

Handbook of
Monte Carlo Methods

Dirk P. Kroese
University of Queensland

Thomas Taimre
University of Queensland

Zdravko I. Botev
Université de Montréal

WILEY
A JOHN WILEY & SONS, INC., PUBLICATION

This page intentionally left blank

Handbook of
Monte Carlo Methods

WILEY SERIES IN PROBABILITY AND STATISTICS

Established by WALTER A. SHEWHART and SAMUEL S. WILKS

Editors: David J. Balding, Noel A. C. Cressie, Garrett M. Fitzmaurice,
Iain M. Johnstone, Geert Molenberghs, David W. Scott, Adrian F. M. Smith,
Ruey S. Tsay, Sanford Weisberg
Editors Emeriti: Vic Barnett, J. Stuart Hunter, Joseph B. Kadane, JozefL. Teugels

A complete list of the titles in this series appears at the end of this volume.

Handbook of
Monte Carlo Methods

Dirk P. Kroese
University of Queensland

Thomas Taimre
University of Queensland

Zdravko I. Botev
Université de Montréal

WILEY
A JOHN WILEY & SONS, INC., PUBLICATION

Copyright © 2011 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be
suitable for your situation. You should consult with a professional where appropriate. Neither the
publisher nor author shall be liable for any loss of profit or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic formats. For more information about Wiley products, visit our web site at
www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Kroese, Dirk P.
Handbook for Monte Carlo methods / Dirk P. Kroese, Thomas Taimre, Zdravko I. Botev.

p. cm. — (Wiley series in probability and statistics ; 706)
Includes index.

ISBN 978-0-470-17793-8 (hardback)
1. Monte Carlo method. I. Taimre, Thomas, 1983- II. Botev, Zdravko I., 1982- III. Title.
QA298.K76 2011
518'.282—dc22 2010042348

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com

To Lesley
— DPK

To Aita and Ilmar
— TT

To my parents, Maya and Ivan
— ziB

This page intentionally left blank

CONTENTS

Preface xvii

Acknowledgments xix

1 Uniform Random Number Generation 1

1.1 Random Numbers 1

1.1.1 Properties of a Good Random Number Generator 2

1.1.2 Choosing a Good Random Number Generator 3

1.2 Generators Based on Linear Recurrences 4

1.2.1 Linear Congruential Generators 4

1.2.2 Multiple-Recursive Generators 5

1.2.3 Matrix Congruential Generators 6

1.2.4 Modulo 2 Linear Generators 6

1.3 Combined Generators 8

1.4 Other Generators 10

1.5 Tests for Random Number Generators 11

1.5.1 Spectral Test 12

1.5.2 Empirical Tests 14

References 21

VIII CONTENTS

2 Quasirandom Number Generation 25

2.1 Multidimensional Integration 25

2.2 Van der Corput and Digital Sequences 27

2.3 Halton Sequences 29

2.4 Faure Sequences 31

2.5 SoboP Sequences 33

2.6 Lattice Methods 36

2.7 Randomization and Scrambling 38

References 40

3 Random Variable Generation 43

3.1 Generic Algorithms Based on Common Transformations 44

3.1.1 Inverse-Transform Method 45

3.1.2 Other Transformation Methods 47

3.1.3 Table Lookup Method 55

3.1.4 Alias Method 56

3.1.5 Acceptance-Rejection Method 59

3.1.6 Ratio of Uniforms Method 66

3.2 Generation Methods for Multivariate Random Variables 67

3.2.1 Copulas 68

3.3 Generation Methods for Various Random Objects 70

3.3.1 Generating Order Statistics 70

3.3.2 Generating Uniform Random Vectors in a Simplex 71

3.3.3 Generating Random Vectors Uniformly Distributed in

a Unit Hyperball and Hypersphere 74

3.3.4 Generating Random Vectors Uniformly Distributed in

a Hyperellipsoid 75

3.3.5 Uniform Sampling on a Curve 75

3.3.6 Uniform Sampling on a Surface 76

3.3.7 Generating Random Permutations 79

3.3.8 Exact Sampling From a Conditional Bernoulli

Distribution 80

References 83

4 Probability Distributions 85

4.1 Discrete Distributions 85

4.1.1 Bernoulli Distribution 85

4.1.2 Binomial Distribution 86

4.1.3 Geometric Distribution 91

4.1.4 Hypergeometric Distribution 93

4.1.5 Negative Binomial Distribution 94

CONTENTS IX

4.1.6 Phase-Type Distribution (Discrete Case) 96

4.1.7 Poisson Distribution 98

4.1.8 Uniform Distribution (Discrete Case) 101

4.2 Continuous Distributions 102

4.2.1 Beta Distribution 102

4.2.2 Cauchy Distribution 106

4.2.3 Exponential Distribution 108

4.2.4 F Distribution 109

4.2.5 Fréchet Distribution 111

4.2.6 Gamma Distribution 112

4.2.7 Gumbel Distribution 116

4.2.8 Laplace Distribution 118

4.2.9 Logistic Distribution 119

4.2.10 Log-Normal Distribution 120

4.2.11 Normal Distribution 122

4.2.12 Pareto Distribution 125

4.2.13 Phase-Type Distribution (Continuous Case) 126

4.2.14 Stable Distribution 129

4.2.15 Student's t Distribution 131

4.2.16 Uniform Distribution (Continuous Case) 134

4.2.17 Wald Distribution 135

4.2.18 Weibull Distribution 137

4.3 Multivariate Distributions 138

4.3.1 Dirichlet Distribution 139

4.3.2 Multinomial Distribution 141

4.3.3 Multivariate Normal Distribution 143

4.3.4 Multivariate Student's t Distribution 147

4.3.5 Wishart Distribution 148

References 150

5 Random Process Generation 153

5.1 Gaussian Processes 154

5.1.1 Markovian Gaussian Processes 159

5.1.2 Stationary Gaussian Processes and the F F T 160

5.2 Markov Chains 162

5.3 Markov Jump Processes 166

5.4 Poisson Processes 170

5.4.1 Compound Poisson Process 174

5.5 Wiener Process and Brownian Motion 177

5.6 Stochastic Differential Equations and Diffusion Processes 183

5.6.1 Euler's Method 185

5.6.2 Milstein's Method 187

X CONTENTS

5.6.3 Implicit Euler 188
5.6.4 Exact Methods 189
5.6.5 Error and Accuracy 191

5.7 Brownian Bridge 193
5.8 Geometric Brownian Motion 196
5.9 Ornstein-Uhlenbeck Process 198

5.10 Reflected Brownian Motion 200
5.11 Fractional Brownian Motion 203
5.12 Random Fields 206

5.13 Levy Processes 208
5.13.1 Increasing Levy Processes 211
5.13.2 Generating Levy Processes 214

5.14 Time Series 219
References 222

Markov Chain Monte Carlo 225

6.1 Metropolis-Hastings Algorithm 226
6.1.1 Independence Sampler 227
6.1.2 Random Walk Sampler 230

6.2 Gibbs Sampler 233
6.3 Specialized Samplers 240

6.3.1 Hit-and-Run Sampler 240
6.3.2 Shake-and-Bake Sampler 251
6.3.3 Metropolis-Gibbs Hybrids 256
6.3.4 Multiple-Try Metropolis-Hastings 257
6.3.5 Auxiliary Variable Methods 259
6.3.6 Reversible Jump Sampler 269

6.4 Implementation Issues 273
6.5 Perfect Sampling 274

References 276

Discrete Event Simulation 281

7.1 Simulation Models 281
7.2 Discrete Event Systems 283
7.3 Event-Oriented Approach 285
7.4 More Examples of Discrete Event Simulation 289

7.4.1 Inventory System 289
7.4.2 Tandem Queue 293
7.4.3 Repairman Problem 296
References 300

CONTENTS XI

Statistical Analysis of Simulation Data 301

8.1 Simulation Data 301

8.1.1 Data Visualization 302

8.1.2 Data Summarization 303

8.2 Estimation of Performance Measures for Independent Data 305

8.2.1 Delta Method 308

8.3 Estimation of Steady-State Performance Measures 309

8.3.1 Covariance Method 309

8.3.2 Batch Means Method 311

8.3.3 Regenerative Method 313

8.4 Empirical Cdf 316

8.5 Kernel Density Estimation 319

8.5.1 Least Squares Cross Validation 321

8.5.2 Plug-in Bandwidth Selection 326

8.6 Resampling and the Bootstrap Method 331

8.7 Goodness of Fit 333

8.7.1 Graphical Procedures 334

8.7.2 Kolmogorov-Smirnov Test 336

8.7.3 Anderson-Darling Test 339

8.7.4 x2 Tests 340

References 343

Variance Reduction 347

9.1 Variance Reduction Example 348

9.2 Antithetic Random Variables 349

9.3 Control Variables 351

9.4 Conditional Monte Carlo 354

9.5 Stratified Sampling 356

9.6 Latin Hypercube Sampling 360

9.7 Importance Sampling 362

9.7.1 Minimum-Variance Density 363

9.7.2 Variance Minimization Method 364

9.7.3 Cross-Entropy Method 366

9.7.4 Weighted Importance Sampling 368

9.7.5 Sequential Importance Sampling 369

9.7.6 Response Surface Estimation via Importance Sampling 373

9.8 Quasi Monte Carlo 376

References 379

XII CONTENTS

10 Rare-Event Simulation 381

10.1 Efficiency of Estimators 382
10.2 Importance Sampling Methods for Light Tails 385

10.2.1 Estimation of Stopping Time Probabilities 386
10.2.2 Estimation of Overflow Probabilities 389
10.2.3 Estimation For Compound Poisson Sums 391

10.3 Conditioning Methods for Heavy Tails 393
10.3.1 Estimation for Compound Sums 394
10.3.2 Sum of Nonidentically Distributed Random Variables 396

10.4 State-Dependent Importance Sampling 398
10.5 Cross-Entropy Method for Rare-Event Simulation 404
10.6 Splitting Method 409

References 416

11 Estimation of Derivatives 421

11.1 Gradient Estimation 421
11.2 Finite Difference Method 423
11.3 Infinitesimal Perturbation Analysis 426
11.4 Score Function Method 428

11.4.1 Score Function Method With Importance Sampling 430
11.5 Weak Derivatives 433
11.6 Sensitivity Analysis for Regenerative Processes 435

References 438

12 Randomized Optimization 441

12.1 Stochastic Approximation 441
12.2 Stochastic Counterpart Method 446
12.3 Simulated Annealing 449
12.4 Evolutionary Algorithms 452

12.4.1 Genetic Algorithms 452
12.4.2 Differential Evolution 454
12.4.3 Estimation of Distribution Algorithms 456

12.5 Cross-Entropy Method for Optimization 457
12.6 Other Randomized Optimization Techniques 460

References 461

13 Cross-Entropy Method 463

13.1 Cross-Entropy Method 463
13.2 Cross-Entropy Method for Estimation 464
13.3 Cross-Entropy Method for Optimization 468

13.3.1 Combinatorial Optimization 469

CONTENTS XIII

13.3.2 Continuous Optimization 471

13.3.3 Constrained Optimization 473

13.3.4 Noisy Optimization 476

References 477

14 Particle Methods 481

14.1 Sequential Monte Carlo 482

14.2 Particle Splitting 485

14.3 Splitting for Static Rare-Event Probability Estimation 486

14.4 Adaptive Splitting Algorithm 493

14.5 Estimation of Multidimensional Integrals 495

14.6 Combinatorial Optimization via Splitting 504

14.6.1 Knapsack Problem 505

14.6.2 Traveling Salesman Problem 506

14.6.3 Quadratic Assignment Problem 508

14.7 Markov Chain Monte Carlo With Splitting 509

References 517

15 Applications to Finance 521

15.1 Standard Model 521

15.2 Pricing via Monte Carlo Simulation 526

15.3 Sensitivities 538

15.3.1 Pathwise Derivative Estimation 540

15.3.2 Score Function Method 542

References 546

16 Applications to Network Reliability 549

16.1 Network Reliability 549

16.2 Evolution Model for a Static Network 551

16.3 Conditional Monte Carlo 554

16.3.1 Leap-Evolve Algorithm 560

16.4 Importance Sampling for Network Reliability 562

16.4.1 Importance Sampling Using Bounds 562

16.4.2 Importance Sampling With Conditional Monte Carlo 565

16.5 Splitting Method 567

16.5.1 Acceleration Using Bounds 573

References 574

17 Applications to Differential Equations 577

17.1 Connections Between Stochastic and Partial Differential

Equations 577

XIV CONTENTS

17.1.1 Boundary Value Problems 579

17.1.2 Terminal Value Problems 584

17.1.3 Terminal-Boundary Problems 585

17.2 Transport Processes and Equations 587

17.2.1 Application to Transport Equations 589

17.2.2 Boltzmann Equation 593

17.3 Connections to ODEs Through Scaling 597

References 602

Appendix A: Probability and Stochastic Processes 605

A.l Random Experiments and Probability Spaces 605

A. 1.1 Properties of a Probability Measure 607

A.2 Random Variables and Probability Distributions 607

A.2.1 Probability Density 610

A.2.2 Joint Distributions 611

A.3 Expectation and Variance 612

A.3.1 Properties of the Expectation 614

A.3.2 Variance 615

A.4 Conditioning and Independence 616

A.4.1 Conditional Probability 616

A.4.2 Independence 616

A.4.3 Covariance 617

A.4.4 Conditional Density and Expectation 618

A.5 W Space 619

A.6 Functions of Random Variables 620

A.6.1 Linear Transformations 620

A.6.2 General Transformations 620

A.7 Generating Function and Integral Transforms 621

A.7.1 Probability Generating Function 621

A.7.2 Moment Generating Function and Laplace Transform 621

A.7.3 Characteristic Function 622

A.8 Limit Theorems 623

A.8.1 Modes of Convergence 623

A.8.2 Converse Results on Modes of Convergence 624

A.8.3 Law of Large Numbers and Central Limit Theorem 625

A.9 Stochastic Processes 626

A.9.1 Gaussian Property 627

A.9.2 Markov Property 628

A.9.3 Martingale Property 629

A.9.4 Regenerative Property 630

A.9.5 Stationarity and Reversibility 631

A. 10 Markov Chains 632

CONTENTS XV

A.10.1 Classification of States 633

A.10.2 Limiting Behavior 633

A. 10.3 Reversibility 635

A. 11 Markov Jump Processes 635

A. 11.1 Limiting Behavior 638

A. 12 Itô Integral and Itô Processes 639

A.13 Diffusion Processes 643

A. 13.1 Kolmogorov Equations 646

A. 13.2 Stationary Distribution 648

A. 13.3 Feynman-Kac Formula 648

A.13.4 Exit Times 649

References 650

Appendix B: Elements of Mathematical Statistics 653

B.l Statistical Inference 653

B. l . l Classical Models 654

B.l.2 Sufficient Statistics 655

B.l . 3 Estimation 656

B.l.4 Hypothesis Testing 660

B.2 Likelihood 664

B.2.1 Likelihood Methods for Estimation 667

B.2.2 Numerical Methods for Likelihood Maximization 669

B.2.3 Likelihood Methods for Hypothesis Testing 671

B.3 Bayesian Statistics 672

B.3.1 Conjugacy 675

References 676

Appendix C: Optimization 677

C.l Optimization Theory 677

C.l . l Lagrangian Method 683

C.l.2 Duality 684

C.2 Techniques for Optimization 685

C.2.1 Transformation of Constrained Problems 685

C.2.2 Numerical Methods for Optimization and Root Finding 687

C.3 Selected Optimization Problems 694

C.3.1 Satisfiability Problem 694

C.3.2 Knapsack Problem 694

C.3.3 Max-Cut Problem 695

C.3.4 Traveling Salesman Problem 695

C.3.5 Quadratic Assignment Problem 695

C.3.6 Clustering Problem 696

XVI CONTENTS

C.4 Continuous Problems 696

C.4.1 Unconstrained Problems 696

C.4.2 Constrained Problems 697

References 699

Appendix D: Miscellany 701

D.l Exponential Families 701

D.2 Properties of Distributions 703

D.2.1 Tail Properties 703

D.2.2 Stability Properties 705

D.3 Cholesky Factorization 706

D.4 Discrete Fourier Transform, FFT, and Circulant Matrices 706

D.5 Discrete Cosine Transform 708

D.6 Differentiation 709

D.7 Expectation-Maximization (EM) Algorithm 711

D.8 Poisson Summation Formula 714

D.9 Special Functions 715

D.9.1 Beta Function B(a, ß) 715

D.9.2 Incomplete Beta Function Ix(α, β) 715

D.9.3 Error Function erf (a) 715

D.9.4 Digamma function φ{χ) 716

D.9.5 Gamma Function Γ(α) 716

D.9.6 Incomplete Gamma Function P(a, x) 716

D.9.7 Hypergeometric Function 2^1(0, &;c;z) 716

D.9.8 Confluent Hypergeometric Function 1F1 (a; 7; x) 717

D.9.9 Modified Bessel Function of the Second Kind Kv{x) 717

References 717

Acronyms and Abbreviations 719

List of Symbols 721

List of Distributions 724

Index 727

PREFACE

Many numerical problems in science, engineering, finance, and statistics are solved
nowadays through M o n t e Carlo methods; that is, through random experiments
on a computer. As the popularity of these methods continues to grow, and new
methods are developed in rapid succession, the staggering number of related tech-
niques, ideas, concepts, and algorithms makes it difficult to maintain an overall
picture of the Monte Carlo approach. In addition, the study of Monte Carlo tech-
niques requires detailed knowledge in a wide range of fields; for example, probability
to describe the random experiments and processes, statistics to analyze the data,
computational science to efficiently implement the algorithms, and mathematical
programming to formulate and solve optimization problems. This knowledge may
not always be readily available to the Monte Carlo practitioner or researcher.

The purpose of this Handbook is to provide an accessible and comprehensive
compendium of Monte Carlo techniques and related topics. It contains a mix of
theory (summarized), algorithms (pseudo + actual), and applications. The book
is intended to be an essential guide to Monte Carlo methods, to be used by both
advanced undergraduates and graduates/researchers to quickly look up ideas, pro-
cedures, formulas, pictures, etc., rather than purely a research monograph or a
textbook.

As Monte Carlo methods can be used in many ways and for many different
purposes, the Handbook is organized as a collection of independent chapters, each
focusing on a separate topic, rather than following a mathematical development.
The theory is cross-referenced with other parts of the book where a related topic is
discussed — the symbol »s· in the margin points to the corresponding page number.
The theory is illustrated with worked examples and MATLAB code, so that it is easy

xvii

XVÜi PREFACE

to implement in practice. The code in this book can also be downloaded from the
Handbook's website: www.montecarlohandbook.org.

Accessible references to proofs and literature are provided within the text and at
the end of each chapter. Extensive appendices on probability, statistics, and opti-
mization have been included to provide the reader with a review of the main ideas
and results in these areas relevant to Monte Carlo simulation. A comprehensive
index is given at the end of the book.

The Handbook starts with a discussion on uniform (pseudo)random number
generators, which are at the heart of any Monte Carlo method. We discuss what
constitutes a "good" uniform random number generator, give various approaches
for constructing such generators, and provide theoretical and empirical tests for
randomness. Chapter 2 discusses methods for generating quasirandom numbers,
which exhibit much more regularity than their pseudorandom counterparts, and
are well-suited to estimating multidimensional integrals. Chapter 3 discusses gen-
eral methods for random variable generation from arbitrary distributions, whereas
Chapter 4 gives a list of specific generation algorithms for the major univariate and
multivariate probability distributions. Chapter 5 lists the main random processes
used in Monte Carlo simulation, along with their properties and how to generate
them. Various Markov chain Monte Carlo techniques are discussed in Chapter 6, all
of which aim to (approximately) generate samples from complicated distributions.
Chapter 7 deals with simulation modeling and discrete event simulation, using the
fundamental random variables and processes in Chapters 4 and 5 as building blocks.
The simulation of such models then allows one to estimate quantities of interest
related to the system.

The statistical analysis of simulation data is discussed in Chapter 8, which sur-
veys a number of techniques available to obtain estimates and confidence intervals
for quantities of interest, as well as methods to test hypotheses related to the data.
Chapter 9 provides a comprehensive overview of variance reduction techniques for
use in Monte Carlo simulation. The efficient estimation of rare-event probabili-
ties is discussed in Chapter 10, including specific variance reduction techniques.
Chapter 11 details the main methods for estimating derivatives with respect to the
parameters of interest.

Monte Carlo is not only used for estimation but also for optimization. Chapter 12
discusses various randomized optimization techniques, including stochastic gradi-
ent methods, the simulated annealing technique, and the cross-entropy method.
The cross-entropy method, which relates rare-event simulation to randomized op-
timization, is further explored in Chapter 13, while Chapter 14 focuses on particle
splitting methods for rare-event simulation and combinatorial optimization.

Applications of Monte Carlo methods in finance and in network reliability are
given in Chapters 15 and 16, respectively. Chapter 17 highlights the use of Monte
Carlo to obtain approximate solutions to complex systems of differential equations.

Appendix A provides background material on probability theory and stochastic
processes. Fundamental material from mathematical statistics is summarized in
Appendix B. Appendix C reviews a number of key optimization concepts and tech-
niques, and presents some common optimization problems. Finally, Appendix D
summarizes miscellaneous results on exponential families, tail probabilities, differ-
entiation, and the EM algorithm.

DIRK KROESE, THOMAS TAIMRE, AND ZDRAVKO BOTEV

Brisbane and Montreal

September, 2010

ACKNOWLEDGMENTS

This book has benefited from the input of many people. We thank Tim Brere-
ton, Josh Chan, Nicolas Chopin, Georgina Davies, Adam Grace, Pierre L'Ecuyer,
Ben Petschel, Ad Ridder, and Virgil Stokes, for their valuable feedback on the
manuscript. Most of all, we would like to thank our families — without their
support, love, and patience this book could not have been written.

This work was financially supported by the Australian Research Council un-
der grant number DP0985177 and the Isaac Newton Institute for Mathematical
Sciences, Cambridge, U.K.

DPK, TT, ZIB

XIX

This page intentionally left blank

CHAPTER 1

UNIFORM RANDOM NUMBER
GENERATION

This chapter gives an overview of the main techniques and algorithms for generating
uniform random numbers, including those based on linear recurrences, modulo 2
arithmetic, and combinations of these. A range of theoretical and empirical tests
is provided to assess the quality of a uniform random number generator. We refer
to Chapter 3 for a discussion on methods for random variable generation from «®" 43
arbitrary distributions — such methods are invariably based on uniform random
number generators.

1.1 RANDOM NUMBERS

At the heart of any Monte Carlo method is a random number generator: a
procedure that produces an infinite stream

£/ 1 , [/ 2 , [/ 3 , . . .~Dist

of random variables that are independent and identically distributed (iid) according
to some probability distribution Dist. When this distribution is the uniform dis-
tribution on the interval (0,1) (that is, Dist = U(0,1)), the generator is said to be
a uniform random number generator. Most computer languages already con-
tain a built-in uniform random number generator. The user is typically requested
only to input an initial number, called the seed, and upon invocation the random

Handbook of Monte Carlo Methods. By D. P. Kroese, T. Taimre, Z. I. Botev 1
Copyright © 2011 John Wiley & Sons, Inc.

2 UNIFORM RANDOM NUMBER GENERATION

number generator produces a sequence of independent uniform random variables on
the interval (0,1). In MATLAB, for example, this is provided by the rand function.

The concept of an infinite iid sequence of random variables is a mathematical
abstraction that may be impossible to implement on a computer. The best one can
hope to achieve in practice is to produce a sequence of "random" numbers with
statistical properties that are indistinguishable from those of a true sequence of
iid random variables. Although physical generation methods based on universal
background radiation or quantum mechanics seem to offer a stable source of such
true randomness, the vast majority of current random number generators are based
on simple algorithms that can be easily implemented on a computer. Following
L'Ecuyer [10], such algorithms can be represented as a tuple (S,f^,U,g), where

• iS is a finite set of s tates ,

• / is a function from S to <S,

• μ is a probability distribution on S,

• U is the output space; for a uniform random number generator U is the
interval (0,1), and we will assume so from now on, unless otherwise specified,

• g is a function from S to U.

A random number generator then has the following structure:

Algor i thm 1.1 (Generic R a n d o m N u m b e r Generator)

1. Initialize: Draw the seed SQ from the distribution μ on S. Set t = 1.

2. Transition: Set St = f{St-i).

3. Output : SetUt = g(St).

4- Repea t : Set t = t + 1 and return to Step 2.

The algorithm produces a sequence U\, U2, U3,... of pseudorandom numbers
— we will refer to them simply as random numbers. Starting from a certain
seed, the sequence of states (and hence of random numbers) must repeat itself,
because the state space is finite. The smallest number of steps taken before enter-
ing a previously visited state is called the period length of the random number
generator.

1.1.1 Properties of a Good Random Number Generator

What constitutes a good random number generator depends on many factors. It
is always advisable to have a variety of random number generators available, as
different applications may require different properties of the random generator.
Below are some desirable, or indeed essential, properties of a good uniform random
number generator; see also [39].

1. Pass statistical tests: The ultimate goal is that the generator should produce
a stream of uniform random numbers that is indistinguishable from a genuine
uniform iid sequence. Although from a theoretical point of view this criterion
is too imprecise and even infeasible (see Remark 1.1.1), from a practical point

RANDOM NUMBERS 3

of view this means that the generator should pass a battery of simple statis-
tical tests designed to detect deviations from uniformity and independence.
We discuss such tests in Section 1.5.2.

2. Theoretical support: A good generator should be based on sound mathemat-
ical principles, allowing for a rigorous analysis of essential properties of the
generator. Examples are linear congruential generators and multiple-recursive
generators discussed in Sections 1.2.1 and 1.2.2.

3. Reproducible: An important property is that the stream of random numbers
is reproducible without having to store the complete stream in memory. This
is essential for testing and variance reduction techniques. Physical generation
methods cannot be repeated unless the entire stream is recorded.

4. Fast and efficient: The generator should produce random numbers in a fast
and efficient manner, and require little storage in computer memory. Many
Monte Carlo techniques for optimization and estimation require billions or
more random numbers. Current physical generation methods are no match
for simple algorithmic generators in terms of speed.

5. Large period: The period of a random number generator should be extremely
large — on the order of 1050 — in order to avoid problems with duplication
and dependence. Evidence exists [36] that in order to produce N random
numbers, the period length needs to be at least lOiV2. Most early algorithmic
random number generators „were fundamentally inadequate in this respect.

6. Multiple streams: In many applications it is necessary to run multiple in-
dependent random streams in parallel. A good random number generator
should have easy provisions for multiple independent streams.

7. Cheap and easy: A good random number generator should be cheap and not
require expensive external equipment. In addition, it should be easy to install,
implement, and run. In general such a random number generator is also more
easily portable over different computer platforms and architectures.

8. Not produce 0 or 1: A desirable property of a random number generator is
that both 0 and 1 are excluded from the sequence of random numbers. This
is to avoid division by 0 or other numerical complications.

Remark 1.1.1 (Computat ional Complexi ty) From a theoretical point of
view, a finite-state random number generator can always be distinguished from
a true iid sequence, after observing the sequence longer than its period. How-
ever, from a practical point of view this may not be feasible within a "reasonable"
amount of time. This idea can be formalized through the notion of computational
complexity; see, for example, [33].

1.1.2 Choosing a Good Random Number Generator

As Pierre L'Ecuyer puts it [12], choosing a good random generator is like choosing
a new car: for some people or applications speed is preferred, while for others
robustness and reliability are more important. For Monte Carlo simulation the
distributional properties of random generators are paramount, whereas in coding
and cryptography unpredictability is crucial.

4 UNIFORM RANDOM NUMBER GENERATION

Nevertheless, as with cars, there are many poorly designed and outdated mod-
els available that should be avoided. Indeed several of the standard generators
that come with popular programming languages and computing packages can be
appallingly poor [13].

Two classes of generators that have overall good performance are:

1. Combined multiple recursive generators, some of which have excellent statis-
tical properties, are simple, have large period, support multiple streams, and
are relatively fast. A popular choice is L'Ecuyer's MRG32k3a (see Section 1.3),
which has been implemented as one of the core generators in MATLAB (from
version 7), VSL, SAS, and the simulation packages SSJ, Arena, and Automod.

2. Twisted general feedback shift register generators, some of which have very
good equidistributional properties, are among the fastest generators available
(due to their essentially binary implementation), and can have extremely long
periods. A popular choice is Matsumoto and Nishimura's Mersenne twister
MT19937ar (see Section 1.2.4), which is currently the default generator in
MATLAB.

In general, a good uniform number generator has overall good performance, in
terms of the criteria mentioned above, but is not usually the top performer over
all these criteria. In choosing an appropriate generator it pays to remember the
following.

• Faster generators are not necessarily better (indeed, often the contrary is
true).

• A small period is in general bad, but a larger period is not necessarily better.

• Good equidistribution is a necessary requirement for a good generator but
not a sufficient requirement.

1.2 GENERATORS BASED ON LINEAR RECURRENCES

The most common methods for generating pseudorandom sequences use simple
linear recurrence relations.

1.2.1 Linear Congruential Generators

A linear congruential generator (LCG) is a random number generator of the
form of Algorithm 1.1, with state St = Xt G { 0 , . . . , m — 1} for some strictly positive
integer m called the modulus , and state transitions

Xt = (aXt-i +c) mod m , ί = 1,2, . . . , (1.1)

where the multiplier a and the increment c are integers. Applying the modulo-m
operator in (1.1) means that aXt~\ +c is divided by TO, and the remainder is taken
as the value for Xt. Note that the multiplier and increment may be chosen in the
set { 0 , . . . , TO — 1}. When c = 0, the generator is sometimes called a multipl icative
congruential generator. Most existing implementations of LCGs are of this form

GENERATORS BASED ON LINEAR RECURRENCES 5

— in general the increment does not have a large impact on the quality of an LCG.
The output function for an LCG is simply

■ EXAMPLE 1.1 (Minimal Standard LCG)

An often-cited LCG is that of Lewis, Goodman, and Miller [24], who proposed
the choice a = 75 = 16807, c = 0, and m = 23 1 - 1 = 2147483647. This LCG
passes many of the standard statistical tests and has been successfully used in
many applications. For this reason it is sometimes viewed as the minimal standard
LCG, against which other generators should be judged.

Although the generator has good properties, its period (231 — 2) and statistical
properties no longer meet the requirements of modern Monte Carlo applications;
see, for example, [20].

A comprehensive list of classical LCGs and their properties can be found on Karl
Entacher's website:

http : / / r a n d o m . m a t . s b g . a c . a t / r e s u l t s / k a r l / s e r v e r /

The following recommendations for LCGs are reported in [20]:

• All LCGs with modulus 2P for some integer p are badly behaved and should
not be used.

• All LCGs with modulus up to 26 1 « 2 x 1018 fail several tests and should be
avoided.

1.2.2 Multiple-Recursive Generators

A multiple-recursive generator (MRG) of order A; is a random number gen-
erator of the form of Algorithm 1.1, with state St = Xt = (Xt-k+i, ■ ■ ■ ,Xt)T £
{ 0 , . . . , TO — l} f c for some modulus TO and state transitions defined by

Xt = (a^Xt-i H h akXt-k) mod m , t = k,k + l,..., (1.2)

where the multipliers {OJ,Z
function is often taken as

The maximum period length for this generator is mk — 1, which is obtained if (a)
TO is a prime number and (b) the polynomial p(z) — zk — Σί=ι a,iZk~l is primitive
using modulo m arithmetic. Methods for testing primitivity can be found in [8,
Pages 30 and 439]. To yield fast algorithms, all but a few of the {a{\ should be 0.

MRGs with very large periods can be implemented efficiently by combining sev-
eral smaller-period MRGs (see Section 1.3).

1 , . . . , k} lie in the set { 0 , . . . , m — 1}. The output

Xt
TO

6 UNIFORM RANDOM NUMBER GENERATION

1.2.3 Matrix Congruential Generators

An MRG can be interpreted and implemented as a matr ix mult ipl icative con-
gruential generator, which is a random number generator of the form of Algo-
rithm 1.1, with state S t = X t € { 0 , . . . , m — l}k for some modulus m, and state
transitions

X t = (4 X t _ i) mod TO, ΐ = 1,2, . . . , (1.3)

where A is an invertible kxk matrix and Xt is a k x 1 vector. The output function
is often taken as

U t = * i , (1.4)
TO

yielding a vector of uniform numbers in (0,1). Hence, here the output space U for
the algorithm is (0, l)k. For fast random number generation, the matrix A should
be sparse.

To see that the multiple-recursive generator is a special case, take

A =

/ 0 1 ·

0 0
\flfc flfc-1 ·

·· o\

.. 1
·· aij

and X t —
(Xt \ Xt+l

\Xt+k-lJ

(1.5)

Obviously, the matrix multiplicative congruential generator is the fc-dimensional
generalization of the multiplicative congruential generator. A similar generaliza-
tion of the multiplicative recursive generator — replacing the multipliers {<ij} with
matrices, and the scalars {Xt} with vectors in (1.2) —, yields the class of matr ix
multiplicative recursive generators; see, for example, [34].

1.2.4 Modulo 2 Linear Generators

Good random generators must have very large state spaces. For an LCG this
means that the modulus TO must be a large integer. However, for multiple recursive
and matrix generators it is not necessary to take a large modulus, as the state
space can be as large as mk. Because binary operations are in general faster than
floating point operations (which are in turn faster than integer operations), it makes
sense to consider random number generators that are based on linear recurrences
modulo 2. A general framework for such random number generators is given in
[18], where the state is a fc-bit vector X t = {Xt,i, ■ ■ ■, Xt,k)T that is mapped via a
linear transformation to a w-bit output vector Y t = (it . i i · · · , Yt,w)T, from which
the random number Ut G (0,1) is obtained by bitwise decimation as follows. More
precisely, the procedure is as follows.

Algor i thm 1.2 (Generic Linear Recurrence M o d u l o 2 Generator)

1. Initialize: Draw the seed Xo from the distribution μ on the state space S ■
{0, l} f c . Sett = l.

2. Transition; Set X t = A X t _ i .

3. Output : Set Y t = ßX E and return

w

4- Repea t : Set t = t + 1 and return to Step 2.

file:///flfc

GENERATORS BASED ON LINEAR RECURRENCES 7

Here, A and B are kxk and wxk binary matrices, respectively, and all operations
are performed modulo 2. In algebraic language, the operations are performed over
the finite field F2, where addition corresponds to the bitwise XOR operation (in
particular, 1 + 1 = 0). The integer w can be thought of as the word length of the
computer (that is, w = 32 or 64). Usually (but there are exceptions, see [18]) k is
taken much larger than w.

■ EXAMPLE 1.2 (Linear Feedback Shift Register Generator)

The Tausworthe or linear feedback shift register (LFSR) generator is an MRG
of the form (1.2) with m = 2, but with output function

w

e=i

for some w ^ k and s ^ 1 (often one takes s = w). Thus, a binary sequence
Χο,Χι,... is generated according to the recurrence (1.2), and the ί-th "word"
{Xts, ■ ■ ■, Xts+w-i)T, t = 0 , 1 , . . . is interpreted as the binary representation of the
ί-th random number.

This generator can be put in the framework of Algorithm 1.2. Namely, the
state at iteration t is given by the vector X t = (Xts, ■ ■ ■, Xts+k-i)T, and the state
is updated by advancing the recursion (1.2) over s time steps. As a result, the
transition matrix A in Algorithm 1.2 is equal to the s-th power of the "1-step"
transition matrix given in (1.5). The output vector Y t is obtained by simply taking
the first w bits of X (; hence B = [Iw O œ x (£_„,)], where Iw is the identity matrix
of dimension w and Owx^-w) the w x (k — w) matrix of zeros.

For fast generation most of the multipliers {ai} are 0; in many cases there is
often only one other non-zero multiplier ar apart from α^, in which case

Xt = Xt-r Θ Xt-k , (1.6)

where ® signifies addition modulo 2. The same recurrence holds for the states
(vectors of bits); that is,

X* = X t - r ® Xt-fc >

where addition is defined componentwise.
The LFSR algorithm derives its name from the fact that it can be implemented

very efficiently on a computer via feedback shift registers — binary arrays that
allow fast shifting of bits; see, for example, [18, Algorithm L] and [7, Page 40].

Generalizations of the LFSR generator that all fit the framework of Algorithm 1.2
include the generalized feedback shift register generators [25] and the twis ted
versions thereof [30], the most popular of which are the Mersenne twisters [31].
A particular instance of the Mersenne twister, MT19937, has become widespread,
and has been implemented in software packages such as SPSS and MATLAB. It has a
huge period length of 2 1 9 9 3 7 — 1, is very fast, has good equidistributional properties,
and passes most statistical tests. The latest version of the code may be found at

h t t p : / / w w w . m a t h . s e i . h i r o s h i m a - u . a c . j p/~m-mat/MT/emt.html

Two drawbacks are that the initialization procedure and indeed the implementa-
tion itself is not straightforward. Another potential problem is that the algorithm

8 UNIFORM RANDOM NUMBER GENERATION

recovers too slowly from the states near zero. More precisely, after a state with
very few Is is hit, it may take a long time (several hundred thousand steps) before
getting back to some state with a more equal division between Os and Is. Some
other weakness are discussed in [20, Page 23].

The development of good and fast modulo 2 generators is important, both from
a practical and theoretical point of view, and is still an active area of research,
not in the least because of the close connection to coding and cryptography. Some
recent developments include the WELL (well-equidistributed long-period linear)
generators by Panneton et al. [35], which correct some weaknesses in MT19937, and
the SIMD-oriented fast Mersenne twister [38], which is significantly faster than
the standard Mersenne twister, has better equidistribution properties, and recovers
faster from states with many 0s.

1.3 COMBINED GENERATORS

A significant leap forward in the development of random number generators was
made with the introduction of combined generators. Here the output of several
generators, which individually may be of poor quality, is combined, for example by
shuffling, adding, and/or selecting, to make a superior quality generator.

■ EXAMPLE 1.3 (Wichman-Hi l l)

One of the earliest combined generators is the Wichman-Hill generator [41], which
combines three LCGs:

Xt = (171 Xt_x) mod mi (mi = 30269) ,

Yt = (172 Yt_i) mod m 2 (m2 = 30307) ,

Zt = (170 Z t _i) mod m 3 (m3 = 30323) .

