
Supplemental Section

A SPACE method

Algorithm 1 (SPACE pseudocode)

Input: Standardize data to have mean zero and standard deviation one
Input: Fix maximum number of iterations: rmax
Input: Fix initial estimate: (ω̂

(0)
ii = 1/sii as suggested)

Input: Choose weightsa: wi (wi = ωii or wi = 1)
Set r ← 1
repeat

## Update partial correlations

Update ρ̂(r) by minimizing (with current estimates {ω̂(r−1)
ii }pi=1 as fixed)

1

2

p∑
i=1

wi‖Yi −
∑
j 6=i

ρij

√√√√ ω̂
(r−1)
jj

ω̂
(r−1)
ii

Yj‖2
2

+ λ
∑

1≤i<j≤p

∣∣ρij∣∣ (18)

## Update conditional variances

Update {ω(r)
ii }

p
i=1 by computing (with fixed ρ̂

(r−1)
ij and ω̂

(r−1)
ii for all i and j)

1

ω̂
(r)
ii

=
1

n
‖Yi −

∑
j 6=i

(ρ̂ij)(r−1)

√√√√ ω̂
(r−1)
jj

ω̂
(r−1)
ii

Yj‖2
2 (19)

for i = 1, . . . , p.

r ← r + 1
Update weights: wi

until r == rmax
Return (ρ̂(rmax), {ω̂(rmax)

ii }pi=1)

aPeng et al. (2009) suggest two natural choices of weights wi: (1) uniform weights wi = 1 for
all i = 1, 2, . . . , p (ii) partial variance weights wi = ωii.

Proof of Lemma 1 : Note that when fixing the diagonals {ωii}pi=1, the minimization in (18) in

the SPACE algorithm (with weights wi = ωii), corresponds to minimizing Qspc with respect

to ρ. Now, let ω̂ii be the minimizer of Qspc with respect to ωii, fixing {βij}1≤i 6=j≤p (where
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βij = ρij
√

ωjj
ωii

= −ωij
ωii

). Then, it follows that

ω̂ii =

(
1

n
‖Yi −

∑
j 6=i

βijYj‖2
2

)−1

(20)

The result follows by comparing (20) with the updates in (19). �

B Proof of Lemma 2

Let Y denote the n × p matrix with jth column given by Yj for j = 1, 2, . . . , p. Define

Qsym(α, Ω̆) = 1
2

(∑p
j=1 Lsym,j(αjj, Ω̆j)

)
+ λ

(∑
1≤i<j≤p |ωij|

)
so that

Lsym,j(αjj, Ω̆j) = n logαjj +
1

αjj
‖Yj + YΩ̆jαjj‖2

2 (21)

where α = (α11 α22 · · · αpp)′, αjj = 1/ωjj and Ω̆j is the jth column of Ω̆. Recall that Ω̆ is

the matrix Ω with zeros in place of the diagonal entries. If follows that

∂Qsym(α, Ω̆)

∂αjj
=

n

αjj
−

Y′jYj

α2
jj

+ Ω̆′jY
′YΩ̆j, and

∂2Qsym(α, Ω̆)

∂α2
jj

= − n

α2
jj

+ 2
Y′jYj

α3
jj

(22)

It is clear that in general ∂2Qsym(α, Ω̆)/∂α2
jj 6≥ 0. Hence, Qsym(α, Ω̆) is not convex.

C Proof of Lemma 3

Proof. i) Rewrite the SPLICE objective function Qspl(B,D) = Lspl(B,D) + λ
∑

i<j |βij|
where

Lspl(B,D) =
1

2

[
n log det(D2) + tr(D−2A)

]
,

and A = [aij] = (I−B)Y′Y(I−B′). The function Lspl(B,D) with all variables fixed except

djj is given by

Lspl,j(B, djj) =
1

2

[
n log d2

jj +
ajj
d2
jj

]
+ constants.
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Now,

∂Qspl(B,D)

∂djj
=

n

djj
− ajj
d3
jj

∂2Qspl(B,D)

∂d2
jj

= − n

d2
jj

+ 3
ajj
d4
jj

It is clear in general ∂Q2
spl(B,D)/∂d2

jj 6≥ 0. Hence Qspl(B,D) is not convex.

ii) Similarly, define Q∗spl(B,C) = L∗spl(B,C) + λ
∑

i<j |βij| where

L∗spl(B,C) =
1

2

[
n log C−2 + tr(C2A)

]
.

It is clear that for a fixed C, L∗spl(B,C) is a convex function in B (Rocha et al., 2008). Now

for a fixed B let

L∗spl,j(B, cjj) =
1

2

[
−2n log cjj + c2

jjajj
]

+ constants

∂Q∗spl(B,C)

∂cjj
= − n

cjj
+ cjjajj

∂2Q∗spl(B,C)

∂c2
jj

=
n

c2
jj

+ ajj

Now, note that ∂(Q∗spl)
2(B,C)/∂c2

jj ≥ 0 since ajj ≥ 0.

To see that ajj ≥ 0 note that A = (I − B)Y′Y(I − B′) = G′G, where G = Y(I − B′)

Now, ajj = G′•jG•j = ‖G•j‖2 ≥ 0
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D CONCORD algorithm

Algorithm 2 (CONCORD pseudocode)

Input: standardize data to have mean zero and standard deviation one
Input: Fix maximum number of iterations: rmax
Input: Fix initial estimate: Ω̂(0)

Input: Fix convergence threshold: ε
Set r ← 1
converged = FALSE
Set Ω̂ current ← Ω̂(0)

repeat
Ω̂ old ← Ω̂ current

## Updates to partial covariances ωij
for i← 1, 2, · · · , p− 1 do

for j ← i+ 1, · · · , p do

ω̂ current
ij ← (Tij(Ω

current))ij (23)

end for
end for

## Updates to partial variances ωii
for i← 1, 2, · · · , p do

ω̂ current
ii ← (Tii(Ω

current))ii (24)

end for

Ω̂(r) ← Ω̂ current

## Convergence checking

if ‖Ω̂ current − Ω̂ old‖max < ε then
converged = TRUE

else
r ← r + 1

end if

until converged = TRUE or r > rmax

Return final estimate: Ω̂(r)
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E Computational complexity

We now proceed to show that the computational cost of each iteration of CONCORD is

min (O(np2), O(p3)), that is, the CONCORD algorithm is competitive with other proposed

methods. The updates in Equations in (23) and (24) are implemented differently depending

on whether n ≥ p or n < p.

Case 1 (n ≥ p): Let us first consider the case when n ≥ p. Note that both sums in (11) are

inner products between a row in Ω̂ and a row in S. Clearly, computing these sums require

O(p) operations each. Similarly, the update in (10) requires O(p) operations. Since there

are O(p2) entries in Ω, one complete sweep of updates over all entries in Ω̂ would require

O(p3) operations.

Case 2 (n < p): Let us now consider the case when n < p. We show below that the updates

can be performed in O(np2) operations. The main idea here is that the coordinate-wise

calculations at each iteration, which involves an inner product of two p × 1 vectors, can

be reduced to an inner product calculation involving auxiliary variables (residual variables

to be more specific) of dimension n × 1. The following lemmas are essential ingredients in

calculating the computational complexity in this setting. In particular, Lemma 6 expresses

the inner product calculations in (10) and (11) in terms of residual vectors.

Lemma 6. For 1 ≤ i, j ≤ p, ∑
k 6=j

ωiksjk = −ωijsjj + ωiiY
′
jri,

where Yj is the jth column of the data matrix Y, and ri = Yi +
∑

k 6=i
ωik
ωii

Yk is an n-vector

of residuals of regressing Yi on the rest.

The following lemma now quantifies the computational cost of updating the residual

vectors during each iteration of the CONCORD algorithm.

Lemma 7. Define the residual vector rm for m = 1, 2, . . . , p as follows:

rm = rm(Ω) = Ym +
∑
k 6=m

ωmk
ωmm

Yk (25)

where Ω = ((Ωij))1≤i,j≤p. Then,

1. For m 6= k, l, the residual vector rm is functionally independent of ωkl. (The term ωkl

appears only in the expressions for the residual vectors rk and rl.)
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2. Fix all the elements of Ω except ωkl. Suppose ωkl is changed to ω∗kl. Then, updating the

residual vectors rk and rl requires O(n) operations. (Hence, updating rk and rl after

each update in (23) requires O(n) operations.)

