any vertex i is 〈k〉. If the po-
sition of the edges is completely random and neglecting the effect of cycles, the
number of neighbors at a distance d can be approximated by 〈k〉d . Let us define
the radius of the graph, rG , as the distance such that 〈k〉rG � N . For 〈k〉 larger
then 1, the quantity 〈k〉d grows exponentially fast with d, which means that an
overwhelming majority of vertices are at a distance of the order rG from the ver-
tex i . Thus we can approximate rG by the average shortest path length . From the
definition of the radius, we obtain1

〈�〉 � log N

log〈k〉 . (5.6)

This approximate estimate can be proved rigorously (Bollobás, 1981), showing
that the Erdös–Rényi model exhibits an average shortest path length 〈�〉 much
smaller than the size of the graph; i.e. 〈�〉/N → 0, for N → ∞. This small value of
the diameter is the signature of the small-world effect observed in many complex
networks.

Despite the presence of the small-world properties, the Erdös–Rényi graph can-
not be considered by any means a good representation of the physical Internet.
First, it fails to reproduce many of the most characteristic properties of the Internet
such as the heavy tailed degree distribution and the associated large degree fluc-
tuations. Moreover, the mismatch in the associated clustering coefficient is also
very large. At the AS level, for example (Chapter 4) the observed clustering

1 It must be noted that for the full statistical ensamble of graphs with tree-like structures the average shortest path
length scales as a power of N in view of the presence of linear branches (Krzywicki, 2001).
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coefficient is about 0.30. An Erdös–Rényi graph with comparable size and average
degree would have a clustering coefficient ∼ 4 × 10−4, close to three orders of
magnitude smaller.

5.1.2 Generalized random graphs

It is possible to extend the Erdös–Rényi model in order to construct generalized
random graphs with a predefined degree distribution – not necessarily Poisson –
that are otherwise random in the assignment of the edges’ end-points. This proce-
dure,2 first proposed by Bender and Canfield (1978) and later developed in several
works (Molloy and Reed, 1995, 1998; Aiello, Chung, and Lu, 2001) consists in
assigning to the graph a fixed degree sequence {k̃i }, i = 1, . . ., N , such that the
i th vertex has degree k̃i , and afterwards distributing the end-points of the edges
among the vertices, according to their respective degrees. In practice, a set of
random numbers {k̃i } is generated and assigned to vertices according to the the
selected degree distribution P(k), such that m ≤ k̃i ≤ N , with the additional con-
straint that the sum

∑
i k̃i must be even. The graph is completed by randomly con-

necting the vertices with
∑

i k̃i/2 edges, respecting the degree assigned to each
vertex.3 As in the case of the Erdös–Rényi model, it is important to keep in mind
that each set {k̃i } generates a graph realization that is a member of the ensem-
ble of generalized random graphs with the corresponding degree distribution. As
for the Erdös–Rényi model, each element of the ensemble has the same statistical
weight.4

With the exception of the imposed constraint of having a fixed degree distribu-
tion, the graphs generated this way are in all respects random.5 In particular, this
randomness is apparent in the lack of degree correlations that allows simple analyt-
ical estimates of the graph’s average shortest path length and clustering coefficient.
Following Newman (2003), let us consider a generalized random graph with arbi-
trary degree distribution P(k). Since edges are assigned at random between pairs
of vertices, the probability that any edge points to a vertex of degree k is given
by k P(k)/〈k〉 (see Appendix A4). Consider now a vertex i ; following the edges
emanating from it, we can arrive at ki other vertices. The probability distribution
that any of the neighboring vertices has k edges pointing to other vertices different

2 See Newman, Strogatz, and Watts (2001) and Newman (2003) for an introduction to the subject with applica-
tions to complex networks.

3 As a practical recipe (Callaway, Hopcroft, Kleinberg, Newman, and Strogatz, 2001), it is useful to create a list
of

∑
i k̃i elements, containing k̃i copies of the i th vertex, and join randomly chosen pairs of elements in the

list.
4 At least as long as we keep the degree sequence {k̃i } fixed (Newman, 2003).
5 However, the very random nature of the vertex matching implies the necessary presence of some loops and mul-

tiple edges, which means that generalized random graphs are more properly multigraphs (see Appendix A1).
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from i (plus the edge from which we arrived) is given by the function

q(k) = (k + 1)P(k + 1)

〈k〉 . (5.7)

In other words, q(k) gives the probability distribution of the second nearest neigh-
bors that can be reached following a given edge in a vertex. The average number
of these second nearest neighbors is then given by

∑
k

kq(k) = 1

〈k〉
∑

k

k(k + 1)P(k + 1) = 〈k2〉 − 〈k〉
〈k〉 . (5.8)

The absence of correlations also yields that any vertex j is connected to another
vertex l with probability k j kl/〈k〉N . Notice that this expression approximates the
full combinatorial form when klk j is larger than 〈k〉N . Thus, the clustering coef-
ficient is simply defined as the average of this quantity over the distribution of all
possible neighbors of i , i.e.

〈c〉 = 1

N 〈k〉
∑
k j

∑
kl

k j klq(k j )q(kl) = 1

N

(〈k2〉 − 〈k〉)2

〈k〉3
. (5.9)

It is important, however, to stress that the above equation fails for scale-free
networks with too small a degree exponent. Indeed, if we consider a scale-free
graph with degree distribution P(k) ∼ k−γ , we have that 〈k〉 is finite, while the
degree fluctuations scale as 〈k2〉 � k3−γ

c , where kc is the maximum degree present
in the graph. The value of kc is generally related to the number of vertices in the
graph (see Appendix A5) by the relation kc � N 1/(γ−1). By plugging this relation
in Eq. (5.9) we obtain an average clustering coefficient depending on the network
size as

〈c〉N � N (7−3γ )/(γ−1). (5.10)

Since the clustering coefficient cannot be larger than 1, Eq. (5.9) must be restricted
to values of the degree exponent γ > 7/3.

In order to provide an approximate expression for the scaling of the diameter
of the graph we can proceed along the same line of reasoning used for the Erdös–
Rényi model. From Eq. (5.8) we can compute iteratively the average number of
neighbors zn at a distance n away from a given vertex as

zn = 〈k2〉 − 〈k〉
〈k〉 zn−1. (5.11)

Finally, by considering that z1 = 〈k〉, it is possible to obtain the explicit expression

zn =
(〈k2〉 − 〈k〉

〈k〉
)n−1

〈k〉. (5.12)
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If the radius of the graph is rG , then we must have that the number of neighbors at
this distance must be approximately equal to the size of the graph N , thus obtaining
zrG = N . Using the same argument as in the Erdös–Rényi model, we readily obtain

〈�〉 ≈ 1 + log[N/〈k〉]
log[(〈k2〉 − 〈k〉)/〈k〉] . (5.13)

The small-world properties are thus evident also for the generalized random graph
and it is easy to check that for the case of a Poisson distribution, with second
moment 〈k2〉 = 〈k〉 + 〈k〉2, one recovers the results for the Erdös–Rényi model.
However, we must keep in mind that the previous expression is only a rather crude
approximation, which might fail in the presence of correlations.

In summary, in generalized random graphs the values of 〈c〉 and 〈�〉 depend
essentially on the first and second moments of P(k). For a bounded degree distri-
bution, in which the degree fluctuations 〈k2〉 are finite, we observe that 〈c〉 ∼ 1/N
and 〈�〉 ∼ log N , in agreement with the results found for the Erdös–Rényi model.
However, for degree distributions with a fat tail, such as a power-law, the second
moment 〈k2〉 can be very large, and even diverge with N . In this case, the prefactor
in Eq. (5.9) can be noticeably large, and yield a clustering coefficient that might be
higher than the one corresponding to an Erdös–Rényi graph with the same size and
average degree. From this point of view, a generalized random graph reproducing
the empirically observed degree distribution can be taken as a very first approxi-
mation to the topological structure of scale-free networks (Newman, 2003).

5.2 The Watts–Strogratz model

In the random graph model, the clustering coefficient is implicitly determined by
the imposed degree distribution, and it is vanishing in the case of very large graphs.
The empirical observation of a very large and stationary clustering coefficient in
many real world networks makes it extremely interesting to find a graph construc-
tion in which it is possible to tune 〈c〉 to any desired value. Inspired by the fact that
many social networks (Milgram, 1967; Wasserman and Faust, 1994) are highly
clustered, while at the same time they exhibit a small average distance between
vertices, Watts and Strogatz (1998) proposed a model that interpolates between or-
dered lattices (which have a large clustering) and purely random networks (which
possess a small average path length).

The Watts and Strogatz model starts with a ring of N vertices in which each
vertex is symmetrically connected to its 2m nearest neighbors (m on the clockwise
and m in the counterclockwise sense as shown in Figure 5.2). Then, for every
vertex, each edge connected to a clockwise neighbor is rewired with probability p,
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p = 0.2p = p = 0 1

Fig. 5.2 Construction leading to the Watts–Strogatz model. We start with N = 8
nodes, each one connected to its four nearest neighbors. By increasing p, an in-
creasing number of edges is rewired. Rewired edges are represented as straight
arcs. At p = 1 all edges have been rewired. After Watts and Strogatz (1998).

and preserved with probability 1 − p. The rewiring connects the edge endpoint to
a randomly chosen vertex, avoiding self-connections. The parameter p therefore
tunes the level of randomness present in the graph, keeping the number of edges
constant. With this construction, after the rewiring process, a graph with average
degree 〈k〉 = 2m is obtained. It is however worth noticing that even in the limit
p → 1, since each vertex has a minimum degree m, the network retains some
memory of the generating procedure and it is not locally equivalent to an Erdös–
Rényi graph.

The degree distribution of the Watts–Strogatz model can be computed analyti-
cally (Barrat and Weigt, 2000), obtaining

P(k) =
min(k−m,m)∑

n=0

(
m

n

)
(1 − p)n pm−n (pm)k−m−n

(k − m − n)!
e−pm, for k ≥ m. (5.14)

In the limit of p → 1 the above expression reduces to

P(k) = mk−m

(k − m)!
e−m, (5.15)

a Poisson distribution for the variable k′ = k − m, with average value 〈k′〉 = m.
While the degree distribution has essentially the same features of an homoge-

neous random graph, the effects of the parameter p are more acute on the clus-
tering coefficient and the average shortest path length. When p = 0 the number
of connections among the neighbors of each node is 3m(m − 1)/2, while the total
possible number of connections is 2m(2m − 1)/2. This yields a clustering coeffi-
cient 〈c〉 = 3(m − 1)/2(2m − 1). At the same time, the shortest path length scales
as in a regular grid; i.e. 〈�〉 ∼ N . This picture changes dramatically as soon as the
rewiring probability is switched on. For very small p the resulting network has a
full memory of a regular lattice and consequently a high 〈c〉. In particular, Barrat
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Fig. 5.3 Normalized clustering coefficient 〈c〉p/〈c〉0 (squares) and average
shortest path length 〈�〉p/〈�〉0 (circles) as a function of the rewiring proba-
bility p for the Watts–Strogatz model. The results correspond to networks of
size N = 1,000 and average degree 〈k〉 = 10, averaged over 1,000 different
realizations.

and Weigt (2000) derived the dependence of the clustering coefficient defined as
the fraction of transitive triples (see Appendix A1), obtaining

〈c〉p � 3m(m − 1)

2m(2m − 1)
(1 − p)3. (5.16)

However, even in small amounts, the edge rewiring adds shortcuts between distant
vertices in the lattice, reducing dramatically the average shortest path length. For
p → 1 the network eventually becomes a randomized graph, with a logarithmi-
cally small 〈�〉 and a vanishing clustering coefficient. Watts and Strogatz (1998)
focused on the transition between these two regimes (see Figure 5.3), noticing
that, in a wide range of p � 1, the shortest path length, after decreasing abruptly,
reaches almost the value corresponding to a random graph, while the clustering
coefficient remains constant and equal to that of the original ordered lattice. There-
fore, there is a broad region of the parameter space in which it is possible to find
graphs with a large 〈c〉 and a small 〈�〉, as observed in most natural networks.

Interestingly, the smallest value of p at which the small-world behavior sets in
is related to the size of the network (Barthélémy and Amaral, 1999b; Barthélémy
and Amaral, 1999a; Barrat and Weigt, 2000). This can be qualitatively understood
by noticing that the average size of the regions with a shortcut is given by the
total number of vertices, N , divided by the average number of shortcuts present
in the graph, pN . If the characteristic size of this region (∼1/p) is much smaller
than the size of the graph, we have that short-cuts connect distant regions on the
ring, producing the desired small-world effect. This immediately tells us that if
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p � 1/N the average shortest path is going to be very small. Therefore, it is in the
interval N−1 � p � 1 in which the small-world properties live along with a high
clustering coefficient. Noticeably, in the case of very large graphs, N → ∞, even
a small amount of randomness is able to produce the small-world effect.

The Watts–Strogatz model represents an important development in the model-
ing of social networks and many other systems (Strogatz, 2001) since it allows
to associate a tuning of the clustering coefficients within the framework of static
random graph theory. In addition it can explain the high clustering coefficients
observed in real networks as the memory of an initial ordered structure that has
been reshaped by some stochastic element. However, in the context of the Internet,
the Watts–Strogatz model still misses several important features from the empiri-
cal observations. For instance, it displays a Poisson degree distribution, signaling
that some other shaping principles, different from the rewiring, are missing in the
definition of the model.

5.3 Internet topology generators

As has been stressed in the introduction to this chapter, the design of good Internet
models is a major issue for the developing and testing of new communication and
routing protocols. For this purpose, the computer science community has devel-
oped a series of Internet topology generators, which are used to test new tech-
nologies before actually implementing them on the Internet. All these topology
generators are based on static random graph modeling, and attempt to reproduce
the Internet structure with ad hoc algorithms tailored on the basis of the structural
properties that in each case are considered as the most relevant.

5.3.1 The Waxman generator

The first Internet topology generator extensively used for protocol testing was pro-
posed by Waxman (1988) as a simple network model on which to test the probable
performance of routing algorithms. The two basic insights underlying this topol-
ogy generator are:

(1) The routers in the Internet have a geographical position in space, some being far apart
while others are very close to each other.

(2) Connections between distant routers are less probable than between nearby routers,
due to simple economical constraints.

These two intuitions can be translated into a simple model, inspired by the
Erdös–Rényi random graph, and defined by the following rules: a number N of
vertices are distributed at random on a square surface of side L . Then, every pair
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Fig. 5.4 Typical realization of the Waxman generator for L = 100, N = 100,
α = 0.2, and β = 0.3. Note the presence of isolated vertices.

of vertices i and j is considered, and joined with an edge with probability

PW(i, j) = β exp

(
−dE(i, j)

αL

)
, (5.17)

where dE(i, j) is the Euclidean distance between vertices i and j , and α and β are
two real numbers in the range 0 < α, β ≤ 1. The role of the different parameters is
clear: L is the maximum distance between any two nodes, β controls the average
degree of the network (larger values of β imply a larger number of edges), while
α tunes the ratio between short distance and long distance edges. Figure 5.4 repre-
sents a typical network created with the Waxman generator, placing100 vertices in
a square of side L = 100. The parameters used are α = 0.2 and β = 0.3.

In spite of the wide use in past years of the Waxman generator and a number of
its variations (Doar and Leslie, 1993; Wei and Estrin, 1994; Zegura, Calvert, and
Donahoo, 1997), it suffers from several drawbacks that render it unsuitable for a
proper modeling of the Internet. Apart from the fact that the graphs generated do
not have the visual aspect of graphical representations of actual Internet maps, the
networks are not usually connected (see Figure 5.4); therefore, in the process of
generating a correct topology, one must run the algorithm several times, check-
ing the network for connectedness and discarding the disconnected samples. Once
more, however, a most visible discrepancy with respect to the empirical observa-
tion resides in the exponentially bounded degree distribution, akin to the outcome
of the Erdös–Rényi random graph model in which it is inspired, Figure 5.5. This
fact renders the Waxman generator a very crude approximation to the Internet
topology as we know it today.
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Fig. 5.5 Degree distribution for the network generated with the Waxman gen-
erator (circles) for the values α = 0.2, β = 0.3, L = 100, and N = 1,000, aver-
aged over 500 different realizations, compared with the degree distribution of an
Erdös–Rényi random graph with the same size and average degree (full line).

5.3.2 Structural generators

A number of structural topology generators (Tangmunarunkit, Govindan, Jamin,
Shenker, and Willinger, 2002b) have been proposed with the aim of explicitly cap-
turing the hierarchical structure of the Internet (see Section 3.1). Among them, the
two most used ones are the Transit-Stub and the Tiers generators.

The Transit-Stub (Zegura et al., 1996; Calvert, Doar, and Zegura, 1997) is a
topology generator that considers the two basic hierarchical elements present in the
Internet, the transit and the stub autonomous systems (or domains). The relation
between these two different levels is governed by two sets of parameters, con-
trolling the sizes of the domains, and the connectivity between domains. The first
set of parameters defines the number of transit and stub domains, and the average
number of routers per transit and per stub domain. The second set specifies the av-
erage number of edges between routers in the same domain, and between routers
belonging to different domains, both at the same and at different hierarchical
levels.

The generation of a topology sample by the Transit-Stub generator starts from
the transit level, downwards to the stub level. In the first place, each transit domain
is assigned a region in space, in which its routers are distributed and joined by
the corresponding number of edges, ensuring that the subgraph created this way is
connected. Afterwards, the same process is followed for the stub domains. Each
stub domain is then connected to one or more transit domain, and, finally, an ap-
propriate number of stub-to-stub edges is added between randomly chosen routers
in two different stub domains. On top of the connectivity relations, additional
information can be included in the graph, such as pointers in stub routers
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indicating the transit router to which its domain is connected, or routing poli-
cies in the edges, used to find the shortest path between different routers (Calvert
et al., 1997).

The Tiers generator (Doar, 1996), in the same spirit as the Transit-Stub model,
considers three hierarchical levels (or tiers), the transit and stub domains, plus the
Local Area Networks (LANs), composed by hosts that are connected to the stub
domains.6 This addition introduces three new parameters into the model: the num-
ber of LANs, the average number of hosts per LAN, and the average number of
edges between a LAN and routers in a stub domain. In its original formulation, it
only considers one transit domain. The connected subgraphs conforming the two
upper levels are constructed by randomly placing the corresponding routers in a
certain region of space and joining them in a minimal spanning tree.7 In order to
reach the prescribed intra-domain connectivity, additional edges are placed from
every router to the closest routers, following an order in increasing Euclidean dis-
tance. The edges between the transit and stub domains are placed by selecting a
set of routers in the higher level and connecting them to a randomly chosen router
in each stub domain. In order to increase inter-domain connectivity to the desired
level, additional edges are placed between other routers in the stub domain and
routers in the transit domain, following an increasing order in Euclidean distance
from the originally connected vertex in the higher level. LANs are created with a
star topology, connecting the central router to a stub domain in the same fashion as
stub domains are connected to the transit domain. Figure 5.6 represents a typical
sample of the graphs obtained with Tiers.

Using similar conceptual schemes, both Transit-Stub and Tiers topology gen-
erators represent a step forward in the characterization of the Internet’s topology
with respect to the extremely simplistic Waxman representation. These generators
focus more on the detailed properties ruling the interconnectivity of different do-
main levels, and represent a much more realistic approximation to the topology
of the network. Yet, structural generators are built with a precise average degree
that leads to degree distributions with a well-defined characteristic degree and does
not captures the large-scale behavior of the degree correlations of the actual Inter-
net. However, as pointed out by Tangmunarunkit et al. (2002b), the degree distri-
bution and correlations of very small networks (∼100 vertices) are rather ques-
tionable concepts. Therefore, for the purpose of performing simulations of small
size networks, a structural generator, with its simplified topology representation,
might be a very reasonable option.

6 In the original model (Doar, 1996) the transit domains are referred to as Wide Area Networks (WANs) and the
stub domains as Metropolitan Area Networks (MANs).

7 The construction of a spanning tree is a key feature of Tiers, inspired by the layout of actual networks.
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Fig. 5.6 Typical output of the Tiers Internet topology generator.

5.3.3 The Inet topology generator

After the discovery of the scale-free nature of the Internet by Faloutsos et al.
(1999), it became obvious that topology generators with an exponentially bounded
degree distribution were doomed to fail as faithful representations of the Internet
topology at very large scales. One of the first attempts to develop a topology gen-
erator combining some of the insights of structural generators with a power-law
degree distribution was due to Jamin, Jin, Jin, Raz, Shavitt, and Zhang (2000).
The Inet topology generator aims at reproducing the AS level by using the tun-
able degree distribution offered by the generalized random graph model. In its
latest version (Jin et al., 2000), it combines empirical observations on the Inter-
net growth with this kind of construction, to yield a random graph with a
power-law degree distribution adjusted to the form experimentally observed. The
basic parameters of Inet are the number of vertices of the graph N , and the frac-
tion of vertices, p, with degree equal to 1. Assuming an exponential growth in
time for the number of vertices in the Internet maps, Inet extrapolates the num-
ber of months since November 1997 needed to attain the desired network size.
Then, from the empirically observed dependence on both time and degree of the
frequency on vertices of degree k and the rank8 r of vertices of degree k, it gener-
ates a degree sequence for (1 − p)N vertice,9 that is distributed according to the
extrapolated degree distribution of the Internet at the required time. The construc-
tion of the network proceeds by creating a spanning tree with all the vertices with
degree larger than or equal to 2, attaching the vertices of degree 1 to the spanning

8 The rank of a vertex is defined as the place it occupies in a list following a decreasing degree order.
9 The rest of the vertices have degree 1 by definition.
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tree, and finally connecting the remaining pairs of edges’ ends. The connections
between nodes are established on a random basis, with the same probability for all
vertices.

Inet generates graphs that are essentially equivalent to those produced by the
generalized random graph construction, with the additional elements of an em-
pirically motivated degree sequence and the explicit formation of a backbone of
connected vertices (the spanning tree), that ensures that the network does not have
any disconnected component.

5.4 The theory of evolving networks

In recent years we have witnessed a change of perspective in the theoretical study
of complex networks that shifts the modeling focus from the reproduction of
the network’s structure to the modeling of its evolution. This new approach is
the outcome of the realization that most complex networks – the Internet be-
ing one of the most important examples – are the result of a growth process.
The key ingredient of this new paradigm consists in considering the network as
the result of the subsequent addition of new vertices and edges following a pre-
scribed set of dynamical rules. In other words, the emphasis is on the evolution-
ary mechanisms that generate the observed topological properties, which become
a byproduct of the system’s dynamics. This methodology is akin to the statisti-
cal physics approach to complex phenomena that aims to predict the large-scale
emergent properties of a system by studying the collective dynamics of its con-
stituents.

Following the introduction of the first growing network model (Barabási and
Albert, 1999), a wealth of different models have been proposed, both for undi-
rected and directed networks, aiming to understand different aspects of real
networks. In order to study these models, several analytical and numerical tech-
niques have been borrowed from statistical physics and adapted to this new
context (Dorogovtsev, Mendes, and Samukhin, 2000; Krapivsky, Redner, and
Leyvraz, 2000; Dorogovtsev and Mendes, 2003). All of them are centered on solv-
ing the basic dynamical equations governing the network’s formation and consider
as the natural time scale for the network’s evolution its size N . In this way, time
is measured with respect to the number of vertices added to the graph, resulting
in the definition t = N − m0, m0 being the size of the initial core of vertices from
which the growth process starts. Therefore, each time step corresponds to the addi-
tion of a new vertex that establishes a number of connections (edges) with already
existing vertices following a given set of dynamical rules. A full description of
the system is achieved through the probability p(k, s, t) that a vertex introduced
at time s has degree k at the time t ≥ s. Once known the probability p(k, s, t), we
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can obtain the average degree ks(t) of the sth vertex at time t as

ks(t) =
∞∑

k=0

kp(k, s, t), (5.18)

and the degree distribution at time t (i.e. for a network of size N = t + m0) using
the expression

P(k, t) = 1

t + m0

t∑
s=0

p(k, s, t). (5.19)

The stationary degree distribution P(k) is obtained as the very large size limit of
P(k, t), i.e. P(k) = limt→∞ P(k, t). In the above discrete formulation, the evolu-
tion of the system is defined by means of a master equation (Gardiner, 1985) for the
time evolution of the probability p(k, s, t), that takes into account the dynamical
rules adopted for the addition of edges (Dorogovtsev and Mendes, 2003).

A simpler approach that allows to clearly pinpoint the core of the dynamical evo-
lution of growing network models is the more intuitive continuous k approximation
(Barabási and Albert, 1999; Barabási, Albert, and Jeong, 1999; Dorogovtsev and
Mendes, 2002). This approach focuses on the average value ks(t) of the sth vertex
at time t , and for the sake of analytical simplicity considers the degree k and the
time t as continuous variables. The properties of the system can thus be obtained
by studying the dynamical rate equation governing the evolution of ks(t). This
equation can be formally obtained by considering that the degree growth rate of
the sth vertex will increase proportionally to the probability �[ks(t)] that an edge
is attached to it. In the simple case that edges are only coming from the newborn
vertices, the rate equation reads

∂ks(t)

∂t
= m�[ks(t)], (5.20)

where the proportionality factor m indicates the number of edges emanating from
every new vertex. This equation is to be solved constrained by the boundary con-
dition ks(s) = m, meaning that, at the time of its introduction, all vertices have
degree m. In this formulation all the dynamical information is contained in the
probability �[ks(t)]. The properties of each model are defined by the explicit form
of �[ks(t)] that, as we shall see in the following sections, can accommodate also
more complicated wiring processes, such as edge removal, rewiring, and inheri-
tance. �[ks(t)] represents thus the mathematical formalization of the growth rules
based on optimization, expectation, or other local or global principles ruling the
networks’ evolution.

The dynamical evolution of the network determines also the degree distribution
that can be calculated from the solution of Eq. (5.20). By considering only the
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average degree ks(t), the continuous approximation smoothes off all the fluctu-
ations and is actually equivalent to the ansatz solution p(k, s, t) = δ(k − ks(t)),
where δ(x) is the Dirac delta function. Inserting this expression into Eq. (5.19)
and considering the continuum limit yields

P(k, t) = 1

t + m0

∫ t

0
δ(k − ks(t)) ds ≡ − 1

t + m0

(
∂ks(t)

∂s

)−1
∣∣∣∣∣
s=s(k,t)

, (5.21)

where s(k, t) is the solution of the implicit equation k = ks(t). We shall see in the
following sections that other properties of evolving networks are determined by the
probability rate �[ks(t)]. In other words, within this approximation, the form of
�[ks(t)] amounts to a complete definition of the corresponding evolving network
model.

In a pedagogical perspective, it is instructive to see the above theoretical ap-
proach at work in the possibly simplest growing network model. This corresponds
to a sort of dynamical generalization of the random graph model in which each
new vertex is connected to m randomly chosen old vertices; i.e. the probability
that an existing node receives an edge is the same for all vertices (Barabási, Albert
and Jeong, 1999). By starting with a core of m0 existing nodes, it is straightforward
to obtain

�[ks(t)] = 1

m0 + t
. (5.22)

This form of the rate probability allows the solution of Eqs. (5.20) with the bound-
ary condition ks(s) = m, yielding

ks(t) = m

[
1 + ln

(
m0 + t

m0 + s

)]
. (5.23)

For large t and s, we observe that the average degree of the sth vertex increases
with t as

ks(t)

m
� ln

(
t

s

)
. (5.24)

This implies that the oldest vertices (with the smaller s) tend to have a larger de-
gree, which is not surprising since they were introduced into the system first and
have had the largest opportunities to gather connections. The rate of growth of
these vertices, however, is very small (logarithmic), a fact that will induce only
small degree differences among vertices even at long times. The degree distribu-
tion, as given by Eq. (5.21), is

P(k, t) = 1

m(t + m0)
[m0 + s(k, t)] , (5.25)
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and the explicit form of s(k, t) is obtained inverting the relation k = ks(t) from
Eq. (5.23), namely

s(k, t) = (m0 + t) e1−k/m − m0. (5.26)

From this result, the degree distribution is independent of time, with the following
form

P(k) = e

m
e−k/m . (5.27)

Therefore, a growing network in which edges connect new vertices with old ver-
tices selected at random generates a homogeneous random network with an expo-
nentially decaying degree distribution. This exponential behavior has been checked
by means of numerical simulations of the model (Barabási et al., 1999).

A final remark concerns the physical evolution time, T , of a growing network.
As we said previously, for the sake of analytical convenience, the time scale t is
measured as the number of vertices added to the network. Therefore, if we want to
express the behavior of any metric as a function of the physical time T , we have
to substitute t with the physical growth velocity. For instance, in the Internet the
number of vertices is growing exponentially and thus we have that t � exp(T ).10

5.5 The Barabási–Albert class of models

So far we have considered models in which vertices connect to each other in a
random fashion and independently from their properties. In this respect the pref-
erential attachment (or rich-get-richer) paradigm put forward for the first time
by Barabási and Albert (1999) represents a turning point in our modern view of
complex networks. The insight behind this concept is the realization that, in most
real networks, new edges are not placed at random but tend to connect to vertices
which already have a large degree. For example, a new Internet provider proba-
bly will not connect its server with the nearest router available, but instead will
want to establish a connection with a well-connected router, enabling its cos-
tumers to reach the largest possible number of servers in the minimum number
of steps and with the largest bandwidth. In other words, each newborn vertex
pursues the objective of obtaining a better connectivity to the network through
its neighbors, despite that various factors add a probabilistic effect that not
always allows the better choice. The conclusion of these observations is that new
edges are not connected uniformly, but have a tendency (a larger probability) to be

10 A different and more complex situation is faced in the case of the so-called accelerated networks (Dorogovtsev
and Mendes, 2001b). In this case it is assumed that the number of new edges established in the system depends
on the size of the network itself. In particular, edges may grow faster than vertices. The growth rate has the
more complicated form �[ks (t), t], with an explicit dependence on the growth time t .
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connected with vertices that already have a large number of connections (a large
degree).

Barabási and Albert (1999) combined the preferential attachment condition with
the growing nature of many networks by defining a simple class of models based
on the following two rules:

Growth: The network starts with a small core of m0 connected vertices. Every time
step we add a new vertex, with m edges (m < m0) connected to old vertices in the
system.

Preferential attachment: The new edges are connected to the old sth vertex with a
probability proportional to its degree ks .

These rules can be implemented in an algorithm that, starting from a connected
initial core, generates connected graphs with fixed average degree 〈k〉 = 2m
(Barabási and Albert, 1999; Barabási et al., 1999). The model dynamics can be
easily implemented in computer simulations and Figure 5.7 represents a typical
graph of size N = 200 and average degree 6 (m = 3) generated using this al-
gorithm. Strikingly, the numerical simulations indicate that the generated graphs
spontaneously evolve into a stationary power-law degree distribution with the form
P(k) ∼ k−3 (see Figure 5.8). This evidence indicates the preferential attachment

Fig. 5.7 Typical Barabási–Albert network of size N = 200 and average de-
gree 〈k〉 = 6. Higher degree nodes are at the center of the graph. The fig-
ure is generated with the Pajek package for large network analysis, http://
vlado.fmf.uni-lj.si/pub/networks/pajek/.
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Fig. 5.8 Cumulative degree distribution of a Barabási–Albert network of size
N = 15,000 with average degree 〈k〉 = 6 in double logarithmic scale. The con-
tinuous line has slope −2, corresponding to a power-law behavior P(k) ∼ k−γ

with exponent γ � 3.

mechanism as the dynamical driving principle that might be at the origin of heavy
tailed distribution in a wide range of growing networks.

In order to gain a deeper understanding of the Barabási–Albert class of models
it is possible to apply the theoretical framework described in the previous section.
Within the continuous k approximation, the Barabási–Albert model is identified by
the explicit form of the growth rate �[ks(t)]. The preferential attachment mecha-
nism can be easily cast in mathematical form, since it states that the probability of
the vertex s to acquire a new edge is proportional to its degree, obtaining

�[ks(t)] = ks(t)∑
j k j (t)

, (5.28)

where the denominator is the required normalization factor; i.e. the sum of all
the degrees of the vertices in the network. Since each new edge contributes with a
factor 2 to the total degree, and at time t we have added tm edges, the rate equation
for ks , Eq. (5.20), takes the form

∂ks(t)

∂t
= mks(t)

2mt + 2m0〈k〉0
, (5.29)

where 〈k〉0 is the average connectivity of the initial core of m0 vertices. This dif-
ferential equation with the boundary condition ks(s) = m can be readily solved,
yielding in the limit of large networks (t, s � m0〈k〉0)

ks(t) � m

(
t

s

)1/2

. (5.30)
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This is a clear signature of the preferential attachment mechanism introduced in
the model: comparing the average degree at time t of two vertices introduced at
times s and s′ < s, we observe that the degree of the oldest is larger by a factor
of the order of the square root of the age ratio, ks′(t)/ks(t) � (s/s′)1/2. This de-
gree dependence on age has to be compared with the much slower one obtained
in the growing network model without the preferential attachment introduced in
Section 5.4.

Taking advantage of the above solution, and by using Eq. (5.21), the degree
distribution at time t can be explicitly derived, obtaining

P(k) = 2m2 t + m0
m 〈k〉0

t + m0
k−3. (5.31)

In the limit t → ∞ we obtain the time-independent solution (valid for any 〈k〉0)

P(k, t) = 2m2k−3, (5.32)

which indicates that the preferential attachment spontaneously generates a network
with a power-law degree behavior.

The power-law distribution implicitly states that in the Barabási–Albert graph
there is a non-negligible probability of finding vertices with a very large degree.
These vertices act as the hubs of the network connecting a large number of nodes
and thus providing connectivity shortcuts within the network. In view of this pic-
ture it is natural to expect the Barabási–Albert graph to show well-defined small-
world properties. Indeed, Bollobás and Riordan (2003) and Cohen and Havlin
(2003) have provided analytical evidence that the average shortest path length (and
analogously the diameter) of the Barabási–Albert network scales as

〈�〉 ∼ log(N )

log log(N )
. (5.33)

Finally, we can address the clustering coefficient of the Barabási–Albert graph.
Following Klemm and Eguı́luz (2002a), let us consider the probability that the
vertex appearing at time t = s′ establishes a connection with the sth vertex. Since
edges are drawn only from the new appearing vertices, for any s > s′ this proba-
bility is given by the growth rate at s′, obtaining

P(s, s′) = m
ks(s′)
2ms′ , (5.34)

where the contribution of the degree of the initial core of vertices has been ne-
glected; i.e. s > s′ � 1. The clustering coefficient of the lth vertex at time t
is defined as the ratio between the average number of edges among the neigh-
bors of l and the maximum possible number of such edges, kl(t)[kl(t) − 1]/2
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(Section A1.3). Thus, in the continuous approximation, we can write

cl(t) = 1

kl(t)[kl(t) − 1]

∫ t

1
ds

∫ t

1
ds′ P(l, s)P(s, s′)P(s′, l). (5.35)

Approximating kl(t)[kl(t) − 1] � k2
l (t) = m2t/ l, the previous integral becomes

independent on l, and coincides with the average clustering coefficient, yielding

〈c〉N = m

8N
(ln N )2 , (5.36)

where we have considered that for large networks t � N . We thus obtain that 〈c〉N

decreases with the network size as N−1 in the same fashion as the Erdös–Rényi
random graph (differing only on a subleading logarithmic correction), and vanishes
in the limit of infinite network size.

The interest raised by the Barabási–Albert algorithm resides in its capacity to
generate graphs with a power-law degree distribution and small-world properties
from very simple dynamical rules. Other features, however, such as the clustering
coefficient or the fact that older nodes are always the most connected ones, do not
match what we observe in the Internet. This is no wonder, of course, since Internet
growth has surely other ingredients that are not considered in the Barabási–Albert
algorithm, and a realistic modeling of the Internet is well beyond its scope. The
very importance of the model is at the conceptual level, since it introduces a sim-
ple paradigm that is already enough to spontaneously generate highly non-trivial
topological properties.

5.6 Preferential attachment revisited

The preferential attachment embedded in the definition of the Barabási–Albert
model leads to a ready extension of the concept beyond the simple linear pro-
portionality stated in the growth rate with respect to the vertices’ degree. In gen-
eral, one might think of a general preferential attachment rule expressed by the
form �[ks(t)] ∼ ks(t)α , where α ≥ 0 is a fixed constant. In order to provide some
general results of the effect of varying α on the resulting topology, Krapivsky
et al. (2000) (see also Krapivsky and Redner, 2002) considered a growing network
model with the rate equation

∂ks(t)

∂t
= m

ks(t)α∑
j k j (t)α

. (5.37)

In the case α < 1, it is possible to use the ansatz
∑

j k j (t)α ≡ µt and find the
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parametric solution of the rate equation as

ks(t) =
[

m1−α + m(1 − α)

µ
ln

(
t

s

)]1/(1−α)

, (5.38)

where the usual boundary condition ks(s) = m is used. From this solution, by
using the Eq. (5.21) along the lines of the calculation shown in Section 5.4 , the
parametric solution of the degree distribution reads

P(k) = µ

m
k−α exp

{
− µ

m(1 − α)
[k1−α − m1−α]

}
, (5.39)

Finally, an explicit solution is obtained by imposing the consistency relation

µ = 1

t

∑
j

k j (t)
α t→∞≡

∫ ∞

m
P(k)kα dk, (5.40)

where m is the minimum degree of the network. In this regime, thus, the explicit
solution of the degree distribution has the form of a weak power-law with a strong
stretched exponential cut-off. For α > 1 the above method cannot be used and the
general solution implies to discretize the rate equation and solve it recursively. By
using this strategy it is observed that the model experiences a discrete series of con-
nectivity transitions depending on the value of α (Krapivsky et al., 2000): For α >

2, a “winner-takes-all” situation emerges, in which all but a finite fraction of the
edges are attached to a single “gel” vertex, while for (r + 1)/r < α < r/(r − 1),
r = 2, 3, . . . , the number of nodes with more than r edges is finite, the rest of the
edges belonging to the “gel” vertex.

Noticeably, the power-law degree distribution is retained only in the case of
a linear preferential attachment. The good news, however, is that at α = 1 the
power-law exponent depends on the details (additive constants, etc.) of the growth
probability, leaving place for degree exponents different from the value found in
the Barabási–Albert network. For instance, a linear probability of the form �(k) ∼
A + k, where A is a constant, yields a scale-free distribution P(k) ∼ k−γ , with a
degree exponent γ = 3 + A/m, that can be tuned to any value between 3 and
infinity (Dorogovtsev, Mendes and Samukhin, 2000). This opens the path up to an
exploration of various modifications of the Barabási–Albert model, aiming towards
a more quantitative description of the Internet graph.

From this perspective, the general heuristic result shown by Cohen and Havlin
(2003) concerning the small-world property of random networks with a scale-
free degree distribution assumes a particular relevance. Cohen and Havlin (2003)
have presented plausible arguments that all random networks with power-law de-
gree distributions with exponent 2 < γ < 3 have very small average shortest path
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scaling much slower than the logarithm of N .11 This scaling explains therefore
why the average shortest path length in many networks with γ < 3 seems to be
almost independent of N . For this reason it has been named ultra small-world be-
havior. This is a clear demonstration of how the presence of connectivity hubs,
which are more abundant for slowly decaying power-law degree distributions, en-
forces a very short hop distance between vertices.

5.7 Validating the preferential attachment hypothesis

From the previous analysis, it appears that the preferential attachment rule might
be the basic mechanism at the core of the heavy tailed degree distribution observed
in the Internet topology. So far, however, it has been just postulated on the basis
of plausibility arguments. It is therefore a priority to validate this hypothesis on
empirical grounds. This can be achieved by a careful analysis of the dynamical
evolution of the Internet maps. As we have seen in Chapter 4, it is possible to
analyze dynamical processes for vertices and edges at the AS level by using the
Oregon route-views maps collected by the NLANR from 1997 up to the present.
For this dataset, several studies have been carried out in order to check the prefer-
ential attachment mechanism.

A direct test for the preferential attachment can be performed by measuring
the functional form of �(k) by following its very definition (Pastor-Satorras
et al., 2001; Vázquez et al., 2002b; Jeong, Néda, and Barabási, 2003). Different nu-
merical techniques have been proposed to this aim. Jeong et al. (2003) considered
the state of the Internet at a given growth time, i.e. a given size N , and recorded the
number of already appeared vertices and their degree. By defining a time interval
�T it is then possible to keep track of the relative increase δki/δk of vertices with
degree ki , where the normalization factor δk is the total number of added edges.
The ratio δki/δk is thus an operative definition of the growth probability �(ki ).
Furthermore, since the discrete nature of the real data yields a considerable num-
ber of fluctuations, the less noisy cumulative probability�c(k) = ∑k

ki =1 �(ki ) is
studied. In Figure 5.9(a), the cumulated attachment probability is plotted as a func-
tion of k showing a power-law increase, �c(k) ∼ kα+1, well approximated by a
value α = 1, revealing a linear preferential attachment.

A different test considers the edges connecting newly appeared vertices in dif-
ferent time windows, ranging from one to three years (Pastor-Satorras et al., 2001;
Vázquez et al., 2002b). This allows the measurement of the frequency χ(k) at
which new edges are established with vertices of degree k. The frequency defines
the probability that a new edge is established with anyone of the vertices with

11 This result is valid as long as the graph is not a tree (see footnote in page 73).
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Fig. 5.9 (a) Cumulative preferential attachment for the AS level maps. The
straight line has a slope 2, corresponding to a linear preferential attachment
growth probability. Data provided by H. Jeong. (b) Frequency of edges emanat-
ing from new and existing vertices that attach to edges with degree k. The full line
corresponds to a slope −1.2, which yields an exponent α � 0.9.

degree k. This probablity is therefore equal to the probability �(k) that any given
vertex of degree k is selected by the new edges times the total number N P(k) of
vertices with that degree in a network of size N . By using the preferential at-
tachment hypothesis �(k) = kα/

∑
k kα , the frequency χ(k) = kα P(k)N/

∑
k kα

is obtained. In Section 5.6 it has been shown that, for 0 < α < 1, in a grow-
ing network model we can approximate

∑
k kα = µN , where µ = ∑

k P(k)kα

is constant in the limit of large N . This finally yields χ(k) = µ−1kα P(k), and,
since the degree distribution has a power-law behavior P(k) ∼ k−γ , the behavior
χ(k) ∼ kα−γ is expected. Figure 5.9(b)represents the results obtained for the fre-
quency as a function of the degree, where behavior compatible with an algebraic
dependence χ(k) ∼ k−1.2 is recovered. By using the independently obtained value
γ � 2.1 for the AS maps, we recover a preferential attachment exponent α � 0.9,
in fairly good agreement with the linear hypothesis. Interestingly, the same lin-
ear behavior is observed for the density of edges emanating from already exist-
ing nodes, providing evidence also that the establishment of connections among
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existing vertices follows a preferential attachment mechanism. This could be a rel-
evant hint for the definition of models taking into account that new edges appear
not only from newly appeared vertices (see Section 5.8.1).

While both tests on the �(ki ) clearly show a preferential attachment mecha-
nism, it should be noted that the evaluation of the precise value of the exponent
α is still affected by numerous statistical errors. In addition, as always, the real
world is not ideal and fluctuations and finite size effects come into play. By closer
inspection of Figure 5.9, it is possible to see that tests reveal deviations from lin-
ear preferential attachment behavior. This occurs especially at very low and very
large degree values, and it is an indication that for very small providers or very
large hubs the dynamics could be mediated by different mechanisms. These de-
viations have also been highlighted in a different preferential attachment test per-
formed by Willinger et al. (2002). In this case, AS maps in the time window span-
ning November 1998 until May 1999 have been considered. Each time a vertex
(AS)i is added to the map with mi edges, the degree k j of the mi target vertices is
recorded. At the same time, the addition of the mi edges, by using a linear pref-
erential attachment mechanism, is simulated on the real map and the degree ks

j
of the target vertices in the simulation is registered. This procedure is repeated
for all the 1,000 new nodes appearing on the maps, obtaining two sets {k j } and
{ks

j }, one representing the target vertices’ degree in the real growth process and
the other the values simulated with the pure linear preferential attachment mech-
anism. By graphically comparing these two datasets (Willinger et al., 2002; Qian
et al., 2002), it is possible to show that the ASs growth shows a higher density of
high degree targets than those obtained by the linear preferential attachment sim-
ulation. This is in agreement with Figure 5.9, where it appears that the frequency
of edges established with large degree vertices becomes rather flat and larger than
the value expected for linear preferential attachment behavior.

