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Consistent inference of a general model using the pseudolikelihood method
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Recently, a maximum pseudolikelihood (MPL) inference method has been successfully applied to statistical
physics models with intractable likelihoods. We use information theory to derive a relation between the
pseudolikelihood and likelihood functions. Furthermore, we show the consistency of the pseudolikelihood method
for a general model.
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As statistical physics (SP) models started to be widely
used not only in their traditional domain but also to de-
scribe biological, financial, etc., phenomena, inferring the
interactions (model parameters) from the data has become
an important research topic in the physics community
[1–4]. This also strengthens a connection between SP and
the areas of statistics and machine learning where model
parameters are inferred from data. In statistics the maximum
likelihood (ML) method is a standard approach due to its
attractive statistical properties such as consistency, i.e., its
ability to recover true parameters of a model, and asymptotic
efficiency [5]. Unfortunately, a direct application of this
method is usually infeasible as it involves computing the
normalization constant of a distribution (partition function in
SP) which is nontrivial even for highly stylized models of
SP [6].

For equilibrium Gibbs-Boltzmann distribution [7] the ML
method is usually implemented by so-called Boltzmann
learning [8], which uses samples from the distribution to
approximate the gradients of the likelihood. However, it uses
the Markov chain Monte Carlo (MCMC) for sampling which
can have very long equilibration times even for moderate
system sizes. The sampling can be approximated for speedup
by stopping the MCMC early, thus leading to the contrastive
divergence [9] learning method. This method is very efficient
but it is biased and not consistent [9]. Other methods, such
as the mean-field approximation [10], allow one to avoid the
MCMC sampling, but their statistical properties are generally
not known.

In the MPL method [11] one avoids computation of a
partition function by replacing the likelihood by a much
simpler function of model parameters. Recently, this method
was successfully used for protein contact prediction [12], and
it seems to outperform other methods for the benchmark
Ising-spin models [13]. Furthermore, the MPL method was
shown to be consistent for the Ising model used in Boltzmann
learning [14] and for the Gibbs-Boltzmann distributions over
Zd [15].

In this Rapid Communication, we consider ML and MPL
methods of inference. We show that both methods are
equivalent to the problem of minimization of a relative entropy
between the distributions of model and data. This has been
known for ML but not for MPL. We use this framework to
derive a relation between the likelihood and pseudolikelihood
functions. Furthermore, we prove the consistency of the MPL
method for a general model.

Let us consider the following inference problem: We
are given L samples {sμ}Lμ=1 drawn independently from
the probability distribution Pθ0 (s), where s = (s1,s2, . . . ,sN ),
and we are required to estimate the true parameters θ0 of
this distribution. A classical approach to this problem is to
maximize the log likelihood [16] with respect to the parameters
for given data,

θ̂L = arg max
θ

LL(θ ), LL(θ ) = 1

L

L∑

μ=1

log Pθ (sμ). (1)

The (ML) estimator θ̂ obtained by the above procedure is
weakly consistent (respectively strongly consistent): In the
large sample limit L → ∞ we have that θ̂ → θ0 in probability
(respectively almost surely) for all possible true values of θ0

[5,17].
With an infinite amount of data (L = ∞) the ML procedure

(1) allows us to find its true parameters θ0. To show this we
will consider the difference

1

L

L∑

μ=1

[log P̂L(sμ) − log Pθ (sμ)]

=
∑

s

P̂L(s) log
P̂L(s)

Pθ (s)
= D(P̂L‖Pθ ), (2)

where P̂L(s) = 1
L

∑L
μ=1 δs,sμ , with δs,sμ denoting the

Kronecker delta function, is an empirical distribution of
data. Thus the maximization of log likelihood in (1) is
equivalent to the minimization of the function D(P̂L‖Pθ ),
which is a relative entropy (or Kullback-Leibler divergence)
of information theory [18]. By the strong law of large numbers
we have that limL→∞

∑
s P̂L(s) log P̂L(s)

Pθ (s) = D(Pθ0‖Pθ ), where

D(Pθ0‖Pθ ) = ∑
s Pθ0 (s) log

Pθ0 (s)
Pθ (s) . Note that D(Pθ0‖Pθ ) � 0

with equality if and only if Pθ0 (s) = Pθ (s) holds for all s

[18]. Furthermore, assuming that the equality of distributions
Pθ0 (s) = Pθ (s) implies the equality of its parameters θ0 = θ

(this is the so-called identifiability condition) completes the
proof. We note that if the limit and maximization operators
in limL→∞ θ̂L = limL→∞ arg maxθ LL(θ ) commute, then the
above argument also shows a (strong) consistency of the ML
estimator θ̂L. This requirement imposes further conditions on
the estimator function LL(θ ) [5,17].