3. For m 6= k, the residual vector rm is functionally independent of ωkk. (The term ωkk

appears only in the expression for the residual vector rk.)

4. Fix all elements of Ω except ωkk. Suppose ωkk is changed to ω∗kk. Then, updating the

residual vector rk requires O(n) operations. (Hence, updating rk after each update in

(24) requires O(n) operations).

The proofs of Lemmas 6 and 7 are straightforward and are given in Supplemental Sections

G and H. Note that the inner product between yj and ri takes O(n) operations. Hence,

by Lemma 6 the updates in (23) and (24) require O(n) operations. Also, after each update

in (23) and (24) the residual vectors need to be appropriately modified. By Lemma 7, this

modification can also be achieved in O(n) operations. As a result, one complete sweep of

updates over all entries in Ω̂ can be performed in O(np2) operations.

Hence, we conclude that the computational complexity of the CONCORD algorithm is

competitive with the SPACE and Symmetric lasso algorithms, which are also min (O(np2), O(p3)).

F Proof of Lemma 4

Note that for 1 ≤ i ≤ p,

Qcon(Ω) = −n logωii +
n

2

(
ω2
iisii + 2ωii

∑
j 6=i

ωijsij

)
+ terms independent of ωii. (26)

where sij = Y′iYj/n. Hence,

∂

∂ωii
Qcon(Ω) = 0 ⇔ − 1

ωii
+ ωiisii +

∑
j 6=i

ωijsij = 0

⇔ ωii =
−
∑

j 6=i ωijsij +

√(∑
j 6=i ωijsij

)2

+ 4sii

2sii
,

Note that since ωii > 0 the positive root has been retained as the solution.
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Also, for 1 ≤ i < j ≤ p,

Qcon(Ω) = n
sii + sjj

2
ω2
ij+n

(∑
j′ 6=j

ωij′sjj′ +
∑
i′ 6=i

ωi′jsii′

)
ωij+λ|ωij|+ terms independent of ωij.

(27)

It follows that

(Tij(Ω))ij =
Sλ
n

(
−
(∑

j′ 6=j ωij′sjj′ +
∑

i′ 6=i ωi′jsii′
))

sii + sjj
,

where Sη is the soft-thresholding operator given by Sη(x) = sign(x)(|x| − η)+.

G Proof of Lemma 6

Let Yj denote jth column of the data matrix Y. Then, using the identity
∑p

k=1 ωiksjk =

ωijsjj +
∑

k 6=j ωiksjk = ωiisij +
∑

k 6=i ωiksjk,

∑
k 6=j

ωiksjk = −ωijsjj + ωii

(
sij +

∑
k 6=i

ωik
ωii

sjk

)

= −ωijsjj + ωiiY
′
j

(
Yi +

∑
k 6=i

ωik
ωii

Yk

)
= −ωijsjj + ωiiY

′
jri,

where ri = Yi +
∑

k 6=i
ωik
ωii

Yk is an n-vector of residuals after regressing the ith variable on

the rest. �

H Proof of Lemma 7

1. Result follows easily from inspecting rk and rl.

2. If ωkl is updated to ω∗kl, it follows from part 1 that among all the residual vectors, only

rk and rl change values. The residual vector rk can be updated as follows:

r∗k = rk +
(ω∗kl − ωkl)

ωkk
Yl .

Clearly, this update requires O(n) operations. The vector rl can be updated similarly.

3. Result follows easily from inspecting rk.
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4. If ωkk is updated to ω∗kk, it follows from part 3 that among all the residual vectors,

only rk changes value. The residual vector rk can be updated as follows:

r∗k = (rk −Yk)
ωkk
ω∗kk

+ Yk .

Clearly, this update requires O(n) operations. �

I Proof of Lemma 5

Proof. (CONCORD) Let A = nS Expanding the `2-norm of the residual, we have

‖ωiiYi +
∑
j 6=i

ωijYj‖2
2 = ‖

p∑
j=1

ωijYj‖2
2 = ‖Yωi•‖2

2 = ω′i•Y
′Yωi• = ω′i•Aωi•

Hence, (12) is equivalent to

Lcon(Ω) =
1

2

p∑
i=1

(−2n logωii + ω′i•Aωi•) = −n
p∑
i=1

logωii +
1

2

p∑
i=1

ω′i•Aωi•

= −n log

(
p∏
i=1

ωii

)
+
n

2
tr(ΩSΩ)

=
n

2

(
− log det Ω2

D + tr(SΩ2)
)
.

Hence, Gcon(Ω) = ΩD and Hcon(Ω) = Ω2

(SPACE with unit weights) Reparameterizing (13) using the identity −ρij
√
ωjj/ωii =

ωij/ωii, the `2-norm of the residual can be expressed as follows.

‖Yi +
∑
j 6=i

ωij
ωii

Yj‖2
2 = ‖ 1

ωii
(ωiiYi +

∑
j 6=i

ωijYj)‖2
2 =

1

ω2
ii

ω′i•Aωi•

Hence, (13) is equivalent to

Lspc,1(Ω) = −n
2

log det ΩD +
1

2

p∑
i=1

1

ω2
ii

ω′i•Aωi•

= −n
2

log det ΩD +
n

2

p∑
i=1

ω′i•
ωii

S
ωi•
ωii
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= −n
2

log det ΩD +
1

2
tr(Ω−1

D ΩAΩΩ−1
D )

=
n

2

(
− log det ΩD + tr(SΩΩ−2

D Ω)
)
.

Therefore, Gspc,1(Ω) = ΩD and Hspc,1(Ω) = ΩΩ−2
D Ω.

(SPACE with ωii weights) Similar to the analysis for SPACE1 with unit weights, the

`2-norm of the residual for the SPACE2 formulation (i.e., with weights ωii) can be expressed

as follows.

ωii‖Yi −
∑
j 6=i

ρij
√
ωjj
ωii

Yj‖2
2 = ωii

(
1

ω2
ii

ω′i•Aωi•

)
=

1

ωii
ω′i•Aωi•

Hence, (14) is equivalent to

Lspc,2(Ω) = −n
2

log det ΩD +
1

2

p∑
i=1

1

ωii
ω′i•Aωi•

= −n
2

log det ΩD +
n

2

p∑
i=1

ω′i•√
ωii

S
ωi•√
ωii

= −n
2

log det ΩD +
n

2
tr(Ω

−1/2
D ΩSΩΩ

−1/2
D )

=
n

2

(
− log det ΩD + tr(SΩΩ−1

D Ω)
)

Therefore, Gspc,2(Ω) = ΩD and Hspc,2(Ω) = ΩΩ−1
D Ω.

(SYMLASSO) Reparameterizing (15) by αii = 1/ωii and −ρij
√
ωjj/ωii = ωij/ωii yields

(14). It follows that Gsym(Ω) = ΩD, Hsym(Ω) = ΩΩ−1
D Ω.

(SPLICE) Reparameterizing (16) by d2
ii = 1/ωii and βij = ρij

√
ωjj/ωii yields (14). It

follows that Gspl(Ω) = ΩD, Hspl(Ω) = ΩΩ−1
D Ω.
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J Effect of correction factor

Following steps similar to proof of Lemma 4, the update formulas for Q̄con(Ω) = Lcon(Ω) +

λ
∑

i<j |ωij| of (12) can be shown to be

(Tkk(Ω))kk =
−
∑

j 6=k ωkjskj +

√(∑
j 6=k ωkjskj

)2

+ 2skk

2skk
(28)

(Tkl(Ω))kl =
Sλ
n

(
−
(∑

j 6=l ωkjsjl +
∑

j 6=k ωljsjk

))
skk + sll

(29)

J.1 Numerical example

Analysis on a dataset (n = 1000) generated from following Ω was used for this example.

Ω =

1.0 0.3 0.0

0.3 1.0 0.3

0.0 0.3 1.0


Without penalty, i.e. λ = 0, computed solutions Ωcon from using CONCORD and Ωuncorrected

from using update formulas (28) and (29) are

Ωuncorrected =

 0.675 0.089 −0.015

0.089 0.658 0.117

−0.015 0.117 0.668

 , Ωcon =

0.974 0.257 0.007

0.257 0.983 0.344

0.007 0.344 0.978


It is clear that the estimate Ωcon with the correction factor performs better parameter esti-

mation.