In summary, all empirical evidences indicate the presence of a preferential at-
tachment mechanism, though its detailed analytical form appears to be more com-
plex than the analytical ones considered in simple models. This indicates that if we
want to model the Internet on the basis of a degree driven dynamics, a more faithful
form of �(ki ) – or even the addition of extra ingredients – should be considered.

5.8 Degree driven models

After the introduction of the Barabási–Albert class of models, a large number
of other network models, inspired by the degree preferential attachment mecha-
nism, have been proposed, incorporating different ingredients in order to account
for a power-law degree distribution with a connectivity exponent 2 < γ < 3, lo-
cal geographical factors, rewiring among existing nodes, or age effects. While an



96 Modeling the Internet

exhaustive description of all the variations of the Barabási–Albert model is beyond
the scope of this book,12 we do want to review several models which encompass
some factors that might be relevant when properly modeling the Internet.

5.8.1 Wiring of edges

As real data analysis has shown (see Chapter 4), the growth of the Internet is driven
by the simultaneous addition and loss of vertices, as well as by the addition and
loss of new edges connecting existing vertices. This fact indicates that Internet
growth is regulated by complementary wiring processes overimposed by the sim-
ple addition of new vertices’ edges. This is a factor given impetus by the increasing
need for backup paths and available bandwidth for data transmission.

A model that takes into account some of these processes is the generalized
Barabási–Albert construction (Albert and Barabási, 2000), which includes mech-
anisms for the rewiring of existing edges plus the addition of new edges. The gen-
eralized Barabási–Albert construction is defined as follows: starting from a core
of m0 connected vertices, each time step one of the following operations is per-
formed:

(1) With probability q we rewire m edges. For each of them we randomly select an edge,
connecting the vertices i and j . This edge is removed and replaced by a new edge,
connecting the vertex j to the new vertex i ′, selected with probability

�[ki (t)] = ki (t) + 1∑
j (k j (t) + 1)

. (5.41)

(2) With probability p we add m new edges. For each of them, one of the edge ends is
selected at random, while the other is selected with probability �[ki (t)].

(3) With probability 1 − p − q we add a new vertex with m edges, that are connected to
vertices already present with probability �[ki (t)].

For this model, the writing of the rate equation for the average degree of the sth
vertex must take into account the contribution of the different rewiring-addition
processes. Denoting by N (t) the number of edges at time t , the growth rate due to
the rewiring of edges is given by

∂k(1)
s (t)

∂t
= − mq

N (t)
+ mq

ks(t) + 1∑
j [k j (t) + 1]

, (5.42)

where the first term represents the loss of an edge end by random removal, and the
second term is the degree increase due to a rewiring with probability �[ki (t)]. The

12 See Albert and Barabási (2002) and Dorogovtsev and Mendes (2002) and references therein to get a flavor of
the work done is this direction.
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drawing of new edges contributes with another growth rate expressed by

∂k(2)
s (t)

∂t
= mp

N (t)
+ mp

ks(t) + 1∑
j [k j (t) + 1]

. (5.43)

Here, the first term accounts for the selection of the vertex for the random addition
of an edge end, and the second one stands for the addition of an edge end with the
preferential probability �[ki (t)]. Finally we have the contribution that accounts
for the degree increase due to the addition of a new vertex

∂k(3)
s (t)

∂t
= m(1 − p − q)

ks(t) + 1∑
j [k j (t) + 1]

. (5.44)

Neglecting the contribution from the initial core of m0 vertices, in the limit of large
t , it is possible to write the full rate equation for the evolution of ks(t) as

∂ks(t)

∂t
= ∂

∂t

(
k(1)

s (t) + k(2)
s (t) + k(3)

s (t)
)

= m(p − q)

(1 − p − q)t
+ m[ks(t) + 1]

2(1 − q)mt + (1 − p − q)t
, (5.45)

where it has been considered that the total number of vertices at time t is given by
N (t) = (1 − p − q)t (since we add a new vertex with probability 1 − p − q every
time step), and the total degree grows as

∑
j [k j (t) + 1] = 2(1 − q)mt + N (t).13

This equation can be solved with the boundary condition ks(s) = m, yielding

ks(t) = [A(p, q, m) + m]

(
t

s

)1/B(p,q,m)

− A(p, q, m), (5.46)

where the following definitions have been used

A(p, q, m) = (p − q)

[
2m(1 − q)

1 − p − q
+ 1

]
+ 1, (5.47)

B(p, q, m) = 2(1 − q) + 1 − p − q

m
. (5.48)

In order to evaluate the degree distribution we follow the strategy shown in
Section 5.4, which yields

P(k) ∼ (k + k0)
−γ . (5.49)

In this result the degree offset is k0 = A(p, q, m) and the degree exponent has the
form

γ = 1 + B(p, q, m). (5.50)

13 We have neglected the contribution from the initial core of vertices.
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The scaling solution of Eq. (5.49) is valid whenever the condition A(p, q, m) +
m > 0 is fulfilled (Albert and Barabási, 2000). For fixed p and m, this condition
translates into the constraint

q < qmax = min

{
1 − p,

1 − p + m

1 + 2m

}
. (5.51)

For q < qmax the degree distribution of the generalized Barabási–Albert model is
given by Eq. (5.49). For q > qmax the present result is not valid and it is not pos-
sible to achieve any analytical solution. Numerical simulations, however, suggest
an exponential degree distribution (Albert and Barabási, 2000).

The generalized Barabási–Albert construction yields a power-law degree dis-
tribution with an exponent tunable by changing the parameters present in the dy-
namics. With respect to the Internet, Qian et al. (2002) have shown from empiri-
cal data that the rewiring probability is very small. This observation suggests that
q � 1. At the same time, however, data have shown that it is important to con-
sider that there is a non-negligible probability for edges to disappear. While this
feature is not included in the generalized Barabási–Albert algorithm, Dorogovtsev
and Mendes (2000) have indeed considered a model with edge disappearance that
yields a power-law degree distribution with a tunable exponent.

The fluctuations of edges have been also considered in the model proposed
by Goh, Kahng, and Kim (2002), who capitalized on the scenario advanced by
Huberman and Adamic (1999), where the fluctuation effects arising in the process
of connecting and disconnecting edges between vertices are considered essential
in the network growth.14 In this scenario, the total number of vertices increases
exponentially in time as N (t) = N (0) exp(t), and it is assumed that the degree of
each vertex evolves following a stochastic multiplicative process, i.e.

∂ks(t)

∂t
= ks(t)ξs(t). (5.52)

The rate of growth of each vertex is supposed to fluctuate following the stochastic
variable ξs(t). This stochastic variable has average 〈ξs(t)〉 = g, which represents
the mean average growth rate, and fluctuations 〈ξs(t)ξs′(t ′)〉2 − g2 = σδt t ′δss′

which specify the fluctuation level. Noticeably, the parameters g and σ can be
empirically measured (Goh, et al., 2002). The multiplicative growth assumes that
larger degree vertices acquire more new edges, implicitly defining an effective
preferential attachment mechanism. The above formulation, however, does not
specify how each vertex chooses or is chosen as a target for the edge establishment;
i.e. how vertices are connected among each other. In order to provide a practical

14 Actually, Huberman and Adamic (1999) proposed the model in the context of the World Wide Web (see
Chapter 7).
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implementation of these ideas, Goh et al. (2002) defined a discrete stochastic au-
tomaton based on three elementary rules, applied at each time step of the network
evolution:

(1) The number of vertices is increased by a constant fraction of the total number of ver-
tices present in the previous time step. The newly added vertices are connected to one
or two previously present vertices according to the usual linear preferential attachment
rule. The probability with which the new vertex connects to one or two vertices might
be chosen according to empirical measurements.

(2) Each vertex increases its degree by a constant factor, the new edges being connected
following the linear preferential attachment rule. The constant factor is determined by
the average growth factor g measured empirically.

(3) Each vertex randomly disconnects existing edges, or connects new edges, following
in this last case the linear preferential attachment rule. The probability of this event is
related to the variance σ of the degree fluctuations.

It should be noted that when connecting edges, the preferential attachment rule is
implemented only within the subset of vertices with degree larger than that of the
vertex of the last disconnection event. This implies an adaptation process in which
vertices tend to disconnect from vertices with low degree and reconnect to higher
degree vertices. With these elements, the model seems to exhibit several realis-
tic ingredients and indeed recovers a degree exponent and clustering coefficient
comparable with the values shown by the Internet. At the same time, it yields a
degree correlation function k̄nn(k) with a power-law form in close analogy with
the behavior exhibited by real AS level maps.

5.8.2 The fittest competition

The growing network models considered so far rely on a preferential attachment
probability that depends only on the degree of the vertices present in the network
and their time of arrival. In this way, at all the stages of network growth, the old-
est vertices are the most connected ones and have the highest chances to become
even more connected. This situation is, however, somehow unrealistic in networks
such as the Internet, in which there are more factors at play than the mere de-
gree of each vertex. For instance, economic reasons can strongly bias the choice
of a new Internet provider. The connection cost increases with distance and
eventually imposes a preference for a nearby, medium-sized hub, instead of the
largest one that could be located far away in geographical distance. Other vertices
might have more technical and economical resources, establishing a larger num-
ber of connections in a shorter time. In special cases, new technological devel-
opments, or just good marketing strategies could boost the growth of a provider
at the expense of older providers. In all these situations, the possibility that
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newly added vertices might acquire a higher degree than the older ones should be
considered.

The fitness model (Bianconi and Barabási, 2001) is an attempt to enrich the
growing dynamics of the preferential attachment rule by introducing a stochastic
parameter associated to each vertex, the fitness, that embodies all the properties,
other than the degree, that might influence the probability of gaining new edges.
The vertices’ heterogeneity is implemented in the model by assigning to each
vertex a random and fixed fitness parameter ηi , drawn from the probability dis-
tribution ρ(η), that accounts for the resources and attractiveness of the ISP or AS.
The greater the fitness, the larger the probability that new edges will be established
with that vertex. In practice, the model is implemented with a growth process start-
ing from an initial core of m0 connected vertices. The growth proceeds by adding
new vertices with randomly assigned fitness, that establish m edges with vertices
already present in the network. The probability that a new edge will be established
with the vertex i is given by

�(ki ) = ηi ki∑
j η j k j

. (5.53)

This probability is proportional to both degree and fitness of the vertex so that very
fit vertices can grow faster than older vertices, overcoming them and becoming the
new hubs, i.e. a “fittest-get-richer” mechanism on top of the usual preferential
attachment rule.

In order to obtain analytical insight into this model, it is convenient to consider
that the factor

∑
j η j k j can be approximated by its average value over all the

possible realizations of the stochastic parameter η,15 i.e.〈∑
j

η j k j

〉
=

∫
dηρ(η)η

∑
j

k j . (5.54)

Furthermore, we make the ansatz
〈 ∑

j η j k j
〉 = Ctm, where C is a constant, ob-

taining the rate equation

∂ks(t)

∂t
= ks(t)ηs

Ct
. (5.55)

The solution of this equation with the boundary condition ks(s) = m yields

ks(t) = m

(
t

s

)ηs/C
, (5.56)

15 Each sample {η1, η2, . . ., ηN } of the fitness parameter yields a particular network with a given degree distri-
bution. We are interested here in computing the average distribution typical of any network realization.
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Fig. 5.10 Degree time dependence of vertices with different fitness η drawn from
a uniform distribution in the interval [0, 1]. The inset shows the time evolution of
the quantity

∑
j η j k j , that approaches the expected value C∗t . After Bianconi and

Barabási (2001).

that readily implies that the degree grows as a power of time, with an exponent that
depends on the specific fitness of each vertex (see Figure 5.10). Latecomer vertices
with larger fitness grow more rapidly and in the long run they acquire a larger
degree than their less fit predecessors.

In order to obtain an explicit expression for the degree distribution, we compute〈 ∑
j η j k j

〉
as a function of C by substituting in Eq. (5.54) the solution for ks(t).

This procedure yields the self-consistent relation

C =
∫

dηρ(η)
η

1 − η/C . (5.57)

The right-hand term of the equation has been obtained by using the continuous k
approximation and performing the limit for t → ∞ (stationary case), where we
have made use of the fact that η/C < 1, since the degree of any vertex cannot grow
faster than t (the network size).16 Finally, by proceeding along the general lines
shown in Section 5.4, we obtain a stationary degree distribution as

P(k) = C
m

∫
dη

ρ(η)

η

(
k

m

)−1−C/η

. (5.58)

16 Note that this condition has sense only when the range of values of the fitness parameter η is bounded.
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In this last expression it has been considered that also the degree distribution must
be averaged over the different possible realizations of the noise η.

As an explicit example, Bianconi and Barabási (2001) proposed the simplest
fitness distribution, a uniform distribution in the interval [0, 1]. In this case the
self-consistency equation Eq. (5.57) provides the solution C∗ � 1.255, that when
inserted in the degree distribution gives the expression

P(k) = C∗

m

(
k

m

)−1

E1

[
C∗ ln

(
k

m

)]
, (5.59)

where E1(x) is the exponential integral function. For large k we can obtain the
scaling behavior of P(k) using the asymptotic expansion of E1(x) (Abramowitz
and Stegun, 1972), to obtain

P(k) ∼ k−γ

ln k
, (5.60)

which corresponds to a scale-free distribution of degree exponent γ = 1 + C∗ �
2.255, with a subleading logarithmic correction. This is a remarkable result, since
assuming a uniform fitness distribution, with no special features, the model gen-
erates a network displaying a non-trivial degree distribution. In this respect, it is
interesting to mention that the introduction of the vertices’ fitness gives rise to a
“fittest-get-richer” mechanism even in the case of static graph models as shown by
Caldarelli, Capocci, De Los Rios, and Muñoz (2002).

The introduction of fitness is not the only method for taking into account the
heterogeneous properties of vertices. A different perspective considers different
classes of vertices exhibiting intrinsically different dynamics. This differentia-
tion of properties evidently appears if the level of single hosts is introduced into
the simulations. In this case two different classes of vertices are present, repre-
senting Internet providers and computer hosts, respectively (Capocci, Caldarelli,
Marchetti, and Pietronero, 2001). Similar strategies open the road to much more
articulated Internet models, with several different “actors” participating in the
shaping of the network fabric (Guillaume and Latapy, 2003).

5.8.3 Technological and geographical constraints

Other important factors in a detailed large-scale modeling of the Internet are the
inclusion of constraints imposed by geography and technology. As discussed in
previous sections, the distance between routers is an important variable, since not
all providers can afford to buy cable connections over long distances or satellite
bridges. At the same time, for technical reasons, routers cannot have an unlimited
number of interfaces. At the model level, the inclusion of these constraints works
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in a different way than the fitness model. While the inclusion of fitness introduces
heterogeneity in the vertices, the constraints we are considering now act the same
way on all vertices, imposing general properties or limitations to the growth dy-
namics.

A very interesting model that might represent a good abstraction for the finite
capacity of routers in establishing links has been proposed by Amaral et al. (2000).
The model evolves following the usual Barabási–Albert algorithm with linear pref-
erential attachment, but when a vertex reaches a certain critical number of connec-
tions (a degree capacity threshold kc) its capacity to increase its degree further is
inhibited and it does not contribute further to the dynamics. While an analytical
solution of this model is not available, large-scale numerical simulations show that
the degree distribution has a power-law behavior that develops a cut-off at a value
of k, determined by the the degree capacity kc. This phenomenology appears par-
ticularly interesting for the IR level modeling of the Internet, since empirical data
on the degree distribution show the presence of a large degree cut-off in agreement
with the model.

A particular place in the modeling of the Internet is occupied by the Brite In-
ternet topology generator (Medina et al., 2000). Brite works with a fixed number
of vertices; however, the edges are assigned with a preferential attachment dynam-
ics. In addition, it considers the constraints imposed by the geographical distance
among vertices. These features place Brite halfway between an Internet topology
generator and what we have defined as a growing network model. Brite generates a
topology on a plane divided into L1 × L1 squares, each of which is further divided
into L2 × L2 low level squares. Each low level square can hold at most one vertex.
Each high level square is assigned a number n of vertices, that can be distributed
according to either a Poisson or a bounded power-law distribution. These options
allow to mimick a homogeneous or a highly skewed spatial distribution of ver-
tices, respectively. The total number of vertices is N . Each vertex is pre-assigned a
random position in a different low level square. To generate the network, vertices
are sequentially considered in their pre-assigned position and joined with edges
to m other vertices. The assignation of edges can be inactive, randomly selecting
one active vertex and joining it to m candidates from all the rest of the vertices;
or active, connecting the active vertex only to nodes that have been already incor-
porated into the network. Finally, the vertices to be connected to the active vertex
can be selected with probability proportional to the Waxman factor Eq. (5.17),
proportional to the degree, as in the Barabási–Albert model, or proportional to
the product of the degree times the Waxman probability. Numerical experiments
(Medina et al., 2000) show that with the preferential attachment element, Brite is
able to produce a power-law degree distribution, with an exponent compatible with
that found in the Internet.
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One of the new elements introduced by Brite is the possibility of an inhomoge-
neous spatial distribution of vertices. Following this direction, Yook et al. (2002)
put forward a topology generator in which the vertices are distributed in space,
forming a scale-invariant fractal set (Mandelbrot, 1982), with a fractal dimension
compatible with the value found in real router-level maps (Section 4.6). Similarly
to the Brite generator, the probability of adding new edges is regulated by two
competing mechanisms, preferential attachment and geographical distance, being
directly proportional to the degree of the two vertices considered, and inversely
proportional to their physical distance. Additionally, Yook et al. (2002) considered
variations from the linear preferential attachment, different fractal dimension of
the router distribution, and different forms for the attachment probability at a given
distance. In this way, it is possible to study the resulting network topology in differ-
ent regions of the phase space of the model’s parameters. Interestingly, it appears
that the topological properties observed empirically in the Internet occur only at
a very particular point of the phase space, i.e. only after a careful tuning of the
model’s parameters. Any deviation from this point significantly alters the topolog-
ical properties of the generated networks. Given the generality of this model, it
is possible to find that many current generators or models lie in a particular po-
sition of this phase space, generating networks that evidently belong to different
topological classes, different from the Internet. This flexible framework can thus
be used as a guidance in establishing if a model based on the degree preferential
attachment is a good candidate for reproducing the Internet properties.

5.9 Optimization and trade-offs

The preferential attachment paradigm defines a large category of models explain-
ing the presence of heavy tailed degree distribution in real world graphs. How-
ever, power-law behavior is frequently observed in complex physical systems,
and appears to be ubiquitous in the cooperative behavior of many social systems,
ranging from the stock market (Mantegna and Stanley, 1999) to city populations
(Zipf, 1949). For this reason, other generative models for power-law behavior rely
more on the notion of maximizing utility and expectations of individuals. Often
the interesting phenomena are related to the presence of the competition between
global optimization of the system and some local constraints. In other cases it is the
conflict among the various local expectations that generates non-trivial collective
behavior.

An Internet model that finds its roots in this way is the heuristically opti-
mized trade-off (HOT) model proposed by Fabrikant, Koutsoupias and Papadim-
itriou (2002). The model elaborates on the highly optimized tolerance mechanism
for power-laws in designed systems devised by Carlson and Doyle (1999), and
suggests that the emergence of power-laws is due to a trade-off mechanism; i.e.
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through the optimization of the conflicting objectives pursued in the set up of the
network. As a practical implementation of these ideas, the HOT Internet model of
Fabrikant et al. (2002) is a growing model in which, at every time step, a new ver-
tex is added to the network and placed in a random position on the unit square. The
new vertex i is connected with an edge to the vertex j that minimizes the function

�(i, j) = α(N )dE(i, j) + φ( j), (5.61)

where dE(i, j) is the Euclidean distance between vertices i and j , α(N ) is a con-
stant that depends on the final size of the network, and φ( j) is a measure of the
centrality of the vertex j . As measures of centrality, Fabrikant et al. (2002) pro-
pose

(1) The average shortest path length from j to the rest of the vertices in the network.
(2) The maximum shortest path length from j to any other vertex in the network.
(3) The shortest path length from j to a fixed, “central” vertex.

The edge dynamics is therefore the outcome of two conflicting objectives. The
first is to limit the costs of establishing the physical connection by reducing as
much as possible the Euclidean distance. The second objective is the attempt to be
“centrally located” in the network, thus reducing the hop distance to other vertices.
Usually, this results in a maximization of the transmission efficiency. Figure 5.11

Fig. 5.11 Typical network generated with the HOT Internet model, with param-
eters N = 1,000 and α(N ) = 25. The “central” node is at the center of the box.
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Fig. 5.12 Cumulative degree distribution for the HOT Internet model, with pa-
rameters N = 50,000 and α(N ) = 25. The continuous line has slope −0.8, cor-
responding to a degree exponent γ ≈ 1.8.

shows a typical realization of this model for the last measure of centrality, gener-
ated with parameters N = 1,000 and α(N ) = 25.

The topology of the resulting network is found to depend on the value of the
parameter α(N ) (Fabrikant et al., 2002). If α(N ) is smaller than a constant α0,
the model is driven exclusively by the minimization of the centrality, and it gen-
erates star networks. For α(N ) larger than N 1/2, the minimization affects only the
Euclidean distance, and the result is a minimum spanning tree, with exponentially
bounded degree distribution. For α0 < α(N ) < N 1/2, however, the model yields a
power-law degree distribution, with a degree exponent that depends on the particu-
lar value of α(N ) selected. As an example, in Figure 5.12 we show the cumulative
degree distribution obtained for N = 50,000 and α(N ) = 25 (within the power-
law regime). A linear regression in the scaling region yields an estimate of the
degree exponent γ ≈ 1.8.

It is interesting to note that the HOT model somehow considers the same ingre-
dients at the basis of degree driven models, though casted in a different dynamical
rule. In the HOT model, vertices tend to be centrally placed in the network, an
objective which is implicitly, but less efficiently, sought after also by preferring
the connection to high degree vertices. As well the HOT model considers resource
constraints, smaller geographical distances of vertices, which are considered in
several degree driven models (see Section 5.8.3). These ingredients are introduced
as independent stochastic factors in degree driven models, while they enter in as
competitive optimization dynamics in the HOT case. In this perspective, it is nat-
ural to introduce other features implemented in degree driven models in the HOT
dynamics. For instance, a larger number of edges can possibly be drawn from each
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newly created vertex, and, more interestingly, edges can be established between
existing vertices following the original trade-off’s dynamics or some of its pos-
sible variations. Finally, it can also incorporate the deletion of both vertices and
edges. Preliminary results in this direction show that these variations produce in-
teresting topologies and might be used as alternative models of large-scale Internet
topology (Alvarez-Hamelin and Schabanel, 2003).

5.10 Real data versus models

As we have seen in the previous sections, modern Internet topology generators
(Brite, Inet) and growing network models based on the preferential attachment
rule are able to reproduce the power-law degree distribution observed in empirical
data. Models based on the HOT ideas, as well, have a wide range of parameters
where heavy tailed distributions appear. The general results concerning the diam-
eter of graphs with power-law degree distributions (see Section 5.6) imply that
all these models similarly show small-world or even ultra small-world properties.
With respect to these features of the Internet graphs, all these models are equally
good candidates for Internet large-scale modeling. It is thus natural to wonder how
these models may be validated and which parameters or metrics can be used to
discriminate between good and poor models of the Internet.

At first, one would be tempted to carry out a more quantitative comparison of
the degree distribution. This is, however, a slippery path. For instance, empirical
data on the degree distribution do not have a precision that would allow a sharp de-
termination of the degree exponent. As we have frequently discussed in previous
chapters, the importance of the empirical evidence for heavy tailed distributions
resides in their very basic differences from standard Poisson modeling. However,
data do not show ideal power-law behavior and the measured exponents are sub-
ject to statistical errors, depending furthermore on the extent of the degree range
considered. In summary, the measured exponents range between 1.9 and 2.4 and it
would be unwise to consider the better model the one which gives rise to an expo-
nent 2.2 instead of the one which generates the exponent 2.4. The same is true for
the diameter or the average shortest path length. All measures provide values be-
tween 2 and 30, and, given the discussed logarithmic dependence on the network
size, all models can be made comparably close to these values.

Once a model shows a heavy-tailed degree distribution and small-world prop-
erties, a discriminating metric can be found in the clustering coefficient. As we
have seen in empirical data, IR and AS level graphs exhibit a clustering coeffi-
cient very large if compared with random graph models. Moreover, the value of
the measured clustering coefficient appears to be stable along the Internet growth
(see Chapter 4). The clustering coefficient is representative of the large-scale
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Fig. 5.13 Clustering coefficient c̄(k) as a function of the degree k for the
Barabási–Albert and fitness networks, compared with the result from the AS map.
The HOT model is not reported since in its original definition it has c ≡ 0.

statistical abundance of local communities and correlations. It is therefore mark-
ing a difference from all models which do not consider the appropriate level of
correlations in their defining rules. For instance, despite the preferential attach-
ment rule, the Barabási–Albert algorithm does not generate correlation between
successively added vertices and thus does not have any local ordering principles
(see Appendix A4). For this reason, the average clustering coefficient is vanishing
when increasing the network size. The HOT model as well, in its original defi-
nition, has a null clustering coefficient, since it generates graphs with a tree-like
structure.17 In other words, both models are unable to reproduce the high cluster-
ing coefficient of Internet graphs. New ingredients must be introduced therefore
to generate the opportune local cliqueness (Klemm and Eguı́luz, 2002a; Alvarez-
Hamelin and Schabanel, 2003).

At the AS level, the hierarchy and modular structure that have been analyzed
in Chapter 4 might provide a basis for further testing and validation of mod-
els. Figures 5.13 and 5.14 represent the average clustering coefficient as a function
of the degree, c̄(k), and the average degree of the neighbors, k̄nn(k), respectively,
for the Barabási–Albert, HOT and fitness networks. As a comparison we report the
empirical data obtained from the AS level map. The figures clearly show that the

17 This is due to the fact that the newly entering vertices are connected to the network by one single edge.
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Fig. 5.14 Average degree of the nearest neighbors of a vertex k̄nn(k) as a func-
tion of the degree k for the Barabási–Albert, HOT, and fitness networks, compared
with the result from the AS map.

only model rendering results in qualitative agreement with the Internet maps is the
fitness model. The lack of correlations in the Barabási–Albert and HOT networks
appears to be readily emphasized by the analysis of metrics related to the hierarchi-
cal structure. These metrics, thus, appear as an interesting testbed for the validation
of models aimed at characterizing the Internet at the AS level.

It is worth remembering at this point that modeling the Internet at a smaller
scale level necessarily faces different issues. At the level of LANs or small internal
networks, the realism assumes a much greater relevance. It then becomes very im-
portant to precisely match metrics, such as degree, the various modular structures
(token rings, Ethernet, etc.), the precise layers of hierarchies among computers,
etc. At this level, statistical methods loose their relevance because of the limited
information that can be retrieved from the analysis of small networks. In this case,
the use of detailed topology generators is needed to achieve the necessary level of
realism.

5.11 The future of Internet modeling

The data collected by the various Internet mapping projects have provided em-
pirical evidence that has drastically changed all previous views of the Internet’s
structure. The presence of heavy tailed distributions, complex dynamical features,
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and the departure from the standard random graph framework have stimulated re-
newed effort in large-scale modeling of the Internet. Along with topology gener-
ators that include the observed novel features, there has been growing activity in
the field of dynamical models of networks. These models leverage on dynamical
principles that rule the addition of vertices, and in this perspective the preferential
attachment mechanism has been recognized as an extremely successful paradigm.
It has stimulated the formulation of a large class of models in which several addi-
tional features or dynamical principles have been added to provide a more realistic
modeling of large-scale topological properties of the Internet.

The use of the statistical physics approach to Internet modeling has also trig-
gered the development of models based on the more complex trade-off optimiza-
tion scheme, inspired by the modeling of many social and collective phenomena.
Surprisingly, these approaches are sometimes perceived as in opposition to the
preferential attachment mechanism. As we discussed in earlier sections, the trade-
off mechanism is actually a different way of implementing the utility and efficiency
principles also cast in the preferential attachment rule. It is therefore natural to see
these classes of models as inspired by a very similar philosophy, and to dwell on
the interesting combinations of the mechanisms implemented in each one of them.
For instance, one could consider the introduction of degree driven objectives in the
trade-off dynamics.

While the general tendency in growing network modeling is towards the defi-
nition of increasingly complex rules, accounting for the many dynamical features
observed in the evolution of real networks, a few major aspects have not been much
explored so far. The first consists in the local definition of the dynamical rules. As
we have discussed extensively, no one has global knowledge of the Internet’s struc-
ture. It has been achieved with partial knowledge of Internet topology, and each
ISP or network administrator relies on very limited information for his connec-
tivity or marketing choices. Connectivity, bandwidth, and centrality are variables
known only approximately, and usually on a limited scale. However, the great ma-
jority of models presuppose that each entering vertex (AS or router) might have
complete knowledge of the degree or centrality properties of the whole network.
The dynamical evolution of the network is therefore governed by global rules that
take into account the state of the whole network. Surely this is not the case in the
real world, and it would be very interesting to explore more deeply the effect of
introducing dynamical rules acting on a local level. Moreover, a more microscopic
formulation of Internet dynamics might also shed light on the origin of the prefer-
ential attachment mechanism that so far is just assumed on the basis of plausible
arguments and some empirical evidence.

Finally, a different aspect concerns the introduction of modularity and hierar-
chies in Internet modeling. While these features have been introduced ad hoc in
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Internet topology generators, it is clear that the hierarchy represented in this way is
far too simplistic with respect to real data. At the same time, the use of hierarchi-
cal constructions in growing network models is still at an early stage (Dorogovtsev
et al., 2002; Jung et al., 2002; Ravasz and Barabási, 2003). However, empirical
evidence shows that hierarchy plays an essential role in the shaping of the large-
scale structure of the Internet and indicates that any realistic attempt to model this
network will have to deal with these features.



6

Internet robustness

The Internet is composed by thousands of different elements – both at the hardware
and software level – which are naturally susceptible to errors, malfunctioning, or
other kind or failures, such as power outages, hardware problems, or software er-
rors (Paxson, 1997; Labovitz, Ahuja, and Jahanian, 1999). Needless to say, the
Internet is also subject to malicious attacks. The most common of those are the
denial-of-service attacks, that encompass a broad set of attacks aimed at a diver-
sity of Internet services, such as the consumption of limited resources or the phys-
ical destruction of network components (C.E.R. Team, 2001). Given so many open
chances for errors and failures, it might sometimes be surprising that the Internet
functions at all.

The design of a computer network resilient to local failures (either random
malfunctions or intentional attacks) was indeed one of the main motivations for
the original study of distributed networks by Paul Baran (1964). Considering
the worst possible scenario of an enemy attack directed towards the nodes of a
nationwide computer network, Baran analyzed the “survivability” (defined as the
average fraction of surviving nodes capable of communication with any other sur-
viving node) of the several network designs available at that time. His conclusion
was that the optimal network, from the survivability point of view, was a mesh-
like graph with a sufficient amount of redundancy in the paths between vertices.1

Even in the case of a severe enemy strike, depleting a large number of compo-
nents, such network topology, would ensure the connectivity among the surviving
computers, diverting communications along the ensemble of alternative paths. In
addition, this sort of resilience against attacks would be economically beneficial,
since it would allow the use of low-cost, unreliable connections between compo-
nents, which would not substantially hinder communications in case of a random
failure.

1 That is, a graph in which there is sufficient number of alternative, different paths between every pair of vertices.

112
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Baran’s proposal for a designed distributed network was finally not taken into
account in the development of the primitive ARPANET, nor in the subsequent evo-
lution of the Internet. This network has undergone instead a self-organized growth,
following no pre-established plan, and its present scale-free topological structure
is far from that envisioned by Baran. In this respect, the possible fragility of the
Internet to random failures and intentional attacks is a major issue, with several
practical implications.

The study of the resilience of the Internet to failures is not an easy task. After
any router or connection fails, the Internet responds very quickly by updating the
routing tables of the routers in the neighborhood of the failure point. Therefore,
the error tolerance of this network is a dynamical process, which should take into
account the time response of the routers to different damage configurations (see
Chapter 10). Though, a first approach to the analysis of the Internet’s robustness
can be achieved at the topological level by studying the behavior of the AS and
IR level maps under the removal of vertices or edges. These studies have shown
that the Internet presents two faces in front of component failures: it is extremely
robust to the loss of a large number of randomly selected vertices, but extremely
fragile in response to a targeted attack.

In this chapter we provide a review of results on the topological resilience of the
Internet to damage. We shall present numerical experiments which show that the
Internet can withstand a considerable amount of random damage and still maintain
overall connectivity in the surviving network. In particular the Internet’s tolerance
to massive random damage is much higher than for meshes or random homoge-
neous networks, suggesting that the cause for this robustness resides in its power
law degree distribution. This intuition will find analytical confirmation by mapping
the damage problem into percolation phase transitions. The very nature of Internet
degree distribution, on the other hand, implies the presence of heavily connected
hubs. A targeted attack, aimed at knocking down those hubs, has dramatic con-
sequences for Internet connectivity. In this case we shall see that the deletion of
a very small fraction of hubs is enough to break the network down into small,
isolated components, hugely reducing its communication capabilities.

6.1 Internet robustness to random failures

A first empirical assessment of the robustness of the Internet in front of random
failures can be obtained by studying the topological response of Internet maps to
the removal of edges or vertices. Focusing on the effect of vertex removal, and
assuming that all vertices are equally likely to experience a failure, this theoretical
experiment can be performed on a connected map of size N by looking at the effect
achieved by removing a fraction g of randomly selected vertices. The deletion of a
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vertex implies that all the edges adjacent to it are also removed. In order to moni-
tor the response of the network to the damage, one can control several topological
metrics related to network connectivity (Albert, Jeong, and Barabási, 2000a). A
first and natural quantity to study is the the size Sg of the largest component in
the network after damage with respect to the size S0 of the undamaged network.
In particular, a ratio Sg/S0 > 0 indicates that a macroscopic fraction of vertices is
still capable of communication, i.e. a giant component still exists. On the contrary,
Sg/S0 � 0 signals that the whole network has been fragmented into small discon-
nected components, each one of them not containing an appreciable fraction of the
vertices.2

A natural question to ask in this context concerns the maximum amount of dam-
age that the network can take, i.e. the threshold value of the removal probabil-
ity, gc, above which Sg/S0 � 0 and the network can be considered destroyed. In
Figure 6.1 we report the behavior of Sg/S0 under a progressive density of damage
g in the case of the IR level map. The result is compared with the behavior obtained
for a regular mesh, namely the square lattice, and the Erdös–Rényi random graph
that, given its Poisson degree distribution, can be considered a typical example of
the homogeneous random network with 〈k2〉 ∼ 〈k〉2. The figure provides striking
evidence that the IR graph behaves very differently from both regular meshes and
the Erdös–Rényi random graph. While at low levels of damage the resilience is
essentially determined by local details, such as the minimum degree, which are
not taken into account in this general discussion, at large levels of damage both
the square lattice and the Erdös–Rényi random graph exhibit a threshold value gc

over which Sg/S0 abruptly drops to zero. The IR graph, on the contrary, has a
much higher tolerance to large damage, and for values of the damage as high as
85% of the total network still shows a small but macroscopic fraction of connected
surviving vertices.

The evidence for a distinctive tolerance to large levels of random damage is
confirmed by the analysis of the Internet at the AS granularity. In this case, along
with Sg/S0, we also report the average shortest path length of the giant compo-
nent, 〈�〉g, as a function of the fraction of randomly removed vertices g. Figure 6.2
shows the behavior of these two quantities in random removal experiments per-
formed on the AS and AS+ Internet maps. For both maps the slow decrease at
large g of the relative size of the largest component is confirmed. In fact, when
50% of the vertices have been removed, the largest cluster has a size close to
40% of that of the initial network, while for 80% damage the largest component
still contains 10% of the original vertices. The average shortest path length , how-
ever, is slightly increasing (with a relative variation of only a few percent), up

2 Sg/S0 = 0 occurs only in the so-called thermodynamic limit in which S0 → ∞.
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Fig. 6.1 Topological resilience of IR level map to the random removal of vertices
(a), compared with a square lattice and an Erdös–Rényi random graph with the
same average degree than the IR graph (b). The latter plots show a clear drop at
the corresponding threshold of damaged vertices, while in the case of the IR map
the decay is slower, with no apparent sign of a sharp threshold.

80% damage, above which it decreases quite rapidly. This fact seems to indicate a
threshold value gc ≈ 0.9 below which the surviving network can function almost
as efficiently as the undamaged Internet.3

Other metrics have been proposed in the literature to characterize the Internet’s
resilience to vertex damage. For example, Park, Khrabrov, Pennock, Lawrence,
Giles, and Ungar (2003) remark that Sg and 〈�〉g are not representative of the
overall connectivity of the surviving network, since they focus exclusively on the
largest surviving component, thus neglecting the contribution of the small surviv-
ing clusters of connected vertices, different from the largest component. To take
into account this contribution, they propose to measure instead two different met-
rics: the fraction K of all the connected pairs of vertices with respect to the total

3 At least in what respect the average distance that the IP packets have to cross in order to reach a random point
in the surviving network.
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Fig. 6.2 Topological response of the AS and AS+ maps to the random removal
of vertices. (a) Relative size of the largest connected cluster in the network with
respect to the size of the undamaged network. (b) Average shortest path length of
the largest cluster in the damaged network.

number of pairs in the network, and the average shortest path length 〈�〉c
g between

all pairs of vertices with the shortest path length �i j �= ∞. Studying in particular
the quantities K and 〈�〉c

g/K , Park et al. (2003) were able to confirm the results
concerning the considerable resilience to damage of Internet maps.

A different and interesting analysis has been performed by Crucitti, Latora,
Marchiori, and Rapisarda (2003). In this work, the authors point out that pre-
vious metrics overlook the effect of lost connectivity in the fragmented network,
and propose to measure the efficiency of the graph as the average of the inverse of
the shortest path length between all pairs of vertices (Latora and Marchiori, 2001)

E = 2

N (N − 1)

∑
i< j

1

�i j
. (6.1)

This metric avoids the problems associated with pairs of vertices belonging to dis-
connected clusters, that yield a contribution 1/�i j = 0, while giving a measure
of the traffic capacity of the whole network. Indeed, for a well-connected network,
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Fig. 6.3 Relative efficiency of the AS and AS+ maps as a function of the fraction
of removed vertices in a random attack.

with small shortest path length, we expect to observe considerable efficiency. How-
ever, for a damaged network in which the average distance between vertices is
large, we should expect a decrease in the efficiency. Figure 6.3 shows the relative
efficiency Eg/E0 measured in the AS and AS+ maps as a function of the density
of random damage g. In analogy to the behavior of Figure 6.2, the efficiency of
both maps slowly decreases with g, signaling the intrinsic robustness of the Inter-
net to random damage.

The conclusion from the analysis presented in this section is that the Internet
appears as very robust with respect to large densities of random failures at both
the IR and AS levels. The network is able to sustain a considerable number of
disabled components and still present an appreciable fraction of the vertices in the
largest component. At the same time the average distance between vertices in the
giant component is more or less constant, and approximately equal to the value
in the original, undamaged network, thus keeping the topological properties of
the network still beneficial for the sake of communication purposes. This is not
the case for regular meshes or random networks, where a sharp damage threshold
above which the network is completely fragmented appears much earlier.

Since the main topological feature of the Internet resides in its power-law de-
gree distribution, it is natural to think of this property as the one responsible for
the Internet’s high resilience. Indeed, it is possible to understand this point qual-
itatively by recalling that the power law form of this distribution implies that the
vast majority of vertices have a very small degree, while a few hubs collect a very
large number of edges, providing the necessary connectivity to the whole network.
When removing vertices at random, chances are that the largest fraction of deleted
elements will have a very small degree. Their deletion will imply, in turn, that only
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a limited number of adjacent edges are eliminated. Therefore, the overall damage
exerted on the network’s global connectivity properties will be limited, even for
very large values of g. This intuition will be confirmed in the analytical study per-
formed in Section 6.5 in the framework of percolation theory, where it is shown
that scale-free networks with degree exponent γ ≤ 3 have a virtually4 infinite tol-
erance to random damage, in the sense that it is necessary to delete a fraction
g → 1 in order to induce the complete breakdown of the largest component. This
fact has led on some occasions to the erroneous statement that scale-free networks
have a topology that is designed or optimized to resist random failures. As is evi-
dent from Figure 6.1, however, the resilience of scale-free networks is larger than
in homogeneous networks only for very large levels of damage. For very small
levels of damage, instead, the resilience depends upon the detailed connectivity
properties of the network, including the minimum degree.5

6.2 Resilience to damage as a percolation phase transition

The natural theoretical framework to understand the resilience of the Internet to
random failures is that of percolation theory (Bunde and Havlin, 1991; Stauffer
and Aharony, 1994). Percolation, first introduced in the 1940s in the context of
gelation processes, is the simplest model describing a disordered system capable
of experiencing a phase transition. In order to define a vertex percolation process,
let us consider a regular square lattice, Figure 6.4, in which each vertex is occupied
with probability p, and empty with probability 1 − p. Let us define a cluster as the
connected network made by a set of vertices which are nearest neighbors.6 When
p is small, Figure 6.4(a), the clusters are made by a reduced number of vertices,
much smaller than the total size of the lattice. However, when p is larger than
a certain critical value pc, called the percolation threshold, a percolating cluster
appears, joining two opposite sides of the lattice, Figure 6.4(b). The number of
vertices belonging to the percolating cluster diverges when increasing the size of
the lattice; therefore it is also called the infinite cluster. The emergence of the
infinite cluster corresponds to the onset of a giant component, which contains a
finite fraction of the lattice’s vertices. It is also possible to define edge percolation
processes, in which the edges or bonds between vertices are the ones likely to be
occupied with probability p. In this case, two vertices belong to the same cluster
if there is path of occupied edges connecting them.

4 The apparent thresholds gc ≈ 0.9 observed in the numerical experiments will turn out to be the effect of the
finite size of networks, i.e. an effective threshold dependent on the maximum degree of the network.

5 For instance, the mesh topology is the one that seems to perform better at very low damage levels, in agreement
with the original analysis of Baran (1964).

6 Clusters are identified by the connected set of vertices joined by black thick lines in Figure 6.4.
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p > pcp < pc

(a) (b)

Fig. 6.4 Examples of site percolation on a two dimensional regular lattice. The
filled circles represent occupied vertices. (a) System below the percolation transi-
tion. (b) System above the percolation transition. Note the presence of the infinite
cluster, connecting the upper with the lower boundary.

Percolation is useful for modeling a variety of physical systems in which disor-
der plays a relevant role. For example, consider occupied vertices that are electrical
conductors, while empty vertices are insulators, and that the electrical current is
only able to flow between nearest neighbors conductors. At small p adjacent con-
ductors form small, isolated islands, and the system is overall an insulator. When p
is large, however, there is an infinite cluster of conductors connecting two opposite
sides of the lattice, and the system behaves as a conductor. The insulator/conductor
transition takes place abruptly, at percolation point pc.

The threshold pc defines a critical point at which the system undergoes a dra-
matic change in its macroscopic properties, i.e. a phase transition. In order to char-
acterize quantitatively this change of properties, one can focus on the probability
PG that a randomly chosen vertex belongs to the infinite cluster (or the giant com-
ponent). In infinite systems, as shown in Figure 6.5, PG is identically zero for all
values p < pc. Above this threshold, the infinite cluster appears and PG becomes
an increasing function of p. The probability PG is generally referred to as the order
parameter, in the sense that it characterizes the onset of some macroscopic order-
ing or global structure in the system, and p is defined as the critical parameter of
the system.

