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There has been recent progress on inferring the structure of interactions in complex networks when they

are in stationary states satisfying detailed balance, but little has been done for nonequilibrium systems.

Here we introduce an approach to this problem, considering, as an example, the question of recovering the

interactions in an asymmetrically coupled, synchronously updated Sherrington-Kirkpatrick model. We

derive an exact iterative inversion algorithm and develop efficient approximations based on dynamical

mean-field and Thouless-Anderson-Palmer equations that express the interactions in terms of equal-time

and one-time-step-delayed correlation functions.
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Introduction.—Finding the connectivity in complex net-
works is crucial for understanding how they operate. Gene
and multielectrode microarrays have recently made the
type of data required for this purpose available. What is
needed now is appropriate theoretical tools for analyzing
these data and extracting the connectivity.

In much recent work on this subject [1–3], the problem
has been posed as that of inferring the parameters of a
stationary Gibbs distribution modeling the system. While
satisfied in many applications, the assumption of Gibbs
equilibrium is unlikely to hold for many biological systems
since they are usually driven by time-dependent external
fields, their interactions may not satisfy detailed balance,
or they may only be observed while the transients dominate
the dynamics. Applying the equilibrium approach to such
cases usually yields effective interactions that do not bear
an obvious relationship to the real ones [3]. Kinetic and
nonequilibrium models provide a much richer platform
for studying such systems [4–6].

Whereas for equilibrium models the development of
systematic mean-field inference methods [7] has led to
great practical and conceptual advancements, a mean-field
theory for nonequilibrium network reconstruction is still
lacking. In this Letter, we show how a mean-field theory
for inference can also be developed for a nonequilibrium
system. We consider this problem for a particular simple
nonequilibrium model: a kinetic Ising model with random
asymmetric interactions (Jji independent of Jij), in an

external field which may be time dependent. This is a
discrete-time, synchronously updated model composed
of N spins si ¼ �1 with transition probability

Prðsðtþ 1ÞjsðtÞÞ ¼ Y
i

exp½siðtþ 1Þ�iðtÞ�
2 coshð�iðtÞÞ ; (1)

where �iðtÞ ¼ hiðtÞ þ
P

jJijsjðtÞ. The couplings Jij are

independent Gaussian variables with variance g2=N. This
model can be readily applied to time-binned neural data,
where t labels the bins, and siðtÞ ¼ �1 represents a spike

or no spike by neuron i in bin t [1]. The temperature
has been set equal to 1, since any effects of changing the
temperature can be realized by changing the coupling
parameter g and the field strengths. Even for time-
independent field and in a steady state, this system is not
in a Gibbs equilibrium [8]. However, we show that, like its
equilibrium counterpart, the nonequilibrium inverse prob-
lem for this model can be solved using a gradient descent
method and also via systematic approximate inferences
derived using dynamical versions of naive mean-field
(nMF) and Thouless-Anderson-Palmer (TAP) equations.
We show that for both the stationary and nonstationary
systems these methods provide efficient reconstruction
of interactions. We also analytically quantify their errors.
Exact, nMF and TAP learning.—Suppose we have ob-

served R realizations of duration L time steps of the
process in (1). We denote the observed state of the system
at time t of realization r by srðtÞ ¼ fsr1ðtÞ; � � � ; srNðtÞg.
To find the couplings and external fields, we maximize
the likelihood of the observed states under the model (1).
This can be done using an iterative algorithm, analogous to
Boltzmann learning for the equilibrium model: starting
from an initial set of couplings and fields, one adjusts

them iteratively by steps of sizes �hi ¼ �h
@L
@hi

and �Jij ¼
�J

@L
@Jij

, L being the log-likelihood. The learning steps

thus are

�hiðtÞ ¼ �hfhsiðtþ 1Þir � htanh½�iðtÞÞ�ir�g; (2a)

�Jij ¼ �Jfhsiðtþ 1ÞsjðtÞi � htanh½�iðtÞ�sjðtÞig; (2b)

where �h and �J are learning rates. Here and in what
follows h� � �ir and h� � �i represent averaging over repeats,
and both repeats and time, respectively. An overline, in-
stead, will indicate averaging over the spins. One can think
of Eq. (2b) as performing a logistic regression to explain
one-step separated correlations. This is similar to what is
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proposed in [9] as an approximation for inferring the
connectivity in an equilibrium Ising model.

Since performing the steps in this algorithm does not
require Monte Carlo runs, it is faster than the equilibrium
Boltzmann learning. However, two factors still make this
algorithm slow for large systems and/or data sets, warrant-
ing the development of fast approximations. First, (2) is
still an iterative algorithm which could take a long time to
converge if not provided with a good initial condition and
learning rates. Second, at each step the averages on the
right-hand side of (2) should be calculated from the data
de novo, given the adjusted parameters.