K Proof of Theorem 1

Khare and Rajaratnam (2014) establish convergence of the cyclic coordinatewise minimiza-

tion algorithm for a general class of objective functions. The proof of convergence for CON-

CORD relies on showing that the corresponding objective function is a special case of the

general class of objective functions considered in Khare and Rajaratnam (2014). A more

detailed version of the following argument can be found in (Khare and Rajaratnam, 2014,

Section 4.1). We provide the main steps here for convenience and completeness.

Let y = y(Ω) ∈ Rp2 denote a vectorized version of Ω obtained by shifting the cor-

responding diagonal entry at the bottom of each column of Ω, and then stacking the
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columns on top of each other. Let P i denote the p × p permutation matrix such that

P iz = (z1, · · · , zi−1, zi+1, · · · , zp, zi) for every z ∈ Rp. It follows by the definition of y that

y = y(Ω) = ((P 1Ω·1)T , (P 2Ω·2)T , · · · , (P pΩ·p)
T )T .

Let x = x(Ω) ∈ R
p(p+1)

2 be the symmetric version of y, obtained by removing all ωij with

i > j from y. More precisely,

x = x(Ω) = (ω11, ω12, ω22, · · · , ω1p, ω2p, · · · , ωpp)T .

Let P̃ be the p2× p(p+1)
2

matrix such that every entry of P̃ is either 0 or 1, exactly one entry

in each row of P̃ is equal to 1, and y = P̃x. Let S̃ be a p2× p2 block diagonal matrix with p

diagonal blocks, and the ith diagonal block is equal to S̃i := 1
2
P iS(P i)T , where S = 1

n
YTY.

It follows that

1

2

p∑
i=1

ΩT
·iSΩ·i =

1

2

p∑
i=1

ΩT
·i (P

i)TP iS(P i)TP iΩ·i =
1

2

p∑
i=1

(P iΩ·i)
T (P iS(P i)T )(P iΩ·i)

= yT S̃y

= xT P̃ T S̃P̃x. (30)

Note that for every 1 ≤ i ≤ p, the matrix S̃i = 1
2
P iS(P i)T is positive semi-definite. Let S̃1/2

denote the p2 × p2 block diagonal matrix with p diagonal blocks, such that the ith diagonal

block is given by (S̃i)1/2. Let E = S̃1/2P̃ . It follows by (30) that

1

2

p∑
i=1

ΩT
·iSΩ·i = (Ex)T (Ex). (31)

By the definition of x(Ω), we obtain

ωii = x i(i+1)
2

(32)

for every 1 ≤ i ≤ p. Let

S0 =

{
j : 1 ≤ j ≤ p(p+ 1)

2
, j 6= i(i+ 1)

2
for any 1 ≤ i ≤ p

}
,

and

X = {x ∈ R
p(p+1)

2 : xj ≥ 0 for every j ∈ Sc0}.

It follows by (8), (31) and (32) that the CONCORD algorithm can be viewed as a cyclic

11



coordinatewise minimization algorithm for minimizing the function

Qcon(x) = n

xTETEx−
∑
i∈Sc0

log xi +
λ

n

∑
j∈S0

|xj|

 , (33)

subject to x ∈ X . For every 1 ≤ i ≤ p(p+ 1)/2, there exist 1 ≤ k, l ≤ p such that xi = ωkl.

Note that ‖E·i‖2 = Skk+Sll
2

> 0. It also follows from (Khare and Rajaratnam, 2014, Lemma

4.1) that for every ξ ∈ R, the set Rξ := {x ∈ X : Qcon(x) ≤ ξ} is bounded in the sense

that for every i ∈ S0, xi is uniformly bounded above and below, and for every i ∈ Sc0, xi

is uniformly bounded above and below (from zero). It follows by (Khare and Rajaratnam,

2014, Theorem 3.1) that the sequence of iterates produced by the CONCORD algorithm

converges.
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L Application to breast cancer data

Gene Symbol C
O

N
C

O
R

D

S
Y

M
L

A
S

S
O

S
P

A
C

E
1

S
P

A
C

E
2

Reference

HNF3A (FOXA1) + + + + Koboldt and Others (2012), Albergaria et al. (2009),
Davidson et al. (2011), Lacroix and Leclercq (2004),
Robinson et al. (2011)

TONDU + + + +

FZD9 + + + + Katoh (2008), Rønneberg et al. (2011)

KIAA0481 + + + + [Gene record discontinued]

KRT16 + + + Glinsky et al. (2005), Joosse et al. (2012), Pellegrino et al.
(1988)

KNSL6 (KIF2C) + + Eschenbrenner et al. (2011), Shimo et al. (2007, 2008)

FOXC1 + + + + Du et al. (2012), Sizemore and Keri (2012), Wang et al.
(2012), Ray et al. (2011), Tkocz et al. (2012)

PSA + + + Kraus et al. (2010), Mohajeri et al. (2011), Sauter et al.
(2004), Yang et al. (2002)

GATA3 + + + + Koboldt and Others (2012), Davidson et al. (2011), Al-
bergaria et al. (2009), Eeckhoute et al. (2007), Jiang et al.
(2010), Licata et al. (2010), Yan et al. (2010)

C20ORF1 (TPX2) + Maxwell and Others (2011), Bibby et al. (2009)

E48 + + +

ESR1 + Zheng et al. (2012)

Table 6: Summary of the top hub genes identified by each of the four methods, CONCORD,
SYMLASSO, SPACE1 & SPACE2: Genes indicated by ‘+’ denote the 10 most highly con-
nected genes for each of the methods. References are provided at the end of this supplemental
section.
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M Application to portfolio optimization

M.1 Constituents of Dow Jones Industrial Average

Symbol Description Return (%) Risk (%) SR

AA Alcoa Inc. 9.593 41.970 0.109
AXP American Express Company 18.706 38.913 0.352
BA The Boeing Company 13.417 32.685 0.258

BAC Bank of America Corporation 13.182 48.588 0.168
CAT Caterpillar Inc. 19.042 35.050 0.401

CSCO Cisco Systems, Inc. 22.650 44.565 0.396
CVX Chevron Corporation 15.486 26.716 0.392
DD E. I. du Pont de Nemours and Company 10.591 30.537 0.183
DIS The Walt Disney Company 12.312 32.800 0.223
GE General Electric Company 12.449 31.667 0.235
HD The Home Depot, Inc. 17.266 34.422 0.356

HPQ Hewlett-Packard Company 10.769 40.727 0.142
IBM International Business Machines Corporation 18.715 29.944 0.458

INTC Intel Corporation 18.325 41.543 0.321
JNJ Johnson & Johnson 13.664 22.087 0.392
JPM JPMorgan Chase & Co. 18.292 42.729 0.311
KO The Coca-Cola Company 10.617 24.092 0.233

MCD McDonald’s Corp. 14.457 26.114 0.362
MMM 3M Company 12.596 25.353 0.300
MRK Merck & Co. Inc. 12.385 29.616 0.249
MSFT Microsoft Corporation 18.612 33.904 0.401
PFE Pfizer Inc. 14.376 29.060 0.323
PG Procter & Gamble Co. 13.262 24.241 0.341
T AT&T, Inc. 11.231 28.781 0.217

TRV The Travelers Companies, Inc. 14.726 31.706 0.307
UTX United Technologies Corp. 18.618 28.760 0.474
VZ Verizon Communications Inc. 11.403 27.728 0.231

WMT Wal-Mart Stores Inc. 15.495 27.955 0.375
XOM Exxon Mobil Corporation 15.466 25.764 0.406