Percolation theory has been defined on regular lattices embedded in a D-
dimensional space. In random graphs with N vertices, however, there is no embed-
ding space and any vertex can be connected to any other vertex. This is equivalent
to work in a space that is N -dimensional; i.e. any vertex has N possible neighbors.
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Fig. 6.5 Characterization of the percolation phase transition. (a) Behavior of the
order parameter of the system PG defined as the probability that a vertex will
belong to the giant component or the infinite cluster. (b) Divergence at the critical
point of the average size 〈s〉 of the finite cluster to which any given vertex belongs.

For instance, the onset of the giant component of the Erdös–Rényi random graph
is analogous to an edge percolation problem in which the N − 1 edges of each
vertex can be occupied with probability p. In the N → ∞ limit, often considered
in random graph theory, the problem is therefore analogous to infinite dimensional
edge percolation, for which it is usually possible to provide a simple solution, as
we shall see in Section 6.3.1. In this framework, the macroscopic behavior of net-
works, when faced with random or targeted removal of vertices or edges, finds
a natural characterization in terms of an inverse percolation process in a random
graph. In this context, the lattice in which percolation takes place is the graph under
consideration. In the undamaged graph, with g = 0, all the vertices are occupied.
The deletion of a fraction g of vertices corresponds to a random graph in which the
vertices are occupied with probability p = 1 − g. For small g, we are in the region
of p close to 1, in which the infinite cluster (identified as the giant component) is
present. The threshold for the destruction of the giant component, gc = 1 − pc,
can be thus computed from the percolation threshold at which the infinite cluster
first emerges. In this case the phase transition corresponds to the separation of a
region of damages which still allow a connected network of appreciable size from
a region in which the system is totally fragmented. The order parameter PG is a
function of g = 1 − p and it can be defined as PG = Sg/S0, where, as in the pre-
vious section, Sg is the size of the largest component after damage g, and S0 is the
size of the original network. However, the relation PG = limS0→∞ Sg/S0 defines
unambiguously the transition point only for the infinite size limit. In the finite sys-
tem, the transition is smoother and the order parameter never attains a null value
above the threshold, relaxing to its minimum value PG ∼ 1/S0.

The mapping between damage and inverse percolation processes results partic-
ularly useful for providing analytical insight on network topological robustness.
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In the following sections we shall provide a general presentation of percolation
theory and will lean on these results in order to achieve a full understanding of
network resilience to damages.

6.3 Percolation theory

Percolation theory focuses on the behavior of the percolation transition close to the
critical point where it takes place. A basic quantity describing the system structure
is the cluster number distribution ns(p), defined as the number of clusters of size
s per lattice vertex, at the percolation probability p. The probability that any given
vertex belongs to a cluster of size s is therefore sns(p), where the fact that the
vertex can be any one of the cluster’s elements has been considered. For p < pc,
when there is no infinite cluster, the probability p that a vertex belongs to any one
of the finite clusters can be expressed as

∑
s

s ns(p) = p, p < pc. (6.2)

Above the critical point pc, the infinite cluster appears and PG > 0. Since any
occupied vertex belongs either to the infinite cluster or to a cluster of finite size,
we can generalize Eq. (6.2) and write

PG +
∑

s

′
s ns(p) = p, p > pc, (6.3)

where the prime in Eq. (6.3) means that the giant component is excluded from the
summation.

The probability that an occupied vertex belongs to a cluster of size s is given by
s ns(p)/

∑
s
′s ns(p), where the infinite cluster has been excluded to avoid diver-

gences. The average size 〈s〉 of the cluster to which any occupied vertex belongs
is therefore given by

〈s〉 =
∑

s
′s2 ns(p)∑
s
′s ns(p)

. (6.4)

At p < pc the average cluster size 〈s〉 is finite. Above the threshold the unrestricted
average size is infinite because an infinite cluster appears. This implies that 〈s〉
develops a divergence at p = pc that is absorbed in the infinite connected cluster
above the threshold. The 〈s〉 is thus a singular function at pc as shown in Figure 6.5.

The divergence of 〈s〉 contains a lot of physical information about the system
and it is the fingerprint of critical phase transitions. Indeed, 〈s〉 is proportional to
the second moment of ns(p), that must develop long tailed behavior in order to al-
low for the singularity occurring at pc. As has been discussed at large in Chapter 4,
diverging moments are typical of distributions with power-law tails. Therefore it
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is possible to formulate the general scaling ansatz (Stauffer and Aharony, 1994)

ns(p) = s−τ f [s/sc(p)], with sc(p) = (p − pc)
−1/σ , (6.5)

where τ and σ are exponents, whose values depend on the dimensionality and other
properties of the system. The function f (x) is supposed to be constant for x �
1, and rapidly decreasing for x � 1. The quantity sc(p) plays the role of a size
cut-off: only connected clusters with a size smaller or comparable with sc(p) are
present and define the physical properties of the system for any given value of p.
The present ansatz allows a finite 〈s〉 below the critical point with an exponentially
bounded ns(p). Approaching the critical point, ns(p) becomes more and more
heavy tailed. Finally when sc(p) → ∞ at p → pc, the simple power-law behavior
ns(p) ∼ s−τ is attained with the corresponding diverging behavior of 〈s〉.

Power-law behavior and singular functions are typical of critical phase transi-
tions, where the onset of a macroscopically ordered phase (for instance the pres-
ence of a global connected structure) is anticipated by large fluctuations in the sta-
tistical properties of the system. It is only when these fluctuations become of the
order of the system size itself, at the critical point, that the macroscopic order arises
and the system enters the new phase region. This overall picture is common to all
critical phase transitions such as the liquid-vapor and paramagnetic-ferromagnetic
transitions at the critical point (Binney et al., 1992).

The power-law behavior close to pc can be generalized to other quantities by
providing a scaling theory of percolation. In analogy with other phase transitions
it is possible to write

PG ∼ (p − pc)
β, (6.6)

〈s〉 ∼ (pc − p)−γ , (6.7)

valid for percolation in any kind of lattice, and in which β and γ are named crit-
ical exponents. Indeed, assuming the scaling form (6.5), it is possible to provide
expressions for the probability PG and the average cluster size. Substituting into
Eq. (6.4) the form postulated for the cluster distribution, and approximating the
summation by an integral, we obtain

〈s〉 ∼ 1

p

∫
s2−τ f [s/sc(p)] ds ∼ sc(p)3−τ

∫
x2−τ f [x] dx . (6.8)

The integral in x is bounded and well defined and the only dependence on p is
given by sc(p) = (p − pc)

−1/σ , yielding

〈s〉 ∼ (p − pc)
(τ−3)/σ . (6.9)
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From here we recover the scaling form in Eq. (6.7), with an exponent

γ = 3 − τ

σ
. (6.10)

To compute the behavior of PG , it is possible to use Eq. (6.3). Noticing that we are
very close to the critical point7 pc ≈ ∑

s s ns(pc), we obtain

PG ≈
∑

s

′
s [ns(pc) − ns(p)] ∼

∫
s1−τ [ f [0] − f [s/sc(p)]] ds

∼ sc(p)2−τ ∼ (p − pc)
(τ−2)/σ . (6.11)

From this expression we can finally read the exponent

β = τ − 2

σ
. (6.12)

Eqs (6.10) and (6.12) are scaling relations which reduce to two the number of
independent exponents defined by percolation theory.

The power law behavior and the scaling theory for percolation have been exten-
sively checked for different kinds of lattices in both analytical studies and com-
puter simulations (Stauffer and Aharony, 1994) and it is worth mentioning the
results concerning the universality of critical exponents. Indeed, the exact value of
the critical exponents does not depend on the fine details of the percolation model.
In general, they just depend on the system’s dimensionality and symmetries of the
order parameter. Thus, while the exact value of pc is different in a triangular or
rectangular lattice embedded in a two dimensional space, the critical exponents
result to be the same in both cases. Universality emerges thus as a fundamental
concept in physics, where different systems, as diverse as magnetic or liquid-vapor
systems but with the same symmetry and dimensionality, are described by the same
critical behavior (Binney et al., 1992; Yeomans, 1992).

6.3.1 A simple example: percolation on the Cayley tree

In order to have an explicit example of the percolation theory in networks, it is
possible to consider the percolation transition on a Cayley tree. This particular
system has the advantage of being analytically solvable, and it is equivalent to
the study of percolation in an infinite dimensional hypercubic lattice, or in the
so-called mean-field limit (Stauffer and Aharony, 1994).

A Cayley tree is constructed starting from a central vertex with z edges. The
number z is called the coordination number of the tree. Each edge connects to a

7 Note that close to pc we expect PG ≈ 0.
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Fig. 6.6 Cayley tree with coordination number z = 3.

vertex, which is the origin of other z − 1 edges. The construction proceeds iterating
this process to infinity, with z − 1 new edges emanating from each new vertex, with
no loops nor “dangling ends” (vertices with only one edge), except in the boundary
of the intermediate steps of the process.8 Figure 6.6 represents the first stages of a
Cayley tree with coordination number z = 3.

Taking advantage of the absence of loops and the independent probability for
the placement of occupied vertices, we can easily solve vertex percolation in the
Cayley tree. Following Stauffer and Aharony (1994), let us construct a infinite path
of edges between occupied vertices, starting from any occupied vertex. Following
any edge, we find z − 1 new edges, that lead on average to p(z − 1) new occupied
vertices. We can construct an infinite path only if there is at least one occupied
vertex at the end of any of those z − 1 edges, i.e., if p(z − 1) > 1. Since an infinite
path can only exist in the presence of the infinite connected cluster, this relation
defines the percolation threshold

pc = 1

z − 1
. (6.13)

In order to compute the behavior of PG , let us define q as the probability that a
given edge does not lead to a vertex connected to the infinite cluster. The event that
an edge does not lead to the infinite cluster is equal to the event that it leads to an
empty vertex, or either that it leads to an occupied vertex whose z − 1 emerging
edges do not lead to the infinite cluster. Since these are independent events, it is
possible to write the self-consistent equation

q = (1 − p) + pqz−1. (6.14)

8 The absence of loops is one of the arguments for the infinite dimensionality of the Cayley tree.
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The solution q = 1 correspond to all edges leading to finite clusters, which is the
correct answer for p < pc. The behavior at p > pc will therefore be given by the
real positive solution of Eq. (6.14) with q < 1. However, the probability PG is by
definition equal to the probability that a given vertex is occupied and that any of
its z edges lead to the infinite cluster, i.e.

PG = p(1 − qz). (6.15)

Eq. (6.14) cannot be solved for a general value of z. Turning to the particular case
z = 3 (for which the percolation threshold is pc = 1/2) we obtain the solution q =
(1 − p)/p, valid for p > 1/2. Substituting this result into Eq. (6.15), we obtain

PG = p

[
1 −

(
1 − p

p

)3
]

. (6.16)

As for the average cluster size 〈s〉, let us define T as the average size of the cluster
that is reached by following any edge. This edge leads to an empty vertex with
probability 1 − p, and to an occupied vertex with probability p, which contributes
to the average cluster size with itself, plus the z − 1 edges that emanate from
it. Therefore, T = p[1 + (z − 1)T ], whose solution is T = p/[1 − p(z − 1)] for
p > 1/(z − 1). The average cluster size is due to the contribution of an occupied
vertex plus its z outgoing edges; therefore

〈s〉 = 1 + zT = 1 + p

1 − p(z − 1)
. (6.17)

From Eqs. (6.16) and (6.17) we can estimate the value of the critical exponents
of the various scaling relations. For the particular case z = 3, performing a Taylor
expansion in the vicinity of p = pc = 1/2 gives

PG � 6(p − pc), (6.18)

〈s〉 � 3

4
(pc − p)−1, (6.19)

which recover β = γ = 1. Finally by using the scaling relations (6.10) and (6.12)
the exponents τ = 5/2 and σ = 1/2 are obtained. The same critical exponents
hold for any value of z. These values can also be derived rigorously (Essam, 1980),
providing a direct confirmation of the validity of the scaling ansatz made in
Eq. (6.5).

6.4 Percolation transition in random graphs

The percolation transition and the appearance of a giant connected component in
graph theory refer with a different language to the same critical phenomenon. In
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network language, the critical point translates into the existence of a given thres-
hold condition on the graph connectivity properties that marks a separation be-
tween a regime in which the network is fragmented in a myriad of small subgraphs
and a regime in which there is a giant component containing a macroscopic frac-
tion of the network’s vertices. In the infinite size limit this corresponds to the onset
of an infinite component containing a finite fraction of vertices (see Appendix 1).

The study of percolation in generalized random graphs finds its natural formu-
lation in the generating functional technique (Callaway, Newman, Strogatz, and
Watts, 2000; Newman, 2003). Here we will consider, however, a more approxi-
mate argument, analogous to that applied in the previous section for percolation
in a Cayley tree, valid for sparse graphs (Dorogovtsev and Mendes, 2003).9 Let
us then consider a random uncorrelated graph with arbitrary degree distribution
P(k), and let us define q as the probability that a randomly chosen edge in the
network does not lead to a vertex connected via the remaining edges to a com-
ponent of infinite size. Neglecting cycles, the quantity q can be self-consistently
computed as the probability that an edge leads to a vertex of degree k, times the
probability that none of its k − 1 emanating edges is leading to an infinite com-
ponent, averaged over all the possible values of k. In uncorrelated networks, since
the probability that an edge is connected to a vertex of degree k is k P(k)/〈k〉, we
have that

q =
∑

k

k P(k)

〈k〉 qk−1. (6.20)

The probability that a vertex does not belong to the giant component, 1 − PG , is
equal to the probability that it has degree k and none of its edges leads to an infinite
component, averaged over all the degrees k, yielding

PG = 1 −
∑

k

P(k)qk . (6.21)

As in the analysis of percolation in a Cayley tree, the solution q = 1 in
Eq. (6.20) indicates the absence of a giant component. This component can only
exist whenever there is a positive real solution of Eq. (6.20) with q < 1. In or-
der to find this solution it is useful to resort to a geometrical argument. The
solution of Eq. (6.20) is given by the intersection of the curves y1(q) = q and
y2(q) = ∑

k k P(k)qk−1/〈k〉. The function y2(q) is monotonously growing and
concave with q between the limits y2(0) = P(1)/〈k〉 < 1 and y2(1) = 1. There-
fore, in order to have a solution q∗ < 1, the slope of y2(q) at q = 1 must be larger
than or equal to 1 (see Figure 6.7). This condition translates into the equation

9 That is, graphs which have a local tree structure with no cycles.
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Fig. 6.7 Graphical solution of Eq. (6.20). (a) When the slope at q = 1 of the
auxiliary function y2(q) (see text) is smaller than 1, the only solution is the trivial
q = 1. (b) When the slope is larger than 1, the additional solution q∗ < 1 appear.

d

dq

(∑
k

k P(k)

〈k〉 qk−1

)∣∣∣∣∣
q=1

≡ 〈k2〉 − 〈k〉
〈k〉 ≥ 1. (6.22)

The equality in Eq. (6.22) signals the onset of the formation of the giant compo-
nent, which happens precisely at the point 〈k2〉 − 〈k〉 = 〈k〉. This condition, which
can also be written as

〈k2〉
〈k〉 = 2, (6.23)

is exact in the case that cycles are statistically irrelevant, as it is the case for random
uncorrelated graphs in the N → ∞ limit close to the transition point, and was first
derived on more rigorous grounds by Molloy and Reed (1995). It marks the critical
point of a phase transition, separating the phase (for 〈k2〉/〈k〉 < 2) in which all the
components are trees and the size of the largest component at most scales as ln(N ),
from the phase (for 〈k2〉/〈k〉 > 2) in which there exists a giant component scaling
as N , while the size of the other components at most scales as ln(N ). At the point
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〈k2〉/〈k〉 = 2, the largest cluster scaling is anomalous and follows the behavior
N 2/3.

In this framework, the critical parameter is determined by the connectivity prop-
erties of the network. For instance, in the case of a Poisson random graph where
〈k2〉 = 〈k〉2 + 〈k〉, the condition of Eq. (6.23) assumes the form 〈k〉c = 1. This
readily tells that any Poisson random graph with average degree larger than 1 ex-
hibits a giant component and 〈k〉 can be considered as the critical parameter. In the
case of the Erdös–Rényi model, in which edges are drawn with probability p (see
Section 5.1.1), the average degree is given by the expression 〈k〉 = pN and finally
a critical connection probability pc = 1/N is recovered.

6.5 The theory of resilience to random failures

As previously stressed, the resilience to random failures is equivalent to an inverse
percolation process. Therefore, the analytical characterization of this transition re-
lies on the study of the disappearance of the giant component after the random
removal of a fraction g of the network’s vertices. The strategy thus consists in
finding at which damage density g, the surviving network fulfills the percolation
condition 〈k2〉g/〈k〉g = 2, where 〈k2〉g and 〈k〉g refers to the degree distribution
moments of the damaged graph.

Following the intuitive approach proposed by Cohen, Erez, ben Avraham, and
Havlin (2000), let us consider a sparse uncorrelated generalized random graph with
degree distribution P0(k) and first moments 〈k〉0 and 〈k2〉0. Removing a fraction g
of all vertices in the graph is equivalent to removing a fraction g of the neighbors
of any surviving vertex. Therefore, in the damaged network any surviving vertex
with original degree k′ will have a degree k with probability

(
k′

k

)
(1 − g)k gk′−k, k′ ≥ k, (6.24)

which essentially corresponds to the random deletion of k′ − k neighboring ver-
tices, preserving k of them.10 The degree distribution of the network defined by
the surviving vertices will then be given by

Pg(k) =
∞∑

k′=k

P0(k
′)
(

k′

k

)
(1 − g)k gk′−k . (6.25)

From this equation we can compute the first and second moments of the degree

10 Note that this argument is valid for the deletion of a fraction g of either neighboring vertices or edges. The
results here obtained, therefore, are equally valid for both vertex and edge percolation.
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distribution in the damaged network, obtaining

〈k〉g =
∑

k

k Pg(k) = (1 − g)〈k〉0, (6.26)

〈k2〉g =
∑

k

k2 Pg(k) = (1 − g)2〈k2〉0 + g(1 − g)〈k〉0. (6.27)

These expressions can be plugged in Eq. (6.23) that gives the condition for the
presence of a giant component in the surviving network, yielding the precise value
of the threshold gc as the one that satisfies the equation

〈k2〉gc

〈k〉gc

= (1 − gc)〈k2〉0

〈k〉0
+ gc = 2. (6.28)

By using the heterogeneity parameter κ = 〈k2〉0/〈k〉0, the explicit solution for the
removal threshold is obtained as

gc = 1 − 1

κ − 1
. (6.29)

That is, the critical threshold for the destruction of the graph’s connectivity differs
from unity by a term that is inversely proportional to the degree fluctuations of
the undamaged network.11 This readily implies that the topological robustness to
damage is related to the graph’s degree heterogeneity. In homogeneous networks,
in which the heterogeneity parameter is κ � 〈k〉, the threshold is finite and will
simply depend on the average degree. In highly heterogeneous networks, in which
κ � 〈k〉, the threshold approaches larger values, being dominated by the magni-
tude of 〈k2〉. In particular, all scale-free graphs with diverging 〈k2〉0 have κ → ∞,
therefore exhibiting an infinite tolerance to random failures; i.e. gc → 1. Scale-
free graphs thus define a class of networks characterized by a distinctive resistance
to high levels of damage that is clearly welcome in many situations.

6.5.1 Removal threshold and finite-size corrections in scale-free graphs

The results shown in the previous section point at scale-free graphs as very robust
networks that in principle can be broken apart only by damaging all their vertices.
However, real-world networks, the Internet among them, necessarily show finite
size effects due to resource or size constraints. It is therefore interesting to analyze
the behavior of the critical threshold with respect to the various details character-
izing the realistic degree distributions empirically observed.

11 This result should be compared with the threshold obtained in epidemic processes that will be encountered
in Chapter 9. The similar dependence on the degree fluctuations shown by both phenomena reveals the deep
connection between epidemic spreading and percolation. This can be shown at a rigorous level by mapping
the random percolation process into the susceptible-infected-removed epidemic model (Newman, 2002b).
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As a first case, let us consider growing scale-free graphs made of N vertices,
with degree distribution P0(k) = ak−γ , where a is a normalization constant. The
finite number of vertices implies a maximum degree kc ≤ N to the network so that
the available degree range is k ∈ [m, kc], where m is the minimum degree. In this
case it is possible to show from general scaling arguments that the cut-off kc is a
growing function of the graph size kc(N ) (see Appendix A5). In the limit of large
N (kc(N ) � m), and assuming the continuous k approximation, the parameter κ

can be explicitly calculated and takes the form12

κ �

⎧⎪⎪⎨
⎪⎪⎩

γ−2
γ−3m for γ > 3,

2−γ
γ−3mkc(N )3−γ for 2 < γ < 3,

2−γ
3−γ

mkc(N ) for γ < 2.

(6.30)

For γ > 3, κ assumes a constant value independent of the network’s size or cut-
off. The network thus always exhibits a transition, located at the intrinsic threshold
value

gc = 1 − 1
γ−2
γ−3m − 1

. (6.31)

As expected, the more interconnected is the network (the largest is m), the closer
the threshold to 1, i.e. a larger amount of damage is needed to collapse the network.
This result shows that, for what concerns random damage, scale-free graphs with
a large degree exponent behave similarly to regular lattices or graphs with Poisson
degree distribution.

The picture is drastically different for scale-free graphs with γ ≤ 3. In this case,
κ → ∞ when N → ∞, which means that the threshold tends to 1 in the limit of an
infinite graph size. That is, scale-free graphs with degree exponent smaller than 3
are not vulnerable to the random deletion of vertices, since in order to eliminate the
giant component it is necessary to remove almost all vertices forming the network.
Graphs with a finite size, however, do exhibit a non-zero effective threshold which
depends on the actual size N of the network. In particular, for 2 < γ < 3 (the case
of interest for the Internet graphs), the threshold reads

gc(N ) � 1 −
(

3 − γ

γ − 2

)
kc(N )γ−3. (6.32)

Yet this threshold is generally quite close to 1 at relatively small network sizes. For
instance, by using the empirical values of the degree distribution of the AS graphs,

12 In the case of γ = 3, logarithmic corrections take over in the second moment of the degree distribution and
κ ∼ ln kc(N ).
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Fig. 6.8 Threshold for random removal of vertices in graphs with degree dis-
tribution P0(k) = ck−γ exp(−k/kc) as a function of kc and for different degree
exponent γ . For all γ ≤ 3 the network has a very high resilience with gc → 1 for
kc → ∞. It also appears that networks with lower γ have higher threshold and
thus a larger tolerance to damage.

the direct application of the theoretical prediction Eq. (6.29) yields gc ≈ 0.9. This
is in reasonable agreement with the analysis of the AS and AS+ maps performed
in Section 6.1.13

A different kind of finite-size effects are those introduced by physical or re-
source constraints (see Section 4.4). In this case an external cut-off kc, not de-
pending on the system size, determines a degree distribution of the form P0(k) =
ck−γ exp(−k/kc), for k ≥ 1. Inserting this distribution into Eq. (6.29) it is possible
to compute the threshold as a function of the undamaged cut-off kc, for different
values of the degree exponent (Callaway et al., 2000). Figure 6.8 reports the pre-
dicted behavior of gc, which also in this case tends to 1 for kc → ∞. In addition it
is clear that the threshold approaches larger values more rapidly in networks with
smaller γ . This behavior suggests a larger robustness for degree exponents closer
to 2, due to the larger relative density of hubs that keep the network connected.
It is interesting to note in this case that even relatively small values of the cut-
off (kc � 50) leave almost intact the networks robustness, still yielding a threshold
gc ≈ 0.8 − 0.9. This scenario might be relevant in the case of the IR level map, that
shows a cut-off at degree kc � 100 (see Section 4.4). Indeed, in this case a good
agreement with the theoretical prediction and the empirically observed threshold
is recovered.

13 The comparison of the theoretical results with the empirical data must be considered only as indicative. In
fact, the theory refers to scale-free graphs without degree correlations. Instead, degree correlations are present
in AS level graphs (see Section 4.5).
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Along with the critical threshold gc, it is also possible to work out the values of
the exponents β, γ , σ , and τ defined in Section 6.3 for percolation in an uncorre-
lated random scale-free graph. Indeed, using the generating functional technique,
Cohen, ben-Avraham, and Havlin (2002b) have determined the values

β =

⎧⎪⎨
⎪⎩

1/(3 − γ ) 2 < γ < 3

1/(γ − 3) 3 < γ < 4

1 γ > 4

, τ =
{

(2γ − 3)/(γ − 2) 2 < γ < 4

5/2 γ > 4
,

(6.33)

the exponents γ and σ being derived from the general scaling relations (6.10) and
(6.12). Interestingly, for γ > 4 we recover β = γ = 1, τ = 5/2, σ = 1/2, which
are the exponents corresponding to percolation in a Cayley tree. Once more, this
evidence confirms that uncorrelated random scale-free graphs with large exponents
γ > 4 are equivalent with respect to percolation to homogeneous random graphs
with Poisson degree distribution and infinite trees.

As a final remark, it is interesting to note the effect that the presence of de-
gree correlations can have in percolation on scale-free networks (Newman, 2002a;
Vázquez and Moreno, 2003). For networks in which correlations can be de-
fined by the conditional probability P(k′ | k) that a vertex of degree k is adjacent
to a vertex of degree k′ (Appendix A4), it is possible to show that the dam-
age threshold is given by gc = 1 − 1/�̃m , where �̃m is the largest eigenvalue
of the matrix C = {Ckk′ }, with elements Ckk′ = (k′ − 1)P(k′ | k), provided that
�̃m > 1 (Vázquez and Moreno, 2003). In this case, the resilience of the network
(gc → 1) depends on the divergence of the eigenvalue �̃m instead of the fluc-
tuations of the degree distribution, as was the case of random networks. Never-
theless, it can be proved that this eigenvalue diverges for all scale-free networks
with degree exponent γ ≤ 3, except in the peculiar case in which the divergence
is due to the vertices of degree 1 (Boguñá, Pastor-Satorras, and Vespignani,
2003b).

6.6 Internet’s Achilles heel

The scale-free nature of the Internet protects it from random failures, since the
hubs, that hold the network together with their many links, are difficult to hit in a
random selection of vertices. Since hubs are the key elements ensuring the connec-
tivity of the network, however, it is easy to imagine that a targeted attack, aimed at
the destruction of the most connected vertices, should have a very disruptive effect.
This possibility can be checked by analyzing the connectivity properties of Internet
maps in which a fraction g of the highest degree vertices have been deleted (Albert,
Jeong, and Barabási, 2000b; Broido and Claffy, 2002). In practice this is made by
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Fig. 6.9 Topological resilience to targeted attacks of the IR level Internet map
and an Erdös–Rényi random graph with the same average degree. By using this
damaging strategy, the IR map appears as as the most fragile network. Even a
density of removal as low as the 0.05% is enough to completely fragment the
network.

removing the vertices following a decreasing degree ordered list. The first vertex
to be removed is therefore the one with the highest degree. Then the second high-
est degree vertex is removed, and so on until the total number of removed vertices
represents a fraction g of the total number of vertices forming the network. As for
the random removal, the behavior of the giant component measured as Sg/S0 can
be studied for increasing damages g. In Figure 6.9, the topological resilience to
targeted attack of the IR level map is compared with that of an Erdös–Rényi graph
with the same average degree. In this case the emerging scenario is opposite to that
found for the random removal damage. Strikingly, the IR map appears much more
vulnerable than the Erdös–Rényi random graph. Obviously, it is also more vulner-
able than a regular mesh for which a targeted attack cannot be properly defined
(all vertices have the same degree) and thus can be considered to have the same
resilience as in the random removal case. The different behavior of the IR graph
and the Erdös–Rényi graph can be easily understood in terms of their degree dis-
tributions. The scale-free nature of the IR graph makes the long tail of large degree
vertices, the hubs, extremely important for keeping the graph connected. Their re-
moval leads right away to network collapse. The Erdös–Rényi graphs, however,
have a Poisson degree distribution in which the probability of finding a large hub
is exponentially small. Statistically, the vertices’ degree is almost constant around
the average value, and a targeted removal will soon be equivalent to a random re-
moval of vertices with nearly identical degree. In the latter case a targeted attack,
while still performing better than a random removal, does not reach the extreme
efficiency achieved in scale-free networks.
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Fig. 6.10 Topological response of the AS and AS+ maps to the targeted removal
of the most connected vertices. (a) Relative size of the largest connected cluster
in the network with respect to the size of the undamaged network. (b) Average
shortest path length of the largest cluster in the damaged network.

The targeted attack scenario is confirmed by the study of the AS and AS+ maps,
as shown in Figure 6.10. Also in this case it is observed that the networks almost
completely break down at a very small value of g. In particular, the largest cluster
in the AS map reaches a value close to zero for the removal threshold gc ≈ 0.04.
The AS+ map, however, vanishes for g+

c ≈ 0.06. The average shortest path length
grows for small g until reaching a maximum value that is, in both cases, close to
ten times larger than the value corresponding to the undamaged network. After
this maximum, 〈�〉g quickly decreases towards zero.14 The analysis of efficiency,
shown in Figure 6.11, confirms this picture. The value of Eg drops very quickly,
reaching a value close to zero for a fraction g close to 0.04. Interestingly, the effi-
ciency Eg for the targeted attack seems to decay as the logarithm of g, as shown in
the log-linear plot in Figure 6.11. This effect, which does not appear to be present

14 The plateau in the average shortest path length in Figure 6.10(b) is due to the long persistence of a largest
cluster of very small size, which finally disappears at larger values of g.
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Fig. 6.11 Relative efficiency of the AS and AS+ maps as a function of the frac-
tion of removed vertices in a targeted attack.

in the corresponding plots for Sg and 〈�〉g, is most probably related to the scale-free
nature of the maps.

As a final remark, it is interesting to notice the seemingly different behavior that
the AS and AS+ maps show in front of a targeted deletion of vertices. From Fig-
ure 6.10 it is apparent that the AS+ map is slightly more robust than the AS map:
Its largest cluster disappears for a slightly larger value of g, the peak in 〈�〉g being
correspondingly shifted to the right. Analogously, the efficiency Eg, Figure 6.11,
seems to decrease faster in the AS map than in its enriched counterpart. This dif-
ference, which was not present in the case of random damage, is probably due to
the fact that, both maps having a very similar number of vertices, AS+ has close
to 50% more edges. Therefore, the AS+ map has a larger average degree, which
makes it capable of sustaining a slightly larger degree of targeted damage. More-
over, in a targeted attack it is natural to expect differences from map to map, despite
their statistical similarities. Indeed, a targeted attack consisting in deleting nodes
in a sequence of decreasing degree, in an essentially deterministic procedure,15 is
not a self-averaging process and is thus very sensitive to the fine details of the map
under consideration. A random attack, on the contrary, is self-averaging, since it is
possible to have a statistical sampling of various damage realizations in the same
network for a fixed value of g. For instance, two artificially generated graphs with
the same statistical properties could just as well result in slightly different thresh-
olds due to the particular graph realizations considered. Averaging the random

15 One might consider the possibility of averaging a targeted attack experiment with a given value of g, that
deletes gN vertices and in which the first surviving vertex has degree kmax , over all the possible combinations
of vertices with degree kmax to be deleted, if there is more than one. The effect of this average, in any case,
will be always much smaller than in the case of random removal.
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damage experiment over several realizations on both networks, however, will pro-
duce exactly the same result. From this perspective, the difference in the targeted
attack threshold confirms the obvious difference between the AS and AS+ maps
at the microscopic level. Yet both maps show the same drastic change of picture
in resilience to random or targeted damage, thus being statistically equivalent with
respect to their topological large-scale properties.

6.6.1 Theory of targeted attacks

The intentional attack considered in this section can be studied in the context of
percolation as the targeted removal of a fraction g of the highest connected ver-
tices. According to Cohen, Erez, ben Avraham, and Havlin (2001a), the removal
of the most connected vertices has two parallel effects: (i) it reduces the original
cut-off kc of the degree distribution, and (ii) it deletes all the edges connected to
the removed vertices. The first effect can be easily taken into account by consider-
ing that, after the targeted deletion, there is a fraction 1 − g of surviving elements,
such that16

1 − g =
kc(g)∑
k=m

P0(k), (6.34)

where m is the network’s minimum degree and kc(g) is the new cut-off of the de-
gree distribution due to the removal of high degree nodes. Let us now specifically
consider the study of random uncorrelated scale-free graphs with degree distribu-
tion P(k) ∼ k−γ , which is the case of interest because of the drastic change of
resilience properties. In this case, neglecting the contribution of kc, that is sup-
posed to be very large compared with kc(g), we find

g =
∞∑

k=kc(g)+1

P0(k), (6.35)

that, in the continuous k approximation, can be inverted to yield

kc(g) � mg1/(1−γ ). (6.36)

That is, the surviving subgraph has a cut-off kc(g) < kc, that is a decreasing func-
tion of g, and diverges for g → 0. In order to take into account the reduction in
the number of edges implicit by the deletion of vertices, we consider that, in a ran-
dom uncorrelated graph, the probability that an edge points to a vertex of degree k

16 Note that in the analytic treatment of targeted attack we do not face the deterministic problem found in nu-
merical experiments in finite networks, since we are dealing with quantities averaged over an ensemble of
statistically equivalent random graphs of infinite size.
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is k P0(k)/〈k〉0 (for the undamaged distribution). Therefore the probability that an
edge is removed since it is pointing at a removed vertex is

r(g) � 1

〈k〉0

∞∑
k=kc(g)+1

k P0(k). (6.37)

Neglecting again the contribution of kc, and using the relation (6.36) between g
and kc(g), we find that

r(g) � g(2−γ )/(1−γ ). (6.38)

Cohen et al. (2001a) argue that, after a targeted removal of the more connected
vertices, the surviving graph is equivalent to a scale-free network with cut-off kc(g)

in which a random removal of edges with probability r(g) has been performed.
Using the results of Section 6.5 (since they are valid for the removal of either
vertices or edges), the threshold value gc is found as the self-consistent solution of
the usual relation for the disappearance of the giant component, i.e.

r(gc) = 1 − 1

κ(gc) − 1
, with κ(gc) =

∑kc(gc)
k=m k2 P0(k)∑kc(gc)
k=m k P0(k)

, (6.39)

where the cut-off kc(gc) is the one corresponding to the threshold gc. In the contin-
uous k approximation, we can integrate the previous expression and use Eqs (6.36)
and (6.38) to obtain

g(2−γ )/(1−γ )
c = 2 + 2 − γ

3 − γ
m

(
g(3−γ )/(1−γ )

c − 1
)

, (6.40)

that can be solved numerically to obtain the threshold gc(γ ) as a function of the
degree exponent γ and the minimum degree17 m.

In Figure 6.12 we plot the threshold gc as a function of the degree exponent
γ for minimum connectivities m = 1, 2, and 3. From this figure we can observe
that, for any m, gc reaches a maximum for a value of γ less that 2.5. The abso-
lute value of the maximum is, however, very small. For m = 1, for example, the
most resilient graph corresponds to a degree exponent γ ≈ 2.29; in order to de-
stroy its giant component it is sufficient to remove 6.2% of the most connected
vertices. In the case of the Internet, however, with γ � 2.1, the deletion of 4.7%
of the nodes yields the collapse of the network. This very small number must be
contrasted, however, with the value of the cut-off in the surviving subgraph which,
from Eq. (6.36), is kc(gc) ∼ 16. This means that, even for this small threshold,

17 This result strictly applies to power-law degree distributions and depends explicitly on γ . For Poisson graphs
the final threshold equation should take into account the details of the degree distribution and would lead to
threshold values much closer to the random removal case.
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Fig. 6.12 Threshold for the targeted removal of vertices in scale-free graphs
with different minimum connectivity m, as a function of the degree exponent
γ , computed using the continuous k approximation (Cohen et al., 2001a). The
inset shows the values corresponding to the discrete formalism (Dorogovtsev and
Mendes, 2001a) for m = 1.

great damage has been inflicted to the network’s connectivity. It is important to
note that the results obtained are defined in a statistical sense. As stressed in the
previous sections, targeted attack cannot be averaged on a single graph, since for
each graph only a single attack sequence exists. Therefore, the analytically ob-
tained threshold is recovered only by averaging over many network realizations or
in the strict infinite size limit. Nevertheless, in large enough networks the single
realization threshold will be extremely close to the predicted value.

Finally, the observation that the removal threshold depends considerably on the
density of “dangling ends” (vertices with degree one) present in the graph de-
serves a detailed discussion (Dorogovtsev and Mendes, 2001a). This implies that
a more correct description of targeted attacks should take into account the correct
form of the degree distribution for small values of k, and in particular its eventual
discreteness. For this purpose, Dorogovtsev and Mendes (2001a) consider a dis-
crete scale-free degree distribution with minimum connectivity m = 1, P0(k) =
k−γ /ζ(γ ), where ζ(x) = ∑∞

k=1 k−x is the Riemann Zeta function (Abramowitz
and Stegun, 1972). Within this discrete formulation, the condition (6.39) can be
rewritten as

kc(gc)∑
k=1

k(k − 1)k−γ = ζ(γ − 1). (6.41)
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From this last equation one can numerically obtain the value kc(gc), and from it re-
cover the threshold for targeted deletion using Eq. (6.34). The inset in Figure 6.12
shows the threshold gc thus obtained as a function of the degree exponent. The
discrete nature of the degree distribution is reflected in a smaller threshold, which
at the maximum point is close to one half the value corresponding to the continu-
ous k approximation. While the effect of the discreteness of the degree distribution
appears to be quite noticeable, it is important to keep in mind that, for most real
systems such as the Internet, the distribution for small k has not been thoroughly
explored. Therefore, and in order to qualitatively account for large k behavior, the
continuous approximation qualifies rather well (Cohen, Erez, ben Avraham, and
Havlin, 2001b).

6.7 The price of a fail-safe Internet

It is surprising to realize how the original goal for a designed secure computer net-
work has been accomplished is a self-organized Internet, which has not followed
any pre-established plan, but has evolved instead driven by local, unpredictable,
and sometimes selfish, individual decisions. The outcome of this process is the
present Internet, whose scale-free distribution seems to give us for free a stunning
robustness to failures. From an economical point of view that is a very welcome
property because it allows the use of cheap elements with the certainty that they
will not endanger the communication capabilities of the Internet. However, noth-
ing comes for free in the long term, and the price to pay may indeed be very
high. The very same scale-free distribution that is responsible for the extreme ro-
bustness of the Internet is at the same time its own Achilles’s heel, bearing the
seed of its possible destruction. A coordinated malicious attack, targeting the most
connected vertices, can disrupt with minimal effort the Internet fabric, collapsing
it into a myriad of helpless isolated islands, with no capability to communicate
among them. This weakness of the Internet points to the need for the urgent design
of defense strategies able to protect the Internet from targeted denial-of-service
attacks, that could easily cripple the network.
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Virtual and social networks in the Internet

The Internet and the World Wide Web (also known as WWW or simply the Web)
are often considered as synonyms by non-technical users. This confusion stems
from the fact that the WWW is at the origin of the explosion in Internet use, pro-
viding a very user-friendly interface to access the almost infinite wealth of infor-
mation available on the Internet. The WWW, though, is a rather different network
in the sense that it is just made from a specific software protocol, which allows
access to data scattered on the physical Internet. In other words, it is a virtual net-
work which lives only as a sort of software map linking different data objects.
Nevertheless, the Web finds a natural representation as a graph and it is a stun-
ning example of an evolving network. New Web pages appear and disappear at an
impressive rate, and the link dynamics is even faster. Indeed, the fact that we are
dealing with virtual objects makes Web dynamics almost free from the physical
constraints acting on the Internet. Any individual or institution can create at will
new Web pages with any number of links to other documents, and each page can
be pointed at by an unlimited number of other pages.

The Web is not the only virtual network present on the Internet. Users interac-
tions and new media for information sharing can be mapped as well in a graph-like
structure. The graph of e-mail acquaintances of Internet users is a well-defined
example of social network hosted by the Internet. Similarly, peer-to-peer (P2P)
systems, such as the Gnutella file sharing protocol, can be mapped to dynamic
graphs with a large number of vertices that join and leave the network at a very
high rate. Also in this case, the network is a reflection of a certain particular social
community on the Internet.

Virtual networks have became the information transfer media for hundreds of
millions of users and, similarly to the physical Internet, have grown to become
enormous and complex systems as the result of a self-organized growing process.
It is therefore not surprising that we find in virtual networks a vast array of emer-
gent phenomena and topological properties that can be expressed as mathematical

140



7.1 The World Wide Web 141

laws governing graph structure and evolution. These laws are the outcome of the
interactions among the many individuals forming the various communities and can
provide insights on many phenomena such as WWW usage and traffic patterns, or
spreading of computer viruses by the e-mail.

In this chapter we want to provide an overview of the main virtual networks
hosted by the physical Internet. We shall report on the experiments devoted to
the measurements of their structure and the results concerning their large-scale
topology. The correspondences with the underlying Internet’s physical topology
as well as the relevant differences in graph structure will be analyzed in order to
pinpoint the basic ingredients that must be included in the modeling of virtual and
social networks.

7.1 The World Wide Web

7.1.1 What is the Web

The Web, born at the Counseil Europeen pour la Recherche Nucleaire (CERN),
is an evident example of the unexpected practical benefits of basic research. The
CERN is a very large research facility with thousands of researchers and hundreds
of computer systems. In order to help with the sharing of data among researchers
in the High Energy Physics Department, Tim Berners-Lee completed in 1989 a
research proposal for a system aimed at sharing and navigating information across
different networks. Robert Cailliau, who independently presented a project on a
hypertext system at CERN, soon joined Berners-Lee in his effort to get the Web
off the ground, and in 1990 the first Web browser and server were communicating.

In very simple terms, the Web is an Internet-based computer network that allows
the navigation and retrieval of data scattered on the global Internet. It is based on
a client–server architecture. In this architecture the client relies on a program, the
Web browser, that connects to a remote machine, the Web server, where the data
are stored. The Web server is the computer that handles all the communication
with individual users and were data are stored in the form of Web pages. The
structure of Web pages is defined with a common HyperText Markup Language
(HTML) so it is easily and quickly communicated across the Internet. Hypertexts
point to data objects, be it text or figures, by hyperlinks which specify the logical
address of the Web page containing the related information. The address space is
specified by a Uniform Resource Locator (URL) that identifies Web servers on
the Internet and the particular page in each Web server in a hierarchical way very
similar to the Domain Name System (see Chapter 2). The communication protocol
devised for the WWW is named HyperText Transfer Protocol (HTTP) and allows
the downloading and formatting of Web pages by sending a specific request to
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the Web server. By its nature, the hypertext structure defines a network of pages
connected by hyperlinks, readily providing a graph representation whose vertices
are HTML pages and edges are the hyperlinks pointing from one page to another.

Two main ingredients contribute to the incredible success of the WWW. First it
is a very user-friendly and open system, that can be used by anyone familiar with
a computer window and the mouse. In practice, the user just has to follow links
which are as natural and intuitive to use as pressing a button. A second important
feature is that the program code was in the public domain since its early devel-
opment stages, so that anyone in the cyber community could use and improve it.
These ingredients have made the Web so successful that its rapid and unregulated
growth has led to a huge and complex network for which it is difficult to even
guess the total number of Web pages.1 It is not just the structure of the Web that
has developed to become very complex and intricate, but also the various dynamics
taking place on it, such as navigating patterns, community structures, congestions,
and other social interaction phenomena driven by the Web users (Huberman and
Lukose, 1997; Huberman, Pirolli, Pitkow and Lukose, 1998). All these factors have
triggered the interest of researchers to what has been defined by Huberman (2001)
as an ecology of information, and have led to the development of methods for the
gathering of data on the graph structure of the Web and the dynamical patterns
related to its use.

7.1.2 Structure and topology of the Web graph

All the experiments aimed at studying the graph structure of the WWW are based
on Web crawlers that explore the Web connectivity by following the links found
on each page. In practice, Web crawlers are special programs that, starting from
a source page, detect and store all the links emanating from it and follow them
to build up the set of pages reachable from the starting one. This process is then
repeated for all pages retrieved, obtaining a second layer of vertices and so on,
iterating for as many possible layers as allowed by the available storing capacity
and CPU time. From the collected data it is then possible to reconstruct a graph
representation of the Web by identifying vertices with Web pages and edges with
the connecting hyperlinks.