Two fast approximations, nMF and TAP learning rules,
are derived and studied below. To implement them in
the stationary case, one first uses the data to calculate
the one-step-delayed and equal-time correlations,
Dij ¼ h�siðtþ 1Þ�sjðtÞi and Cij ¼ h�siðtÞ�sjðtÞi, where
mi ¼ hsii and �si ¼ si �mi. The approximations are

J nMF=TAP ¼ AnMF=TAP�1
DC�1 (3)

where AnMF
ij ¼ ð1�m2

i Þ�ij, A
TAP
ij ¼ AnMF

ij ð1� FiÞ, and Fi

is the root of the cubic equation (6) below. In the nonsta-
tionary case too, similar learning rules can be derived as
shown later in the Letter.

Derivation of nMF and TAP inversion.—For simplicity,
we consider first the stationary case, for which the se-
quence index r is superfluous, as averaging over time and
repeats would be equivalent. We start with the maximum
likelihood conditions, i.e., �hi ¼ �Jij ¼ 0 in (2). Using

the nMF equations mi ¼ tanhðhi þP
jJ

nMF
ik mkÞ, and writ-

ing the si in (2) asmi þ �si, we expand the tanh in the �si.
The first nonzero term gives

h�siðtþ 1Þ�sjðtÞi ¼ ð1�m2
i Þ
X
k

JnMF
ik h�skðtÞ�sjðtÞi; (4)

which can be written as (3) for the nMF case.
To get the TAP inversion formula, we start instead

by assuming that the mi satisfy the TAP equations mi ¼
tanh½hi þP

kJ
TAP
ik mk �mi

P
kðJTAPÞ2ikð1�m2

kÞ�, which

take into account the Onsager reaction term. The TAP
equations, although usually derived for the equilibrium
(symmetric-J) SK model, also hold for the asynchronously
updated, asymmetric-Jmodel in a stationary state [10]. We
have verified that they are also valid in our synchronously
updated model [11]. We again write si ¼ mi þ �si, ex-
panding the tanh to third order in powers of

P
kJ

TAP
ik �sk þ

mi

P
kðJTAPÞ2ikð1�m2

kÞ. Keeping terms up to order g3 leads
to D ¼ ATAPJTAPC, where

ATAP
ij ¼ AnMF

ij

�
1� ð1�m2

i Þ
X
l

ðJTAPÞ2ilð1�m2
l Þ
�
: (5)

These equations cannot be solved directly as in the
nMF case because ATAP depends on JTAP. However,
one can derive a cubic equation for the quantities
Fi ¼ ð1�m2

i Þ
P

lðJTAPÞ2ilð1�m2
l Þ:

Fið1� FiÞ2 ¼ ð1�m2
i Þ
X
j

ðJnMFÞ2ijð1�m2
j Þ: (6)

This determines ATAP
ij ¼ AnMFð1� FiÞ, yielding (3) for the

TAP case. The relevant root of (6) is the smallest one (the
one approaching zero as g ! 0). This root cannot exceed
1=3, restricting this technique to weak couplings.
For both nMF and TAP reconstruction, the external

fields hi can also be found by solving the respective
magnetization equations after the Jij have been obtained,

just as in the equilibrium problem [7].
Performance of the algorithms.—We have verified that

the algorithm (2) recovers the couplings of an asymmetric
SK model exactly in the limit of L ! 1, for a wide range
of coupling strengths g, external fields, and system sizes.
The mean square error �exact is in general proportional to
1=L, and in the weak-coupling limit a quadratic expansion
of log-likelihood yields

�exact ¼ �J2ij � ðJij � Jtrueij Þ2 ¼ 1

ð1�m2
i ÞL

; (7)

where JijðJtrueij Þ are the inferred (true) couplings.

We find that the nMF algorithm leads to an error �MF

of the form �exact þ �1nMF, where �1nMF is independent of
L and proportional to 1=N. Thus, for data sets of length
L � L� ¼ 1=�1nMF / N, nMF does almost as well as the
exact algorithm. Furthermore, the larger the network, the
better nMF does. The errors for the exact and nMF algo-
rithms vs L are shown in Fig. 1(a).
For weak coupling, we can calculate the asymptotic

nMF error �1nMF analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the max-likelihood equation to third order, giving

Din ¼
X
k

Jikhsksni � 1

3

X
klm

JikJilJimhskslsmsni þ � � � : (8)