Table 7: Dow Jones Industrial Average component stocks and their respective realized re-
turns, realized risk and Sharpe ratios. The risk-free rate is set at 5%.
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M.2 Investment periods

k Date Range k Date Range k Date Range k Date Range
1 95/02/18-95/03/17 59 99/07/31-99/08/27 117 04/01/10-04/02/06 175 08/06/21-08/07/18
2 95/03/18-95/04/14 60 99/08/28-99/09/24 118 04/02/07-04/03/05 176 08/07/19-08/08/15
3 95/04/15-95/05/12 61 99/09/25-99/10/22 119 04/03/06-04/04/02 177 08/08/16-08/09/12
4 95/05/13-95/06/09 62 99/10/23-99/11/19 120 04/04/03-04/04/30 178 08/09/13-08/10/10
5 95/06/10-95/07/07 63 99/11/20-99/12/17 121 04/05/01-04/05/28 179 08/10/11-08/11/07
6 95/07/08-95/08/04 64 99/12/18-00/01/14 122 04/05/29-04/06/25 180 08/11/08-08/12/05
7 95/08/05-95/09/01 65 00/01/15-00/02/11 123 04/06/26-04/07/23 181 08/12/06-09/01/02
8 95/09/02-95/09/29 66 00/02/12-00/03/10 124 04/07/24-04/08/20 182 09/01/03-09/01/30
9 95/09/30-95/10/27 67 00/03/11-00/04/07 125 04/08/21-04/09/17 183 09/01/31-09/02/27

10 95/10/28-95/11/24 68 00/04/08-00/05/05 126 04/09/18-04/10/15 184 09/02/28-09/03/27
11 95/11/25-95/12/22 69 00/05/06-00/06/02 127 04/10/16-04/11/12 185 09/03/28-09/04/24
12 95/12/23-96/01/19 70 00/06/03-00/06/30 128 04/11/13-04/12/10 186 09/04/25-09/05/22
13 96/01/20-96/02/16 71 00/07/01-00/07/28 129 04/12/11-05/01/07 187 09/05/23-09/06/19
14 96/02/17-96/03/15 72 00/07/29-00/08/25 130 05/01/08-05/02/04 188 09/06/20-09/07/17
15 96/03/16-96/04/12 73 00/08/26-00/09/22 131 05/02/05-05/03/04 189 09/07/18-09/08/14
16 96/04/13-96/05/10 74 00/09/23-00/10/20 132 05/03/05-05/04/01 190 09/08/15-09/09/11
17 96/05/11-96/06/07 75 00/10/21-00/11/17 133 05/04/02-05/04/29 191 09/09/12-09/10/09
18 96/06/08-96/07/05 76 00/11/18-00/12/15 134 05/04/30-05/05/27 192 09/10/10-09/11/06
19 96/07/06-96/08/02 77 00/12/16-01/01/12 135 05/05/28-05/06/24 193 09/11/07-09/12/04
20 96/08/03-96/08/30 78 01/01/13-01/02/09 136 05/06/25-05/07/22 194 09/12/05-10/01/01
21 96/08/31-96/09/27 79 01/02/10-01/03/09 137 05/07/23-05/08/19 195 10/01/02-10/01/29
22 96/09/28-96/10/25 80 01/03/10-01/04/06 138 05/08/20-05/09/16 196 10/01/30-10/02/26
23 96/10/26-96/11/22 81 01/04/07-01/05/04 139 05/09/17-05/10/14 197 10/02/27-10/03/26
24 96/11/23-96/12/20 82 01/05/05-01/06/01 140 05/10/15-05/11/11 198 10/03/27-10/04/23
25 96/12/21-97/01/17 83 01/06/02-01/06/29 141 05/11/12-05/12/09 199 10/04/24-10/05/21
26 97/01/18-97/02/14 84 01/06/30-01/07/27 142 05/12/10-06/01/06 200 10/05/22-10/06/18
27 97/02/15-97/03/14 85 01/07/28-01/08/24 143 06/01/07-06/02/03 201 10/06/19-10/07/16
28 97/03/15-97/04/11 86 01/08/25-01/09/21 144 06/02/04-06/03/03 202 10/07/17-10/08/13
29 97/04/12-97/05/09 87 01/09/22-01/10/19 145 06/03/04-06/03/31 203 10/08/14-10/09/10
30 97/05/10-97/06/06 88 01/10/20-01/11/16 146 06/04/01-06/04/28 204 10/09/11-10/10/08
31 97/06/07-97/07/04 89 01/11/17-01/12/14 147 06/04/29-06/05/26 205 10/10/09-10/11/05
32 97/07/05-97/08/01 90 01/12/15-02/01/11 148 06/05/27-06/06/23 206 10/11/06-10/12/03
33 97/08/02-97/08/29 91 02/01/12-02/02/08 149 06/06/24-06/07/21 207 10/12/04-10/12/31
34 97/08/30-97/09/26 92 02/02/09-02/03/08 150 06/07/22-06/08/18 208 11/01/01-11/01/28
35 97/09/27-97/10/24 93 02/03/09-02/04/05 151 06/08/19-06/09/15 209 11/01/29-11/02/25
36 97/10/25-97/11/21 94 02/04/06-02/05/03 152 06/09/16-06/10/13 210 11/02/26-11/03/25
37 97/11/22-97/12/19 95 02/05/04-02/05/31 153 06/10/14-06/11/10 211 11/03/26-11/04/22
38 97/12/20-98/01/16 96 02/06/01-02/06/28 154 06/11/11-06/12/08 212 11/04/23-11/05/20
39 98/01/17-98/02/13 97 02/06/29-02/07/26 155 06/12/09-07/01/05 213 11/05/21-11/06/17
40 98/02/14-98/03/13 98 02/07/27-02/08/23 156 07/01/06-07/02/02 214 11/06/18-11/07/15
41 98/03/14-98/04/10 99 02/08/24-02/09/20 157 07/02/03-07/03/02 215 11/07/16-11/08/12
42 98/04/11-98/05/08 100 02/09/21-02/10/18 158 07/03/03-07/03/30 216 11/08/13-11/09/09
43 98/05/09-98/06/05 101 02/10/19-02/11/15 159 07/03/31-07/04/27 217 11/09/10-11/10/07
44 98/06/06-98/07/03 102 02/11/16-02/12/13 160 07/04/28-07/05/25 218 11/10/08-11/11/04
45 98/07/04-98/07/31 103 02/12/14-03/01/10 161 07/05/26-07/06/22 219 11/11/05-11/12/02
46 98/08/01-98/08/28 104 03/01/11-03/02/07 162 07/06/23-07/07/20 220 11/12/03-11/12/30
47 98/08/29-98/09/25 105 03/02/08-03/03/07 163 07/07/21-07/08/17 221 11/12/31-12/01/27
48 98/09/26-98/10/23 106 03/03/08-03/04/04 164 07/08/18-07/09/14 222 12/01/28-12/02/24
49 98/10/24-98/11/20 107 03/04/05-03/05/02 165 07/09/15-07/10/12 223 12/02/25-12/03/23
50 98/11/21-98/12/18 108 03/05/03-03/05/30 166 07/10/13-07/11/09 224 12/03/24-12/04/20
51 98/12/19-99/01/15 109 03/05/31-03/06/27 167 07/11/10-07/12/07 225 12/04/21-12/05/18
52 99/01/16-99/02/12 110 03/06/28-03/07/25 168 07/12/08-08/01/04 226 12/05/19-12/06/15
53 99/02/13-99/03/12 111 03/07/26-03/08/22 169 08/01/05-08/02/01 227 12/06/16-12/07/13
54 99/03/13-99/04/09 112 03/08/23-03/09/19 170 08/02/02-08/02/29 228 12/07/14-12/08/10
55 99/04/10-99/05/07 113 03/09/20-03/10/17 171 08/03/01-08/03/28 229 12/08/11-12/09/07
56 99/05/08-99/06/04 114 03/10/18-03/11/14 172 08/03/29-08/04/25 230 12/09/08-12/10/05
57 99/06/05-99/07/02 115 03/11/15-03/12/12 173 08/04/26-08/05/23 231 12/10/06-12/10/26
58 99/07/03-99/07/30 116 03/12/13-04/01/09 174 08/05/24-08/06/20

Table 8: Investment periods in YY/MM/DD format
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M.3 Details of minimum variance portfolio rebalancing

The investment period during which a set of portfolio weights are held constant is also

referred to as the “holding period”. The number of trading days in the k-th investment

period, Lk, may vary if rebalancing time points are chosen to coincide with either calendar

months, weeks or fiscal quarters. Let t index the number of an arbitrary day during the

entire investment horizon. The number of trading days Tj in the first j investment periods

is given by

Tj =

j∑
k=1

Lk, (34)

where j = 1, 2, . . . , K with T0 = 0. We consider holding Nest constant for all investment

periods, k = 1, 2, . . . . For convenience, denote by kt the investment period that trading day

t belongs to: i.e., kt = k(t) := {k : t ∈ [Tk−1, Tk]}.
The algorithm for the minimum variance portfolio rebalancing strategy (MVR) can now

be described as follows: At the beginning of time period k, that is after Tk−1 days, compute

an estimate of the covariance matrix Σ̂k for period k from Nest past returns: i.e., {rt : t ∈
[Tk−1−Nest+1, Tk−1]}. Then, compute a new set of portfolio weights wk = (1T Σ̂−1

k 1)−1Σ̂−1
k 1,

and hold this portfolio constant until the Tk-th trading day. The process is then repeated

for the next holding period.