The Web graph has a basic difference with respect to the graphs analyzed so
far in studying the physical Internet. For each Web page we know the number of
outgoing hyperlinks, but in principle we know nothing about the incoming hy-
perlinks from other pages. That is, we can follow outgoing hyperlinks to reach

1 Lawrence and Giles (1999) estimated in February 1999 a lower bound of 8 × 108 documents in the publicly
indexable WWW, scattered on about 3 million Web sites.
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pointed pages, but we cannot navigate on the way back the incoming hyperlinks.
The Web graph is thus a directed graph, in which edges connect ordered pairs of
vertices (see Appendix A1). This implies that, given a pair of vertices (i, j), we
must specify if the connecting edge goes from i to j or vice-versa. The direct-
ness has several noticeable implications on graph characterization. First of all, we
can introduce the out-degree kout and the in-degree kin of each vertex, defining
the number of outgoing and incoming directed edges, respectively. In addition, the
connectivity properties depend on the direction of the edges. A path connecting
two vertices i and j exists if there is a sequence of directed edges going from i to
j through an intermediate number of vertices. However, a path from i to j does
not necessarily imply the presence of a path from j to i . This fact complicates
reasonably enough the structure of the connected components in directed graphs,
as shown in Appendix A1. Moreover, the directness affects the definition of the
average shortest path length of the graph 〈�〉, since we have to restrict the average
over pairs of vertices for which a directed path exists.2 For this reason, in directed
graphs it is sometime preferable to consider the diameter dG of the graph, defined
as the largest of the shortest directed paths.

One of the first attempts to characterize the topological properties of the Web
graph has been provided by Albert et al. (1999) by analyzing data collected by
a specifically devised Web crawler, mapping 325,729 Web pages and 1,469,680
hyperlinks in the University of Notre Dame domain. This analysis highlighted
the small-world property of the Web, that despite the large number of pages con-
sidered showed an average shortest path 〈�〉 � 11. This striking evidence for the
small-world character of the WWW has been confirmed by the largest data sample
analyzed (see Broder, Kumar, Maghoul, Raghavan, Rajagopalan, Stata, Tomkins,
and Wiener, 2000). In this work, the authors used databases from a Web crawl per-
formed from several starting points at AltaVista in May/October 1999.3 Because
of the multiple starting points and a full account of the directed nature of the edges,
this study identified the full complex hierarchy of connected components allowed
by the directed nature of the Web graph. In Figure 7.1 the full structure of the
largest connected component of the Web graph is reported. In particular, the giant
strongly connected component (GSCC), where a directed path exists between any
pair of pages, is formed by 56 million pages. Connected to this core the IN and
OUT components, also referred to as the giant in- and out-components, are found.
These two sets are formed by pages linked by a directed path that enters into or
exits from the GSCC, respectively, and amount to 44 million pages each. Along

2 Pairs not connected with a directed path are considered to have infinite distance, and even a single pair of this
kind would cause the average shortest path length to diverge.

3 The largest of these databases contains 271 million pages and 2,130 million hyperlinks.
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Fig. 7.1 Sketch of Web connectivity. The giant weakly connected component,
composed of the pages connected without regard to the directed nature of edges,
is partitioned into several sets. From any vertex in the IN set it is possible, passing
through vertices in the GSCC, to reach any vertex in the OUT set. Tendrils contain
vertices that are reachable from portions of the IN set, or can reach portions of the
OUT set. Finally, tubes represent a direct passage from some vertex in IN to some
vertex in OUT without passing through the GSCC. The remaining 5% of vertices
belong to smaller disconnected components. The shape of the figure has led to
the definition of bow-tie connectivity structure. Figure adapted from Broder et al.
(2000).

with these larger sets, smaller disconnected components, as well as tendrils and
other structures, have been identified in the graph.4

In these datasets, the average shortest path length between vertices connected
by a directed path is slightly over 16, in fair agreement with the small-world be-
havior expected for graphs of size N � 108. It must be noticed, however, that the
significance of this quantity is diminished by the fact that, for the majority of pairs
of pages, there is no directed connecting path. The small world property, however,
is clearly recovered in the directed diameter of the GSCC that settles into the very
small value of 28. Finally, it is interesting to observe that the small-world prop-
erties persist at a different level of granularity. For instance, Adamic (1999) has
studied the WWW at the level of Web sites, thus coarse graining many pages into
just one vertex of the representative graph. Also in this case it is found that the
average distance between any two Web sites is just about four clicks. Interestingly,
it is at the level of Web pages that we can find a first signature of the presence
of scale-free features in the Web. That is, the number of Web pages contained by
Web sites is highly variable, with a few sites containing even thousands of pages

4 See Appendix A1 for their precise definition.
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while a majority of them contain just a few tenths. Not surprisingly, the probability
distribution that a site has a certain number of pages is a heavy tailed distribution
well approximated by power-law behavior (Adamic and Huberman, 2001).

As for the physical Internet, relevant topological information and further evi-
dences for the scale-free character of the Web can be gathered by studying the
in-degree and out-degree probability distributions. The behavior of the probability
distribution P(kin) that any given Web page is pointed by kin hyperlinks shows
a remarkable agreement in all studies, regardless of the sample size considered
(Kumar, Raghavan, Rajagopalan and Tomkins, 1999; Albert et al., 1999; Broder
et al., 2000; Laura, Leonardi, Millozzi, Meyer, and Sibeyn, 2003). The distri-
bution exhibits a heavy tailed form, well approximated by power-law behavior
P(kin) ∼ k−γin

in , with γin � 2.1 (see Figure 7.2). The out-degree distribution also
appears to be heavy tailed. However, attempts to fit the distribution with strict
power-law behavior provide exponent values ranging from 2.4 to 2.8, depending
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Fig. 7.2 Degree distributions of (a) the in-degree and (b) the out-degree of
WWW pages. The double logarithmic plot evidentiates the heavy tailed prop-
erties of both distributions. For the in-degree distribution a very good power-
law fit P(kin) ∼ k−γin

in with γin = 2.1 ± 0.1 is obtained. The degree data are
from Laura et al. (2003), obtained by analyzing a Web graph collected by
Gary Wesley in December 2000 at the WebBASE project at Stanford University
(http://www-diglib.stanford.edu/∼testbed/doc2/WebBase/).
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on the range of kout and the Web sample considered.5 In particular, in the largest
data sets analyzed (Broder et al., 2000; Laura et al., 2003), the out-degree distribu-
tion appears to have an evident bending deviating from a pure power-law behavior.
As discussed in Section 4.4, this bending could be the signature of an exponential
cut-off of the distribution. The origin of the cut-off can be explained by the dif-
ferent nature of the in-degree and out-degree evolution. The in-degree of a vertex
is the sum of all the hyperlinks incoming from all the Web pages in the WWW.
In principle, thus, there is no limit to the number of incoming hyperlinks, that is
determined only by the popularity of the Web page itself. On the contrary, the
out-degree is determined by the number of hyperlinks present in the page, which
are controlled by Web administrators. For evident reasons (clarity, handling, data
storage) it is very unlikely to find an excessively large number of hyperlinks in a
given page. This represents a sort of finite capacity (Amaral et al., 2000) for the
formation of outgoing hyperlinks that might naturally lead to a finite cut-off in the
out-degree distribution.

Interestingly, the data about the power-law degree behavior can be refined by
looking at thematic groups of Web pages. The Web, indeed, can be naturally
decomposed in unified groups of pages, identified by the category of the pages’
contents. Pennock, Flake, Lawrence, Glover, and Giles (2002) have analyzed the
in-degree distributions for the category of company, university, newspaper, and
scientist Web pages. The distributions appears in all cases to be highly variable.
Systematic deviations from power-law behavior, however, are observed at small
in-degree values. More interestingly, the power-law fit of the heavy tail gives a
quite variable exponent, ranging from γin � 2.1 to 2.6 (see Table 7.1). Despite the
statistical fluctuations in the data point to the measured values of the exponents as
indicative rather than precise estimates, yet these variations could signal slightly
different dynamics depending on the subject category.

Category Computer Science Universities Companies Newspapers

γin 2.66 2.63 2.05 2.05

Table 7.1 In-degree distribution exponent in Web pages of homogeneous
category. These values should be compared with γin = 2.1 holding for the whole
Web statistics (Data from Pennock et al., 2002)

5 Strikingly, the power-law behavior of the in-degree and out-degree distributions is recovered also at the coarser
granularity of Web sites. Also in this case the probability that any site has a given aggregated number of hyper-
links pointing to or departing from it is power-law distributed over almost five orders of magnitude (Adamic
and Huberman, 2001).
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The obvious existence of thematic groups in the WWW can be extended by con-
sidering the large number of communities hosted by the Web. These are groups of
people sharing the same interests, which represent the sociological dimension of
the Web. This characterization is obviously of great importance in the development
of Web navigation tools and search engines. The vast activity on the “taxonomy”
of Web communities is a field of research per se, that struggles with the measuring
of the the semantic content of the pages as well as the link topology. While an
extensive account of these studies is beyond the scope of this book, it is worth
mentioning the attempts to find a signature of various cyber communities that
have led to several analyses focusing on subgraphs of the WWW graph (Gibson,
Kleinberg, and Raghavan, 1998; Kumar et al., 1999; Flake, Lawrence, and Giles,
2000; Kleinberg and Lawrence, 2001; Adamic and Adar, 2001; Eckmann and
Moses, 2002). In general, communities are identified by an unusually high density
of edges among small subgraphs (see Figure 7.3). Given the directed nature of the
WWW, a first mathematical way to account for these communities is to look at
the number of bipartite cliques present in the graph (Kumar et al., 1999; Dill,
Kumar, McCurley, Rajagopalan, Sivakumar, and Tomkins, 2001; Laura, Leonardi,
Caldarelli, and De Los Rios, 2002). A bipartite clique Kn,m identifies a group of
n vertices, all of which have a direct edge to the same m vertices. Naı̈vely, we can
think of the set as a group of “fans” with the same interests and thus pointing in
their Web pages to the same set of relevant Web pages of their “idols.” Another
way to detect communities is to look for subgraphs where vertices are highly in-
terconnected among themselves and poorly connected with vertices outside the
subgraph. In this way, different communities can be traced back with respect to

(a) (b)

Fig. 7.3 Communities of pages on the same topic can be identified by highly
interconnected subgraphs. (a) A clique K4,3 in which four pages of fans point to
the same set of pages, the idols. (b) A community of vertices (within the dashed
oval) weakly connected to the rest of the network. A community is also detectable
as a set of pages in which each vertex has a higher density of edges within the set
than with the rest of the network. Figure adapted from Kleinberg and Lawrence
(2001).
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varying levels of cohesiveness. In general, the Web graph presents a high number
of bipartite cliques and interconnected subgraphs, all identified by an unusually
high density of edges. It easy to realize that such local properties are likely to cor-
respond to a high clustering coefficient for the subgraphs, and the global statistical
abundance of communities can be obtained by analyzing the average clustering
coefficient of the Web graph. Measurements of the average undirected clustering
coefficient6 confirm the clustered nature of the Web, providing experimental val-
ues about four to five orders of magnitude larger than those expected in random
graphs of comparable size (Laura et al., 2002). The Web is thus no exception to
the small-world-yet-clustered nature of many social and technological networks.

In summary, the WWW dynamical evolution generates small-world properties,
heavy tailed distributions, and a high level of clustering along with a rich con-
nectivity structure due to the directness of the graph. As for the physical Internet,
the Web too cannot find a satisfactorily representation in terms of standard static
models. Also in this case a correct modeling calls for the identification of the ba-
sic organizing dynamical principles spontaneously leading to the wide range of
emergent properties observed in real data analysis.

7.2 Modeling the Web

The WWW and the Internet graphs exhibit qualitatively similar topological fea-
tures. This suggests that, despite their different nature, both networks are possi-
bly following some common organizing principles. Indeed, both graphs belong
to the more general class of growing scale-free networks and many of the mod-
els aimed at describing these networks have been originally devised having in
mind the WWW dynamics. The preferential attachment mechanism, in particular,
finds its very inspiration and application in the context of Web growth (Barabási,
Albert, and Jeong, 2000). At a first approximation, the Web dynamics is eventu-
ally ruled by popularity. The more popular is a Web page, the more likely it will
receive new hyperlinks. However, an obvious measure of a Web page’s popularity
is the number of pointing hyperlinks, readily implying that a Web page will receive
new hyperlinks in a way proportional to its actual in-degree. The preferential at-
tachment mechanism, and its implementation in the Barabási–Albert construction,
thus indicate the universal growth mechanism as at the basis of the emergent prop-
erties of both the Internet and the WWW. However, the Barabási–Albert algorithm
is just the simplest implementation of the preferential attachment mechanism and
it is not intended to be a realistic model of any real-world network. Rather, it is a
zero-order conceptual model which can be used as the paradigm for much more

6 The directionality of edges is not considered.
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articulate models, taking into account the various particular processes taking place
in the network under consideration. In the following we will provide a review of
models that consider explicitly some of the specific characteristics of the WWW
dynamics.

7.2.1 Preferential attachment models

As we have seen for the Internet, a wide range of growing models have been for-
mulated, considering extra features such as rewiring, additional edges, and fitness
heterogeneity (see Chapter 5). All these additional ingredients are also likely to be
relevant in the WWW evolution. Realistic models for this network, however, can-
not overlook the directed nature of this graph. This has led to the formulation of
several growing network models in which the directionality of edges is explicitly
considered in the evolution dynamics.

A first example in this direction is the directed model proposed by Dorogovtsev
et al. (2000) (see Section 5.6). Essentially this model considers a Barabási–Albert
growth rule with directed edges. At each time step a new vertex is introduced and
emanates m directed edges to already existing vertices following a preferential
attachment with probability �[kin] ∼ A + kin . The variable A is a constant rep-
resenting the initial attractiveness of each vertex, and allows new vertices with no
incoming edges to participate in the dynamics. The growth rate equation for the
average in-degree at time t of a vertex appearing at time s thus reads as

∂kin,s(t)

∂t
= m

A + kin,s(t)

(A + m)t
, (7.1)

where the denominator is the correct normalization factor due the t vertices
present in the network. The solution to this model is analogous to those shown
in Section 5.6 with the simple rescaling 2m → m in the normalization factor,
since directed edges count just once in the in-degree. Taking into account the
boundary condition kin,s(s) = 0 (all vertices are added with a zero in-degree),
we obtain the in-degree distribution P(kin) ∼ (A + kin)

−2−A/m . The introduc-
tion of constant popularity has thus the advantage of introducing the possibility
of tuning the degree exponent to any value in the range ]2,∞]. With this defini-
tion, however, the model yields an out-degree distribution that is a delta function
at the value m, i.e. P(kout ) = δ(kout − m). A model with a very similar struc-
ture, the addition of a uniform component, has been also proposed by Pennock
et al. (2002) to fit the degree distribution variability found in uniform topic Web
pages.

Tadic (2001) and Krapivsky, Rodgers, and Redner (2001) focus on another dis-
tinctive feature of the WWW by developing directed models in which a high level
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of rewiring is considered. The insight at the basis of these models is that edges
between pairs of vertices change on a very short time scale, comparable with that
of the new vertices’ appearance. The proposed models contain a few differences
in the precise formulation of the dynamics which however do not affect the final
topology of the obtained graph. Tadic’s (2001) version of the model incorporates a
growth mechanism in which at each time step a new vertex is added along with M
new edges. A fraction αM of these edges emanates from the new vertex, while the
rest is established between already existing vertices. The parameter α thus mea-
sures the balance between new edges due to the enlargement of the network and
those due to updating and discovery of new interesting pages. Since the network is
directed, in placing the new edges among existing vertices, the emanating edge has
to be specified. This is made stochastically by selecting the emanating vertex i with
a probability p proportional to the vertex out-degree kout,i ; i.e., p(i) ∼ kout,i . This
amounts to assuming that the updating of edges is occurring more frequently on
vertices with a large number of outgoing hyperlinks. These vertices are supposed
to be more active and thus more frequently selected. New edges from both new and
old vertices point to vertices chosen by following the usual preferential attachment
rule in which the popularity is measured as the number of incoming edges; i.e.
�[kin] ∼ kin . The model can be inspected both analytically and numerically and
yields power-law degree distributions P(kin) ∼ k−γin(α)

in and P(kout ) ∼ k−γout (α)
out ,

where the degree exponents are a function of the parameter α expressing the rate
of edges due to new vertices. The parameter α allows the tuning of the exponents
and can be considered as an external input to be obtained by empirical measure-
ments.

The previous models consider that the total number of edges present in the net-
work is a monotonous growing function of time. This is true on average due to
the net balance between the appearance and updating of new hyperlinks and their
disappearance when they become obsolete. However, if a realistic Web dynamics
is the final aim, the latter processes should be explicitly considered. This is in-
deed the case of the directed version of the Internet model by Goh et al. (2002)
reported in Section 5.8.1. Inspired by the multiplicative noise scenario put forward
by Huberman and Adamic (1999), the model assumes that the number of vertices
N follows a steady multiplicative growth of the form ∂ N (t)

∂t = pN (t), that in a
discrete formulation implies that at the time step t , pN (t − 1) new vertices are
introduced in the network (Kahng, Park and Jeong, 2002). Each one of these new
vertices then emanates m edges pointing to old vertices chosen following the pref-
erential attachment rule for the in-degree, i.e. �[kin] ∼ kin . Since vertices have
the possibility of receiving new edges only because of their popularity, measured
by kin,i , new vertices are assigned an entry level of popularity equal to 1. The up-
dating of hyperlinks is then represented by the time evolution of the out-degree,
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which follows for each vertex the dynamics

∂kout,i (t)

∂t
= kout,i (t)ξi (t). (7.2)

Here ξi (t) is a stochastic variable with average 〈ξi (t)〉 = g and variance
〈ξi (t)ξi ′(t ′)〉2 − g2 = σ 2δt,t ′δi,i ′ . The parameter g > 0 represents the average
growth rate of outgoing hyperlinks and σ is the fluctuation level of this process.
This implies that, while on average the number kout,i is increasing, negative fluctu-
ations may lead to the deletion of edges. In particular, if kout,iξi (t) > 0, the same
number of new outgoing edges will be established with randomly chosen vertices
following the preferential attachment rule �[kin,i ] ∼ kin,i . If kout,iξi (t) < 0, the
corresponding number of vertices will be simply deleted. The model can be an-
alytically studied, yielding a power-law behavior for both the out- and in-degree
distributions. While the out-degree exponent depends in general on the full set
of parameters p, g, and σ , the in-degree exponent can assume only two values,
namely γin = 2 if p ≥ g and γin = 1 if p < g. This result appears particularly in-
teresting since it relates the topology of the Web to the relative growth rate of ver-
tices and edges. In particular, the experimental results appear to place the WWW
in the case p ≥ g, in which the number of Web pages is increasing faster than
the average number of outgoing edges. This seems perfectly plausible because,
while the number of Web pages is increasing at a very quick pace that precludes
even their numerability (Lawrence and Giles, 1999) the number of hyperlinks that
can be added to each page is constrained by handling and visual representation
capabilities and our limited knowledge of the Web.

A common characteristic of the WWW models analyzed so far is that the het-
erogeneity of vertices is not considered. This implies that they are differentiated
only by the arrival time. As we discussed in Section 5.8.2, this makes older ver-
tices always the most connected ones. Implicitly, we are not considering that a
new Web page with very interesting content may rapidly become a very success-
ful one and outmatch older competitors. On the contrary, we know that this kind
of event often occurs, and Adamic (2001) has provided a quantitative measure of
this effect by showing that in-degree and age are rather uncorrelated variables in
WWW pages. The natural way to deal with this fact in Web models is with the
introduction of a fitness parameter that models the heterogeneous attractiveness
of Web pages (Bianconi and Barabási, 2001). The original fitness model was for
undirected networks, and a promising path for WWW modeling is represented by
the inclusion of directness elements in its formulation.

Finally, we want to mention an interesting model which combines the pref-
erential attachment paradigm with the textual content affinity of Web pages
(Menczer, 2002). Indeed, it is easy to see that popularity is not the only force
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that drives the establishment of hyperlinks. Despite the fact that the Internet Movie
database Web site is extremely popular, it is very unlikely that a Web page special-
izing in gardening will point to it. Therefore, the in-degree popularity has a limited
significance out of thematic areas. In particular, Menczer (2002) has empirically
measured the probability that two given pages i and j are connected as a function
of their lexical distance7 ρ(i, j). The analysis of real Web samples indicate that
below a certain threshold value ρ∗, the probability that two pages are connected
is independent on the lexical distance, while above the threshold this probability
decays as a power law. Menczer (2002) has cast this empirical evidence in the
following definition of a growing network model: at each time step a new vertex
(Web page) i joins the network. To each new vertex it is assigned a lexical distance
ρ(i, j) with all existing vertices j . These values are randomly drawn from a prob-
ability distribution p(ρ) empirically derived from real data. The new vertex then
emanates m new edges pointing to already existing pages selected with probability

�[kin, j ] =
⎧⎨
⎩

kin, j/mt if ρ(i, j) < ρ∗

cρ−α(i, j) otherwise.
(7.3)

Here, α, c and ρ∗, analogously to the lexical distance probability distribution p(ρ),
are external parameters to be consistent with the empirical measurements and
normalization factors. The hyperlink addition is thus based on the pages’ popu-
larity only for pages with similar content, and assumes a decreasing power-law
probability for pages with very different content. The model is quite suscepti-
ble to the external parameters introduced, but it appears to reproduce quite well
the topology of the data sets from which these values are consistently obtained.8

Though, the most important feature of the model consists in the introduction of
a locality mechanism in the growth evolution. The model does not assume that
the author of a given Web page (the vertex) has a global knowledge of the whole
network popularity (the in-degree of all other vertices). On the contrary, it as-
sumes the knowledge of popularity only for pages with similar content. This is a
plausible assumption as content-related pages are known to the author or easily
discovered by using search engines. We shall see in the next section how lim-
ited knowledge assumptions might be used to effectively recover a preferential
attachment mechanism without requiring its explicit implementation in the growth
process.

7 The lexical distance is measured in terms of the textual content similarity of the pages with metrics traditionally
used in information retrieval (Menczer, 2002).

8 Menczer (2002) reports numerical simulations with parameter values obtained by data collected on 150, 134
Web pages extracted from the Open Directory Project snapshot of February 14, 2002, http://dmoz.org.
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7.2.2 Alternative mechanisms for preferential attachment

A different class of models relies on plausible dynamical mechanisms for Web
evolution that at first sight seem to depart from the preferential attachment mech-
anism. However, as we shall see in the following, they do contain this mechanism
in disguise, and probably represent a basic understanding of its very microscopic
origin in the WWW.

The copying mechanism is one of the alternative processes considered in the
WWW dynamics (Kleinberg, Kumar, Raghavan, Rajagopalan, and Tomkins, 1999;
Kumar, Raghavan, Rajagopalan, Sivakumar, Tomkins, and Upfal, 2000). The in-
spiring consideration for this mechanism is that new pages dedicated to a certain
thematic area copy hyperlinks from already existing pages with similar content.
This is because Web page authors find out about Web pages of related content
and follow their hyperlinks, many of them pointing to other related Web pages.
Naturally, a certain fraction of these hyperlinks will be copied also in the new
page. This has been translated in a growing model in which at each time step a
new vertex (Web page) is added to the network9 and a corresponding prototype
vertex is selected at random among those already existing. Each new vertex emits
m ≥ 1 new outgoing edges initially chosen to point to the vertices pointed to by
the prototype vertex. At this stage a copy factor α (constant for all new vertices) is
introduced. With probability 1 − α each edge is retained as it is; with probability
α it is rewired on a randomly chosen vertex of the network. The copy factor intro-
duces the possibility that not all edges are just copied from the prototype vertex,
since the Web page author might find other interesting pages in the network by
a random exploration. A pictorial illustration of the copying model dynamics is
provided in Figure 7.4.

α

1−α

Fig. 7.4 Illustration of the rules of the copying model. A prototype vertex (black
dot surrounded by a circle) is selected and a new vertex (hollow dot) is created
with virtual edges pointing to the neighbors of the prototype. With probability
1 − α the virtual edges are kept; with probability α they are rewired to a randomly
chosen vertex.

9 Along with this linearly increasing model, Kumar et al. (2000) consider also a model in which there is an
exponential increasing of the number of vertices in the network; i.e. at each time step a number of vertices
corresponding to a fraction of the entire network is introduced. The resulting network topology is qualitatively
similar to the linear growth case described here.
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The copying model has been studied analytically, and Kumar et al. (2000) have
provided rigorous results concerning the in-degree distribution and the number of
cliques present in the network. While the out-degree distribution is by construction
P(kout ) = δ(kout − m), the in-degree distribution is power-law distributed accord-
ing to P(kin) ∼ k−(2−α)/(1−α)

in . The copy factor is thus the tuning parameter for the
degree exponent of the model. It also controls the number of cliques formed by the
network. By definition, the copying model favors the formation of cliques. Indeed,
duplicated vertices naturally lead to bipartite cliques pointing to the same set of
vertices. This is evident for all cliques Ki, j with j ≤ m, whose formation and en-
largement is regulated by the probability that a vertex duplicates the j edges of a
“fan” leading to the “idols,” i.e. (1 − α) j . In particular, it has been shown that the
number of cliques Ki,m increases as a power law with the network size. This is
very different from what happens in random graph models where the number of
cliques is very small and constant with the graph size.

Given its richness and fundamental character, the copying model has also stim-
ulated the development of models enriched by other features, aimed at a more
detailed representation of the WWW graph. Among the various generalizations, a
very interesting one consists in the layer model proposed by Laura et al. (2002). In
this model, each new vertex is assigned to one or more thematic layer and the
copying mechanism takes place only with vertices belonging to the same the-
matic layers. The definition of thematic layers allows a richer community struc-
ture and the introduction of a content characterization in the formation of the Web
graph.

The copying mechanism generates power-law in-degree distributions and natu-
rally leads also to the small-world property in view of the general results of Sec-
tion 5.6 for random scale-free models. Additionally it also generates a noticeable
level of local structure by favoring clique formation, thus providing a good model
of Web communities. The model seems to generate scale-free networks without
relying on the preferential attachment mechanism, but this is not the case if we
scrutinize more closely the copying dynamics. Let us focus on a generic vertex
of the network and calculate the probability of receiving an edge during the ad-
dition of a new vertex. For each of the m edges of the new vertex we have that
with probability α a random vertex in the network is chosen. Thus any vertex has
a probability α/N to receive an edge, where N is the size of the network. With
probability 1 − α, however, the vertex, which is pointed to by one of the edges of
the prototype vertex, is selected. The probability that any given vertex is pointed
to by this edge is given by the ratio between the number of incoming edges of that
vertex, and the total number of edges, i.e. kin,s/mt . This second process increases
the probability of high degree vertices to receive new incoming edges and in the
limit of large network sizes we have that the mean-field evolution for the copying
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model can be written in the usual growth rate equation as (Section 5.4)

∂kin,s(t)

∂t
= m

[
α

t
+ (1 − α)

kin,s(t)

mt

]
, (7.4)

where it is considered that N � t for large linearly growing networks.
The solution of the above equation with the boundary condition kin,s(s) = 0

yields

kin,s(t) = αm

1 − α

[(
t

s

)1−α

− 1

]
. (7.5)

From this equation, the in-degree distribution can be easily found by applying the
general method shown in Section 5.4, namely

P(kin) ∼ (k0 + kin)
− 2−α

1−α , (7.6)

where k0 = αm/(1 − α) is an offset constant, thus recovering for large kin values
the rigorous result of Kumar et al. (2000). Therefore, through its local dynami-
cal rules, the copying model defines an effective preferential attachment growth
dynamics. This is a striking result, since the model is defined on the very simple
assumption of selecting a prototype vertex, without any knowledge of the pop-
ularity or the degree importance of the vertex. The copying model thus offers a
microscopic explanation for the preferential attachment mechanism that was just
used as an empirical law in other models.

A Web growth model based on a different local exploration mechanism, though
with a mathematical structure similar to the copying model, has been put forward
by Vázquez (2001). In this model the basic consideration for the drawing of hy-
perlinks by the Web page author is the random exploration of the existing network.
It is therefore supposed that each time a Web page is created it has a hyperlink to
a content-related page. Then the author explores the Web starting with this page
and following the outgoing hyperlinks. With a certain probability some of these
pages will be content related to the newly created Web page and the author will
draw a hyperlink. Each time a new interesting page is found, an exploration starts
from that page and the process is recursively repeated. Only when no interesting
pages are found (no hyperlinks are drawn) does the process stop. This exploration
mechanism is translated into a discrete random exploration model defined as fol-
lows (see Figure 7.5). A new vertex is added to the network and an edge is pointed
at a randomly chosen vertex among the already existing ones. From the randomly
chosen vertex the exploration of one or more of its neighbors is performed. With
probability α the new vertex points a directed edge also to the explored neighbors.
The process is then repeated from the explored vertices until no new edges are
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(a) (b)

Fig. 7.5 Illustration of the exploration mechanism. (a) The new vertex (shaded
circle) draws an edge to a randomly selected vertex of the network. From the
selected vertex an exploration process of the neighbors (dashed arrows) is per-
formed. (b) With probability α the new vertex establishes edges with the explored
vertices and from them starts a new exploration process. The process stops when
no further edges are added to the new vertex.

created. In this case a new vertex is created and the process starts again. The explo-
ration process can proceed in parallel on all the neighbors of the visited vertices or
just on a subset of them (Vázquez, 2001, 2002). This model produces a power-law
in-degree distribution with an exponent depending on α. In addition, in the case
where a complete exploration of neighbors is performed, the distribution presents
a transition from a power-law behavior to an exponential one at a threshold value
of the probability α. Similarly to the copying model, highly connected vertices
have a larger probability to be visited during the exploration process. This can be
intuitively understood by noticing that a vertex has a probability to be visited from
an exploration that is proportional to the number kin of incoming edges. Also in
this case, a local dynamical rule provides a microscopic origin for the preferential
attachment mechanism at the global level.

The exploration and the copying models open the path to the inclusion of pro-
cesses inspired by the social behavior of the agents contributing to Web growth
in the large-scale simulation of its evolution. Network modeling can thus find in-
spiration and cross-fertilization in the noticeable effort that has been carried out
to model various dynamical processes occurring on the Web. We shall see in the
following chapters problems related to searching and data retrieval, but also us-
age patterns and download time distributions have been analyzed. An introduc-
tion to these arguments can be found in the book by Huberman (2001), which
provides a general perspective in the area of multi-agent modeling of WWW
phenomena.

7.3 The e-mail network

Each computer in the Internet may use one of the many e-mail programs that allow
to write texts and send them to other Internet users. In particular, many Internet
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hosts run e-mail servers that manage the addresses in their respective domains.
Each user address is expressed in the form “name@domain,” that is unique at that
domain. Therefore, any e-mail server can use the Internet’s Domain Name System
to retrieve the IP address of any other e-mail server, connect to that server, and
transfer e-mail intended to reach recipients at that domain using standard commu-
nication protocols. On its turn, the recipient e-mail server will deliver the e-mail to
the specific user address.

E-mail is one of the oldest Internet tools, and it has developed a rich range of
advanced features. It allows users to exchange long documents as attachments and
has one-to-many communication capabilities. These features, along with the real-
time velocity of transmission, are at the origin of the success of e-mail, and explain
its current status as the most commonly used application on the Internet. Without
doubt e-mail has changed the way people communicate and the study of e-mail
exchange can therefore provide a great deal of information on how people interact,
and reveal many features of the Internet’s social structure. This social structure
assumes a particular relevance in the study of community organization and the
emergence of informal social networks (Guimera, Danon, Diaz-Guilera, Girault,
and Arenas, 2002) and has major implications in the spread of computer viruses
and worms as we shall see in Chapter 9.

A first method in the study of the e-mail social structure is the characterization of
the network induced by e-mail exchange. In this network each vertex corresponds
to an e-mail address (user) and edges represent the fact that e-mails are exchanged
between two addresses. As usual, this very intuitive mapping finds several com-
plications at the stage of real data collection. In order to have a record of all the
interactions among addresses within a given domain we can make use of the local
e-mail server. Every time an e-mail is sent or received, a record of the transaction
is routinely registered in the log file of the e-mail server. By looking at this file it
is therefore possible to construct the connectivity of all addresses within the do-
main. These vertices will also have edges with vertices representing addresses out
of the domain for which, however, it is possible to have only limited information.
In particular, vertices corresponding to addresses outside the domain will have by
definition a degree that is typically underestimated, since many edges representing
e-mail exchanges with other domains will not appear. Another source of compli-
cation is the ambiguity in the definition of edges in the context of a social network.
In a first representation, undirected edges are drawn whenever an e-mail exchange
occurs between two addresses. However, e-mails have a direction that goes from
the sender to the receiver. The presence of an e-mail going from i to j does not
always imply an e-mail going from j to i . This leads to a different representation
in which the e-mail graph has a directed nature. Finally, we could argue that a so-
cial connection exists only between addresses which mutually exchange e-mails.
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In this case a non-directed edge is present only if i has sent an e-mail to j and j
also has sent an e-mail to i . All these definitions are plausible, and the different
graph representations have to be chosen with respect to the particular problem or
feature under scrutiny.

Ebel, Mielsch, and Bornholdt (2002) have reported the analysis of log files from
the e-mail server at Kiel University. They recorded e-mail exchanges and obtained
a graph with N = 59,812 vertices, including addresses outside the local domain. At
first instance the undirected version of the graph has been considered, resulting in
several separated clusters of about 150 vertices and a giant component of 56,969
vertices. Also for the e-mail graph the degree probability distribution is heavy
tailed, obeying a power-law behavior P(k) ∼ k−γ with γ � 1.8 over about two
decades (see Figure 7.6). The scale-free nature of the e-mail graph is confirmed by
the analysis of the graph restricted only to vertices representing e-mail addresses
within the Kiel domain. Also in this case the degree distribution has a power-law
behavior, though its decay is slower, providing an exponent close to −1.3 (Ebel
et al., 2002). For the undirected e-mail graph it is also straightforward to obtain
evidence concerning the small-world and clustered nature of the network. Mea-
surements of the average shortest path length provide a value 〈�〉 = 4.95, while
the clustering coefficient turns out to be 〈c〉 = 0.16, orders of magnitude larger
than the value expected in a random network of comparable size and structure. Fi-
nally, Ebel et al. (2002) have studied the directed version of the Kiel e-mail graph.
In this case, heavy-tailed behavior is obtained for both the in- and out-degree prob-
ability distributions.
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Fig. 7.6 Degree distribution of the e-mail network obtained from the Kiel e-mail
server. The behavior is well approximated by a power-law form with exponent
−1.8 (solid line). Data from Ebel et al. (2002).
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The scale-free character of the e-mail network is however dependent on the
definition used to draw edges and the inclusion of bulk e-mail. Guimera et al.
(2002) studied the e-mail network built from the log files of the e-mail server of
the University Rovira i Virgili. The network containing about 1,700 users has been
mapped in an e-mail graph where edges were drawn only in the case of reciprocal
e-mail exchanges. In addition, bulk e-mail originated from distribution lists, bul-
letin boards, etc., was removed. The authors of this study were indeed interested in
highlighting the structure of scientific and personal relations among the users be-
yond the formal organization chart of the university and therefore tuned the map-
ping to highlight these characteristics. In this framework it is not surprising that
the degree distribution of the resulting network is exponentially distributed. Con-
sidering only addresses within the domain, and discarding external and bulk e-mail
traffic, generates a graph whose connectivity represents only the close social ac-
quaintances and therefore has an extremely bounded connectivity. While this graph
is not indicative with respect the study of digital infections spreading and network
vulnerability to external attacks, it is particularly suited for the study of the com-
munity structure in an objective and quantitative way (Guimera et al., 2002).

A different approach to characterize the social network induced by the e-mail
technology has been pursued by Newman, Forrest, and Balthrop (2002). They fo-
cused on the e-mail address book, a file in which the user stores the e-mail ad-
dresses of regular correspondents. This should guarantee that only steady e-mail
acquaintances are considered. Again, we can visualize the network as a set of ver-
tices, the users, with directed edges from the vertex i to vertex j if the address of
j is included in the address book of the user i . Newman et al. (2002) analyzed
address book data from a large university computer system with 27,841 users.
This strategy provides null information about users from the outside world, and
for consistency Newman et al. (2002) eliminated from the network all connections
to users outside the university network. The directed nature of this graph allows
the calculation of the connected components structure. As already observed for
other directed graphs, the usual bow-tie structure is arising. A giant strongly con-
nected component is connected to the IN and the OUT components plus some
tendrils, accounting for a giant weakly connected component which amounts to
59% of the the graph. Finally, Newman et al. (2002) provide also indications on
the network reciprocity: i.e. the probability that the directed edge i → j corre-
sponds a reversed edge j → i . This probability amounts to 0.23, showing that
the social connection between users often goes both ways. The directed network
obtained by Newman et al. (2002) is composed only of users within the univer-
sity domain, and it is not surprising to find that the in- and out-degree probability
distributions decay faster than a power-law. This is analogous to the study carried
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out by Guimera et al. (2002), and suggests that restricting the e-mail network to
the internal user community truncates the scale-free behavior observed in global
studies (Ebel et al., 2002).

7.3.1 The instant messaging network

While probably the most famous, the e-mail network is not the only social net-
work due to message exchanges hosted by the Internet. For instance, in recent
years instant messaging has become a relevant phenomenon both over the Inter-
net and within company intranets. Instant messaging is based on a protocol that
allows real time one-to-one conversation between two users. Generally speaking
an instant messaging protocol uses a distributed client–server architecture. Each
user (client) entering the server announces its arrival to all other users that have
included its user name in their contact list, and vice-versa. Users then might de-
cide to set up a one-to-one communication with the users present at that moment
on the server or on other servers using the same instant messaging protocol.10

Instant messaging protocols thus define a social network that can be easily iden-
tified by the users’ contact list, which contains the identification of other users
with whom they often communicate. In this way, one can readily define the instant
messaging social network in which users are vertices with directed edges point-
ing to the vertices corresponding to the users contained in their contact list. Smith
(2002) constructed the social network obtained by the contact lists of a French
language instant messaging database. The resulting graph contains 50,158 users
and 500,000 directed edges. It is no wonder that at this point the instant mes-
saging network is found to exhibit all the characteristics of a scale-free network.
Both the in- and out-degree distributions are well approximated by a power-law
behavior with exponents −2.2 and −2.4, respectively. The version of the net-
work in which edges are considered undirected confirms a degree distribution
with power-law behavior and degree exponent −1.8. The analysis of the con-
nected components’ structure of the graph makes no exception to the bow-tie rep-
resentation, but exhibits a massive giant strongly connected component containing
89% of the graph’s vertices. This fact is due to a very high reciprocity, which
shows that 82% of the contacts are bi-directional. Finally the small-world proper-
ties of the network are prompted by the very small average shortest path 〈�〉 � 4,
and the high clustering coefficient 〈c〉 = 0.33, four orders of magnitude larger
than the one corresponding to a random graph with the same size and connectivity
structure.

10 Sometime instant messaging protocols support communication also among clients using different protocols.
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From the previous examples, it appears that social networks on the Internet ex-
hibit all the complex topological properties that characterize scale-free networks.
In this perspective, many of the ideas and concepts put forward in the modeling of
other scale-free networks might be adapted to the social context. However, the na-
ture of the social relations has a much wider spectrum of constraints and possible
mechanisms that would favor or unfavor new connections among individuals. For
these reasons, no specifically devised models for the e-mail or instant messaging
graphs have been put forward so far. Nevertheless, even the empirical analysis of
these networks is proving to be extremely relevant in the understanding of physi-
cal and social phenomena. As we shall see in Chapter 9, the degree heterogeneity
associated with the scale-free nature of these networks has profound implications
in fads and computer virus spreading at the large-scale level.

7.4 Peer-to-peer and dynamic environment networks

Peer-to-peer (P2P) systems were born with the aim of exchanging files and re-
sources between users (peers) through a direct connection among them. They have
rapidly become a major social and technological phenomenon on the Internet,
gaining the spotlight in view of the various issues related to copyright infringe-
ments.11

P2P systems are file sharing protocols that build, at the application level, a vir-
tual network of peers with its own routing mechanism. The virtual network lives
on the Internet but, obviously, is not matching the physical underlying Internet
graph (see Figure 7.7). Peers are usually Internet hosts (i.e. home or office com-
puters) which act both as client and server and communicate directly. The absence
of centralized servers implies the ability of the network to cope with problems not

Peer

IP hop

Virtual connection

Physical link

Fig. 7.7 Illustration of a P2P network. IP addresses participating to the network,
the peers, establish TCP connections among them, defining a virtual network of
vertices and edges. The virtual connections are not not related to the actual under-
lying physical or IP hop distance among vertices.

11 Napster is a well-known example of P2P system used to share music on the Web. The eventual lawsuit about
copyright violation has led to the collapse of Napster.
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usually encountered in traditional distributed systems. The characteristic of P2P
networks is, in fact, its intrinsic dynamic nature in which the large majority of
computers participating in the network frequently join and leave the system and do
not even possess a permanent identification.12 It is therefore evident that the P2P
network properties are emergent properties determined entirely by the collective
dynamics of the interacting peers.

In order to explain how P2P systems work and give rise to the virtual network,
the example of Gnutella is illuminating. This is a decentralized group membership
and search protocol used for file sharing.13 Each time a computer wants to join the
network it must connect to one or more of the peers already connected by finding
their address and opening a TCP connection. Since peers frequently join and leave
the network, the entering computers usually try to connect with computers which
are known to be almost always available. These can be obtained by lists of “good”
Gnutella users, usually available on the WWW. Once in the network, the peer starts
communicating with the network by broadcasting messages, i.e. sending messages
to all neighbor peers with which the sender has open TCP sessions. The usual
communication is made by ping and pong messages. The ping message announces
the presence of the peer. Each time a peer receives a ping message, it broadcasts
it to all its neighboring peers and at the same time sends back a pong message to
the ping originating peer. The pong message contains information about the peer,
such as its IP address and the number of shared files. The message broadcast is
very efficient at exploring the network, but it provides a noticeable load in terms
of traffic. Messages thus usually have a TTL counter,14 so that each peer passing
a message to its neighbors decrements the TTL by one. When the TTL is zero the
message is not broadcasted any more. Essentially, the TTL represents the network
distance to which the peer is broadcasting the message. In this way, the joining peer
explores the network and discovers other peers to which it can establish additional
connections. It is particularly important to keep the peer connected in case other
peers to which it is connected leave the network. In addition, the peer might be
requested to establish connections with new peers entering the system.

Once in the network, peers communicate to locate files and information. When
a peer is looking for a file, a query is broadcasted to its neighbors. In turn the
neighbors broadcast to their neighbors and so on, until the query TTL has expired.
When one of the peers finds a locally stored file that matches the query, it sends

12 This happens with home modem connections. In this case the computer receives from the Internet provider a
temporal IP number that might change at each session.

13 http://www.gnutella.com. Gnutella can be considered a pure P2P network. Other P2P networks, such as Nap-
ster, were maintaining a number of central servers to help the file location.

14 The TTL (time-to-live) is measured in terms of hops on the virtual networks. The actual distance in terms
of IP hops on the real network is not considered. This readily implies that P2P broadcast can generate an
appreciable traffic on the physical Internet.
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a response to the query originator. The response includes the information neces-
sary to download the file and establish a direct TCP connection between the two
peers. It is also important to note that a large traffic load is generated by the query.
Indeed, the other peers remain unaware of the file match found and continue to
flood the query through the network in any case. The expansion of P2P networks
and the large traffic they generate is a major concern of the Internet community
and has triggered several studies aimed at measuring the network structure, us-
age, and scalability of these system (Adar and Huberman, 2000; Adamic, Lukose,
Puniyani, and Huberman, 2001; Saroiu, Gummadi, and Gribble, 2002; Ripeanu,
Foster, and Iamnitchi, 2002).