These random integers are then combined into a single random number

TT Xt , Yt , Zt ,
Ut = 1 1 mod 1 .

mi m 2 ™3

The period of the sequence of triples (Xt,Yt, Zt) is shown [42] to be (mi — l) (m 2 —
l)("T-3 — l) / 4 ~ 6.95 x 1012, which is much larger than the individual periods. Zeisel
[43] shows that the generator is in fact equivalent (produces the same output) as
a multiplicative congruential generator with modulus m = 27817185604309 and
multiplier a = 16555425264690.

The Wichman-Hill algorithm performs quite well in simple statistical tests, but
since its period is not sufficiently large, it fails various of the more sophisticated
tests, and is no longer suitable for high-performance Monte Carlo applications.

One class of combined generators that has been extensively studied is that of
the combined multiple-recursive generators, where a small number of MRGs
are combined. This class of generators can be analyzed theoretically in the same
way as single MRG: under appropriate initialization the output stream of random
numbers of a combined MRG is exactly the same as that of some larger-period

COMBINED GENERATORS 9

MRG [23]. Hence, to assess the quality of the generator one can employ the same
well-understood theoretical analysis of MRGs. As a result, the multipliers and
moduli in the combined MRG can be searched and chosen in a systematic and
principled manner, leading to random number generators with excellent statistical
properties. An important added bonus is that such algorithms lead to easy multi-
stream generators [21].

In [12] L'Ecuyer conducts an extensive numerical search and detailed theoretical
analysis to find good combined MRGs. One of the combined MRGs that stood out
was MRG32k3a, which employs two MRGs of order 3,

Xt = (1403580 Xt-2 - 810728 Xt-3) mod mx (mx = 232 - 209 = 4294967087) ,

Yt = (527612 y t _ i - 1370589 Y"t_3) mod m 2 (m2 = 232 - 22853 = 4294944443) ,

and whose output is

Ut

The period length is approximately 3 x 1057. The generator MRG32k3a passes all
statistical tests in today's most comprehensive test suit TestUOl [20] (see also Sec-
tion 1.5) and has been implemented in many software packages, including MATLAB,
Mathematica, Intel's MKL Library, SAS, VSL, Arena, and Automod. It is also the
core generator in L'Ecuyer's SSJ simulation package, and is easily extendable to
generate multiple random streams. An implementation in MATLAB is given below.

D/,MRG32k3a.m
ml=2~32-209; m2=2"32-22853;
ax2p=1403580; ax3n=810728;
aylp=527612; ay3n=1370589;

X= [12345 12345 12345]; % I n i t i a l X
Y= [12345 12345 12345]; '/. I n i t i a l Y

N=100; % Compute t h e sequence fo r N s t e p s
U=ze ros (l ,N) ;
fo r t = l : N

Xt=mod(ax2p*X(2)-ax3n*X(3),ml);
Yt=mod(aylp*Y(l)-ay3n*Y(3),m2);
i f Xt <= Yt

U(t)=(Xt - Yt + m l) / (m l + l) ;
e l s e

U(t)=(Xt - Y t) / (m l + l) ;
end
X(2:3)=X(1:2) ; X(l)=Xt; Y(2:3)=Y(1

end
2) ; Y(l)=Yt;

= <

Xt-Yt + mi
mi + 1

Xt-Yt

if Xt < Yt,

if Xt>Yt-
m i + 1

1 0 UNIFORM RANDOM NUMBER GENERATION

Different types of generators can also be combined. For example, Marsaglia's
KISS99 (keep it simple stupid) generator [26] combines two shift register generators
with an LCG. This generator performs very well in TestUOl [20]. The following
MATLAB code implements the KISS99 generator.

7. KISS99.m
% Seeds : Correct variable types crucial !
A=uint32(12345); B=uint32(65435); Y=12345; Z=uint32(34221);
N=100; 7» Compute the sequence for N steps
U=zeros(l,N);

for t=l:N
’/, Two Multiply with. Carry Generators
A=36969*bitand(A,uint32(65535))+bitshift(A,-16);
B=18000*bitand(B,uint32(65535))+bitshift(B,-16);
7. MWC: Low and High 16 bits are A and B
X=bitshift(A,16)+B;

% CONG: Linear Congruential Generator
Y = mod(69069*Y+1234567,4294967296);
7. SHR3: 3-Shift Register Generator
Z=bitxor(Z,bitshift(Z,17));
Z=bitxor(Z,bitshift(Z,-13));
Z=bitxor(Z,bitshift(Z,5));
7. Combine them to form the KISS99 generator
KISS=mod(double(bitxor(X,uint32(Y)))+double(Z),4294967296):
U(t)=KISS/4294967296; 7. U[0,1] output

end

1.4 OTHER GENERATORS

Many variations on linear congruential methods have been proposed. Of the ones
not discussed in the previous section we mention the following:

• Multiply with carry: This is a variation of the LCG where the increment c
changes per iteration. Specifically, the recurrence is given by

Xt = {aXt-i + ct-i) mod m ,

where ct (the carry) satisfies, for a given lag k,

Ct = [(aXt-k + Ct-i)/m\, t ^ k .

• XOR shift: This is a generalization of an LFSR generator, and is a special
case of a matrix MRG [34], where the state at iteration t is given by a binary
vector X t satisfying the linear recursion

X t = 4 i X t _ f c l Θ · ■ ■ Θ ArXt-kr ,

where k\,..., kr are strictly positive integers and A\,..., Ar are either iden-
tity matrices or the products of XOR shift matrices.

TESTS FOR RANDOM NUMBER GENERATORS 1 1

• Lagged Fibonacci generators: This is a generalization of the LFSR generator
(1.6), where the XOR operator © is replaced by a general binary operator, for
example, the product.

More details on these generators can be found, for example, in [18, 29]. The above
generators in general do not pass all statistical tests for randomness in the test
suite TestUOl, but combining them, as for example in the KISS99 generator, may
produce high-quality generators. The multiply with carry and lagged Fibonacci
generators are known to have poor theoretical properties [11, 40].

Congruential generators based on nonlinear recurrences,

Xt = g{Xt-u ■ ■ -,Xt-k) mod m ,

for some nonlinear function g are currently not in much use in Monte Carlo sim-
ulations, since they tend to be slower, are more difficult to analyze theoretically,
and often fail empirical tests for uniformity. However, nonlinear generators are
important in cryptography, as the output sequence of linear congruential methods
is easy to predict — in particular, the parameters of a linear congruential method
can be easily estimated from previously generated output; see, for example, [29].

A famous nonlinear method in cryptography is that of Blum, Blum, and Shub
[2], who proposed the quadratic recurrence

Xt = Xf-i mod τη ,

where m = pq and p and q are (large) primes that divided by 4 give a remainder of
3 (so-called B l u m primes; for example, p = 1267650600228229401496703981519
and q = 1267650600228229401496704318359). Each iteration of the Blum-Blum-
Shub generator produces only one bit of output, being either the even or odd bit
parity, or the last bit (least significant bit) of Xt. It is shown in [2] that the output
sequence of such a generator is not predictable in polynomial time. The generator
is not appropriate for Monte Carlo simulation, due to its low speed.

Another example of a nonlinear congruential generator is the inverse congru-
ential generator where the recurrence is of the form

Xt = {aX^_l + c) mod m ,

where X~ is the multiplicative inverse of X modulo m (that is, XX~ = 1 mod m
if it exists, or 0 otherwise). A survey of nonlinear generators may be found in [4].

1.5 TESTS FOR RANDOM NUMBER GENERATORS

The quality of random number generators can be assessed in two ways. The first
is to investigate the theoretical properties of the random number generator. Such
properties include the period length of the generator and various measures of uni-
formity and independence. This type of random number generator testing is called
theoretical , as it does not require the actual output of the generator but only
its algorithmic structure and parameters. Powerful theoretical tests are only fea-
sible if the generators have a sufficiently simple structure, such as those of linear
congruential and multiple-recursive methods and combined versions thereof.

A second type of test involves the application of a battery of statistical tests to
the output of the generator, with the objective to detect deviations from uniformity
and independence. Such tests are said to be empirical.

1 2 UNIFORM RANDOM NUMBER GENERATION

1.5.1 Spectral Test

One of the most useful theoretical tests concerns the structural properties of the
generator. Suppose that Uo,Ui,..., is the sequence of numbers produced by a
random number generator. It is well known [3, 5, 9, 27] that if the generator is of
LCG or MRG type, then vectors of successive values Uo = (Uo,..., t / d - i) T , U i =
(f / i , . . . , Ud)T,..., lie on a d-dimensional lattice; that is, a set L C Rd of the form

L= y^Zihi, zi,...,zd e Z >

for some set of linearly independent basis vectors b i , . . . ,b<£. In other words,
the elements of L are simply linear combinations of the basis vectors, using only
integer coefficients. The lattice L is said to be generated by the basis matrix
S = (b 1 , . . . , b d) .

For an MRG satisfying the recursion (1.2), the basis vectors can be chosen as
[15]

b 1 = (l , 0 , . . . , 0 , X l i f c , . . . , X i , d _ i) T / m

bfc = (0 , 0 , . . . , 1, Xk,k, ■■■, Χπ,ά-ι)1/m

b f c + 1 = (0 , 0 , . . . , 0 , l , . . . , 0) T

b d = (0 , 0 , . . . , 0 , 0 , . . . , l) T ,

where Xi$, Xi,i,... is the sequence of states produced by the generator when start-
ing with states Xi = 1, Xt = 0, t ψ i, t < fc.

For a good generator the set L Π (0, l)d should cover the d-dimensional unit
hypercube (0, l)d in a uniform manner. One way to quantify this is to measure the
distance between hyperplanes in the lattice L. The maximal distance between such
hyperplanes is called the spectral gap, denoted here as gd- A convenient way to
compute the spectral gap is to consider first the dual latt ice of L, which is the
lattice generated by the inverse matrix of B. The dual lattice is denoted by L*.
Each vector v in L* defines a family of equidistant hyperplanes in L, at a distance
l / | |v | | apart. Hence, the length of the shortest non-zero vector in L* corresponds
to l/gd.

For any d-dimensional lattice with m points there is a lower bound g*d on the
spectral gap for dimension d. Specifically, for dimensions less than 8 it can be shown
(see, for example, [8, Section 3.3.4]) that Sd ^ 3*d — Id va~xld, where 7 1 , . . . ,7§
take the values

1, (4/3) 1 / 2 , 2 1 / 3 , 2 1 / 2 , 2 3 / 5 , (64/3)1 /6 , 4 3 / 7 , 2 .

An often-used figure of merit for the quality of a random number generator is
the quotient

9d 9άπι^ά
Ί\

12

or the minimum of K of such values: S = m i n u i t Sd, where K ^ 8. High values
of S (close to 1) indicate that the generator has good structural properties.

The following example illustrates the main points; see also [8, Section 3.3.4].

TESTS FOR RANDOM NUMBER GENERATORS 1 3

■ EXAMPLE 1.4 (Lattice Structure and Spectral Gap)

Consider the LCG (1.1) with a = 3, c = 0, and m = 31. For d = 2, the correspond-
ing lattice is generated by the basis matrix

B
1/m 0
a/m 1

since this LCG is an MRG with fc = 1 and X ^ i = a/m. The dual lattice, which is
depicted in Figure 1.1, is generated by the basis matrix

B~l =
m 0
-a 1

Figure 1.1 The dual lattice L*

The shortest non-zero vector in L* is (—3,1)T; hence, the spectral gap for dimen-
sion 2 is 52 = l /λ/ΪΟ « 0.316. Figure 1.2 shows the normalized vector g\ (—3,1)T

to be perpendicular to hyperplanes in L that are a distance gi apart. The figure of
merit S2 is here 3 1 / 4(5/31) 1 / 2 « 0.53.

0.6-

0.4-

0.2-

0.2 0.4 0.6 O.i

Figure 1.2 The lattice L truncated to the unit square. The length of the arrow
corresponds to the spectral gap.

1 4 UNIFORM RANDOM NUMBER GENERATION

In order to select a good random number generator, it is important that the
spectral gap is computed over a range of dimensions d. Some generators may
display good structure at lower dimensions and bad structure at higher dimensions
(the opposite is also possible). A classical example is IBM's RANDU LCG, with
a = 21 6 + 3, c = 0, and m = 23 1 , which has reasonable structure for d = 1 and 2,
but bad structure for d = 3; the latter is illustrated in Figure 1.3.

Figure 1.3 Structural deficiency of RANDU.

Structural properties of combined MRGs can be analyzed in the same way, as
such generators are equivalent (under appropriate initialization conditions) to a
single MRG with large modulus [23].

The computational effort required to compute the spectral gap grows rapidly
with the dimension d and becomes impractical for dimensions over about 60. A
fast implementation for analyzing the lattice structure of LCGs and MRGs is the
LatMRG software package described in [17].

Modulo 2 linear generators do not have a lattice structure in Euclidean space,
but they do in the space of formal power series. Much of the theory and algorithms
developed for lattices in Rd carries over to the modulo 2 case [14].

Other theoretical tests of random number generators include discrepancy tests
[32] and serial correlation tests [8, Section 3.3.3]. See also [1].

1.5.2 Empirical Tests

While theoretical tests are important for the elimination of bad generators and the
search for potentially good generators [6, 12], the ultimate goal remains to find
uniform random number generators whose output is statistically indistinguishable
(within reasonable computational time) from a sequence of iid uniform random
variables. Hence, any candidate generator should pass a wide range of statistical
tests that examine uniformity and independence. The general structure of such
tests is often of the following form.

TESTS FOR RANDOM NUMBER GENERATORS 1 5

Algori thm 1.3 (Two-Stage Empirical Test for Randomness) Suppose that
U = {Ui} represents the output stream of the uniform random generator. Let
HQ be the hypothesis that the {Ui} are iid from a U(0,1) distribution. Let Z be
some deterministic function o / U .

1. Generate N independent copies Z\,..., Z^ of Z and evaluate a test statistic
T = T(Zi,..., ZJV) for testing HQ versus the alternative that Ho is not true.
Suppose that under H0 the test statistic T has distribution or asymptotic (for
large N) distribution Disto.

2. Generate K independent copies ΧΊ , . . . , Τχ ofT and perform a goodness of fit
test to test the hypothesis that the {T{} are iid from Disto-

Such a test procedure is called a two-stage or second-order statistical test.
The first stage corresponds to an ordinary statistical test, such as a χ2 goodness of
fit test, and the second stage combines K such tests by means of another goodness
of fit test, such as the Kolmogorov-Smirnov or Anderson-Darling test; see also
Section 8.7.2. The following example demonstrates the procedure. <®° 336

■ EXAMPLE 1.5 (Binary Rank Test for the drand48 Generator)

The default random number generator in the C library is drand48, which imple-
ments an LCG with a = 25214903917, m = 24 8 , and c = 11. We wish to examine
if the output stream of this generator passes the binary rank test described in Sec-
tion 1.5.2.11. For this test, the sequence U\,Ü2,··· is first transformed to a binary
sequence Bi,B2, ■ ■ ., for example, by taking Bi = I{t/f<i/2}> and then the {Bi} are
arranged in a binary array, say with 32 rows and 32 columns. The first row of the
matrix is B\,..., B32, the second row is -B33,... BQ4, etc. Under Ho the distribution
of the rank (in modulo 2 arithmetic) R of this random matrix is given in (1.9). We
generate N = 200 copies of R, and divide these into three classes: R ^ 30, R = 31,
and R = 32. The expected number of ranks in these classes is by (1.9) equal to
£Ί = 200 x 0.1336357, E2 = 200 x 0.5775762, and E3 = 200 x 0.2887881. This is
compared with the observed number of ranks 0\, O2, and O3, via the χ2 goodness
of fit statistic

T = j:(o1_3l. (1.7)
i=\ l

Under HQ, the random variable T approximately has a y j distribution (the number "3° 341
of degrees of freedom is the number of classes, 3, minus 1). This completes the first
stage of the empirical test.

In the second stage, K = 20 replications of T are generated. The test statistics
for the x2 test were 2.5556, 11.3314, 146.2747, 24.9729, 1.6850, 50.7449, 2.6507,
12.9015, 40.9470, 8.3449, 11.8191, 9.4470, 91.1219, 37.7246, 18.6256, 1.2965, 1.2267,
0.8346, 23.3909, 14.7596.

Notice that the null hypothesis would not be rejected if it were based only on
the first outcome, 2.5556, as the p-value, P H 0 (T > 2.5556) « 0.279 is quite large
(and therefore the observed outcome is not uncommon under the null hypothesis).
However, other values, such as 50.7449 are very large and lead to very small p-
values (and a rejection of HQ). The second stage combines these findings into a
single number, using a Kolmogorov-Smirnov test, to test whether the distribution

1 6 UNIFORM RANDOM NUMBER GENERATION

of T does indeed follow a χ | distribution. The empirical cdf (of the 20 values
for T) and the cdf of the χ | distribution are depicted in Figure 1.4. The figure
shows a clear disagreement between the two cdfs. The maximal gap between the
cdfs is 0.6846 in this case, leading to a Kolmogorov-Smirnov test statistic value
of V2Ô x 0.6846 ss 3.06, which gives a p-value of around 3.7272 x 10" 9 , giving
overwhelming evidence that the output sequence of the drand48 generator does
not behave like an iid U(0,1) sequence.

Figure 1.4 Kolmogorov-Smirnov test for the binary rank test using the drand48
generator.

By comparison, we repeated the same procedure using the default MATLAB gen-
erator. The result of the Kolmogorov-Smirnov test is given in Figure 1.5. In this
case the empirical and theoretical cdfs have a close match, and the p-value is large,
indicating that the default MATLAB generator passes the binary rank test.

Figure 1.5 Kolmogorov-Smirnov test for the binary rank test using the default MATLAB
random number generator (in this case the Mersenne twister).

TESTS FOR RANDOM NUMBER GENERATORS 1 7

Today's most complete library for the empirical testing of random number gen-
erators is the TestUOl software library by L'Ecuyer and Simard [20]. The library
is comprised of three predefined test suites: Small Crush, Crush, and Big Crush,
in increasing order of complexity. TestUOl includes the standard tests by Knuth
[8, Section 3.3.2], and adapted version of the Diehard suite of tests by Marsaglia
[28], the ones implemented by the National Institute of Standards and Technology
(NIST) [37], and various other tests.

We conclude with a selection of empirical tests. Below, UQ, U\,... is the original
test sequence. The null hypothesis Ho is that {Ui} ~üd U(0,1). Other random
variables and processes derived from the {Ui} are:

• Yo> Yi, ■ ■ ■ > with Yi = [mUi\, i = 0 , 1 , . . . , for some integer (size) m ^ 1. Under
HQ the {Yi} are iid with a discrete uniform distribution on { 0 , 1 , . . . , m — 1}.

• Uo, U i , . . . , with \Ji = (Uid, ■ ■ ■, Uid+d-i), i = 0 , 1 , . . . for some dimension
d > 1. Under HQ the {U;} are independent random vectors, each uniformly
distributed on the d-dimensional hypercube (0, l)d.

• Y 0 , Y i , . . . , with Yi = (Yid,..., y i d + d _ i) , i = 0 , 1 , . . . for some dimension
d ^ 1. Under HQ the {Y,} are independent random vectors, each from the
discrete uniform distribution on the d-dimensional set { 0 , 1 , . . . , m — l}d.

1.5.2.1 Equidistribution (or Frequency) Tests This is to test whether the {Ui} have
a U(0,1) distribution. Two possible approaches are:

1. Apply a Kolmogorov-Smirnov test to ascertain whether the empirical cdf of
i/o, · · ·, Un-i matches the theoretical cdf of the 11(0,1) distribution; that is,
F(x) =x, 0 sC x ίξ 1.

2. Apply a χ2 test on YQ, . . . , Yn-i, comparing for each k = 0 , . . . , m — 1 the
observed number of occurrences in class k, Ok = ΣΓ=ό ^{Vi=fc}' w i t h the
expected number Ek = n/m. Under HQ the χ2 statistic (1.7) asymptotically
has (as n —► oo) a χ2

η_ι distribution.

1.5.2.2 Serial Tests This is to test whether successive values of the random
number generator are uniformly distributed. More precisely, generate vectors
Y o , . . . , Y n - i for a given dimension d and size m. Count the number of times
that the vector Y satisfies Y = y, for y 6 { 0 , . . . ,m — l}d, and compare with
the expected count n/md via a χ2 goodness of fit test. It is usually recommended
that each class should have enough samples, say at least 5 in expectation, so that
n ^ 5md; however, see [22] for sparse serial tests. Typically, d is small, say 2 or 3.

1.5.2.3 Nearest Pairs Tests This is to detect spatial clustering (or repulsion) of
the {Uj} vectors. Generate points (vectors) U o , . . . , U n _ i in the d-dimensional
unit hypercube (0, l)d. For each pair of points Uj = (Un,..., Uid)T and XJj =
(Uji,..., Ujd)T let Dij be the distance between them, defined by

D = i[T,î=i(™H\Uik-ujk\,i-\Uik-ujk\}y]1/P if i^p<oo
[max.d.=1nnn{\Uik-Ujk\,l-\Uik-Ujk\} if p = oo ,

for some 1 ^ p ^ oo. This corresponds to the IP norm on the torus (0, l) d , whereby
opposite sides of the unit hypercube are identified.

1 8 UNIFORM RANDOM NUMBER GENERATION

For t > 0, let Nt be the number of pairs (i,j) with i < j such that D ^ ^ (t/X)1^,
where λ = n(n - 1)1^/2 and Vd = [2Γ(1 + l / p)] d / r (l + d/p) (corresponding to
the volume of the unit e?-ball in Lp norm). It can be shown [16] that under HQ
the stochastic process {Nt,0 ζ t ^ i i } converges in distribution (as n —> oo)
to a Poisson process with rate 1, for any fixed choice of t\. It follows that if
Τχ,Τζ,... are the jump times of {Nt}, then the spacings Ai = Τί — 7i_ i , i = 1,2 . . .
are approximately iid Exp(l) distributed and the transformed spacings Z, = 1 —
exp(—Ai), i = 1 ,2 . . . are approximately iid U(0,1) distributed.

The q-nearest pair test assesses the hypothesis that the first q transformed
spacings, Z±,...,Zq, are iid from U(0,1), by using a Kolmogorov-Smirnov or
Anderson-Darling test statistic. By creating N copies of the test statistic, a two-
stage test can be obtained.

Typically, ranges for the testing parameters are l ^ ç ^ 8 , 1 ^ ./V ^ 30,
2 ^ d ^ 8, and 103 ^ n ^ 105. The choice p = oo is often convenient in terms of
computational speed. It is recommended [16] that n > 4q2y/N.

1.5.2.4 Gap Tests Let Τχ,Τ2,... denote the times when the output process
Uo,Ui,..., visits a specified interval (a, ß) c (0,1), and let Ζχ,Ζ-ι,... denote the
gap lengths between subsequent visits; that is, Z, = Tj — Tj_i — 1, i = 1 ,2 , . . . , with
To = 0. Under HQ, the {Zi} are iid with a Geomo(p) distribution, with p = β — a;
that is,

ψ(Ζ = ζ)=ρ(1-ρ)ζ
: 2 = 0 , 1 , 2 ,

The gap test assesses this hypothesis by tallying the number of gaps that fall in
certain classes. In particular, a χ2 test is performed with classes Z = 0, Z =
1 , . . . , Z = r — 1, and Z ^ r, with probabilities p(l — p)z, z = 0 , . . . , r — 1 for the
first r classes and (1 — p)r for the last class. The integers n and r should be chosen
so that the expected number per class is ^ 5.

When a = 0 and β = 1/2, this is sometimes called runs above the mean, and
when a = 1/2 and β = 1 this is sometimes called runs be low the mean.

1.5.2.5 Poker or Partition Tests Consider the sequence of ci-dimensional vectors
Y i , . . . , Y n , each taking values in { 0 , . . . , m — l}d. For such a vector Y , let Z be
the number of distinct components; for example if Y = (4 ,2 ,6 ,4 ,2 ,5 ,1 ,4) , then
Z = 5. Under HQ, Z has probability distribution

m(m — 1) · · ■ (TO — z + 1)< >

F(Z = z) = -d ^ - , z = l , . . . ,m in{ r f ,m} . (1.8)

Here, {^} represents the Stirling number of the second kind, which gives the
number of ways a set of size d can be partitioned into z non-empty subsets. For
example, {2} = 7. Such Stirling numbers can be expressed in terms of binomial
coefficients as

Using the above probabilities, the validity of HQ can now be tested via a χ2 test.

1.5.2.6 Coupon Collector's Tests Consider the sequence Yi, Yâ, . . . , each Y, taking
values in { 0 , . . . , TO — 1}. Let T be the first time that a "complete" set { 0 , . . . , m— 1}

TESTS FOR RANDOM NUMBER GENERATORS 1 9

is obtained among Υχ,..., Yj·. The probability that (Υχ, . . . , Yj) is incomplete is,
by (1.8), equal to P(T > t) = 1 - m l j ^ J / m ' , so that

W r T 1 , m! f ί - 1 "I

m1 [m — 1J

The coupon collector's test proceeds by generating successive times T\,...,Tn

and applying a χ2 goodness of fit test using classes T = t, t = m,... ,r — 1 and
T > r — 1, with probabilities given above.

1.5.2.7 Permutation Tests Consider the d-dimensional random vector U =
(Ui,..., Ud)T■ Order the components from smallest to largest and let Π be the
corresponding ordering of indices. Under HQ,

Ρ (Π = IT) = — for all permutations π .

The permutation test assesses this uniformity of the permutations via a χ2 goodness
of fit test with d\ permutation classes, each with class probability 1/d!.

1.5.2.8 Run Tests Consider the sequence Ui,U~2, Let Z be the run-up
length; that is, Z = min{fc : Uk+i < Uk}- Under HQ, ¥(Z > z) = l/z\, so
that

P(Z = ,) = i - ^ , , = 1 , 2 ,

In the run test, n of such run lengths Z\,...,Zn are obtained, and a χ2 test is
performed on the counts, using the above probabilities. It is important to start
from fresh after each run. In practice this is done by throwing away the number
immediately after a run. For example the second run is started with Uzx+i rather
than Uz1+i, since the latter is not U(0,1) distributed, as it is by definition smaller
than Uz1 ■

1.5.2.9 Maximum-of-d Tests Generate U i , . . . , U n for some dimension d. For
each U = {U\,..., Ud)T let Z = max{f / i , . . . , Uj} be the maximum. Under HQ, Z
has cdf

F(z) = P(Z ^z)=zd, 0 < z ^ 1 .

Apply the Kolmogorov-Smirnov test to Zj_,..., Zn with distribution function F{z).
Another option is to define Wk — Z£ and apply the equidistribution test to
Wu...,Wn.

1.5.2.10 Collision Tests Consider a sequence of (/-dimensional vectors Υ χ , . . . , Y;,,
each taking values in { 0 , . . . , m — l } d . There are r = md possible values for each Y .
Typically, r » i > . Think of throwing b balls into r urns. As there are many more
urns than balls, most balls will land in an empty urn, but sometimes a "collision"
occurs. Let C be the number of such collisions. Under Ho the probability of c
collisions (that is, the probability that exactly b — c urns are occupied) is given, as
in (1.8), by

r{r-l)---(r-{b-c) + l)\h
b }

¥{C = c) = \ ^ = £ i , c = 0 , . . . , b - 1 .

2 0 UNIFORM RANDOM NUMBER GENERATION

A χ2 goodness of fit test can be applied to compare the empirical distribution of n
such collision values, C i , . . . , C„, with the above distribution under Ho- One may
need to group various of the classes C = cm order to obtain a sufficient number of
observations in each class.

1.5.2.11 Rank of Binary Matrix Tests Transform the sequence Ui,U2,... to a bi-
nary sequence £?i, B2, ■ ■ . and arrange these in a binary array of dimension r x c
(assume r ^ c). Under HQ the distribution of the rank (in modulo 2 arithmetic) Z
of this matrix is given by

z~ 1 (Λ _ 9 1 - c W i _ oi—τ\

Ψ(Ζ = z) = 2^-^-r) Π [L \ _>K >-, z = 0,l,...,r. (1.9)
i =0

"S" 632 This can be seen, for example, by defining a Markov chain {Zt,t = 0 , 1 , 2 , . . . } ,
starting at 0 and with transition probabilities Pi^ = 2~c+l and Pi^+i = 1 — 2 _ c + î ,
i = 0 , . . . , r. The interpretation is that Zt is the rank of a t x c matrix which is
constructed from a (£ — 1) x c matrix by adding a 1 x c random binary row; this row
is either dependent on the £ — 1 previous rows (rank stays the same) or not (rank
is increased by 1). The distribution of Zr corresponds to (1.9).

For c = r = 32 we have

P(Z ^ 30) « 0.1336357

P(Z = 31) « 0.5775762

¥{Z = 32) « 0.2887881 .

These probabilities can be compared with the observed frequencies, via a χ2 good-
ness of fit test.

1.5.2.12 Birthday Spacings Tests Consider the sequence Υ ί , . . . , Yn taking values
in {0, . . . , m — 1}. Sort the sequence as Y(i) ^ . . . ^ Y(n) and define spacings
5Ί = Y(2) - V(i) , . . . , 5„_ι = y (n) - Y(n-i), and S„ = Yw +m- Y{n). Sort the
spacings and denote them as S(i) ^ . . . ^ 5(n)·

Let R be the number of times that we have Sy) = S(j-i) for j = 1 , . . . , n. The
distribution of R depends on m and n, but for example when m = 22 5 and n = 512,
we have [8, Page 71]:

V(R = 0) « 0.368801577

F(R = 1) « 0.369035243

V(R = 2) w 0.183471182

V(R > 3) « 0.078691997 .

The idea is to repeat the test many times, say N = 1000, and perform a χ2 test
on the collected data. Asymptotically, for large n, R has a Ροί(λ) distribution, with
λ = n 3 / (4m) , where λ should not be large; see [8, Page 570]. An alternative is to
use N = 1 and base the decision whether to reject HQ or not on the approximate
p-value V(R ^ r) « 1 - 5^fc=oe"À/^fc/^' (reject ifo for small values). As a rule
of thumb [19] the Poisson approximation is accurate when m ^ (4NX)4; that is,
Nn3 ^ m 5 / 4 .

REFERENCES 2 1

Further Reading

The problem of producing a collection of random numbers has been extensively
studied, though as von Neumann said: "Any one who considers arithmetical meth-
ods of producing random digits is, of course, in a state of sin." Nevertheless, we
can produce numbers that are "sufficiently random" for much of the Monte Carlo
simulation that occurs today. A comprehensive overview of random number gener-
ation can be found in [15]. The poor lattice structure of certain linear congruential
generators was pointed out in [36], adding the concept of "good lattice structure"
to the list of qualities a generator ought to have. Afflerbach [1] discusses a num-
ber of theoretical criteria for the assessment of random number generators. The
celebrated Mersenne twister was introduced in [31], paving the way for generators
with massive periods, which have become a necessity in the random number hungry
world of Monte Carlo. A discussion of good multiple-recursive generators can be
found in [12]. Niederreiter [33] covers many theoretical aspects of random number
sequences, and Knuth [8] gives a classic treatment, discussing both the generation
of random numbers and evaluation of the quality of same through the use of the-
oretical and empirical tests. The book by Tezuka [39] is exclusively on random
numbers and proves a handy aid when implementing generators and tests. Books
by Fishman [5] and Gentle [7] discuss the generation of random numbers for use in
Monte Carlo applications. Our treatment of the spectral test draws from [5].

REFERENCES

1. L. Afflerbach. Criteria for the assessment of random number generators. Journal of
Computational and Applied Mathematics, 31(1):3-10, 1990.

2. L. Blum, M. Blum, and M. Shub. A simple unpredictable pseudo-random number
generator. SI AM Journal on Computing, 15(2):364-383, 1986.

3. R. R. Coveyou and R. D. MacPherson. Fourier analysis of uniform random number
generators. Journal of the ACM, 14(1):100-119, 1967.

4. J. Eichenauer-Herrmann. Pseudorandom number generation by nonlinear methods.
International Statistics Review, 63(2):247-255, 1985.

5. G. S. Fishman. Monte Carlo: Concepts, Algorithms and Applications. Springer-
Verlag, New York, 1996.

6. G. S. Fishman and L. R. Moore III. An exhaustive analysis of multiplicative congru-
ential random number generators with modulus 231 — 1. SI AM Journal on Scientific
and Statistical Computing, 7(l):24-45, 1986.

7. J. E. Gentle. Random Number Generation and Monte Carlo Methods. Springer-
Verlag, New York, second edition, 2003.

8. D. E. Knuth. The Art of Computer Programming, volume 2: Seminumerical Algo-
rithms. Addison-Wesley, Reading, MA, third edition, 1997.

9. P. L'Ecuyer. Random numbers for simulation. Communications of the ACM,
33(10):85-97, 1990.

10. P. L'Ecuyer. Uniform random number generation. Annals of Operations Research,
53(1):77-120, 1994.

11. P. L'Ecuyer. Bad lattice structure for vectors of non-successive values produced by
linear recurrences. INFORMS Journal of computing, 9(l):57-60, 1997.

2 2 UNIFORM RANDOM NUMBER GENERATION

12. P. L'Ecuyer. Good parameters and implementations for combined multiple recursive
random number generators. Operations Research, 47(1):159 - 164, 1999.

13. P. L'Ecuyer. Software for uniform random number generation: distinguishing the good
and the bad. In B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, editors,
Proceedings of the 2001 Winter Simulation Conference, pages 95-105, Arlington, VA,
December 2001.

14. P. L'Ecuyer. Polynomial integration lattices. In H. Niederreiter, editor, Monte Carlo
and Quasi-Monte Carlo methods, pages 73-98, Berlin, 2002. Springer-Verlag.

15. P. L'Ecuyer. Handbooks in Operations Research and Management Science: Simula-
tion. S. G. Henderson and B. L. Nelson, eds., chapter 3: Random Number Genera-
tion. Elsevier, Amsterdam, 2006.

16. P. L'Ecuyer, J .-F. Cordeau, and R. Simard. Close-point spatial tests and their appli-
cation to random number generators. Operations Research, 48(2):308-317, 2000.

17. P. L'Ecuyer and R. Couture. An implementation of the lattice and spectral tests for
multiple recursive linear random number generators. INFORMS Journal on Comput-
ing, 9(2):206-217, 1997.

18. P. L'Ecuyer and F. Panneton. F2-linear random number generators. In C. Alexopou-
los, D. Goldsman, and J. R. Wilson, editors, Advancing the Frontiers of Simulation:
A Festschrift in Honor of George Samuel Fishman, pages 175-200, New York, 2009.
Springer-Verlag.

19. P. L'Ecuyer and R. Simard. On the performance of bir thday spacings tests with
certain families of random number generators. Mathematics and Computers in Sim-
ulation, 55(1-3):131-137, 2001.

20. P. L'Ecuyer and R. Simard. TestUOl: A C library for empirical testing of random
number generators. ACM Transactions on Mathematical Software, 33(4), 2007. Arti-
cle 22.

21. P. L'Ecuyer, R. Simard, E. J. Chen, and W. W. Kelton. An object-oriented random-
number package with many long streams and substreams. Operations Research,
50(6):1073-1075, 2002.

22. P. L'Ecuyer, R. Simard, and S. Wegenkittl. Sparese serial tests of uniformity for
random number generators. SIAM Journal of Scientific Computing, 24(2):652-668,
2002.

23. P. L'Ecuyer and S. Tezuka. Structural properties for two classes of combined random
number generators. Mathematics of Computation, 57(196):735-746, 1991.

24. P. A. Lewis, A. S. Goodman, and J. M. Miller. A pseudo-random number generator
for the system/360. IBM Systems Journal, 8(2): 136-146, 1969.

25. T. G. Lewis and W. H. Payne. Generalized feedback shift register pseudorandom
number algorithm. Journal of the ACM, 20(3):456-468, 1973.

26. G. Marsaglia. KISS99. h t t p : / / g r o u p s . g o o g l e . c o m / g r o u p / s c i . s t a t . m a t h / m s g /
b555f463a2959bb7/.

27. G. Marsaglia. Random numbers fall mainly in the planes. Proceedings of the National
Academy of Sciences of the United States of America, 61(l) :25-28, 1968.

28. G. Marsaglia. DIEHARD: A bat tery of tests of randomness, 1996. h t t p : / / w w w . s t a t .
f s u . e d u / p u b / d i e h a r d / .

29. G. Marsaglia. Random number generators. Journal of Modern Applied Statistical
Methods, 2(1):2-13, 2003.

30. M. Matsumoto and Y. Kurita. Twisted GFSR generators. ACM Transactions on
Modeling and Computer Simulation, 2(3):179-194, 1992.

http://groups.google.com/group/sci.stat.math/msg/
http://www.stat

REFERENCES 23

31. M. Matsumoto and T. Nishimura. Mersenne twister: A 623-dimensionally equidis-
tributed uniform pseudo-random number generator. A CM Transactions on Modeling
and Computer Simulation, 8(l):3-30, 1998.

32. H. Niederreiter. Recent trends in random number and random vector generation.
Annals of Operations Research, 31(l):323-345, 1991.

33. H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods.
SIAM, Philadelphia, 1992.

34. H. Niederreiter. New developments in uniform pseudorandom number and vector gen-
eration. In H. Niederreiter and P. J.-S. Shiue, editors, Monte Carlo and Quasi-Monte
Carlo Methods in Scientific Computing, pages 87-120, New York, 1995. Springer-
Verlag.

35. F. Panneton, P. L'Ecuyer, and M. Matsumoto. Improved long-period generators
based on linear reccurences modulo 2. ACM Transactions on Mathematical Software,
32(1):1-16, 2006.

36. B. D. Ripley. The lattice structure of pseudo-random number generators. Proceedings
of the Royal Society, Series A, 389(1796):197-204, 1983.

37. A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Van-
gel, D. Banks, A. Heckert, J. Dray, and S. Vo. A statistical test suite for random
and pseudorandom number generators for cryptographic applications. NIST special
publication 800-22, National Institute of Standards and Technology, Gaithersburg,
Maryland, USA, 2001. http:/ /csrc.nist .gov/rng/ .

