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Abstract. Social networks exhibit scaling laws for several structural
characteristics, such as degree distribution, scaling of the attachment kernel and
clustering coefficients as a function of node degree. A detailed understanding
if and how these scaling laws are inter-related is missing so far, let alone
whether they can be understood through a common, dynamical principle. We
propose a simple model for stationary network formation and show that the three
mentioned scaling relations follow as natural consequences of triadic closure.
The validity of the model is tested on multiplex data from a well-studied massive
multiplayer online game. We find that the three scaling exponents observed in
the multiplex data for the friendship, communication and trading networks can
simultaneously be explained by the model. These results suggest that triadic
closure could be identified as one of the fundamental dynamical principles in
social multiplex network formation.
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Social networks often exhibit statistical structures that manifest themselves in scaling laws that
can be quantified through a set of characteristic exponents. Maybe the three most relevant
scaling laws in terms of network formation are the linking probability for new nodes joining
the network as a function of degree of the existing (linked-to) node, degree distribution and
clustering coefficients of nodes as a function of their degree. In particular, the probability for
a node to acquire a new link, the attachment kernel 5(k), often scales with the node degree k
[1, 2] as

5(k) ∝ kγ . (1)

The degree distribution of social networks, i.e. the probability of finding a node with a given
degree k, P(k), often shows features of exponential, fat-tailed distributions [3, 4] or something
in between, depending on the type of social interaction [5, 6]. They can be parameterized
conveniently by the q-exponential [7, 8]

P(k) ∝ (1 + (1 − q)k)
1

1−q (2)

with q being a parameter that determines an asymptotic scaling exponent 1/(1 − q). A third
scaling law, which is ubiquitous in social networks [5, 6, 9, 10], is observed for the clustering
coefficients c(k) as a function of node degree,

c(k) ∝ k−β . (3)

Despite the overwhelming empirical evidence for the scaling laws in equations (1)–(3), it
is still undecided whether they share a common dynamical origin, and if and how characteristic
exponents are related to each other. For example, for growing network models, where new
nodes are constantly added that link through a preferential attachment rule to already existing
nodes [3], a relation between scaling exponents of the degree distribution and the attachment
kernel γ has been found [11]. However, these models cannot explain the observed scaling of
the clustering coefficients. Moreover, the preferential attachment process [3] requires global
information (the degrees of all nodes in the network) to establish a new social tie, which
is clearly an unrealistic assumption for most social networks. To overcome this problem,
growth and preferential attachment mechanisms have been extended by local network formation
rules [12–14, 16], where a node’s linking dynamics only depends on its neighbors or second
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neighbors. One such local rule that is extremely relevant for social network formation is
the principle of triadic closure [17, 18], which means that the probability of a new link to
close a triad is higher than the probability to connect any two nodes. Scaling laws for the
degree distribution [13], degree distribution and clustering coefficients [14, 15] and preferential
attachment [16] have been reproduced in the context of specific models using triadic closure.
Although it is instructive to see how a combination of growth, preferential attachment and
clustering processes gives rise to the three scaling laws above, this does not help us to understand
if the existence and possible inter-relations of the three exponents can emerge from a single
underlying dynamical origin, and to what extent this common origin is an actual feature of
real social network formation processes. Less is known on relations between characteristic
exponents in non-growing, stationary networks [7, 19]. It has been shown that triadic closure
is related to scaling laws for the degree distribution and clustering coefficients in the stationary
case [20–23].

Here we study a simple model that simultaneously explains the three scaling laws in
equations (1)–(3) based on the process of triadic closure in non-growing networks. This process
introduces a mechanism from which preferential attachment emerges, leads to fat-tailed degree
distributions and induces scaling of the clustering coefficients with node degrees. The model is
validated with the data from a social multiplex, i.e. a superposition of several social networks
labeled by α with adjacency matrices Mα, defined on the same set of nodes [24]. The model can
be fully calibrated with the multiplex data and explains three observed characteristic exponents
for three different sub-networks of the multiplex.

1. Results

1.1. Model specification

The model is built around the process of triadic closure, the principle that links tend to be created
between nodes that share a neighbor. The model includes the addition and removal of nodes.
The network is initialized with N nodes, each node having one link to a randomly chosen node.
The dynamics is completely specified by an iteration of the following steps, starting at t :

(i) Pick a node i at random. If i has less than two links, create a link between i and any
randomly chosen node and continue with step (iii). If i has two or more links, choose one
of its neighbors at random, say node j , and continue with step (ii).