The graph representing the Gnutella network is made by vertices representing
the peers (users’ computers) and edges in the place of the TCP connections among
them. As we have seen for the WWW, the mapping of such a P2P network re-
quires the development of an opportune crawler that explores the network (Saroiu
et al., 2002; Ripeanu et al., 2002). Crawlers join the network by establishing TCP
connections with a large number of peers contained in a suitable list of addresses.
Then the connectivity map is obtained by broadcasting ping messages and record-
ing the information contained in the pong replies. The possibility must be consid-
ered, however, that the network is made up of disconnected parts, since the dis-
appearance of vertices may originate a fragmentation process. As well, different
components may reconnect with the appearance of new vertices. This introduces
new problems in the mapping, given that the highly dynamic environment should
be extremely rapid at providing a real snapshot of the network; crawlers must thus
find a trade-off between the depth and the time duration of their search (Ripeanu
et al., 2002).

The data collected on the Gnutella network confirm the dynamic nature of the
network. This virtual network is on average steadily increasing. In a six months
window (November 2000–May 2001) the largest component grew from 2,063 to
48,195 peers. The large time growth is associated with a noticeable short time vari-
ability of the network. The crawlers discovered that about 40% of the vertices leave
the network in less than four hours, while only 25% are operative for more than
one day (Ripeanu et al., 2002). Surprisingly, despite the large number of vertices
that disappear from the network, a very little fragmentation is found. In particular,
the largest component includes on average more than 95% of all the vertices.

The largest component size and its stability might induce the idea of a net-
work that, in order to cope with the vertices’ dynamics, has settled in a sort of
fully connected architecture. However, this is readily contradicted by the empir-
ical evidence that shows a small and steady value of the graph’s average degree,
〈k〉 = 3.4. At the same time, clear evidence for small-world properties are given
by a largest network diameter of 12 and an average shortest path length 〈�〉 � 5
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(Ripeanu et al., 2002). Finally, the degree distribution is found to exhibit a clear
heavy-tailed shape that can be reasonably approximated by power-law behavior,
with exponent close to −2.1 in the high degree region (Adamic, 2001; Saroiu
et al., 2002; Ripeanu et al., 2002). The precise distribution is also changing in
time, and the most recent measurements (Ripeanu et al., 2002) show two separate
regimes at the small and large degree values. This finding can be interpreted as
a separation between occasional users, rapidly leaving the network, and Gnutella
devotes, which act as the hubs and are responsible for the distribution’s long tail.

The scale-free character of the Gnutella network can be reasonably explained
by the network growth mechanism. New peers look first at the lists of highly avail-
able peers which already have a high degree since they are more likely to be well
known. This translates into a preferential attachment mechanism that eventually
leads to the scale-free degree distribution. A complete modeling of P2P networks
is however a much more difficult task. Rapidly appearing and disappearing vertices
should be considered on top of the usual increasing total number. The join/leave
dynamics, however, is different from the usual birth/death considered in some ex-
isting models. In fact, the two processes are not uncorrelated in the sense that some
of the new joining vertices represent peers that left the network sometime earlier.
These vertices will likely re-establish some of the old connections and thus must
have a memory of their degree and neighbors.

A first promising step towards P2P networks modeling has been recently given
by Sarshar and Roychowdhury (2003). The model is defined as follows. Every time
step, a new vertex is added, with m edges that are connected to previously present
vertices following a linear preferential attachment. With probability c, a vertex is
chosen at random and deleted from the graph, together with all its edges. Finally,
all vertices that have lost edges by the random vertex deletion emanate n new
edges, that are connected with the linear preferential attachment to old vertices.
This model represents essentially the Barabási–Albert network with the addition
of the key element of the random deletion of vertices, mimicking disconnection
of peers from the P2P system. Given the scale-free nature of the initial Barabási–
Albert model, the random deletion of vertices will affect mainly poorly connected
vertices, while the edges subsequently removed will be with high probability con-
nected to vertices with large degree. In their turn, those vertices will gain new
connections in the rewiring process, leading to an average increase of the skew-
ness of the distribution that is reflected in a smaller degree exponent. In fact, the
continuous k approximation yields for this model a scale-free degree distribution,
with degree exponent γ = 1 + 2/(1 − c − 2nc), for 0 < n < (1 + c)/2c (Sarshar
and Roychowdhury, 2003).

Beyond the modeling aim, the evidence for the scale-free topology of P2P
graphs is fundamental to the understanding of some operative properties of these
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networks. The extreme stability of the network to the large amount of vertices
leaving and joining the system is at first sight surprising. The leaving vertices cor-
respond to damage of the network, that should appear fragmented while, on the
contrary, data report a massive largest component. As we have seen in the previ-
ous chapter, however, this unexpected resilience to damage is a general property
of networks with a scale-free degree distribution, and must not be considered a
peculiarity of P2P networks. Another major issue in which the network topology
enters is the P2P performance. The broadcast method finds targets quickly, but it
produces a large volume of traffic on a large fraction of the network. As we men-
tioned earlier, in the case of the immediate success of the query, all the peers will
continue the broadcast until the TTL expires. By passing the query to every vertex,
the search algorithm does not take advantage of the particular connectivity pattern
of the network. However, it is possible to devise different searching strategies that
make use of the scale-free properties of the network and in the next chapter it will
be shown how they may help to improve considerably the performance of P2P
systems.



8

Searching and walking on the Internet

The problem of searching in complex networks is a very relevant issue, with a large
number of practical applications. As the most obvious example of this problem we
can consider the World Wide Web. It is an immense data depot that, however, ac-
quires a practical interest and value only if it is possible to locate the particular
information one is looking for. Probably, the first instance in which searching in
complex networks has been considered is in the sociological context. In a now
famous experiment, Milgram (1967) randomly selected people in a town in the
Midwest, and asked them to send a letter to a target person living in Boston. The
rule was that letters could not be sent directly but passed from person to person,
only between people known on a first-name basis, until reaching the target. The
unexpected result of this experiment was that the letters that arrived to the target
traveled through short chains of acquaintances, with an average length of only six
intermediate hops.1 The conclusion that can be drawn from this result is not only
that short paths exist between the vertices of a social network (the small-world
property), but that these paths can be efficiently found in order to transmit infor-
mation. The very same scenario turns out to be very relevant also for technological
networks such as the Internet.

In this chapter we will review the main searching strategies that can be applied
in order to retrieve information from the vertices of a network, focusing specially
on the Internet and the virtual networks hosted by it. In particular, we want to
provide a brief account on how the topological properties of networks might af-
fect searching and retrieval strategies and how these strategies can effectively take
adavantage of the network’s connectivity structure. Obviously, the most adequate
strategy turns out to depend on the amount of knowledge available on the structure
of the network. The most favorable case holds when there is global knowledge of
all vertices and edges, and this information is available to each vertex. In this case,

1 From this number stems the popular expression “six degrees of separation.”

166



8.1 Searching strategies in networks 167

the straightforward solution is to simply follow the shortest path from the starting
vertex to the target vertex. Unfortunately, this favorable situation rarely takes place,
and one is forced to use more expensive strategies, compatible with our knowledge
of the network. As we will see, for the particular case of a scale-free network, the
hierarchical organization of the vertices can be fruitfully exploited to speed up a
search, by focusing first on the most connected vertices. The different strategies re-
viewed might be helpful for improving the performance of peer-to-peer networks
and for understanding how it is possible to mine data in the WWW.

8.1 Searching strategies in networks

In order to retrieve a given item of information from a network, concerning for ex-
ample the position of a particular vertex that has a certain file stored in it, as in the
case of P2P networks (see Section 7.4), we can follow several searching strategies
or algorithms. Searching strategies are usually described in terms of a message
passing process that, starting from a given source vertex, passes a message to one
or more of its neighbors demanding the required information, following a certain
set of rules. If the selected neighbors do not have the information available, they
pass the message to some of their respective neighbors, iterating the process until
the information stored in the target vertex is eventually found and sent to the
source.

When a complete knowledge of the network and the information stored in it
is available, i.e. when every vertex knows the information stored in every other
vertex and how to reach it in the minimum number of steps, one is in the best po-
sition to perform a search. Messages are passed following the sequence of vertices
that compose the shortest path �st between the source s and the target t , and the
information is retrieved in time �st , exchanging only �st messages. The average de-
livery time TN to retrieve the information and the traffic measured in the number of
messages M scale thus only as log N in a small-world network of size N . This situ-
ation, however, may exist only at the expense of large consumption of memory for
each vertex. In the WWW, for instance, each web server should know the address
and content of all the addressable web pages. In large networks this is obviously
impossible. In addition, this ideal situation is altered when there are many searches
going on in parallel. Assuming a finite capacity for the vertices to forward the mes-
sages that arrive to them, it is easy to see that very central vertices, routing a large
fraction of the messages exchanged (vertices with a large betweenness), can easily
suffer traffic congestions (for a large density of parallel searching processes), slow-
ing down the whole network. This situation has been analyzed both theoretically
and numerically on hypercubic lattices and Cayley trees by Arenas, Dı́az-Guilera,
and Guimerà (2001) (see also Guimerà, Arenas, Dı́az-Guilera, and Giralt, 2002).
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Fig. 8.1 Searching strategies to find the target vertex t , starting from the source
vertex s. (a) Broadcast search, with delivery time T = 2. (b) Random walk search,
T = 3. (c) Degree-biased search, T = 3. The broadcast search finds the target
faster, but it involves a larger number of exchanged messages. Figure adapted
from Kim, Yoon, Han, and Jeong (2002).

In the opposite case of absence of any knowledge on the information structure
of the network, i.e. when no vertex knows the exact position of the required infor-
mation until it is found, the simplest strategy one can follow is a broadcast search
(see Figure 8.1(a)). In a broadcast search the source vertex sends a message to all
its nearest neighbors, which if they do not have the requested item, send on their
turn a message to all their neighbors, excluding the source vertex. This process is
repeated a certain number of times, since usually a time-to-live (TTL) is assigned
to the search. After a message has been forwarded from neighbor to neighbor an
amount of time equal to the TTL, it is discarded. When a vertex containing the
sought-after information is reached by the query, it sends to the source vertex a
message to establish the exchange of information. Usually, however, the target
vertex cannot stop the broadcast search going on in the rest of the network, but at
the cost of a large number of messages. In this sense, a broadcast search is essen-
tially equivalent to the breadth-first algorithm used to compute the shortest path
length between any two vertices, and corresponds to a complete sweeping of all
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the vertices within a TTL hop distance from the query source. This search strart-
egy is also very rapid, since it proceeds in parallel, and in a few time steps all the
network can be explored. Indeed, it is easy to see that the delivery time needed to
find the target vertex t starting from the source s, measured as the number of inter-
mediate edges traversed (one every time step), is equal to the shortest path length
�st . In terms of the average delivery time TN as a function of the graph size N ,
a broadcast search is thus very efficient for small-world networks, since we have
that TN scales as the average shortest path length 〈�〉, and therefore grows only as
the logarithm of N or slower (see Section 5.6). However, it has the severe draw-
back of requiring a very large amount of traffic, since a large fraction of vertices are
visited and forced to exchange messages among them. In fact, for the case of a gen-
eralized random graph, we have seen in Section 5.1.2 that the average number of
neighbors at distance d of any given vertex grows exponentially with d. Therefore,
in a small-world network, even for searches with small TTL that deliver results in
a short time, one is forcing almost all vertices to exchange messages, imposing an
average amount of traffic that increases linearly with the size of the network.

In general, however, intermediate cases in which there is some amount of local
information available about the structure of the network may possibly be devised.
In this situation, it is possible to develop more economical searching strategies
that do not put such a severe strain on the traffic exchanged. For instance, let us
assume a situation in which each vertex knows only about the information stored
in each of its nearest neighbors. In this case, the most naı̈ve economical strategy
is the random walk search, Figure 8.1(b), in which the source vertex sends one
message to a randomly selected nearest neighbor. If that vertex has the informa-
tion requested, it retrieves it; otherwise, it sends a message to one of its nearest
neighbors, avoiding sending it back to the source. This process is iterated until a
neighbor of the vertex in possession of the information item requested receives a
message, in which case it is forwarded directly to the target vertex. It is easy to see
that this strategy is less efficient than a broadcast search in terms of the delivery
time. In fact, a random search tends to backtrack its own path, delivering messages
to vertices that have already passed them. Therefore, the delivery time tends to be
longer than the average shortest path length yielded by a broadcast search. In par-
ticular, computer simulations performed on a scale-free generalized random graph
(see Section 5.1.2) with degree exponent γ = 2.1, equal to the value observed in
real P2P networks, yield the result TN ∼ N 0.79 (Adamic et al., 2001). As we can
see, in terms of the time needed to locate a given vertex, the random walk search
fares worse than a broadcast search in a scale-free network. However, since at each
time step only one message is sent, the average total traffic in the network is equal
to TN , and therefore scales sublinearly with N , better than the linear growth typical
of a broadcast search.
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8.1.1 Using the shortcuts

When dealing specifically with small-world networks, it is possible to devise more
efficient searching strategies levering on this very property. As we have seen in
previous chapters, the main characteristic of small-world networks is the presence
of shortcuts, that act as bridges between far away parts of the network and lead to
a very noticeable reduction in the average diameter of the graph. In performing a
search in this kind of network, it is therefore reasonable to assume that it should be
possible to use those shortcuts to one’s advantage. While this intuition seems to be
correct, there is actually a considerable difference between knowing that there is a
shortcut and actually finding and using it to reach a particular vertex (Watts, 2003).
If the shortcuts are placed between randomly selected vertices, as in the Watts–
Strogatz model (Chapter 5), then every vertex has the same probability of being
connected to any place in the network and a search strategy based on an intelligent
use of shortcuts is doomed to fail, since it is impossible to find the right shortcut
leading to the desired point. The conclusion is that, in order to be useful, shortcuts
must encode some information about the underlying structure of the network.

The realization of this fact led Kleinberg (2000) to study the conditions under
which it is possible to perform an efficient search in a Watts–Strogatz-like small-
world model. In order to do so, he considered a D-dimensional hypercubic lattice
in which a certain fraction of shortcuts are added. The probability of connect-
ing two vertices at a geographical distance r decreases as p(r) ∼ r−α , where the
exponent α is the one controlling the behavior of the model. On this graph, the
following directed “greedy” searching algorithm was studied: each vertex passes
a message to its nearest neighbor that is the closest in geographical distance to the
target of the search. Clearly, this is a directed strategy, in which the message tries
to get as close as possible to the target at each step, implying a large amount of
global knowledge of the structure of the networks, i.e. every vertex knows where
the target is, and which one of its neighbors is closer to it.2 By means of theo-
retical arguments and numerical simulations, Kleinberg (2000) concluded that the
average delivery time experiences a transition at the particular value α = D, see
Figure 8.2. Whenever the exponent α is different from the lattice dimensionality
D, the average delivery time is large, growing as a power-law of the system size.3

Exactly at α = D, however, TN reaches its minimum value, being bounded by a
polinomyal of log N .

The interpretation of this result is the following (Watts, 2003). For α > D the
number of long-range shortcuts is very small, and essentially they do not exist. In

2 However, there is not a complete knowledge of the network, i.e. the vertices do not know the shortest path to
the target, only the next hop that will place the message closer to it.

3 For D = 2, a lower bound TN ≥ Nβ(α) can be provided, with β(α) = (2 − α)/3 for 0 ≤ α < 2 and β(α) =
(α − 2)/(α − 1) for α > 2 (Kleinberg, 2000).
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Fig. 8.2 Average delivery time as a function of the exponent α for a small-world
model with local shortcuts. Figure adapted from Kleinberg (2000).

the opposite case, α < D, long-range shortcuts are present in the system, but they
cannot be efficiently found by the searching algorithm. In particular, the Watts–
Strogatz model belongs to this regime. Only at the critical point α = D, when
vertices possess on average the same number of shortcuts at all length scales, can
the network be efficiently navigated using the bridges to gap long jumps in the
direction of the target.

The conclusion of Kleinberg (2000) seems to imply that only very special kinds
of small-world networks can be efficiently navigated, that is, only those with the
right distribution of long-range shortcuts. The key to understanding how real net-
works can be searchable4 is to realize that more than one distance can be defined
on them, attending to other criteria, such as affinity on different subjects. Based on
this premise, Watts, Dodds, and Newman (2002) (see also Kleinberg, 2002). Pro-
posed a model of searching in a network in which distance can be defined along
several dimensions, concluding that the domain in which the network is searchable
is much broader than a single critical point, as in the model of Kleinberg (2000).

8.1.2 Degree-biased search in scale-free networks

While an efficient exploitation of the “greedy” algorithm we have seen in the pre-
vious section presupposes an extensive knowledge of the network that is usually
absent for the particular case of distributed scale-free networks, it is still possible to
fruitfully pursue the intuition of using the shortcuts. As we have seen in Chapters 4
and 5, the small-world character of scale-free networks is due to the presence of

4 At least social networks, such as the one considered in Milgram’s experiment.
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the hubs, that with their many connections provide the necessary bridges among
distant parts of the network. Therefore, in order to find and use those short-
cuts, one can design a strategy that biases the routing of messages towards the
most connected vertices. Following this approach, Adamic et al. (2001) and Kim
et al. (2002) have proposed a random walk degree-biased searching algorithm,
Figure 8.1(c), in which, at each step, the vertex sends a message to the neighbor
that has the largest degree. This strategy assumes only local information in the
network, namely that each node is aware of the degree and the information stored
in its neighbors. For this small price, however, it is possible to explore the graph
with larger efficiency than the pure random walk method. For instance, numeri-
cal simulations on a scale-free generalized random graph with degree exponent
γ = 2.1 yield an average delivery time TN ∼ N 0.70 (Adamic et al., 2001), i.e. a
degree-biased algorithm can retrieve information in a scale-free network faster
than a simple random walk search. This numerical evidence is supported by the
analytical approach of Adamic et al. (2001), focusing on the dependence of the
average delivery time with the cut-off of the network degree distribution. The rea-
son for the success of a degree-biased search is easy to understand: if every element
has knowledge of the contents of its immediate neighbors, the natural way to in-
spect the maximum number of vertices at each time step is to start asking the most
connected vertex and go down in the connectivity hierarchy. Indeed, it is possi-
ble to see that, starting from a randomly selected vertex and passing a message to
the neighbor with the largest degree, in a few steps the message is located on the
most connected vertex, from where it more or less follows a decreasing degree se-
quence (Adamic et al., 2001). In this respect, the rule of deterministically sending
the message to the neighbor with the largest degree turns out to be crucial. Any
amount of randomness in this selection, as for example sending the message to
the neighbors with a probability proportional to their degree, yields a much longer
average delivery time (Kim et al., 2002).

Apart from locating information, searching strategies are useful to find paths be-
tween different vertices, paths that can subsequently be reused to contact again the
same vertex (Kim et al., 2002; Adamic et al., 2003). In order to construct a short-
est path, of length �′

i j , from the path followed by the message passing process, one
only needs to remove loops and backwards steps. The average path lenght 〈�′〉 ob-
tained by this process is longer that the average shortest path length, see Figure 8.3.
This fact is confirmed by numerical simulations of the random walk search of the
Barabási–Albert network, that yields 〈�′〉 ∼ N 0.51 (Kim et al., 2002). However, the
degree-biased search on the same kind of network produces an average path scal-
ing logarithmically with N , in the same fashion as 〈�〉. A degree-biased random
search is therefore effective also for estimating the average shortest path length of
a scale-free network. Its performance, however, is handicapped by the average cost
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Fig. 8.3 Difference between the shortest path between vertices s and t (contin-
uous thick line), with length �st = 3, and the path found with the random walk
search strategy (dashed thick line), of length �′

st = 6.

of finding a path (the average delivery time), that in the Barabási–Albert network
scales linearly with N (Adamic et al., 2003).

The conclusion of this section is that the hierarchical structure of scale-free
networks can be efficiently exploited by means of degree-biased strategies in order
to reduce the average cost of a search. Visiting in the first place the vertices with the
largest degree allows us to explore a large fraction of the network in the very first
steps of the search process. However, the same strategy imposes a drawback in the
process, in the sense that, after the initial period in which new vertices are visited,
the search tends to trace back its steps and visit more often the already explored
high degree vertices. Therefore, vertices with low degree can be relatively difficult
to locate, yielding a heavy tailed distribution of delivery times that is responsible
for the final scaling of TN (Adamic et al., 2001).

8.2 Improving the performance of peer-to-peer networks

Peer-to-peer (P2P) systems are another example of networks in which searching
efficiency is a major issue. As we have seen in Section 7.4, the searching mecha-
nism implemented in P2P networks is a broadcast search limited to a radius TTL,
the time-to-live assigned to the queries. While this procedure is able to locate the
information present in a radius TTL in at most TTL hops between peers, it is ob-
vious that it implies that many nodes in the network are forced to exchange mes-
sages. In fact, since the peers do not know when the requested file is found, and
keep sending the query until the TTL is expired, we can see that the total num-
ber of sent queries M is approximately given by the number of vertices within the
TTL distance measured in number of hops. By using the result of Eq. (5.12) for
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generalized uncorrelated random graphs, the number of queries is given by

M � 〈k〉
(〈k2〉 − 〈k〉

〈k〉
)T T L−1

. (8.1)

where as usual 〈k〉 and 〈k2〉 represent the first and second moments of the network
degree distribution. Since P2P networks are small-worlds (〈�〉 ∼ 5, Section 7.4)
with heterogeneous connectivity properties (〈k2〉 � 〈k〉), we see that even a small
value of TTL might force the whole network to communicate for every query. This
fact imposes a large bandwidth load in the systems, that can eventually saturate the
TCP connections between peers, and damage the efficiency of the network.

Several alternatives are possible in order to reduce the traffic load in P2P net-
works, and consequently increase their performance. The most simple is the cre-
ation of a centralized repository of information, containing the names of all the
files available and the corresponding addresses in which they can be found. This
philosophy, adopted in the original Napster, has the drawback of being expensive
(powerful servers are needed in order to store and manage efficiently this informa-
tion) and, worst of all, liable to copyright infringements. Discarding this danger-
ous solution, searches can be improved within the actual P2P protocol by using an
iterative deepening (Russel and Norvig, 1995) algorithm, as proposed by Yang and
Garcia-Molina (2002). In this method, broadcast queries are sent with an increas-
ing TTL value. Experiments in actual Gnutella networks show that a large fraction
of bandwidth can be saved this way (up to a 72% with respect to the standard
method), reducing as well the processing cost of the search.

It is also possible to apply the concepts developed in Section 8.1.2 in order to im-
plement a radically different searching protocol that takes advantage of the scale-
free nature of P2P systems (Adamic et al., 2001). As we have seen, degree-biased
strategies are able to locate files in times that scale sublineraly with the size of
the network, but, most importantly, require traffic that is also sublinear in N . The
trade-off between a longer search and a less-congested network could probably
lead to better global efficiency in terms of real delivery times. Computer simula-
tion shows that this is indeed the case. For example, studies of generalized random
graphs with degree exponent γ = 2.1 show the time needed to explore half of the
network5 with a degree-biased strategy grows only as N 0.24 (Adamic et al., 2001).
However, simulations on an actual Gnutella network of size 700 show that half
of the vertices can be searched in eight or less hops. This new strategy, however
efficient, is nevertheless not free from a few inconveniences. First of all, it would
imply a complete rewriting of the Gnutella searching protocol, allowing each peer

5 Since in P2P networks more than a vertex is probably storing the required information, this is a more significa-
tive measure than the average delivery time from a single target.
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to store additional information about the contents of its nearest neighbors.6 But,
more importantly, a degree-biased search implies that almost all queries are even-
tually routed to the most connected peers, which will experience the largest load
of processing and bandwidth. Nevertheless, since the Gnutella protocol restricts
the number of connections that peers are willing to accept, it is probably safe to
assume that the vertices with the largest degree are also the ones with the largest
computing resources and bandwidth, and therefore they should be able to cope
with the increased load placed upon them.

8.3 Searching on the Web

As we have seen in Chapter 7, the World Wide Web is a virtual nework, hosted by
the physical Internet, that offers to the casual web user the largest amount of infor-
mation ever collected. It has been compared with a “15 billion word encyclopedia”
(Barrie and Presti, 1996), and this metaphor is probably an underestimation nowa-
days, given the pace at which the Web is increasing.7 In order to be able to find
the desired information in such a gigantic repository, the development of specifi-
cally designed searching tools capable to deal with the size of this system becomes
mandatory.

8.3.1 Static search engines

Many public search engines are available on the Web, such as “Google”,8

“Yahoo!”9 or “AltaVista”,10 to help users find information on the WWW. These
search engines (Marendy, 2001) rely on a static index of words found in the Web,
that is usually collected by automatic programs called Web crawlers or spiders (see
Section 7.1.2).11 The crawlers follow a list of links provided by a central server or
follow recursively the links they find in the pages that they visit, according to a
certain set of searching instructions. When a crawler finds a new web page in its
search, it stores the data it contains and sends it to a central server. Afterwards,
it follows the links present in the page to reach new web sites. In this sense, the

6 The extra information that each vertex should store might not eventually be very large. For example, Yang and
Garcia-Molina (2002) estimate that storing the information of a small neighborhood would imply a memory
overhead of the order of 50 Kilobytes per peer.

7 In 1999 a rate of growth close to one million new web pages per day was estimated by Chakrabarti, Dom,
Gibson, Kleinberg, Kumar, Raghavan, Rajagopalan and Tomkins (1999).

8 http://www.google.com. 9 http://www.yahoo.com. 10 http://www.altavista.com.
11 Alternative search tools are the “Web Directories,” that provide a hierarchical classification of web pages

that are collected (sometimes by direct submission from the authors), scrutinized, and reviewed by a board
of editors. This human-powered directories aim at providing classified information of contrasted quality and
relevance. An example of this kind of search tools are Yahoo, http://www.yahoo.com, or the Open Directory
Project, http://dmoz.org.
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strategy followed by web crawlers is a simple broadcast search. Web crawlings
are repeated at periodic time intervals, to keep the index updated from new pages
and links, and to delete old or obsolete directions. The information retrieved by
the crawlers is analized and used to create the index. The index stores information
relative to the words present in the web pages found, such as their position and
presentation, forming a database relating those words with the relevant hyperlinks
to reach the pages in which they appear, plus the hyperlinks present in the pages
themselves.

The final element in a search engine is the user interface, a search software that
accepts as an input words typed by the user, explores the index, and returns the
web pages found that contain the text introduced by the end user, and that are
considered more relevant. In this process the ranking of the pages returned is most
important, i.e. the order in which they are presented after the query. Obviously,
nobody is willing to visit dozens of uninteresting pages before discovering the
one that contains the particular information that is seeked. Therefore, the more
relevant are the first pages returned, the more succesful and popular will be the
search engine. The search engines available in the market make use of different
ranking methods, based on several heuristics for the location and frequency of
the words found in the index. Traditionally, these heuristics combine information
about the position of the words in the page (the words in the HTML title or close
to the top of the page are deemed more important than those in the bottom), the
length of the pages and the meaning of the words they contain, the level of the
directory in which the page is located, etc.

In this respect, the PageRank algorithm proposed by Brin and Page (1998), on
which the search engine “Google” is based, came as a real breakthrough. PageRank
uses a graph theoretical analysis of the in-degree distribution of the pages in the
index, combined with some heuristics based on the text disposition. In order to do
so, the index has to store not only the words present in the pages crawled, but also
the structure of the hyperlinks between pages, i.e. the graph representantion of the
Web. The main idea is to assign the page’s relevance or popularity on the basis
of the number of edges that point toward them, a concept we have seen at work
in the development of Web models, being the main motivation for the preferential
attachment mechanism (see Section 7.2). In practice, a rank PR(i) is assigned to
each page i , that is computed by means of the recursion relation (Brin and Page,
1998)

PR(i) = (1 − d) + d
∑

j

A ji PR( j)/kout, j , (8.2)

where Ai j is the adjacency matrix of the Web graph and kout, j is the out-degree
of vertex j . The rank assigned to each web page from Eq. (8.2) can be interpreted
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as the probability that a random web surfer, that wanders in the Web by clicking
the links he finds, visits the page i . In this interpretation, the damping parameter
d in Eq. (8.2) represents the probability that the random surfer gets bored, stops
following links, and proceeds to visit a randomly selected web page. Iterating the
PageRank algorithm a sufficient number of times, a probability PR(i) is assigned
to each page, that can afterwards be used to classify very quickly the results of the
search.

An alternative method to improve the ranking of search engines by considering
both the in- and the out-degree distribution of the Web graph has been proposed
by Kleinberg (1998). This method relies on the distinction between authorities and
hubs. Authorities are Web pages that can be considered the most relevant source
of information about a given topic. Given the large amount of knowledge that this
kind of page encodes, it is natural to assume that they have a large number of
incoming links. Hubs, however, are pages dealing with a given topic, which are
not authorities themselves but which contain a large number of outgoing links,
pointing to related authorities. In this situation, the set of hubs and authorities on
a topic form a bipartite clique (see Section 7.2), in which all hubs point to all
authorities. Therefore, focusing on the detection of bipartite cliques, it should be
possible to identify which are those authorities and rank them in the highest posi-
tion. Following this approach, Kleinberg (1998) proposed the Hyperlink-Induced
Topic Search (HITS) algorithm, which has been the seed for several variations and
improvements (Marendy, 2001).

The search engine technology makes it possible to find in most cases a very
large number of pages (hundreds or more) of content related to the initial query in-
troduced, a fact that could induce to think that quite a good coverage of the WWW
has been achieved. This impression, however, is not backed up by the empirical
evidence. Indeed, Lawrence and Giles (1999) estimated that none of the six major
public search engines cover individually more than a 16% of the estimated Web
size, the largest one searching on 128 million pages out of the 8 × 108 documents
of the publicly indexable Web,12 while collectively they cover a 42% of the to-
tal.13 In spite of their continued struggle to provide increased coverage, the sheer
size of the Web and its exponential growth seems to preclude the possibility of
a complete mapping of this network. As a matter of fact, the performance of the
search engines is decreasing with time, since in 1998 it was estimated a maximum
coverage of any single engine as 34% (Lawrence and Giles, 1998).

12 These values corresponding to 1999 might be at present outdated. In fact, as on March 2003, “Google” claims
to be able to search in more than 3 × 109 web pages, that with the estimated coverage of a 7.8% for this search
engine (Lawrence and Giles, 1999), yields a Web of size close to 4 × 1010.

13 Therefore, a simple way to improve the performance of a web search is to use a meta search engine, such as
http://www.monstercrawler.com, that combines the results of many single engines.
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The size of the Web is not the only fact hindering the performance of search en-
gines. The very topology of the WWW poses an intrinsic hindrance, much too dif-
ficult to deal with (Barabási, 2002). As we have seen in Section 7.1.2, the WWW
is a directed network, a fact that has a deep impact in the component structure
of the Web graph. Looking at Figure 7.1 we can easily see that, by following
the links present in each web page,14 and starting from a page belonging to the
giant strongly connected component (GSCC), it is possible to explore the full
GSCC plus the OUT component. Therefore, these two components of the Web,
that amount to roughly 50% of the whole network, are fully available to crawlers.
Whenever a new document appears with at least one incoming link from the GSCC
or the OUT components, it will be eventually found and indexed. However, in or-
der to reach a new document located in the IN component or the tendrils, i.e. a
web page that points to the GSCC but is not pointed by it, it is necessary to start
the crawl from these sections of the Web, and hope to find the necessary chain
of links leading to it. To provide a remedy to this situation, many search engines
allow the submission of web pages from their authors, in order to start from them
new crawls that could unveil new sectors of that hidden WWW.

8.3.2 Searching the Web in real time

In opposition to traditional web search engines, that rely on a static index of
words that is periodically updated by extensive Web crawlings, the possibil-
ity has been proposed recently to use adaptive multiagent systems capable of
performing in real time online search of the Web at the moment of the user’s
query (Menczer, 2003; Menczer and Belew, 2000; Chakrabarti et al., 1999;
Aggarwal et al., 2001; Cho et al., 2000). The example of this new paradigm is
the InfoSpiders15 model, developed by Menczer and Belew (2000). InfoSpiders is
a system composed by a population of agents that crawl the Web visiting pages.
The agents are able to dynamically adapt to the environment of the pages they visit.
A query with this system starts with an input of keywords provided by the user,
plus a set of Web pages relevant to the query in question, that can be extracted
from a traditional search engine. An agent is placed in each of those pages and
proceeds to examine the contents of the page in order to estimate the relative rel-
evance of the documents to which a given page points. The information collected
by the agent is transmitted to a neural network that decides which are the links
with a higher relevance. Finally, the state of the agent is updated, deciding whether
it dies, follows a link, or spawns additional agents to follow more links in case a
promising area of information is found.

14 As crawlers do in their broadcast search strategy. 15 http://myspiders.biz.uiowa.edu.
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The key element of InfoSpiders is the capability to adapt and learn during the
crawl. In some sense, therefore, it behaves like a human performing “smart” web
surfing, following the links in the pages found only after analyzing its probable
content and deciding the best direction to find the required information. From this
point of view, these systems can be encompassed in the class of greedy algorithms
described in Section 8.1.1, in which each visited vertex is increasingly closer in
geographical distance to the target vertex. In fact, it can be shown that, using lex-
ical distance in place of geographical distance, the Web’s topology satisfies the
necessary and sufficient conditions postulated by Kleinberg (2000) for efficient
navigation (Menczer, 2002).

Despite the fact that they are still limited by the size and directed topology of the
Web, adaptive multiagent systems represent an improvement over traditional static
search engines. First of all, they avoid the large load imposed on the Internet by
the periodic “blind” crawlings that are needed to update static word indexes. They
also are able to provide fresher data than traditional search engines; since they per-
form real time searches, they can find very recent documents.16 Additionally, it
can be seen that on average, multiagent systems can deliver pages more relevant
to the query in question than a traditional system (Menczer, 2003). InfoSpiders
thus opens new and promising perspectives as a complementary approach to tra-
ditional search engines, in a symbiosis in which both systems can take advantage
of the benefits of the other, in order to provide faster, reliable, and more accurate
searching tools to explore the immensity of the World Wide Web.

16 In comparison, it takes on average 180 days for a new web page to be indexed in a traditional engine (Lawrence
and Giles, 1999).
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Epidemics in the Internet

The Internet is a technological infrastructure aimed at favoring data exchange and
reachability. The World Wide Web can be used to extract information from distant
places with a few mouse clicks, and Internet protocols forward messages to far
away computers, efficiently routing them along the intricate network fabric. This
extreme efficiency, however, can also work in favor of negative purposes, such
as the spreading of computer viruses. Computer viruses have a long history, dat-
ing from the 1980s and before, becoming newly and sadly famous after each new
bug attack, which eventually causes losses worth millions of dollars in computer
equipment and downtime (Suplee, 2000). Their ever-increasing threat has there-
fore stimulated a growing interest in the scientific community and the economic
world, translated in this latter case into the antivirus software business, moving
millions of dollars worldwide every year.

Computer virus studies have been carried out for long time, based mainly on an
analogy with biological epidemiology (Murray, 1988). In particular most stud-
ies have focused on the statistical epidemiology approach, aimed at modeling
and forecasting the global incidence and evolution of computer virus epidemics
in the computer world. The final goal of this approach is the development of
safety and control policies at the large-scale level for the protection of the In-
ternet. Puzzling enough, however, is the observed behavior of computer viruses in
the wild,1 which exhibit peculiar characteristics that are difficult to explain in the
usual epidemic spreading framework. In particular, digital viruses appear to eas-
ily reach long-lasting, almost endemic, steady states, corresponding to generalized
very long lifetimes, indistinctive of the viral strain. In addition, massive immuniza-
tion campaigns do not eradicate the viruses with the expected efficiency. The key
to understanding all these features is the particular background in which computer
virus activity carries on. While classical epidemiological models consider viruses

1 That is, viruses found by actual users in the real world. See the Web page http://www.wildlist.org.
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propagating on the vertices of regular lattices or random networks with rather ho-
mogeneous degree distributions, computer viruses dwell in a digital world (the
physical Internet, the WWW, the e-mail network), which, due to its heterogeneous
nature, has intrinsically large degree fluctuations. The introduction of this new
element yields a theoretical scenario in which all viruses, irrespective of their vir-
ulence, have a chance to pervade the whole system. In this sense, the Internet, and
in general all scale-free networks, are very weak in the face of infections.

In this chapter we provide the general framework of epidemic modeling in com-
plex networks, showing how the introduction of degree fluctuations leads to a rati-
onalization of empirical data from computer virus epidemics. Finally, we discuss
to what extent the protection of the Internet and cyber-communities, defined in the
context of immunization policies designed to effectively reduce or prevent the
large-scale spreading of computer viruses, must take into account the hetero-
geneous nature of these networks.

9.1 Computer viruses and worms

The first kind of bug affecting the Internet can be identified in spontaneus error
propagation mechanisms at the software level. For instance, Bellovin (1993) de-
scribed the DNS cache corruption spreading as a natural computer virus prolif-
erating on the Internet. As we have seen in Chapter 2, computers on the Internet
rely upon Domain Name System (DNS) servers to translate IP addresses into com-
puter names and vice-versa. In turn, DNS servers communicate with each other to
share and update this information. Translation tables are “cached” and eventually
transmitted to the other DNS peers. If any portion of this cache is corrupted, the
DNS server will provide incorrect addresses not only to requesting computers but
to DNS peers as well, propagating the error. At the same time, any DNS server can
get “cured” by updating with an error-free DNS peer or by manual intervention.
The same kind of processes can occur with routing tables exchanged by routers.
Error propagation occurring on routers and servers that are physically connected
can thus be considered as an example of an epidemic process, in which the
corruption (bug) is transmitted from infected to healthy individuals.

From a more familiar point of view, however, computer viruses are usually
referred to as little programs that can reproduce themselves by infecting other
programs and computers (Harley, Slade, Harley, Spafford, and Gattiker, 2001;
Kephart, Sorkin, Chess, and White, 1997). Unfortunately, apart from reproducing
themselves, computer viruses perform other threatening tasks, which range from
flashing innocuous messages on the computer screen to seriously corrupting data
stored in the hard drive. These deleterious effects render most computer viruses as
dangerous as their biological homonyms, and explain the interest, both commercial
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and scientific, which has arisen around their study (Kephart et al., 1997). Leaving
aside academic experiments on the possibility of creating parasitic programs on
computers, the first virus found in the wild dates from 1981, a quite innocuous bug
of the Apple II computer. The first virus capable of infecting a PC was the Brain
virus, developed in Pakistan in 1986. From this humble origin, digital viruses have
risen to constitute a real economic and technological threat. In the year 2000 it was
estimated that there were more than 48,000 identified different viruses, of which
more that 10,000 were spreading in the wild. Scaringly enough, new viruses are
being discovered at a rate of more than ten every month.

Schematically, the mechanism of infection by computer viruses is as follows.
When the virus is active inside the computer, it is able to copy itself, by different
ways, into the code of other, clean, programs. When the newly infected program
is run into another computer, the code of the virus is executed first, becoming
active and being able to infect other programs. Starting from primitive mecha-
nisms, however, the skills of virus programmers have led to the development of
very sophisticated pieces of code, capable of hiding themselves from the scrutiny
of software engineers. In other words, cyber viruses have evolved in time (driven
of course by their programmers’ skills), adopting new strategies that take advan-
tage of the different weak points of computers and software. According to their
different infection and transmission mechanisms, computer viruses are classified
into three basic categories, or strains (Kephart et al., 1997):

1. File viruses infect application programs. When executing an infected application, the
virus is executed first and is independently installed into the computer’s random ac-
cess memory (RAM). Whenever a new, clean application is subsequently run, the virus
copies itself into the executable file of the application, infecting it. File viruses spread
mainly via the sharing of applications.

2. Boot-sector viruses infect the boot sector of floppy disks and hard drives, a portion
of the disk containing a small program in charge of loading the operating system of
the computer. When the computer is started, the code of the virus is read from the
boot sector, and becomes installed in the memory, ready to infect new floppy disks
inserted into the computer. Boot-sector viruses spread usually via the sharing of infected
floppies.

3. Macro viruses are independent of the hardware’s architecture and operating systems,
and infect data files, such as documents produced with word processors or data sheets.
They are coded using the macro instructions appended in the document, instructions
used to perform a set of automatic tasks, such as formatting the documents, or typ-
ing long sequences of characters. Their transmission is via the sharing of infected
documents, that are themselves transmitted by different ways.

Very soon, however, a wealth of hybrid viruses, developed in response to the ever-
increasing deployment of new and more efficient antivirus software, made their
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appearance. These mix the properties of the main strains in more harmful combina-
tions. For instance, they can infect at the same time the boot sector and application
programs (multipartite viruses), boosting in this way their infection efficiency.

The digital virus world experienced a major upheaval in the late 1990s with
the appearance of the nowadays dominant and most aggressive type of cyber or-
ganisms, the computer worms family. The first representative of this family is the
Melissa virus, discovered in 1999. Worms are cyber viruses infecting the computer
with mechanisms similar to regular biological viruses and making particularly ef-
fective use of e-mail for infecting new computers. In fact, by using the macro
instructions of some commercial e-mail software applications, worms are capable
of sending themselves to all the electronic addresses found in the address book
of the person receiving the infected mail. This possibility renders worms very ef-
fective viruses, especially in terms of the velocity at which they can propagate,
starting from a small core of infected computers. As an example of the enormous
efficiency of worms, one of the most virulent of them, the I-love-you bug, was
able to infect more than 78 million computers worldwide in scarcely four days
(Buchanan, 2002).

As if the above scenario were not worrying enough, the taxonomy of cyber
plagues is constantly increasing. Worms nowadays have the capability of spreading
over different networks and making use of different protocols. The last in order of
appearance are active worms, that do not need any user intervention to propagate,
detecting bugs in operating systems and guessing IP addresses to attack (Moore,
Shannon, and Brown, 2002; Staniford, Paxson, and Weaver, 2002). The velocity
of contagion of these worms is enormous and many researchers and practitioners
in the field are so worried about the cyber virus threat that they are pushing for the
development of “centers for disease control,” analogous to those operating in the
case of biological viruses (Staniford et al., 2002).

9.1.1 Statistical data on computer virus spreading

The properties of computer virus spreading have been analyzed by several authors,
in close analogy with the classical epidemiology of biological diseases (Bailey,
1975; Anderson and May, 1992; Murray, 1993; Diekmann and Heesterbeek, 2000).
Indeed, in many cases it is possible to have a one-to-one mapping of biological
parameters with those of the cyber world (Kephart, White, and Chess, 1993;
Kephart et al., 1997; Aron, O’Leary, Gove, Azadegan, and Schneider, 2002). In
both cases, the transmission of the virus is due to contact or interaction between
an infected and a susceptible individual. Immunization is present in both cases, re-
ferring, in the computer world, to anti-virus scanning, operating systems updates,
and other forms of staying alert. Also the medium for transmission is in both cases
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Fig. 9.1 Stages of an epidemic outbreak. The clean-up region can define a long-
standing stationary number of infections resulting in an endemic state. Figure
adapted from Schwartz and Billings (2003).

a network. In biology there are human interaction webs, sexual webs, food webs,
etc., while in the cyber world there are the Internet, the e-mail, and other social
networks, such as P2P systems. Finally the same extra features, such as seasonal
or time effects, are generally encountered in both contexts.2

In this context, statistical studies of computer epidemic outbreaks have focused
on quantities which are customarily used in the characterization of biological dis-
eases. In particular, measurements concern virus prevalence, defined as the aver-
age fraction of computers infected with respect to the total number of computers
present.3 In more detail, the behavior over time of the number of infected indi-
viduals yields a general characterization of the epidemic’s outbreak intensity and
time scale. In general, real data show that large-scale epidemic outbreaks follow a
three stage sequential scheme depicted in Figure 9.1 (Schwartz and Billings, 2003).
First, there is a pre-epidemic stage in which the new virus is formulated and in-
oculated into the population. A second stage refers to a free-spreading phase in
which the virus does not find any resistence because of the lack of any scanning or
“curing” antivirus software. At a third stage, defensive software, system patches,
and recovery procedures are developed and the virus enters a clean-up stage in
which the number of infected individuals is decreasing.4

2 There are however some basic differences between biological and computer viruses that are worth mention-
ing. First, biological epidemics grow on a slower time scale. Secondly, biological individuals are self-reacting
against viruses with their immune system, while computers are not.

3 The density of infected individuals in the population at time t is usually referred to as incidence. The prevalence
refers to the total number of individuals since the beginning of the epidemic outbreak. In the case of endemic
states the prevalence refers also to the stationary state value of density of infected individuals.