M.4 Details of cross-validation

Consider the matrix of returns R for all the stocks in the portfolio in the estimation horizon

preceding the start of the investment period (k − 1).

R = ((rti)), where i ∈ {1, . . . , p}, t ∈ {Tk−1 −Nest + 1, . . . , Tk−1}.

Hence, R is an Nest-by-p matrix, and the column vector Rj is an Nest-vector of returns

for the j-th stock.

Now denote by Ω(λ) = ((ωij(λ)))1≤i,j≤p an estimate of Ω obtained by `1-regularization

methods such as Glasso or CONCORD. The use of λ makes explicit the dependence of

these estimation methods on the penalty parameter λ. The data are the over the estimation

horizon is divided into m-folds. The penalty parameter is chosen so as to minimize the out
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of sample predictive risk (PR) given by

PR(λ) =
M∑
m=1

{
1

Nm

p∑
i=1

‖R(m)
i −

∑
j 6=i

β
(\m)
ij (λ)R

(m)
j ‖2

2

}
,

where R
(m)
i is the vector of returns for stock i in fold m, and where Nm is the number of

observations in the m-th fold. The regression coefficient β
(\m)
ij (λ) is determined as follows:

β
(\m)
ij (λ) = −ω

(\m)
ij (λ)

ω
(\m)
ii (λ)

, with Ω(\m)(λ) based on using all the available data within a given

estimation horizon except for fold m. The optimal choice of penalty parameter λ∗ is then

determined as follows:

λ∗ = arg inf
λ≥0

PR(λ).

M.5 Performance metrics

For comparison purposes with (Won et al., 2012), we use the following quantities to assess

the performance of the five MVR strategies. The formulas for these metrics are given below.

• Realized return: The average return of the portfolio over the entire investment horizon.

rp =
1

T

T∑
t=1

r′twkt

• Realized risk : The risk (standard error) of the portfolio over the entire investment

horizon.

σp =

[
1

T

T∑
t=1

(r′twkt − rp)2

]1/2

• Realized Sharpe ratio (SR): The realized excess return of the portfolio over the risk-free

rate per unit realized risk for the entire investment horizon.

SR =
rp − rf
σp

(35)

• Turnover : The amount of new portfolio assets purchased or sold over each trading

period. The turnover for the k-th investment period when the portfolio weights wk are

17



held constant is given by

TO(k) =

p∑
i=1

∣∣∣∣∣∣wik −
 Tk−1+Lk∏
t=Tk−1+1

(1 + rit)

 wi(k−1)

∣∣∣∣∣∣ (36)

with wi0 = 0 for all i = 1, . . . , p.

• Size of the short side The proportion of the negative weights to the sum of the absolute

weights of each portfolio. The short side for the k-th investment period is given by

SS(k) =

∑p
i=1 |min(wik, 0)|∑p

i=1 |wik|

The average and standard error of the short sides over the all investment periods is

SS =
1

K

K∑
k=1

SS(k), σ̂SS =

[
1

K

K∑
k=1

(SS(k)− SS)2

]1/2

• Normalized wealth growth: Accumulated wealth derived from the portfolio over the

trading period when the initial budget is normalized to one. Note that both transaction

costs and borrowing costs are taken into account. Let W (t − 1) denote the wealth of

the portfolio after the (t − 1)-th trading day. Then, the wealth of the portfolio after

the t-th trading day is given by

W (t) =

W (t− 1) (1 + r′twkt − TC(kt)−BC(kt)) , t = Tkt−1 + 1

W (t− 1) (1 + r′twkt) , t 6= Tkt−1 + 1
,

where TC(k) and BC(k) are transaction costs (of trading stocks) and borrowing costs

(of capital for taking short positions on stocks), respectively. On the first day of each

trading period, we adjust the return for these trading costs. Denote the transaction

cost rate by rc, then the transaction cost incurred at the beginning of period k is given

by

TC(k) = rc · TO(k). (37)

The borrowing cost rate, BC(k), depends on the short side of the portfolio weights

during the (k − 1)-th period. Denote the borrowing daily percentage by rb, then the
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Nest Sample Glasso CONCORD CondReg LedoitWolf DJIA
35 17.08 (33.86) 13.10 (16.57) 13.29 (17.04) 13.62 (17.74) 12.33 (15.58) 8.51 (18.96)
40 16.66 (26.52) 13.13 (16.57) 13.34 (17.02) 13.39 (17.74) 11.78 (15.46) 8.51 (18.96)
45 11.13 (23.19) 12.74 (16.52) 13.05 (17.04) 13.05 (17.77) 10.99 (15.43) 8.51 (18.96)
50 9.90 (20.95) 12.89 (16.39) 13.21 (17.04) 13.08 (17.65) 11.25 (15.36) 8.51 (18.96)
75 11.61 (17.45) 11.28 (15.57) 13.10 (17.04) 12.77 (17.15) 10.56 (15.10) 8.51 (18.96)

150 9.40 (15.41) 10.28 (14.97) 13.20 (17.08) 12.76 (16.30) 10.63 (14.66) 8.51 (18.96)
225 10.49 (14.98) 10.38 (14.89) 13.58 (17.10) 12.92 (16.04) 11.04 (14.52) 8.51 (18.96)
300 10.41 (14.95) 10.37 (14.95) 13.66 (17.16) 12.85 (16.07) 10.94 (14.52) 8.51 (18.96)

Table 9: Realized returns of different investment strategies corresponding to different esti-
mators with various Nest (realized risks are given in parentheses). The maximum annualized
returns and risks are highlighted in bold.

Nest Sample Glasso CONCORD CondReg LedoitWolf
35 8.42 (3.19) 0.45 (0.12) 0.38 (0.10) 0.39 (0.27) 1.40 (0.38)
40 5.81 (2.28) 0.41 (0.12) 0.34 (0.10) 0.37 (0.26) 1.29 (0.36)
45 4.58 (1.65) 0.39 (0.12) 0.31 (0.10) 0.36 (0.23) 1.20 (0.35)
50 3.74 (1.19) 0.39 (0.13) 0.28 (0.09) 0.36 (0.25) 1.11 (0.33)
75 2.03 (0.67) 0.50 (0.19) 0.21 (0.08) 0.43 (0.29) 0.86 (0.29)

150 0.87 (0.32) 0.73 (0.27) 0.14 (0.07) 0.40 (0.22) 0.54 (0.23)
225 0.57 (0.24) 0.56 (0.22) 0.11 (0.07) 0.31 (0.13) 0.41 (0.18)
300 0.44 (0.21) 0.44 (0.23) 0.09 (0.07) 0.24 (0.11) 0.33 (0.17)

Table 10: Average turnovers for various estimation horizons, Nest (standard errors are given
in parentheses). The minimum average and standard error values for each row are highlighted
in bold.

borrowing cost rate is given by

BC(k) = ((1 + rb)
Lk−1 − 1)

p∑
i=1

|min(wi(k−1), 0)|. (38)

N Proof of Theorem 2

The result follows by noting the following straightforward facts

1. The existence of a minimizer follows by the convexity of Qcon.

2. By assumptions (A0) and (A1), for any η > 0, {α̂n,ii}1≤i≤pn are uniformly bounded

away from zero and infinity with probability larger than 1−O(n−η).