Although the ML estimator is consistent, very often the
method of inference itself is not practical as it requires
the computation of the partition function [19]. One way to
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circumvent this problem is to use instead of log likelihood a
much simpler pseudo-log-likelihood,

θ̂L = arg max
θ

PLL(θ ),

PLL(θ ) = 1

L

L∑

μ=1

N∑

i=1

log Pθ

(
s
μ

i

∣∣sμ

−i

)
, (3)

where Pθ (si |s−i) = Pθ (s)/
∑

si
Pθ (s), with s−i = (s1, . . . ,si−1,

si+1, . . . ,sN ), is a conditional distribution. The conditional
distribution is, by definition, independent of the partition
function. As in the case of log likelihood, the pseudo-log-
likelihood method (3) is also equivalent to the minimization
of a relative entropy. This can be shown as follows.

First, using the relative entropy (2) and equality Pθ (s) =
Pθ (si |s−i)Pθ (s−i), which is true for each i, we obtain

ND(P̂L‖Pθ ) = N
∑

s

P̂L(s) log
P̂L(s)

Pθ (s)

=
N∑

i=1

∑

s

P̂L(s) log
P̂L(s)

Pθ (si |s−i)Pθ (s−i)
. (4)

Let us now in the above replace the distribution of model
Pθ (s−i) by the empirical distribution of data P̂L(s−i). This gives
rise to the probability distribution P̂ i

θ |θ0
(s) = Pθ (si |s−i)P̂L(s−i)

and immediately leads us to the inequality
N∑

i=1

∑

s

P̂L(s) log
P̂L(s)

Pθ (si |s−i)P̂L(s−i)

=
N∑

i=1

D
(
P̂L

∥∥P̂ i
θ |θ0

)
� 0. (5)

Clearly the minimum of the above sum of relative entropies,
with respect to the model parameters θ , corresponds to the
maximum of the pseudo-log-likelihood function used in (3).
This sum is also a lower bound for the (rescaled by N ) relative
entropy (4). In order to show this we consider the difference

ND(P̂L‖Pθ ) −
N∑

i=1

D
(
P̂L

∥∥P̂ i
θ |θ0

)

=
N∑

i=1

∑

s

P̂L(s) ln
P̂L(s−i)

Pθ (s−i)

=
N∑

i=1

∑

s−i

P̂L(s−i) ln
P̂L(s−i)

Pθ (s−i)
� 0. (6)

The inequality in the above is due to the last line being a sum
of relative entropies.

A consequence of the inequality (6) is the relation

PLL(θ ) −
N∑

i=1

Hi(P̂L) � NLL(θ ), (7)

where Hi(P̂L) = −∑
s−i

P̂L(s−i) ln P̂L(s−i) is a Shannon en-

tropy of the empirical distribution P̂L(s−i) = ∑
si

P̂L(s), be-
tween the objective functions of the ML (1) and MPL (3)
methods. Furthermore, using the inequality (5), we can show
that the MPL procedure (3) recovers the true parameters θ0

with an infinite amount of data. To show this we consider the
sum of relative entropies

N∑

i=1

D
(
Pθ0

∥∥P i
θ |θ0

) =
N∑

i=1

∑

s

Pθ0 (s) log
Pθ0 (s)

Pθ (si |s−i)Pθ0 (s−i)

=
N∑

i=1

∑

s

Pθ0 (s) log
Pθ0 (si |s−i)Pθ0 (s−i)

Pθ (si |s−i)Pθ0 (s−i)

=
N∑

i=1

∑

s

Pθ0 (s) log Pθ0 (si |s−i)

−
N∑

i=1

∑

s

Pθ0 (s) log Pθ (si |s−i)

= Q0(θ0) − Q0(θ ) � 0, (8)

where Q0(θ ) = limL→∞ PLL(θ ). Thus, Q0(θ ) � Q0(θ0) and
if Pθ0 (si |s−i) �= Pθ (si |s−i) implies that θ0 �= θ then θ = θ0

is the unique maximum of Q0(θ ). We note that this proves
condition (i) of Theorem 1 in the Appendix. We will use
this theorem to show the (weak) consistency of the MPL
estimator (3).