4 This general picture may however find exceptions. In particular, the most recent active worms exhibit more
complicated temporal patterns (Moore et al., 2002; Staniford et al., 2002).
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Fig. 9.2 (a) Average prevalence of computer worms as a function of the age
of the virus, measured in months. (b) Time evolution of the prevalence of the
vbs/loveletter virus, a variant of the I-love-you bug. In the plot it is not possible
to report the very fast increase of the free spreading phase that is smaller than the
monthly data time resolution.

Data collection is not an easy task in computer epidemiology. The early free-
spreading phase is very fast and it is difficult to obtain data in experimentally
controlled situations. There are also privacy issues concerning companies and in-
dividuals and often a lack of knowledge on a global scale since data are usually
circumscribed to virus prevalence in some specific domain. From various stud-
ies (Kephart and White, 1993; Kephart et al., 1993; Kephart et al., 1997; Pastor-
Satorras and Vespignani, 2001b; Staniford et al., 2002), however, it is possible to
draw some general empirical evidence concerning the clean-up stage and overall
virus lifetime.

First evidence indicates that the clean-up stage is usually very long, eventually
settling in a long-lasting stationary state that can be considered as an endemic state.
Noticeably, this state goes along with a very small average prevalence, that can be
of the order of 1 out of every 10,000 computers or less. This evidence as been ob-
served both in viruses and worms (Kephart and White, 1993; Kephart et al., 1993).
As an illustration of this feature, Figure 9.2(a) shows the incidence of computer
worm outbreaks a time t after the first observation. Data are averaged over all the
outbreaks over the period from April 2000 to May 2002 as estimated from the
monthly data summary provided by MessageLabs,5 a managed service provider
specializing in e-mail security. As can be observed from this graph, worms are
able to survive on average for large periods of time (above two years), with an

5 Data publicly available at the Web site http://www.messagelabs.com.
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Fig. 9.3 Surviving probability for the three main strains of computer viruses.
After a sharp initial drop, it is clear the presence of an exponential decay, with an
associated characteristic time τ that depends on the given strain.

average prevalence well below 10−4. As a single case study, Figure 9.2(b) reports
the time evolution of the incidence of a typical worm, the vbs/loveletter virus, a
variant of the I-love-you bug, starting from the month of its first observation. Af-
ter a very fast increase the incidence decays until it reaches a long-lasting low
prevalence state, with an average density of infected computers ρ ∼ 5 × 10−6.

Associated with the long clean-up or endemic state, it is reasonable to expect a
long average lifetime of computer viruses. In order to highlight this feature, it is
possible to focus on the surviving probability of homogeneous groups of viruses,
classified according to their infection mechanism (the strain) (Pastor-Satorras and
Vespignani, 2001b). In these measurements one considers the total number of
viruses of a given strain that are born and died within a given observation window.
The surviving probability Ps(t) of the strain is defined as the fraction of viruses
still alive at time t after their birth. Figure 9.3 reproduces the survival probabil-
ity estimated from prevalence data provided by the Virus Bulletin6 from February
1996 to March 2000, covering a time interval of 50 months. Data show that the
survival probability exhibits over long time periods a clean exponential tail

Ps(t) ∼ exp(−t/τ), (9.1)

where τ represents the characteristic lifetime of the virus strain. The numerical
fit of the data (Pastor-Satorras and Vespignani, 2001b) yields τ � 14 months for
boot and macro viruses and τ � 6 − 9 months for file viruses. Strikingly, these

6 Data publicly available at the Web site http://www.virusbtn.com.
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time scales are incredibly long if compared with the spreading rate of computer
viruses and the deployement of anti-virus software, both of the order of a few days.
As we shall see in the following sections, the evidence is not easily reconciliable
with the usual framework of epidemic modeling and calls for the inclusion of the
detailed topological structure of the Internet in the description of computer virus
spreading.

9.2 Epidemic modeling in population networks

The theoretical modeling of computer virus epidemics has been stablished in close
analogy with the models developed for the statistical study of biological diseases
evolution.7 Since the statistical modeling of epidemics aims at a large-scale de-
scription of the outbreak evolution, the details of the infection mechanism within
each individual in the population are necessarily neglected. In this coarse grained
view, individuals can only exist in a discrete set of states, such as susceptible (or
healthy), infected (capable to spread the disease), immune, dead (or removed),
etc. The description of the spreading process is in terms of individuals and their
interactions, which are represented in the structure of the contacts along which
the epidemics can propagate. From this point of view, the population is described
as a graph, in which the vertices represent the individuals and the edges are the
connections along which the epidemics propagates.8

The simplest epidemiological model one can consider, is the susceptible-
infected-susceptible (SIS) model (Anderson and May, 1992; Diekmann and
Heesterbeek, 2000). The SIS model is mainly used as a paradigmatic model for
the study of infectious diseases leading to an endemic state with a stationary and
constant value for the prevalence of infected individuals, i.e. the degree to which
the infection is widespread in the population. In the SIS model, individuals can
only exist in two discrete states, namely, susceptible and infected. The disease
transmission is described in an effective way. The probability that a susceptible
vertex acquires the infection from any given neighbor in an infitesimal time inter-
val dt is λ dt , where λ defines the virus spreading rate. At the same time, infected
vertices are cured and become again susceptible with probability δ dt . Without
lack of generality, we set can set the recovery rate δ = 1, since it only affects
the definition of the time scale of the disease propagation. Individuals thus run
stochastically through the cycle susceptible → infected → susceptible, hence the
name of the model. The SIS model does not take into account the possibility of
the removal of individuals due to death or acquired immunization, which would

7 For a review see Kephart and White (1991) and Kephart et al. (1993), and references therein.
8 The graph defined by the population network is usually considered as undirected, which means that the

propagation contacts (the edges) are always bi-directional.
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lead to the so-called susceptible-infected-removed (SIR) model (Diekmann and
Heesterbeek, 2000; Anderson and May, 1992; Murray, 1993) (see Appendix A6).
The SIR model, in fact, assumes that infected individuals disappear permanently
from the network at a unitary rate. This amounts to considering a situation in which
infected computers are switched off at infection time and never rejoin the network
unless completely screened by antivirus software. This model thus appears partic-
ularly suited for the initial stage of the epidemic when large numbers of computers
become infected and antivirus is deployed by a number of concerned users. How-
ever, in the long run the clean-up stage reaches a stationary steady state in which
the SIS model better represents the overall endemic state. Indeed, this stage refers
to a population of users that, even though they use antiviruses, do not become more
alert with respect to viral infection once they have cleaned their computers, which
can again become infected (Kephart and White, 1991). This is due to several rea-
sons such as miscorrect or disabled antivirus scanning configurations that occur
rather frequently among users (Aron et al., 2002). The SIS model thus represents
epidemic outbreaks in the large time scale limit of the clean-up stage, and in the
following we will use it to illustrate the general epidemic framework, deferring the
analysis of the SIR case to the Appendix A6.

The analytical study of the SIS model can be undertaken in terms of the dynamic
evolution for the epidemic prevalence of the epidemic outbreak. For homogeneous
networks, in which the degree fluctuations are very small, we can approach this
problem by writing the dynamic reaction rate equation for ρ(t), defined as the
density of infected vertices present at time t . That consists in a mean-field descrip-
tion of the system, in which all vertices are considered as equivalent irrespective
of their corresponding degree, an assumption that is coherent as long as the vari-
ations in k are not very strong and correlations among the state of vertices can be
neglected (Marro and Dickman, 1999). In this case, the average density ρ(t) is
also equivalent to the probability that any given vertex is infected and the reaction
equation for ρ(t) can be written as

dρ(t)

dt
= −ρ(t) + λ〈k〉ρ(t) [1 − ρ(t)] . (9.2)

The first term on the right-hand side of Eq. (9.2) considers infected vertices spon-
taneously recovering at a unit rate. The second term represents the rate of new
infected vertices generated in the network, i.e. the density of healthy vertices ac-
quiring the infection. This is proportional to the infection spreading rate, λ, the
density of susceptible vertices that might become infected, 1 − ρ(t), and the num-
ber of infected individuals in contact with any healthy vertex. This last factor
assumes the homogeneous mixing hypothesis (Anderson and May, 1992) which
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asserts that the force of the infection (the per capita rate of acquisition of the
disease for the susceptible individuals) is proportional to the average number of
contacts with infected individuals, that is approximated as kρ(t),9 i.e. the average
number of infected neighbors. In the homogeneous networks we are considering
here, the degree has only very small fluctuations, 〈k2〉 ∼ 〈k〉2, and as a first ap-
proximation we have considered that each vertex has the same number of edges,
k � 〈k〉. This homogeneity hypothesis is thus equivalent to assuming that the rate
of contacts between infectious and susceptibles is constant for the whole pop-
ulation, and independent of any possible source of heterogeneity present in the
system. In Eq. (9.2) we have also ignored all higher-order corrections in ρ(t) (i.e.
terms of order ρ(t)3), since we are interested in the onset of the infection close to
the point ρ(t) � 0.

After imposing the stationarity condition dρ(t)/dt = 0, we obtain the equation,
valid for the behavior of the system at t → ∞

ρ [−1 + λ〈k〉(1 − ρ)] = 0, (9.3)

whose solution yields the steady state density ρ of infected vertices. This equation
defines an epidemic threshold

λc = 1

〈k〉 , (9.4)

which yields two different prevalence regimes as a function of the spreading rate:

ρ(λ) =
{

0 if λ < λc

(λ − λc)/λ if λ ≥ λc
. (9.5)

The presence of a non-zero epidemic threshold λc (Anderson and May, 1992;
Murray, 1993; Diekmann and Heesterbeek, 2000) is a central result of the model.
If the value of λ is above the threshold, λ ≥ λc, the infection spreads and be-
comes endemic. Below the threshold, λ < λc, the infection dies out exponentially
fast. As for percolation in Section 6.3, this behavior defines a phase transition be-
tween two very different regimes. This transition, however, is dynamical and more

9 Since each infected individual attempts to infect a connected suceptible vertex with probability λ dt , a suscep-
tible vertex with n infected neighbors will have a total probability of getting infected given by 1 − (1 − λ dt)n .
Neglecting fluctuations, each susceptible vertex with k connections will have on average n = kρ infected neigh-
bors, yielding at the leading order in λ dt � 1 an infection acquisition probability 1 − (1 − λ dt)kρ � λkρ dt .
This finally recovers the per capita acquisition rate λkρ. Sometimes alternative definitions of the SIS model
refer to λ dt as the probability of acquiring the infection if one or more neighbors, indistinctively, are infected.
In this case the total acquisition probability is given by λ dt[1 − (1 − ρ)k ], i.e. the spreading probability times
the probability that at least one neighbor is infected. Also in this case, for λ dt � 1 and ρ � 1 an acquisition
rate λkρ is recovered at the leading order.
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Fig. 9.4 Schematic phase diagram for the SIS model in homogeneous networks.
The epidemic threshold λc separates an active or infected phase, with finite preva-
lence, from an absorbing or healthy phase, with null prevalence. Within this
framework, the very small prevalence and long lifetimes observed in computer
virus data are only compatible with a value of λ infinitesimally close to the
epidemic threshold.

specifically the SIS model exhibits an absorbing-state phase transition.10 Below
the critical point the system relaxes in a state with null dynamics, the healthy phase.
Above this point, a dynamical state characterized by a macroscopic number of in-
fected individuals sets in, defining an infected phase. A qualitative picture of the
phase diagram of this transition is depicted in Figure 9.4.

The concept of threshold is central also in issues related to the protection of
populations by means of immunization programs. These correspond to vaccination
policies, i.e. the delivery of anti-virus scanning software, aimed at the eradication
of the epidemic. The simplest immunization procedure one can consider consists
in the random introduction of immune individuals in the population (Anderson and
May, 1992), in order to get a uniform immunization density. In this case, for a fixed
spreading rate λ, the relevant control parameter is the density of immune vertices
present in the network, the immunity g. At the mean-field level, the presence of a
uniform immunity will have the effect of reducing the spreading rate λ by a factor
1 − g; i.e. the probability of infecting a susceptible and non-immune vertex will
be λ(1 − g)[1 − ρ(t)]. For homogeneous networks we can easily see that, for a
constant λ, the stationary prevalence is given in this case by

ρg =
⎧⎨
⎩

0 if g > gc
gc − g

1 − g
if g ≤ gc,

(9.6)

10 It is possible to recognize that the SIS model is a generalization of the contact process model (Harris, 1974),
widely studied in this context as the paradigmatic example of an absorbing-state phase transitions with a
unique absorbing state (Marro and Dickman, 1999).
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where gc is the critical immunization value above which the density of infected
individuals in the stationary state is null, and depends on λ as

gc = 1 − λc

λ
. (9.7)

Thus, for a uniform immunization level larger than gc, homogeneous networks are
completely protected and no large epidemic outbreaks or endemic states are pos-
sible. The immunization threshold is very important in the prevention of epidemic
outbreaks and in the clean-up stage in order to eradicate the virus. In practice,
the aim of antivirus software deployment is to achieve a density of immunized
individuals that pushes the population into the healthy region of the phase diagram.

Finally, it must be stressed that the concept of epidemic and immunization
thresholds is a very general and key property of epidemic models. For instance,
the SIR model too shows a definite epidemic threshold in homogeneous networks.
In this model individuals are removed after having been infected and the asymp-
totic prevalence is necesseraly null. Yet, the SIR epidemic threshold separates a
phase in which the epidemic outbreak involves only a negligible fraction of indi-
viduals from a phase in which a finite fraction of the population is infected (see
Appendix A6). As well, clustered but homogeneous connectivity patterns such
as regular lattices, meshes and the Watts–Strogatz network are not altering this
scenario and just provide a different scaling behavior of the prevalence close to
the threshold (Anderson and May, 1992; Marro and Dickman, 1999; Moore and
Newman, 2000; Abramson and Kuperman, 2001).

9.3 Puzzling questions raised by computer virus data

When comparing the theoretical picture delivered by the SIS model on homoge-
neous networks with the behavior observed in real computer viruses, one is faced
with some unexpected and paradoxical conclusions. First of all, the extremely
long-lasting low prevalence shown by viruses in the clean-up stage is compatible
with the phase diagram sketched in Figure 9.4 only in the very unlikely case that
all surviving viruses are constructed such that their respective asymptotic spread-
ing rate λ is tuned infinitesimally close to λc, above the epidemic threshold. At
the same time, the characteristic life times observed in the analysis of the survival
probability of the different virus strains are impressively long if compared with
the time lapse before which anti-virus software is available on the market, usu-
ally days or weeks after the first incident report. Again such a long lifetime on
the scale of the typical spread/recovery rates would suggest an effective spreading
rate greater than the epidemic threshold, which is in contradiction with the al-
ways low prevalence levels of computer viruses except in the case of an unrealistic
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tuning of all viruses to the system’s epidemic threshold. Finally, the deployment
of antivirus alerts and software is nowadays considerable, with all major compa-
nies and providers constantly updating their antivirus software databases.11 This
fact, along with the timely availability of antivirus software, leads to a very large
fraction of immunized individuals in a very short time scale compared with the
duration of the epidemic outbreak. It is therefore very puzzling that despite these
massive vaccination campaigns the threshold for virus eradication is never reached.
Also in this case the only explantion within the usual framework would consist of
a delicate interplay between the virus spreading rate and the immunization den-
sity that automatically tunes the effective spreading rate always very close to the
critical point. Once more, this explanation is rather cumbersome and highly im-
probable. In summary, comparison with the known experimental data points out
that the view obtained so far with the modeling of computer viruses is very in-
structive, but not easily reconciliable, even at a qualitative level, with the nature
of the real digital epidemics phenomenon. The explanation of this discrepancy has
been recognized as one of the most important open problems in computer virus
epidemiology (White, 1998).

The key point that might provide a solution to the riddle posed by com-
puter viruses resides in their transmission media (FTP, e-mail, etc.) (Kephart
et al., 1997). Viruses will spread preferentially to computers which are highly con-
nected to the outer world and are thus proportionally exchanging more data and
information. It is thus rather intuitive to consider the ubiquitus scale-free topol-
ogy of technological networks as the effective one on which the spreading takes
place. For instance, this is the case of natural computer viruses and error propa-
gation processes which spread on the topology identified by routers and servers.
Worms in turn spread on the social network defined by e-mail exchanges that in
many instances exhibit scale-free properties (Ebel et al., 2002). More recent worms
and viruses take adantage of P2P systems and other virtual networks to diffuse
(Staniford et al., 2002), and also in these cases the heterogeneous topology is the
one characterizing the individuals’ connectivity patterns. A detailed discussion of
the topology of social and virtual networks has been provided in Chapter 7, where
the scale-free topology appears as a natural ingredient to be introduced in any
modeling of physical processes occurring in these systems.

The conclusion from the above arguments is that computer viruses spread in
highly heterogeneous networks, in which, even though the average degree is well
defined, the degree fluctuations are unbounded; i.e. there is always a finite proba-
bility that a vertex has a number of neighbors much larger than the average value.

11 For instance, most major business companies have set automatic weekly downloads of antivirus software for
their employees.
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These degree fluctuations are the key difference with respect to the epidemic mod-
els discussed on homogeneous networks, and their inclusion provides a different
theoretical framework than appears to fit naturally the empirical evidence obtained
from computer virus data.

9.4 Epidemics in scale-free networks

In order to take into account fully degree fluctuations in an analytical description
of the SIS model, we have to relax the homogeneity assumption and allow for
degree fluctuations by introducing the relative density ρk(t) of infected vertices
with given degree k; i.e. the probability that a vertex with k edges is infected. The
dynamical reaction rate equations for any given degree class can thus be written as
(Pastor-Satorras and Vespignani, 2001a, 2001b)

dρk(t)

dt
= −ρk(t) + λk [1 − ρk(t)] �k[{ρk′(t)}], (9.8)

where also in this case we have considered a unitary recovery rate and neglected
higher-order terms (ρk(t) � 1). The creation term considers the density 1 − ρk(t)
of healthy vertices with k edges, that might get infected via a neighboring vertex.
The rate of this last event is proportional to the infection rate λ, the actual number
of connections k, and the average density of infected individuals connected at the
end of each edge, i.e. the probability �k[{ρk′(t)}] that an edge emanating from a
node of degree k points to an infected individual. We make the assumption that �k

is a function only of the degree k and of the set of densities of infected vertices
{ρk′(t)} in each degree class.

9.4.1 Uncorrelated random networks

For the sake of simplicity, we will consider in the first place the solution of
Eq. (9.8) where the underlying network is a generalized random graph (see Sec-
tion 5.1.2) with no degree correlations, that is, when the probability that a vertex
of degree k is connected to a vertex of degree k′ is independent of the degree of
the originating vertex k (see Appendix A4). In this case, the function �k cannot
depend on the variable k, and then �k ≡ �. In the steady (endemic) state, ρk are
functions of λ. Thus, the average density � becomes also an implicit function of
the spreading rate, and by imposing the stationarity condition dρk(t)/dt = 0, we
obtain

ρk = kλ�(λ)

1 + kλ�(λ)
. (9.9)
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This set of equations shows that the higher a vertex degree, the higher the proba-
bility it will be in an infected state. This inhomogeneity cannot be neglected in the
computation of �(λ). For the case of a random uncorrelated network, the calcula-
tion of �(λ) is straightforward, because the probability that any given edge points
to a vertex with k′ edges is equal to k′ P(k′)/

∑
k k P(k). This probability yields an

average density of infected vertices pointed to by any given edge that reads as

�(λ) = 1

〈k〉
∑

k

k P(k)ρk(λ), (9.10)

where it has been considered that
∑

k k P(k) = 〈k〉. Since ρk in the stationary state
is in its turn a function of �(λ), it is possible to use Eq. (9.9) to obtain the self-
consistent equation

� = 1

〈k〉
∑

k

k P(k)
λk�

1 + λk�
, (9.11)

whose solution allows the explicit calculation of �(λ) (Pastor-Satorras and
Vespignani, 2001a, 2001b). Once this solution is obtained it is possible to get an
explicit form for the densities ρk and finally to evaluate the average prevalence
ρ as

ρ(λ) =
∑

k

P(k)ρk(λ). (9.12)

The self-consistent Eqs (9.9) and (9.10) can be approximately solved, in the
limit of small � (close to the epidemic threshold), for scale-free distribution
with general degree exponent γ . However, even without accessing the full solu-
tion of Eqs (9.9) and (9.10), the epidemic threshold can be explicitly calculated
from Eq. (9.11) by simply observing that λc is the value of λ, above which it
is possible to obtain a nonzero solution �∗. Using a geometrical argument, as
in the case of the analysis of percolation theory in random graphs in Chapter 6,
the solution of Eq. (9.11) follows from the intersection of the curves y1(�) = �

and y2(�) = (1/〈k〉) ∑
k k P(k)λk�/(1 + λk�). The latter is a monotonously in-

creasing and convex function of � between the limits y2(0) = 0 and y2(1) =
(1/〈k〉) ∑

k k P(k)λk/(1 + λk) < 1. If we must have a solution �∗ = 0, then the
slope of y2(�) at the point � = 0 must be larger than or equal to 1 (see Figure 9.5).
This condition implies that

d

d�

(
1

〈k〉
∑

k

k P(k)
λk�

1 + λk�

)∣∣∣∣∣
�=0

≡ λ
〈k2〉
〈k〉 ≥ 1. (9.13)

The value of λ yielding the equality in Eq. (9.13) defines the epidemic threshold
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Fig. 9.5 Graphical solution of Eq. (9.11). (a) If the slope of the function y2(�)
at � = 0 is smaller than 1, the only solution of the equation is � = 0. (b) When
the slope is larger than 1, a non-trivial solution �∗ = 0 can be found.

λc, that reads as

λc = 〈k〉
〈k2〉 . (9.14)

This result implies that in scale-free networks with degree exponent 2 < γ ≤ 3, for
which 〈k2〉 → ∞ in the limit of a network of infinite size, we have λc = 0, i.e. a
null epidemic threshold. Also in this case, the parameter κ = 〈k2〉/〈k〉 that defines
the level of heterogeneity in the connectivity pattern is determining the proper-
ties of the physical processes occurring on the network. This is a very relevant
result, which, analogously to those concerning the resilience to damage (Chap-
ter 6), indicates that scale-free networks behave very differently, with respect to
physical and dynamical processes, from homogeneous networks. In particular, the
absence of any epidemic threshold makes scale-free networks a sort of ideal envi-
ronment for the spreading of viruses, that also in the case of very weak spreading
capabilities are able to pervade endemically the network. Moreover, the lack of an
epidemic threshold in scale-free networks is not just a peculiar property of the SIS
model. This scenario indeed holds also in other epidemic models and appears to
be a general framework for epidemics in heterogeneous networks (Moreno, Pastor-
Satorras, and Vespignani, 2002; May and Lloyd, 2001; Newman, 2002b). In Ap-
pendix A6, the calculation for the SIR model in scale-free networks is reported in
detail as a convincing example of the generality of these results.

9.4.2 Prevalence behavior in scale-free networks

The previous analysis can be worked out in detail in random uncorrelated
scale-free networks with an arbitrary degree exponent γ (Pastor-Satorras and
Vespignani, 2001b). Consider a network which, in the continuous k approximation,
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has a normalized degree distribution P(k) = (γ − 1)mγ−1k−γ and average degree
〈k〉 = (γ − 1)m/(γ − 2), where m is the minimum degree of any vertex. Accord-
ing to the general result Eq. (9.14), the epidemic threshold for infinite networks
depends on the second moment of the degree distribution and is given, as a func-
tion of γ , by

λc =
⎧⎨
⎩

γ − 3

m(γ − 2)
if γ > 3

0 if γ ≤ 3 .

(9.15)

In this case it is also possible to calculate explicitly the average prevalence ρ as
a function of λ and the specific scale-free exponent γ considered. By using the
continuos k approximation, Eq. (9.11) yields the self-consistent relation

�(λ) = (γ − 2)mγ−2λ�(λ)

∫ ∞

m

k−γ+2

1 + kλ�(λ)
dk. (9.16)

Analogously, the expression for the density ρ, Eq. (9.12), reads as

ρ(λ) = (γ − 1)mγ−1λ�(λ)

∫ ∞

m

k−γ+1

1 + kλ�(λ)
dk. (9.17)

In the limit ρ → 0 (which obviously corresponds also to � → 0), we can perform
an asymptotic expansion of the right-hand side of Eq. (9.17), which at the lowest
order in λ yields the general form

ρ(λ) � γ − 1

γ − 2
mλ�(λ), (9.18)

for all values of γ . The average prevalence is therefore a linear function of �(λ)

whose explicit dependence on λ in turn depends on the particular value of γ

considered through the self-consistent solution of Eq. (9.16). Depending on this
solution the following cases can be considered:

(a) 2 < γ < 3

In this case the leading order in λ of the solution of Eq. (9.16) yields

�(λ) � (mλ)(γ−2)/(3−γ ) . (9.19)

Combining this result with Eq. (9.18), we obtain

ρ(λ) ∼ λ1/(3−γ ). (9.20)

As expected, this relation does not show any epidemic threshold and gives non-
zero prevalence for all values of λ. It is important to note that the exponent
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governing the behavior of the prevalence, 1/(3 − γ ), is larger than 1. This im-
plies that for small λ the prevalence is growing very slowly, i.e. there exists a wide
region of the spreading rate in which ρ � 1.

(b) γ = 3

For this value of the degree exponent, logarithmic corrections dominate in the
solution of Eq. (9.16), yielding

�(λ) = e−1/mλ

λm
(1 − e−1/mλ)−1, (9.21)

which gives an average prevalence at the lowest order in λ

ρ(λ) ∼ 2e−1/mλ. (9.22)

Also in this case, the total absence of any epidemic threshold is recovered, and
the prevalence approaches zero in a continuous and smooth way, exhibiting an
exponentially small value for a wide range of spreading rates (λ � 1).

(c) 3 < γ < 4

The non-zero solution for �(λ) yields

ρ(λ) ∼
(

λ − γ − 3

m(γ − 2)

)1/(γ−3)

.

(9.23)

That is, a power-law persistence behavior is observed. It is associated, how-
ever, with the presence of a non-zero threshold λc as given by Eq. (9.15). Since
1/(γ − 3) > 1, the epidemic threshold is approached smoothly without any sign
of the singular behavior associated with a critical point.

(d) γ > 4

The most relevant terms in the expansion of �(λ) yield now the behavior

ρ(λ) ∼ λ − γ − 3

m(γ − 2)
. (9.24)

That is, we recover the usual epidemic framework obtained for homogeneous
networks.

In summary, the outcome of the analysis presented here is that the SIS model in
scale-free uncorrelated random networks with degree exponent γ ≤ 3 exhibits the
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absence of any epidemic threshold or critical point, i.e. λc = 0. Only for γ > 4
do epidemics on scale-free networks have the same properties as on homogeneous
networks. This result is consistent with the general picture already encountered for
resilience to damage, and also in this case finds its origin in the presence of highly
connected hubs. The latter, indeed, can be considered as sort of super-spreaders.
Each time the epidemic reaches one of the hubs it has the possibility of infecting
an enormous number of individuals (kλ, with k → ∞) irrespective of the very low
spreading rate. The epidemic thus receives a burst that keeps it alive until a new
hub is hit. In homogeneous networks, and for γ > 3, the probability of finding a
hub is negligible and the epidemic dies if the spreading rate is not large enough to
infect a sufficient number of new individuals by using the connectivity of “typical”
vertices. In scale-free networks, instead, there is a non-negligible probability that
the infection will be transmitted from hub to hub, each time allowing the virus
to infect a finite fraction of the population’s individuals whatever the spreading
rate is.

9.4.3 Finite-size effects

The actual Internet and the social or virtual networks considered here are com-
posed of a finite number of elements, which is far from the thermodynamic limit.
This finite population introduces a maximum degree kc, depending on the system
size N (see Appendix A5) or a finite connectivity capacity, which has the effect of
restoring a bound to the degree fluctuations. The presence of the cut-off translates,
through the general expression Eq. (9.14), into an effective non-zero epidemic
threshold due to finite size effects, as usually observed in non-equilibrium phase
transitions (Pastor-Satorras and Vespignani, 2002; May and Lloyd, 2001; Marro
and Dickman, 1999). This positive epidemic threshold, however, is not an intrinsic
property as in homogeneous systems, but an artifact of the limited system size that
vanishes when increasing the network size or the degree cut-off.

Focusing in the SIS model in uncorrelated random networks with a scale-free
degree distribution of the form P(k) � k−γ exp(−k/kc), we can compute the ef-
fective non-zero epidemic threshold λc(kc) within the continuous k approximation
(Pastor-Satorras and Vespignani, 2002)

λc(kc) = 〈k〉kc

〈k2〉kc

=
∫ ∞

m k−γ+1 exp(−k/kc)∫ ∞
m k−γ+2 exp(−k/kc)

≡ �(2 − γ, m/kc)

�(3 − γ, m/kc)
, (9.25)

where m is the minimum degree of the network, and �(x, y) is the incomplete
Gamma function (Abramowitz and Stegun, 1972). For large kc we can perform a
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Taylor expansion and retain only the leading term, obtaining for any 2 < γ < 3

λc(kc) �
(

kc

m

)γ−3

. (9.26)

The limit γ → 3 corresponds to a logarithmic divergence, yielding instead the
leading order

λc(kc) � 1

m ln(kc/m)
. (9.27)

It is interesting to compare the intrinsic epidemic threshold obtained in homoge-
neous networks with negligible degree fluctuations, λH

c = 〈k〉−1, with the non-zero
effective threshold of bounded scale-free distributions. Figure 9.6 represents the
ratio λc(kc)/λ

H
c as a function of kc/m, for different values of the degree exponent

γ . We can observe that, even for relatively small cut-offs (kc/m ∼ 102 − 103),
for a reasonable value γ ≈ 2.5 the effective epidemic threshold of finite scale-free
networks is smaller by close to an order of magnitude than the intrinsic threshold
corresponding to a homogeneous network with the same average degree. This fact
implies that the extreme weakness of scale-free networks to epidemic agents is
present even in finite-size or degree-bounded networks. The use of the homogene-
ity assumption would lead in scale-free networks to a serious over-estimate of the
epidemic threshold, even for relatively small networks.
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Fig. 9.6 Ratio between the effective epidemic threshold λc(kc) in bounded scale-
free networks with a soft exponential cut-off, and the intrinsic epidemic threshold
λH

c for homogeneous networks with the same average degree, for different values
of γ .
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9.4.4 Correlated random networks

For a general network in which the degrees of the different vertices are correlated
(Appendix A4), the dynamical equation considered so far might result in a too
strong approximation, since we are not considering the effect of the degree k into
the expression for �k . A more refined scheme allows the inclusion of correlations
defined by the conditional probability P(k′ | k) that a vertex of degree k is con-
nected to a vertex of degree k′. The inclusion of correlations yields the correct
factor �k as

�k[{ρk′(t)}] =
∑

k′
P(k′ | k)ρk′(t), (9.28)

that is, the probability that an edge in a vertex of degree k is pointing to an infected
individual is proportional to the probability that any edge points to a vertex of
degree k′, times the probability that this vertex is infected, ρk′(t), averaged over all
the connections of the original vertex. From Eqs. (9.8) and (9.28), the mean-field
equations describing the SIS epidemic model on correlated random networks can
be written as

dρk(t)

dt
= −ρk(t) + λk [1 − ρk(t)]

∑
k′

P(k′ | k)ρk′(t). (9.29)

The above set of equations can be considered as exact for Markovian random net-
works (Boguñá and Pastor-Satorras, 2002), which are entirely defined by their de-
gree distribution P(k) and the conditional probability P(k′ | k), while it is a better
approximation in the case of networks presenting also higher-order correlations.

The exact solution of this last equation can be difficult to find, depending on
the particular form of P(k′ | k). However, it is possible to obtain a general result
(Boguñá and Pastor-Satorras, 2002) relating the epidemic threshold of Eq. (9.29)
to the eigenvalues of the connectivity matrix C = {Ckk′ }, with components

Ckk′ = k P(k′ | k). (9.30)

These matrix elements measure the average number of edges which, from a vertex
of degree k, go to vertices with degree k′. In particular it is possible to show that if
	m is the largest eigenvalue of C, the epidemic threshold above which Eq. (9.29)
allows a solution ρk > 0 is given by

λc = 1

	m
. (9.31)

It is instructive to see how this general formalism recovers the result in Eq. (9.14),
implicitly obtained for random uncorrelated networks. For any random network, in
which there are no correlations among the degrees of the vertices, we have that the
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connectivity matrix is given by Cnc
kk′ = k P(k′ | k) ≡ kk′ P(k′)/〈k〉 (see Eq. (A4.8)).

Now it is easy to see that the matrix {Cnc
k′k} has a unique eigenvalue 	nc

m = 〈k2〉/〈k〉,
corresponding to the eigenvector vnc

k = k, from where we recover the now well-
established result Eq. (9.14).

While explicit solutions of the Eq. (9.29) cannot generally be obtained, it is
very important to study to what extent the presence of degree correlations can al-
ter the general picture stating that scale free networks do not have an epidemic
threshold. In correlated networks the presence or lack of an epidemic threshold
is directly related to the largest eigenvalue 	m of the connectivity matrix, which
has been shown to diverge for all scale-free unstructured networks12 with infinite
fluctuations, for any kind of two-point correlations (Boguñá, Pastor-Satorras, and
Vespignani, 2003a). Thus it is possible to state that a scale-free degree distribution
with exponent 2 < γ ≤ 3 is a sufficient condition for a vanishing epidemic thresh-
old in the thermodynamic limit in the case of correlated networks, confirming the
general scenario in which scale-free networks appear to be distinctively weak with
respect to error and virus transmission.

9.5 Numerical simulation of epidemics in network models

In order to have a test of the theoretical results and a numerical example of the
epidemic framework in scale-free networks, the most convenient solution consists
in performing numerical simulations of epidemic outbreaks in network models.
For this purpose, it is possible to develop an agent-based modeling strategy in
which each individual vertex is tracked as being either susceptible or infected.
At each time step the updating dynamics as defined in the SIS model is applied
to each vertex, depending on the state of all vertices. In this case, discrete time
steps are conveniently used with parallel dynamics in which at each time step
all healthy vertices in contact with an infected individual will become infected
with probability λ. At the same time, all previously infected vertices switch with
probability 1 to the healthy state at the end of the time step. The system is then
let free to evolve following the stochastic microscopic dynamics, and during each
time step it is possible to record average quantities such as the prevalence ρ(t).
In addition, given the stochastic nature of the dynamics, the experiment can be
repeated with different stochastic realizations with the possibility of measuring
quantities such as the average lifetime of outbreaks or their relaxation time scale to
the endemic state. Different initial conditions can be choosen as well as the graph

12 The present result is only valid for networks with no internal structure, in which all the vertices with the same
degree are statistically equivalent. It does not apply for regular lattices or structured networks (Klemm and
Eguı́luz, 2002b; Moreno and Vázquez, 2003), in which a spatial or class ordering constrains the connections
among vertices.
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Fig. 9.7 Total prevalence ρ for the SIS model in a Barabási–Albert network (full
line) as a function of the spreading rate λ, compared with the theoretical prediction
for a homogeneous network (dashed line).

defining the connectivity pattern of the population. Interestingly, this approach
is equivalent to the real evolution of an SIS epidemic outbreak in the generated
network and can be used to validate the theoretical results obtained with the mean-
field approximation.

Numerical simulations of the SIS model performed on a Barabási–Albert net-
work with degree distribution P(k) ∼ k−3 confirm the analytical picture extracted
from the mean-field analysis. Figure 9.7 shows the total prevalence ρ in the steady
state as a function of the spreading rate λ (Pastor-Satorras and Vespignani, 2001a).
As we can observe, it approaches zero in a continuous and smooth way, compat-
ible with the presence of a vanishing epidemic threshold (see for comparison the
behavior expected for a homogeneous network, also drawn in Figure 9.7). More-
precisely, it is possible to focus on the region of small spreading rate λ � 1 in order
to inspect the analytic form of the prevalence behavior. Figure 9.8 represents ρ in a
semilogarithmic plot as a function of 1/λ, which shows that ρ(λ) ∼ exp(−C/λ),
where C is a constant independent of the size N of the network, in very good
agreement with the theoretical prediction of Eq (9.22).

The surviving probability Ps(t) for a fixed value of λ and different network
sizes N is represented in Figure 9.9. In this case, we recover exponential behavior
in time, that has its origin in the finite size of the network. In fact, for any finite sys-
tem, the epidemic will eventually die out because there is a finite probability that
all individuals cure the infection at the same time. This probability is decreasing
with the system size, and the lifetime is infinite only in the thermodynamic limit
N → ∞. However, the lifetime becomes virtually infinite (the metastable state has
a lifetime too long for our observation window) for large enough sizes that depend
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Fig. 9.8 Prevalence ρ as a function of 1/λ for Barabási–Albert networks of dif-
ferent sizes: N = 105 (+), N = 5 × 105 (�), N = 106 (×), N = 5 × 106 (◦), and
N = 8.5 × 106 (�). The linear behavior on the semi-logarithmic scale proves the
stretched exponential behavior predicted for the prevalence. The full line is a fit
to the form ρ ∼ exp(−C/λ).
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Fig. 9.9 Surviving probability Ps(t) as a function of time in supercritical spread-
ing experiments in the Barabási–Albert network. Spreading rate λ = 0.065. Net-
work sizes ranging from N = 6.25 × 103 to N = 5 × 105 (bottom to top).

upon the spreading rate λ. This is a well-known feature of the survival probability
in finite size absorbing-state systems poised above the critical point (Marro and
Dickman, 1999). In our case, this picture is confirmed by numerical simulations
that show that the average lifetime of the survival probability is increasing with the
network size for all the values of λ. As a final comment, it must be noted that the
Barabási–Albert network is quantitatively described by Eq. (9.22), which refers to
the uncorrelated approximation because of the dimness of its degree correlations,
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as discussed in Appendix A4. More complex models, while preserving the general
picture concerning the absence of the epidemic threshold, could show quantitative
differences in the prevalence behavior in view of the particular degree correlations
present in the network.

9.6 Rationalizing computer virus experimental data

The scenario emerging for epidemic spreading in scale-free networks shows un-
expected results that radically change many standard conclusions on epidemic
spreading. The absence of an epidemic threshold makes the Internet and highly
heterogeneous virtual networks (the WWW, the e-mail network, etc.) very vul-
nerable to error transmission and virus spreading. Somehow, cyber plagues can
proliferate on these networks whatever spreading rates they may have.

While this scenario is raising many concerns, it also provides a simple and rea-
sonable rationalization of the features observed in experimental data from com-
puter viruses. The very long-lasting clean-up stage common to many epidemic
outbreaks is naturally accounted for by the fact that all viruses, independently of
their spreading capacity, can reach an endemic state. At the same time, the very
low prevalence associated with the stationary state is not a surprise anymore. It is
a straightforward consequence of the prevalence behavior in scale-free networks.
The absence of an epidemic threshold makes room for a large region of spreading
rates in which the prevalence is extremely small (ρ � 1). In the clean-up stage,
virus countermeasures are put in place, reducing the effective spreading rate of the
epidemic. Yet, whatever small value of the spreading rate is achieved by security
measures, the epidemic can survive at very low prevalence levels without invok-
ing any accurate fine tuning to a particular region of the parameter space. Also
the fact that the capillary diffusion of antivirus scanning is not able to eradicate
the epidemic finds a simple explanation in the present framework. The absence of
an epidemic threshold does not allow any random immunization procedure to be
effective since any healthy region of the phase space in which the system can be
poised does not exist. We shall look at this point in detail in the following sections.

Finally, it must be said that simple models such as the SIS and the SIR, while
very instructive, cannot be considered realistic, and many more ingredients should
be added to the representation of real epidemics. Rules defining the temporal pat-
terns of networks such as the formation of new connections, the actual time dur-
ing which connections exist, and other heterogeneities should be included in the
models. Details of each particular virus can be relevant to some predictions and
the users’ behavior should be more carefully incorporated13 in the description of

13 This is particularly true in the case of active worms that guess susceptible computers also by specific
algorithms not directly related to the network connectivity (Staniford et al., 2002).



9.7 Immunization of scale-free networks 205

epidemic outbreaks. Nevertheless, the conceptual understanding of the peculiari-
ties of virus spreading in scale-free networks can be considered as a first and basic
step in fighting and forecasting epidemics in the cyber world.

9.7 Immunization of scale-free networks

The weakness to epidemic attacks of scale-free networks is presenting us an ex-
tremely worrying scenario. The conceptual understanding of the mechanisms and
causes for this weakness, though, allows us to develop new defensive strategies
that take advantage of the scale-free topology. Thus, while random immuniza-
tion strategies are utterly inefficient, it is possible to devise targeted immunization
schemes which are extremely effective.

9.7.1 Uniform immunization

In scale-free networks the introduction of a random immunization is able to locally
depress the infection’s prevalence, but it does so too slowly, being impossible to
find any critical fraction of immunized individuals that ensures the infections erad-
ication. A simple argument for the inadequacy of random immunization strategies
is that they are giving the same importance to very connected vertices (with the
largest infection potential) and to vertices with a very small degree. Due to the
large fluctuations in the degree, heavily connected vertices, which are statistically
very significant, can overcome the effect of the uniform immunization and main-
tain the endemic state.

In mathematical terms, the introduction of a density g of immune individuals
chosen at random is equivalent to just rescaling the effective spreading rate as
λ → λ(1 − g), i.e. the rate at which new infected individuals appear is depressed
by a factor proportional to the probability that they are not immunized. However,
the absence of an epidemic threshold (λc = 0) in the thermodynamic limit implies
that whatever rescaling of the spreading rate does not bring the epidemic in the
healthy region but for the case g = 1. Indeed, the immunization threshold gc is
obtained when the rescaled spreading rate is set equal to the epidemic threshold.
For instance, using Eq. (9.14) for uncorrelated networks we obtain

λ(1 − gc) = 〈k〉
〈k2〉 . (9.32)

In scale-free networks with 〈k2〉 → ∞ only a complete immunization of the
network (i.e. gc = 1) ensures an infection-free stationary state in the thermo-
dynamic limit. The fact that uniform immunization strategies are less effective
has been noted in the biological context in several cases of spatial heterogeneity
(Anderson and May, 1992). In scale-free networks, however, we face a limiting
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case due to the extremely high (virtually infinite) heterogeneity in the connectivity
properties.

Noticeably, data from real computer virus epidemics provide support for this
picture. Despite the deployment of antivirus software is timely and capillary,
viruses’ lifetimes are extremely long; in other words, very high levels of uniform
immunization are not able to eradicate the epidemic. These empirical findings are,
however, in good agreement with the picture obtained for the immunization of
scale-free networks. In fact, antivirus deployment is not eradicating epidemics on
the global scale, since it is like a random immunization process where file scan-
ning and antivirus updating are overall left to the good will of users and system
managers. Needless to say, from the point of view of the single user, antiviruses
are extremely important, being the only way to ensure local protection for the
computer.

9.7.2 Targeted immunization

Scale-free networks hinder the efficiency of naı̈ve uniform immunization strate-
gies. However, we can take advantage of their heterogeneity by devising immu-
nization procedures that take into account the inherent hierarchy in the degree dis-
tribution. In fact, we know that scale-free networks posses a noticeable resilience to
random connection failures (Chapter 6), which implies that the network can resist
a high level of accidental damage without losing its global connectivity properties;
i.e. the possibility to find a connected path between almost any two vertices in the
system. At the same time, scale-free networks are strongly affected by targeted
damage; if a few of the most connected vertices are removed, the network suffers
a dramatic reduction in its ability to carry information. Applying this argument to
the case of epidemic spreading, we can devise a targeted immunization scheme
in which we progressively make immune the most highly connected vertices, i.e.
the ones more likely to spread the disease. While this strategy is the simplest solu-
tion to the optimal immunization problem in heterogeneous populations (Anderson
and May, 1992), its efficiency is comparable with the uniform strategies in homo-
geneous networks with finite degree variance. In scale-free networks, on the con-
trary, it produces a striking increase in the network’s tolerance to infections at the
price of a tiny fraction of immune individuals.