38. M. Saito and M. Matsumoto. SIMD-oriented fast Mersenne twister: a 128-bit pseu-
dorandom number generator. In Monte Carlo and Quasi-Monte Carlo Methods 2006,
pages 607 - 622, Berlin, 2008. Springer-Verlag.

39. S. Tezuka. Uniform Random Numbers: Theory and Practice. Springer-Verlag, New
York, 1995.

40. S. Tezuka, P. L'Ecuyer, and R. Couture. On the add-with-carry and subtract-with-
borrow random number generators. ACM Transactions on Modeling and Computer
Simulation, 3(4):315-331, 1994.

41. B. A. Wichmann and I. D. Hill. Algorithm AS 183: An efficient and portable pseudo-
random number generator. Applied Statistics, 31 (2): 188-190, 1982.

42. B. A. Wichmann and I. D. Hill. Correction to algorithm 183. Applied Statistics,
33(123), 1984.

43. H. Zeisel. Remark ASR 61: A remark on algorithm AS 183. an efficient and portable
pseudo-random number generator. Applied Statistics, 35(1):89, 1986.

http://csrc.nist.gov/rng/

This page intentionally left blank

CHAPTER 2

QUASIRANDOM NUMBER GENERATION

Quasirandom numbers are akin to random numbers but exhibit much more regu- " ^ 1
larity. This makes them well-suited for numerical evaluation of multidimensional
integrals. This chapter discusses the main types of quasirandom sequences, includ-
ing Halton, Faure, Sobol', and Korobov sequences.

2.1 MULTIDIMENSIONAL INTEGRATION

Recall that the purpose of a uniform random number generator is to produce an
unlimited stream of numbers Ui,U2,--- that behave statistically as independent
and uniformly distributed random variables on (0,1). From such a stream it is easy
to construct an infinite sequence of independent and uniformly distributed random
vectors (points) in (0, l) d , by defining U i = (i / i , . . . , Uj), U 2 = (Ud+i,..., U^d), ■ ■ ■■
For any real-valued function h on (0, l)d these random vectors can then be used to
approximate the ei-dimensional integral

via the sample average

= / ft(u)du (2.1)

î=jfÎ2h^)· (2·2)
Handbook of Monte Carlo Methods. By D. P. Kroese, T. Taimre, Z. I. Botev 25
Copyright © 2011 John Wiley & Sons, Inc.

26 QUASIRANDOM NUMBER GENERATION

Precise error bounds on the approximation error can be found through simple sta-
306 tistical procedures; see, for example, Algorithm 8.2. In particular, the standard

error {Έ(ί — t)2}1/2 decreases at a rate 0 (iV _ 1 / 2) . Hence, asymptotically, to de-
crease the error by a factor 2, one needs 4 times as many samples. This convergence
rate can often be improved by constructing quasirandom points u i , U 2 , . . . , UJV
that fill the unit cube in a much more regular way than is achieved via iid random
points. In general, the components of such points can be zero, so we assume from
now on that quasirandom points lie in the unit cube [0, l)d rather than (0, l)d.
Quasi M o n t e Carlo methods are Monte Carlo methods in which the ordinary
uniform random points are replaced by quasirandom points. Quasirandom points
are no longer independent, but do have a high degree of uniformity, which is often
expressed in terms of their discrepancy (first introduced by Roth [27]). Specifically,
let ? b e a collection of subsets of [0, l)d and VN = { u i , . . . , UJV} a set of points in
[0, l)d. The discrepancy of VN relative to ψ is defined as

D^iVn) = sup
1 ^ Λ f
jV Ζ - Λ ^ ε θ } - J I{uec} du (2.3)

Special cases are the ordinary discrepancy, where ^ is the collection of rectangles
[θι,δι) x ■■· x [a,d,bd), and the star discrepancy, where ^ is the collection of
rectangles [0,&i) x · · · x [0,&d).

The sum in (2.3) is simply the number of points in C, whereas the integral is
the «/-dimensional volume of C. The integration error for all indicator functions
I{usc}> C G ^ is thus bounded by the discrepancy of the point set. Similarly, the
Koksma—Hlawka inequality provides, for a suitable class of functions h in (2.1)
and (2.2), a bound \£ — i\ ^ D* kh on the integration error, where D* is the star
discrepancy and kh is a constant that depends only on the function h; see [24, Page
19]. Discrepancy measures are therefore useful tools for studying convergence rates
for multidimensional integration. Note that the star discrepancy may be viewed as

336 the d-dimensional generalization of the Kolmogorov-Smirnov test statistic.

■ EXAMPLE 2.1 (Regular Grid)

12 Consider the d-dimensional lattice ZdN~1^d, where we assume that N = md for
some strictly positive integer TO. By intersecting the lattice with the hypercube
[0, l) d we obtain a regular grid of N points on [0, l)d. The ordinary and star
discrepancy for this point set are both 1—(1—m~1)d, which is of the order Ö (T O _ 1) =
O(iV-Vd).

To see this, take in (2.3) the "worst-case" set C = [0, l-m~l\d = [0, l-m~l+e)d

for some infinitesimally small ε > 0. The number of grid points in C is N, while its
volume is (1 — m~1)d. It follows that the integration error for the indicator I{usc}
is l-(l-m-l)d.

The above example indicates that for d > 2 integration with a regular grid is
inferior to ordinary Monte Carlo integration. However, it is possible to construct in-
finite sequences u i , U2, . . . of points in [0, l) d so that any point set {ui , U 2 , . . . , UJV}
has star discrepancy

(\nN)d

Z J * ({ u 1) . . . , u J V }) « C (1 ^ - ^ . (2.4)

VAN DER C0RPUT AND DIGITAL SEQUENCES 2 7

Note that this is close to 0(N~1) for fixed d. Using such low-discrepancy se-
quences instead of ordinary random numbers therefore has the potential of signifi-
cantly improving the accuracy of the integration.

There are two main classes of low-discrepancy sequences: those based on van
der Corput sequences, such as the Halton, Faure, and Sobol' point sets; and those
based on lattice methods, such as the Korobov lattice rule. These are discussed in
the sections that follow.

2.2 VAN DER CORPUT AND DIGITAL SEQUENCES

Let 6 ^ 2 be an integer. Any number k G N admits a b-ary expansion of the form

r

k = 2_\ ai bl~l = a i + 0,2b + ■ ■ ■ + a r 6 r _ 1 ,
i=l

for some finite r and digits o i , . . . , ar € { 0 , . . . , b — 1}. The corresponding 6-ary
representation of k is written as (ar ... <Zi)b, or simply ar ... a\ if the base or radix b
is implicitly understood. For example, the number 12345 in decimal representation
(6 = 10) has binary representation IIOOOOOOIIIOOI2 and ternary representation
I2122IO2O3.

Many low-discrepancy sequences are based on the following transformation of
natural numbers. Let k G N have 6-ary representation ar ... 0*20,1. The base-6
radical inverse of k is the number (in [0,1))

r

y ^ a, 6~* = 016"1 + a2b~2 -\ h arb~r ,

written in fe-ary form as 0.aiü2 ■ ■ .ar. The radical inverse transformation thus
simply reverses the order of the digits and puts a 6-ary point in front to obtain
a number in the interval [0,1). As an example, for b = 2 the radical inverse of
880 = ΠΟΙΙΙΟΟΟΟ2 is O.OOOOIIIOH2 = |nr.

The base-6 van der Corput sequence is the sequence obtained by applying
the base-ö radical inverse to the numbers 0 , 1 , 2 , The main significance of van der
Corput sequences for quasi Monte Carlo is that for each base b the sequence consti-
tutes a one-dimensional low-discrepancy sequence. Another important property of
a base-6 van der Corput sequence xi,x%,... is that it is linearly increasing in subse-
quent segments of length b; that is, X\ < X2 < ■ ■ ■ < Xb, Xb+i < Xb+2 < ··· < X2b
and so on, with the increments within each segment equal to 1/b.

■ EXAMPLE 2.2 (Van der Corput Sequence Generat ion)

The following MATLAB function vdc .m calculates the first N elements of the base-fe
van der Corput sequence. At each iteration the next 6-ary representation is deter-
mined by the function nbe .m. For example, for the binary (6 = 2) case and starting
with 0, subsequent calls to nbe.m give the sequence of binary numbers 0,1,10,11,
100 ,101 , . . . (stored as row vectors). To each of these numbers a reversal of the digits
is applied. Finally, each of these "flipped" 6-ary numbers is translated back to an or-
dinary (that is, decimal) representation. The first ten elements of the base-2 van der
Corput sequence are thus: 0,0.5,0.25,0.75,0.125,0.625,0.375,0.875,0.0625,0.5625.

2 8 QUASIRANDOM NUMBER GENERATION

Note that this sequence can be divided into segments of length 2 in which the points
are increasing with increment 1/2.

function out = vdc(b.N)
out = zeros(N,l);
numd = ceil(log(N)/log(b))
bb = l./b.-(l:numd);
a = [];
out(l)=0;
for i=2:N

a = nbe(a,b); °/0next b-
fa = fliplr(a); %flip
out(i) = sum(fa.*bb(l:

end

; "/.maximal number

ary expansion
the digits
numel(a)));

of digits required

function na = nbe(a
numd = numel(a);
na = a;
carry = true ;
for i=numd:-l:l

if carry
if a(i) ==

na(i) =
else

na(i) =
carry =

end
end

end
if carry

na = [l,na] ;
end

,b)

b-1

0;

a(i) + 1;
false;

A base-fc van der Corput sequence can thus be thought of in the following way:

1. Construct a sequence of vectors representing the reverse b-ary representation
of the numbers 0,1,2,... :

f°\ Λ\

W

fb-l\

W

ß°\ Λ\

V ’� J

1
0

w
1
0

VJ

/ 6 - l \
1
0

V : J

f°\
(2.5)

V7

2. Premultiply each vector with the row vector (b J , b 2 , . . .) to obtain a number
in [0,1).

HALTON SEQUENCES 2 9

Digital sequences are low-discrepancy sequences in d dimensions constructed
from van der Corput sequences with bases b\,..., bj, for each of the components.
Their general construction is as follows.

Algori thm 2.1 (Digital Sequence) For each component k = l,...,d, execute
the following steps.

1. Construct the reverse b^-ary representation vectors of the numbers 0,1,2,...,
as in (2.5).

2. Premultiply each such vector with some fixed generator matr ix Gk ■

3. Premultiply the resulting vectors with the row vector (&_ 1 , fe - 2 , . . .) to obtain
the k-th coordinate of the digital sequence.

The generator matrices are usually taken to be right-triangular and such that
each r x r submatrix is non-singular. Notice that a van der Corput sequence is a
one-dimensional digital sequence where the generator matrix is the identity matrix.

2.3 HALTON SEQUENCES

The simplest way to construct low-discrepancy sequences in d dimensions is by
taking van der Corput sequences with different bases bi,...,bd for each of the
components. The bases must be pairwise relatively prime; that is, each pair does not
share a common factor greater than 1. It is customary to take bi,...,bd equal to the
first b prime numbers greater than 1. In the framework of Algorithm 2.1, the Halton
sequence is a digital sequence in which the generator matrices for the components
are simply identity matrices. More precisely, let bi,...,bd ^ 2 be relative prime
integers. Let uij,U2j,.. ■ be the base-bj van der Corput sequence, j = 1,...,<±
The sequence of d-dimensional points Ui = (« n , · · · , «id), U2 = («21, · · · , «2d), · · ·
is called the Hal ton sequence corresponding to b\,..., 6<j ^ 2.

Let u i , U 2 , . . . be a Halton sequence. The set { U I , . . . , U J V } formed by the
first N elements of the Halton sequence is the corresponding Hal ton point
set. Halton [10] showed that the star discrepancy of such sets is of the or-
der O((\nN)d/N). Hammersley [11] modified the Halton set by defining points
uj = (u*n,...,u*ld),...,u*N = {u*N1,...,u*Nd) wi th«?! = (i - l)/N and «£ =
ui,(j-i)>3 = 2 , . . . , d, i = Ι,.,.,Ν. The point set thus obtained, called a Ham-
mersley set, has a discrepancy of 0((lnA r)d _ 1 /7V).

■ EXAMPLE 2.3 (Hal ton and Hammers ley Points)

The following two MATLAB programs produce Halton and Hammersley point sets
of size ./V for a given vector of bases b = (6 1 , . . . , bj). The difference in uniformity
between the two point sets is illustrated in Figure 2.1 for the two-dimensional case
with bases b\ = 2 and 62 = 3.

"/ohalton. m
funct ion out = ha l ton(b .N);

3 0 QUASIRANDOM NUMBER GENERATION

dim
out
for

end

= numel(b) »
= zeros(N,dim);
i=l:dim
out(:,i) = vdc(b(i) ,N);

function out = hammersley(b,N)
dim = numel(b);
out = zeros (N, dim) ;
out(2:N,2:dim) = halton(b(l:dim-l),N-1):

out(:,l) = [0:N-1]/N;

Figure 2.1 The Halton (left) and Hammersley (right) point sets of size N = 1000, with
bases 2 and 3.

Halton sequences are particularly useful for quasi Monte Carlo integration when
d is relatively small. For large d, say d > 20, Halton sequences are less effective,
because they do not fill the unit hypercube in a uniform way. The reason is that
the corresponding van der Corput sequences with large bases produce long linearly
increasing segments, as noted in Section 2.2. The situation is illustrated in the
following example.

■ EXAMPLE 2.4 (Poor Space-Fil l ing of a Hal ton Sequence)

Consider a Halton sequence in dimension d = 40, where the bases of the van
der Corput sequences are chosen to be the first 40 primes. The van der Corput
sequences corresponding to the last two coordinates thus form a two-dimensional
Halton sequence (xi,yi), (a^jjte), · · · with bases 167 and 173. But this sequence
does not fill the unit square in an even fashion, as shown in Figure 2.2, where the

FAURE SEQUENCES 3 1

first 1000 and 6000 points are plotted. The van der Corput sequences xi,X2,- ■ ■,
and 2/i,i/2) · · · follow the recursion xn = xn-\ + 1/167 and yn — y„_i + 1/173, in
each subsequent segment of 167 and 173 points. This results in the unit square
being filled in a highly linear fashion.

Figure 2.2 Point sets of a two-dimensional Halton sequence with bases 167 and 171 with
N = 1000 (left) and N = 6000 (right) points.

2.4 FAURE SEQUENCES

Faure [5] developed low-discrepancy sequences that , like the sequences of Halton,
are based on van der Corput sequences. But, unlike Halton sequences, Faure se-
quences have a common base. This base needs to be a prime number at least as
large as the dimension d.

The construction of a d-dimensional Faure sequence is based on d permutations
(one for each component) of a base-6 van der Corput sequence. More precisely, the
Faure sequence is a digital sequence in which the generator matrix for component
k = 1 , . . . ,d is given by G f c_1 , where G is the upper-triangular Pascal matr ix in
base b; that is, the matrix with (i,j)-th element

G i i = \ i - \ j m o d ö > i = h---J, J = 1,2,

For each r = 0 , 1 , 2 , . . . and k = 1 , . . . , d the submatrix formed by the first br rows
and columns of Gk~l is invertible. As a consequence, premultiplication by Gk~1

in Step 2 of Algorithm 2.1 leads to a permutation of the first br vectors obtained
in Step 1, and results (in Step 3) in a permutation of the first br numbers in the
original van der Corput sequence. To obtain a sequence of length N it suffices to
truncate G to the r-th row and column with r = [IniV/ln&J 4-1 , as no more than
r digits will be needed. This leads to the following algorithm.

3 2 QUASIRANDOM NUMBER GENERATION

Algor i thm 2.2 (Faure Sequence W i t h Dimens ion d and Base b)

1. Setr= [lnTV/ln&J + 1. Define b = (&"\ b~2,..., b~r) andletn = 0.

2. Calculate the b-ary representation (ar...ai)f, of n. Store it in the vector
a = (α ι ,α 2 , . . . , o r) T .

3. For k = 1 , . . . , d compute ä& = Gfe~1a.

4- For k = l,...,d compute xnk = b à j and let x n = (xni, · · ·, xnd)T be the n-th
Faure point.

5. If n = N stop; otherwise, set n = n + 1 and go to Step 2.

In contrast to Halton sequences, the discrepancy of a Faure sequence does not
deteriorate when d grows large. Although both sequences satisfy the low discrep-
ancy growth (2.4), the constant of proportionality Cd grows rapidly in d for the
Halton sequence, whereas it decreases to 0 for the Faure sequence; see [5]. Even
though the Faure sequence has better discrepancy and uniformity properties than
the Halton sequence, for small N and large d (and hence large b) it can still exhibit
poor space-filling behavior similar to the Halton sequence illustrated in Figure 2.2.

The amount of uniformity in a Faure sequence is further demonstrated by the
fact that certain subsets of points form a (0, TO, d)-net. More precisely, a set of bm

points in [0, l)d is said to be (t, m , <i)-net in base b if every elementary rectangle
of volume 6 t _ m contains exactly 6* points. Here an e lementary rectangle means
a rf-dimensional rectangle of the form

QSi a% + 1 \

6**' 6fe<) '

with ai G {0, . . . ,&— 1} and fc$ e {1 ,2 , . . . } for i = Ι , . , . , η . The volume of
this elementary rectangle is 1 / Π ί = ι ^ · ^η terms of (2.3), the discrepancy of a
(t, m, d)-net relative to each elementary rectangle of volume 6*_m is 0. Note that a
(t, TO, d)-net is automatically a (i + 1, m, ef)-net.

Π

Figure 2.3 The first 35 points of a two-dimensional Faure sequence with base 6 = 3 are
plotted in each unit square. Both squares are divided into elementary boxes of volume I/o5.
Each such box has exactly one point, because the Faure points form a (0, 5, 2)-net.

SOBOL' SEQUENCES 33

The first bm points of a d-dimensional Faure sequence form a (0, m, d)-net. As
an illustration, Figure 2.3 shows various elementary boxes of volume l/bm, for the
case where b = 3, m = 5, and d = 2. Each elementary box of volume l/fem contains
exactly one of the bm = 243 points.

■ EXAMPLE 2.5 (Faure Sequence Generat ion)

The following MATLAB function produces a d-dimensional Faure point set of size
N, using a base b. The latter must be chosen to be prime and greater than or equal
to d. Note that for convenience we work below with the transpose of the generator
matrix G and the vector a.

function p = faure(b,d,N)
r = floor(log(N)/log(b))+l; "/.largest number of digits

bb=repmat(i./b.~(l:r),N+l,l); ’/.rows (1/b, l/b~2,...)
p = zeros(N+l,d);
G = zeros(r.r);
for j=l:r

for i=l:j
G(i,j) = mod(nchoosek(j-l,i-l),b);

end
end
G=G’;
a=repmat((0:N)’,l,r);
for i=l:r-l

a(:,i)=mod(a(:,i),b);
a(:,(i+l):r)=floor(a(:,(i+l):r)/b);
°/0 a now contains the b-ary expansion of

end
p(:,l)=sum(bb.*a,2);
for k=2:d

a=mod(a*G,b) ; ̂ permuted b-ary expansion
p(:,k)=sum(bb.*a,2) ;

end

0:N

of 0:N

2.5 SOBOL' SEQUENCES

A d-dimensional Sobol' sequence [29] is a digital sequence (see Algorithm 2.1) where
each component has the same base 2, and where the r x r generator matrices (r is
the maximal number of digits, that is, r = [In N/ In 6J + 1 if iV is the total number
of points required) are chosen in the following way. Each generator matrix G (a
different one for each component) is defined by r direction numbers, g\,... ,gr,
whose binary representations form the columns of the generator matrix. The j - t h
direction number is of the form

j

9j = "7)Γ> J =

3 4 QUASIRANDOM NUMBER GENERATION

in which πΐι,πΐ2, ■.. ,mr satisfy the recursion (φ denotes binary addition via the
XOR operation)

m j = 0 2j Cj rrii-j j Φ rrii-q , (2.6)

where the {c;} are the (binary) coefficients and q is the degree of a primitive poly-
nomial in binary arithmetic

xq + a xq~x + h cg_i x + 1 .

Each such polynomial can be represented by a polynomial number, whose binary
representation corresponds to the coefficients. For example, the polynomial number
37 = IOOIOI2 corresponds to the primitive polynomial x5 +x2 + 1. Each generator
matrix is thus completely specified by

1. a primitive polynomial, or the corresponding polynomial number, and

2. the initial values mi,..., mq for the recursion (2.6).

Lists of primitive polynomial numbers and starting values may be found in [15];
see also the MATLAB implementation in Example 2.6 below. It is standard to take
the d lowest polynomial numbers for a d-dimensional problem, starting with the 0-
degree polynomial 1, so that the first component is generated according to the base-
2 van der Corput sequence. Because Sobol' sequences use binary arithmetic they
can be implemented very efficiently on a computer. A benchmark implementation
may be found in [1]; see also [16].

Similar to the Faure sequence, the first 2 m points of a ci-dimensional Sobol'
sequence form a (t, m, d)-net in base 2, for some t ^ 1 — d+ Σί=ι lu where the {</»}
are the degrees of the primitive polynomials for the first d components [29]. For
example, for a two-dimensional Sobol' sequence q\ = 0 and 52 = 1, so that t = 0.
Figure 2.4 illustrates that the corresponding Sobol' point set of size N = 21 0 = 1024
forms a (0,10,2)-net.

Figure 2.4 The first 210 points of a two-dimensional Sobol' sequence form a (0,10, 2)-net:
each elementary box of volume 1/210 has exactly one point.

SOBOL' SEQUENCES 35

■ EXAMPLE 2.6 (Sobol' Generator)

The following MATLAB function sobol.m produces d-dimensional Sobol' point sets
of size N. The generator matrices are computed via the function sobmat.m. This
function in turn uses the function cbe. m which returns the 6-ary representation of
a number.

function p = sobol(d,N)
b=2
r =
bb =
bbb

P =

"/.always base 2
floor(log(N)/log(b))+l;

= l./b.-(l:r);
= repmat(bb,N+l,l);
zeros(N+l,d);

G=zeros(r,r);
GG=s sobmat(d,r);
a=repmat((0:N)’,l,r);

for

end
for

end

i=l:r
a(: ,i) = mod(a(:,i),b);
a(:,(i+l):r) = floor(a(:,(i+1):end)
7, a contains now the b-ary

i=l:d
G(:,:)=GG(:,:,i);
p(:,i) = sum(bbb.*mod(a*G’

/b);
expansion of 0:N

,b),2);

function G = sobmat(d,r)
polys=[l,3,7,11,13,19,25,37,59,47,61,55,41,67,97,91,109,103,...

115,131,193,137,145,143,241,157,185,167,229,171,213,191,...
253,203,211,239,247,285,369,299,425,301,361,333,357,351, . . .
501,355,397,391,451,463

[1 1 1
1 3 5
1 1 7
1 3 7
1 1 5
1 3 1
1 1 3
1 3 3
1 3 7
1 1 5
1 3 5
1 1 7
1 3 7
1 1 1
1 3 3
1 1 3

1 1 1 1 1 ;
15 17 51 85 255;
11 13 61 67 79;
5 7 43 49 147;
3 15 51 125 141;
1 9 59 25 89;
7 31 47 109 173;
9 9 57 43 43;
13 3 35 89 9;
11 27 53 69 25;
1 15 19 113 115;
3 29 51 47 97
7 21 61 55 19
9 23 39 97 97
5 19 33 3 197
13 11 7 37 10" L;

,487];

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

7.10

7.11
7.12
7,13
7.14
7.15
7.16

3 6 QUASIRANDOM NUMBER GENERATION

1 1 7 13 25 5 83 255;
1 3 5 11 7 11 103 29;
1 1 1 3 13 39 27 203;
1 3 1 15 17 63 13 65];

m = zeros(l,r);
G = zeros(r,r,d);
G(:,:,l) = eye(r);

for k=2:d
ppn=polys (k) ; "/»polynomial number
m=ivals(k, :) ; "/»initial values
c= cbe(ppn,2);
c = c(2:end); 7» coefficients of the primitive polynomial
deg = numel(c); "/»degree of the polynomial
for i=9:r "/»first 8 values already given

s = 0;
for j = l:deg

s = bitxor(s,2~j*c(j)*m(i-j));
end

m(i)= bitxor(s,m(i-deg));
end
for j=l:r

h = cbe(m(j),2) ; "/» binary representation
numdigs = numel(h);
G(j- numdigs+l:j,j,k)= h';

end
end

function a = cbe(k.b) 7. coefficients of base-b expansion of k
numd = max(0,floor(log(k)/log(b))) + l; "/»number of digits
a = zeros(1,numd);
q = b~(numd-l);
for i = l:numd

a(i) = floor(k/q);
k = k - q*a(i);

q = q/b;
end

2.6 LATTICE METHODS

Not all quasirandom point sets are constructed via van der Corput sequences. An
important alternative employs the theory of lattices. The most common construc-
tion is Korobov's m e t h o d of g o o d lattice points [17], which defines a set of iV
points in [0, l)d of the form

| ^ (l , o , o 2 , . . . , a d - 1) m o d l , i = 0 , . . . , TV - l j , (2.7)

7.17
7.18
7.19
7.20

LATTICE METHODS 3 7

depending on the choice of an integer a. The points can be related to a linear
congruential generator (LCG) with modulus N, multiplier a, and increment c = 0: is3 4

xt = axt-1 mod N, t = 1,2... ,N-1 . (2.8)

Namely, let VXo = {(xt,xt+i, · · · , Xt+d-i)/N, t = 0 ,1 , . . . } be the point set of d suc-
cessive values of the LCG (divided by N), starting from some XQ. Then, the union
UZO€{O,I,...,JV-I}'£,XO coincides with the Korobov point set (2.7). A consequence of
this viewpoint is that the coordinates of the Korobov point set can also be gener-
ated "on the fly", without specifying the dimension in advance; see also [22, Page
205].

By replacing the vector (Ι , α , . . . , a d _ 1) in (2.7) with a general integer vector
v or with linear combinations of r such vectors, one obtains rank-1 and rank-r
lattice rules, respectively [28]. Another class of lattice rules is defined through
more algebraic means, using polynomial rings and formal Laurent series. Details
and references on such polynomial latt ices may be found in [3] and [22].

The selection of good multipliers and generating vectors is discussed, for example,
in [4, 12, 20]. To obtain a full period of length N — 1 in each coordinate for any
a with the Korobov lattice, N should be chosen to be a prime number. If N is a
power of 2 instead, a should be an odd number to ensure a full period.

One drawback of the standard Korobov lattice is that the point set is fixed. The
introduction of extensible lattice rules [13] alleviates this difficulty. The idea, for
the Korobov lattice, is to replace (2.7) with the infinite set

{ ^ (t) (l , o , o 2 , . . . , o < i - 1) m o d i , i = 0 ,1 ,2 , . . . } , (2.9)

where {V>i>(fc)} is the van der Corput sequence with base b. Hickernell et al. [13]
recommend the choice b = 2 and a = 17797 or a = 1267; see also [8].

■ EXAMPLE 2.7 (Korobov Latt ice Generat ion)

The following MATLAB functions implement the Korobov and extensible Korobov
lattice rules, using (2.7) rather than the recursion (2.8). The last function uses the
van der Corput function vdc in Example 2.2 and assumes by default a base b = 2.
Figure 2.5 shows the 10-th and 21-st coordinates of a 30-dimensional Korobov point
set of size N = 21 0 with a = 17797.

Figure 2.5 The projections onto coordinates 10 and 21 of a 30-dimensional Korobov
lattice.

38 QUASIRANDOM NUMBER GENERATION

function P = korobov(a,<
z (i :
for

end
Z =
B =
P =

= i;
i=2:d
z(i) = mod(z(i-

repmat(z,N,1);
repmat((l:N)»,1
mod(B.*Z/N, 1)

-l)*a

L,d);

i,N)

,N);

function P = extkorobov(a,d,N)
b =
z(l
for

end
Z =
v =
B =
P =

2;
> = l;
i=2:d
z(i) = mod(z(i-

repmat(z,N,1);
vdc(b.N);
repmat(v,1,d);
mod(B.*Z, 1);

-l)*a ,N);

2.7 RANDOMIZATION AND SCRAMBLING

One of the appealing features of ordinary Monte Carlo integration is that an assess-
ment of the error in the sample average approximation (2.2) of the integral (2.1)

" ^ 301 is readily available in the form of standard errors and confidence intervals. For
quasi Monte Carlo integration this is no longer the case, as the points, {u^} say,
are deterministic and not U[0, l)d distributed.

However, the situation can be remedied by simply adding a fixed random vector
Z ~ U[0, l) d to each point and then taking the fractional part of the resulting
point. It is easy to see that each point U« = (iij + Z) mod 1 is U[0, l)d distributed.
This procedure is called r a n d o m shif t ing and was first proposed by Cranley and
Patterson [2]. Using a random shift renders the quasi Monte Carlo approximation

1 N _ £ =] v E M U i) (2.10)

a random variable with expectation I in (2.1). By repeating the quasi Monte Carlo
procedurejndependently with K different shift vectors one obtains K independent
copies of £, to which one can apply the standard statistical techniques for evalu-

■®* 306 ating confidence intervals and standard error, as described in Algorithm 8.2. See
■®° 376 Algorithm 9.11 for a more detailed description.

For digital sequences a random shift can also be applied directly to the digits.
Specifically, suppose β& = (a,ki,a,k2, ■ ■ ·) τ is the infinite-dimensional vector that

RANDOMIZATION AND SCRAMBLING 39

corresponds to the b-ary expansion of the fc-th coordinate of a point u; thus, the
fc-th coordinate of u is given by

oo

Uk = ^ a k i b ' 1 .

i=l

Let W = (W\, W-i-, ■ ■ ·) Τ be an infinite-dimensional random vector in which the
{Wi} are independent and discrete uniformly distributed on { 0 , 1 , . . . , b — 1}.
In other words, W is the vector representing the 6-ary expansion of a U[0,1)-
distributed random number. Next, let W i , . . . , W<j be independent copies of W .
By adding W ^ to a^ modulo b, for fc = 1 , . . . ,d, one obtains vectors ä i , . . . ,äd
representing the 6-ary expansion of (u + Z) mod 1, where Z ~ U[0, l)d. By adding
the same {W^} to all the points in the quasi Monte Carlo point set, this digital
shift procedure yields a point set that has exactly the same distribution as one
obtained using the original random shift method.

Digital sequences such as the Halton, Faure, and Sobol' sequences are sometimes
"shuffled" with the aim of improving their uniformity and convergence properties. A
general procedure, called nested permutat ion scrambling, introduced by Owen
(see, for example, [25] and [26]) is to permute the digits in the bfc-ary expansion
between Steps 2 and 3 of Algorithm 2.1 for each component fc = 1 , . . . , d. This can
be done in a deterministic or random way. A convenient subset of such procedures is
obtained by premultiplying the digital vectors obtained after Step 2 in Algorithm 2.1
with a random lower-triangular matrix Lk with elements in { 0 , 1 , . . . , &&}, for each
dimension k = 1 , . . . , d. There exist several variants of this procedure (see [23] and
[22, Page 207]), but the most common approach is to choose the lower off-diagonal
elements of Lk independently and uniformly from { 0 , 1 , . . . , &&} and the diagonal
elements independently and uniformly from { 1 , . . . , bk}· This leads to the following
modification of Algorithm 2.1. We assume for simplicity that the bases for the d
components are all equal to b. All matrix operations are carried out modulo b.

Algor i thm 2.3 (Uniform Linear Scrambling) Let r = \h\N/\i\b\ + 1. For
each component fc = 1 , . . . , d, execute the following steps.

1. Create a random r x r matrix Lk as follows:

(a) For i = 1 , . . . , r and j = 1 , . . . , i — 1 draw the (i,j)-th element of Lk
uniformly and independently from { 0 , 1 , . . . , b}.

(b) For i — 1 , . . . , r draw the (i, i)-th element of Lk uniformly and indepen-
dently from { 1 , . . . , b}.

(c) Set the remaining elements to 0.

2. Construct the reverse bk-ary representation vectors of the numbers 0 , 1 , . . . , N
as in (2.5).

3. Premultiply each such vector with some fixed generator matrix Gk ■

4- Premultiply the resulting vectors with Lk-

5. Premultiply the resulting vectors with the row vector (è _ 1 , 6 - 2 , . . .) to obtain
the k-th coordinates of the digital sequence u i , . . . , UJV-

Finally, generate Z ~ U[0, l)d and return {(UJ + Z) mod 1, i — 1 , . . . , ./V} as the
scrambled set.

4 0 QUASIRANDOM NUMBER GENERATION

Further Reading

A concise introduction to quasi Monte Carlo methods is given in Glasserman [9,
Chapter 5], whereas more comprehensive treatments may be found in Niederreiter
[24] and Lemieux [22]. An extensive state-of-the-art survey on the theory of quasi
Monte Carlo and randomized quasi Monte Carlo is given in [18]. Fox [7] focuses on
using quasi Monte Carlo techniques in practice, and Jäckel [15] provides a useful
resource for applications in finance. Randomized quasi Monte Carlo is surveyed
in [21], and various useful scrambling procedures are discussed in [6, 14, 20, 23].
Efficient methods to implement scrambled digital sequences are discussed in Hong
and Hickernell [14]. Related scrambling procedures can be found in [6, 21, 23]. For
a collection of research papers on quasi Monte Carlo see [19].

REFERENCES

1. P. Bratley and B. L. Fox. Algorithm 659: Implementing Sobol's quasirandom sequence
generator. ACM Transactions on Mathematical Software, 14(1):88-100, 1988.

2. R. Cranley and T. N. L. Patterson. Randomisation of number theoretic methods for
multiple integration. SIAM Journal on Numerical Analalysis, 13(6):904-914, 1976.

3. J. Dick, F. Y. Kuo, F. Pillichshammer, and I. H. Sloan. Construction algorithms for
polynomial lattice rules for multivariate integration. Mathematics of Computation,
74(252):1895-1921, 2005.

4. K.-T. Fang and Y. Wang. Number-Theoretic Methods in Statistics. Chapman & Hall,
London, 1994.

5. H. Faure. Discrepance de suites associées à un système de numération. Comptes
Rendus Mathématique, 286-A:293-296, 1978.

6. H. Faure and S. Tezuka. Another random scrambing of digital (ί, s)-sequences. In
K. T. Fang, F. J. Hickernell, and H. Niederreiter, editors, Monte Carlo and Quasi-
Monte Carlo Methods 2000, pages 242-256. Springer-Verlag, Berlin, 2002.

7. B. L. Fox. Strategies for Quasi-Monte Carlo. Kluwer Academic Publishers, Norwell,
MA, 1999.

8. H. S. Gill and C. Lemieux. Searching for extensible Korobov rules. Journal of Com-
plexity, 23(4-6) :603-613, 2007.

9. P. Glasserman. Monte Carlo Methods in Financial Engineering. Springer-Verlag,
New York, 2004.

10. J. H. Halton. On the efficiency of certain quasi-random sequences of points in evalu-
ating multi-dimensional integral. Numerische Mathematik, 2(l):84-90, 1960.

11. J. M. Hammersley. Monte Carlo methods for solving multivariable problems. Annals
of the New York Academy of Sciences, 86(3):844-874, 1960.

12. P. Hellekalek. On the assessment of random and quasi-random point sets. In Random
and Quasi-Random Point Sets, volume 1:38 of Lecture Notes in Statistics, pages 49-
108. Springer-Verlag, New York, 1998.

13. F. J. Hickernell, H. S. Hong, P. L'Ecuyer, and C. Lemieux. Extensible lattice se-
quences for quasi-Monte Carlo quadrature. SIAM Journal on Scientific Computing,
22(3):1117-1138, 2000.

14. H. S. Hong and F. J. Hickernell. Algorithm 823: Implementing scrambled digital
sequences. ACM Transactions on Mathematical Software, 29(2):95-109, 2003.

REFERENCES 4 1

15. P. Jäckel. Monte Carlo Methods in Finance. John Wiley & Sons, New York, 2002.

16. S. Joe and F. Y. Kuo. Remark on algorithm 659: Implementing Sobol's quasirandom
sequence generator. ACM Transactions on Mathematical Soßware, 29(l) :49-57, 2003.

17. N. M. Korobov. The approximate calculation of multiple integrals using number
theoretic methods. Doklady Academii Nauk SSSR, 115:1062-1065, 1957.

18. P. L'Ecuyer. Quasi-Monte Carlo methods with applications in finance. Finance and
Stochastics, 13(3):307-349, 2009.

19. P. L'Ecuyer and A. B. Owen (editors). Monte Carlo and Quasi-Monte Carlo Methods.
Springer-Verlag, New York, 2010.

20. P. L'Ecuyer and C. Lemieux. Variance reduction via lattice rules. Management
Science, 46(9):1214-1235, 2000.

21. P. L'Ecuyer and C. Lemieux. Recent Advances in Randomized Quasi-Monte Carlo
Methods, pages 419-474. Kluwer Academic Publishers, Boston, 2002.

22. C. Lemieux. Monte Carlo and Quasi-Monte Carlo Sampling. Springer-Verlag, New
York, 2009.

23. J. Matousek. On the /^-discrepancy for anchored boxes. Journal of Complexity,
14(4):527-556, 1998.

24. H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods.
SIAM, Philadelphia, PA, 1992.

25. A. B. Owen. Randomly permuted (t, m, s)-nets and (t, s)-sequences. In H. Niederre-
iter and J.-S. Shiue, editors, Monte Carlo and Quasi-Monte Carlo Methods in Scien-
tific Computing, pages 299-317. Springer-Verlag, New York, 1995.

26. A. B. Owen. Scrambled net variance for integrals of smooth functions. Annals of
Statistics, 25(4):1541-1562, 1997.

27. K. F . Roth. On irregularities of distribution. Mathematika, l (2):73-79, 1954.

28. I. H. Sloan and S. Joe. Lattice Methods for Multiple Integration. Clarendon Press,
Oxford, 1994.

29. I. M. Sobol'. On the distribution of points in a cube and the approximate evaluation of
integrals. USSR Computational Mathematics and Mathematical Physics, 7(4):86-112,
1967.