Let us assume that θ ∈ �, where � is a compact set [this is
condition (ii) of Theorem 1] and define Q̂L(θ ) = PLL(θ ). If
Q0(θ ) is a continuous function of θ and Q̂L(θ ) converges
uniformly in probability to Q0(θ ), i.e., supθ∈� |Q̂L(θ ) −
Q0(θ )| Prob.−−→ 0 as L → ∞, then conditions (iii) and (iv) of
Theorem 1 are satisfied. In order to prove these condi-
tions we will use Lemma 1 in the Appendix. To this end
we define q(s,θ ) = log

∏N
i=1 Pθ (si |s−i) and hence Q̂L(θ ) =

(1/L)
∑L

μ=1 q(sμ,θ ). Now let us assume that the function
q(s,θ ) is continuous at each θ ∈ � and consider

|q(s,θ )| =
∣∣∣∣∣log

N∏

i=1

Pθ (si |s−i)

∣∣∣∣∣ � sup
θ∈�

∣∣∣∣∣log
N∏

i=1

Pθ (si |s−i)

∣∣∣∣∣

= d(s), (9)

then if
∑

s Pθ0 (s)d(s) < ∞, we have that Q0(θ ) is continuous
and Q̂L(θ ) converges uniformly in probability to Q0(θ )
by Lemma 1. Thus if (a) Pθ0 (si |s−i) �= Pθ (si |s−i) implies
that θ0 �= θ , (b) θ ∈ �, where � is a compact set, (c)
log

∏N
i=1 Pθ (si |s−i) is continuous, and (d)

∑
s Pθ0 (s) supθ∈�

|log
∏N

i=1 Pθ (si |s−i)| < ∞, then the MPL estimator (3) is

weakly consistent, i.e., θ̂
Prob.−−→ θ0 as L → ∞.

To summarize, we mapped the maximum likelihood (ML)
and maximum pseudolikelihood (MPL) methods of inference
onto the information theory framework which allows us to
investigate the relation between these two methods. In this
framework, for both methods, the relative entropy is an
objective function, the minimization of which is equivalent
to ML and MPL. Furthermore, we derive an inequality which
establishes a relation between the likelihood and pseudolikeli-
hood functions. Finally, we prove the (weak) consistency of the
pseudolikelihood method for a general probability distribution.
We envisage that the strong consistency of MPL can also be
proven by, for example, adopting the consistency proof of ML
in Ref. [5]. Also, all derivations in this Rapid Communication
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are for the distributions of discrete variables, but we expect
that extending these results to the case of continuous variables
is a straightforward matter.
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APPENDIX: THEOREM AND LEMMA

Here we state the theorem and lemma (on pp. 2121 and
2129 of Ref. [17], respectively) which are used in the main
text.

Theorem 1. If there is a function Q0(θ ) such that
(i) Q0(θ ) is uniquely maximized at θ0, (ii) θ ∈ �, where �

is a compact set, (iii) Q0(θ ) is continuous, and (iv) Q̂L(θ )

converges uniformly in probability to Q0(θ ), then θ̂
Prob.−−→ θ0

as L → ∞.
Lemma 1. If sμ, where μ = 1, . . . ,L, are drawn inde-

pendently from the probability distribution P (s), � is a
compact set, q(sμ,θ ) is continuous at each θ ∈ � with
probability one, there is d(s) with |q(s,θ )| � d(s) for
all θ ∈ � and

∑
s P (s)d(s) < ∞, then

∑
s P (s)q(s,θ ) is

continuous and

sup
θ∈�

∣∣∣∣∣∣
1

L

L∑

μ=1

q(sμ,θ ) −
∑

s

P (s)q(s,θ )

∣∣∣∣∣∣
Prob.−−→ 0

as L → ∞.
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