An approximate calculation of the immunization threshold in the case of a ran-
dom scale-free network (Pastor-Satorras and Vespignani, 2001c) can be pursued
along the lines of the analysis of the intentional attack of complex networks (see
Section 6.6.1). Let us consider the situation in which a fraction g of the individuals
with the highest degree have been successfully immunized. This corresponds, in
the limit of a large network, to the introduction of an upper cut-off kc(g) – which is
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obviously an implicit function of the immunization g – such that all vertices with
degree k > kc(g) are immune. At the same time, the infective agent cannot propa-
gate along all the edges emanating from immune vertices, which translates into a
probability r(g) of deleting any individual contacts in the network. The elimina-
tion of edges and vertices for spreading purposes yields a new connectivity pattern
whose degree distribution and the relative moments 〈k〉g and 〈k2〉g can be com-
puted as a function of the density of immunized individuals.14 The protection of
the network will be achieved when the effective network on which the epidemic
spreads satisfies the inequality 〈k〉g/〈k2〉g ≥ λ, yielding the implicit equation for
the immunization threshold

〈k〉gc

〈k2〉gc

= λ. (9.33)

The epidemic threshold is naturally an implicit function gc(λ) and its analytic form
will depend on the original degree distribution of the network.

In order to assess the efficiency of the targeted immunization scheme it is pos-
sible to perform the explicit calculation for an uncorrelated network with degree
exponent γ = 3 (Pastor-Satorras and Vespignani, 2001c). In this case the leading
order solution for the immunization threshold, in the case of targeted immuniza-
tion, reads as

gc � exp(−2/mλ). (9.34)

This clearly indicates that the targeted immunization program is extremely conve-
nient, with a critical immunization threshold that is exponentially small over a wide
range of spreading rates λ. This theoretical prediction can be tested by perform-
ing direct numerical simulations of the SIS model on Barabási–Albert networks
in the presence of targeted immunization. In Figure 9.10 the results of targeted
immunization are compared with simulations made with a uniform immunization
(Pastor-Satorras and Vespignani, 2001c). The plots show the reduced prevalence
ρg/ρ0, where ρg is the prevalence in the network with immunization density g
and ρ0 is the prevalence in the non-immunized network, at a fixed spreading rate
λ = 0.25. This plot indicates that, for uniform immunization, the prevalence de-
cays very slowly when increasing g, and will be effectively null only for g → 1,
as predicted by Eq. (9.32).15 However, for the targeted immunization scheme, the
prevalence shows a very sharp drop and exhibits the onset of a sharp immuniza-
tion threshold above which the system is infection free. A linear regression from
the largest values of g yields an approximate immunization threshold gc � 0.06,

14 See the analogous calculation for the targeted removal of vertices in Section 6.6.1.
15 The threshold is not exactly one because of the usual finite size effect present also in the simulations which

are performed on networks of size N = 107.
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Fig. 9.10 Reduced prevalence ρg/ρ0 from numerical simulations of the SIS
model in the Barabási–Albert network with uniform and targeted immunization,
at a fixed spreading rate λ = 0.25. A linear extrapolation from the largest values
of g yields an estimate of the threshold gc � 0.06 for targeted immunization.

that definitely proves that scale-free networks are very sensitive to the targeted
immunization of a very small fraction of the most connected vertices.

9.8 Protecting the Internet

The protection of the Internet from computer viruses and bugs is a major challenge
due to the scale-free nature of the network over which the epidemics spread. On a
global level, uniform immunization policies are not satisfactory and the spreading
of errors or infective agents on scale-free networks can be contrasted only by a
careful choice of immunization procedure. In particular, these procedures should
rely on the identification of the most connected individuals. Fortunately, the pro-
tection of just a tiny fraction of these individuals raises dramatically the tolerance
to infections of the whole population.

As a practical example of the effect of targeted immunization, it is possible to
perform numerical experiments on real Internet maps. In Figure 9.11 the behavior
of the normalized prevalence ρg/ρ0 in simulation of the SIS model on the Internet
AS level graph with a progressively increasing immunization density g is reported.
The numerical experiment is performed by supposing an SIS dynamics for a BGP
level propagating error, transmitted at constant spreading rate λ = 0.25 and recov-
ered with unitary rate by external interventions that set the problem time scale.
In addition, a density g of ASs is considered immune to the error propagation by
using uniform and targeted strategies, alternatively. The figure clearly shows that
the results are completely analogous to those obtained in simulations on network
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Fig. 9.11 Normalized prevalence ρg/ρ0 from numerical simulations of the SIS
model in the AS Internet map with uniform (main figure) and targeted (inset)
immunization at a constant spreading rate λ = 0.25 and for incresing density g of
immunized individuals.

models. Random immunization does not allow any drastic reduction of the preva-
lence of error affected ASs. For instance, the immunization of 25% of the vertices
reduces by less than a factor half the average prevalence with respect to the case
with no immune vertices. In the case of targeted strategies, however, the same level
of protection is achieved by just immunizing less than 0.2% of the total population.

While the targeted strategy we have reported previously is very effective, it suf-
fers from a practical drawback in its real world application. Its implementation
requires complete knowledge of the network structure in order to identify and im-
munize the most connected vertices. For this reason, several strategies overcoming
this problem have been proposed, mainly relying just on local, rather than global,
knowledge of the network. In this context, Dezsö and Barabási (2002) propose a
level of safety and protection policy, which is proportional to the importance of
the vertex measured as a function of its local degree. This implies that high degree
vertices are infected with a rate inversely proportional to their degree, or more in
general as k−α . At the theoretical level it is possible to show that any α > 0 rein-
troduces a finite threshold that, in the continuous k approximation, is estimated
to be λc(α) = αmα−1. Another ingenious immunization strategy was proposed by
Cohen, ben-Avraham, and Havlin (2002a), levering on a local exploration mecha-
nism. In this scheme, a fraction g of vertices are selected and each one is asked to
point to one of its neighbors. The neighbors, rather than the selected vertices, are
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chosen for immunization. Since by following edges at random it is more probable
to point to high degree vertices, this strategy allows to effectively immunize hubs
without having any precise knowledge of the network connectivity.

The above discussion, while satisfying at a theoretical level, does not address
the political and economical challenges to be considered in the actual deployment
of global protection strategies. For instance, whatever strategy is used, it is obvious
that optimized protection of the Internet can be reached only through a global su-
pervising organization that imposes in a controlled way a set of safety measures to
a selected pool of high-traffic nodes or users. Unfortunately, the self-organized na-
ture of the Internet does not make it possible to figure out how such an organization
should operate.



10

Beyond the Internet’s skeleton: traffic and
global performance

In previous chapters we have presented an X-ray picture of the Internet’s topo-
logical skeleton and the consequences that the revealed structure has on several
properties of this network. There is, however, another dimension to add to the
Internet picture that refers to the quantitative characterization of the actual flow of
data and transmission capacity of the various elements forming the Internet. Phys-
ical links have a large heterogeneity in their data transmission capacity. Also, the
traffic load is highly variable on different connections and at different times; that
is, a full characterization of the network cannot prescind from the knowledge of
the interplay between the topological structure, the detailed physical properties of
each element, and the traffic generated by users.

The measurement and modeling of link traffic and performance1 in LANs or
WANs has been a major area of activity over the recent years. These studies pointed
out the failure of the Poisson traffic model, providing empirical evidence for traffic
self-similarity. The modeling of these properties finds a natural framework in the
vast mathematical theory of self-similar stochastic processes, and intense research
activity has been focused both on the understanding of the origin of the scale-free
nature of traffic and its implications at the performance level. Measurements of
link traffic imply the accumulation of very long time series of traffic loads and
usually refer to a specific link or very small networks. Mathematical modeling
and study, as well, are generally focused on small LANs or simple client–server
architectures. This work is fundamental to understand the basic characteristics of
traffic features, but by its very nature is difficult to extend at a large-scale statistical
level.

Indeed, the large-scale statistical characterization of traffic and performance of
the Internet is a task that is still at an early stage. As we have seen in previous

1 With the term performance one generally refers to the many network characteristics that provide a measurement
of network reliability and efficiency: end-to-end delay times, packet loss, latency, etc.
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chapters, the simple characterization of the Internet’s connectivity structure is al-
ready posing a particularly difficult challenge at both the measurement and model-
ing levels. The measurements of traffic paths, packet loss, and delay times for the
Internet at large add new problems, ranging from data storage capacity to the even-
tual intrusive character of the measurements, that could generate a large amount of
extra traffic. The sparseness of data on the load and performance of the Internet at
the large-scale level is naturally reverberating on modeling efforts, where the lack
of clear empirical evidence leaves room for very general and sometimes vague ini-
tial assumptions on the formulation of the model. At the same time the successful
validation of any modeling framework is often not possible because of the lack of
accurate data sets.

In this penultimate chapter we want to provide an overview of these issues. First
we intend to present a brief introduction to the self-similar traffic and performance
measurement and modeling. This is a vast area of activity and a detailed account
goes beyond the scope of the present book, although it might be relevant to the
understanding of the interplay between local traffic properties and the network
topology and performance at the large-scale level. Afterwards, we shall discuss
recent results on the measurements and data analysis of large-scale Internet per-
formance and traffic data. The research effort is still scattered and preliminary, and
a comprehensive presentation of the various results is not yet possible. Neverthe-
less, being at the end of the book, we want to convey to the reader the outlook
for some activities and results that we consider of possible impact in the very near
future.

10.1 The Internet traffic: a local view

The behavior of Internet traffic has been analyzed since the early days of computer
networks.2 These studies focus on the time series of the traffic load, measured as
the number of IP packets, flowing through a given Internet link. Time series can
be collected on different time scales, producing signals such as the one shown
in Figure 10.1, in which each observation point represents the aggregate traffic
Y (i) recorded on the link in a time interval i of length τ . The time resolution τ

can be opportunely chosen, resulting in different magnitudes of the signal Y , and
the time series can be recorded for a total time spanning from a few seconds to
weeks. Together with the number of packets, other quantities related to network
performance can also be measured. For instance, the packet-loss rate, defined as
the number of packets that are discarded or lost by the network after excessive

2 This kind of analysis has been supported by the timely availability of packet traffic tools such as tcpdump,
developed by V. Jacobson, C. Leres, and S. McCanne in 1989.
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Fig. 10.1 The figure reports three snapshots at different resolution scales of a
self-similar signal representing an hour’s worth of TCP wide-area traffic between
Digital Equipment Corporation and the rest of the world. Each plot represents
the number of packets recorded on a link during time intervals τ that scales with
a factor of ten larger in each plot. The time scale is correspondingly larger by
a factor of ten in each plot. The y axis is corresponding rescaled since it repre-
sents the aggregated traffic on increasing time intervals. It is easy to recognize
a large level of similarity in the three plots despite that they have scale varia-
tions spanning three orders of magnitude. Data collected in 1995 by Jeff Mogul
of Digital’s Western Research Lab (WRL) and publicly available on The Internet
Traffic Archive, http://ita.ee.lbl.gov/html/traces.html. A detailed analysis of these
traces has been provided by Paxson and Floyd (1995).

delays in router queues or for other reasons, as well the delay times in queues can
provide an indication of the level of congestion on the network.

The mathematical modeling of traffic signals and performance in networks is
a vast field of research. An impressive bibliographical guide to the literature in
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the early years can be found in Willinger et al. (1996), but the work in the field
is still rapidly progressing (Crovella, Lindemann, and Reiser, 1997). Traffic time
series can be measured on different networks ranging from small Ethernet LANs
(Leland, Taqqu, Willinger, and Wilson, 1994) to wide area networks (Paxson and
Floyd, 1995), as well as for different kinds of traffic, including that generated by
the WWW and client–server applications (Crovella and Bestavros, 1997). All these
measurements are, however, generally focused on a local view of the network.
They analyze a single link or a small collection of them, providing just the prop-
erties of the local traffic. However, the vision obtained from a single link is often
the outcome of global dynamics, in which very far off regions of the network
also cooperate. In addition, the various measurements show the presence of some
ubiquitous statistical features that are therefore related to the general dynamical
principles governing the whole network.

10.1.1 Self-similarity of traffic time series

The traffic in any given network’s link is highly fluctuating, depending on the
instantaneous usage that is determined on its turn by the users’ needs and the self-
regulating mechanisms of the TCP/IP protocol. It is therefore natural to look at
the signal Y (i) as the time series of a random variable and to study its behav-
ior in a statistical way. The usual assumption in traffic characterization is that the
packet arrival and packet size distributions have a Poisson nature, i.e. the proba-
bility that a certain number of packets arrives in fixed non-overlapping time in-
tervals follows a Poisson distribution. This also corresponds to a variable Y (i)
defining a random process, which is basically uncorrelated or has a short range
autocorrelation function. Thus, if we consider the stationary stochastic process
Y = {Y (i) : i = 1, 2, 3 . . . } with constant mean µ = 〈Y (i)〉 and finite variance
σ 2 = 〈(Y (i) − µ)2〉, it is defined as short ranged if its autocorrelation function
CY (t) = 〈(Y (i) − µ)(Y (i + t) − µ)〉 decays exponentially fast at large t . In such
a kind of process, the larger is the time scale at which we observe the signal (or
coarser the aggregation interval τ ), the smaller will be the level of fluctuation
around the average value of the process. In particular, if one considers the aggre-
gated stochastic process Y m = {Y m(i) : i = 1, 2, 3...} that indicates the new time
series obtained by averaging the original series Y over non-overlapping blocks of
size m, then the variance σ 2

m of the process Y m scales regularly as m−1. In this
case larger resolution plots of the time series are clearly smoothing-out the level
of fluctuations with respect to the average value of the signal.

The Internet traffic, however, shows very different behavior. In particular, the
signal burstiness is extremely persistent at very large resolution or large aggrega-
tion intervals. In more precise terms, the measured Internet traffic is self-similar
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with respect to time scaling. In Figure 10.1 we report an example of this property
by showing a self-similar time series seen at different resolution time scales. A
self-similar signal can be modeled as a stationary stochastic process Y = {Y (i) :
i = 1, 2, 3 . . . } with constant average µ, where the autocorrelation function has
the form

CY (t) ∼ t−α, as t → ∞, (10.1)

with 0 < α < 1. The power-law decay of the autocorrelation function implicitly
defines a long-range dependent process where

∑
t CY (t) → ∞ in the case of an

infinite signal. As before, it is possible to define the aggregated process Y m , and the
process Y is called second-order self-similar with Hurst exponent H = 1 − α/2 if
the autocorrelation function of the aggregated processes are CY m (t) = CY (t) for
all m (Willinger et al., 1996). It is easy to realize that such a process has a variance
for the sample average (the aggregated process) that decreases more slowly than
the inverse of the sample size. More precisely, σm ∼ m−α , thus explaining the
enhanced persistence of noise in self-similar signals. Indeed, the scaling form of
the variance is one of the techniques used to evaluate and characterize the self-
similar properties of time series. Another very common way to characterize and
distinguish self-similar signals refers to the power spectrum density, defined as

SY ( f ) =
∣∣∣∣∣
∑

t

CY (t) exp (i2π f t)

∣∣∣∣∣
2

, (10.2)

that quantifies the level of correlations on a time scale τ ∼ 1/ f . Generally, SY ( f )

and CY (t) are connected by the Wiener–Kintchine relations (McDonald, 1962).
For a stationary self-similar processes it is possible to show that SY ( f ) ∼ f −β

with β = 1 − α, giving rise to what is known as 1/ f noise.3

The characterization and mathematical construction of self-similar processes
traces back to the early work of Mandelbrot (1969) and is obviously related
to fractal and scale-free phenomena (Mandelbrot, 1982). Also in this case, the
heterogeneity of the traffic is indeed characterized by power-law behavior and
the corresponding divergence of the statistical fluctuations. The Internet traffic
is therefore scale-free and in particular has several correspondences with many
physical phenomena, ranging from surface growth (Barabási and Stanley, 1995)
to economics (Mandelbrot, 1997; Mantegna and Stanley, 1999) or geophysics
(Rodriguez-Iturbe and Rinaldo, 1997). Moreover, the scale-free behavior is
not only observed in traffic series. The traffic self-similarity is also affect-
ing network performance and queueing time (Park, Kim, and Crovella, 1997),

3 The 1/ f noise relates to an exponent β = 1, but it has become a common nomenclature for all noisy signals
with a power spectrum with β �= 1.
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inter-arrival time, and end-to-end delay4 that show statistical distributions with
heavy tails and power spectrum of 1/ f type (Csabai, 1994; Paxson and Floyd,
1995; Fowler, 1999; Claffy, 1999). Finally, self-similarity is a general property of
the large majority of traffic generated on the Internet, including WWW traffic from
file requests on web servers (Crovella and Bestavros, 1997).

10.1.2 Explaining self-similar traffic

The ubiquitous self-similar features of Internet traffic do not imply that all time
series are identical. Different locations or types of traffic yield obviously different
parameters µ, σm , and α, allowing for different levels of burstiness of the time
series. However, the failure of the Poisson modeling has been a constant over a
decade of measurements and has stimulated intense activity aimed at understand-
ing the origin of this phenomenon.

A first and successful explanation of the self-similar traffic is based on the con-
struction of self-similar processes by using the method of Mandelbrot (1969) and
its successive developments (Cox, 1984). In very simple terms, the construction
is based on a signal that is due to data transfer sessions whose arrival is mod-
eled by a Poisson process, while their size is power-law distributed. These two
ingredients generate aggregate traffic made up of the contribution of all the ses-
sions that are self-similar. Translated into the network language, the aggregate link
traffic is the sum of all the contributions during the period of interest of the var-
ious sessions such as FTP, HTTP, Telnet etc., at the application level. Indeed, by
inspecting the size distribution of sessions on the Internet, clear power law behav-
iors are found. This fact supports the explanation in terms of the statistical proper-
ties of the individual sessions that form the aggregate link traffic (Park, Kim, and
Crovella, 1996; Crovella and Bestavros, 1997; Feldmann, Gilbert, Willinger, and
Kurtz, 1998; Willinger et al., 2002). In addition, the TCP adaptive mechanism for
congestion control may sustain the long-range correlations of traffic in distant ar-
eas of the Internet, sustaining and propagating the self-similarity generated in local
bottlenecks by the file size distribution (Park et al., 1996; Veres, Kenesi, Molnár,
and Vattay, 2000). This picture would easily account for the ubiquitous presence
of self-similar properties since it does not depend on the specific traffic technology
or network. Rather, it is due to the heavy tailed distribution of transmitted files
or Web documents. In this respect, it is also reasonable that self-similarity is not
going to disappear with the advent of new technological developments since it is
mostly linked to the way users store and organize data.

4 Delays are usually characterized by the round-trip-times (RTT), see Section 10.2.
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A different scenario for the origin of self-similarity in Internet traffic has been
recently proposed by invoking the presence of a phase transition phenomenon
(Ohira and Sawatari, 1998; Takayasu, Fukuda, and Takayasu, 1999; Fukuda,
Takayasu, and Takayasu, 2000; Solé and Valverde, 2001; Valverde and Solé, 2002;
Guimerà, Arenas, Dı́az-Guilera, and Giralt, 2002). In these attempts, the Internet is
modeled as a network whose vertices are assumed to be hosts that generate a cer-
tain amount of traffic or routers that forward packets. These packets travel to their
destination following routing mechanisms that involve a nearest neighbor passing
of packets. Different packet dynamics have been considered, with each vertex be-
ing able to handle only a finite amount of packets at each time step. Each vertex
is also supposed to a have a buffer in which packets can be stored if they arrive
in a quantity larger than the handling limit. In this configuration the network’s
behavior strongly depends upon the injection rate p of new packets. In general,
the system undergoes a phase transition from a free phase, in which the number
of packets in the network is steady, to a congested phase in which the number of
packets is increasing with time (or, in the case of a finite buffer, they saturate the
system). At the critical point pc the system starts to develop long-range dynamical
correlation that give rise to the self-similarity of traffic. This self-similar character
is usually observed in the 1/ f noise spectrum of the time series representing the
number of packets stored in the vertex buffers. The possibility of a phase transition
is confirmed for different delivery dynamics and for different network topologies.

The phase transition mechanism appears as an elegant explanation, that finds
its origin as a complex emergent phenomenon due to the global dynamics of the
network. In this sense it is opposite to the mechanism based on the heavy tailed
distribution of files, that is rather calling for an external feature due to the way peo-
ple tend to organize data. However, while this latter mechanism can be validated
by the study of file and Web document distributions, the phase transition scenario
does not yet find clear-cut support from experimental data.5

10.2 The global behavior of the Internet traffic and performance

The majority of studies on Internet traffic focus on the local fluctuations and behav-
ior of a single link, host, or router, and in some cases on a small collection of them.
A different point of view, however, concerns the study of traffic and performance
on a global scale, i.e. for the Internet as a whole. In this case the object of interest
does not reside in the characterization of the fluctuations of a single link traffic.
Rather, the aim is the quantification of the differences in traffic and performance
over a large number of routers and links. Once more, this kind of study looks for

5 An interesting discussion of the models’ validation issue is provided by Willinger et al. (2002).
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a characterization of the large-scale heterogeneity over the global network. This is
a very ambitious task, struggling with the huge complexity of the Internet. As we
have seen throughout the book, even the characterization of the bare connectivity
structure is a very difficult task that has not yet been completely carried out. A
global characterization of Internet traffic and performance adds a new dimension
to the problem that requires a large amount of resources and the solution of several
technical problems. Traffic and performance analysis on a global scale implies the
collection of traffic traces and performance estimators that just on a single link
represent a noticeable volume of data. It is easy to realize that gathering data on
hundreds or thousand of links and routers poses great problems in data handling
and storage, as well as in the traffic generated by the measurement process itself.
In addition, on the global level these data must be correlated with the detailed
physical and geographical structure (bandwidth, link length, etc.) of the Internet.

Despite the technical difficulties, an increasing body of work focuses on the
Internet as a whole, especially aimed at forecasting future performance trends.
For instance, interdomain traffic can be studied on a global level by looking at
data representing all the traffic received by specific service providers (Uhlig and
Bonaventure, 2001). In this case it is possible to aggregate all the packets received
on the basis of their source address and obtain prefix and AS traffic flows. The
prefix flow corresponds to the number of packets originating from the same pre-
fix address, while the AS flow is the aggregation of the packets whose source is
in the same AS as obtained by the BGP tables of the destination ISP. These data
can be correlated with the BGP tables of the studied ISP, providing information
on how traffic is distributed in the ISP addressable space. Interestingly, Uhlig and
Bonaventure (2001) find that 5–10% of the originating ASs or prefixes are respon-
sible for 90% of the traffic observed in the studied ISP. This readily implies a very
heterogeneous traffic distribution. This heterogeneity is also present in the exten-
sive studies performed by the CAIDA measurement infrastructure (see Chapter 3),
that allow the construction of traffic matrices representing the traffic flow between
pairs of ASs (Claffy, 1999; Huffaker et al., 2000).6 In this case traffic flows are
aggregated on the basis of the source and destination addresses. These traffic ma-
trices can also be correlated with the geographical location of traffic sources and
destinations in order to obtain information on regional or country policies and con-
nectivity. For instance, the country matrix constructed from a United States peering
location shows a large amount of traffic with source and destination countries dif-
ferent from the United States. This is an indication that United States acts as a
hub in handling communications and at the same time that Internet traffic is highly
delocalized (Claffy, 1999).

6 Notice that traffic matrices may not be symmetric.
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Along with traffic measurements, increasing attention has been devoted to the
evaluation of Internet performance at the global level. Indeed various projects have
started the collection of performance data from among a large number of source–
destination pairs (see Section 3.6). In general these pairs are composed of hosts
belonging to universities or research centers; they are connected to many different
networks and backbones and have a very wide geographical distribution, so they
are likely to represent a statistically significant sample of the Internet as a whole.
For each pair the following metrics are usually considered: the geographic dis-
tance between the hosts d, the packet loss rate r (the percentage of ICMP packets
that do not reach the target point), and the end-to-end delay measured as the RTT
(round-trip-time). These measurements are routinely repeated several times each
day for a total duration that in some cases spans several years. In some more recent
measurement projects the data are gathered with very high frequency, up to every
minute, allowing to define quantities such as dayly, weekly, or monthly minimum
and average round-trip times RTTmin and RTTav , respectively. These data offer
the opportunity to test various hypotheses on the statistical behavior of Internet
performance.

It is easy to recognize that the RTT is governed by several factors, some of them
not related to network performance, but being determined by physical constraints.
First, digital information travels along fiber optic cables at almost exactly two-third
the speed of light in a vacuum. This gives the mnemonically very convenient value
of 1ms RTT per 100 km of cable. Using this speed one can express the geographic
distance d in light-milliseconds, obtaining an absolute physical lower bound on
the RTT between sites. The actual measured RTT is (usually) larger than this value
because of several factors. First, data packets often follow rather circuitous paths
leading them through a number of nodes that are far from the geodesic line be-
tween the endpoints. Furthermore, each link in a given path is itself far from being
straight, often following highways, railways, or power lines (Bovy, Mertodimedjo,
Hooghiemstra, Uijterwaal, and Mieghem, 2002). The combination of these factors
produces a purely geometrical enhancement factor of the RTT. In addition, there is
a minimum processing delay introduced by each router along the way, of the order
of 50–250 µs per hop on average, summing up to a few ms for a typical path (Bovy
et al., 2002). This can be significant for very close site pairs, but is negligible for
most of the paths separated by large distances. On top of this, the presence of cross
traffic along the route can cause data packets to be queued in the routers. When the
traffic reaches congestion level, the queueing time becomes a very significant part
of the RTT and packet loss also sets in. From this perspective, average values of
the RTT over one-month periods provide an indication of the level of congestion
on the link. Indeed, it is plausible that even on rather congested links there will be
a moment in the course of a month when queuing time is negligible, so RTTmin
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Fig. 10.2 RTTmin between 2,114 host pairs (PingER data set of February 2002)
as a function of their distance d . Each point corresponds to a different host pair.
The line indicates the physical lower bound provided by the speed of light in
transmission cables. It is possible to observe the very large fluctuations in the
RTTmin of different host pairs separated by the same distance. Data from Percacci
and Vespignani (2003).

can be taken as an estimate of the best possible communication performance on
the given data path, subject only to the intrinsic geometrical enhancement factor
and the minimum processing delay. On the contrary, RTTav for a given site pair
is obtained by considering the average RTT over one-month periods. This takes
into account also the average queueing delay and gives an estimate of the overall
communication performance on the given data path.

A preliminary indication of the level of correlation between geographic distance
and the end-to-end delay of source–destination pairs is reported in Figure 10.2.
The plot represents the obtained relationship for the monthly RTTmin of 2,114
host pairs compared with the solid line representing the speed of light in optic
fibers at each distance (Huffaker et al., 2000; Lee and Stepanek, 2001; Percacci
and Vespignani, 2003). While it is possible to observe a linear correlation of the
RTTmin with the physical distance of hosts, the data are extremely scattered. Scat-
tered plots of RTT data have qualitatively very similar behavior in all measure-
ments obtained so far (Huffaker et al., 2000; Lee and Stepanek, 2001; Percacci
and Vespignani, 2003). Figure 10.2 indicates that end-to-end performance fluctu-
ates conspicuously over the whole range of geographic distances. In particular, the
probability distributions of observed RTT exhibit power-law tails (Huffaker
et al., 2000). This is again an indication of heterogeneity that, however, still misses
a quantitative characterization of the intrinsic fluctuations of performance and their
statistical properties. For instance, it is clear that an RTT of 60 ms would be a very
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Fig. 10.3 Cumulative distributions of the normalized minimum round-trip-times
τmin of the PingER data sets in two different months. The slope of the reference
line is −2.0. Data from Percacci and Vespignani (2003).

good performance for a transatlantic link, but a very poor one for a London–Paris
connection. In other words, the RTT relative to the actual distance between hosts
is a more significant measure of the Internet path than the RTT itself. Indeed, a dif-
ferent characterization of the end-to-end performance is obtained by normalizing
the RTT time by the geographical distance between hosts. This defines the abso-
lute performance metrics τ = RTT/d that represents the end-to-end delay for unit
distance, i.e. the inverse of the overall communication velocity.7 This metric, and
analogously τmin = RTTmin/d and τav = RTTav/d, which represent the minimum
and average round trip time for unit distance respectively, allow the comparison of
performance between pairs of hosts with different geographical distances.

A method to characterize the level of fluctuations in RTT data is represented
by the probability P(τ ) that a pair of hosts present a given value of τ . Significant
results are obtained for τmin and τav , where it is found that data define heavy
tailed distributions with power-law behavior (see Figure 10.3). Further evidence of
large fluctuations in Internet performance is provided by the analysis of the packet
loss data. Also in this case, the probability P(r) that a certain rate r of packet
loss occurs on any given pair is well approximated by the power-law behavior
P(r) ∼ r−γ with γ = 1.2 ± 0.2. These findings highlight once more the high level
of heterogeneity of the Internet. Since we face scale-free distributions, the global
average over all the site pairs of 〈τmin〉 and 〈τav〉 do not represent characteristic
behavior of the whole network. This fact is confirmed by the analysis of different
data sets. Although the RTT mean value and packet loss rate across large regions of

7 If d is measured in light-milliseconds τ is a dimensionless variable.
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the network might depend on the specific characteristics of the sample (size, world
region, etc.), the existence of power law tails with similar values of the exponents
is confirmed in a large number of different data sets (Percacci and Vespignani,
2003; Carbone, Coccetti, Dini, Percacci, and Vespignani, 2003).

From the previous discussion, it appears that measurements of global traffic and
performance of the Internet is a major issue in providing a complete picture of this
network. In particular the clues for large heterogeneities also at the global level
have a clear impact in the evaluation of performance trends. Time and scale ex-
trapolation for Internet performance can be seriously flawed by considering just
the average properties. It is likely that we will observe in the future an improve-
ment in the average end-to-end performance due to increased bandwidth and router
speed, but the real improvement in the Internet as a whole would correspond to a
reduction in the huge statistical fluctuations observed nowadays. In this respect,
a more complete characterization of global Internet traffic may be considered as
a primary goal of measurement projects. On a more theoretical side, the formu-
lation of Internet models able to cast the behavior of Internet performance in the
topological structure appears challenging to say the least.

10.3 Internet stability and congestion

A different point of view on global Internet performance is provided by the study of
Internet stability to failures. In Chapter 6 the topological resilience of the Internet
to link or router outages has been analyzed. In a more accurate picture of the
network functioning, however, damages are not static independent events. On the
contrary, Internet outages usually stem from failures that propagate through the
network. These instabilities have several origins, including router configuration
errors, physical outages, or software bugs. In many cases they are due to human
errors, and the lack of central coordination in the network often does not allow
timely recovery or intervention.

The instability propagation mechanism is referred to as a route-flap storm. An
overloaded or non-functioning router is marked as unreachable by its BGP peers,
which transmit this information to the network and choose alternative paths for
routing packets. This changing of route might generate congestions and other
BGP routers could fail in maintaining the required interval in the keep-alive trans-
mission (see Section 2.4), being on their turn unreachable. In addition, recover-
ing routers start to download again their peers’ BGP tables, loading the network
with appreciable traffic. This increased load might cause other congestions, and
the total outcome of the process is to initiate a storm or avalanche of outages
that can involve extended sections of the Internet. Indeed, several case studies
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concerning major route-flap storms on the Internet have been reported in the liter-
ature (Labovitz et al., 1999; Labovitz and Malan, 1998).

In this respect, Internet failures are very complex dynamical processes where
the routing dynamics and policy, the network topology, and the human factor all
play together a definite role. These characteristics make the study of Internet insta-
bilities on a large-scale an extremely difficult task that has been approached by a
few studies (Paxson, 1997; Labovitz et al., 1998; Labovitz et al., 1999; Magnasco,
2000). In general, the problem is attacked by studying the routing protocol up-
dates. As we have seen in Section 2.4, routers communicate by exchanging update
messages about the changes in routes to prefixes or ASs. These messages, that
have a time stamp, announce route failures, router unreachability or policy fluctu-
ations, and may be used to estimate the frequency of outages and path withdrawals.
Data collection may be carried out at both the inter-domain level (BGP) or at the
intra-domain level (IGP).

Since these messages propagate on the network, just a passive measurement
from a single peer may provide in principle information on the global occurrence
of Internet outages. However, as we discussed for the measurement of the Internet
structure, data from a single source cannot provide a full coverage of the whole
addressable space. In addition, it is difficult to correlate failure messages in order
to decide if they represent a single rout-flap storm or distant, independent events.
Despite these difficulties, case studies may give a first picture and some significant
indications on Internet instabilities. For instance, Table 10.1 reports the percentage
of outages of a certain type occurring in a regional Internet provider in a one year
time window as from the study of Labovitz et al. (1999). From this table it is clear
that the majority of failures registered within the provider are due to software or
hardware problems.

More quantitative information can be gathered by studying the time series of
routing updates. In particular, it is possible to analyze the power spectrum of these
signals and find the main frequency components, highlighting time cycles in the
signal. Very interestingly, the IGP and the BGP routing information present two
different spectra (Labovitz et al., 1999). While the IGP has a quite flat spectrum
with no main components, the BGP spectrum has significant components related
to 24 hour and seven day cycles, corresponding to the observation of a low amount
of failure to update messages over the week-end and early in the morning.8 This
basic difference implies that the IGP level outages are mainly related to hardware
and software problems, and have therefore a strong random component. At the
BGP level, however, the main source of instability is associated to high traffic

8 The peers under study were located in the US and therefore the dayly cycle refers to US business hours.
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Outage type Incidence (%)

Maintenance 16.2
Power outage 16.0
Carrier problem/fiber cut 15.3
Unreachability 12.6
Hardware failure 9.0
Interface down 6.2
Routing problems 6.1
Congestion 4.6
Malicious attack 1.5
Software problem 1.3

Miscellaneous 5.9
Unknown 5.6

Table 10.1 Type and percentage of Internet
outages for a regional Internet provider in a
one year time window (1997–1998).
Maintenance refers to scheduled or
emergency upgrades of software and
hardware. Malicious attacks indicate failures
due denial-of-service or virus attacks (Data
from Labovitz et al., 1999)

spikes, and therefore the most significant BGP instability stems from congestion
collapses. In other words, failures occurring in providers are the initiators of route-
flaps that affect more frequently the inter-domain level during usage peak times,
when congestion collapses are easily propagated.

Studies have also focused on congestions in single links, the availability of
paths, and the mean-time to failures (Paxson, 1997; Labovitz and Malan, 1998;
Labovitz et al., 1999). More difficult is instead the measurement of the extension
of Internet instabilities and the number of affected users. For these measurements
more global analyses are needed. Nevertheless, signatures of global burstiness
and scale-free behavior are observed in some time distributions of instability an-
nouncements (Magnasco, 2000).

Despite the very partial picture concerning Internet instabilities, there have been
several recent attempts to model the occurrence of failure avalanches (Holme
and Kim, 2002; Holme, 2002; Motter and Lai, 2002; Moreno, Pastor-Satorras,
Vázquez, and Vespignani, 2003). These approaches are based on statistical physics
models in which the complex structure of the network connectivity interacts with
the traffic load poised on top of edges and vertices. Overloaded elements fail and
the network redistributes the traffic load following some predefined dynamical
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re-routing rules. The failure of an element can trigger additional failures by over-
loading other elements because of the traffic load redistribution, in a process that
may eventually lead to failure avalanches. The traffic load and its redistribution is
intuitively a major ingredient that might spontaneously originate congestion col-
lapse. The lack of precise information on the global traffic load of the Internet has
led to the development of models in which the betweenness centrality is consid-
ered as an estimate of the actual load. While this is a zero-order assumption, we
know that the actual picture is much more complicated. In addition, models have
very few inputs on technical heterogeneity (bandwidth, etc.) and the rerouting dy-
namics, that is not always a shortest path routing policy. Nevertheless, the various
modeling assumptions generally lead to the occurrence of avalanche behavior and
interesting transitions to congested phases. Unfortunately, at the present stage the
comparison with real data is not possible and a validation of the various modeling
assumptions is not possible.

Needless to say, the problem of Internet stability and the measurement of its
performance is a major issue for the future development of this network. The ex-
perimental characterization of these features on a global level is therefore a very
relevant path of research that represents the next step in our understanding of the
Internet’s evolution and structure.



11

Outlook

The Internet is such a rapidly evolving system that sometimes the effort put in
its study might appear as extenuating and futile as Sisyphus’ pursuit. Indeed, one
cannot but ask the question: Would the picture and results obtained today still be
valid for the Internet of tomorrow?

The scientific community has just started to partially understand the complex
properties of present Internet maps, as new and more ambitious mapping projects
are being developed, and new kinds of networks are making their appearance, pos-
ing new theoretical and experimental challenges. For instance, P2P and ad-hoc
networks define a new class of dynamical system for which new types of monitor-
ing infrastructures and different modeling frameworks need to be developed.

Another rapidly changing aspect of the Internet is related to traffic load and per-
formance. The traffic in the Internet is steadily increasing, due to users’ demands,
along with the available bandwidth of communications lines. Unfortunately, we
have not yet achieved a proper theoretical understanding of the interplay and mu-
tual feedback between topological features and traffic load. This makes it very
difficult to forecast if the existing infrastructures, as well as new networks joining
the Internet, will reorganize in view of this interplay, providing a different global
picture of the Internet.

As if all that were not enough, new technical improvements, at the software,
hardware, and protocol levels, are constantly changing many of the mechanisms
that rule the fundamental processes that make the Internet work at the “micro-
scopic” level. The capacity of routers and computers is constantly increasing, and
routing protocols and transport technology are ever evolving. Even the basic IP
addressing system is undergoing a major transformation to accommodate more
addresses by implementing the new IPv6 protocol.

In such a setting it is natural to wonder if the Internet study may cope with the
fast pace of its evolution. However, it is exactly from this perspective that we be-
lieve large-scale studies of the Internet are extremely valuable. While the elements

226
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and technologies of which the Internet is made are constantly changing, we can
reasonably think that the large scale-properties of the resulting network will be
preserved in the future. This belief is not unmotivated but actually derives from
the lesson we learned from statistical physics.

The study of matter has taught us that although many materials or physical sys-
tems are very different at the microscopic level, their large-scale behavior is essen-
tially identical. For instance, a liquid-gas transition might appear as very different
from a change in the magnetic properties of ferromagnetic materials; however, both
transitions are described by the same statistical laws and show the same phase dia-
gram. More surprisingly, when emergent phenomena take over at the critical point,
both systems exhibit the same scaling behavior, even at a quantitative level. This
feature has been named “universality” and its theoretical understanding is one of
the greatest achievements of modern statistical physics.

Universality stems from the fact that when emergent cooperative phenomena
set in, the large-scale behavior is essentially determined by the basic symmetry
of the interactions and dynamics of the system’s components, while other micro-
scopic details become irrelevant. In general, this is a common feature of complex
systems with emergent properties. Naturally, the strict notion of universality must
be relaxed when we leave the domain of phase transitions. However, qualitative
preservation with respect to changes of the very local details of large-scale emerg-
ing properties, such as heavy tailed distribution or the absence of characteristic
lengths, is a general property of cooperative phenomena.

A large-scale view of the Internet should not make an exception to this general
scenario. Emerging properties, as we tried to convey to the reader of this book, are
ubiquitous also in the Internet and appear related to the basic organizing principles
of the network. This is also confirmed by the very similar topology of networks
based on different technologies such as the physical Internet, the WWW, P2P sys-
tems, and other virtual networks. The statistical physics perspective focuses ex-
actly on these basic principles, looking at the possible degree of similarity and,
possibly, of universality present in the large-scale properties of the Internet. In this
sense, the statistical physics approach acquires a particular value being focused on
the properties that are likely to be preserved, despite the continuous technological
changes.

A large-scale view, however, does not imply that the study of local and techno-
logical properties is a minor or less valuable perspective. On the contrary, a de-
tailed understanding of the Internet’s workings at the microscopic level is what
makes the Internet evolve and develop for the better. A complete view of this
network can therefore be obtained only by combining the various approaches in
a multilevel study of the Internet. The vista offered by the large-scale study of the
Internet may be used to define more accurate models that can be used to validate
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and improve new technologies; those, in their turn, may be used to obtain new in-
formation on the Internet’s fabric and the principles that shape it. In this respect,
the experimental effort assumes a fundamental role. Any theoretical understanding
and modeling of the Internet walks hand-in-hand with data collection work. While
the path opened up by the new generation of models inspired by statistical physics
has likely marked a turning point in the Internet’s representation, structure, and
traffic, data are especially needed to go beyond a view limited by the Internet’s
topological layout. Our understanding of the Internet has surely made important
steps forward, but more efforts are still needed in order to obtain an accurate char-
acterization of this amazing network.



Appendix 1

Graph theory applied to topology analysis

The natural framework for a correct mathematical description of complex networks
is graph theory. The origins of graph theory can be traced back to the pioneering
work of Euler to solve the Königsberg bridges problem (Euler, 1736), and has
now reached a maturity in which a wealth of results of immediate applicability are
useful for the understanding of real complex networks. In this appendix we shall
provide a cursory introduction to the main definitions and concepts of graph theory,
useful for the analysis of real networks. The main sources followed are the books
by Chartrand and Lesniak (1986), Bollobás (1998), and Bollobás (1985), as well
as the review articles by Albert and Barabási (2002), Dorogovtsev and Mendes
(2002), and Newman (2003), covering more recent aspects.

A1.1 Graphs and subgraphs

An undirected graph G is defined by a pair of sets G = (V, E), where V is a non-
empty countable set of elements, called vertices or nodes, and E is a set of un-
ordered pairs of different vertices, called edges or links. Throughtout the book a
vertex is reffered to by its order i in the set V . The edge (i, j) joins the vertices i
and j , which are said to be adjacent or connected.1 The total number of vertices
in the graph (the cardinality of the set V) is denoted as N , the size of the graph.
The total number of edges is denoted by E .2 For a graph of size N , the maximum
number of edges is

(N
2

)
. A graph with E = (N

2

)
, i.e. in which all possible pairs

of vertices are joined by edges, is called a complete N-graph. Undirected graphs
are depicted graphically as a set of dots, representing the vertices, joined by lines
between pairs of vertices, that represent the corresponding edges, Figure A1.1(a).

1 In the physics literature it is also common to call connected vertices neighbors or nearest neighbors.
2 The mathematical nomenclature is order for N and size for E (Bollobás, 1998). We will follow, however, the

terminology exposed in the text, which is more appealing for the physics community.
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(a) (b)

Fig. A1.1 (a) Graphical representation of an undirected graph. The dots repre-
sent the vertices. Pairs of adjacent vertices are connected by a line. (b) Graphical
representation of a directed graph. Adjacent vertices are connected by arrows,
indicating the sense of the corresponding edge.

A directed graph D, or digraph, is defined by a non-empty countable set of
vertices V and a set of ordered pairs of different vertices E , that are called di-
rected edges. In a graphical representation, Figure A1.1(b), the ordered nature of
the edges is depicted by means of an arrow, indicating the sense of each edge. The
main difference between directed and undirected graphs is clearly represented in
Figure A1.1. In an undirected graph the presence of an edge between vertices i and
j connects the vertices in both directions. However, the presence of an edge from
i and j in a directed graph does not necessarily imply the presence of the reverse
edge between j and i . This fact has important consequences for the connectedness
of a directed graph, as will be discussed in more detail in Section A1.4.

Sometimes, we are also interested in subsets of a graph. A graph G ′ = (V ′, E ′)
is said to be a subgraph of the graph G = (V, E) if all the vertices in V ′ belong
to V and all the edges in E ′ belong to E , i.e. E ′ ⊂ E and V ′ ⊂ V . A clique is a
complete n-subgraph of size n < N .

From a mathematical point of view, it is convenient to define a graph with ver-
tices V = {1, 2, . . ., N } and edges E = {(i, j)} by means of the adjacency matrix
A = {Ai j }. This is a N × N matrix defined such that

Ai j =
{

1 if (i, j) ∈ E
0 if (i, j) /∈ E . (A1.1)

For undirected graphs the adjacency matrix is symmetric, Ai j = A ji , and therefore
it conveys a great deal of redundant information. For directed graphs, the adjacency
matrix is not symmetric.