3. When the diagonal entries are fixed at {α̂n,ii}1≤i≤pn , then the objective function Qcon

(reparameterized from ωo to θ) is same as the objective function of SPACE with
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Nest Sample Glasso CONCORD CondReg LedoitWolf
35 41.13 (3.18) 0.66 (0.84) 0.05 (0.14) 1.75 (5.00) 20.50 (6.64)
40 38.64 (3.47) 0.64 (0.75) 0.05 (0.14) 1.78 (5.04) 20.45 (6.63)
45 36.89 (4.26) 0.90 (0.85) 0.05 (0.14) 1.84 (4.95) 20.31 (6.61)
50 35.46 (4.38) 1.35 (1.19) 0.04 (0.11) 2.17 (5.44) 20.33 (6.66)
75 30.89 (5.37) 8.67 (3.76) 0.04 (0.11) 4.91 (7.38) 20.13 (6.83)

150 25.65 (6.25) 23.48 (4.68) 0.02 (0.07) 9.07 (6.31) 19.60 (6.82)
225 23.68 (6.69) 23.36 (6.27) 0.01 (0.05) 10.71 (3.22) 19.26 (6.91)
300 22.45 (6.90) 22.42 (6.87) 0.00 (0.02) 9.95 (2.93) 18.85 (7.10)

Table 11: Average short sides for various estimation horizons, Nest (standard errors are
given in parentheses). The minimum average and standard error values for each row are
highlighted in bold.

Nest Sample Glasso CONCORD CondReg LedoitWolf
35 567.958 (214.05) 22.635 (5.62) 18.642 (4.53) 20.757 (17.46) 91.316 (25.19)
40 394.508 (149.90) 20.660 (5.70) 16.858 (4.40) 20.013 (16.78) 85.661 (24.16)
45 315.340 (108.87) 19.899 (5.80) 15.470 (4.22) 19.419 (15.27) 80.524 (23.39)
50 260.887 (81.13) 20.146 (6.39) 14.081 (4.06) 19.695 (16.04) 76.154 (22.43)
75 150.242 (45.87) 30.942 (10.92) 10.516 (3.17) 25.191 (19.19) 63.481 (20.94)

150 75.700 (27.88) 61.495 (18.40) 6.596 (2.24) 26.788 (12.83) 46.680 (17.78)
225 56.242 (22.09) 54.117 (18.82) 5.155 (1.80) 22.973 (6.08) 39.441 (15.72)
300 46.904 (20.09) 47.118 (20.72) 4.404 (1.67) 18.823 (5.16) 35.065 (14.89)

Table 12: Average trading costs in basis points for various estimation horizons, Nest (standard
errors are given in parentheses). Borrowing rate is taken to be 7% APR and transaction cost
rate is taken to be 0.5% of principal for each transaction. The minimum transaction cost for
each row is highlighted in bold.
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Figure 3: Normalized wealth growth after adjusting for transaction costs (0.5% of principal)
and borrowing costs (interest rate of 7% APR) with Nest = 75.

weights wi = α̂2
n,ii (which are uniformly bounded), except that the penalty term is now∑

1≤i<j≤pn λn
√
α̂n,iiα̂n,jjθij, instead of

∑
1≤i<j≤pn λnθij as in Qspc.

4. Since θ̄n,ij =
ω̄n,ij√
α̂n,iiα̂n,jj

, using the uniform boundedness of {α̂n,ii}1≤i≤pn , there exists a

constant C1 such that for any η > 0,

‖ω̂on − ω̄on‖2 ≤ C1‖θ̂on − θ̄on‖2

holds with probability larger than 1−O(n−η).

5. For 1 ≤ i < j ≤ pn, sign(ω̂n,ij) = sign(θ̂n,ij), since they differ by a positive multiplica-

tive constant.

6. When the penalty term in SPACE is replaced by
∑

1≤i<j≤pn λn
√
α̂n,iiα̂n,jjθij, the uni-

form boundedness of {α̂n,ii}1≤i≤pn implies that Theorems 1, 2 and 3 of Peng et al.

(2009) hold with trivial modifications at appropriate places. The result now follows

immediately using these theorems along with the above assertions. �

Remark: Note that Theorem 2 on the consistency of CONCORD has been formulated as to

exactly parallel the result given for SPACE by Peng et al. (2009). An accurate estimator
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Figure 4: Turnover in percentage points.
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Figure 5: Trading costs in basis points for each trading period. Borrowing rate is taken to
be 7% APR and transaction cost rate is taken to be 0.5% APR. The y-axes are log-scaled.
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of ω̄ii when pn > n can be obtained by using the inverse of the sample conditional variance

of each variable. In practice, however, once can simply use the diagonal estimates given by

CONCORD, and there is no need for recourse to external estimates. Note also that CON-

CORD estimates themselves always exist, regardless of the sample size, and with certainty

will lead to estimates, even when pn > n. This property follows directly from the convergence

of the CONCORD algorithm.

O Joint convexity of the SYMLASSO in the Ω param-

eterization

We will show that the SYMLASSO objective function in (4) is jointly convex if we reparam-

eterize in terms of Ω (see also Lee and Hastie (2014)). However, the SYMLASSO objective

function is not in general strictly convex if n < p, and hence the convergence of the coor-

dinatewise descent algorithm is not guaranteed. It follows from the proof of Lemma 5 that

the SYMLASSO objective function (in terms of Ω) is given by

Qsym(Ω) =
n

2

[
− log |ΩD|+ tr(SΩΩ−1

D Ω)
]

+ λ
∑

1≤i<j≤p

|ωij|

=
n

2

[
−

p∑
i=1

logωii +
1

ωii
ωTi•Sωi•

]
+ λ

∑
1≤i<j≤p

|ωij|.

To prove the convexity of Qsym(Ω), we first prove the following lemma.

Lemma 8. Consider the function f on R+ × Rk defined by f(a) = aTAa
a1

. If A is positive

semi-definite, then f is a convex function.

Proof It follows by straightforward manipulations that

f(a) = A11a1 + 2
k+1∑
j=2

A1jaj +
aT−1A−1a−1

a1

, (39)

where a−1 := (aj)
k+1
j=2 and A−1 is the principle submatrix of A obtained by excluding the

first row and the first column. Since the first two terms above are clearly convex functions

of a, it suffices to prove that the third term
aT−1A−1a−1

a1
is a convex function of a. Again, by

straightforward manipulations, it follows that the Hessian matrix of this term is given by

H =
2

a3
1

(
aT−1A−1a−1 −(a1A−1a−1)T

−a1A−1a−1 a2
1A−1

)
.
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Hence, for any b ∈ Rk+1 (with b−1 := (bj)
k+1
j=2), it follows that

bTHb

=
2

a3
1

(
b2

1a
T
−1A−1a−1 − 2b1a1b

T
−1A−1a−1 + a2

1b
T
−1A−1b−1

)
. (40)

Since A−1 is positive semi-definite, it follows that if bT−1A−1b−1 = 0, then A−1b−1 = 0. In

this case

bTHb =
2

a3
1

(
b2

1a
T
−1A−1a−1

)
≥ 0.

If bT−1A−1b−1 > 0, then it follows by (40) that

bTHb

=
2b2

1

a3
1

(
aT−1A−1a−1 −

(bT−1A−1a−1)2

bT−1A−1b−1

)
+

2

a3
1

a1

√
bT−1A−1b−1 − b1

bT−1A−1a−1√
bT−1A−1b−1

2

≥ 0.

The last statement follows by noting that
(
aT−1A−1a−1

) (
bT−1A−1b−1

)
≥ (bT−1A−1a−1)2 (using

the positive semi-definiteness of A−1 and the Cauchy-Schwarz inequality). Hence H is a

positive semi-definite matrix, which combined with (39) implies that f is a convex function.

�

It follows by the above lemma that 1
ωii
ωTi•Sωi• is a convex function in ωi• (and hence Ω) for

every 1 ≤ i ≤ p. Since − log x and |x| are convex functions, it follows that Qsym(Ω) is a

convex function.

P Examples where the Incoherence condition (A3) is

satisfied

We now present two lemmas which outline settings where the Incoherence condition (A3) is

satisfied. The first lemma shows that (A3) is satisfied if the true correlations are sufficiently

small. This lemma can be regarded as a parallel result to (Zhao and Yu, 2006, Corollary 2),

which shows that the irrepresentable condition for lasso regression is satisfied if the entries of
1
n
XT
nXn (Xn being the regression design matrix) are bounded by c

2qn−1
for some 0 ≤ c < 1.