This page intentionally left blank

CHAPTER 3

RANDOM VARIABLE GENERATION

Generating a random vector X from an arbitrary distribution in some Euclidean
space M.d invariably involves the following two steps:

1. Draw uniform random numbers Ui,...,Uk, for some k = 1,2,....

2. Return X = g(U\,..., Uk), where g is some function from (0, l)k to R.d.

The generation of uniform random numbers in the first step is discussed in Chap-
ter 1. The present chapter considers how the second step is implemented. In Sec- "^ 1
tion 3.1 we consider various general methods for generating one-dimensional random
variables and in Section 3.2 we consider methods for generation of multivariate ran-
dom variables. Section 3.3 discusses generation methods for miscellaneous random
objects, such as random vectors that are uniformly distributed over hyperspheres,
ellipsoids, and Simplexes. Specific generation algorithms for common discrete and
continuous distributions are given in Chapter 4. *& 85

All generation methods in this chapter are exact, in the sense that each gener-
ated random variable has exactly the required distribution (assuming the uniform
number generation and computer arithmetic are exact). For an increasing number
of Monte Carlo applications exact random variable generation is difficult or im-
possible to achieve, and approximate generation methods are called for, the most
prominent being Markov chain Monte Carlo methods; see Chapter 6. n®" 225

Handbook of Monte Carlo Methods. By D. P. Kroese, T. Taimre, Z. I. Botev 43
Copyright © 2011 John Wiley & Sons, Inc.

44 RANDOM VARIABLE GENERATION

3.1 GENERIC ALGORITHMS BASED ON COMMON
TRANSFORMATIONS

Many common distributions and families of distributions are related to each other
via simple transformations. Such relations lead to general rules for generating
random variables. For example, generating random variables from any location-
scale family of distributions can be carried out by generating random variables from
the base distribution of the family, followed by an affine transformation. A selection
of common transformations is discussed in Section 3.1.2. Universal procedures for
generating random variables include the inverse-transform method (Section 3.1.1),
the alias method (Section 3.1.4), the composition method (Section 3.1.2.6), and the
acceptance-rejection method (Section 3.1.5).

Remark 3.1.1 (Comput ing W i t h Fini te Precis ion) In our generation algo-
rithms we will assume that we have a source for generating perfect iid U(0,1)
random variables, and that our computing device can manipulate real numbers
to infinite precision. However, usually neither of these assumptions is satisfied in
practice due to the limitations of finite precision computation.

In computer implementations it is common to use floating-point arithmetic.
Floating point numbers (in the IEEE 754-2008 standard) are represented by bi-
nary vectors of length d, where d = 32 is called s ingle precision, d = 64 is called
double precision, and d — 128 is called quadruple precision. These binary
vectors are ordered as

(s , e i , . ..,ep,mi,...,mq),

where s is the sign, (e i , . . . , ep) is the biased exponent , and (m i , . . . , mq) is the
mantissa (or trail ing significant field), and represent the numbers given by

= · · · = ep = 1, mi = · ■ ■ = mq = 0

= · ■ · = ep = 1,TOI = 1

= · · · = ep = 1, mi = 0, mu = 1 for some fc

= · · · = ep = 0 (subnormal number)

,·) otherwise (normal number),

where b = 2 P _ 1 — 1 is called the bias. sNaN and qNaN represent two fictitious
"numbers" different from ±oo. The values of p and q for the different precisions
are given in the following table.

d 32 64 128

(- i) s

qNaN

sNaN

(- i) s

(- i) s

X

2"

T

oo

~"(Σ%
-HEL

21

1 Δ

irrij)
e*(i + E]= =i2-

e i

e i

e i

e i

~J m

p 8 11 15
q 23 52 112

A practical consequence of this lack of arbitrary precision is that one can inad-
vertently map a large proportion of uniform random numbers to a single point mass
using an absolutely continuous distribution. As an example [11], consider sampling
X ~ Beta(l,0.01) via the inverse-transform method (Section 3.1.1) — which yields
X = 1 — (1 — U)wo. Suppose we use the IEEE 754 standard for double precision
floating point numbers and round to the nearest floating point number. In this
case, all numbers X G (1 — 2 - 5 2 , 1] will be mapped to the floating point 1. Thus,
all U e (1 - 2 " 1 3 / 2 5 , 1] will be mapped to 1. Thus a proportion 2 " 1 3 / 2 5 « 0.69737 of
all uniform random variables converted by this inversion are mapped to the single
floating point value of 1. But the beta distribution does not have any point masses.
Hence, caution should be exercised when dealing with distributions that have signif-
icant mass in ranges that cannot be represented using the computer number format
in which one is computing.

GENERIC ALGORITHMS BASED ON COMMON TRANSFORMATIONS 4 5

3.1.1 Inverse-Transform Method

Let X be a random variable with cdf F. Since F is a nondecreasing function, the
inverse function F _ 1 may be defined as

F _ 1 (i /) = inf{a; : F{x) ^ y) , 0 sï y ^ 1 .

Let U ~ U(0,1). The cdf of the inverse transform F~1([7) is given by

P (F _ 1 (i 7) sC x) = P({/ ^ F{x)) = F(x) .

(3.1)

(3.2)

Thus, to generate a random variable X with cdf F , draw U ~ U(0,1) and set
X = F~1(U). This leads to the following general method, illustrated in Figure 3.1,
for generating from an arbitrary cdf F.

Figure 3.1 Inverse-transform method.

Algori thm 3.1 (Inverse-Transform M e t h o d)

1. Generate £ / ~ U(0,1).

2. Return X = F~1{U).

■ EXAMPLE 3.1 (Il lustration of the Inverse-Transform M e t h o d)

Generate a random variable from the pdf

m 2x, 0 ^ x si 1

0, otherwise.
(3.3)

The cdf F is defined by F(x) = /Q
x 2ydy = x2, 0 ^ x ^ 1, the inverse function of

which is given by F _ 1 (u) = ^/u for 0 s$ u sj 1. Therefore, to generate a random
variable X from the pdf (3.3), first generate a random variable U from 11(0,1), and
then take its square root.

4 6 RANDOM VARIABLE GENERATION

In general, the inverse-transform method requires that the underlying cdf, F,
exists in a form for which the corresponding inverse function F~x can be found
analytically or algorithmically. Applicable distributions are, for example, the ex-
ponential, uniform, Weibull, logistic, and Cauchy distributions. Unfortunately, for
many other probability distributions, it is either impossible or difficult to find the
inverse transform, that is, to solve

F(x) Γ ut)
J — OO

at

with respect to x. Even in the case where F^1 exists in an explicit form, the
inverse-transform method may not necessarily be the most efficient random variable
generation method (see [5]).

The inverse-transform method applies to both absolutely continuous and discrete
distributions. For a discrete random variable X taking values X\ < X2 < ■ ■ ■ with
probabilities ρι,ρ?,..., where J ^ P i = 1, the cdf is a step function, as illustrated in
Figure 3.2.

F{x) 1

1

u

Pl{\ 0
1 ■■ ■ 1 O

*

Mi

\

9 \

>P4

1

\h

*-
xi x-i x3 X x5

 x

Figure 3.2 Inverse-transform method for a discrete random variable.

For the discrete case the inverse-transform method can be written as follows.

Algor i thm 3.2 (Discrete Inverse-Transform M e t h o d)

1. Generate U ~ U(0,1).

2. Find the smallest positive integer k such that F{x^) ^ U, and return X = Xk-

■ EXAMPLE 3.2 (Discrete Inverse-Transform Implementat ion)

Suppose we wish to draw ./V = 105 independent copies of a discrete random variable
taking values 1 , . . . ,5 with probabilities 0.2,0.3,0.1,0.05,0.35, respectively. The
following MATLAB program implements the inverse transform method to achieve
this, and records the frequencies of occurrences of 1 , . . . , 5.

GENERIC ALGORITHMS BASED ON COMMON TRANSFORMATIONS 4 7

’/.discIT.m
p = [0.2,0.3,0.1,0.05,0.35];
N = 10~5;
x = zeros(N.l);
for i=l:N

x(i) = min(find(rand<cumsum(p)));
end
freq = hist(x,1:5)/N

’/idraws from p

Note that cumsum(p) corresponds to the vector of cdf values (F(l),..., F(5)).
By applying the function f ind first and then min, one finds the smallest index k
such that F(k) ^ rand, where rand presents a uniform random number. A faster
generation program, which uses the function h i s t c (x , e) to efficiently count the
number of values in a vector x that fall between the elements of a vector e, is given
next.

%discinvtrans.m
p = [0
N = 10
[dummy
freq =

2,0.3,0.
~5;
,x]=histc
hist(x,l

1,0.05,

(rand(l
:5)/N

3.35];

,N),[0 cumsum(p)]);

3.1.2 Other Transformation Methods

Many distributions used in Monte Carlo simulation are the result of simple opera-
tions on random variables. We list some of the main examples.

3.1.2.1 Affine Transformation Let X = (Xi, ■ ■ ■, Xn)
T be a random vector, A an

m x n matrix, and b an m x 1 vector. The m x 1 random vector

Z = AX + b

is said to be an affine transformation of X. If X has an expectation vector μ χ ,
then the expectation vector of Z is μζ = Αμ-^ + b . If X has a covariance matrix
Σ χ , then the covariance matrix of Z is Σ ζ = A Σ χ ΑΎ. Finally, if A is an invertible
n x n matrix and X has a pdf / χ , then the pdf of Z is given by

|det(,4)|

where |det(A) | denotes the absolute value of the determinant of A (see Sec-
tion A.6.1). 620

3.1.2.2 Location-Scale Family A family of continuous distributions with pdfs
{/(χ;μ7σ),μ G M, σ > 0} of the form

ti \ X t (x~ V
}{χ;μ,σ) = -f[

σ \ σ

x e (3.4)

48 RANDOM VARIABLE GENERATION

Figure 3.3 A location-scale family of pdfs.

is called a location—scale family with base (or standard) pdf f(x). Parameter
μ is called the location and σ is called the scale. Families for which (3.4) holds
with μ = 0 are called scale families. Families for which (3.4) holds with σ = 1
are called location families.

In a location-scale family the graph of the pdf / (· ; μ, σ) has the same shape as
that of /(·) but is shifted over a distance μ and scaled by a factor σ, as illustrated
in Figure 3.3.

■^ 85 Location-scale families include the following distributions (note the anomalous
notation for the normal, Student's t, and uniform distributions):

C a u c h y ^ , a) Fréchet(a, μ, σ) Gumbel(/z,a) Lap lace^, σ)
Logis t ic^ , σ) Ν(μ , σ2) U[a,b] tu(ß, σ2)

Scale families are often parameterized via λ = Ι/σ, where λ is again called the
scale parameter. Examples include:

Εχρ(λ) Gamma(a, λ) Pareto(a, λ) Weib(a, λ)

Location-scale families of distributions arise from the affine transformation

Z = μ + σΧ,

where X is distributed according to the base or "standard" pdf of the family. In
particular, if X ~ / = / (· ; 0,1), then

GENERIC ALGORITHMS BASED ON COMMON TRANSFORMATIONS 4 9

μ + σΧ ~ / (· ; μ , σ) .

Thus, to generate a random variable from a location-scale family of pdfs, first gen-
erate a random variable from the base pdf and then apply an affine transformation
to that random variable.

■ EXAMPLE 3.3 (Normal Dis tr ibut ion and Locat ion-Scale)

A typical example of a location-scale family is the normal family of distributions
{Ν(μ,σ2)} with location parameter μ and scale parameter σ. Here "3° 122

/ (χ;μ,σ) = - /
σ \ σ

- l / 2 „ - x 2 / 2

\Î2%

is the base pdf. Hence, to draw Z ~ Ν(μ,σ2) , first and f{x) = (2TT)-

draw X ~ N(0,1) and then return Z = μ + σΧ. In MATLAB, drawing from the
standard normal distribution is implemented via the function randn. For exam-
ple, the following MATLAB program draws 105 samples from N(4,9) and plots the
corresponding histogram.

X = r a n d n (l , 1 0 ~ 5) ; Z = 4 + 3*X; h i s t (Z , 1 0 0)

3.1.2.3 Reciprocation Another common transformation is inversion or recipro-
cation. Specifically, if X is a univariate random variable, then the inverse or
reciprocal of X is

If X has pdf fx, then (see Section A.6.2) Z has pdf

fz(z)=fx^ 1 } , z€R. (3.5)

Distributions obtained in this way are called inverted or inverse distributions.

■ EXAMPLE 3.4 (Inverse-Gamma Distr ibut ion via Reciprocat ion)

The inverse-gamma distribution, denoted by lnvGamma(o;,A), has pdf

\α~—a—1„ —λζ _ 1

fz{z; α, λ) = =-r-r , z > 0 ,
Γ(α)

which is of the form (3.5), with fx the pdf of the Gamma(o:,A) distribution. To
generate a random variable Z ~ lnvGamma(a,A), draw X ~ Gamma(a, λ) and
return Z = l/X.

Similarly, if X is an n x n invertible random matrix with pdf / χ , then the inverse
matrix Z = X - 1 has pdf

| de t (J (z)) |

620

112

5 0 RANDOM VARIABLE GENERATION

where | de t (J (z)) | is the absolute value of the determinant of the matrix of Jacobi
corresponding to the transformation x H z = x _ 1 . For example, if x is a general
invertible nxn matrix, then | det(J (z)) | = | det(z)|2™, and if x is an n x n positive
definite random matrix, then | de t (J (z)) | = | d e t (z) | n + 1 . An example is the distri-

148 bution of Z = X ~ \ where X ~ Wishart(i/, Σ). In this case, X is a positive definite
random matrix, and Z is said to have an inverse Wishart distribution.

3.1.2.4 Truncation Let Dist^/ and Dist^ be two distributions on sets se and 3ë C
&f, respectively. Let X ~ Dist^/ and Z ~ Dist^. If the conditional distribution
of X given X 6 Ä coincides with the distribution of Z (that is, Dist^), then the
latter distribution is said to be the truncat ion of Dist^ to SS. In particular, if / χ
is the pdf of X , then the pdf of Z is (in the continuous case)

/z(z)= , * * j z) . , , zeâê.

In the continuous univariate case, the truncation of a pdf f{x) to an interval
[a, b] gives the pdf

and in the discrete case we replace the integral with a sum. In terms of cdfs we
have:

where F (a—) = lim.œ-|-aF(2;). To generate random variables from a truncated dis-
tribution on [a, b] one can simply use the acceptance-rejection method (see Sec-
tion 3.1.5) by generating X ~ F until X € [a, b]. When the generation of X can be
readily performed via the inverse-transform method, a more direct approach can
be taken. In particular, the inverse of (3.6) yields the following inverse-transform
method.

Algor i thm 3.3 (Truncation via the Inverse-Transform M e t h o d)

1. Generate U ~ U(0,1).

2. Return Z = F-1{F{a-) + U{F{b) - F {a-))).

Note that the only difference with the inverse-transform method is that in Step 2
the argument of F~x is uniformly distributed on the interval (F(a—),F(b)) rather
than on (0,1).

■ EXAMPLE 3.5 (Truncated Exponent ia l Generator)

108 Consider the pdf of the Exp(l) distribution truncated to the interval [0,2]:

fz(z) = - ^ ^ , 0^z^2. (3.7)
1 — e Δ

The inverse of the cdf of the Exp(l) distribution is F~x(u) = — ln(l — u), so that

Z = - l n (l + [/ (e - 2 - l)) ~ / z .

GENERIC ALGORITHMS BASED ON COMMON TRANSFORMATIONS 5 1

The following MATLAB program provides an implementation for generating 105

samples from this truncated distribution and plotting the corresponding histogram.

"/.truncexp. m
U= r a n d (l , 1 0 ~ 5) ; Z = - l o g (l + U * (exp(-2) - 1)) ; h i s t (Z . lOO)

■ EXAMPLE 3.6 (Truncated Normal Generator)

Consider the ΙΜ(μ, σ2) pdf truncated to the interval [a, b\:

. . . 1 (z — u\

where C = Φ (^) - Φ (^) , and φ and Φ are the pdf and cdf of the N(0,1)
distribution, respectively. The following MATLAB function implements the inverse-
transform method.

function out=normt(mu,sig,a,
pb=normcdf ((b-
pa=normcdf ((a-

-mu)./sig);
-mu)./sig);

C=pb-pa;
out=mu+sig.*norminv(C.*rand(

b)

size (mu)) +pa);

■ EXAMPLE 3.7 (Sampling from the Tail of a Normal Distr ibut ion)

Consider the problem of sampling from the truncated normal pdf

fz{z) - Φ (- α) '

where the truncation point a > 0 is large, say a > 10. A straightforward imple-
mentation of the inverse-transform method gives:

Ζ = φ- 1 (Φ(α) + [/ (1 - Φ (α))) , C / ~ U [0 , 1] .

However, this approach is numerically unstable, and in most computer implemen-
tations one obtains infinity for the value of Z or an error message when a > 6.4. A
theoretically equivalent but more numerically stable generator is:

Ζ = - φ - 1 ([/ Φ (- ο)) , [7 ~ U [0 , 1] .

This generator works well for values of a up to a = 37. However, it still breaks down
in MATLAB for values of a > 37. The improved reliability is due to the fact that
it is easier to approximate Φ - 1 in the left tail than in the right tail. This example
shows that Algorithm 3.3 should be used with caution and is not prescriptive for
all problems.

5 2 RANDOM VARIABLE GENERATION

3.1.2.5 Wrapping A continuous random variable Y is said to be wrapped onto
the interval [0,p), if

Y = X mod p

for some continuous random variable X\ that is, X is the remainder of Y after
dividing by p > 0. In the univariate case with support on all of R, we have the
following result.

Propos i t ion 3.1.1 (Wrapped R a n d o m Variables) LetX be a continuous ran-
dom variable with pdf fx on R. Suppose that Y^'=_00 fx(x + kp) < oo converges
uniformly for x G [0, p]. Then, Y = (X mod p) has pdf

oo

Mv)= Σ fx(v + kp)> ye[o,p). (3.8)
k= — oo

Generating a random variable Y from the pdf (3.8) can thus be accomplished as
follows.

Algor i thm 3.4 (Wrapped R a n d o m Variable Generator)

1. Draw X ~ fx.

2. Output Y = X mod p.

■ EXAMPLE 3.8 (Wrapped Cauchy Distr ibution)

Suppose that X has a Cauchy(/x, σ) distribution. Then, using (3.8) and the Poisson
714 summation formula, the pdf of Y = (X mod p) is given by:

r l \ V^ σΙηΧ (1 ~ r2)/P ,n Λ
^—' σ* + (y — μ + lepy 1 — 2rcos(2n{y — μ)/ρ) + rz

where r = β~2πσ/ρ. The corresponding distribution is known as the wrapped
Cauchy distribution.

■ EXAMPLE 3.9 (Wrapped Normal Distr ibution)

Suppose that X has a Ν(μ, σ2) distribution. Then, the pdf of Y = (X mod p) is
given by:

-. OO

- Σ ^2kW/*\oS(2nk(y-ß)/p), y e [0,p),
Pk

where the second equality follows from the Poisson summation formula. The dis-
tribution of Y is known as the wrapped normal distribution.

GENERIC ALGORITHMS BASED ON COMMON TRANSFORMATIONS 5 3

3.1.2.6 Composition Method Of great practical importance are distributions that
are probabilistic mixtures of other distributions. Let & be an index set and {Ht, t G
^} be a collection of cdfs (possibly multidimensional). Suppose that G is the cdf
of a distribution on &. Then

F (x) = / fft(x)dG(t),
Jsr

is again a cdf and the corresponding distribution is called a mixture distribution
or simply mixture , with mixing components {Ht,t G &}. It is useful to think
of G as the cdf of a random variable T and Ht as the conditional cdf of a random
variable X t given T = t. Then, F is cdf of the random variable Xj · . In other
words, if T ~ G and Xt ~ Ht, then X = XT has cdf F. This yields the following
generator.

Algori thm 3.5 (Compos i t ion M e t h o d Generator)

1. Generate the random variable T according to the cdf G.

2. Given T = t, generate X from the cdf Ht.

In many applications G is a distribution on { 1 , . . . , n) for some strictly positive
integer n, in which case the mixture cdf is of the form F(x) = Y^=iPtFt(%) for
some collection of cdfs {Ft} and probabilities {pt} summing to 1. Denoting the
corresponding pdfs by {/*}, the pdf / of the finite mixture is given by

n

/(*) = 5>/t(a:) . (3.9)

■ EXAMPLE 3.10 (Mixture of Normals)

We wish to draw samples from a mixture of normal pdfs. Specifically, suppose
that the pdf from which to draw has the form (3.9) with n = 3 and (ρι,ρζ,Ρα) =
(0.2,0.4,0.4), and suppose that the means and standard deviations of the normal
pdfs are given by μ = (—0.5,1, 2) and σ = (0.5, 0.4, 2). A useful shorthand notation
for this distribution is

0.2 N(-0.5,0.52) + 0.4 N(l , 0.42) + 0.4 N(2,22) . (3.10)

A graph of the corresponding pdf is given as the base pdf in Figure 3.3. The
following MATLAB code implements the composition method and plots a histogram
of the generated data.

7,mixturef in
p = [0.2, 0
mu = [-0.5,
sigma = [0..
N = 10-5;

m
4,
1,

[dummy,t]=hist
x = randnCl
hist(x,200)

N)

0.4];

2];
0.4, 2] ;

c(rand(l,N) [0 cumsum(p)])
.*sigma(t) + mu(t);

t make
1

; 7, draw from
draw a normal

a histogram of the

P
r .v.
data

54 RANDOM VARIABLE GENERATION

■ EXAMPLE 3.11 (Composition Method in Bayesian Inference)

672 Composition methods appear often in Bayesian analysis. As an example, consider
the following Bayesian model for a coin toss experiment. Let Θ (random) denote
the probability of success (heads) and let X be the number of successes in n tosses.
Define the joint distribution of X and Θ via the hierarchical model

θ ~ Beta (a,/3) prior distribution,

(X | θ) ~ Bin(n, Θ) likelihood distribution

for some given a > 0 and ß > 0. Using Bayesian notation, we can write for the pdf
of X:

f(x) = Jί(χ\θ)/(θ)άθ, ι = 0,...,i

where f(9) is the pdf of the Beta(a, ß) distribution and f(x \ Θ) is the pdf of the
Bin(n, Θ) distribution. Note that the distribution of X is a continuous mixture. The
mechanism for simulating samples from this distribution using the composition
method is given precisely in the Bayesian hierarchical model: first draw Θ from
Beta(a,/3), and then, given Θ, draw X from Bin(n, Θ).

3.1.2.7 Polar Transformation The polar method is based on the polar coordinate
transformation X = RcosQ, Y = i î s in9 , where Θ ~ U(0,27r) and R ~ fu are

620 independent. By the transformation rule (A.33) it follows that the joint pdf of X
and Y satisfies

t , \ / ß (r)

fx,Y(x,y) = ^ r ,
with r = -\/x2 + y2, so that

/ R (V ^ T ^)
π^/χ2 + y2 Jx

f
{x)= /

Jo

dy ■

For example, if fü(r) = re~r /2, then fx{x) = e~x
 /2/Λ/27Γ. Note that in this case

the pdf of R is the same as that of \JlE with E ~ Exp(l). Equivalently, R has the
same distribution as \/—21ni7 with U ~ U(0,1). These observations lead to the

"S" 123 Box-Muller method for generating standard normal random variables.
Interesting relationships between distributions can be obtained from a slight

modification of the polar method. Specifically, suppose R G [0, oo) and Z±, Zi ~üd
N(0,1) are independent random variables. Then, (Χγ,Χ-ι) — R{Z\,Z-i) =
{RZ\,RZ-i) has a radially symmetric pdf with radius distributed according to
the distribution of R^JZ\ + Z\, or, equivalently, according to the distribution of
R\/2Ë, where E ~ Exp(l) is independent of R. For some choices of R the pdf of
R\[2E is easy, leading to simple generation algorithms for X\ ; see, for example, [6].

3.1.2.8 Order Statistics Let X\,... ,Xn ~ / , with cdf F. In many applications
one is interested in the distribution of the order statistics X(i), X(2) > · · · > -^(n) i
where X(i) is the smallest of the {Xi}, X(2) is the second smallest, and so on.
The random variable R = X(n) — X{i) is called the range of the data or sample
range and is a measure for the spread of the data. Some well-known facts about

GENERIC ALGORITHMS BASED ON COMMON TRANSFORMATIONS 5 5

order statistics are given next; see, for example, [2]. Generation of order statistic
is discussed in Section 3.3.1.

1. Cdf of maximum: P (X (n) < x) = {F{x))n.

2. Cdf of minimum: P(X (1) < x) = 1 - (1 - F(x))n.

3. Joint pdf. The joint pdf of the order statistics is given by

fxil),...,xw{xi,---,Xn)=n\JYf{xi) for xx ^ x2 ^ · · · «i x„ . (3.11)
i= l

4. Marginal pdf. fx (x) = n\ f(x) — ^ ^— ^ (f .

w (i — l) ! (n — z)!

5. Subvectors: The joint pdf of X^) and X^ j (with i < j) is given by

n\

fx^u^y) = (i _1)!(J- _!_<),(„_,·), /(«)/(»)
x i ^x)*" 1 (F(y) - ^ (ι) ^ - 1 - ' (1 - Ffo))"" ' ' , x < y .

3.1.2.9 Products Taking products of independent random variables provides a
convenient way to generate random variables from many distributions. The distri-
bution of the product of two independent random variables is sometimes called a
scale mixture [6].

■ EXAMPLE 3.12 (Normal Scale Mixture)

Consider the random variable Z — XY with X ~ N(0,1) and Y = \/2V, where
V > 0 is independent of X. Then, the characteristic function of Z is given by

4>z{t) = Eétz =EE[e^tV^x | V] = Ee~t2v = cf>v(it
2) ,

where φν is the characteristic function of V. As a particular case, if V ~ Exp(l),
then φν(ί) = 1/(1 — it), and hence φζ(ϊ) = 1/(1 + ί 2) , which is the characteristic
function of the Laplace(0,1) distribution. "S" 118

3.1.3 Table Lookup Method

One of the easiest and fastest general methods for generating discrete random vari-
ables is Marsaglia's table lookup m e t h o d [15].

Algor i thm 3.6 (Table Lookup M e t h o d)

1. DrawU ~ U(0,1).

2. Set I = \Un\.

3. Return X = o/ .

56 RANDOM VARIABLE GENERATION

Here (α,ι,... ,an) is a predetermined table of numbers or, more generally, objects
such as vectors, trees, etc. Duplication among the {a^} is allowed. If the set of
distinct objects is {61 , . . . ,&&}, then the algorithm generates random variables X
that satisfy

Σ^Ιία^Μ = #{ii«^M, i = i , . . . | f c .
n n

■ EXAMPLE 3.13 (R a n d o m Variable Generat ion via Table Lookup)

Suppose we wish to generate from the discrete pdf / with

/ (x) = ^ , a : = l , . . . , 1 0 .

This can be done via table lookup using a table of size n = 55 with elements
1, 2 , 2 , 3 , 3 , 3 , . . . , 1 0 , . . . , 10. The following MATLAB program creates the lookup
table, generates 105 random variables from / via the lookup method, and plots the
histogram of the generated data.

7otablook.m
r =
a =
n=0
fo r

end
I =
X =

10;
z e r o s (1 ,

i = l : r
fo r j = l

n =
a(n)

end

(r + l) * r / 2) ;

i
n+1

= :

c e i l (r a n d (l
a (I) ;

h i s t (X , l : r)

- »

l (T 5) * n) ;

The table lookup method is a resampling technique: given data {a^} the algo-
rithm resamples the data by selecting one of the a; uniformly and independently
each time. In other words, Algorithm 3.6 generates samples from the empirical dis-
tribution of the data {ai}. This is of particular importance in the bootstrap method;

"3· 331 see Section 8.6.

3.1.4 Alias Method

The alias m e t h o d [22] is an alternative to the inverse-transform method for gen-
erating discrete random variables, which does not require time-consuming search
techniques as in Step 2 of Algorithm 3.2. It is based on the fact that an arbitrary
n-point distribution can be represented as an equally weighted mixture of n two-
point distributions. The idea is to redistribute the probability mass into n bins of
equal weight 1/n, as illustrated in Figure 3.4.

GENERIC ALGORITHMS BASED ON COMMON TRANSFORMATIONS 5 7

Figure 3.4 Redistribution of probability mass.

Here, a probability distribution on {1,2,3,4} is depicted on the left side, with
probability masses 8/28, 3/28, 6/28, and 11/28. These masses are redistributed over
four bins such that (1) the total capacity of each bin is 1/4, (2) each bin has masses
corresponding to at most two variables, (3) bin i contains mass corresponding to
variable i, i = 1, 2,3, 4.

To see that such a redistribution can be done generally, consider a probability
distribution on { 1 , . . . , n} with probability mass Pi > 0 assigned to i, i = 1 , . . . , n.
If Pi = . . . = Pn, then, trivially, the original distribution is an equal mixture of
1-point (and hence 2-point) distributions. If not all {pk} are equal, then there
must exist indices i and j such that pi < 1/n and pj ^ 1/n. Now fill bin i by first
adding pi and then transferring an amount 1/n — pi from pj. This leaves n — 1
bins to be filled with n — 1 probabilities that sum up to (n — l) / n , which can be
done in exactly the same way by choosing i' and j ' from the remaining indices such
that pi' < 1/n and py ^ 1/n, and redistributing their weights, and so on. At the
end, each bin k = 1 , . . . , n corresponds to a 2-point distribution at the points k
and another point α^, with probabilities qk and 1 — q^, respectively. For example,
in Figure 3.4, a2 = 4 and q2 = 3/28 x 4 = 3/7. The {ak} are called the alias
values and the {q^} the cut-off values. These can be determined by the following
algorithm, which formalizes the bin-filling procedure described above.

Algor i thm 3.7 (Set-up for the Alias M e t h o d) Let {pu,k = l , . . . , n } be a
distribution on { 1 , . . . , n}.

1. Let qk = npk, k = 1 , . . . , n. Let 5? = {k : qk < 1} and & = {k : qk ^ 1}·

2. While 5? and <£ are not empty,

(a) Choose some i £ 5? and j € ^.

(b) Set a» = j and qj = qj — (1 — QJ).

(c) If qj < 1, remove j from if and add to 5?.

(d) Remove i from 5?.

The set-up algorithm can be implemented to run in 0(n) time [5, 19]. Once the
alias and cut-off values have been established, generation of a random variable X
from the distribution {p^} is simple and can be written as follows.

5 8 RANDOM VARIABLE GENERATION

Algor i thm 3.8 (Alias M e t h o d)

1. Generate U ~ U(0,1) and set K = \n U~\.

2. Draw V ~ U(0,1). If V ^ QK, return X = K; otherwise, return X = α,κ-

■ EXAMPLE 3.14 (Alias M e t h o d)

The following MATLAB program shows how the alias method works in practice.
The objective is to generate 106 samples from a fixed 400-point pdf that is itself
randomly generated. In the first part of the program the alias and cut-off values
are calculated. The second part checks that the original probabilities are faithfully
reconstructed. In the last part the data are generated.

°/0aliasf in. m
p =rand(l,400);p = p/sum(p); %the distribution from which to
n = size(p,2);
a = l:n; "/.alias values
q = zeros(l,n); '/, cut-off values
q = n*p;
greater = find(q >= 1);
smaller = find(q < 1);
while ("isempty(smaller) && "isempty(greater))

i = smaller(l);
j = greater(l);
a(i) = j;
q(j) = q(j) -(1- q(i));
if (q(j) < 1)

greater = setdiff(greater,j);
smaller = union(smaller,j);

end
smaller = setdiff(smaller,i);

end
pp = q/n;
for i = l:n

ind = find(a == i);
pp(i) = pp(i) + sum((l - q(ind)))/n;

end
max(abs(pp - p))
N = 10~6; % generate sample of size N
X = zeros(l.N);
for i = 1:N

K = ceil(rand*n);
if (rand > q(K));

X(i) = a(K);
else

X(i) = K;
end

end

sample

GENERIC ALGORITHMS BASED ON COMMON TRANSFORMATIONS 5 9

3.1.5 Acceptance-Rejection Method

The acceptance-rejection method is one of the most useful general methods for
sampling from general distributions. It can be applied to both discrete and con-
tinuous distributions, and even to multidimensional distributions — although its
efficiency rapidly decreases with the number of dimensions (see Section 3.3.3). The
method is based on the following observation.

Theorem 3.1.1 (Acceptance—Rejection) Let / (x) and g(x) be two pdfs such
that for some C ^ 1, C <?(x) ^ / (x) for all x . Let X ~ g(x) and U ~ U(0,1) be
independent. Then, the conditional pdf of X given U ^ / (X) / (Cg i (X)) is / (x) .

Proof: Consider the joint pdf of X and U, which is

/ / o 5 (x) I { ^ ^ } d u d X /*(*)(Jo«*00 ld«)dx

=<7 f f (x)w&}·
The (marginal) pdf of X is therefore

/ x (x) = j fx,u(x,u)du = Cg(x)-^_ = / (x) ,

as required.

We call g(x) the proposal pdf and assume that it is easy to generate random
variables from it. The acceptance-rejection method can be formulated as follows
(see, for example, [21, Page 55]).

Algor i thm 3.9 (Acceptance—Rejection)

1. Generate X from <?(x).

2. Generate U from U(0,1), independently o / X .

3. IfU^ / (X) / (C i / (X)) output X ; otherwise, return to Step 1.

In other words, generate X ~ g and accept it with probability / (X) / (Cg r (X)) ;
otherwise, reject X and try again.

The efficiency of the acceptance—rejection method is defined as the probability
of acceptance, which is,

Since the trials are independent, the number of trials required to obtain a successful
pair (X, U) has a Geom(l/C) distribution, so that the expected number of trials is
equal to C.

60 RANDOM VARIABLE GENERATION

■ EXAMPLE 3.15 (Generating from the Positive Normal Distribution)

Suppose we wish to generate random variables from the positive normal pdf

/(*)
-x2/2 x^O, (3.12)

using acceptance-rejection. We can bound f(x) by Cg(x), where g(x) = e~x is the
pdf of the Exp(l) distribution. The smallest constant C such that f(x) ^ Cg(x) is
^/2ε/π. The pdf f(x) and the dominating function Cg(x) are depicted in Figure 3.5.
The efficiency of this method is y/n/2e « 0.76.

Figure 3.5 Bounding the positive normal density (solid curve)

Since f(x) is the pdf of the absolute value of a standard normal random variable,
we can generate Z ~ N(0,1) by first generating X ~ / as above and then returning
Z = XS, where S is a random sign; for example, S = 1 — 2I{[/<gi/2} with U ~
U(0,1). This procedure for generating N(0,1) random variables is summarized in

124 Algorithm 4.50.

An acceptance-rejection algorithm can often be made more efficient and faster
by employing a so-called squeeze. The idea is to "squeeze" the target function
/(x) between the dominating function C <?(x) and a simple (for example, piecewise
linear) function s(x), such that

s(x) ^ /(x) ^ C <?(x) for all x ,

as is illustrated in Figure 3.6 for a one-dimensional pdf.

GENERIC ALGORITHMS BASED ON COMMON TRANSFORMATIONS 6 1

/ (*)

Figure 3.6 Squeeze function.

The advantage of using a squeeze function is that the acceptance-rejection con-
dition (Step 3 of Algorithm 3.9) can be carried out more efficiently: to check if
U ζ f(X)/{Cg{X)), first check if U ^ s{X)/{Cg{X)). The latter step is usually
much less time-consuming.

■ E X A M P L E 3.16 (N e a r l y L inea r Dens i t i e s)

To illustrate the squeeze principle, consider the generation of random variables from
"nearly linear" densities. These are one-dimensional densities that can be bounded
as

a - bx/h < f(x) ^ b — bx/h , 0 ^ x < h ,

where a is less than but close to b, as illustrated on the left-hand side of Figure 3.7.
By shifting the pdf over a distance d one obtains nearly linear densities on [d, d + h]
rather than [0,/i]. Often a complicated pdf such as that of the standard normal
distribution can be decomposed as a mixture of nearly linear densities; see for
example [14, Page 124].

h 0 U

Figure 3.7 Nearly linear density.

To sample from the above almost linear density using acceptance-rejection, it
is convenient to first linearly transform (x,y) to (u,v) = (x/h,x/h + y/b). This
transforms the triangle (0,0) - (h, 0) - (0, b) into the triangle (0,0) - (1,1) - (0,1),
and a point (x,f(x)) is mapped to (x/h,x/h + f{x)/b) = (u,u + f(hu)/b) —
see Figure 3.7. The acceptance-rejection procedure on the original pdf is now
equivalent to the following algorithm, which uses the constant a/b as a squeeze.

6 2 RANDOM VARIABLE GENERATION

Algor i thm 3.10 (Sampling From a Nearly Linear Dens i ty)

1. Draw U ~ U(0,1) and V ~ U(0,1) independently. IfU > V, exchange U and
V.

2. IfV ^ a/b go to Step 4.

3. IfV>U + f(hU)/b, go back to Step 1; otherwise, continue with Step 4-

4- Return X = hU.

3.1.5.1 Transformed Acceptance-Rejection The transformed a c c e p t a n c e -
rejection method [23] combines ideas from the acceptance-rejection and the
inverse-transform methods. The method uses a transformation in order to increase
the acceptance probability in an acceptance-rejection step and improve overall ef-
ficiency. The transformation has to be simple and yet it must be a good approxi-
mation to the inverse cdf.

T h e o r e m 3.1.2 (Transformation of a R a n d o m Variable) Let f be the pdf of
an absolutely continuous distribution. Let G be a nondecreasing and almost every-
where differentiable function, with derivative G' and inverse G _ 1 . If' U ~ h(u) —
f(G{u)) G'{u), then X = G{U) ~ / .

620 Proof: This is an immediate consequence of the transformation rule (A.33).
Namely, with x = G(u), we have

f M - Ù M - HG(G-\x)))G'(u) _
Ix[X)~G'(u)~ G'{u) ~ n) '

as had to be shown.