(ii) With probability r (triadic closure parameter), create a link between j and another
randomly chosen neighbor of i , say k. With probability 1 − r , create a link between j
and a node randomly chosen from the entire network, see figure 1.

(iii) With probability p (node-turnover parameter) remove a randomly chosen node from the
network along with all its links and introduce a new node linking to m randomly chosen
nodes. Then continue with time-step t + 1.

For p > 0, nodes have a finite lifetime, which implies that the network reaches a stationary
state where the total number of links L(t) and the network measures 5(k), P(k) and c(k)

fluctuate around steady-state levels. The model is a variant of the model proposed in [20],
which is contained as the special case r = 1 in the above protocol. Our model can also be
seen as a stationary version of the connecting nearest-neighbors model in [14]. Combinations
of triadic closure and random edge attachment have also been studied in growing [13, 15]
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Figure 1. Node i (with more than two links) and one of its neighbors j are
randomly selected. With probability r , the process of triadic closure takes place
(the triad consists of i, j, k); with probability 1 − r j links to a random node.

and weighted [22] networks. Reaching a stationary state is independent of m. The model is
completely specified by four parameters, N , r , p and m.

1.2. Estimation of model parameters

Social ties are often established between two individuals by being introduced by a mutual
acquaintance. Other modes of social tie formation, such as random encounters, may not lead
to triadic closure. Step (ii) in the above protocol captures these two linking processes. Ties also
change because people enter and leave social circles; for example, they change workplaces,
move to different cities or change their hobbies. This is incorporated in step (iii). To calibrate
the model to a real-social multiplex network, Mα with Nα nodes and Lα links, the stationarity
assumption has to be checked and the parameters for triadic closure r and node-turnover p have
to be estimated. Consider the average number of nodes entering (1n+

α) and leaving (1n−

α ) the
network Mα per time unit. For stationarity to hold, we demand

1n+
α ≈ 1n−

α � 1n+
α − 1n−

α . (4)

i.e. the net growth rate is much smaller than the rates at which nodes enter or leave the network.
The triadic closure parameter rα can be directly measured as the ratio between the number of
links in network Mα which—at their creation—close at least one triangle and the total number
of created links. The node-turnover parameter p can be estimated by demanding that the number
of links in the model and in the real network are the same. To see this, note that one adds on
average 1l+ and removes 1l− links per time step. Stationarity means that 1l+

= 1l−. Because
one link is created at each time step in either step (i) or (ii) and with probability p, m links
are added in step (iii), we have 1l+

= 1 + pm. Denoting the average degree by k̄ =
2N
L , with

probability p, in step (iii), one removes on average k̄ links per time step, 1l−
= pk̄. To calibrate

the model to a network Mα, the turnover parameter pα is

pα =
1

k̄α − m
. (5)

The model is initialized with Nα nodes and the dynamics follows the protocol with parameters
rα and pα. After a transient phase the number of links fluctuates around Lα, and the scaling
exponents γ, q and β approach stationary values.
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Table 1. Summary of network measures and model results. For the Pardus
friendship (α = 1), communication (comm., α = 2) and trade (α = 3) networks,
the number of nodes Nα, links Lα, average degree k̄α and average number of
nodes entering and leaving the network per day, 1n+

α and 1n−

α , are shown. The
results of the calibration of the model to the empirical networks, r and p, are
given together with the fit results of the parameters γ , q and β for the data and
the model.

Type Network features Parameter Exponents (data and model)

α Nα Lα k̄α 1n+
α 1n−

α rα pα γ γmod q qmod β βmod

Friends 1 4547 21 622 9.5 24.26 23.07 0.58 0.12 0.88(4) 0.77(2) 1.16(1) 1.116(2) 0.69(3) 0.66(3)
Communication 2 2810 9420 6.7 110.2 109.4 0.57 0.18 0.84(1) 0.76(2) 1.24(1) 1.148(3) 0.59(3) 0.78(3)
Trade 3 4514 31 475 13.9 58.58 56.19 0.80 0.08 0.83(1) 0.80(1) 1.073(1) 1.102(1) 0.63(3) 0.60(3)
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Figure 2. Dependence of scaling exponents γ , q and β on the model parameters
p and r . (a) γ becomes closer to one for high p or r and is confined to the interval
0 < γ < 1. (b) q is large for small p and large r and approaches one for large p.
(c) β is close to zero for r close to zero and approaches β = 1 for large values of
p and r .