It is important to note that the above definition of both graphs and digraphs does
not allow the existence of loops (edges connecting a vertex to itself) nor multiple
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edges (two vertices connected by more than one edge). Graphs with either of these
two elements are called multigraphs (Bollobás, 1998), and are completely natural
in graph theory. We will restrict ourselves, however, to the definitions provided
here (no loops nor multiple edges allowed), since these two constructions are most
often absent in the systems we are dealing with in this book. The reader should
also be warned that throughout this book, and unless stated otherwise, the term
“graph” will be used to refer to an undirected graph.

A1.2 Degree and degree distribution

The most basic topological characterization of a graph is given by the degree of its
vertices and the relative distribution of degrees, the so-called degree distribution.
The degree ki of a vertex i is defined as the number of edges in the graph incident
on the vertex i . While this definition is most obvious for undirected graphs, it
needs some refinement for the case of directed graphs. Thus, we define in-degree
kin,i of the vertex i as the number of edges arriving at i , while its out-degree
kout,i is defined as the number of edges departing from i . The degree of a vertex
in a directed graph is defined by the sum of the in-degree and the out-degree,
ki = kin,i + kout,i . In terms of the adjacency matrix, we can write

kin,i =
∑

j

A ji , kout,i =
∑

j

Ai j . (A1.2)

For an undirected graph, with symmetric adjacency matrix, kin,i = kout,i ≡ ki .
When dealing with large graphs from a statistical point of view, or when con-

sidering random graphs (see Section 5.1), it is most convenient to characterize
them by means of their degree distribution. The degree distribution P(k) of an
undirected graph is defined as the probability that any randomly chosen vertex has
degree k. In the case of directed graphs, one has to consider instead two distri-
butions, the in-degree P(kin) and out-degree P(kout ) distributions, defined as the
probability that a randomly chosen vertex has in-degree kin and out-degree kout ,
respectively. The average degree of an undirected graph is defined as the average
value of k over all the vertices in the network

〈k〉 =
∑

k

k P(k) ≡ 2E

N
, (A1.3)

since each edge end contributes to the degree of a vertex. For a directed graph, the
average in-degree and out-degree must be equal

〈kin〉 =
∑
kin

kin P(kin) = 〈kout 〉 =
∑
kout

kout P(kout ) ≡ 〈k〉
2

, (A1.4)

since an edge departing from any vertex must arrive at another vertex. Analogously
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to the average degree, it is possible to define the nth moment of the degree
distribution

〈kn〉 =
∑

k

kn P(k). (A1.5)

A sparse graph has an average degree that is much smaller than the size of the
graph, 〈k〉 � N .

A1.3 Clustering coefficient

The concept of clustering3 of a graph refers to the tendency observed in many natu-
ral networks to form cliques in the neighborhood of any given vertex. In this sense,
clustering implies the property that, if the vertex i is connected to the vertex j , and
at the same time j is connected to l, then with a high probability i is also con-
nected to l. The clustering of an undirected graph can be quantitatively measured
by means of the clustering coefficient, introduced by Watts and Strogatz (1998) in
the analysis of complex networks. Let us consider the vertex i , with degree ki , and
let us denote by ei the number of edges existing between the ki neighbors of i . The
clustering coefficient, ci , of i is defined as the ratio between the actual number of
edges among its neighbors, ei , and its maximum possible value, ki (ki − 1)/2, i.e.

ci = 2ei

ki (ki − 1)
. (A1.6)

Thus, the clustering coefficient ci measures the average probability that two neigh-
bors of the vertex i are also connected between them.4 Given the definition of ei ,
it is easy to check that the number of edges among the neighbors of i can be com-
puted in terms of the adjacency matrix A as (Vázquez et al., 2002a)

ei = 1

2

∑
jl

Ai j A jl Ali . (A1.7)

Therefore, ci measures the existence of correlations in the adjacency matrix,
weighted by the corresponding vertex degree. The clustering coefficient of a graph
〈c〉 is defined as the average value of ci over all the vertices in the graph, i.e.
〈c〉 = ∑

i ci/N . Defining the matrix Ik of components

(Ik)i j =
⎧⎨
⎩

δi, j
1

ki (ki − 1)
if ki > 1

0 otherwise
, (A1.8)

3 Also called transitivity in the context of sociology (Wasserman and Faust, 1994).
4 Note that this measure of clustering has only meaning for ki > 1. For ki ≤ 1 we define ci ≡ 0.
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where δi, j is the Kronecker symbol5 and ki the degree of the vertex i , we can write
the clustering coefficient in the compact matricial notation

〈c〉 = 1

N
Tr (A3Ik), (A1.9)

where Tr stands for the trace.
In the physical literature sometimes a slightly different definition of the aver-

age clustering coefficient is used that leads to simpler calculations without altering
the physical meaning (Barrat and Weigt, 2000). According to this definition, the
clustering 〈c′〉 is defined as the fraction of the mean number of edges between the
neighbors of a vertex and the mean number of possible edges between those neigh-
bors. In practice, instead of doing the average of the ratio defining originally the
clustering coefficient, the coefficient is approximated by the ratio of the averages.
This definition corresponds to the concept of the fraction of transitive triples used
in sociology (Wasserman and Faust, 1994).

A1.4 Connected components and giant component

A very important issue concerning complex networks is the reachability of its
different vertices, i.e. the possibility of going from one vertex to another following
the connections given by the edges in the network. In a connected network every
vertex is reachable from any other vertex. The connected components of a graph
thus define many properties of its physical structure.

A1.4.1 Component structure in undirected graphs

Let us define a path Pi0,in in a graph G = (V, E) as an ordered collection of n + 1
vertices VP = {i0, i1, . . . , in} and n edges EP = {(i0, i1), (i1, i2), . . ., (in−1, in)},
such that iα ∈ V and (iα−1, iα) ∈ E , for all α. The path Pi0,in is said to connect
the vertices i0 and in . The length of the path Pi0,in is n. A cycle is a closed path
(i0 = in) in which all vertices and all edges are different. A graph is called con-
nected if there exists a path connecting any two vertices in the graph. A component
C of a graph is defined as a connected subgraph. Two components C1 = (V1, E1)

and C2 = (V2, E2) are disconnected if it is impossible to construct a path Pi, j with
i ∈ V1 and j ∈ V2. A tree is defined as a connected graph in which the deletion of
any edge breaks it into two disconnected components, see Figure A1.2. It is easy
to see that, for any tree, N = E + 1. A most interesting property of random graphs

5 The Kronecker symbol has a value δi, j = 1 if i = j , and δi, j = 0 if i 	= j .
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Fig. A1.2 Example of a tree graph.

(Section 5.1) is the distribution of components, and in particular the existence of a
giant component G, defined as a component whose size scales with the number of
vertices of the graph, and therefore diverges in the limit N → ∞. The presence of
a giant component implies that a macroscopic fraction of the graph is connected, in
the sense that it is possible to find a way across a certain number of edges, joining
any two vertices.

A1.4.2 Component structure in directed graphs

The structure of the components of directed graphs is somewhat more complex.
The difficulty stems from the obvious fact that, due to the directed nature of the
edges, the presence of a path from the vertex i to the vertex j does not neces-
sarily guarantee the presence of a corresponding path from j to i . Therefore, the
definition of a giant component becomes more fuzzy.

Following Figure A1.3, the component structure of a directed network can be
decomposed into a giant weakly connected component (GWCC), corresponding to
the giant component of the same graph in which the edges are considered as undi-
rected, plus a set of smaller disconnected components (DC). In turn, the GWCC is
composed by several parts, attending to the directed nature of the edges:

(1) The giant strongly connected component (GSCC), in which there is a directed path
joining any pair of vertices.

(2) The giant IN-component (GIN), formed by the vertices from which it is possible to
reach the GSCC by means of a directed path.
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GIN GOUT

GWCC

tendrils
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Fig. A1.3 Component structure of a directed graph. Figure adapted from
Dorogovtsev et al. (2001).

(3) The giant OUT-component (GOUT), formed by the vertices that can be reached from
the GSCC by means of a directed path.

(4) The tendrils that contains vertices that cannot reach or be reached by the GSCC (among
them, the tubes that connect the GIN and GOUT) that form the rest of the GWCC.

The component structure of directed graphs has important consequences in the
accessibility of information in networks such as the World Wide Web (Broder
et al., 2000).

A1.5 Shortest path length and betweenness

Even though graphs usually lack a metric, it is possible to define a distance be-
tween two vertices i and j , as the number of vertices traversed by the shortest
path connecting i and j . This distance, equivalent to the chemical distance usually
considered in percolation theory (Bunde and Havlin, 1991), is called the shortest
path length and denoted as �i j . When two vertices belong to two disconnected
components of the graph, we define �i j = ∞. While it is a symmetric quantity for
undirected graphs, the shortest path length �i j does not coincide in general with � j i

for directed graphs. There are two main statistical characterizations of the short-
est path length. First of all, we may consider the probability distribution P�(�) of
finding two vertices separated by a distance �. This distribution is related to the so-
called hop plot M(�), defined in the early investigations of the statistical properties
of the Internet (Faloutsos et al., 1999):

M(�) = N
�∑

�′=0

P�(�
′). (A1.10)
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The hop plot is therefore defined as the average number of vertices within a dis-
tance less than or equal to � from any given vertex, and in this sense is a sort of
measure of the average mass of the graph. At � = 0 we find the starting vertex,
and thus M(0) = 1. At � = 1 we find the starting vertex plus its nearest neighbors,
and therefore M(1) = 〈k〉 + 1. If the graph is connected and dG is the maximum
shortest path length, then M(dG) = N .

The maximum shortest path in the network dG is traditionally defined as the di-
ameter of the network. Another effective definition of the linear size of the network
is the average shortest path length, defined as the average value of �i j over all the
possible pairs of vertices in the network

〈�〉 =
∑

�

�P�(�) ≡ 2

N (N − 1)

∑
i< j

�i j . (A1.11)

It is worth stressing that the average shortest path length has been also referred
in the physics literature as another definition for the diameter of the graph. By
definition �i j ≤ dG , and in the case that the shortest path length distribution is
a well behaved and bounded function it is possible to show heuristically that in
many cases the two definitions behave in the same way with the network size. In
particular, for a regular hypercubic lattice in D dimensions composed by N ver-
tices (or sites), the average shortest path length scales as 〈�〉 ∼ N 1/D; the hop plot,
on the other hand, scales as the mass, yielding M(�) ∼ �D . For random graphs,
Chapter 5, the average shortest path length grows logarithmically with the size N ,
〈�〉 ∼ log N , a much slower growth than that found in regular hypercubic lattices.
This fact constitutes the so-called small-world effect.

Another quantity closely related to the shortest path length is the between-
ness, sometimes also referred to as load or, in sociology, betweenness centrality
(Newman, 2001b; Goh et al. 2001; Brandes, 2001). To go from one vertex to an-
other in the graph, following the shortest path, a certain sequence of vertices is vis-
ited. If we count all the vertices visited by the shortest paths between all the possi-
ble pairs of vertices in the graph, some key vertices will be visited more often than
others. This fact can be quantitatively measured by the betweenness bi of the ver-
tex i , defined as the total number of shortest paths between any two vertices in the
graph that pass through the vertex i . More precisely, if Lh, j is the total number of
shortest paths from h to j and Lh,i, j is the number of these shortest paths that pass
through the vertex i , the betweenness is defined as bi = ∑

Lh,i, j/Lh, j , where the
sum is over all h, j pairs with j 	= h. This definition gives a proper relative weight
to shortest paths between pairs of vertices with more than one equivalent shortest
path.
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In order to characterize statistically this quantity, we can consider the probability
distribution Pb(b) that a vertex has betweenness b, and the average betweenness
〈b〉 is defined as

〈b〉 =
∑

b

b Pb(b) ≡ 1

N

∑
i

bi . (A1.12)

The betweenness is a magnitude that takes usually values of the order O(N )

or larger. For instance, in a star graph, formed by N − 1 vertices with a sin-
gle edge connected to a central vertex, the betweenness takes a maximum value
N (N − 1)/2 at the central vertex, and a minimum value N − 1 at the peripheral
vertices.



Appendix 2

Interface resolution and router topology

Routers have multiple interfaces, each one corresponding to a physical connec-
tion with another peering router. By definition, each interface is associated with
a different IP address. As discussed in Chapter 3, path probing discovers router
interfaces. In particular each probing path will record a single interface for each
traversed router, generally the one from which the packet arrived to the router. It
is therefore possible that probes coming from different monitors, even if directed
to the same destination, might enter from different interfaces on the same inter-
mediate router. Thus, each time a router is probed from a different perspective, its
interfaces are registered as separate routers. A simple example of the difference
between the physical router connectivity and the one registered by probing paths
is depicted in Figure A1.1. In this example a network of four physical routers are
connected through six different interfaces. The graphs resulting from path probes
forwarded from opposite directions are different. By merging these different views,
a graph with a false connectivity is obtained and the interfaces (router aliases) res-
olution becomes indispensable to reconstruct the physical router topology.
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Fig. A2.1 Difference between the physical router topology and the mapped
topology caused by the recording of different interfaces on the same router.
(a) Physical router topology. To each router (black square), the physical interfaces
(filled triangles) correspond to different IP addresses. (b) The graph resulting
from a path probe forwarded from right to left. The IP addresses registered and
classified as separate vertices are the entering interfaces for the probing pack-
ets. (c) Path probes forwarded from left to right yield a different topological
view. (d) Merging the two different views creates a false map of the physical
connections and inflation in the number of routers.



Appendix 3

Numerical analysis of heavy tailed distributions

The analysis of statistical distributions from real data samples is a continuos
struggle with the statistical noise always present because of the inevitably finite
sampling or finite size of the system under study. In addition, while statistical
distributions often imply averaging over many realizations of the corresponding
stochastic process, in most of the cases we can measure just a single realization
corresponding to the real world system. These problems are of particular concern
in the case of heavy-tailed distributions. In this case, the distribution is spread
over a wide range of values with long tails of small but non-negligible probabil-
ity. The tail, thus, needs of a large number of events to be consistently sampled
and data measurements are especially noisy in these regions. As an example, we
can consider Figure 4.5, showing the degree frecuency measured in the IR level
map obtained with the Mercator software (Govindan and Tangmunarunkit, 2000).
Despite that the map contains more than 2 × 105 vertices, the probability of the
largest degree events is of the order of 10−5. We can therefore expect to detect one
or two of these events, as well as none of them. The tail’s noise is therefore evident
in the last part of the distribution.

Two numerical recipes can be applied in order to smooth the statistical fluctu-
ations generally present in statistical distributions with power-law tails. The first
one consists of computing the cumulative degree distribution Pc(k), defined by

Pc(k) =
∞∑

k′=k

P(k′). (A3.1)

The function Pc(k) is akin to an integral over k of the original degree distribution,
and is therefore smoother than the original function, see Figure A3.1a). For a scale-
free network, with P(k) ∼ k−γ and γ > 1, we have that Pc(k) ∼ ∫ ∞

k P(k′) dk′ ∼
k1−γ . From a log-log plot of Pc(k) it is possible to compute the slope 1 − γ , and
hence the degree exponent, with much higher precision than from the bare degree
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Fig. A3.1 (a) Cumulative degree distribution af the IR Internet map. (b) Binned
degree distribution from the same data map with a binning of 30 boxes.

distribution. Moreover, the cumulative distribution allows a clearer identification
of a possible cut-off or truncation of the distribution, by providing a smoother
representation of the tail.

A second technique refers to the binning of data with an exponential bin length
for the variable range. Let us consider the explicit example of a scale-free degree
distribution. First, the interval of degree values [m, kc] is discretized in M + 1 bins,
corresponding to kn = m rn , for n = 0, 1, . . . , M , with r = (kc/m)1/M . Then the

binned degree distribution is constructed as P̃(kn)�kn = ∑mrn+1

k=mrn P(k)�k. Since

the integration intervals are �k = 1 and �kn = ∑mrn+1

k=mrn 1 we finally obtain

P̃(kn) =
∑mrn+1

k=mrn P(k)∑mrn+1

k=mrn 1
, for n = 0, 1, . . . , M − 1. (A3.2)

The function P̃(kn) is an integration of the degree distribution, performed over
a set of bins of equal size in log-log scale, that preserves the normalization by
dividing for the length of the integration intervals. By performing this averaging
(or binning), it is possible to smooth out the statistical irregularities observed in
the bare numerical degree distribution, see Figure A3.1(b).
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In the case of a general function P(k) that is not a distribution, the binning
procedure does not have to preserve the normalization. In this case, P̃(kn) is just
a local average of the values of the function within the corresponding bins and the

denominator of Eq. (A3.2) must be substituted with the expression
∑mrn+1

k=mrn [1 −
δp(k),0], where δx,y is the Kronecker symbol.

Obviously, these two numerical techniques are not restricted to scale-free be-
havior, and can equally be applied to the analysis of any other statistical curve. In
particular the binning procedure can be applied to smooth data representation in
linear scale by defining linear size bins.



Appendix 4

Degree correlations

A network is said to be uncorrelated when the probability that an edge depart-
ing from a vertex of degree k arriving at a vertex of degree k′ is independent of
the degree of the initial vertex k. In undirected networks correlations can be mea-
sured by means of the conditional probability P(k′ | k), defined as the probability
that a vertex of degree k is connected to a vertex of degree k′. This function is
normalized ∑

k′
P(k′ | k) = 1, (A4.1)

and is constrained by the degree detailed balance condition (Boguñá and Pastor-
Satorras, 2002)

k P(k′ | k)P(k) = k′ P(k | k′)P(k′). (A4.2)

Eq. (A4.2) is basically a statement of the conservation of edges among vertices: the
total number of edges pointing from vertices with degree k to vertices with degree
k′ must be equal to the number of edges that point from vertices with degree k′ to
vertices with degree k. There is a simple way to derive the degree detailed balance
condition (Boguñá et al., 2003b). Let us denote by Nk the number of vertices with
degree k. Since

∑
k Nk = N , we can define the degree distribution as

P(k) = Nk

N
. (A4.3)

To completely define the network, apart from the relative number of vertices of a
given degree, we need to specify how the vertices are connected. For this purpose
we define the symmetric matrix Ekk′ , that measures the number of edges between
vertices of degree k and vertices of degree k′ for k �= k′, and two times the num-
ber of self-connections for k = k′. It is easy to realize that this matrix fulfills the
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following identities ∑
k′

Ekk′ = k Nk, (A4.4)

∑
k

∑
k′

Ekk′ = 〈k〉N . (A4.5)

In fact, the first relation states that the number of edges emanating from all the
vertices of degree k is simply k Nk , while the second indicates that the sum of all
the vertices’ degrees is equal to two times the number of edges. The identity (A4.5)
allows us to define the joint probability

P(k, k′) = Ekk′

〈k〉N
, (A4.6)

where the symmetric function (2 − δk,k′)P(k, k′) is the probability that a randomly
chosen edge connects two vertices of degrees k and k′. The transition probability
P(k′ | k), defined as the probability that an edge from a k vertex points to a k′
vertex, can be easily written as

P(k′ | k) = Ekk′

k Nk
≡ 〈k〉P(k, k′)

k P(k)
, (A4.7)

from where the detailed balance condition Eq. (A4.2) follows immediately as a
consequence of the symmetry of P(k, k′).

For uncorrelated networks, in which P(k′ | k) does not depend on k, application
of the normalization condition Eq. (A4.1) into Eq. (A4.2) yields the form

P(k′ | k) = 1

〈k〉k′ P(k′) (A4.8)

This expression can be easily understood by noticing that the probability that
any given edge points to a vertex of degree k is proportional to the density of these
vertices times the number of emanated edges. The direct evaluation of P(k′ | k) is
in most real networks a quite difficult task, since the available data, restricted to
finite network sizes, yields results extremely noisy and difficult to interpret. For
this reason, it is more useful to analyze instead the average degree of the nearest
neighbors of the vertices of degree k, defined by (Pastor-Satorras et al., 2001)

k̄nn(k) =
∑

k′
k′ P(k′ | k). (A4.9)

If there are no degree correlations, the conditional probability P(k′ | k) takes the
form given in Eq. (A4.8), from which we obtain k̄0

nn(k) = 〈k2〉/〈k〉, independent of
k. Therefore, a function k̄nn(k) with an explicit dependence on k signals the pres-
ence of degree correlations in the network. Based in the function k̄nn(k), recently
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a classification framework of natural complex networks in terms of their correla-
tions has been proposed (Newman, 2002a). When k̄nn(k) is an increasing function
of k (highly connected vertices tend to connect to highly connected vertices) the
network is said to show assortative mixing. However, when k̄nn(k) is a decreas-
ing function of k (highly connected vertices prefer to connect with vertices with
low degree) the network shows disassortative mixing. This classification scheme
has proved to be very useful for elucidating the structural properties of complex
networks.

In order to provide some explicit example of degree correlations let us focus
on the case of growing network models in which new edges always connect
new vertices to old vertices. Using general scaling arguments (Dorogovtsev and
Mendes, 2003), it is possible to show that the joint probability for a generalized
scale-free network with degree distribution P(k) ∼ k−γ is given by

P(k, k′) ∝ k′−(γ−1) k−2, 1 � k � k′. (A4.10)

Using the degree detailed balance condition, Eq. (A4.2), we can compute the con-
ditional probability as

P(k′ | k) = 〈k〉P(k, k′)
k P(k)

∝ k′−(γ−1) k−(3−γ ). (A4.11)

From here, we obtain in the case of a scale-free network with degree exponent γ

k̄nn(k) ∝ k−(3−γ ), (A4.12)

for sufficiently small values of the degree k.
From this last equation we observe that a generalized growing scale-free net-

work exhibits noticeable correlations, as expressed by the functional dependence
of k̄nn in k. For the particular case of a Barabási–Albert network, however, the
value γ = 3 renders correlations negligible.
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Scale-free networks: scaling relations

Most natural scale-free networks with a power-law tail P(k) ∼ k−γ in the degree
distribution are the outcome of a growth process that, starting from a small core of
vertices, increases its size in time by the subsequent addition of new vertices and
edges (Albert and Barabási, 2002; Dorogovtsev and Mendes, 2002; Dorogovtsev
and Mendes, 2003).

While the overall average degree of scale-free networks with γ > 2 is constant,
the growing nature of these networks is reflected in the scaling of the degree of
single vertices as a function of their age, which increases with time as a power-
law. Following Section 5.4, consider a growing network model in which a new
vertex is added every time step. Thus, if ks(t) is the average degree of the sth
vertex

ks(t) �
(

t

s

)β

, (A5.1)

where s is the time when the sth vertex was added to the network, t is the age of
the network (s ≤ t), which is proportional to the size N of the network, and β is
another characteristic exponent. The exponents γ and β are not independent, but
are generally related by the scaling relation (Dorogovtsev and Mendes, 2002)

γ = 1 + 1

β
. (A5.2)

For the case of the Barabási–Albert model, Section 5.5, these exponents take the
values γ = 3 and β = 1/2, but the relation Eq. (A5.2) is a general property of all
scale-free growing network models.

The fact that the network is growing implies that any time we observe it, it is
composed of a finite number of vertices N ∼ t , which through Eq. (A5.1) implies
in its turn that the degree of any vertex is bounded by a degree cut-off, kc(N ), that
depends on the network size. The presence of the degree cut-off translates in the
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degree distribution into an explicit dependence on the network size (or time) that
we can write in the scaling form as

P(k, N ) = k−γ f

[
k

kc(N )

]
, (A5.3)

where f (x) is constant for x � 1 and decreases very quickly for x � 1. It is pos-
sible to obtain a upper bound for the functional dependence on N of the degree
cut-off for generalized uncorrelated random graphs using an extremal theory argu-
ment. In the continuous k approximation, consider a random graph with normal-
ized degree distribution in the infinite size limit P(k) = (γ − 1)mγ−1k−γ , with
γ > 2 and k ∈ [m, ∞[, where m is the minimum degree of the graph. Consider
now that we generate a graph of size N by sorting N independent random vari-
ables according to the distribution P(k), obtaining the sample {k1, . . ., kN }. Let
us define K the maximum value of this particular sample, K = max{k1, . . ., kN }.
When generating an ensemble of graphs, we will obtain in each case a different
value of the maximum degree K . Thus, we can define the cut-off kc(N ) as the
average value of K , weighted by the distribution P(k). It is easy to see that the
probability of this maximum being less than or equal to K is equal to the probabil-
ity of all the individual values ki being in their turn less than or equal to K . This
means that the distribution function of the maximum value K is just

�(K , N ) = [�(K )]N , (A5.4)

where �(K ) is the distribution function of the probability P(k), i.e. �(K ) =∫ K
m P(k) dk = 1 − (K/m)−γ+1. By differentiating Eq. (A5.4), we obtain the

probability distribution of maximum values, namely

π(K , N ) = d�(K , N )

dK
= N (γ − 1)

m

(
K

m

)−γ
[

1 −
(

K

m

)−γ+1
]N−1

. (A5.5)

If the degree cut-off is defined as the average value of the maximum K , then we
have that

kc(N ) =
∫ ∞

m
Kπ(K , N ) dK = Nm

λ

�(1 + λ)�(N )

�(N + λ)
, (A5.6)

where �(x) is the Gamma function and we have defined the constant λ =
(γ − 2)/(γ − 1). Using the asymptotic relation limN→∞ �(N + a)/�(N + b) �
N a−b (Abramowitz and Stegun, 1972), we obtain the leading behavior for large N

kc(N ) � m
�(1 + λ)

λ
N 1−λ ∼ m N 1/(γ−1). (A5.7)
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The previous equation is in fact an upper bound for kc(N ), since we have only
considered the possible values that the random variables ki can take, according
to the probability distribution P(k). If those values must represent the degree se-
quence of an actual graph, some constraints would then apply, specially if we want
to avoid the presence of loops or multiple edges.

Finally, it is important to stress that the previous result is valid only in the case
that the only origin of the degree cut-off resides in the finite number of vertices
forming the network. In other situations networks may exhibit a degree cut-off
due to external constraints and finite connectivity resources (Amaral et al., 2000;
Mossa et al., 2002). In this case the cut-off kc is not related to the network size and
has to be considered as an external parameter (see for instance Sections 4.4, 6.5.1
and 9.4.3).



Appendix 6

The SIR model of virus propagation

The susceptible-infected-removed (SIR) model (Anderson and May, 1992;
Murray, 1993; Diekmann and Heesterbeek, 2000) is a classical epidemiological
model in which individuals can only exist in three different states: susceptible
(healthy), infected, or removed (immunized or dead). On a general network of
degree distribution P(k), in which each vertex represents an individual in its cor-
responding state, the dynamics of this model is defined as follows. At each time
step, each susceptible vertex is infected at rate λ, if it is connected to an infected
vertex. At the same time, each infected individual becomes removed with proba-
bility µ, that, without lack of generality, we set equal to unity.

In order to take into account the heterogeneity induced by the presence of degree
fluctuations (Moreno et al., 2002; May and Lloyd, 2001; Newman, 2002b; Boguñá
et al., 2003b), let us consider the time evolution of the magnitudes ρk(t), Sk(t),
and Rk(t), which are the density of infected, susceptible, and removed vertices of
degree k at time t , respectively. These variables are connected by means of the
normalization condition

ρk(t) + Sk(t) + Rk(t) = 1. (A6.1)

Global quantities such as the epidemic prevalence can be expressed as an aver-
age over the various degree classes; for example, we define the total number of
removed individuals at time t by R(t) = ∑

k P(k)Rk(t), and the prevalence as
R∞ = limt→∞ R(t). At the mean-field level, for undirected random uncorrelated
sparse networks, these densities satisfy the following set of coupled differential
equations

dρk(t)

dt
= −ρk(t) + λkSk(t)�(t), (A6.2)
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dSk(t)

dt
= −λkSk(t)�(t), (A6.3)

dRk(t)

dt
= ρk(t). (A6.4)

The factor �(t) represents the average density of infected individuals of vertices
pointed at by any given edge. In uncorrelated networks this quantity can be com-
puted in a self-consistent way. In general, the probability that an edge points to
an infected vertex with degree k′ is proportional to k′ P(k′). However, since the
infected vertex pointed at by the edge has previously received the disease through
an edge that cannot be used for transmission anymore (its originating vertex is
removed), the correct expression is proportional to k − 1, yielding

�(t) = 1

〈k〉
∑

k

(k − 1)P(k)ρk(t). (A6.5)

Equations (A6.2), (A6.3), (A6.4), and (A6.5), combined with the initial conditions
Rk(0) = 0, ρk(0) = ρ0

k , and Sk(0) = 1 − ρ0
k , completely define the SIR model on

any random uncorrelated network with degree distribution P(k). We will consider
in particular the case of an homogeneous initial distribution of infected individu-
als, ρ0

k = ρ0. In this case, in the limit ρ0 → 0, we can substitute ρk(0) � 0 and
Sk(0) � 1. Under this approximation, Eqs. (A6.3) and (A6.4) can be directly inte-
grated, yielding

Sk(t) = e−λkφ(t), Rk(t) =
∫ t

0
ρk(τ ) dτ, (A6.6)

where we have defined the auxiliary function

φ(t) =
∫ t

0
�(τ) dτ = 1

〈k〉
∑

k

(k − 1)P(k)Rk(t). (A6.7)

In order to get a closed relation for the total density of infected individuals, it is
more convenient to focus on the time evolution of the averaged magnitude φ(t).
To this purpose, let us compute its time derivative

dφ(t)

dt
= 1

〈k〉
∑

k

(k − 1)P(k)ρk(t)

= 1

〈k〉
∑

k

(k − 1)P(k)[1 − Rk(t) − Sk(t)]

= 1 − 1

〈k〉 − φ(t) − 1

〈k〉
∑

k

(k − 1)P(k)e−λkφ(t), (A6.8)
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where we have introduced the time dependence of Sk(t) obtained in Eq. (A6.6).
Once Eq. (A6.8) is solved, we can obtain the total epidemic prevalence R∞ as a
function of φ∞ = limt→∞ φ(t). Since Rk(∞) = 1 − Sk(∞), we have

R∞ =
∑

k

P(k)(1 − e−λkφ∞). (A6.9)

For a general P(k) distribution, Eq. (A6.8) cannot be generally solved in a
closed form. However, we can still get useful information on the infinite time limit;
i.e. at the end of the epidemics. Since we have that ρk(∞) = 0, and consequently
limt→∞ dφ(t)/dt = 0, we obtain from Eq. (A6.8) the following self-consistent
equation for φ∞

φ∞ = 1 − 1

〈k〉 − 1

〈k〉
∑

k

(k − 1)P(k)e−λkφ∞ . (A6.10)

The value φ∞ = 0 is always a solution. In order to have a non-zero φ∞ solution,
i.e. a prevalence R∞ > 0, the condition

d

dφ∞

(
1 − 1

〈k〉 − 1

〈k〉
∑

k

(k − 1)P(k)e−λkφ∞

)∣∣∣∣∣
φ∞=0

≥ 1 (A6.11)

must be fulfilled. This relation implies

λ

〈k〉
∑

k

k(k − 1)P(k) ≥ 1, (A6.12)

which defines the epidemic threshold

λc = 〈k〉
〈k2〉 − 〈k〉 , (A6.13)

below which the epidemic prevalence is R∞ = 0, and above which it attains a
finite value R∞ > 0. It is interesting to notice that this is precisely the same value
found for the percolation threshold in generalized networks (see Section 6.5). This
is hardly suprising since, as stressed by Grassberger (1983), the SIR model can
be mapped to an edge percolation process. The SIR model is thus no exception
to the general absence of an epidemic threshold in networks with diverging degree
fluctuations, i.e. 〈k2〉 → ∞. The present results are valid for infinite size networks.
In the case of finite networks of size N the usual size corrections set in.

For the case of correlated random networks (Appendix A4) which are com-
pletely defined by the degree distribution P(k) and the conditional probability
P(k′ | k) that a vertex of degree k has an edge pointing to a vertex of degree k′,
it can be proved (Boguñá et al., 2003b) that the epidemic threshold is inversely
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proportional to the largest eigenvalue �̃m of the matrix

C̃kk′ = k(k′ − 1)

k′ P(k′ | k). (A6.14)

In the same way as for the SIS model, the eigenvalue �̃m for scale-free networks
with diverging fluctuations and any sort of correlations can be shown to diverge
in the thermodynamic limit, provided that the minimum connectivity of the net-
work is larger than one, thus recovering the null epidemic threshold obtained in
the uncorrelated case. In the case of a minimum connectivity equal to one a few
exceptions might occur as reported by Vázquez and Moreno (2003) and Boguñá
et al. (2003b).
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Arenas, A., Dı́az-Guilera, A., and Guimerà, R. (2001), “Communication networks with
hierarchical branching,” Phys. Rev. Lett. 86, 3196–3199.

Aron, J. L., O’Leary, M., Gove, R. A., Azadegan, S., and Schneider, M. C. (2002), “The
benefits of a notification process in addressing the worsening computer virus
problem: results of a survey and a simulation model,” Computers and Security 21,
142–163.

Bailey, N. T. J. (1975), The Mathematical Theory of Infectious Diseases, 2nd edn,
London: Griffin.

Barabási, A. L. (2002), Linked: The New Science of Networks, Cambridge: Perseus
Publishing.

Barabási, A.-L. and Albert, R. (1999), “Emergence of scaling in random networks,”
Science 286, 509–511.

Barabási, A.-L., Albert, R., and Jeong, H. (1999), “Mean-field theory for scale-free
random networks,” Physica A 272, 173–187.

— (2000), “Scale-free characteristics of random networks: the topology of the
World-Wide Web,” Physica A 281, 69–77.

Barabási, A.-L. and Stanley, H. E. (1995), Fractal Concepts in Surface Growth,
Cambridge: Cambridge University Press.

Baran, P. (1964), “On distributed communications networks,” IEEE Transactions of the
Professional Technical Group on Communications Systems CS-12, 1–9.

Barford, P., Bestavros, A., Byers, J., and Crovella, M. (2001), “On the marginal utility of
deploying measurement infrastructure,” in Proceedings of the ACM SIGCOMM
Internet Measurement Workshop 2001, California.

Barrat, A. and Weigt, M. (2000), “On the properties of small-world network models,” Eur.
Phys. J. B 13, 547–560.

Barrie, J. M. and Presti, D. E. (1996), “The World-Wide-Web as an instructional tool,”
Science 274, 371–372.
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Erdös–Rényi model, 44, 70, 73, 76, 78, 90, 113, 127,
132

exploration model, 154
Exterior Gateway Protocol, 8, 15
extremal theory, 245

finite size effects, 52, 56, 128, 196
fitness model, 99, 107, 150
fractal, 66, 103, 213
fraction of transitive triples, 76, 231

gateway, 21
Gnutella, 139, 160, 172
growing networks, 83, 139

HEPNET, 4
heterogeneity parameter, 47, 55, 128, 193
hierarchical

level, 18, 57, 80
structure, 57, 68, 80, 107

hierarchy, 20, 36, 57, 107, 109
homogeneous mixing hypothesis, 187
homogeneous network, 47, 117, 186
hop, 12, 23

distance, 42, 66, 92, 104
hop plot, 43, 233
host, 1, 10, 20, 42
HOT model, 103, 107
hub, 39, 44, 57, 64, 112, 116, 131, 196, 216
Hyperlink-Induced Topic Search, 175
hyperlinks, 140
HyperText Markup Language, 140
HyperText Transfer Protocol, 140

immunization, 182, 188, 203
targeted, 204
uniform, 188, 203

immunization threshold, 189, 203, 205
in-degree, 142, 229

distribution, 144, 148, 149, 152, 229
incidence, 182
Interface Message Processor, 3
interfaces, 24, 28, 29, 39, 52, 66, 101, 236
Interior Gateway Protocol, 8, 15, 221
Internet congestion, 220
Internet Protocol

address, 6, 12, 14, 16, 23, 30, 42, 49, 236
number, 14
Routing Registry, 33

Internet Service Provider, 15, 28, 32, 40, 55, 99,
216

Internet tomography, 28
Internetworking Working Group, 4
IPv4, 14
IPv6, 14

keepalive message, 17, 220

layout
geographical, 33, 64
topological, 29, 33

load, 20, 34, 53, 58, 59
Local Area Network, 11, 14, 15, 20, 81, 108, 209
loops, 229

mapping project, 22, 23, 30, 50, 108
mean-field description, 122, 186, 247
measurement

active, 23, 24, 31
passive, 23, 31, 35

memory buffer, 13
Mercator, 26, 37, 65, 238
Metropolitan Area Network, 11, 81
MFENET, 4
MILNET, 6
multigraph, 229

name server, 18
NASA, 4
natural computer virus, 179, 190
NetGeo, 33, 65
network

circuit switched, 12
packet switched, 12
prefix, 14, 25

NSF, 6

open architecture, 5
Oregon route-views, 30, 37, 92
out-degree, 142, 174, 229

distribution, 144, 148, 152, 229
outage, 16, 24, 35

packet, 1, 3, 8, 12, 15, 23, 34, 42, 44, 210
switching, 3

packet loss, 210, 216
path, 3, 8, 11, 12, 15, 21, 23, 30, 42, 49, 55, 57, 62,

95, 231
directed, 142

peer, 3, 17, 35, 55
peer-to-peer, 56, 139, 160, 165, 171, 182
percolation, 117, 119, 122, 124, 134

average cluster size, 120
cluster number distribution, 119
edge, 117, 249
infinite cluster, 117
infinite dimensional, 119
inverse, 119, 127
threshold, 117, 123, 249
vertex, 117

performance, 12, 19, 28, 34, 68, 209, 216
phase transition, 118, 121, 126, 188, 214
ping, 34
power spectrum, 213, 221
power-law

behavior, 45, 51, 57, 98, 106, 121, 144, 156
bounded, 52, 102, 129, 144, 197, 244
distribution, 46, 75, 82, 87, 94, 106, 116, 149, 152,

159, 162
preferential attachment, 69, 86, 90, 94, 103, 109, 147,

151, 162, 174
test, 92



Index 267

prevalence, 182, 247
Protocol

File Transfer, 8, 13
Internet Control Message, 13, 34
Network Control, 4
routing, 12, 78
Simple Mail Transfer , 13
suite, 11
Telnet, 13
Transmission Control, 5, 12
User Datagram, 13, 26

public exchange point, 11

random graph
generalized, 73, 82, 167, 191
homogeneous, 56, 59, 71, 76, 86
static, 69, 78, 101

recovery rate, 186
Regional Internet Registries, 14, 26
registration authorities, 9
removal threshold, 128, 132, 136, 137
repeater, 11
Request For Comments, 8
resilience, 111, 138, 163

random failures, 112, 127
targeted attacks, 3, 112, 132, 134

rewiring, 41, 75, 84, 94, 148
round-trip-time, 34, 217
route flap, 35, 220
router, 1, 3, 8, 11, 12, 13, 15, 20, 23, 30, 33, 38, 43,

52, 58, 64, 78, 80, 86, 101, 109, 236
routing

Information Protocol, 15
inter-domain, 15, 22, 31
intra-domain, 15, 22
tables, 17, 23

routing tables, 179

scale-free
network, 47, 52, 64, 74, 75, 128, 135, 147, 159,

162, 170, 193, 244
property, 51, 59, 82, 143, 156, 172, 190, 213

search engines, 173
search processes, 163, 164

adaptive multiagent systems, 176
broadcast, 161, 166, 171
degree-biased, 170
greedy algorithm, 168
random walk, 167

self-organization, 8, 9
self-organizing system, 1, 10
self-similar stochastic process, 209, 213, 214
self-similar traffic, 209, 211
self-similarity, 47
shortest path length, 38, 42, 55, 73, 89, 113, 132, 142,

143, 157, 159, 162, 165, 166, 170, 233

six degrees of separation, 44, 164
skitter, 28, 29
small-world

effect, 39, 66, 72, 77, 89, 106, 142, 162, 164, 167,
168, 234

ultra small, 92, 106
source-route capable router, 27
spanning tree, 24, 28, 49, 81, 82, 105
sparse graph, 28, 39, 230
spectral analysis, 50
spreading rate, 185
structural topology generators, 80
subgraph, 50, 62, 70, 80, 228
survivability, 2
surviving probability, 184, 200
susceptible-infected-removed model, 186,

247
susceptible-infected-susceptible model, 185
switch, 11

TCP/IP, 5, 12, 19, 161, 211
tier, 63, 80
time-to-live, 23, 161, 166, 171
topology

linear, 3
mesh, 3, 59
ring, 3
star-shape, 2, 81, 105

topology generators
Brite, 102, 106
Inet, 82, 106
Tiers, 81
Transit-Stub, 80

traceroute, 23, 26
traffic, 6, 11, 17, 20, 21, 32, 34, 38, 53, 57, 209,

210
tree, 21, 24, 26, 27, 49, 72, 81, 92, 105, 232

undirected graph, 20, 70, 83, 227
Uniform Resource Locator, 140
universality, 49, 122
Unix User Control Protocol, 5
up–down organization, 57

vertices, 227
ordered pairs, 228
unordered pairs, 227

Watts–Strogatz model, 75, 168
Waxman topology generator, 67, 78
Wide Area Network, 11, 14, 81, 209
wiring, 40, 70, 95

events, 40, 84
World Wide Web, 7, 34, 56, 97, 139, 140, 164, 173,

233
thematic groups, 144, 150


	Contents
	Preface
	Abbreviations
	1 A brief history of the Internet
	1.1 The early times
	1.2 The rapid growth
	1.3 The network of networks: a growing self-organized system

	2 How the Internet works
	2.1 Physical description
	2.2 Protocols
	2.3 Internet addressing
	2.4 Routing packets
	2.5 The domain name system

	3 Measuring the global Internet
	3.1 Mapping of the Internet
	3.2 A Ptolemaic view
	3.3 An x-ray scan of the Internet
	3.4 AS level maps
	3.5 Internet geography
	3.6 The Internet’s global performance

	4 The Internet’s large-scale topology
	4.1 The growth of the Internet
	4.2 Small-world properties
	4.3 Heavy tailed distributions
	4.4 Critically examining scale-free properties
	4.5 The hierarchical structure of the Internet
	4.6 The Internet’s geographical layout

	5 Modeling the Internet
	5.1 Static random graph models
	5.2 The Watts–Strogratz model
	5.3 Internet topology generators
	5.4 The theory of evolving networks
	5.5 The Barabasi–Albert class of models
	5.6 Preferential attachment revisited
	5.7 Validating the preferential attachment hypothesis
	5.8 Degree driven models
	5.9 Optimization and trade-offs
	5.10 Real data versus models
	5.11 The future of Internet modeling

	6 Internet robustness
	6.1 Internet robustness to random failures
	6.2 Resilience to damage as a percolation phase transition
	6.3 Percolation theory
	6.4 Percolation transition in random graphs
	6.5 The theory of resilience to random failures
	6.6 Internet’s Achilles heel
	6.7 The price of a fail-safe Internet

	7 Virtual and social networks in the Internet
	7.1 The World Wide Web
	7.2 Modeling the Web
	7.3 The e-mail network
	7.4 Peer-to-peer and dynamic environment networks

	8 Searching and walking on the Internet
	8.1 Searching strategies in networks
	8.2 Improving the performance of peer-to-peer networks
	8.3 Searching on the Web

	9 Epidemics in the Internet
	9.1 Computer viruses and worms
	9.2 Epidemic modeling in population networks
	9.3 Puzzling questions raised by computer virus data
	9.4 Epidemics in scale-free networks
	9.5 Numerical simulation of epidemics in network models
	9.6 Rationalizing computer virus experimental data
	9.7 Immunization of scale-free networks
	9.8 Protecting the Internet

	10 Beyond the Internet’s skeleton: traffic and global performance
	10.1 The Internet traffic: a local view
	10.2 The global behavior of the Internet traffic and performance
	10.3 Internet stability and congestion

	11 Outlook
	Appendix 1 Graph theory applied to topology analysis
	A1.1 Graphs and subgraphs
	A1.2 Degree and degree distribution
	A1.3 Clustering coef.cient
	A1.4 Connected components and giant component
	A1.5 Shortest path length and betweenness

	Appendix 2 Interface resolution and router topology
	Appendix 3 Numerical analysis of heavy tailed distributions
	Appendix 4 Degree correlations
	Appendix 5 Scale-free networks: scaling relations
	Appendix 6 The SIR model of virus propagation
	References
	Index