Typically, h is a pdf on either the interval (0,1) or on (—1/2,1/2). Note that
h(u) = (F(G(u)))', where F is the cdf of / . Hence, the choice G = F - 1 simply
recovers the inverse-transform method for generating X ~ / . However, choosing
G = F - 1 is not always computationally efficient. Instead one can choose G to be a
simple function such that h is as close as possible to some uniform pdf, and use this
uniform pdf as a proposal density in an acceptance-rejection procedure. Assuming
that h is a pdf on (—1/2,1/2), the general algorithm is as follows.

Algor i thm 3.11 (Transformed Acceptance—Rejection M e t h o d) Let C >
max„ h(u).

1. Generate independently U ~ U(—1/2,1/2) and V ~ U(0,1).

2. IfV^ h(U)/C output G(U); otherwise, return to Step 1.

GENERIC ALGORITHMS BASED ON COMMON TRANSFORMATIONS 6 3

■ EXAMPLE 3.17 (Normal Distr ibut ion)

Hörmann and Derflinger [10] describe a transformed acceptance—rejection method
for the N(0,1) distribution that uses the simple function

G(u)= faU +bu, - 1 / 2 < U < 1 / 2 ,
1 / 2 - |u|

so that

G / (M) = (i / 2 - H) 2 + 6

By numerical search the following optimal parameters were found:

a = 0.062794, b = 2.530885 ,

which gives an acceptance probability of 1/C « 0.8904302215. The function h(u)/C
is plotted in Figure 3.8, along with a squeeze function s(u) = vr I { - î l r ^ u ^ I i l . } , with
ur = 0.4359971734 and vr = 0.9296123611.

Figure 3.8 Transformed acceptance rejection for the N(0,1) distribution. The squeeze
function is indicated by dashed lines.

3.1.5.2 Generation From a Log-Concave Density We say that a density / o n ^ T C
R is log-concave if the logarithm of / is a concave function. In particular, if / is
differentiable, log-concavity implies that

d2

-T-^ln/fx) ζ θ f o r a l l x e j r

and if / is discrete, log-concavity implies that

l n / (a) + ln / (c)
^ 2 1 n / (6) for all a ^ 6 ^ c .

6 4 RANDOM VARIABLE GENERATION

Examples of log-concave distributions include the following:

Ν(μ,σ2) Εχρ(λ) Logistic(/x, σ) χ2
η

B e t a (a , / 3) , α,β^Ι vVeib(a,À), a ^ 1 G a m m a (a , Ä) , a ^ 1

The adaptive rejection sampling method by Gilks et al. [8] is an acceptance-
rejection algorithm for log-concave densities in which the proposal density and the
(normalized) squeeze function are both finite mixtures of truncated exponential
pdfs. Note that generation from a truncated exponential distribution is straightfor-
ward and computationally fast, and that the exponential pdf is frequently a suitable
proposal density in the acceptance-rejection algorithm (see Example 3.15). The
idea is as follows.

Suppose that f(x) = p(x)/Z is a log-concave density on 3C, where p{x) is a
known function and Z is a known or unknown constant. Let Xn be a collection
of points xi < ■ ■ ■ < xn on JT. For i = 1 , . . . ,n , let £i(x) = ctiX + ßi denote the
line through the points (XJ, lnp(x^)) and (XJ+I , lnp(xj+ j)) ; see the upper panel of
Figure 3.9. In other words, the line li has slope and intercept

_ l np (x i + i) - l n p (x j) _ xi+i lnp(xj) - Xj 1ηρ(χ»+ ί)
oci — and pi — ,

Xi-j-l Xi Xi+l Xi

respectively. From the concavity of lnp(x) we have for i = 1 , . . . , n,

£i{x) ^ lnp(x) < min- j i i -^x) , £i+i(x)}, x e [χ , , χ ί + ι] ,

where £Q(X) = £n+\(x) = oo. Define the piecewise exponential functions

Pn(x) = '

p (x) = <

e ' i W

y„(*)
f

0
eli(x)

0

-,{x)J.i+1(x)}

X ^ X\

x e [xi,xi+1_
X ^ X „ + i .

X ^ Xi

X iz [Xz, Xi+ l J 7

3- i? Xn+1 »

, i = 1 , . . . , n

i

Then, we have the enveloping property that p (x) ^ p{x) < Pn{x) for all x.
Let Zn be the normalization constant of pn(x) so that fn(x) = pn(x)/Zn is a
pdf. The idea of the adaptive rejection sampling is to use fn(x) as a proposal
in an acceptance-rejection algorithm and the lower bound p (x) as a squeezing
function (see Figure 3.6), while gradually increasing the size of the point set Xn to
obtain tighter enveloping functions p and pn. More precisely, we have the following
algorithm for sampling N iid random variables from / .

Algor i thm 3.12 (Adapt ive Reject ion Sampling) For t = 1,2, ...,N iterate
the following steps.

1. Given the point set Xn, construct the enveloping functions p (x) andpn(x).

2. Generate Y ~ fn(y) and U ~ U(0,1), independently.

3. IfU^p (Y)/pn(Y), go to Step 5; otherwise, go to Step 4-

GENERIC ALGORITHMS BASED ON COMMON TRANSFORMATIONS 6 5

L{x)

Xl X2 X3 X4

X5/2 ^ 7 / 2

x5 xe

Xl X2 X3 X4 x5 x6

Figure 3.9 Construction of the dominating and squeeze functions for a log-concave
density f(x). The upper panel shows how the lines {£*} are constructed using points on
the concave curve lnp(a;). The lower panel shows how the upper (dotted line segments) and
lower (solid line segments) bounds are constructed from the lines {it}.

4- IfU ^ p(Y)/pn(Y), go to Step 5; otherwise, repeat from Step 2,

5. Output Xt = Y as a random variable from f. Let Xn+\ = Xn U {Y} be the
point set Xn with the addition of point Y for a total of n + 2 sorted points.
Increment n = n + 1.

We now explain how to generate random variables from fn(x) efficiently. Let
xi+i/2 be the ^-coordinate of the intersection point of the lines ^j_i and £i+±; see
the lower panel of Figure 3.9. In other words,

xi+l/2
def ßi+1 - ßi-

,η — 1 .
Oii+l - Oti-i

It follows that for all i = 1 , . . . , n we have

Pn(x)
aaiX+ßi

■ e

def , def

X £ [Xi-l/2,Xi] U [Χί+Ι,Χί+3/2] ,

where 2:3/2 = x\ and £„+1/2 = xn+i, and X\/2 is the lower bound of S£ (possibly
—00) and xn +3/2 is the upper bound of X (possibly 00). Hence, we can write fn(x)
as a mixture of truncated exponential pdfs:

1 n

^ ™ i = l

and we can use the composition method (see Section 3.1.2.6) to generate from fn

efficiently.
We now discuss the choice of the point set Xn used to initialize the algorithm.

The algorithm fails if one of the following conditions holds: (1) the slope of i\ is

6 6 RANDOM VARIABLE GENERATION

negative and SC is not bounded from below; (2) the slope of £n is positive and
3C is not bounded from above. As a consequence of this observation, the points
x\ < xn < ■ ■ ■ < xn+i should be selected such that the interval [a;i,xn+i] contains
most of the probability mass of / and the mode of / is bracketed by [xi,a;n+i].
More specifically, if 3C is unbounded, then X\ and xn+i should be placed far into
the tails of / , and if SC is bounded, then x\ and xn+i should be placed close to
the boundaries of SC. The choice of the interior points X2, ■ ■ ■, xn is less important,
because of the progressive addition of newly sampled points to the set Xn. As a
rule of thumb one can start with n = 6 points.

For a version of the adaptive rejection sampling that uses the first derivative of
/ , see [9]. For alternatives to the linear interpolation used here in the construction
of the enveloping functions, see [16].

3.1.6 Ratio of Uniforms Method

The ratio of uniforms method , first proposed by Kinderman and Monahan [12],
is closely related to the acceptance-rejection method. An advantage of the method
is that the form of the density need only be known up to a normalizing constant.
Thus, the density from which to sample has the form f(z) = ch(z), where h(z)
is known, but the constant c > 0 could be unknown or difficult to compute. The
method is summarized as follows.

Algori thm 3.13 (Ratio of Uniforms M e t h o d)

1. Generate (X,Y) uniformly over the set

& = {(x,y):0^x^y/h(y/x)},

2. Return Z = Y/X.

To see that indeed Z ~ f(z), consider the coordinate transformation x = w, y =
w z, so that w = x and z = y/x. The determinant of the corresponding matrix of

■^ 620 Jacobi is w, so that the joint pdf of W and Z, by the transformation rule (A.33),
is given by

fw,z{w,z) =cw, 0 ^ w ^ y/h(z) ,

for some constant c. Consequently, the (marginal) pdf of Z is

fz[z)= cwdw= — — = f(z) .

The last equality follows from the fact that if fz is a pdf that is proportional to / ,
then it must be identical to / .

■ EXAMPLE 3.18 (Sampling from the Posit ive Normal Distr ibut ion)

As in Example 3.15 we wish to sample from the positive normal distribution, but
now using the ratio of uniforms method. The region M on which we need to draw
uniform samples is enclosed by the curve x = \/f(y/x) in Figure 3.10.

GENERATION METHODS FOR MULTIVARIATE RANDOM VARIABLES 6 7

Figure 3.10 The curve encloses the sampling region £% for the ratio of uniforms method.

Direct computation shows that M can be enclosed by the box [a, b] x [c, d], with

[2 2 3 / 4

a = 0, b = \ - « 0.893, c = -=—= « -0.766 and d =-c .
V π Je-σπ

The total volume of the region Si is 1 (by definition), and the bounding box has area
2bd = —F= « 1.369. Hence, if acceptance-rejection is used to sample uniformly

on M, the eiRciency of the procedure is y/eït/A « 0.73, which is comparable to the
acceptance-rejection method in Example 3.15.

3.2 GENERATION METHODS FOR MULTIVARIATE RANDOM
VARIABLES

In this section we consider some general procedures for generating a random vec-
tor X = (Xi,...,Xn)

T from a given n-dimensional distribution with pdf / (x) .
Algorithms for generating from specific multivariate distributions are given in Sec-
tion 4.3. i®" 138

When the components X\,..., Xn are independent the situation is easy. Suppose
that the component pdfs are fi, i = 1 , . . . ,n, so that / (x) = / i (x i) · · · fn(xn)- To
generate X, simply generate each component Xi ~ fi individually — for example,
via the inverse-transform method or acceptance-rejection.

Algor i thm 3.14 (Independent Components Generat ion)

1. Independently generate Xi ~ fi, i = 1 , . . . , n.

2. Return X = {X1:...,Xn)

6 8 RANDOM VARIABLE GENERATION

For dependent components Χχ,..., Xn, we can represent the joint p d f / (x) , using
K? 616 the product rule (A.21), as

/ (x) = f(xi,...,Xn) = fl(xi) f2(x2\xi) ■ ■ ■ fn{Xn\xi, ■ . . ,X„-l) , (3.13)

where f\(x\) is the marginal pdf of X\ and fk(xk \ %i, ■ ■ ■, %k-i) is the conditional
pdf of Xk given Χχ = Χχ,Χ2 = %2, ■ ■ ■, -Xfc-i — %k-i- This observation leads to the
following procedure.

Algori thm 3.15 (Dependent Component s Generat ion)

1. Generate X\ ~ f\. Set t = 1.

2. While t < n, given Χχ = xi,...,Xt = Xt, generate Xt+i ~ ft+i(xt+i\
Xi,...,Xt) and set t = t + 1.

3. Return X = (Χλ,..., Xn)
T.

The applicability of this approach depends, of course, on knowledge of the condi-
tional distributions. In certain models, for example Markov models, this knowledge

" ^ 162 is easily obtainable.
Another, usually simpler, approach is to generate the random vector X by mul-

tidimensional acceptance-rejection; for instance, when generating a random vector
uniformly over an n-dimensional region. In Example 3.18 such an approach is
employed.

For high-dimensional distributions, efficient exact random variable generation is
often difficult to achieve, and approximate generation methods are used instead.
Such methods are discussed in Chapter 6.

Copulas, described next, provide an alternative framework for random vector
generation.

3.2.1 Copulas

Suppose we wish to generate a random vector X = (Χχ,... ,Xn)
T of dependent

components Xi ~ fi(xi), i = 1 , . . . ,n, where {/*} are known univariate densities
with corresponding cdfs {-Fj}. Copulas provide a convenient method for impos-
ing dependency structure among the components of X while keeping the marginal
distributions fixed. A copula is a cdf C : [0, l j n —> [0,1] of n dependent uniform
random variables U\,..., Un ~ U(0,1):

C{uu...,un) =Ρ(ί7 ι ϊξ ui,...,Un ^ un) .

For a given copula C and marginal cdfs {i1»}, define

F(xu...,xn) = C{F1{x1),...,Fn{xn)) .

If U = (t / i , . . . ,U„)T has cdf C(ui,...,un), then the random vector X =
(X i , . . . , X n) T = {F^1(U1),...,F-1(Un))

T has joint cdf F and marginal cdfs
Fi(xi),..., Fn(xn). Thus, given a copula C and marginal cdfs {Fi} we can simulate
a vector X with cdf F as follows.

GENERATION METHODS FOR MULTIVARIATE RANDOM VARIABLES 6 9

Algor i thm 3.16 (Dependent Component s Generat ion Us ing a Copula)

1. Generate U ~ C (« i , . . . ,un).

2. Output X = (X i , . . . ,Xny = (Fï^Ui),..., F - 1 (?7„)) T .

A commonly used copula is the Student's t copula:

C(ui,...,un) = Τ „ , Σ (T " 1 ^) , . . . , ! 1 " 1 ^)) ,

where Tv^ is the cdf of the multivariate t„(0, Σ) distribution, with v degrees of "^ 147
freedom, mean vector 0, and correlation matrix Σ (that is, Σ is a covariance matrix
with ones down the main diagonal), and T~x is the inverse cdf of the univariate
Χυ distribution. This includes the special case {y = oo) of the Gaussian cop- "3° 131
ula model. In this setting the dependency structure in the random vector X is
determined by the correlation matrix Σ. Another way to specify the dependency
structure is to use rank correlation measures such as Spearman's or Kendall's rank
correlation, see [18] for more details.

■ EXAMPLE 3.19 (Student 's t Copula)

Suppose we wish to generate N = 104 random vectors X = (ΧΊ,-Χ^)"1" with X\ ~
Gamma(2,1) and Xi ~ N(0,1). We use a t copula model with v = 10 and correlation
coefficient 0.7, that is, the off-diagonal entries of Σ are 0.7 and the diagonal entries
are 1.

Although the cdf Tv^ of the multivariate t J /(0, Σ) distribution is not available in
closed form, the generation of U = (Ux, U-z)1 with cdf C(« i , «2) is straightforward.
Namely, we first generate Y ~ ί,,(Ο,Σ) via Algorithm 4.72 and then compute " ^ 148
U = {TU(Y1),TU(Y2))

T. Finally, we apply Step 2 of Algorithm 3.16 to obtain the
desired dependent vector X. Figure 3.11 shows an outcome of this experiment. In
addition to the sampled points, we show a kernel density estimate for Χχ and X2
(constructed from the sampled points). The kernel density estimates suggest that
the marginals of X follow the desired distributions. The following code is used to
generate the data.

Figure 3.11 An outcome from the t copula model. Plotted along the axes are kernel
density estimates of the marginal distributions.

7 0 RANDOM VARIABLE GENERATION

% copula.m
clear all, N = 10~4; nu=10;
Sig=[l,.7;.7,1]; % correlation matrix
A=chol(Sig);
% generate multivariate Student dist.
Y=repmat(sqrt(nu./gamrnd(nu/2,2,[N,l]))
Y=Y*A;
U = tcdf(Y.nu); "/, a sample from C(u_l,.
X=[gaminv(U(:,1),2,1), norminv(U(:,2))]
plot(X(:,1),X(:,2),’r.’,’MarkerSize’,1)

1,2).*randn(N,2);

�,u_n)

■®° 567 For another example of using a copula model see Section 16.5. Numerous other
copula models have been proposed with applications in finance and risk assessment.
The interested reader is referred to [7, 13].

3.3 GENERATION METHODS FOR VARIOUS RANDOM OBJECTS

3.3.1 Generating Order Statistics

"S5 54 Generating the order statistics X(j) ^ · · · ^ X(n) from a collection of indepen-
dent and identically distributed random variables X%,..., Xn ~üd Dist is established
most easily by sorting.

Algor i thm 3.17 (Generat ing Order Statist ics)

1. Generate Xi,..., Xn ~ud Dist.

2. Sort the {Xi} in ascending order and return mini Xi = X(i) ^ · · ■ ^ X(n) =

maxj Xi.

For the uniform distribution an alternative algorithm is based on the fact that
the spacings ΥΊ = XW,Y2 = X(2) ~ X(i), ■ ■ ■ ,Yn = X(n) ~ X(n-i) are uniformly
distributed in the unit simplex {y : yi > 0, i = 1 , . . . , η , ΣΓ=ι *̂ ^ ·*■}· Moreover,
by Property 5 on Page 140, Y = (Y i , . . . , Yn) ~ Dirichlet(l , . . . , 1). Property 1 of
the Dirichlet distribution (see Page 140) leads now to the following algorithm.

Algor i thm 3.18 (Generat ing U(0 ,1) Order Statist ics (I))

1. Generate U\,..., Un+\ ~ U(0,1).

2. Set Ei = - In Ut, i = 1 , . . . , n + 1, S = Σ7=ϊ Ei; U{0) = 0, and t = 1.

3. While t ^ n set U{t) = t fy-i) + ψ andt = t + l.

4- Return t/(i), · · · , î/(n) ·

GENERATION METHODS FOR VARIOUS RANDOM OBJECTS 7 1

Another algorithm for generating order statistics for the U(0,1) distribution is
based on the following two facts, which hold for any k = 1 , . . . , n:

• max{ l? i , . . . , Uk} is distributed as Ul/k, with U ~ U(0,1).

• Conditional upon m a x { t / i , . . . , Uk} = W(fc) the random variables Ui, ■ ■ . , Uk-i
are independent and U(0, it(fc)) distributed.

Algori thm 3.19 (Generat ing U(0 ,1) Order Statist ics (II))

1. Set £/(n+1) = 1 and t = n.

2. While t ^ 1, generate U ~ U(0,1), set U(t) = U~tU(t+i) and t = t — 1.

3. Return i/(i), ■ · ·, i/(n) ·

To generate an ordered sample of n exponentials, we have, in addition to Al-
gorithm 3.17, the following algorithm, which is based on the fact that the order
statistics can be viewed as the jump times of a pure birth process on { 0 , 1 , . . . , n} "S" 637
with birth rates Ai = n — i, i = 0 , . . . , n.

Algori thm 3.20 (Generat ing Exp(l) Order Statist ics)

1. Set X(o) = 0 and t = 1.

2. While t ^ n, generate U ~ U(0,1) and set X^ = X(t-i)~ n-t+i an^^ = t+l.

3. Return -X'(i), · · · ,X(n)·

3.3.2 Generating Uniform Random Vectors in a Simplex

A simplex is the multidimensional analogue of a triangle in M.n. More precisely, a
s implex is a set of vectors in Rn of the form z0 + Cy, where y = (yi, · · · , yn)

T is
a vector of positive components with a sum less than or equal to 1, and C is an
invertible matrix with columns zi — ZQ, . . . , z n — T.Q. The simplex is thus the point
set within the convex hull spanned by the vectors z o , . . . , z n .

As an example, consider the n-dimensional set

3C = {x G Mn : Xi ^ 0, i = 1 , . . . , η , χχ ^ χ2 «ξ · · · ^ xn ^ 1} ·

SC is a simplex on the points 0, e n , e n + e n _ i , . . . , l , where e, is the i-th unit
vector in M.n, i = 1 , . . . ,n , and 0 and 1 are vectors of all 0s and Is, respectively.
Figure 3.12 gives an illustration of the three-dimensional case.

7 2 RANDOM VARIABLE GENERATION

Figure 3.12 Simplex 3C for n = 3.

Generating random vectors X uniformly in the "wedge" JT is easy, as the coor-
dinates of X are distributed according to the order statistics of an iid sample from
the uniform distribution on (0,1).

Algori thm 3.21 (Generat ing Uniformly in the Simplex 3£)

1. Generate Uu...,Un ~ U(0,1).

2. Sort the {Ui} to give the order statistics i7(i), · · · , C/(n)·

3. Return X = (t / (1) , . . . , U{n))
T.

Using the linear transformation y = Ax. with

/ 1 0 · ■ ■ 0 \
- 1 1 ··■ 0

A = : · . · . : '

Vo ..'· -i i)

the simplex SC is transformed into the n-dimensional unit s implex (see Fig-
ure 3.13), that is, the simplex on the points 0, e i , . . . , e n :

^ = < y : 2 / i ^ 0 , i = l,...,n, ^ 2 / i < l > ■ (3.14)

GENERATION METHODS FOR VARIOUS RANDOM OBJECTS 7 3

Figure 3.13 The unit simplex ^¥ for n = 3.

This results in the following algorithm.

Algori thm 3.22 (Generat ing Uniformly in the Uni t S implex ÎV)

1. Generate Uu...,Un ~ U(0,1).

2. Sort U\,..., Un into the order statistics f / (i) , . . . , t/(n) ·

3. Define
Yi = Um ,
Y-i = f/(2) - U(l) , (3.15)

Yn = U(n) - i / (n- l) ;

and return the vector Y = (Yi , . . . ,Yn)
T■

An alternative method is based on the fact (see Property 5 on Page 140) that
Y ~ D i r i c h l e t (l , . . . , l) .

n+l

Algori thm 3.23 (Dirichlet Sampling for the Unit S implex W)

1. Generate X\,..., Xn+i ~ Exp(l).

2. Output Y = (Y i , . . . , Yn)
T, where

v. — ^ l ■ — i
r * ~ v^n+l v ' Î — 1, · · · , " ·

Finally, in order to generate random vectors uniformly distributed in an n-
dimensional simplex defined by arbitrary vertices, say, Ζο,Ζχ,.. . , z n , we simply
generate Y uniformly in & and apply an affine transformation.

7 4 RANDOM VARIABLE GENERATION

Algor i thm 3.24 (Generat ing Uniformly in a General Simplex)

1. Generate Y e <3f as in Algorithm 3.22 or 3.23.

2. Return Z = C Y + Zo, where C is the matrix whose columns are zi —
Zo, . . . , Z„ — ZQ.

3.3.3 Generating Random Vectors Uniformly Distributed in a Unit Hyperball

and Hypersphere

Consider the n-dimensional unit hyperball, Sën = {x € W1 : ||x|| ^ 1}. Generat-
ing uniform random vectors in Sën is straightforward via the acceptance-rejection
method.

Algor i thm 3.25 (Generat ing Uniformly in 3Sn (I))

1. Generate Uu...,Un ~ U(0,1).

2. SetX1 = l-2U1,...,Xn = l - 2Un, and R = ΣΓ=ι x h

3. If R < 1, accept X = (X i , . . . , X n) T as the desired vector; otherwise, go to
Step 1.

The efficiency of this n-dimensional acceptance-rejection method is equal to the
ratio

7Γ™ / 2

1 volume of the hyperball (n/2)r(™/2) 1 π η '
C volume of the hypercube 2™ η 2 " _ 1 Γ (η / 2)

which rapidly decreases to 0 as n —> oo; for example, for n = 8 the efficiency is
approximately 0.016. The next algorithm is more efficient for higher dimensions,
and utilizes the following facts.

• If Xi,...,Xn ~ N(0,1), then the normalized vector

X\ Xn \ .

ix i i ' - ' i i x i i J ' (3Λ6)

where ||X|| = (X] ™ = i ^) 5 , is distributed uniformly on the n-dimensional
hypersphere yn = {y : ||y|| = 1}.

• The radius R of a uniformly chosen point in 3Bn has cdf FR(T) = rn, 0 < r ^ 1.

Algor i thm 3.26 (Generat ing Uniformly in Sën (II))

1. Generate a random vector X = {X\, ■ ■ ■, Xn)
T with iid N(0,1) components.

2. Generate U ~ U(0,1) and set R = Uxln.

3. ÄeiMraZ = Ä X / | | X | | .

To generate a random vector that is uniformly distributed over the surface of an
n-dimensional unit ball — in other words, uniformly on the unit hypersphere J^„,
we simplify the previous algorithm and arrive at the following one.

Algori thm 3.27 (Generat ing Uniform R a n d o m Vectors on J?n)

1. Generate a random vector X = (Xi, ■ ■ ■, Xn)
T with iid N(0,1) components.

2. Return Y = X/ | |X | | .

GENERATION METHODS FOR VARIOUS RANDOM OBJECTS 7 5

3.3.4 Generating Random Vectors Uniformly Distributed in a Hyperellipsoid

Consider the interior (including the boundary) of an n-dimensional hyperellipsoid
S£ centered at the origin, written in the form

J = { x G M " : Χ Τ Σ Χ < r 2 } , (3.17)

where Σ is a positive definite n x n matrix (x is interpreted as a column vector).
Since Σ is positive definite, there exists a Cholesky matrix B such that Σ = BBT.
We may therefore view the set SC as a linear transformation y = B T x of the
n-dimensional ball W = {y : y T y ^ r 2 } . Since linear transformations preserve
uniformity, if the vector Y is uniformly distributed in W, then X = (B T) _ 1 Y
is uniformly distributed in 3C. The corresponding generation algorithm is given
below.

Algori thm 3.28 (Generat ing R a n d o m Vectors in a Hyperel l ipsoid)

1. Calculate the Cholesky matrix B ο / Σ .

2. Generate Z = (Z\,..., Zn)
T uniformly distributed in the unit hyperball âën.

Set Y = rZ.

3. Solve the matrix equation 5 T X = Y for X using backward substitution and
return X .

3.3.5 Uniform Sampling on a Curve

The Cartesian coordinates x = (χχ , . . . ,xn)
T of any curve C in Mn can be param-

eterized as x(£) = (xi(t),... ,xn(t))
T for some parameter t G [ίο>*ι] such that as

t varies in its domain, x(t) traces out the curve C only once. Assuming that the
curve is rectifiable, that is, has finite arc length, the length of the curve traced out
until some t < i i is given by s(t) = f ||x(-u)|| du, where x(i) = (^ S · ■ ·, £ ^) 1

and ||x|| = \/x\ + · · ■ + a;2· This motivates the following algorithm for generating
points uniformly on the curve C traced out by x(£) for t £ [to, t%].

Algor i thm 3.29 (Uniform Sampling on a Curve C)

1. Generate a point T from the cdf s(t)/(s(ti) — s(to)), or, equivalently, from the
pdf

s(fi) - s(to)

2. Output the point on the curve X = (x 1 (T) , . . . ,xn(T))T.

■ EXAMPLE 3.20 (Generat ing Uniformly on an Ellipse)

An occasionally suggested but incorrect approach of generating points uniformly
distributed on an ellipse is to generate points uniformly on a circle and then linearly
transform the points. To illustrate the difference between this approach and the
correct one of Algorithm 3.29, consider the ellipse

£+»"-1.

7 6 RANDOM VARIABLE GENERATION

which can be parameterized as

x(t) = 3sint, y(t) = cost, t e [0 , 2 π] .

A straightforward calculation shows that density d(t) is given by

d(t) = v / 4cos (2<)+5 /c ,

where c is the circumference of the ellipse. We can draw from this density simply by
acceptance-rejection. Figure 3.14 displays the subtle difference between 150 points
generated using Algorithm 3.29 (left) and the linear transformation method (right).
On the right the points are more "bunched up" near the left and right ends of the
ellipse.

Figure 3.14 The points on the left ellipse are uniformly distributed, but not so for the
right ellipse.

3.3.6 Uniform Sampling on a Surface

The method for generating random points on a curve can be extended to surfaces.
To illustrate the general procedure, we consider here only two-dimensional surfaces.
The set of all points {xi,x2,X3) £ K3 on any two-dimensional surface S can be
described by a set of parametric equations

x1=Xi(v1,v2), X2=X2(vi,v2), X3 = X3(vi,v2), (vi,v2)eY, (3.18)

where the surface S is traced out only once as («i, v2) moves throughout the region
Ψ. Then, a small rectangular region in Ψ enclosing the point (vi,v2) and having
area Ανγ &v2 is mapped into a patch on the surface iS with approximate area | |ri x
r2 | | d ^ d ^ , where π = (^ , ^ , ^) Τ a n d r2 = (g^, g ^ g ^ a n d Γ ι x ^
denotes the vector cross product. It follows that the surface area of S is given by
the integral JL· | |ri x Γ2|j d«i dv2. This motivates the following algorithm.

Algor i thm 3.30 (Uniform Sampling on a Surface S)

1. Given the surface parameterized by (3.18), generate a random pair {Vi,V2)
with pdf proportional to

| | r i x r 2 | | , (« i , « 2) e y .

2. Output (X1,X2,X3) = (n t V i . V a W K , V a) , 3 3 (^ 1 , ^ 2)) .

GENERATION METHODS FOR VARIOUS RANDOM OBJECTS 7 7

■ EXAMPLE 3.21 (Sampling Uniformly on the Surface of an Ellipsoid)

Consider the ellipsoid parameterized using spherical coordinates:

x\ = asin(i>2) cos(i>i), X2 = 6sin(w2) s i n ^ i) , X3 = c c o s ^) , (3.19)

where 0 < -ui ^ 2π and 0 ^ V2 ^ π. Then,

(be sin2(i;2)cos(vi)\
ac sin2(w2)sin(?;i)
ab sin(i!2) cos(1*2) /

Hence, ||ri x r-21| is given by

I sin(v2)\y (be)2 s m ^ t ^ c o s 2 ^) + (ac)2 sin2(v2) sin2(v\) + (ab)2 cos2(f2) ■ (3.20)

To sample from the surface density j| Γχ ΧΓ2||/5(α, b,c), where S (a, b,c) is the surface
area of the ellipsoid, note that ||ri x 1-21] ^ f2 s i n ^) ; where r = maxjo, b, c}. Thus,
we can use acceptance-rejection with proposal pdf g(vi,V2) = sin(i!2)/(47r). Then,
the probability of acceptance in the acceptance-rejection algorithm is given by
S(a, b, c)/(4nr2). Thus, from the bound S(a,b,c) ^ 4π(ο6 + ac + be)/3 we conclude
that the efficiency is bounded from below by (ab + ac+ bc)/(3r2).

As a specific case, let a = 2, b = 4, and c = 1. The (unnormalized) surface
density is depicted in Figure 3.15. Figure 3.16 shows a uniform sample.

Figure 3.15 Unnormalized surface density of the ellipsoid in parameter space.

7 8 RANDOM VARIABLE GENERATION

Figure 3.16 Uniform sample on the surface of the ellipsoid ^- + f£ + ff = 1 with
(a,b,c) = (2,4,1).

yoellipsoid_sample .m
clear all,elf
global a b c
a=4;b=2;c=l;h=2*pi/100;
[vl,v2]=meshgrid([0:h:2*pi],[0:h:pi]);
Xl=<3(vl,v2)(a*sin(v2).*cos(vl));
X2=@(vl,v2)(b*sin(v2).*sin(vi));
X3=@(vl,v2)(c*cos(v2));
for i=l:10~3

[VI,V2]=rand_ellipsoid;
data(i,:)=[Vl,V2];

end
hold on
surf(Xl(vl,v2),X2(vi,v2),X3(vl,v2),’LineStyle’,’none’),
colormap(gray)
plot3(Xl(data(:,l),data(:,2)),...
X2(data(:,l),data(:,2)),X3(data(:,1),data(:,2)),...
’.’,’MarkerSize’,10), axis equal
alpha(0.8)

function L=ellipsoid(vl,v2)
global a b c
Al=b*c*sin(v2).~2.*cos(vl);
Bl=a*c*sin(v2).~2.*sin(vl);
Cl=a*b*cos(v2).*sin(v2);
L=sqrt(Al."2+B1."2+C1.~2);

axis equal,

GENERATION METHODS FOR VARIOUS RANDOM OBJECTS 7 9

func t ion [Vl,V2]=rand_
g l o b a l a b c
Vl=rand*2*pi;
V2=acos(l -2*rand) ;
C=4*pi*max([a,b,c])~2,

. e l l i p s o i d

whi le r and>e l l ipso id (Vl ,V2) / (C*s i r j
Vl=rand*2*pi;
V2=acos(l -2*rand)

end

i(V2)/4*pi)

3.3.7 Generating Random Permutations

Suppose we have a collection of n objects, labeled 1, 2 , . . . , n, and we wish to gener-
ate a random permutation of these labels such that each of the n! possible orderings
occurs with equal probability. A simple algorithm for generating such uniform per-
mutations is based on the ordering of uniform random numbers.

Algori thm 3.31 (Generat ing R a n d o m Permutat ions by Sorting)

1. Generate t / 1 ; . . . , Un ~ U(0,1).

2. Sort these in increasing order: Ux1 ^ Ux2 ^ · · · ^ Uxn.

3. Return X = (Α Ί , . . . , X n) .

■ EXAMPLE 3.22 (Drawing W i t h o u t Replacement)

Suppose we wish to select 30 numbers out of 100 uniformly without replacement.
This can be accomplished by generating a uniform random permutation of 1 , . . . , 100
and selecting the first 30 components thereof. The following MATLAB program
achieves this via an implementation of Algorithm 3.31. This procedure is most
efficient when the number of draws k is close to n. For k <C n, a more efficient
approach for sampling without replacement is given in the function resample.m on
Page 484.

y.unifperm
n =
k =
[s ,
x =

100;
30;

ix] =
i x (l :

.m

s o r t (r a n d (1
k)

n)) ;

The next algorithm for drawing uniform random permutation is faster than Al-
gorithm 3.31 and builds the permutation component by component, requiring only
n uniform random numbers and no sorting; see [20].

80 RANDOM VARIABLE GENERATION

Algor i thm 3.32 (Generat ing Uniform R a n d o m Permutat ions)

1. Set a = (1 , . . . ,n) and i = 1.

2. Generate an index I uniformly from {l,...,n — i + l}.

3. Set X{ = ai followed by setting αι = α„_»+ι.

4- Set i = i + 1. If i ^ n go to Step 2.

5. Return X. = (Xi,... ,X„).

3.3.8 Exact Sampling From a Conditional Bernoulli Distribution

Suppose the vector X = (X\,... ,Xn) has independent components, with X, ~
Ber(p,), i = 1 , . . . ,n . The conditional distribution of X given ^ Xi = k is given
by

Σχ* = η = ΙΛη^> (3-21)

where

^ i = l ' i = l

is a normalization constant and u>i = pi/(l— pi), i = 1 , . . . ,n . Similarly, let Rk-ij
denote the normalization constant for the conditional distribution of {Xi,i φ j}
given Σ ^ Xi = k - 1; that is,

Äfc_! j = p(£ Xi = * - Λ rj(i + W i) .

The normalization constants can be computed efficiently via the following result
(see [4, Theorem 3]).

Theorem 3.3.1 (Computat ion of the Normal izat ion Constants) Define
Ti = Y^=i w)> i = !,-■ -,k and Tij = Ti — Wj, i = 1 , . . . , k, j = 1 , . . . , n, and put
RQ = 1 and RQJ = 1, j = 1 , . . . , n. Then,

1 k

Rk = -jtYJ{-l)i+1TiRk_l, (3.22)
i—1

1 fc-1

Rk-ij = ^—Y X ^ (- l) i + 1 T i j Rk-i-ij, j = l,...,n. (3.23)
i—1

The above normalization constants play a prominent role in the following sam-
pling procedure, called drafting. The idea is to draft the positions J\,..., Jk
of the unities (so Xji = \,i = Ι , . . . , / c) one by one. The first position, J i
is selected from the probabilities proportional to the conditional probabilities
P(Xj = 11 Σί Xi = k), j = 1,..., n. It is not difficult to see that the corresponding
normalization constant is k. More precisely, the drafting vector a = (a i , . . . , a n)
with aj = ¥(Xj = 11 Σί Xi = k)/k, j = 1 , . . . , n forms a probability distribution

GENERATION METHODS FOR VARIOUS RANDOM OBJECTS 8 1

vector, and J\ ~ a. The probabilities {a.,·}, the normalization constants Rk, and
{Rkj} are related via

_ n * j = i , E i & X i = k-i) P j - R k - l d n < # i (i + ^) " 1

kP(J2t1Xl = k) kRkX\n
i=l(l + Wi)-i

"Wj Rk-l,j

kRk
,j = l , . . . , n .

Once J\ is chosen, J2 can be selected in a similar way, by first calculating Rk~i
and {Rk-2,j} for the conditional Bernoulli distribution defined by {wi,i φ J } , and
so on. This gives the following procedure (several other generation algorithms may
be found in [3]).