Calibration of the model requires complete, time-resolved topological information Mα(t)
over a large number of link-creation processes. Suitable data are available for example in the
social multiplex network of the online game ‘Pardus’ [6, 25–28]; see the Methods section.
Table 1 summarizes key features of Mα, including the number of nodes Nα, and links Lα for the
Pardus friendship (α = 1), communication (α = 2) and trade (α = 3) networks. Table 1 also lists
the average degree k̄α, as measured on the last day of the observation record, and the average
number of nodes entering (1n+

α) and leaving (1n−

α ) per day, confirming that the networks are
in fact stationary in the sense of equation (4). Estimates for r and p are also shown in table 1.

1.3. Characteristic exponents

Simulation results for the values of the characteristic exponents γ, q and β in the model depend
on the parameters p and r , as shown in figure 2. We fix N = 103 and m = 0. Results are
averaged over 500 realizations for each parameter pair (p, r). All three scaling exponents,
equations (1)–(3), can be explained by the model.

Model exponents for γ fall in the range 0 < γ < 1, depending on p and r , figure 2(a).
Exponent γ is close to one for high p and high r . The preferential attachment associated with
triadic closure is therefore sub-linear. The dependence of the exponent q on both p and r is
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shown in figure 2(b). Note that for q = 1 the q-exponential is equivalent to the exponential.
Values of q above (below) one indicate that the distribution decays slower (faster) than the
exponential. For small p and large r , q is significantly larger than one and degree distributions
are fat tailed. For large p the values of q approach one, independent of r . Values for β are close
to zero for r = 0 or p going to 0. β approaches a plateau at β = 1 for high values of p and r ;
see figure 2(c).

For the experimental validation of the model, figure 3 shows the attachment kernel
5α(kα), degree distribution Pα(kα) and clustering coefficients cα(kα) for the three sub-networks
Mα of the empirical multiplex data. They are compared with the respective distributions
of the calibrated model (results averaged over 20 realizations). Data and model results
are logarithmically binned; a version of figure 3 showing raw data can be found in the
supplementary information (available from stacks.iop.org/NJP/15/063008/mmedia).

The observed preferential attachment in the data is in good agreement with model results
for each network Mα; see the top row of figure 3. We find exponents of γ = 0.88(4) for the data
and γmod = 0.77(2) in the model for the friendship network, γ = 0.84(1), γmod = 0.76(2) for
communication and γ = 0.83(1), γmod = 0.80(1) for trade. Data and model curves for 5α(kα)

are barely distinguishable from each other. The model fits the number of friends per player
with exponents q = 1.16(1) and qmod = 1.116(2) for α = 1, q = 1.24(1) and qmod = 1.148(3)

for α = 2, and q = 1.073(1) and qmod = 1.102(1) for α = 3. Results are shown in the middle
row of figure 3. Data and model show similar scaling of the average clustering coefficient of
nodes cα(kα) as a function of their degree kα; see the bottom row of figure 3. For friendships
(α = 1) we find β = 0.66(3); for the model βmod = 0.69(3). For communication (α = 2) the data
yield β = 0.59(3); the model gives βmod = 0.78(3). For trade (α = 3) there is good agreement
between data and model with β = 0.63(3) and βmod = 0.60(3), respectively. The model results
for cα(kα) show a curvature and are not straight lines. Comparing the curves for α = 1, 2, 3
suggests that this curvature increases with the average degree k̄α. Values for βmod should be
interpreted as first-order approximations for the slopes of these curves. Results for the exponents
γ, q and β for data and model are summarized in table 1.

2. Discussion

We reported strong evidence that the process of triadic closure may play an even more
fundamental role in social network formation than previously anticipated [17, 18]. Given that
all model parameters can be measured in the data, it is remarkable that three important scaling
laws are simultaneously explained by this simple triadic closure model. Since exponents γ , q
and β are sensitive to choices of the model parameters p and r , the agreement between data and
model is even more remarkable.

The Pardus multiplex data contain three other social networks, where links express negative
relationships between players, such as enmity, attacks and revenge [6]. Triadic closure is known
to be not a good network formation process for negative ties, ‘the enemy of my enemy is in
general not my enemy’ [29]. It was shown that the probability of triadic closure between three
players is one order of magnitude smaller for enmity links when compared with friendship links
in the Pardus multiplex [6, 25]. The model is therefore not suited to describe network formation
processes of links expressing negative sentiments.