Lemma 9. Let

dn := max
1≤i≤pn

|{j : ω̄n,ij 6= 0}|.
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The incoherence condition (A3) is satisfied if

|Σ̄n,ij|√
Σ̄n,iiΣ̄n,jj

≤
√

2δλmin√
qndnλmax

,

for every n ≥ 1 and 1 ≤ i 6= j ≤ pn.

Proof: It can be shown by straightforward algebraic manipulations that

L̄′′An,An(Ω̄n) = UT
n VnUn,

where Vn is a pn-block diagonal matrix with the ith diagonal block given by Σ̄n without the

ith row and column, and Un is an appropriate pn(pn − 1)× qn orthogonal matrix with 0 and

1 elements. Each column of Un has exactly two 1’s. Hence for any x ∈ Rqn , it follows that

xTUT
n Unx = 2xTx. It follows that the smallest eigenvalue of UT

n VnUn is bounded below by
2

λmax
. Consequently, the largest eigenvalue of (UT

n VnUn)−1 is bounded above by λmax
2

.

Since the diagonal entries of Σ̄n are uniformly bounded above by 1
λmin

, it follows that

|Σ̄n,kl| ≤
√

2δ√
qndnλmax

,

for every n ≥ 1 and 1 ≤ k 6= l ≤ pn. Note that for every (i, j) /∈ An, L̄′′ij,An(Ω̄n) has at most

2dn non-zero entries. Hence, we get that

∥∥∥L̄′′ij,An(Ω̄n)
∥∥∥ ≤√2dn ×

√
2δ√

qndnλmax
=

2δ
√
qnλmax

.

Finally, we note from the discussion above that∣∣∣∣L̄′′ij,An(Ω̄n)
[
L̄′′An,An(Ω̄n)

]−1

sign(ω̄oAn)

∣∣∣∣
≤

∥∥∥L̄′′ij,An(Ω̄n)
∥∥∥∥∥∥∥[L̄′′An,An(Ω̄n)

]−1
∥∥∥∥∥∥sign(ω̄oAn)

∥∥
≤ 2δ
√
qnλmax

× λmax
2
×√qn

= δ.

Hence (A3) is satisfied. �

The next lemma shows that the Incoherence condition (A3) holds if the true Ω̄n’s are tridi-

agonal matrices satisfying some mild conditions. This lemma can be regarded as a parallel
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result to (Zhao and Yu, 2006, Corollary 3).

Lemma 10. Suppose that Ω̄n is a tridiagonal matrix with all diagonal entries equal to 1 and

the non-zero off-diagonal entries equal to ρn, for every n ≥ 1. If ρ := supn |ρn| satisfies

8ρ

(1− ρ2)(2− ρ4/2)
≤ δ,

then (A3) is satisfied.

Proof: Using standard results for inverse of tridiagonal matrices, it follows that

Σ̄n,ij =
ρ
|i−j|
n

1− ρ2
n

,

for every 1 ≤ i, j ≤ pn. Note that An = {(i− 1, i) : 2 ≤ i ≤ pn}, and |An| = pn − 1. Hence,

L̄′′An,An(Ω̄n) is a tridiagonal matrix (with the ith row corresponding to the edge (i, i + 1)),

with

L̄′′i(i+1),i(i+1)(Ω̄n) = Σ̄n,ii + Σ̄n,(i+1)(i+1) =
2

1− ρ2
n

,

for every 1 ≤ i ≤ pn − 1, and

L̄′′i(i+1),(i+1)(i+2)(Ω̄n) = Σ̄n,i(i+2) =
ρ2
n

1− ρ2
n

,

for every 1 ≤ i ≤ pn− 2. Again, using standard results for inverse of tridiagonal matrices, it

follows that (
L̄′′An,An(Ω̄n)

)−1

i(i+1),j(j+1)
=

(1− ρ2
n)(ρ2

n/2)|i−j|

2− ρ4
n/2

,

for every 1 ≤ i, j ≤ pn − 1. Using the fact that
∑∞

i=0 a
i = 1

1−a for |a| < 1, we conclude

that each entry in
(
L̄′′An,An

)−1
(Ω̄n) sign(ω̄oAn) is bounded above in absolute value by 2

2−ρ4n/2
.

Moreover, if i < j and (i, j) /∈ An, then L̄′′ij,An(Ω̄n) has at most four non-zero entries (entries

corresponding to the edges (i− 1, i), (i, i + 1), (j − 1, j) and (j, j + 1), if applicable). All of

these non-zero entries are bounded above in absolute value by |ρn|
1−ρ2n

. It follows that for every

(i, j) /∈ An, ∣∣∣∣L̄′′ij,An(Ω̄n)
[
L̄′′An,An(Ω̄n)

]−1

sign(ω̄oAn)

∣∣∣∣
≤ 4|ρn|

1− ρ2
n

× 2

2− ρ4
n/2

=
8|ρn|

(1− ρ2
n)(2− ρ4

n/2)
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≤ 8|ρ|
(1− ρ2)(2− ρ4/2)

≤ δ.

Hence (A3) is satisfied. �

Q Non-convergence of SPACE

We provide a simple example where the SPACE algorithm (with uniform weights) does not

converge, and the iterates alternate between two matrices. A sample of n = 4 i.i.d. vectors

was generated from the N (0,Σ) distribution with Σ as in (2). The standardized data is as

follows: 
0.659253 −0.635923 0.492419

0.994414 −1.015863 1.115863

−1.150266 1.141668 −1.135115

−0.503401 0.510117 −0.473166

 . (41)

The SPACE algorithm was implemented with choice of weights wi = 1 and λ = 0.2. Again,

after the first few iterations, it turns out that successive SPACE iterates alternate between 1.432570 1.416740 −2.132500

1.416740 3552.598070 0.000000

−2.132500 0.000000 89.163310

 and

3552.565950 1.416720 0.000000

1.416720 1.404240 2.100770

0.000000 2.100770 123.137260

 ,

thereby also establishing non-convergence of the SPACE algorithm in the case when the

weights wi = 1. Note that some of the elements in the two matrices above are vastly different.

The sparsity pattern is also different, thereby yielding two different partial correlation graphs.

28



References

Albergaria, A., Paredes, J., Sousa, B., Milanezi, F., Carneiro, V., Bastos, J., Costa, S.,

Vieira, D., Lopes, N., Lam, E. W., Lunet, N., and Schmitt, F. (2009). Expression of

FOXA1 and GATA-3 in breast cancer: the prognostic significance in hormone receptor-

negative tumours. Breast Cancer Research, 11(3):R40.

Bibby, R. A., Tang, C., Faisal, A., Drosopoulos, K., Lubbe, S., Houlston, R., Bayliss, R.,

and Linardopoulos, S. (2009). A cancer-associated aurora A mutant is mislocalized and

misregulated due to loss of interaction with TPX2. The Journal of Biological Chemistry,

284(48):33177–84.

Davidson, B., Stavnes, H. T., Holth, A., Chen, X., Yang, Y., Shih, I.-M., and Wang, T.-L.

(2011). Gene expression signatures differentiate ovarian/peritoneal serous carcinoma from

breast carcinoma in effusions. Journal of Cellular and Molecular Medicine, 15(3):535–44.

Du, J., Li, L., Ou, Z., Kong, C., Zhang, Y., Dong, Z., Zhu, S., Jiang, H., Shao, Z., Huang,

B., and Lu, J. (2012). FOXC1, a target of polycomb, inhibits metastasis of breast cancer

cells. Breast Cancer Research and Treatment, 131(1):65–73.

Eeckhoute, J., Keeton, E. K., Lupien, M., Krum, S. A., Carroll, J. S., and Brown, M. (2007).

Positive cross-regulatory loop ties GATA-3 to estrogen receptor alpha expression in breast

cancer. Cancer Research, 67(13):6477–83.

Eschenbrenner, J., Winsel, S., Hammer, S., Sommer, A., Mittelstaedt, K., Drosch, M., Klar,

U., Sachse, C., Hannus, M., Seidel, M., Weiss, B., Merz, C., Siemeister, G., and Hoffmann,

J. (2011). Evaluation of activity and combination strategies with the microtubule-targeting

drug sagopilone in breast cancer cell lines. Frontiers in Oncology, 1:44.