Algori thm 3.33 (Sampling Prom a Condit ional Bernoull i Distr ibut ion)

1. Set ^ = { 1 , . . . , n] (current indices) and 5? = 0 (selected indices). Set i = 1.

2. While i ^ k, calculate Rk^i+\, Rk^ij, j € Ίο based on {uii,i € të}, and
compute the corresponding drafting vector a.

3. Draw J ~ a.

4. Sety = ,yu {J}, <€ = <€ \ {J}, andi = i + l. Return to Step 2.

5. Set Xi = 1, i e y and Xi = 0,i£'if. Output X = (XU . . . , Xn).

■ EXAMPLE 3.23 (Exact Condit ional Bernoull i Sampling)

Suppose p = (1 /2 ,1 /3 ,1 /4 ,1 /5) and k = 2. Then w = (w i , . . . , w 4) =
(1 ,1 /2 ,1 /3 ,1 /4) . We have R2 = 35/24 « 1.45833. Thus, for example,

Χ1=0,Χ2 = 1,Χ3 = 0,Χ* = 1 y X i = 2 U ^ l = A «0.08571
^ j 35/24 35

The following MATLAB program calculates the normalization constants. Note
that the first element of Rvals corresponds to Rk and element j+1 to Rkj-

function Rvals = Rgens(k,W)
N=length(W)
T=zeros(k,N+l);
R=zeros(k+l
for i=l:k

for j=l
for j=l

end
R(l,:)=ones
for j=l:k

for 1=1
for

,N+1);

:N, T(i
:N, T(i

(l.N+1)

N+l
i=l:j

l)=T(i,l)+W(j)-i,
j+l)=T(i 1) -W(j)’

end
i; end

8 2 RANDOM VARIABLE GENERATION

R (j + l , l) = R (j + l , l) + (- l) " (i + D * T (i , l) * R (j - i + l , l) ;
end

end
R (j + l , :) = R (j + l , :) / j ;

end
R v a l s = [R (k + l) l) , R (k , 2 : N + l)] ;

To generate random vectors according to this conditional Bernoulli distribution
call the following MATLAB function condbernCp, k) , where k is the number of unities
(here 2) and p is the vector of probabilities p . This function returns the positions
of the unities, such as (1,2) or (2,4).

function sample = condbern(k,p)
w=zeros(1,length(p));
sample=zeros(1,k);
indl=find(p==l);
sample(1 :length(indl))=indl;
k=k-length(indl);
ind=find(p<l & p>0);
w(ind)=p(ind)./(l-p(ind));
for i=l:k

a=zeros(l,length(ind));
Rvals=Rgens(k-i+l,w(ind));
for j=l:length(ind)

a(j)=w(ind(j))*Rvals(j+l)/((k-i+l)*Rvals(l));
end
a=cumsum(a);
entry=ind(min(find(a>rand)));
ind=ind(find(ind~=entry));
sample(length(indl)+i)=entry;

end
sample=sort(sample);

Further Reading

For an overview of the different approaches to generating random variables, see
the classic book of Devroye [5]. (See the author's home page h t t p : / / c g . s c s .
c a r l e t o n . c a / ~ l u c / for a list of errata, and an electronic copy.)

Hörmann et al. [11] examine the problem of automatically constructing genera-
tion algorithms. The same group is also responsible for the UNU.RAN library: a
software implementation in C for automatic random number generation (available
at h t t p : / / s t a t m a t h . w u . a c . a t / u n u r a n /) .

For a survey of random variable generation algorithms with emphasis on efficient
software implementation, see [17].

The incorrectness of the usual method for generating variâtes uniformly on the
surface of an ellipsoid is pointed out in [1].

http://cg.scs

REFERENCES 83

REFERENCES

1. K. A. Borovkov. On simulation of random vectors with given densities in regions and
on their boundaries. Journal of Applied Probability, 31(l):205-220, 1994.

2. G. Casella and R. L. Berger. Statistical Inference. Duxbury Press, Pacific Grove, CA,
second edition, 2001.

3. S. X. Chen and J. S. Liu. Statistical applications of the Poisson-binomial and condi-
tional Bernoulli distributions. Statistica Sinica, 7:875-892, 1997.

4. Y. Chen, A. P. Dempster, and J. S. Liu. Weighted finite population sampling to
maximize entropy. Biometrika, 81(3):457-469, 1997.

5. L. Devroye. Non-Uniform Random Variate Generation. Springer-Verlag, New York,
1986.

6. L. Devroye. Random variate generation in one line of code. In J. M. Charnes, D. J.
Morrice, D. T. Brunner, and J. J. Swain, editors, Proceedings of the 1996 Winter
Simulation Conference, pages 265-272, Coronado, CA, December 1996.

7. G. Fusai and A. Roncoroni. Implementing Models in Quantitative Finance: Methods
and Cases. Springer-Verlag, Berlin, second edition, 2008.

8. W. R. Gilks, N. G. Best, and K. K. C. Tan. Adaptive rejection Metropolis sampling
within Gibbs sampling. Journal of the Royal Statistical Society, Series C, 44(4):455-
472, 1995.

9. W. R. Gilks and P. Wild. Adaptive rejection sampling for Gibbs sampling. Journal
of the Royal Statistical Society, Series C, 41(2):337-348, 1992.

10. W. Hörmann and G. Derflinger. The transformed rejection method for generation
random variables, an alternative to the ratio of uniforms method. Communications
in Statistics: Simulation and Computation, 23(3):847-860, 1994.

11. W. Hörmann, J. Leydold, and G. Derflinger. Automatic Nonuniform Random Variate
Generation. Springer-Verlag, Berlin, 2004.

12. A. J. Kinderman and J. F . Monahan. Computer generation of random variables
using the ratio of uniform deviates. ACM Transactions on Mathematical Software,
3(3):257-260, 1977.

13. C. Klüppelberg and S. I. Resnick. The Pareto copula, aggregation of risks, and the
emperor 's socks. Journal of Applied Probability, 45(l):67-84, 2008.

14. D. E. Knuth. The Art of Computer Programming, volume 2: Seminumerical Algo-
rithms. Addison-Wesley, Reading, MA, third edition, 1997.

15. R. A. Kronmal and A. V. Peterson. Marsaglia's Table Method, volume 5 of Encyclo-
pedia of Statistical Sciences, pages 275-276. John Wiley & Sons, New York, 1985.

16. R. Meyer, B. Cai, and F. Perron. Adaptive rejection Metropolis sampling using
Lagrange interpolation polynomials of degree 2. Computational Statistics and Data
Analysis, 52(7):3408-3423, 2008.

17. J. F . Monahan. Numerical Methods of Statistics. Cambridge Series in Statistical and
Probabilistic Mathematics. Cambridge University Press, London, 2010.

18. R. B. Nelsen. An Introduction to Copulas. Springer-Verlag, New York, second edition,
2006.

19. A. V. Peterson Jr. and R. A. Kronmal. A representation for discrete distributions by
equiprobable mixture. Journal of Applied Probability, 17(1):102-111, 1980.

20. S. M. Ross. Simulation. Academic Press, New York, third edition, 2002.

8 4 RANDOM VARIABLE GENERATION

21. R. Y. Rubinstein and D. P. Kroese. Simulation and the Monte Carlo Method. John
Wiley & Sons, New York, second edition, 2007.

22. A. J. Walker. An efficient method for generating discrete random variables with
general distributions. ACM Transactions on Mathematical Software, 3(3):253-256,
1977.

23. C. S. Wallace. Transformed rejection generators for gamma and normal pseudo-
random variables. Australian Computer Journal, 8(1):103-105, 1976.

CHAPTER 4

PROBABILITY DISTRIBUTIONS

This chapter lists the major discrete and continuous probability distributions used
in Monte Carlo simulation, along with their main properties and specific algorithms
for random variable generation. For general random variable generation procedures,
see Chapter 3. Further information on families of distributions and their properties
can be found in Section D.l (exponential families), Section D.2 (tail and stability
properties), and Section 3.1.2 (transformations and location-scale families).

4.1 DISCRETE DISTRIBUTIONS

We list various discrete distributions in alphabetical order. Recall that a discrete
distribution is completely specified by its discrete pdf.

4.1.1 Bernoulli Distribution

The pdf of the Bernoull i distribution is given by

f(x;p)=p'(l-p)1-x, x e { 0 , l } ,

where p G [0,1] is the success parameter. We write the distribution as Ber(p).
The Bernoulli distribution is used to describe experiments with only two out-

comes: 1 (success) or 0 (failure). Such an experiment is called a Bernoull i trial.
A sequence of iid Bernoulli random variables, X\,X2,... ~m Ber(p), is called a

Handbook of Monte Carlo Methods. By D. P. Kroese, T. Taimre, Z. I. Botev 85
Copyright © 2011 John Wiley & Sons, Inc.

8 6 PROBABILITY DISTRIBUTIONS

Bernoull i process. Such a process is a model for the random experiment where
" ^ 626 a biased coin is tossed repeatedly; see also Example A.5.

Table 4.1 Moment properties of the Ber(p) distribution.

Property Condition

Expectation p

Variance p{l — p)

Probability generating function 1 — p + zp |z| ^ 1

The inverse-transform method leads to the following generation algorithm.

Algor i thm 4.1 (Ber(p) Generator)

1. Generate U ~ U(0,1).

2. IfU^ p, return X = 1; otherwise, return X = 0.

■ EXAMPLE 4.1 (Bernoull i Generat ion)

The following MATLAB code generates one hundred Ber(0.25) random variables, and
plots a bar graph of the binary data.

X = (raud(l.lOO) <= 0 . 2 5) ; bar(X)

4.1.2 Binomial Distribution

The pdf of the binomial distribution is given by

/ (x ; η,ρ) = Ψ(Χ = x)= (" V (l - p)n~x, x = 0 , 1 , . . . , n ,

where 0 ^ p ^ 1. We write the distribution as Bin(n,p). The binomial distribution
is used to describe the total number of successes in a sequence of n independent
Bernoulli trials. That is, a Bin(n,p)-distributed random variable X can be written
as the sum X = Βχ + ■ ■ ■ + Bn of independent Ber(p) random variables {-B;}.
Examples of the graph of the pdf are given in Figure 4.1.

DISCRETE DISTRIBUTIONS 8 7

0.3

0.25

0.2

-0.15
I

0.1

0.05

-Bin(20,0.1)
-Bin(20,0.5)

g è — Θ — à — o — o " · 4 · 4 · 4 · 4 · — 8 — · — é — · — é
0 8 10 12 14 16 18 20

Figure 4.1 The pdfs of the Bin(20,0.1) (solid dot) and Bin(20,0.5) (circle) distributions.

Table 4.2 Moment and tail properties of the Bin(n,p) distribution.

Property Condition

Expectation np

Variance np(l — p)

Probability generating function (1 — p + zp)n \z\^\

Tail probability P(X > x) Ip{x + 1, n — x) x = 0 , 1 , . . .

Here, Ix(a, ß) denotes the incomplete beta function. Other properties and relations ^ 715

1. Order statistics: Let U\, ■.., Un ~ U(0,1), and denote by i/(i) < · · · < i/(n)
the order statistics. Let X = max{z : U^ < p). Then, X ~ B\n(n,p).

2. Number of failures: Denote X ~ Bin(n,p) the number of successes in n
Bernoulli experiments and Y — n — X the number of failures. Then,
Y ~ B i n (n , l - p) .

3. Sum of binomial random variables: Let X/. ~ Bin(nfc,p), k = 1 , . . . , K, inde-
pendently. Then,

K / K

fc=l ^ f c = l '

4. Convergence to the normal distribution: Let Xn ~ Bin(n,p). A direct conse-
quence of the central limit theorem is

Xn -np

y V (l - p)
V ~ N (0 , 1) as n ^ o o .

8 8 PROBABILITY DISTRIBUTIONS

An often used rule of thumb is that for finite n the corresponding approxi-
mation is accurate if both np and n (l — p) are greater than 5. For p close to
1/2 the cdf of N(np — 1/2, np(l —p)) approximates the cdf of Xn even better.
This is called the continuity correction.

5. Convergence to the Poisson distribution: Let Xn ~ Bin(n,A/n). Then,

Xn —> Y ~ Ροί(λ) as n —> oo .

6. Geometric distribution: Let YQ,Y\,... ~ Geom(p). Then,

{k:YjYi>n\ X = min < fc .y Yi> n> ~ Bin(n

iid 7. Exponential distribution: Let Υ ι , . , . , Υ ^ ~ Exp(l). Then,

X = min I fc : ^ - ^ > - ln(l - p) 1 ~ B\n(n,p) .
^ t=o -*

The fact that binomial random variables can be viewed as sums of Bernoulli
random variables leads to the following generation algorithm.

Algori thm 4.2 (Bin(n, p) Generator)

1. Generate X\,..., Xn '~ Ber(p).

2. Return X = Σ"=1Χί.

Since the execution time of Algorithm 4.2 is proportional to n, one is motivated to
use alternative methods for large n. When n is large but p small such that np is
moderate (say ^ 10), the following method, which is based on Property 6 above,
provides fast random variable generation. The algorithm can also be used when p
is close to 1, by generating Y = n — X.

Algor i thm 4.3 (Bin(n,p) Generator via the Geometr ic M e t h o d)

1. SetX = Q,c = ln(l -p), and S = rin(i7)/cl, where U ~ U(0,1).

2. While S < n + 1, generate U ~ U(0,1), and set X = X + 1 and S =
S+\\n(U)/c\.

3. Return X.

■ EXAMPLE 4.2 (Binomial Generation)

A MATLAB implementation of Algorithm 4.3 is given next. In the last part of the
code the observed counts are compared with the expected counts.

DISCRETE DISTRIBUTIONS 8 9

’/obingen.m
n = 100; p = 0.1; mu = n*p; N = 10~5;
x = zeros(l,N); c = log(l-p);
for i=l:N

s = ceil(log(rand)/c);
while s < n + 1

x(i) = x(i)+ 1;
s = s + ceil(log(rand)/c);

end
end

xx = [floor(mu - 4*sqrt(mu)): 1 : ceil(mu
count = hist(x,xx);
ex = binopdf(xx,n,p)*N;
hold on
plot(xx,count,’or’)
plot(xx,ex,’.b’)
hold off

+ 4*sqrt(mu))];

Finally, as a result of the central limit theorem for the binomial distribution
(see Property 4 above), the distribution of X ~ Bin(n,p) is close to that of Y ~
N(np— l/2,np(l —p)) as n becomes large. This leads to the following approximate
generation algorithm.

Algor i thm 4.4 (Bin(n,p) Generator via the Normal Approximat ion)

1. Generate Y ~ N(0,1).

2. Return X = max ί θ , \np + \ + Z^/np(l - p) j .

As the approximation can be quite inaccurate for certain choices of n and p, we
recommend the following exact recursive methods instead for n > 10.

The first method relies on the fast NegBin(r, p) generator given in Algorithm
4.10 and Property 2 on Page 95.

Algor i thm 4.5 (Recursive Bin(n,p) Generator (I))

1. If n ^ 10, output X ~ Bin(n,p) using Algorithm 4-2; otherwise, proceed with
the next step.

2. Set k = \np]. Generate Y ~ NegBin(fc,p) via Algorithm 4.10 and set T =
Y + k.

3. IfT^ n, generate Z ~ Bin(n — T,p) and output:

X = k + Z ;

otherwise (that is, ifT> n), generate Z ~ Bin(T — n,p) and output:

X=k-Z.

9 0 PROBABILITY DISTRIBUTIONS

The following MATLAB code implements the algorithm. With n = 1010 and p = 1/2,
the number of recursive calls to the function binomialrnd.m is typically 4 or 5.

func t ion x=binomia l rnd(n ,p)
"/. r e c u r s i v e b inomial g e n e r a t o r
i f n<=10

x=sum(rand(l , n)<p) ;
e l s e

k=ce i l (n*p) ;Y=nbinrnd(k,p) ;'/, g e n e r a t e NegBin(k.p)
T=k+Y;
i f T<=n

x=k+binomia l rnd(n-T,p) ;
e l s e

x=k-b inomia l rnd (T-n ,p) ;
end

end

The second recursive method relies on a fast Beta(a,/3) generator (for example,
Algorithm 4.25) and is based on Property 1 on Page 87 and Property 6 on Page
104.

A l g o r i t h m 4.6 (Recur s ive Bin(n, p) G e n e r a t o r (I I))

1. If n ^ 10, output X ~ Bin(n,p) using Algorithm 4-2; otherwise, proceed with
the next step.

2. Set k = \np\. Generate U^) ~ Beta (A;, n + 1 — k) via Algorithm 4.25.

3. If f/(fc) ^ p, generate Z ~ Bin (n — fc, ̂ _t/
(le) J and output:

X=k+Z;

otherwise (that is, ifU^ > p), generate Z ~ Bin (k — 1, [^ p) and output:

X = k-Z .

The following MATLAB code implements the algorithm. With n — 1010 and
p = 1/2, the number of recursive calls to the function binomrnd_beta.m is typically
6 or 7, but despite this the recursive algorithm based on the Beta(a,/3) generator
is faster than the one based on the NegBin(r,p) generator.

function x=binomrnd_beta(n,p)
7. recursive binomial generator based on Beta dist.
if n<=10

x=sum(rand(1,n)<p);
else

k=ceil(n*p) ;Uk=betarnd(k,n+l-k) ;’/, generate beta r.v.
if Uk<p

DISCRETE DISTRIBUTIONS 9 1

end

eis«

end

x=k+binomrnd.

x=k-binomrnd.

_beta(n-

_beta(k-

-k

-1

(p-Uk)/(l-Uk));

(Uk-p)/Uk);

4.1.3 Geometrie Distribution

The pdf of the geometr ic distribution is given by

f(x;p) = (l-p)x~1p, i = l ,2,3, (4.1)

where 0 ^ p ^ 1. We write the distribution as Geom(p). The geometric distribution
is used to describe the time of first success in an infinite sequence of independent
Bernoulli trials with success probability p. Examples of the graph of the pdf are
given in Figure 4.2.

o.eo

0.4

0.2
o-"

-G(0.6)

o ·

G(0.3)

4—ô^
8 10 12 14 16

x

Figure 4.2 The pdfs of the Geom(0.3) (solid dot) and Geom(0.6) (circle) distributions.

Remark 4.1.1 (Alternat ive Definition) There is another, nonequivalent, defi-
nition of the geometric distribution, where the pdf is given by

f(x;p) = (l-p)xp,x = 0,1,2,

that is, a shifted version of (4.1). This alternate definition describes the number
of trials before the first success in an infinite sequence of independent Bernoulli
trials. We will always assume the definition in (4.1), unless otherwise specified. To
distinguish the two cases, we denote the geometric distribution starting at 0 with
Geom0(p). If X ~ Geom(p), then (X — 1) ~ Geom0(p).

9 2 PROBABILITY DISTRIBUTIONS

Table 4.3 Moment and tail properties of the Geom(p) distribution.

Property

Expectation

Variance

Probability generating

Tail probability F(X >

function

x)

1

P
1-p

p2

zp

l - z { l -

{l-pf

-p)

Condition

\z\^l

1 = 1 ,2 , . . .

Other properties and relations are:

1. Memoryless property: ¥(X >x + y\X>x) = V(X > y) for x, y = 1, 2, —

2. Sum: If Χχ,...,Xn ~ Geomo(p), then

n

^Xk ~ NegBin(n,p) .
fc=l

3. Exponential distribution: Let Y ~ Εχρ(λ), with λ = — ln(l — p). Then,
\Y~\ ~ Geom(p).

4. Convergence to exponential distribution: Let Xn ~ Geom(pn), with pn —> 0
a s n - t oo. Then,

p n X„ —> F ~ Exp(l) as n —> oo .

The relationship between the exponential and geometric distributions described in
Property 3 yields the following generator.

Algor i thm 4.7 (Geom(p) Generator (I))

1. Generate Y ~ Exp(— ln(l — p)).

2. Output X = \Y].

Writing Algorithm 4.7 directly in terms of uniform random variables gives:

Algori thm 4.8 (Geom(p) Generator (II))

1. Generate U ~ U(0,1).

2. Output X=\$$a

DISCRETE DISTRIBUTIONS 9 3

4.1.4 Hypergeometric Distribution

The hypergeometr ic distribution has pdf

f(x;n,r,N) Q(N-r\
n—x)

o max{0, r + n — TV} ^ x ^ min{n, r } ,

where TV, n ^ TV, and r ^ TV are positive integers. We write the distribution as
Hyp(ro,r, TV). The hypergeometric distribution is used in the following situation.
Consider an urn with TV balls, r of which are red. Draw n balls from the urn at
random without replacement. Then, the number of red balls among the n chosen
balls has a Hyp(n, r, TV) distribution. A consequence is that the sequence X L , X2, ■ ■ ■
with XN ~ Hyp(n,pTV, TV) converges in distribution to B\n(n,p) as TV —> oo.

Examples of the graph of the pdf are given in Figure 4.3. Here, the same values
for p are used as in Figure 4.1, namely, p = 0.1 (solid dot) and p = 0.5 (circle).

0.4

0.3

0.2

0.1

. ^r-Hyp(20,30,300)

Hyp(20,150,300)

o
o o

QO O O O O
• o
o «

10
X

15 20

Figure 4.3 The pdfs of the Hyp(20,30,300) (solid dot) and Hyp(20,150,300) (circle)
distributions.

Table 4.4 Moment properties of the Hyp(n, r, N) distribution.

Property Condition

Expectation

Variance

TV
r

TV (' - *)
T V - n

T V - 1

Prob. gen. function (j ^ - (n ^ ! ^(-n, -r;N-n-r + l;z) 1*1 < i

Here, 2-F1 is the hypergeometric function (see Section D.9.7). The urn description "3° 716
of the Hyp(n, r, TV) distribution motivates the following generation algorithm.

9 4 PROBABILITY DISTRIBUTIONS

Algor i thm 4.9 (Hyp(n, r, TV) Generat ion) Consider an urn with N balls,
numbered 1 , . . . , N. The first r of these are red.

1. Draw n balls uniformly without replacement from the N numbered balls.

2. Let X be the number of red balls.

■ EXAMPLE 4.3 (Hypergeometr ic Generat ion)

The following MATLAB code gives an implementation of the above algorithm.

"/.hyperg
N =
n =
r =
w =
w(l
K =
x =
for

end

100
20;
30;

.m
; ’/»total number of balls
% take n
7, number

zeros(l,N);
r)
10"

= 1;
5 ; 7,sampl(

zeros(l,K);
i=l
[s,
x(i

:K

balls
of red balls

3 size

ix] = sort(rand(1,N));
) = sum(w (ix(l:n)));

Algorithm 4.9 is not efficient for large TV. A universally fast, but much more
complicated generation algorithm can be found in [8, Page 545].

4.1.5 Negative Binomial Distribution

The negative binomial distribution has pdf

nx;r,P) = ^ ^ p r (l - p) x , 1 = 0 , 1 , 2 , . . . ,
Γ (Γ) Χ !

where r ^ 0 and 0 < p < 1. We write the distribution as NegBin(r, p). In many
applications r is a positive integer, r — n. The distribution is then also known as
the Pascal distribution, in which case the pdf can be written as

/ (* ; n , p) = (" ^ " ^ " (l - p f , i = 0 , l , 2 ,

The Pascal distribution describes the number of failures before the n-th success
in a Bernoulli process. The dependence of the distribution on r, for a fixed mean,
is illustrated in Figure 4.4.

DISCRETE DISTRIBUTIONS 9 5

0.25

I

0.2

0.15

0.1

0.05

0^

NegBin (0.5,1/21)
NegBin(10,0.5)

o o
• o

• o
β · .

o
o 0 ·

10
X

15 20

Figure 4.4 The pdfs of the NegBin(0.5,1/21) (solid dot) and NegBin(10,0.5) (circle)
distributions.

Table 4.5 Moment and tail properties of the NegBin(r,p) distribution.

Property Condition

Expectation

Variance

Probability generating function

rÇi-p)

V
r(l-p)

p2

l - z (l - p)

Tail probability f(X > x) h-P(x + 1, r)

N O
a; = 0,1, 2,.

Here, Ιχ(α,β) denotes the incomplete beta function. Other properties and relations
are:

1. Bernoulli process: Consider an infinite sequence of independent Bernoulli
trials with success parameter p. Let Yn denote the number of failures before
the n-th success and let Nt denote the number of successes in the first t trials.
Then,

{Yn ^ x} 4Φ {Nx+n ^ n) for all n and x € {0 ,1 , . . . } .

Moreover, Nx+n ~ Bin(a; + n,p) and Yn ~ NegBin(n,p).

2. Geometric distribution: If Χχ,... ,Xn ~ Geomo(p), then

715

^ X f c ~ N e g B i n (n , p)

9 6 PROBABILITY DISTRIBUTIONS

3. Negative binomial distribution: Let Xk ~ NegBin {rk,p), k = 1 , . . . ,n, inde-
pendently. Then,

Y^Xk ~ NegBin(^r fc, p) .
fc=l ^ f c = l '

4. Convergence to the Poisson distribution: Let Xn ~ NegBin (n, 1 — ^) . Then,

X n —► y ~ Poi(A) as B ^ O O .

5. Gamma-Poisson mixture: If Λ ~ Gamma(n, y^r) and (X | Λ = λ) ~ Poi(A),
then X ~ NegBin(n,p).

For small integer-valued r (r = n), we can generate a NegBin (n,p) random
variable via the sum of n Geomo(p) random variables (see Property 2 above), leading
to the following algorithm.

Algorithm 4.10 (NegBin (n,p) Generator via Geometric Distribution)

1. Generate [/1;..., L7n ~ U(0,1).

2. Set c = ln(l - p) and Y, = [\n(Ui)/c\ , i = 1 , . . . , n.

3. Return X = YJl
i^1Yi.

This direct approach becomes inefficient for large r and does not work for non-
integer values of r. We recommend the following uniformly fast generator (valid for
all values of r and p), based on Property 5 above.

Algorithm 4.11 (Uniformly Fast NegBin(r,p) Generator)

1. Generate Λ ~ Gamma (r, y^r) ·

2. Conditional on A, generate and output X ~ Poi(A).

4.1.6 Phase-Type Distribution (Discrete Case)

The discrete phase-type distribution has pdf

f{x;a,A) = αΑχ-1{Ι-Α)1 χ = 1 , 2 , . . . ,

where a is a 1 x m probability vector, 1 is a m x 1 vector of Is, A is an m x m
matrix such that I — A has an inverse and such that

=(o 1")
"^ 632 is the transition matrix of a Markov chain, and Ao = (I — A)l. We write the

distribution as DPH(a,A). A random variable X ~ DPH(a,^4) can be thought of
as the time of absorption in state m + 1 of a discrete-time Markov chain on { 1 , . . . ,
m, m + 1} with transition matrix P and initial distribution (α,Ο).

DISCRETE DISTRIBUTIONS 9 7

Table 4.6 Moment and tail properties of the DPH(a, A) distribution.

Property Condition

Expectation (μ) α{1 — A)~ll

Variance aA(I — A)21 + μ — μ2

Probability generating function za(I — z A) - 1 A o \z\ ^ 1

Tail probability F{X > x) aAxl x = 1 ,2, . . .

Other properties and relations (see, for example, [26]) are:

1. Geometric distribution: The geometric distribution Geom(p) is the simplest
discrete phase-type distribution, with m = l, A=l—p and a = 1.

2. Negative binomial: If X ~ NegBin(n,p), then X + n ~ DPH(a,^4), with a
the l x n vector (1 , 0 , . . . , 0) and A the n x n matrix

fl-p V 0 . . . 0 \
0 1-p p ... 0

A= : : · · . · . . :

0 . . . 0 1 - p p
\ 0 . . . 0 0 1 - p /

3. Sum: The sum of a finite number of independent phase-type random variables
has again a phase-type distribution.

4. Mixture: The mixture of a finite number of phase-type distributions is again
a phase-type distribution.

The fact that X ~ DPH(o:,^4) can be viewed as the time of absorption of a
Markov chain leads to the following algorithm, where P(y, ·) denotes the y-th row
of the transition matrix P and a denotes the initial distribution.

A l g o r i t h m 4.12 (D P H (a , A) G e n e r a t o r)

1. Draw Y0 ~ a . Set t = 0.

2. While Yt^m + 1, draw Yt+1 ~ P(Yt, ·) and sett = t + l.

3. Return X = t .

9 8 PROBABILITY DISTRIBUTIONS

■ E X A M P L E 4.4 (NegBin as a DPH D i s t r i b u t i o n)

The negative binomial distribution can be seen as a phase-type distribution — see
Property 2 above. The following MATLAB program implements Algorithm 4.12 for
the corresponding phase-type distribution with m = 4 and p = 0.2 and compares
the samples (with m subtracted) with the true, NegBin(m,p), distribution.

%negbin.m
a lpha = [1 0 0 0] ;
p = 0 . 2 ;
m = 4 ;
A = [1 -p , p , 0 , 0; 0, 1-p ,p ,0 ; 0 , 0 , 1-p, p ; 0, 0, 0 , i - p] ;
A0 = abs((eye(m) - A)*ones(m,1)) ;
P = [A A0; z e r o s (l , m) 1]
N = 10~5;
x = z e r o s (N . l) ;
fo r i = l : N ;

X = 0;
Y = min(find(cumsum(alpha)> r a n d)) ;
while Y ~= m+i

Y = min(f ind(cumsum(P(Y,:))> r a n d)) ;
X = X+l;

end
x (i) = X;

end
x = x - m; % s h i f t e d samples come from a NegBin(n.p) d i s t r i b u t i o n .

xx = [0: 2*m/p] ;
count = h i s t (x . x x) ;
ex = nbinpdf(xx,m,p)*N;
hold on
p l o t (x x , c o u n t , ' . r ')
p l o t (x x , e x , O b ')
hold off

4.1.7 Poisson Distribution

The pdf of the Po i s son distribution is given by

f{x;X) = ^re-\ 1 = 0 , 1 , 2 , . . . ,
x\

where λ > 0 is the r a t e parameter. We write the distribution as Poi(A). Examples
of the graph of the pdf are given in Figure 4.5.

DISCRETE DISTRIBUTIONS 99

0.& r

0.4-

.0 .3-

Ό .2 -

0.1 -

-λ = 0.7

-λ = 4
o o

o o

Ø 0 10 12
x

-λ = 11

14 16 18 20

Figure 4.5 The pdfs of the Poi(0.7) (solid dot), Poi(4) (circle), and Poi(ll) (plus)
distributions.

The Poisson distribution is often used to model the number of arrivals of some
sort during a fixed period of time. The Poisson distribution is closely related to the
exponential distribution via the Po i s son process ; see Section 5.4. 170

Table 4.7 Moment and tail properties of the Ροί(λ) distribution.

Property Condition

Expectation λ

Variance λ

Probability generating function β _ λ (1 - 2) \z\ ^ 1

Tail probability Ψ(Χ > x) P([x + l j , A) a; = 0 ,1 ,2 , .

Here, P{a, x) is the incomplete gamma function. Other properties and relations
are:

1. Binomial limit: Let Xn ~ Bin(n, A/n). Then,

Xn —> Y ~ Poi(A) as n —> oo .

2. Sum of Poisson random variables: Let X ~ Poi(A) and Y ~ Poi(^) be inde-
pendent. Then, Z = X + Y ~ Poi(A + v).

3. Multinomial distribution: Let 0 ^ Pi ^ 1, i = 1 , . . . , m and p = (p i , . . . , p m) .
If iV~Poi(A) and ((Χχ,... ,Xm)\N) ~ Mnom(7V,p), then

Xi ~ Poi(Api), z = 1 , . . . , m, independently.

us» 716

4. Normal approximation: X N(A, A) for large A.

5. Binomial conditional distribution: Let X ~ Poi(A) and F ~ Ροί(μ) be inde-
pendent, and let Z = X + Y. Then,

A
{X | Z = z) ~ Bin Lz

λ + μ

1 0 0 PROBABILITY DISTRIBUTIONS

6. Exponential distribution: Let {1^} ~ Εχρ(λ). Then,

r n

X = max in: } Y} ; < 1 } ~ Poi(A) . (4.2)

That is, the Poisson random variable X can be interpreted as the maximal
number of iid exponential variables whose sum does not exceed 1.

Let {Ui} ~ U(0,1). Rewriting (4.2), we see that

X = max < n : Y J — InUj < A >

= max In: In (J J U3A > - λ \

r ™

in: ft
K 3 = 1

ί / , - > β - λ | (4.3)

has a Poi(A) distribution. This leads to the following algorithm.

Algor i thm 4.13 (Ροΐ(λ) G e n e r a t o r)

1. Set n = 1 and a = 1.

2. Generate Un ~ U(0,1) and set a = aU„.

3. If a ^ e ~ \ sei n = n + 1 and go to Step 2.

4- Otherwise, return X = n — 1 as a random variable from Poi(A).

As e~x is small for large λ, for large λ this algorithm becomes slow and more
random numbers Uj are required to satisfy Π?=ι ^ ί < β _ λ · However, for large
n we can skip a considerable number of steps in Algorithm 4.13 (say m = an
steps for some a less than but close to 1) by drawing Σ™=ι ~ In Uj directly from
a Gamma(m, 1) distribution. This observation gives rise to the following recursive
algorithm, due to Ahrens and Dieter [2], for generating from a Poisson distribution
with large λ, say λ > 100.

Algor i thm 4.14 (Ροΐ(λ) G e n e r a t o r for L a r g e λ)

1. Setm= [(7/8) λ] .

2. Generate Y ~ Gamma(m, 1).

3. IfY^ A, generate Z ~ Poi(A — Y) and set X = m + Z; otherwise, generate
X ~ B i n (m - 1 , A / Y) .

Algorithm 4.14 relies on fast generation of Gamma(n, 1) and Bin(n,p) random vari-
ables for large n, and p close to 1. Atkinson [3] proposes an acceptance-rejection
algorithm for generating Poisson random variables using the Logistic^, σ) distribu-
tion, with σ = -j== and μ = λ σ, as the proposal distribution. Although the logistic

DISCRETE DISTRIBUTIONS 1 0 1

distribution is continuous, it can be related to a discrete distribution via the floor
function |_ ■ J. The details of the algorithm are as follows.

Algori thm 4.15 (Poi(A) Generator via Logistic(//, σ))

1. Set σ = π / \ / 3λ , μ = λσ, c = 0.767 — 3.36/λ, and k = lnc — λ — Ιησ.

2. Until X > —0.5, keep generating:

μ - In (ΐ=μ) , Λ
X=- K-JL-L, t / ~ U (0 , l) .

σ

3. Let N = [X + 0.5J and V ~ U(0,1). / /

M - a X + l n ((i + J _ ^) 2 ^ f c + iVlnA-ln(JV!),

accept N as a random variable from Poi(A); otherwise, repeat from Step 2.

In cases where a large number of independent Poisson random variables are
desired, one can generate them in batches as in the following algorithm, based on
Property 3 above.

Algori thm 4.16 (Generat ing Poisson R a n d o m Variables in Batches)

1. Draw N ~ Poi(A).

2. Conditional on N, draw X = (Χχ,.. .,Xm) ~ Mnom(iV, p) . Output X , where
Xi ~ Ροί(λρ,), i = 1 , . . . , m, independently.

4.1.8 Uniform Distribution (Discrete Case)

The discrete uniform distribution has pdf

f(x;a,b) = ———, x 6 {a, ...,b} ,

where a, b € Z, b ̂ a are parameters. The discrete uniform distribution is used as
a model for choosing a random element from {a,..., b} such that each element is
equally likely to be drawn. We denote this distribution by DU (a, b). The uniform
distribution can also be defined on any finite set ÜT, in which case

/ (* ; | . r |) = T ~ , ^ € ^ T ,

where 12J\ denotes the number of elements in 3£. We write the distribution as
DU(,T) or simply U(-T).

As with its continuous counterpart, generating uniform draws from a discrete
uniform distribution is central in Monte Carlo simulation. There are numerous
specialized algorithms for doing so when the set 3£ is nontrivial. Such nontrivial
sets include the set of all permutations of the integers { 1 , 2 , . . . , n } , the set of all
(free) trees, and the set of fc-regular bipartite graphs with m and n vertices for the
two sets in the partition. See also Section 3.3. "3° 70

102 PROBABILITY DISTRIBUTIONS

Table 4.8 Moment properties of the DU(a, b) distribution.

Property Condition

Expectation

Variance

2

(b-a)(b-a + 2)

12

Probability generating function — — \z\ ^ 1
(b- a + 1)(1 - z)

Drawing from a discrete uniform distribution on {a, . . . , & } , where a and b are
integers, is carried out via a simple table lookup method.

Algori thm 4.17 (DU(a , b) Generator)

Draw U ~ U(0,1) and output X = [a + (b + 1 - a)U\.

4.2 CONTINUOUS DISTRIBUTIONS

We list various continuous distributions in alphabetical order. Recall that an abso-
"®° 611 lutely continuous distribution is completely specified by its pdf.

4.2.1 Beta Distribution

The be ta distribution has pdf

f(x;a,ß) = ^ > , * € [0 , 1] ,
B(a,ß)

715 where a > 0 and ß > 0 are called shape parameters and B is the beta function:

Γ(α)Γ(/3)
Β(α,β) =

Γ(α + β)

We write the distribution as Beta (a, β). The dependence of the beta distribution
on its shape parameters is illustrated in Figure 4.6.

CONTINUOUS DISTRIBUTIONS 1 0 3

Figure 4.6 Various pdfs of the beta distribution.

The Beta(l /2 ,1/2) distribution is known as the arcsine distribution, which we
will denote as Arcsine. A related distribution is the beta-prime or inverted b e t a
distribution, obtained from the standard beta distribution via Y = X/(l — X).

For a multivariate generalization of the beta distribution, see the Dirichlet dis-
tribution in Section 4.3.1.

Table 4.9 Moment and tail properties of the Beta(a,/3) distribution.

Property

Expectation

\ / c i T i t i n / ^ i i
V (XL XCXihlXjKZ

Moment EXk

Characteristic function

Tail probability W(X > x)

a

a + ß

aß
{a + ß)2(a + ß + l)
B(a + k,ß)

B(a,ß)

1F1(a:a + ß;it)

h-x(ß,a)

Condition

x € [0,1]

1 0 4 PROBABILITY DISTRIBUTIONS

Here, Ix(a,ß) denotes the incomplete beta function and ι ί \ (α : ; 7; a;) the confluent
715 hypergeometric function. Other properties and relations are:

1. Uniform distribution: Beta(l, 1) = U(0,1).

2. Arcsine distribution: If U ~ U(0,1), then

X = 1/2 + cos(nU)/2 = COS2(TTU/2) ~ Beta(l /2 ,1 /2) = Arcsine .

3. Student's t distribution: If X ~ Beta(ct,a), then

In addition, if X ~ Beta (| , τ|) and -B ~ Ber(l/2) independently, then

4. Gamma distribution: Let X ~ Gamma(a,é>) be independent of Y ~
Gamma(/?,0). Then,

■y-j-y ~Beta(a, /?) .

More generally, suppose Xk ~ Gamma(afc, 1), fc = l , . . . , n , independently.
Then, the random variables

Xi H H t ,
yfc = ^ Γ ^ : 7 Τ ' k = l,...,n-l,

and 5„ = X\ + ■ ■ ■ + Xn are independent. Moreover,

Yk ~ Beta(ai H \-ak, Ofc+i) and 5„ ~ Gamma(o;1 H h α„, 1) .

5. Uniform distribution: Let U,V ~ U(0,1). Then, conditional on t/1/" +
^χ//3 <ξ ΐ5 We have

t / i / f + "Vi/ß ~ B e t a (Q ^) a n d f / 1 / a~Beta(a, /3 + l) .