The findings in the current model also compare well to several facts of real-world
social networks. Sub-linear preferential attachment has been reported in scientific collaboration
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Figure 3. Network scaling exponents of the social multiplex can be explained
by the calibrated model. Results are shown for the Pardus friendship (α = 1,
left column), communication (α = 2, middle column) and trade (α = 3, right
column) networks. All data are logarithmically binned. Top row: the attachment
kernels scale sub-linearly with the node degrees in each case for data (γ )
and model (γmod). Curves for data and model are barely distinguishable from
each other. Middle row: degree distributions for α = 1, 2, 3 and best fits of a
q-exponential, for data (q) and model (qmod). Bottom row: the scaling of the
average clustering coefficients as a function of degree is compared between data
and model. Fits for β and βmod yield almost the same results for friends and
trades, with comparably larger deviations for the communication network. The
model results for cα(kα) show an upward curvature for high kα.

networks and the actor co-starring network (5(k) ∝ k0.79 and ∝ k0.81, respectively [2]).
Degree distributions of many social networks often fall between exponential and power-law
distributions [3–5, 25, 30], and scaling of the average clustering coefficients as a function of
degree has been observed in the scientific collaboration and actor networks with values for
c(k) ∝ k−0.77 and ∝ k−0.31, respectively (when the same fitting as in figure 3 is applied). Mobile
phone and communication networks give ∝ k−1 [31].
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In the Pardus dataset, players are removed if they choose to leave the game or if
they are inactive for some time [25]. In the mobile communication, actor and collaboration
networks, a link is established by a single action (phone call, movie or publication) and
persists from then on. Note that our model addresses the empirically relevant case where
node-turnover rates (1n+

α, 1n−

α ) are significantly larger than the effective network growth rate
(1n+

α − 1n−

α ). For growing networks (without node deletion) it has been shown that sub-
linear preferential attachment (γ < 1) leads to degree distributions with power-law tail with
an exponent proportional to γ [11]. Something similar can be observed in the present model.
If we keep the node-turnover parameter p fixed and decrease the triadic closure parameter r ,
figures 3(a) and (b) show that γ decreases and q approaches one. The network is dominated
by randomly created links. However, if we fix r = 1 (only triadic closure, no random links)
and increase p, figures 3(a) and (b) show that q approaches one despite an increase in γ . An
increase of the node-turnover parameter p implies a shorter lifetime for individual nodes and
hence a shorter time in which they may acquire new links. Consequently, the degree distribution
only has a substantial right skew if both p . 0.25 and r & 0.5 hold.

3. Methods

3.1. Multiplex data

The Pardus dataset allows us to continuously track all actions of more than 3 70 000 players
in an open-ended, virtual, futuristic game universe where players interact in a multitude of
ways to achieve their self-posed goals, such as accumulating wealth and influence. Players
can establish friendship links, exchange one-to-one messages (similar to phone calls) and trade
with each other. We focus on three sub-networks (friendship, communication and trade) of the
multiplex, over 1 year from September 2007 to September 2008. Network label α = 1 refers to
the friendship network, α = 2 for communication and α = 3 for trade. In the friendship network
a node is present on a given day if at least one friendship link to another node exists on that
day. A node is removed if the player either leaves the game or has no friendship link. The same
holds for the message and trade networks, where a link exists between two nodes on day t if at
least one message (trade) is exchanged within the period of six days, [t − 6, t]. For details of
structural and dynamical properties of the Pardus multiplex, see [6, 25–28].

To measure the degree distributions Pα(kα) and clustering coefficients cα(kα), we use
the adjacency matrix of the networks Mα on the last day of the data record. The preferential
attachment probability 5α(kα) is measured by counting (over the entire observation period) the
number of link-creation events, in which a node with degree k acquires a new link, and then
dividing this by the average number of nodes with degree k, where the average is again taken
over the observation period.

3.2. Fitting procedures

Power-law fits (least squares) to the logarithms of the logarithmically binned data in figure 3 are
shown for γ , for 2 < k(α) < 100, and for β over the range 5 < k(α) < 100, for each α, for data
and model. The reported errors are the standard deviations of the coefficients. For the degree
distributions the data are also logarithmically binned and fitted over the entire range k(α) > 0
in figure 3 with equation (2). The coefficients are obtained as maximum likelihood estimates,
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and reported errors correspond to the 95% confidence intervals. For better comparison and to
diminish the effect of outliers, data and model results for 5α(kα) are normalized over the range
kα 6 100. Higher values correspond to data outliers, often due to the behavior of non-serious
players.
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