Glinsky, G. V., Berezovska, O., and Glinskii, A. B. (2005). Microarray analysis identifies

a death-from-cancer signature predicting therapy failure in patients with multiple types of

cancer. The Journal of clinical investigation, 115(6):1503–21.

Jiang, S., Katayama, H., Wang, J., Li, S. A., Hong, Y., Radvanyi, L., Li, J. J., and Sen,

S. (2010). Estrogen-induced aurora kinase-A (AURKA) gene expression is activated by

GATA-3 in estrogen receptor-positive breast cancer cells. Hormones & Cancer, 1(1):11–20.

Joosse, S. A., Hannemann, J., Spötter, J., Bauche, A., Andreas, A., Müller, V., and Pantel,

K. (2012). Changes in Keratin Expression during Metastatic Progression of Breast Cancer:

Impact on the Detection of Circulating Tumor Cells. Clinical cancer research : an official

journal of the American Association for Cancer Research, 18(4):993–1003.

29



Katoh, M. (2008). WNT signaling in stem cell biology and regenerative medicine. Current

Drug Targets, 9(7):565–70.

Khare, K. and Rajaratnam, B. (2014). Convergence of cyclic coordinate l1 minimization.

Preprint, Department of Statistics, Stanford University (soon to be available on arxiv).

Koboldt, D. C. and Others (2012). Comprehensive molecular portraits of human breast

tumours. Nature, 490(7418):61–70.

Kraus, T. S., Cohen, C., and Siddiqui, M. T. (2010). Prostate-specific antigen and hormone

receptor expression in male and female breast carcinoma. Diagnostic Pathology, 5:63.

Lacroix, M. and Leclercq, G. (2004). About GATA3, HNF3A, and XBP1, three genes co-

expressed with the oestrogen receptor-alpha gene (ESR1) in breast cancer. Molecular and

Cellular Endocrinology, 219(1-2):1–7.

Lee, J. and Hastie, T. (2014). Learning the structure of mixed graphical models. to appear

in Journal of Computational and Graphical Statistics.

Licata, L. A., Hostetter, C. L., Crismale, J., Sheth, A., and Keen, J. C. (2010). The RNA-

binding protein HuR regulates GATA3 mRNA stability in human breast cancer cell lines.

Breast Cancer Research and Treatment, 122(1):55–63.

Maxwell, C. A. and Others (2011). Interplay between BRCA1 and RHAMM regulates

epithelial apicobasal polarization and may influence risk of breast cancer. PLoS Biology,

9(11):e1001199.

Mohajeri, A., Zarghami, N., Pourhasan Moghadam, M., Alani, B., Montazeri, V., Baiat, A.,

and Fekhrjou, A. (2011). Prostate-specific antigen gene expression and telomerase activity

in breast cancer patients: possible relationship to steroid hormone receptors. Oncology

Research, 19(8-9):375–80.

Pellegrino, M. B., Asch, B. B., Connolly, J. L., and Asch, H. L. (1988). Differential ex-

pression of keratins 13 and 16 in normal epithelium, benign lesions, and ductal carcinomas

of the human breast determined by the monoclonal antibody Ks8.12. Cancer Research,

48(20):5831–6.

Peng, J., Wang, P., Zhou, N., and Zhu, J. (2009). Partial Correlation Estimation by Joint

Sparse Regression Models. Journal of the American Statistical Association, 104(486):735–

746.

30



Ray, P. S., Bagaria, S. P., Wang, J., Shamonki, J. M., Ye, X., Sim, M.-S., Steen, S., Qu, Y.,

Cui, X., and Giuliano, A. E. (2011). Basal-like breast cancer defined by FOXC1 expression

offers superior prognostic value: a retrospective immunohistochemical study. Annals of

Surgical Oncology, 18(13):3839–47.

Robinson, J. L. L., Macarthur, S., Ross-Innes, C. S., Tilley, W. D., Neal, D. E., Mills, I. G.,

and Carroll, J. S. (2011). Androgen receptor driven transcription in molecular apocrine

breast cancer is mediated by FoxA1. The EMBO Journal, 30(15):3019–27.

Rocha, G., Zhao, P., and Yu, B. (2008). A path following algorithm for Sparse Pseudo-

Likelihood Inverse Covariance Estimation (SPLICE). Technical report, Statistics Depart-

ment, UC Berkeley, Berkeley, CA.

Rønneberg, J. A., Fleischer, T., Solvang, H. K., Nordgard, S. H., Edvardsen, H., Potapenko,

I., Nebdal, D., Daviaud, C., Gut, I., Bukholm, I., Naume, B. r., Bø rresen Dale, A.-L.,

Tost, J., and Kristensen, V. (2011). Methylation profiling with a panel of cancer related

genes: association with estrogen receptor, TP53 mutation status and expression subtypes

in sporadic breast cancer. Molecular Oncology, 5(1):61–76.

Sauter, E. R., Lininger, J., Magklara, A., Hewett, J. E., and Diamandis, E. P. (2004). Asso-

ciation of kallikrein expression in nipple aspirate fluid with breast cancer risk. International

Journal of Cancer, 108(4):588–91.

Shimo, A., Nishidate, T., Ohta, T., Fukuda, M., Nakamura, Y., and Katagiri, T. (2007).

Elevated expression of protein regulator of cytokinesis 1, involved in the growth of breast

cancer cells. Cancer Science, 98(2):174–81.

Shimo, A., Tanikawa, C., Nishidate, T., Lin, M.-L., Matsuda, K., Park, J.-H., Ueki, T.,

Ohta, T., Hirata, K., Fukuda, M., Nakamura, Y., and Katagiri, T. (2008). Involvement of

kinesin family member 2C/mitotic centromere-associated kinesin overexpression in mam-

mary carcinogenesis. Cancer Science, 99(1):62–70.

Sizemore, S. T. and Keri, R. A. (2012). The Forkhead Box Transcription Factor FOXC1 Pro-

motes Breast Cancer Invasion by Inducing Matrix Metalloprotease 7 (MMP7) Expression.

The Journal of Biological Chemistry, 287(29):24631–40.

Tkocz, D., Crawford, N. T., Buckley, N. E., Berry, F. B., Kennedy, R. D., Gorski, J. J.,

Harkin, D. P., and Mullan, P. B. (2012). BRCA1 and GATA3 corepress FOXC1 to inhibit

the pathogenesis of basal-like breast cancers. Oncogene, 31(32):3667–3678.

31



Wang, J., Ray, P. S., Sim, M.-S., Zhou, X. Z., Lu, K. P., Lee, A. V., Lin, X., Bagaria, S. P.,

Giuliano, A. E., and Cui, X. (2012). FOXC1 regulates the functions of human basal-like

breast cancer cells by activating NF-κB signaling. Oncogene.

Won, J.-H., Lim, J., Kim, S.-J., and Rajaratnam, B. (2012). Condition Number Regularized

Covariance Estimation. Journal of the Royal Statistical Society: Series B.

Yan, W., Cao, Q. J., Arenas, R. B., Bentley, B., and Shao, R. (2010). GATA3 inhibits breast

cancer metastasis through the reversal of epithelial-mesenchymal transition. The Journal

of Biological Chemistry, 285(18):14042–14051.

Yang, Q., Nakamura, M., Nakamura, Y., Yoshimura, G., Suzuma, T., Umemura, T., Tamaki,

T., Mori, I., Sakurai, T., and Kakudo, K. (2002). Correlation of prostate-specific antigen

promoter polymorphisms with clinicopathological characteristics in breast cancer. Anti-

cancer Research, 22(3):1825–8.

Zhao, P. and Yu, B. (2006). On Model Selection Consistency of Lasso. Journal of Machine

Learning Research, 7:2541–2563.

Zheng, Y., Huo, D., Zhang, J., Yoshimatsu, T. F., Niu, Q., and Olopade, O. I. (2012).

Microsatellites in the Estrogen Receptor (ESR1, ESR2) and Androgen Receptor (AR) Genes

and Breast Cancer Risk in African American and Nigerian Women. PLoS ONE, 7(7):e40494.

32