6. Order statistics: Let .ΧΊ,..., X n ~ U(0,1) and let X(\) ^ X{2) ^ · · · ^ -^(n)
be the order statistics. Then,

X(i) ~ Beta(i, n + 1 — i) .

7. Moments: Let Χχ,... ,Xn ~ Beta (a,/3). If 7 > min j ^, ^ - , ^ τ Κ then (see

[10])

F π ι γ y 12-Y _ TT Γ (α + J^) r(/? + ÏÏ) r (l + (J + ^)

CONTINUOUS DISTRIBUTIONS 1 0 5

Depending on the values of the parameters of the beta distribution, we have the
following algorithms, the last being the most generally applicable.

If a or ß equals 1, the inverse-transform method yields:

Algor i thm 4.18 (Beta(a , 1) Generator)

Draw U ~ U(0,1) and output X = U1/a.

Algori thm 4.19 (Beta(l , /3) Generator)

Draw U ~ U(0,1) and output X = l - U1^.

From Property 2 above we have:

Algor i thm 4.20 (B e t a (l / 2 , 1 / 2) = Arcsine Generator)

Draw U ~ U(0,1) and output X = cos2(?ri7/2).

For generating from a symmetric beta distribution X ~ Beta (a ,a) , with a >
1/2, the polar method (see Section 3.1.2.7) can be employed. In particular, using "S" 54
fR{r) = 2 c r (l - r2)c~l with c = a - 1/2, we find that the pdf of X = RcosO is
that of IB — 1 with B ~ Beta (a ,a) . Since R can be written as Vl — Ullc, with
U ~ U(0,1), we obtain the following algorithm.

Algor i thm 4.21 (B e t a (a , a) Generator (I) , a > 1 /2)

Draw UUU2 ~ U(0,1) and output B = \ (l + \J I - uf^ COS(2TTU2) J .

The evaluation of the cosine function can be avoided by a rejection step as in
the following algorithm.

Algori thm 4.22 (Beta(a , a) Generator (II), a > 1 /2)

1. Draw U ~ U(0,1) and V ~ U (- l , 1), independently. Set S = X2 + Y2.

2. If S > 1, repeat from Step 1; otherwise, output

Another generation method for symmetric beta distributions, which holds for
general a > 0 follows from Property 3 above:

Algori thm 4.23 (Beta(a , a) Generator)

Draw T ~ t2a and return X — \ (1 + , "Γ 2 1.

An alternative technique for generating from the symmetric Beta (a, a) distribu-
tion that uses approximate inversion can be found in [22]. Unlike Algorithms 4.21
and 4.22 it applies when a ^ 1/2, and can be more efficient for small a.

1 0 6 PROBABILITY DISTRIBUTIONS

For integer a = m and ß = n, Property 6 yields the following algorithm.

Algori thm 4.24 (Beta(a , /3) Generator wi th Integer a = m and ß = ri)

1. Generate U\,..., Um+n-\ ~ U(0,1).

2. Return the m-th order statistic U(m) as a random variable from Beta(m, n).

It can be shown that the total number of comparisons needed to find t/(m) is
(m/2)(m + 2n — 1), so that this procedure loses efficiency for large m and n.

Property 4, however, yields the most generally applicable algorithm.

Algor i thm 4.25 (Beta(a , /3) Generator)

1. Generate independently Y\ ~ Gamma(a, 1) and Y2 ~ Gamma(/3,1).

2. Return X = Y\/(Y\ + Y2) as a random variable from Beta(a,/3).

4.2.2 Cauchy Distribution

The Cauchy distribution has pdf

A location-scale version of this distribution is given by the pdf / (x ; μ, σ) = f((x —
μ)/σ)/σ; we write Cauchy^, σ) for the corresponding distribution. The graph of
the pdf of the Cauchy(0,1) distribution is given in Figure 4.7.

0.4r

0.3 A

S0 -2 / \
0.1 / \

0 I 1 . r^"^ 1 1 1 l ! I
-10 - 8 - 6 - 4 - 2 0 2 4 6 8 10

x

Figure 4.7 The pdf of the standard Cauchy distribution.

Table 4.10 Moment and tail properties of the Cauchy(0,1) distribution.

Property

Expectation undefined (00 — 00)

Characteristic function e~'*'

Tail probability ¥(X > x) \ ~ \ arctan(x)

CONTINUOUS DISTRIBUTIONS 1 0 7

Other properties and relations are:

1. Student's t distribution: Cauchy(0,1) Ξ t±.

2. Normal distribution: Let Υι,Υ2 ~ N(0,1). Then,

^ ~ Cauchy(0,1)
*2

In addition,

Y1-Y2 Cauchy(0,1)

3. Reciprocal: If X ~ Cauchy^, σ), then γ ~ Cauchy (2^_σ2, 2f.2] .

4. SWi: Let A", ~ C a u c h y ^ , σ;), i = 1 ,2 , . . . , n be independent. Then,

^ X i ~ Cauchyί Σμί'Σσί

t = l ^ i = l » = 1

Since Cauchy^, σ) forms a location-scale family, we only consider generation
from Cauchy(0,1). The following algorithm is a direct consequence of the inverse-
transform method and the fact that cot(7rx) = tan (πχ — f)·

A l g o r i t h m 4.26 (Cauchy(0,1) G e n e r a t o r)

Draw U ~ U(0,1) and output X = cot^U) (or X = tsm(nU - π/2)).

The ratio of uniforms method yields the following algorithm. «3° 66

A l g o r i t h m 4.27 (Cauchy(0,1) G e n e r a t o r v ia R a t i o of Un i fo rms)

1. Generate U, V ~ U(0,1). Set V = V - 1/2.

2. If U2 + V2 ^ 1, set X = V/U and return X. Otherwise, repeat from Step 1.

Finally, Property 2 above leads to the following algorithm.

A l g o r i t h m 4.28 (Cauchy(0,1) G e n e r a t o r v ia R a t i o of N o r m a l s)

1. Generate YUY2 ~ N(0,1).

2. Return X = Yi/Y2.

1 0 8 PROBABILITY DISTRIBUTIONS

4.2.3 Exponential Distribution

The exponent ia l distribution has pdf

f(x;X) = Xe~Xx, x^O,

where λ > 0 is the rate parameter. We write the distribution as Εχρ(λ). The
exponential distribution can be viewed as a continuous version of the geometric
distribution. It plays a central role in the theory and application of Markov jump

ts' 166 processes, and in stochastic modeling in general, due to its memoryless property
(see Property 1 below). Graphs of the pdf for various values of λ are given in
Figure 4.8.

Figure 4.8 Pdfs of the Εχρ(λ) distribution for various values of A.

Table 4.11 Moment and tail properties of the Εχρ(λ) distribution.

Property Condition

Expectation

Variance

Moment generating function

Tail probability Ψ(Χ > x)

Other properties and relations are:

1. Memoryless property: If X ~ Εχρ(λ), then

¥{X > s + t\X > s)=¥(X >t), s,t^0.

2. Sum: If Χχ,..., Χη ~ Εχρ(λ), then V^ Xk ~ Gamma(n, λ).
fe=l

1
λ

1
A5

Λ

λ - ί
„-λχ

t< λ

x>0

CONTINUOUS DISTRIBUTIONS 1 0 9

3. Minimum: Let Xi ~ Εχρ(λ^), i = 1, . . . , n , independently. Then, M =
min{Xi , . . .,Xn} ~ Εχρ(λι H (- λ η) . In addition, P (M = X») = λ ί / (λ ι +
••· + λ„).

4. Poisson and geometric distributions: Let μ > 0 be an arbitrary constant and

Z ^ 1 be a truncated Ροί(μ) random variable with pdf V(Z = z) = z,r^_1y

Let G ~ Geom0(l — e~M) and E/i, t / 2 , . . . ~üd U(0,1), then

X = μ (G + mm{Uu ..., Uz}) ~ Exp(l) .

Noting that U ~ U(0,1) implies 1 — U ~ U(0,1), we obtain the following inverse-
transform algorithm.

Algori thm 4.29 (Εχρ(λ) Generator)

Draw U ~ U(0,1) anrf output X = —j \nU.

There are many alternative procedures for generating variables from the expo-
nential distribution. The interested reader is referred to [8]. Note that Εχρ(λ) forms
a scale family. Hence, it suffices to specify how to generate Y ~ Exp(l) and then ·®' 47
return Y/X as a random variable from Εχρ(λ).

4.2.4 F Distribution

The F or Fisher—Snedecor distribution has pdf

Γ(ΐΕ±η) (m / n) m / V m - 2) / 2

f(x; m , n) - r ^ p (^ [χ + {m/n)x](m+n)/2 ' x > ° '

where m and n are positive integer parameters known as the degrees of freedom.
We write this distribution as F(m, n). Graphs of the pdf for various values of the
parameters are given in Figure 4.9. The F distribution arises frequently in statistics
in the context of hypothesis testing and analysis of variance; see also Section B.1.4. "®° 660

Figure 4.9 Pdfs of the F distribution for various values of the parameters.

1 1 0 PROBABILITY DISTRIBUTIONS

Table 4.12 Moment and tail properties of the F(m, n) distribution.

Property Condition

Expectation ^32 n > 2

Variance ? o^7~ i\ n > 5

Tail probability P (X > x) In/(n+m x) (^ , y j ^ ^ °

"S" 715 Here, Ιχ(α,β) denotes the incomplete beta function. Other properties and relations
are:

1. Expectation and variance: In addition to the cases listed above, for n = 1,2
the expectation is oc and the variance does not exist. For n = 3,4 the variance
is oo.

2. Reciprocal: If X ~ F(m,n), then γ ~ F(n ,m) .

3. Chi-square distribution: Let X ~ χ ^ and y ~ χ^ be independent. Then,

X / m

Y/n
F(m, n) .

4. Exponential distribution: If X i , X 2 ~ Exp(l), then Z = X / y ~ F(2,2). That
is, fz(z) = 1/(1+ z)2,z^0.

A simple generator is based on the defining Property 3 above.

Algor i thm 4.30 (F(m, n) Generator)

1. Draw X ~ χ ^ and Y ~ χ^ independently.

2. Output

Let X and y be as in Algorithm 4.30. Using the fact that χ^ = Gamma(ci/2,1/2)
and Property 4 of the beta distribution on Page 104, we can see that B = X / (X +
y) ~ Beta(m/2,n/2) , which leads to the following algorithm.

Algori thm 4.31 (F (m , n) Generator via B e t a Distr ibut ion)

1. Draw B ~ Beta(m/2, n /2) .

2. Output

χ = nB
m(l-B) '

CONTINUOUS DISTRIBUTIONS 1 1 1

4.2.5 Fréchet Distribution

The Fréchet or t y p e II ex treme value distribution has pdf

f(x;a) = ax~a~1e~x ", x > 0 ,

where a > 0 is the shape parameter. Graphs of the pdf for various values of
a are given in Figure 4.10. A location-scale version of this distribution is given
by the pdf / (χ ; α , μ , σ) = f((x — μ)/σ;α)/σ, χ ^ μ; we write this distribution as
F r é c h e t (a ^ , a) .

Figure 4.10 Pdfs of the standard Fréchet distribution for various values of the shape
parameter a.

The Fréchet distribution is one of three possible limiting distributions for the
maximum of iid random variables. Similarly, the "reflected" distribution, with pdf "S" 705
/ (—x) , x < 0, is one of the three possible limiting distributions for the minimum of
iid random variables.

Table 4.13 Moment and tail properties of the Frechet(a,0,1) distribution.

Property Condition

Expectation Γ(1 — a - 1) a > 1

Variance Γ(1 - 2α" 1) - Γ(1 - a'1)2 a > 2

Tail probability V(X > x) 1 - e x p (- r r - Q) x > 0

1 1 2 PROBABILITY DISTRIBUTIONS

Since Fréchet(a, μ, σ) forms a location-scale family, it suffices to describe how to
generate from the standard Eréchet distribution. This can be done directly via the
inverse-transform method.

Algori thm 4.32 (Fréchet(a, 0 ,1) Generator)

Draw U ~ U(0,1) and output X = (- I n [T T 1 / " .

4.2.6 Gamma Distribution

The g a m m a distribution has pdf

f{x;a,X) = — , x > 0 , (4.4)
Γ(α)

where a > 0 is called the shape parameter and λ > 0 the scale parameter. In
716 the formula for the pdf, Γ is the gamma function (see Section D.9.5). We write the

distribution as Gamma(a, λ).
An important special case is the Gamma(n/2,1/2) distribution with n € {1,2,

. . . } , which is called a chi-square distribution; the parameter n is then referred
to as the number of degrees of freedom. The distribution is written as χ^. A
graph of the pdf of the χ^ distribution, for various n, is given in Figure 4.11.

Figure 4.11 Pdfs of the χ^ distribution for various degrees of freedom n.

Another well-known special case is the Gamma(n,A) distribution, where n is a
strictly positive integer. In this case, the distribution is known as an Erlang dis-
tribution with shape parameter n and scale parameter λ. It is denoted by Erl(n, λ).

CONTINUOUS DISTRIBUTIONS 1 1 3

Table 4.14 Moment and tail properties of the Gammafa, λ) distribution.

Property Condition

Expectation —
¸

Variance —r
X2

Moment generating function I] t < λ

Tail probability F(X > x) I - P{a, \x)

Here, P(a, x) is the incomplete gamma function. Other properties and relations "3* 716
are:

1. Exponential distribution: Gamma(l,A) = Εχρ(λ).

2. Sums: If Χι,... ,Xn ~ Gamma(a,À), then

Y ^ Xk ~ Gamma(na, λ)
fc=l

3. Beta distribution (I): Let Z ~ Exp(l) and Y ~ Beta(a, 1 — a) for 0 < a < 1
be independent. Then,

V Z ~ Gamma(a, 1) .

4. Beta distribution (II): Let Yk ~ Beta(ai + · · · + ctk,ctk+i), cik > 0, fc =
1 , . . . , n — 1, independently. Let l·^, ~ Gamma(aH h a n , 1) be independent
of the {Yk}- Then, the random variables

n

Xk = (l-Yk-1)Y[Yj, k = l,...,n,
3=k

where YQ = 0, are independent and Xk ~ Gamma(öfe, 1), k = 1 , . . . , n.

5. F distribution: Let U ~ χ ^ and V ~ χ^ be independent. Then

i / /m

y / n
F(m, n) .

6. Dirichlet distribution: Let X L , . . . , X „ + I be independent random variables
with Xk ~ Gamma(afc, λ), k = 1 , . . . , n + 1. Then, with a = (a\,..., α η +ι)
a n d X = (X 1 , . . . , X n) T ,

■v

Dirichlet(a) .
Ση + l -^

fc=lAfc

1 1 4 PROBABILITY DISTRIBUTIONS

Since Gamma(a, λ) is a scale family, it suffices to only give algorithms for gener-
ating random variables X ~ Gamma(a, 1), because X/X ~ Gamma(a, λ). Since the
cdf of the gamma distribution does not generally exist in explicit form, the inverse-
transform method cannot always be applied to generate random variables from this
distribution. Thus, alternative methods are called for. The following algorithm, by
Marsaglia and Tsang [25], provides a highly efficient acceptance-rejection method
for generating Gamma(a, 1) random variables with a ^ 1; see also [28, Pages 60-61]
for a detailed explanation.

Algor i thm 4.33 (Gamma(a, 1) Generator for a ^ 1)

1. Set d = a — 1/3 and c = l/\/9~d.

2. Generate Z ~ N(0,1) and V ~ U(0,1) independently.

3. IfZ> - 1 / c and InU < \Z2 + d- dV + dlnV, where V = (1 + cZ)3, return
X = dV; otherwise, go back to Step 2.

Ahrens and Dieter [1] propose the following acceptance-rejection procedure that
does not rely on a normal generator for a > 1.

Algor i thm 4.34 (Gamma(a, 1) Generator for a > 1)

1. Set b = a — 1 and c = a + b.

2. Generate U ~ U(0,1). Set Y = J~c tan(7r(£/ - 1/2)) and X = b + Y.

3. If X < 0, repeat from Step 2; otherwise, proceed to the next step.

4. Generate V ~ U(0,1). / /

V > exp (bin (^-j - Y + In (1 + —

repeat from Step 2; otherwise, output X.

Ahrens and Dieter [1] show that the expected number of trials before a sample is
generated from Gamma(a, 1) decreases from π (when a is close to 1) to Λ/ΊΓ (when
a —» c»).

Cheng and Feast [7] propose a slightly longer algorithm based on the acceptance-
rejection method with proposal given by the Burr distribution, with pdf:

χ\-ι
f(x; μ, λ) = Χμ Λχ2, ζ > 0 , μ > 0 , λ > 0 .

The algorithm does not involve evaluation of the tan(·) function.

Algor i thm 4.35 (Gamma(a, 1) Generator for a > 1)

1. Set c\ = a — 1, c2 = "~ ' , cs = 2 /ci , C4 = 1 + C3, and c$ — a - 1 ' 2 .

2. Generate U,U~2 ~ U(0,1), independently. If a > 2.5, set

U1=U2+cB(l-1.86U);

otherwise, set U\ = U.

CONTINUOUS DISTRIBUTIONS 1 1 5

3. If 0 < Ui < I, set W = C2 U2/Ui and proceed to Step 4,' otherwise, repeat
from Step 2.

4- if

03^+W + W"1 < c 4 or c 3 l n E / i - l n W + i y < l ,

output X = c\W; otherwise, repeat from Step 2.

For the case a < 1 one can use the fact that if X ~ Gamma(l + a, 1), and
U ~ U(0,1) are independent, then XUl/a ~ Gamma(a, 1). Alternatively, one can
use the following algorithm based on Property 3.

Algori thm 4.36 (Gamma(a, 1) Generator for a < 1)

1. Generate Y ~ Beta(a, 1 — a) and Z ~ Exp(l) independently.

2. Output X = Y Z as a random variable from Gamma(a, 1).

If a fast beta generator is not available, then one could use the following acceptance-
rejection algorithm by Best [5], based on [1].

Algori thm 4.37 (Gamma(a, 1) Generator for a < 1)

1. Set d = 0.07 + 0.75^1 - a and b = 1 + e~da/d.

2. Generate UUU2 ~ U(0,1) and setV = bU1.

3. IfV ζ 1, then set X = dVl'a. Check whether U2 < (2-X)/{2 + X). If true,
return X; otherwise, check whether U2 < e _ x . If true, return X; otherwise,
go back to Step 2.

If V > 1, then set X = -ln(d(b - V)/a) and Y = X/d. Check whether
U2(a + j / (l — a)) ^ 1. If true, return X; otherwise, check if U2 < Ya~l. If
true, return X; otherwise, go back to Step 2.

■ EXAMPLE 4.5 (Best 's Gamma(a, 1) Generator for a < 1)

The following MATLAB code is an implementation of Algorithm 4.37.

7,gamma_best .m
N = 10~5; alpha = 0.3;
d= 0.07 + 0.75*sqrt(l-alpha); b = 1 + exp(-d)*alpha/d;
x = zeros(N,1);
for i = 1:N

cont = true;
while cont

UI = rand;
U2 = rand;
V = b*Ul;
if V <= 1

X = d*V~(l/alpha);
if U2 <= (2-X)/(2+X)

1 1 6 PROBABILITY DISTRIBUTIONS

cont = false; break;
else

if U2 <= exp(-X)
cont = false; break;

end
end

else

X = -log(d*(b-V)/alpha);

y = X/d;
if U2*(alpha + y*(l-alpha)) < 1

cont= false; break;
else

if U2 <= y~(alpha - 1)
cont= false;break;

end
end

end
end

x(i) = X;
end

A random variable X ~ Gamma(n, 1) for integer n can be viewed as the sum
of n independent exponential random variables (see Property 2), resulting in the
following algorithm.

Algor i thm 4.38 (Gamma(n, 1) Generator W i t h Integer n)

1. Generate Uu...,Un ~ U(0,1).

2. Return X = - l n f l L i uk-

A random variable X ~ χ{ = Gamma(l/2,1/2) can be simply generated as the
square of a standard normal random variable (Property 3 on Page 123).

Algor i thm 4.39 (G a m m a (l / 2 , 1 / 2) Generator)

Draw Z ~ N(0,1) and output X = Z2.

4.2.7 Gumbel Distribution

The Gumbel distribution or t ype I ex treme value distribution has pdf

f(x) = e-
x-e~x, xeR.

A location-scale version of this distribution is given by the pdf f(x; μ, σ) = f((x —
μ)/σ)/σ; we write Gumbel(/x,a) for the corresponding distribution. A graph of the
standard Gumbel pdf is given in Figure 4.12.

CONTINUOUS DISTRIBUTIONS 1 1 7

0.4r

0.3 / \

S02 / \
0.1 / \ v

0 I - Z , , ι ■ 1 1
- 4 - 2 0 2 4 6 8

x

Figure 4.12 The pdf of the standard Gumbel distribution.

The Gumbel distribution is one of three possible limiting distributions for the
maximum of iid random variables. For example, the maximum of iid standard *& 705
normal random variables, when properly scaled, converges in distribution to the
Gumbel distribution [16, Page 275]. Similarly, the Gumbel distribution reflected
around 0, that is, with pdf / (—x) , is one of the three possible limiting distributions
for the minimum of iid random variables. Note also that if X ~ Exp(l), then
- l n X ~ G u m b e l (0 , l) .

Table 4.15 Moment and tail properties of the Gumbel(0,1) distribution.

Property Condition

Expectation

Variance

Moment generating function

Tail probability Ψ(Χ > x)

As the class of Gumbel(p,a) forms a location-scale family, it suffices to only
consider generating from the Gumbel(0,1) distribution. The following algorithm is
a direct consequence of the inverse-transform method, as the cdf of the Gumbel(0,1)
distribution is F(x) = exp(— exp(—x)).

Algori thm 4.40 (Gumbel(0,1) G e n e r a t o r)

Draw U ~ U(0,1) and output X = - l n (- In i /) .

-Γ ' (1) = 0.577216· ■■

ni
6

Γ (1 - ί) ί < 1

1 - e"e_x

118 PROBABILITY DISTRIBUTIONS

4.2.8 Laplace Distribution

The Laplace distribution, also called the double-exponent ia l distribution, is
defined via the pdf

/ (x) = i e - M , xeR.

A location-scale version of this distribution is given by the pdf f(x; μ, σ) = f((x —
μ)/σ)/σ; we write Laplace(/z, σ) for the corresponding distribution. The pdf of the
standard Laplace distribution is given in Figure 4.13.

0.5

0.4

0.3

0.2

0.1

-6 -4

Figure 4.13 The pdf of the standard Laplace distribution.

Table 4.16 Moment and tail properties of the Laplace(0,1) distribution.

Property Condition

Expectation 0

Variance 2

Moment generating function

Tail probability V(X > x)

1-t2

s g n ^ X e - N - 1) + 1

1*1 < 1

Since Laplace^, σ) forms a location-scale family, we only consider generation
from Laplace(0,1). The latter is obtained by assigning a random sign to an Exp(l)
random variable, leading to the following algorithm.

Algori thm 4.41 (Laplace(0,1) Generator (I))

1. Generate Y ~ Exp(l) and B ~ Ber(|) independently.

2. Output X = {2B- \)Y.

CONTINUOUS DISTRIBUTIONS 1 1 9

The above method requires the generation of two independent random variables
(one exponential and one Bernoulli random variable). However, as the next algo-
rithm illustrates, it is sufficient to use only one random variable.

Algor i thm 4.42 (Laplace(0,1) Generator (II))

1. Generate U ~ U (- l / 2 , 1 / 2) .

2. Output X = s g n ([/) l n (l - 2 | [/ |) .

An alternative is based on the fact that if V and W are independent Exp(l)
random variables, then V — W ~ Laplace(0,1).

Algori thm 4.43 (Laplace(0,1) Generator (I I I))

1. Generate V,W ~ Exp(l).

2. Output X = V-W.

Example 3.12 provides yet another generation method.

Algori thm 4.44 (Laplace(0,1) Generator (IV))

1. Generate E ~ Exp(l) and Y ~ N(0,1) independently.

2. Output X = YV2Ë.

55

4.2.9 Logistic Distribution

The logistic distribution has pdf

/(*) = (1+e- - 3 Λ 2 ' x e

A location-scale version of this distribution is given by the pdf f(x; μ, σ) = f((x —
μ)/σ)/σ. We write this distribution as Logistic(/x, σ). The distribution derives its
name from the fact that the cdf F{x) = 1/(1 +e~x) satisfies the logistic differential
equation f(x) = F'(x) = F(x)(l - F{x)), so that x = ln[F(a;)/(l - F{x))]. The
graph of the pdf of the standard logistic distribution is given in Figure 4.14. Note
that the pdf is symmetric around 0.

Figure 4.14 The pdf of the standard logistic distribution.

1 2 0 PROBABILITY DISTRIBUTIONS

Table 4.17 Moment and tail properties of the Logistic(0,1) distribution.

Property Condition

Expectation 0

Variance π 2 / 3

Moment generating function Γ(1 - ί) Γ(1 + t) = i ï ï ^ \t\ < 1

Tail probability F(X > x) 1/(1 + ex)

Other properties and relations are:

1. Uniform: If U ~ U(0,1), then

In(j^j) ~ Logistic(0,1) .

2. Exponential quotient: Let X, Y ~ Exp(l). Then,

l n i — j ~ Logistic(0,1) .

Since Logistic(/x, σ) forms a location-scale family, we only consider generation
from Logistic(0,1). The following algorithm follows directly from the inverse-
transform method.

Algori thm 4.45 (Logistic(0,1) G e n e r a t o r)

Generate U ~ U(0,1) and output X = In '
1-U

4.2.10 Log-Normal Distribution

The log-normal distribution with scale parameter σ > 0 and location parameter
/ i ë R i s defined via the pdf

/(χ;μ,σ) = 1-= e x p f - ^ ^ 7 ^) , x>0.

We write LogN(/i, σ2) for the distribution. The characterizing property of the dis-
tribution is that if X ~ LogN(^,a2) , then Ι η Χ ~ Ν(μ, σ2) . As a consequence, it
arises as the scaled limit of products of iid random variables, in the same way that
the normal distribution arises for sums via the central limit theorem. Note that
the log-normal distribution is not determined uniquely by its moments, see [13].
The dependence of the log-normal distribution on the scale parameter for μ = 0 is
illustrated in Figure 4.15.

CONTINUOUS DISTRIBUTIONS 1 2 1

Figure 4.15 Pdfs of the log-normal distribution for μ = 0 and various values of the scale
parameter σ.

Table 4.18 Moment and location properties of the LogN(/x,a2) distribution.

Property

(•-l)
Expectation βμ+σ I2

Variance ε2μ

Moment EXk
 ekß+k2a2/2

Mode β μ _ σ 2

Median βμ

Other properties and relations are:

1. Normal distribution: If X ~ Ν(μ,σ2) , then ex ~ Ι^ Ι \ Ι (μ ,σ 2) .

2. Power transformation: If Y ~ LogN(/x, σ2) , then e°Yh ~ Logl\l(a + δμ, (&σ)2).

3. Product: If Jfj ~ L o g N ^ , σ2) independently, i = 1 , . . . , n, then

n • n n

t = l M = l i = l

4. Reciprocal: If X ~ LogN(ju,a2), then 1/X ~ LogN(-^ , a 2) .

The generation of a LogN(μ, σ2) distributed random variable follows immediately
from its relation to the normal distribution as given in Property 1 above.

Algor i thm 4.46 (LogN(/u,σ2) Generator)

1. Generate Y ~ Ν(μ,σ 2) .

2. Output X = eY.

1 2 2 PROBABILITY DISTRIBUTIONS

4.2.11 Normal Distribution

The standard normal or standard Gaussian distribution has pdf

f(x) = ^=e-x2'2, xeR.

The corresponding location-scale family of pdfs is therefore

/ (χ ; μ , σ
2) = _ ^ e - H ^) , x e R . (4.5)

σ ν 2 π

We write the distribution as Ν(μ, σ2) . We denote the pdf and cdf of the N(0,1)
distribution as φ and Φ, respectively. Here, Φ(χ) = J_ ip{t) at = | + |erf(-^=),

715 where erf (a;) is the error function.
The normal distribution plays a central role in statistics and arises naturally

as the limit of the sum of iid random variables via the central limit theorem (see
625 Section A.8.3). Its crucial property is that any affine combination of independent

normal random variables is again normal. In Figure 4.16 the probability densities
for three different normal distributions are depicted. More information on the
Gaussian distribution, especially regarding the multidimensional case, can be found
in Section 4.3.3.

Figure 4.16 Pdfs of the normal distribution for various values of the parameters.

Table 4.19 Moment and tail properties of the Ν(μ, σ2) distribution.

Property

Expectation μ

Variance σ2

Moment generating function β ί μ + ί σ I2

Tail probability F(X > x) \ - | e r f (| ^ |)

CONTINUOUS DISTRIBUTIONS 1 2 3

Other properties and relations are:

1. Affine combinations: Let X\, X 2 , · · ■, Xn be independent with Xj ~ Ν(μ,, σ2) ,
i = 1 , . . . , n. Then,

a +
ri / n n x

Σ biXi ~ N ί α + £ fti/ü, £ δ2σ2)

2. Central limit theorem: Let X i , . . . , X n be independent and identically dis-
tributed with expectation μ and variance σ2 < oo. Let £>n = X i + ■ · · + X n -
Then

5 η " " μ Λ ^ ~ Ν (0 , 1) as n - > o o .

3. ignare: If X - N(0,1), then X2 ~ Gamma(l/2,1/2).

4. Quotient: Let X i , X 2 ~ N(0,1). Then, ^ ~ Cauchy(0,1).

5. Exponential: If X ~ Ν(μ, σ2) , then e x ~ LogN(/x, σ2) .

6. SiaWe distribution: N(0,2) ΞΞ Stable(2,/3). In addition, if X ~ N(0,1), then
X " 2 ~ S t a b l e (i , l) ^ L é v y .

7. Fractional moments: If X ~ N(0,1), then

r (a+1) 2 a / 2

Ε|ΛΊβ = - * - Μ » a > ° -

In addition, if X j , . . . , Xn ~ N(0,1), then (see [10])

- π »-^i--n^f.
l<i<;Kn J = l V '

and for c ^ 0,

F T W 2 ^ π I Y2 Y2!2" _ ττ Γ(1 + 2c + 2ja) Γ(1 + (j + 1)α)

^ r l 1 1 · " ^ ' 1 " I l r(l + c + i a) r (l + a) '

Since N (μ, σ) forms a location-scale family, we only consider generation from
N(0,1). The most prominent application of the polar method (see Section 3.1.2.7) " ^ 54
lies in the generation of standard normal random variables, leading to the celebrated
Box-Muller method.

Algor i thm 4.47 (N (0 , 1) Generator, B o x - M u l l e r Approach)

1. Generate t / j , £/2 ~ U(0,1).

2. Return two independent standard normal variables, X and Y, via

X = J-~2\nU1 cos(27r£/2) ,
, - K j (4-6)

1 2 4 PROBABILITY DISTRIBUTIONS

Marsaglia [23] (see also [24]) developed an alternative generation method for
N(0,1) random variable generation which is also based on the polar method, but
which avoids the evaluation of the relatively costly cos and sin functions. The
method uses a simple acceptance-rejection approach to generate random vectors
within the unit circle: draw Vi, V2 ~Μ U(—1,1) and accept (Vi, V^/v^S if 5 =
V2 + V2 ^ 1. As in the Box-Muller method, a pair of independent N(0, Un-
distributed random variables is obtained by multiplying the coordinates of the
generated point with the radius R = y/—2In 17, where U ~ U(0,1). This leads to
the following algorithm.

Algori thm 4.48 (N (0 , 1) Generator, Polar/Acceptance—Reject ion)

1. Generate Ux,U2 ~ U(0,1). Set Vi = 2Ut - l,i = 1, 2 and S = Vf + Vf.

2. IfS^l. Draw U ~ U(0,1) and return

X = Vx y/-2lnU/S ,

Y = V2 v / - 2 In t / / 5 .

Otherwise, go back to Step 1.

The following method [8, Pages 197-199] is based on the ratio of uniforms method
■^ 66 as illustrated in Example 3.18 and uses a squeeze function to further speed up the

calculation.

Algor i thm 4.49 (N (0 , 1) Generator, Rat io of Uniforms wi th Squeezing)

1. Set a+ = \ / 2 / e and a_ = —y/2/e.

2. Generate U ~ U(0,1) and V ~ U(a_ ,o +) independently, and set X = V/U.

3. IfX2^6-8U + 2U2, return X.

4. Else if X2 > jj - 2U, repeat from. Step 2.

5. Else if X2 < —4 In 17, return X. Otherwise, restart from Step 2.

Finally, the following algorithm uses acceptance-rejection with an exponential
proposal distribution. This gives a probability of acceptance of •y/7r/(2e) « 0.76 .

"S* 60 The theory behind it is given in Example 3.15.

Algori thm 4.50 (N (0 , 1) Generator, Acceptance—Rejection from Exp(l))

1. Generate X ~ Exp(l) and U' ~ U(0,1), independently.

2. IfU' ^ e " ^ " 1) 2 / 2 , generate U ~ U(0,1) and output Z = (1 - 2 I { t / 0 / 2 }) X;
otherwise, repeat from Step 1.

CONTINUOUS DISTRIBUTIONS 1 2 5

4.2.12 Pareto Distribution

The Pareto (type II) distribution, sometimes known as the Lomax distribution
[20], with scale parameter λ > 0 and shape parameter a > 0 is defined via the
pdf

f{x;a,\) = α λ (1 + λ ζ) - (α + 1) , x ^ 0 .

We write the distribution as Pareto(a, λ). The effect of the parameter a on the
shape of the distribution is illustrated in Figure 4.17.

Figure 4.17 Pdfs of the Pareto distribution for two values of the shape parameter a and
fixed scale parameter λ = 1.

Remark 4.2.1 (Alternat ive Definition) Also commonly used is the Pareto
(type I) distribution, which has pdf

(
\ - (a + l)

X \
, X ^ XQ ,

xoj

with shape parameter a > 0 as before, and scale parameter XQ > 0. We will denote
this distribution by Paretol(a, XQ). It is related to the type II distribution for any
λ > 0 via X ~ Pareto(a, λ) <ί=> (X + λ " 1) ~ Paretol(a, A ' 1) .

Table 4.20 Moment and tail properties of the Pareto(a, λ) distribution.

Property Condition

Expectation xta-i) a > 1

Variance Λ»(α-ι>(α-2) a > 2

Moment EXk ττ^^Ρτ1 a>k

Tail probability P (X > x) (1 + λ χ)~α x^O

1 2 6 PROBABILITY DISTRIBUTIONS

Other properties and relations are:

1. Expectation and variance: In addition to the cases listed above, for 0 < a ^ 1
the expectation is oo and the variance does not exist. For 1 < a < 2 the
variance is oo.

2. Exponential: If Y ~ Exp(l), then

e
Y / « _ l ~ Pareto(a, 1) .

3. Gamma mixture: If Y ~ Gamma(a, 1) and (X | V) ~ Exp(Y), then X ~
Pareto(a, 1).

The Pareto(a, λ) family of distribution is a scale family. As a consequence, if
X ~ Pareto(a, 1), then X/X ~ Pareto(a, λ). Generating from Pareto(a, 1) is easily
established via the inverse-transform method, using the fact that the cdf is given
by F{x) = 1 - (1 + x)~a, x ^ 0.

Algor i thm 4.51 (Pareto(a, 1) Generator via Inverse-Transform)

Generate U ~ U(0,1) and return X = U~xla - 1.

An equivalent algorithm (see also Property 2 above) is the following.

Algor i thm 4.52 (Pareto(a, 1) Generator)

Generate Y ~ Exp(l) and return X = eY/a — 1.

Property 3 results in the next algorithm.

Algori thm 4.53 (Pareto(a, 1) Generator)

1. Generate Y ~ Gamma(a, 1).

2. Given Y, return X ~ Exp(y).

4.2.13 Phase-Type Distribution (Continuous Case)

The continuous phase- type distribution has pdf

f(x;a,A) = -aeAxAl, x^O,

where a is a 1 x m probability vector and A is an m x m invertible matrix such
that

*=(<£ " f) ^
166 is the Q-matrix (infinitesimal generator) of a Markov jump process. Above, 0 and 1

are the m x 1 vectors of zeros and ones, respectively, and eAx is a matrix exponential,
defined as

^ n! '
n=0

eA*

CONTINUOUS DISTRIBUTIONS 1 2 7

We write the distribution as PH(a,A). In the table below, ß(A) < 0 denotes the
largest eigenvalue of A.

Table 4.21 Moment and tail properties of the PH(a, A) distribution.

Property Condition

Expectation —<xA~l\

Variance 2aA~2l - (α Α _ 1 1) 2

Moment EXk (- l) f c fc! aA~kl

Moment generating function a(tl + A)~1Al t ^ — g(A)

Tail probability Ψ{Χ > x) aeAxl

Other properties and relations (see, for example, [26]) are:

1. Absorption time: A random variable X ~ PH(a , A) can be thought of as the
time to absorption in state m +1 of a Markov jump process {Yt,t > 0} taking «S* 635
values in { 1 , . . . , m, m + 1}. The Markov jump process has Q-matrix Q and
initial distribution (α,Ο).

2. Exponential distribution: The exponential distribution Εχρ(λ) is the simplest
continuous phase-type distribution, with m = 1, A = — X, and a — 1.

3. Generalized Erlang distribution: A random variable with a gene ra l i zed E r -
lang distribution can be thought of as the sum of n independent exponential
random variables with rates λ ι , . . . , Xn. The distribution is of phase-type with
m = n, a = (1, 0 , . . . , 0) and

A-

If all Xi = X for all i, then we have the ordinary Erlang distribution, Erl(n, λ) =
Gamma(n,A).

Algorithm 16.2 describes the computation of the cdf of the generalized Erlang "3° 556
distribution for the case where the {Xk} are distinct and sorted in descending
order: λι > λ2 > · · ■ > Xn.

4. Hyperexponential distribution: The h y p e r e x p o n e n t i a l distribution is the
mixture of n exponential distributions, with parameters λ^ > 0 and mixing
probabilities c^ > 0, i = 1, 2 , . . . , n. It can be represented as the phase-type
distribution with a = (at\,..., an) and A = d iag(—λι , . . . , —λη).