Correlations here are at equal times, except for Din. The
dominant contributions in the sum over k, l, m are those
with k ¼ l, l ¼ m, and m ¼ k. Multiplying on the right
by ðC�1Þnj, summing over n and using (3) for nMF, yields
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FIG. 1 (color online). Performance of the algorithms. Exact
and nMF (a). and the TAP (b) errors are shown vs data length L
for g ¼ 0:1 (blue stars), 0.12 (magenta crosses), 0.14 (red
circles), and 0.16 (black �), all for N ¼ 20 and zero external
field. Theoretical predictions are the solid lines.
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JnMF
ij ¼ Jij �

X
k

J2ikJij; (9)

with corrections of relative order 1=N. Equation (9) also
yields the TAP-approximation couplings found above,
showing that the TAP reconstruction indeed corrects the
leading MF errors. To leading order the sum on k is just g2,
and the asymptotic mean square MF error is

�1nMF ¼ ðJij � JnMF
ij Þ2 ¼ g6

N
: (10)

The solid curves in Fig. 1(a) are 1=Lþ g6=N; the fit is
evidently good. As shown in Fig. S1 [12], nMF exhibits
a systematic error by underestimating the magnitude of
the couplings. The factor 1� Fi in TAP formula corrects
for this to relative order g2. Thus, when one is interested
only in the presence or absence of connections, there would
be little difference between nMF and TAP.

The error for the TAP reconstruction is much lower than
that of the nMF one and reaches its minimum at much
larger L: forN ¼ 20 and the coupling strengths we studied,
we had to go to L	 109 to see the error flatten [Fig. 1(b)].
To calculate the asymptotic reconstruction error for TAP,
we expand the tanh to 5th order and proceed to evaluate
the averages as we did for nMF. The nMF error terms
analyzed above are compensated for by the TAP equations,
as N ! 1, leading to an asymptotic �1TAP ¼ 4g10=N. For
N 
 1=g2 this is the leading term in the asymptotic TAP
error. Outside this regime, a finite-size effect should also
be taken into account, because for the TAP correction,
the term in (8) with k ¼ l ¼ m has been counted 3 times
in obtaining (9) instead of once. The resulting error is

ð2=3Þ2J6ij ¼ ð20g6Þ=ð3N3Þ and should be added to the

4g10=N term.
Nonstationary case.—The magnetizations, miðtÞ ¼

hsri ðtÞir, are now time dependent and, for TAP, solve [11]

miðtþ 1Þ ¼ tanh

�
hiðtÞ þ

X
j

JTAPij mjðtÞ

�miðtþ 1ÞX
j

ðJTAPÞ2ijð1�m2
j ðtÞÞ

�
: (11)

For nMF the final term inside the brackets is not present.
For inversion, we start by defining time-dependent

correlation matrices DijðtÞ � h�sri ðtþ 1Þ�srjðtÞir and

CijðtÞ � h�sri ðtÞ�srjðtÞir. For nMF, using the same proce-

dure that lead to (4), we find

hDijðtÞit ¼
X
k

JnMF
ik hð1�m2

i ðtþ 1ÞÞCkjðtÞit: (12)

One can still solve for J by simple matrix algebra:

JnMF
ij ¼ X

k

hDikðtÞit½ðBðiÞÞ�1�kj; (13)

where BðiÞ
kj ¼ hð1�m2

i ðtþ 1ÞÞCkjðtÞit. The problem is

more complex than the stationary one only because one

has to invert a different matrix BðiÞ for each i.

For TAP, analogously to the stationary case, the BðiÞ
acquire an extra factor inside the time average:

BðiÞ
kj ¼ hð1�m2

i ðtþ 1ÞÞð1� FiðtÞÞCkjðtÞit; (14a)

FiðtÞ ¼ ð1�m2
i ðtþ 1ÞÞX

l

ðJTAPÞ2ilð1�m2
l ðtÞÞ: (14b)

Exact TAP inversion requires iterative solution of (13),
with JTAPij instead of JnMF

ij , together with (14). We have

found, however, that effective reconstruction is still pos-
sible under the simplifying approximation that FiðtÞ in
Eq. (14a) can be represented by its temporal mean. In
this case, Fi � hFiðtÞit solves the cubic equation
Fið1� FiÞ2 ¼

X
j

ðJnMFÞ2ijhð1�m2
i ðtþ 1ÞÞð1�m2

j ðtÞÞit:

Solving it and using it in Eq. (14a), one can calculate
JTAPij ¼ JnMF

ij =ð1� FiÞ. Similar to the stationary case, after

inferring the couplings, one can use the forward dynamical
nMF and TAP equations (11) to infer the time-varying
external field. The result of reconstructing the couplings
of a network driven by a common sinusoidal external field
to all spins is shown in Fig. 2. Figure 2(a) shows how well
the couplings are inferred by nonstationary nMF using
L ¼ 105 and R ¼ 100. Nonstationary TAP couplings (not
shown) have a lower mean squared error: 6:7� 10�7

versus 10�6 for nMF. In Fig. 2(b), we also plot the cou-
plings inferred using stationary nMF inversion for each of
the 100 repeats and averaging over them. Not surprisingly,
the stationary nMF performs poorly on this nonstationary
data. Importantly, there is a systematic overestimation of
the couplings in this case, because the stationary method
accounts for correlations induced by the common, time-
varying external field through adjusting the couplings.
Correspondingly, if one uses the couplings inferred by
stationary nMF to infer hiðtÞ, the amplitude of this field
is underestimated, while the use of nonstationary nMF
couplings yields a very good reconstruction of hiðtÞ; see
Fig. 2(c).
Discussion.—We have shown how to infer interactions

in a simple but nontrivial nonequilibrium system: a kinetic
Ising model with random and potentially asymmetric in-
teractions. The model is the maximum-entropy model for
each time step, given mean magnetizations and one-step
separated correlations. We have described both an exact
iterative algorithm and two approximate ones, based on
dynamical nMF and TAP equations, which are correct up
to corrections of order 1=N. We calculated analytically the
errors of these approximations for weak coupling. The
method shows particular promise when applied to nonsta-
tionary states, where it separates true interactions from the

PRL 106, 048702 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

28 JANUARY 2011

048702-3



apparent ones found by applying a stationary theory to a
nonstationary state.

A kinetic Ising model will show an intrinsic error when
applied to data from a different kind of system. However,
even when applied to data from a realistic network, the
simple approximate learning rules developed here identify
the connections much better than their equilibrium coun-
terparts. Figure 3 shows the distribution of couplings found
by applying the nonequilibrium TAP learning to data from
a simulated model cortical column with inhibitory and
excitatory neurons [13]. The connections in the model
were dilute with 10% probability of connection. When
there is no synapse from neuron j to i, the inferred Jij
follows a zero mean distribution, while if there is an
excitatory (inhibitory) synapse, it follows a positive (nega-
tive) mean distribution, well separated from the first one.
One can thus easily use the distribution of inferred
couplings to infer the presence, absence, and sign of the

connections; see [12]. However, this is not the case when
equilibrium TAP learning is used. When using a model like
(1) to infer connectivity in a system with a different dy-
namics, or when faced with data limitation, including prior
knowledge about the network could be very beneficial.
In particular, taking into account sparsity of the connec-
tions via a l-1 regularizer added to the likelihood has
been shown to be very useful [9]. It is easy to show that
adding an l-1 regularizer to the likelihood of the data under
(1) would modify (3) by adding a term proportional to

AnMF=TAP�1
sgnðJÞC�1 to the right-hand side. How this

improves inferring connections in biological networks
will be discussed elsewhere.
A simple extension of (1) is its continuous time version.

As shown in [14], for this model, too, a mean-field theory
can be developed using the approach presented here. In
other recent kinetic approaches to problems like this, the
equilibrium maximum-entropy approach [1] is extended to
include non-equal-time correlations [5] and an approxi-
mate scheme for fitting an integrate-and-fire network to
data was developed in [4]. There has also been work [6],
closely connected to (1), in which siðtþ 1Þ depends on
linear combinations of hðt0Þ and sðt0Þ, for t0 � t. Given
the advantage of these nonequilibrium models over the
equilibrium ones for describing spike train statistics, a
mean-field theory for inferring their parameters would
be of great benefit. For such models, we expect one
can use the techniques in [10] or [8,15] to derive dynamical
nMF and TAP equations. Employing the approach
developed here one can then build approximate mean-field
inversion techniques based on these equations.
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FIG. 3 (color online). Finding connections in a cortical net-
work model. (a) The histogram of the couplings inferred using
the stationary nonequilibrium TAP for pairs of neurons that were
connected (blue full bars), and those that were not (red empty
bars). The separation between the histograms shows that one
can use the TAP approximation to separate connected and
disconnected pairs. (b) same as (a) for equilibrium TAP.
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FIG. 2 (color online). Inference in the nonstationary case.
(a) Couplings of a network of N ¼ 20 driven by a sinusoidal
external field inferred using the nonstationary nMF, and (b) the
stationary nMF. (c) Two periods of the external field (thin blue
full curve) and its reconstruction using the nonstationary nMF
couplings (red dashed curve) and stationary nMF (thick black
full curve).
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