/ - λ χ
0

0
V o

λι
- λ 2

0
λ2

0
0

—λη_ι
0

0 \
0

λ η -1

1 2 8 PROBABILITY DISTRIBUTIONS

5. Coxian distribution: The Coxian distribution is a phase-type distribution
with a = (1, 0 , . . . , 0) and

f-Xi
0

0

Ριλ ι
- λ 2

0

0
0

o \
0

" λ η - 1 P r a - ΐ λ η - Ι

0 - λ „ /

6. Sum: The sum of a finite number of independent phase-type distributed ran-
dom variables has again a phase-type distribution.

7. Mixture: The mixture of a finite number of phase-type distributions is again
a phase-type distribution.

Let Q be the Q-matrix as in (4.7). Denote the transition matrix of the cor-
responding jump chain (see Property 1) by K and the exponential holding time

635 parameters by {qi, i = 1 , . . . , m}. Let K(y, ·) denote the y-th. row of K and a the
initial distribution.

Algori thm 4.54 (Ρ Η (α , Α) G e n e r a t o r)

1. Draw Y ~ ex. SetT = 0.

2. Draw S ~ Exp(çy). SetT = T + S.

3. Draw Y ~K(Y,·).

4- IfY = m+l, return X — T; otherwise, go back to Step 2.

■ EXAMPLE 4.6 (Coxian Distr ibut ion Generat ion)

Consider the generation from the Coxian distribution given in Property 5 above.
The following MATLAB program implements Algorithm 4.54 for the case m = 4, Xi =
3, pi = 0.9, i = 1 , . . . , m, and a = (1,0,0,0). The sample mean and variance are
compared with the true expectation of 1.1463 and true variance of 0.4961 (rounded).

%coxian_ex.m
a lpha = [1 0 0

P =
m =
lam
A =

Al =

q =
Q =
K =

0 . 9 ;
4;
= 3 ;

0] ;

[-lam , lam*p, 0,
0 , 0 , - lam,

= - A*ones(m
- d i ag (A) ;

lam*p;

,D;

[A Al; z e r o s (l , m)
d i a g ([l . / q ;

K(m+l,m+l) = 1;
N = 10"5;

i])*(C

0;
0

0]

+

o,
o,

-lam
0 ,-

lam*p ,0 ; . . .
-lam] ;

d i a g ([q ; 0])) ;

CONTINUOUS DISTRIBUTIONS 1 2 9

x = zeros(N,1);
for i=l:N;

T = 0;
Y = min(find(cumsum(alpha)> rand));
while Y "= m+1

T= T -log(rand)/q(Y);
Y = min(find(cumsum(K(Y,:))> rand));

end

x(i) = T;
end

tmemean = -alpha*inv(A)*ones(m,1)
mx = mean(x)
truevar = alpha*inv(A)*(2*eye(m,m)-ones(m,1)*alpha)*inv(A)*ones(m,1)
vx = var(x)
hist(x,100)

4.2.14 Stable Distribution

The s table (also called a-stable , Levy a-s table or Levy skew a-stable) dis-
tribution has no closed-form pdf in general. Instead, it is defined in terms of its
characteristic function [12, 27, 32], with

<j>(t) = Eel
exp (- | i | Q (l - i / ? s g n (i) t a n (f a))) αφ\

e x p (- | t | (l + i£/3sgn(t)ln|t |)) a = 1
(4.8)

where 0 < a ^ 2 is the characteristic exponent and — 1 < /3 ^ 1 the skewness
parameter. Here sgn(i) denotes the sign of i, that is, sgn(i) = —1,0, and 1, for
t < 0, t = 0, and t > 0, respectively. Stable distributions arise naturally in the
study of Levy processes; see Section 5.13.

The pdf can be obtained via numerical inverse-Fourier transform techniques. In
particular (note that SR[0(-t)] = &[Φ{ΐ)] and 3[<£(-i)] = -Q#(£)]) ,

/ (*) I Γ
π Jo

: φ(ί) dt. (4.9)

The support of the distribution is K, except in the cases β = Ι , α < 1 (where
the support is [0, oo)) and β = —Ι,α < 1 (where the support is (—oo, 0]); see, for
example, [32]. When \β\ = 1 the stable law is said to be extremal . When β = 0
the distribution is symmetric around 0.

A location-scale version of this distribution is given by the transformation
Y = μ + σΧ, where X has the characteristic function above. The defining prop-
erty of a stable distribution is that any affine combination of independent stable
random variables is again a stable random variable. We write the distribution as
Stable(a, β, μ, σ). The standard stable distributions Stable(a, β, 0,1) are denoted by
Stable(a, β). Graphs of the standard stable pdf for various values of the parameters
are given in Figure 4.18.

208

1 3 0 PROBABILITY DISTRIBUTIONS

Figure 4.18 Pdfs of the standard stable distribution for various values of a and ß.

Three special cases of stable distributions for which the pdf has an easy form are
(1) the Stable(2,/3) distribution, which is equal to the N(0,2) distribution; (2) the
Stable(l,0) distribution, which is equal to the standard Cauchy distribution; (3)
the Stable(| , 1), which is known as the Levy distribution (denoted here as Levy),
with pdf

fix) = —=x~3/2e~i:, x>0.

Other properties and relations include:

1. Expectation and variance: The expectation of the Stable(a,/3) distribution is
0 for 1 < a ^ 2 and oo otherwise. The second moment is oo except when
a = 2 where it is 2.

2. Sum: If Xi ~ Stable(a,/3j), i = 1,2 are independent, then

* l+ *2 - t .. / ßl+fa
—-^ Stable [a.

3. Extremals: If Χχ ~ Stable(a, 1) and X2 ~ Stable(a, —1) are independent,
then

4^) " Xl + (^) a X2 ~ S t a b l e (a ' ^ ■
4. Normal distribution: If X ~ N(0,1). then (1/X2) ~ Levy.

5. Reflection: If X ~ Stab\e(a,0), then (- X) ~ Stable(a, -0).

CONTINUOUS DISTRIBUTIONS 1 3 1

Zolotarev [32, Page 78] derives integral expressions for the pdf and the cdf of
the Stable(a,/3) distribution from (4.9) containing only real-valued (trigonometric)
functions. Based on this, Chambers et al. [6] develop the following generation
method for general Stable(a,/3) distributions. For details and proofs we refer to
[32] and [31] (the last is accompanied by a small correction).

Algori thm 4.55 (Stable(a, /3) Generator, a φ 1)

1. Set B = arctan(/3 t&n(na/2))/a.

2. Generate V ~ U(—π/2,π/2) and W ~ Exp(l) independently.

3. Output

__ sm{a(V + B)) ίcos[V - a(V + B)]\(1~a)/a

~ [cos{aB)cos{V)]1/a \ W)

When a = 1 one can instead use the following algorithm.

Algori thm 4.56 (Stable(l , /3) Generator)

1. Generate V ~ U(—π/2,π/2) and W ~ Exp(l) independently.

2. Output

(| + / ? v) t a n (K) - / 3 1 n ^ X = -
7Γ + 2ßV/n

For Stable(2,/3) = N(0,2) and Stable(l,0) = Cauchy, we refer to the corresponding
random variable generation sections. For the Levy distribution, Property 4 above
yields the following algorithm.

Algori thm 4.57 (S t a b l e (l / 2 , 1) = Levy Generator)

Generate Y - N(0,1) and output X = 1/Y2 .

4.2.15 Student's t Distribution

Student's t distribution or simply the t distribution has pdf

ηψ) ι.. * , 2 \ - ("+ l) /2

f{x;v)= μ-lfU 1 + - - i e l · (4·10)

where v > 0. We write the distribution as tu. If the parameter v takes integer
values, then it is referred to as the degrees of freedom of the t distribution. A
location-scale version of this distribution is given by the pdf /(χ;μ,σ) = / ((x —
μ)/σ)/σ; we write tI /(/i, σ2) for the corresponding distribution.

The distribution arises in statistics in the problem of estimating the mean of
a normally distributed population when the population variance needs to be es-
timated and the sample size is small. In particular, let X\,... ,Xn ~üd Ν(μ,σ2) ,
with sample mean Xn = (Xi + ■ · · + Xn)/n and sample variance 5^ = 5ΖΓ=ι(-^* — "^" ^62

1 3 2 PROBABILITY DISTRIBUTIONS

Xn)
2/(n - 1). Then,

Χ„-μ
T = . !- ~ t„_ i .

The effect of the parameter v on the shape of the distribution is illustrated in
Figure 4.19.

Figure 4.19 Pdfs of the t„ distribution for various values of v.

Table 4.22 Moment properties of the t„ distribution.

Property Condition

Expectation 0 v > 1

v
Variance v > 2

v-2

21~i\^t\^2K!,(^\t\)
Characteristic function 2 v > 0

Tail probability P (X > x) - / „ / (I /H-^) (- , - J

Here, Kv{x) denotes the modified Bessel function of the third kind and Ιχ(α,β)
715 denotes the incomplete beta function. Other properties and relations are:

1. Cauchy distribution: t i = Cauchy(0.1).

2. Normal distribution: If .ΧΊ, ~ t„, then Xv —> Z ~ N(0,1) as z/ —► 00.

3. Normal and gamma mixture: If X ~ N(0,1) and y ~ χ^ = Gamma(^/2,1/2)
are independent, then

X

CONTINUOUS DISTRIBUTIONS 1 3 3

4. Beta distribution: If T ~ t2«, then (equivalent to Property 3 of the beta
distribution on Page 104)

B = - (1 + , | ~ Betaia, a) .

5. Gamma distribution: Let X ~ Gamma(l/2,1) and V ~ Gamma(i ' /2,1), inde-
pendently. If B ~ Ber(l/2) is independent of X and Y, then

In addition, if Z ~ Gamma(^/2,1), independently of Y, then

6. Sçitare: If X ~ t„ , then X 2 ~ F (l , n) .

7. F distribution: If X ~ F(n, n) , then ^ (- / Ϋ - 1 / Λ / Χ) ~ t n .

Since ΐ ! /(μ, σ2) forms a location-scale family, we only consider generation from
t„. There are many simple and effective generation algorithms for the t distribution.
Property 3 above, which is fundamental in classical statistics, yields the following
algorithm.

Algori thm 4.58 (t„ Generator via G a m m a)

1. Generate Z ~ N(0,1) and Y ~ Gamma(z//2,1/2) independently.

2. Output X = ZI s/YJv .

An alternative approach is to use the relation between the Student and beta dis-
tribution as in Property 4 above, for example.

Algori thm 4.59 (t„ Generator via Beta)

1. Generate Y ~ Beta ('

2. Output

1.2' 2)

X = ^J-
VY(i - Y)

The following simple algorithm, from [14], is based on the ratio of uniforms method. " ^ 66

Algori thm 4.60 (t„ Generator via Rat io of Uniforms)

1. Generate U ~ U{-y/ü, y/v) and V ~ U(0,1).

2. SetW = V1/".

3. IfW2 + ^ - ^ 1, return X = U/W. Otherwise, restart from Step 1.

The polar method (see Section 3.1.2.7), with radial pdf " ^ 54

/ i î (r) = r (l + r » ~ 1 ~ l ' / 2 , r ^ O ,

results in the following algorithm.

1 3 4 PROBABILITY DISTRIBUTIONS

Algor i thm 4.61 (t„ Generat ion via Polar M e t h o d (I))

1. Generate U,V ™ U[0,1].

2. Set Θ = 2TTL7 and R = Jv (V-2/" - l) .

3. Return X = Rcos{&) and Y = i î s i n (e) . Both X and Y are tv random
variables, but are not independent.

The following algorithm, from [4], is again based on the polar method, but
replaces trigonometric function calculation with (faster) acceptance-rejection.

Algori thm 4.62 (t„ Generator via Polar M e t h o d (II))

1. Generate U,V ~ U [- l , l] .

2. Set W = U2 + V2. IfW > 1, return to Step 1.

3. Set C = U2/W andR = v (W~2IV - l) .

4. Return X = sgn{U)\fRC.

Finally, Kinderman et al. [19] proposed the following acceptance-rejection algo-
rithm.

Algor i thm 4.63 (t„ Generator via Acceptance—Rejection)

1. Generate Ui,U2 ~ U(0,1).

2. If U\ < 0.5, set X = AU
l_l and V = ^ ; otherwise, set X = AU\ — 3 and

V = U2.

3. If V < 1 — '-γ- or V < (l + ^-) , accept X as a random variable from

X-v; otherwise, repeat from Step 1.

4.2.16 Uniform Distribution (Continuous Case)

The uniform distribution on the interval [a, b] has pdf

f{x;a,b) = z , a ^ x ^ b .

b — a

We write the distribution as U[a, b\. A graph of the pdf is given in Figure 4.20.

1

a b x —>

Figure 4.20 The pdf of the uniform distribution on [a, b].

CONTINUOUS DISTRIBUTIONS 1 3 5

The uniform distribution is used as a model for choosing a point randomly from
the interval [a, b], such that each point is equally likely to be drawn. The uniform
distribution on an arbitrary Borel set B in Kn with non-zero Lebesgue measure (for
example, area, volume) \B\ is defined similarly: its pdf is constant, taking value
l/\B\ on B and 0 otherwise. We write U(B) or simply UB. The U[o, b] distribution
is a location-scale family, a s Z ~ U[a, b] has the same distribution as a + (b — a)X,
with X ~ U[0,1].

Table 4.23 Moment and tail properties of the U(a, b) distribution.

Property Condition

a + b
2

(a-

ew

(6-
b-

-b?
L2

_eat

-a)t
X

Expectation

Variance

Moment generating function

Tail probability P(X > x) x G (a, b)
b � a

The generation of U(0,1) random variables, crucial for any Monte Carlo method,
is discussed in detail in Chapter 1. U(a, b) random variable generation follows "S" 1
immediately from the inverse-transform method.

Algori thm 4.64 (U(a, b) Generat ion)

Generate U ~ U(0,1) and return X = a+ (b — a)U.

4.2.17 Wald Distribution

The Wald or inverse Gaussian distribution has pdf

/ (ζ ; μ , λ) = ^/ — e ^ ^ , x>0,

where μ > 0 is a location parameter and λ > 0 is a scale parameter. We write
this distribution as Wald^, λ). The Wald distribution arises as the first time that
a Brownian motion with positive drift hits a positive level. More specifically, if "®° 182
{Bt, t > 0} is a Brownian motion with drift μ > 0 and diffusion coefficient σ2 > 0
and if ra = inf {i ^ 0 : Bt > a} , then τα ~ Wald(a//U, ο 2 /σ 2) . Graphs of the pdf for
various values of the parameters are given in Figure 4.21.

1 3 6 PROBABILITY DISTRIBUTIONS

Figure 4.21 Pdfs of the Wald distribution for various values of the parameters.

Table 4.24 Moment and tail properties of the Wald^, λ) distribution.

Property Condition

Expectation μ

Variance ^~
Λ (l i / i 2 μ

Λ
2 ')

Moment gen. function βμ \ / t < -^

Tail probability P (X > x) Φ (Λ / ^ (1 - ^)) - φ (- y ^ (l + *)) e ^ z > 0

Here, Φ(χ) is the cdf of the standard normal distribution. Other properties and
relations are:

1. Chi-square distribution: If X ~ Wald(/u, λ), then

Λ (* - Μ) 2 O
A _ ^ ^ X l "

49 2. Inverse gamma distribution: Let ΑΓμ ~ Wald(/i, λ). Then,

Χ μ —> F ~ lnvGamma(l/2, A/2) as μ —> oc .

3. Swm: If Xj ~ Wald(/x, λ α^), ι = 1 , . . . , n, independently, then

n n

\ J X j ~ Wald(^a, Aa2) , with a = V _] a i ·
i = l t = l

A simple generator can be derived from the following transformation. Let X ~

Wald(/z, A) and g{x) = (χ~μ> . For each y > 0 there are two solutions, say Χχ and

CONTINUOUS DISTRIBUTIONS 1 3 7

X2, to g{x) = y. It is easy to check that X\ > μ and X2 ^ μ are the roots of a
quadratic equation, and that their product is simply μ2. So we can set x\ = x and
%2 = μ2/χ, with x ^ μ satisfying g(x) = y. A simple modification of the standard
transformation rule (A.33) yields that the pdf of Y satisfies

jY{y> -g'^/x) + g'(x) '

where fx is the pdf of X, g'{x) = λ(μ~2—χ~2), and x = μ+ι^ + ^^4ρλμ + μ?υ2.
Evaluation of the above expression yields fY(y) = β - ^ ^ τ π /) " 1 / 2 for all y > 0,
which is the pdf of the xf distribution, so that we have derived Property 1 above.

In order to generate the appropriate X-value for a given y-value we have to
choose the appropriate root {μ2/X or X) with probabilities in the proportion
ÎXf(f(l)] X -g'$/x) = χ3/μ3 X μ2Ιχ2 = ΧΙμ to 1· This leads t0 the f o l l o w i ng
algorithm.

Algor i thm 4.65 (\Νβ\ά(μ, λ) Generator)

1. Generate W ~ N(0,1) and set Y = W2.

2. Set

2λ 2λ
f+^f + ~ν<ίμ\Υ + μ2Υ2.

3. Generate B ~ Ber(—^) . If B = 1, output X = Z; otherwise, output X =

Z '

4.2.18 Weibull Distribution

The Weibull distribution has pdf

f(x;a,X)=a\{\x)a-1e-(Xx)a, x^O,

where λ > 0 is called the scale parameter and a > 0 the shape parameter. We
write the distribution as Weib(a, λ). A location-scale version of this distribution
is given by the pdf /(χ;α,μ,σ) = f((x — μ)/σ;α,1)/σ, χ ^ μ; we write this
distribution as Weib(a, μ, σ). Note that Weib(a, λ) = Weib(a, 0, λ _ 1) .

In reliability theory the Weibull distribution is often used as the distribution of a
lifetime of a component. The reflection of this distribution, with pdf f(—x; a, μ, σ),
which we will call the reversed Weibull distribution, is one of the three extreme
value type distributions (type III), denoted here by — We'\b(a,μ,σ).

A special case is the Weib(2,1/(σ\/2)) distribution, known as the Rayle igh
distribution, denoted by Rayleigh(σ). The dependence of the Weibull distribution
on its parameters is illustrated in Figure 4.22.

1 3 8 PROBABILITY DISTRIBUTIONS

Figure 4.22 Pdfs of the Weib(a, λ) distribution for various values of its parameters.

Table 4.25 Moment and tail properties of the Weib(a, λ) distribution.

Property Condition

Expectation λ~ 1Γ(1 + α" 1)

Variance λ~2(Γ(1 + 2α" 1) - Γ(1 + a'1)2)

Moment EXk \-kT(l + to"1)

Tail probability F(X > x) e " ^ ' * x^O

Other properties and relations are:

1. Exponential distribution: If Y ~ Εχρ(λ) and β > 0, then Υβ ~ Weib(/3_1, Χβ).

2. Normal distribution: If X, Y ~ N(0, σ2) , then y/X* + Y2 ~ Rayleigh(a).

3. Gumbel distribution: If X ~ Weib(a, λ), then — l n X ~ Gumbel(lnA, 1/a).

Since Weib(a, μ, σ) defines a location-scale family, it suffices to consider gener-
ating Weib(o:,À) random variables only. This is easily established via the inverse-
transform method, as the cdf satisfies F(x) = 1 — exp(—(\x)a) , x ^ 0.

Algor i thm 4.66 (Weib(a, λ) Generator)

Generate U ~ U(0,1) and output X = j (— In U) ° .

4.3 MULTIVARIATE DISTRIBUTIONS

We list various multivariate distributions in alphabetical order. Recall that an
"3° 611 absolutely continuous or discrete distribution is completely specified by its pdf.

MULTIVARIATE DISTRIBUTIONS 1 3 9

Remark 4.3.1 (Singular Continuous Distr ibutions) Many practically en-
countered multivariate singular continuous distributions involve absolutely continu-
ous random vectors that are mapped to a lower-dimensional manifold. For example,
the uniform distribution on the perimeter of a circle is singular with respect to the
Lebesgue measure on R2 and so its two-dimensional pdf is zero. However, it is read-
ily thought of as the distribution of a one-dimensional uniform random variable bent
into a circle.

4.3.1 Dirichlet Distribution

The s tandard Dirichlet (or t y p e I Dirichlet) distribution has pdf

p/^-->n+l \ n / n N α„+ι—1
1 I 2 j i = l ai /(χ;a) = Vffi, V Πg?'"1 x - Σ * 0 » 3^ο,» = ι , . . . ,n,5><i
Πί=ι r (« i) V ' = 1 x t = l

where on > 0, i = 1 , . . . , n + 1 are shape parameters. We write this distribution
as Dirichlet(ai , . . . , α η +ι) or Dirichlet(a), with a = (αχ , . . . ,αη+ι)τ. The Dirichlet
distribution can be regarded as a multivariate generalization of the beta distribution
(see Section 4.2.1), in the sense that each marginal Xk has a beta distribution (a
more general statement is made in Property 6 below).

In Bayesian statistics, the Dirichlet distribution is the conjugate prior for the "3° 675
success probabilities of the multinomial distribution (see Section 4.3.2). A graph
of the pdf for the two-dimensional case is given in Figure 4.23.

Figure 4.23 The Dirichlet pdf in two dimensions, with parameter vector ce
(1.5,1.5,3)T.

1 4 0 PROBABILITY DISTRIBUTIONS

Table 4.26 Moment properties of the Dirichlet(a) distribution.

Property

_, . a
Expectation vector —

c

. . cd iag(ä) — ä ä
Covanance matrix —

cz(c+ 1)

Here, a = (a i , . . . , a n) T and c = Σ " _ ι α ί - Other properties and relations are:

1. Gamma to Dirichlet: Let Y i , . . . , Yn+i be independent random variables with
Yfc ~ Gamma(afc, 1), k = 1 , . . . , n + 1, and define

Yk
Xk = n — , fc = l, . . . , n .

K V^7l+1 y_ ' ' '

Then, X = (X j , . . . , Xn) ~ Dirichlet(a).

2. Dirichlet to gamma: Let y ~ Gamma(2™=1 oti, 1) be a random variable in-
dependent of X = (Χχ,..., Xn) ~ Dirichlet(a). Define

n

y"i = rXi, t = i,...,n and Yn+i = Y (I - ^ X i) .
1 = 1

Then, Y i , . . . , Y n + i are independent with Yi ~ Gamma(öi, 1), i = 1 , . . . , n +1.

3. Beia io Dirichlet: Let ΥΊ , . . . , Yn be independent random variables with Yj ~
-<n+l

i - 1

Beta(aj, Σ " ί ί + 1 a ,) , i = 1 , . . . , n. Define

Χί = ^Π(1-ν}), t = l,...,n.

Then, X = (X 1 ; . . . , X n) - Dirichlet(a).

4. Dirichlet to beta: If X = (Xi,... ,Xn) ~ Dirichlet(a) and

v X% · _ ,
l ~ i - x 1 XiS ΐ - 1 - · · · ' η >

then Y i , . . . , Yn are independent with Yi ~ Beta(aj, Σ?= ί+ ι aj)> i = 1,· · ■ ,n.

5. Uniform: The n-dimensional Dirichlet(l , . . . , 1) distribution has a constant
71 density on the unit simplex {x € Kn : Xi ^ 0, i = 1 , . . . , n, X)™=1 a;» ^ 1} and

thus corresponds to the uniform distribution on that set.

6. Beta distribution of marginals: As a consequence of Property 4, Χγ ~
Beta(ai , Σίφΐ α ») ' a n d 0°Y relabeling) Xk ~ Beta(afc, 5 ^ f c a;) in general.

MULTIVARIATE DISTRIBUTIONS 1 4 1

7. Subvectors: From Property 1 it follows immediately that for any choice
{ii,..., ik\ of distinct indices from { 1 , . . . , n},

{Xh ,...,Xik)~ D i r i c h l e t ^ , . . . , aik, β) ,

with ß = Σ"^1 ai - Σ*=1 aij.

8. Moments: Let X ~ Dirichlet(a), with a = (a,a,... ,a, β)τ. Then, for 7 ^ 0 ,
we have (see [10])

F Π I γ v | 2 7 _ Tjan + ß) nfî T(a + j 7) Γ(1 + (j + 1)7)
Κ*<ί<η ' Γ»(α)Γ(αη + /3 + η (η - 1) 7) Α Α Γ(1 + 7)

The fondamental relation between the Dirichlet and the gamma distribution
given in Property 1 provides the following generation method.

Algori thm 4.67 (Dirichlet(a) Generator)

1. Generate Yk ~ Gamma(at, 1), k — 1 , . . . , n + 1 independently.

2. Output X = (Xi,.. · , Xn), where

Yk
Xk = „ n + i . * = l , . . . , n .

An alternative generation mechanism is based on the relation between the Dirichlet
distribution and the beta distribution, see Property 3 above. In general, beta
generators require a gamma generator, unless the parameter values are integers,
in which case one can use order statistics (see Algorithm 4.24 on Page 106). The
following algorithm can be useful when the parameters are small and integer-valued.

Algori thm 4.68 (Dirichlet(a) Generator via B e t a R a n d o m Variables)

1. Generate
n + l

2. Output X = (Xi,.. ·, Xn), where

i-\

Yi ~ Beta (ai,] P a3A, i = 1 , . . . , i
^ 7=i+l '

Xi=Yi]l(l-Yj), i = l,...,n.

4.3.2 Multinomial Distribution

The mult inomial distribution has joint pdf given by

/ (x ; n, p) = n! TT -— for all x £ { 0 , . . . , n}k for which ^ Xi
i=i Xt' i=i

1 4 2 PROBABILITY DISTRIBUTIONS

675

where k and n are strictly positive integers, each pi > 0, and Σί=ιΡί = 1· Sum-
marizing the {pi} in a fc-dimensional (column) vector p , we write the distribution
as Mnom(n,p).

The multinomial distribution arises in the experiment in which n balls are thrown
into k bins, where the probability of a ball falling in the i-th bin is pj. This situation
arises, for example, when a histogram is constructed for an iid sample of size n from
some distribution. The multinomial distribution can be seen as a generalization of
the binomial distribution. In Bayesian statistics, the multinomial distribution is
the conjugate prior for the shape parameters of the Dirichlet distribution. A graph
of the pdf for a three-dimensional case is given in Figure 4.24.

0.15

& 0.1

H 0.05- .rfsAfe
5 χ2

10 10

Figure 4.24 The multinomial pdf with parameters n = 10 and p = (0.2,0.5,0.3)T. Note
that X3 = n — xi — xi is not shown.

Table 4.27 Moment properties of the Mnom(n, p) distribution.

Property Condition

Expectation vector n p

Covariance matrix n(diag(p) — p p T)

Probability generating function Έζ1
 1 ■ ■ ■ zk

 k = ί Σ ί = ι P i zi) \z,\ ^ l,i = 1, ■ ■ ■ ,k

MULTIVARIATE DISTRIBUTIONS 1 4 3

Other properties are:

1. Binomial: If (Χχ,..., Xk) ~ Mnom(n, p) , then Xi ~ Bin(n,pi), i = 1 , . . . , k.

2. Conditionals: (Xt+i | Xi, · · ·, Xt) ~ Bin (n — X^ i = 1 -̂ »> — t

3. Subvectors: For any choice { « i , . . . , i m } of distinct indices from { 1 , . . . , k},

m \

Xix,... ,Xim,n -Υ^ Xi] ~ Mnom(n,p) ,
.7 = 1 7

where p = (ph,...,pim,l- Y™=1 VijY'■

The following algorithm for generating multinomial vectors mimics throwing n
balls into k bins with probabilities pi,... ,Pk-

Algori thm 4.69 (Direct Mnom(n, p) Generat ion)

1. SetX={X1,...,Xk) = (0,...,0).

2. For i = 1 , . . . , n draw Zi ~ p and set Xzt = Xz, + 1-

3. Return X .

From Property 2, the conditional densities of a multinomially distributed vector
are binomial. Hence, the following algorithm can be used to generate a random
vector X = (Xi,..., Xk) ~ Mnom(n, p).

Algor i thm 4.70 (Mnom(n,p) Generator)

1. Set s = 0, q = 1, and t = 1.

2. While t ^ k generate

Xt ~ Binin-s, — J,

and sei s = s + Xt, q = q — pt, and t = t + 1.

3. Output X = (Xi,...,Xk).

4.3.3 Multivariate Normal Distribution

The s tandard multivariate normal or s tandard multivariate Gaussian dis-
tribution in n dimensions has pdf

/ (x) = ^ ^ = β " 3 χ Τ χ , X É I " . (4.11)

All marginals of X = (Xi,..., Xn)
T are iid standard normal random variables.

Suppose that Z has an m-dimensional standard normal distribution. If A is an
n x m matrix and μ is an n x 1 vector, then the affine transformation

X = μ + AZ

1 4 4 PROBABILITY DISTRIBUTIONS

is said to have a multivariate normal or multivariate Gaussian distribution
with mean vector μ and covariance matrix Σ = AAT. We write the distribution
as Ν(μ ,Σ) .

The covariance matrix Σ is always symmetric and positive semidefinite. When
the matrix Σ is singular (that is, det(E) = 0), the distribution of X is singular
with respect to the Lebesgue measure on R n . When A is of full rank (that is,
rank(A) = min{m, n}) the covariance matrix Σ is positive definite. In this case Σ
has an inverse and the distribution of X has pdf

/ (χ ; μ , Σ) = , 1
 = e - i (χ-μ)τΣ-1(χ-μ) χ e R n _ , ^ ^

ν/(2π)™ det(E) V ;

The matrix Λ = Σ - 1 is called the precision matrix. A random vector X is
thus multivariate normaljvith precision matrix Λ and mean vector μ if and only if
the logarithm of its pdf / (x ; μ, A) = / (x ; μ, Σ) satisfies

In / (x ; μ, A) = - - (χ τ Λ χ - 2 χ τ Λ μ) + constant , x e l " . (4.13)

The multivariate normal distribution is a natural extension of the normal distri-
bution (see Section 4.2.11) and plays a correspondingly important role in multivari-
ate statistics. This multidimensional counterpart also has the property that any
affine combination of independent multivariate normal random variables is again
multivariate normal. A graph of the standard normal pdf for the two-dimensional
case is given in Figure 4.25.

Figure 4.25 The standard multivariate normal pdf in two dimensions.

MULTIVARIATE DISTRIBUTIONS 1 4 5

Table 4.28 Moment properties of the Ν(μ, Σ) distribution.

Property Condition

Expectation vector μ

Covariance matrix Σ

Moment generating function E β*Τ χ = exp (t T μ + ± ί τ Σ t) t e l "

Other properties and relations are:

1. Affine combinations: Let X i , X2, · ■ ■, X r be independent mi-dimensional nor-
mal variables, with X, ~ Ν(μ ί ; Σ^), i = 1 , . . . , r. Let a be an n x 1 vector and
let each Ai be an n x TO; matrix for i = 1 , . . . , r . Then,

r / r r

i=l ^ i= l i=l

In other words, any affine combination of independent multivariate normal
random variables is again multivariate normal.

2. Standardization (whitening): A particular case of the affine combinations
property is the following. Suppose X ~ Ν(μ, Σ) is an n-dimensional nor-
mal random variable with det(E) > 0. Let A be the Cholesky factor of the
matrix Σ. That is, A is an n x n lower triangular matrix of the form

(4.14)

and such that Σ =

A =

/ 0 1 1 0 · · · 0 \

«21 Û22 · · ' 0

\a„i an2 · ■ ■ annj

= AAT. It follows that

A- -\Χ-μ)~Ν(0,Ι).

Note that the Cholesky factor can be obtained efficiently via the Cholesky
square root method (see Section D.3). "3° 706

3. Marginal distributions: Let X be an n-dimensional normal variable, with
X ~ N(/x, Σ) . Separate the vector X into a part of size p and one of size
q = n — p and, similarly, partition the mean vector and covariance matrix:

x=(x:). <·=&)· ==(£ %)· <«5>
where Σ ρ is the upper left p x p corner of Σ, Σ ? is the lower right q x q corner
of Σ, and ΣΓ is the p x q upper right block of Σ. Then, the distributions
of the marginal vectors X p and X 9 are also multivariate normal, with X p ~
N (M p) E p) a n d X , ~ N (M , , E ,) .

1 4 6 PROBABILITY DISTRIBUTIONS

Note that an arbitrary selection of p and q elements can be achieved by first
performing a linear transformation Z = AX, where A is the nxn permutation
matrix that appropriately rearranges the elements in X.

4. Conditional distributions: Suppose we again have an n-dimensional vector
X ~ Ν(μ, Σ) , partitioned as for the marginal distribution property above,
but with det(E) > 0. Then, we have the conditional distributions

(X„ | X , = χ ,) ~ Ν(μρ + Σ , - Σ - ^ χ , - μ ,) , Σ ρ - S ^ S j) ,

and

(X , I X p = x p) ~ Ν(μ, + Σ ^ Σ - 1 ^ - μ ρ) , Σ , - Σ Γ
τ Σ ρ - %) .

As with the marginals property, arbitrary conditioning can be achieved by
first permuting the elements of X by way of an affine transformation using a
permutation matrix.

The conditional distributions can also be conveniently characterized via the
precision matrix. In particular, if the latter is decomposed as

A =(£ £)■ ^
then the logarithm of the conditional pdf of X p given X ? = x , is given by

'Λρ Λ Λ fxp - 2μρ
Ν

1

+ constant

= - - [xjApXp - 2χρ
Γ(Λρμρ + Λ,,μ^ - Arxq)] + constant

= ~ 2 [XP Λ ρ Χ ρ ~ 2χ-ρΑΡμρ\ι\ + c o n s t a n t

for some p-dimensional vector μρ ι q. This shows that conditional on X ? = x 9

the random vector X p has a multivariate Gaussian distribution with precision
matrix Λρ and mean vector μριη- Moreover, this mean vector can be found
by solving the linear equation

Λ ρ (Μ ρ | β - μ Ρ) = Λ Γ (μ ϊ - χ ς) . (4.17)

5. Square: If X = (Xlt..., Xn)
T ~ N(0,1), then X T X ~ Gamma(n/2,1/2) =

χ^. More generally, combining with the standardization property, if X ~
Ν(μ, Σ) is n-dimensional normal with det(E) > 0, then (X — μ) τ Σ _ 1 (Χ — μ) ~

A n

Property 2 is the key to generating a multivariate normal random vector X ~
Ν(μ, Σ) , and leads to the following algorithm.

Algor i thm 4.71 (Ν(μ , Σ) Generator)

1. Derive the Cholesky decomposition Σ = AAT.

2. Generate ΖΐΊ...,Ζη ~ N(0,1) and let Z = (Zlt..., Zn)
T.

3. Output X = μ + AL.

MULTIVARIATE DISTRIBUTIONS 1 4 7

4.3.4 Multivariate Student's t Distribution

The multivariate Student's t distribution in n dimensions has pdf

/ (χ ; , /) = Μ ^ Γ (ξ) 1 1 + ^ χ ; ' xeR"' (4J8)

where ι/ ^ 0 is the degrees of freedom or shape parameter. We write the distri-
bution as t„ . Suppose Y = (Yy,... ,Ym)T has an m-dimensional tv distribution.
If A is an n x m matrix and μ is an n x 1 vector, then the affine transformation

X = μ + AY

is said to have a multivariate Student 's or multivariate t distribution with
mean vector μ and scale matr ix Σ = AAT. We write the distribution as
t„(/x, Σ) . If Σ is positive definite (see Section 4.3.3), then X has pdf

p (y+n\ / i χ - ^
f{x; v, μ, Σ) = \ V . 1 + - (x - / χ) Τ Σ " 1 (χ - μ)]

(4.19)
The multivariate ί distribution is a radially symmetric extension of the univariate
t distribution and plays an important role as a proposal distribution in Markov
chain Monte Carlo algorithms and Bayesian statistical modeling; see Example 6.2. «s* 231
In particular, it arises as the posterior distribution of the mean of a multivariate
normal distribution [21]. Note that an alternative product form extension of the
multivariate t distribution is also used in, for example, kernel density estimation [30,
Page 103]. In this alternative extension, the pdf of the multivariate t distribution
in n dimensions is defined as the product of n univariate pdfs: ΠΓ=ι / (x i i ^)ι where
f{xi\ v) is the Student's t pdf in (4.10).

Table 4.29 Moment properties of the t„(//, Σ) distribution.

Property Condition

Expectation vector μ

Covariance matrix 1^2 ^ v > 2

Characteristic Func. e i t T ^ ^ Ü r ^ L K*MWVï Σ^Η\\) t e R n

Here, Kv(x) denotes the modified Bessel function of the second kind. Other prop- " ^ 717
erties and relations are:

1. Special cases: Let X ~ t v ^ , Σ), then

X —► Z ~ Ν(μ, Σ) as v —» 00 .

If v = 1, then (4.18) gives the pdf of the multivariate radially symmetr ic
Cauchy distribution.

1 4 8 PROBABILITY DISTRIBUTIONS

2. Normal distribution: Let Z ~ N(0 , /) and S ~ Gamma(^/2,1/2) be inde-
pendent. Then,

X = . /J Z ~ t„ .
V

3. Wishart distribution: Let V be an n x n random matrix with a Wishar t^ +
n - 1,1) distribution. If Y ~ N(0,1), then

X = yu {yx'2yl Y ~1„ ,

where V 1 ' 2 is a symmetric matrix such that y 1 / 2 ! / 1 / 2 = y .

4. Marginal distributions: If X ~ ΐ„ (μ , Σ) and the vector X is decomposed as
in (4.15), then

X P ~ ί „ (μ ρ , Σ ρ) and X , ~ ί „ (μ ς , Σ ΐ) .

5. Product moments: If X ~ t„ , then [21, Page 11]

i = l \ 2 / j —1

Generation from the multivariate ί distribution follows from its relation to the
multivariate normal distribution in Property 2 above.

A l g o r i t h m 4.72 (ί „ (μ , Σ) G e n e r a t o r)

./. Draw the random column vector Z ~ N(0,7).

2. Draw S ~ Gamma (f, ±) = χ 2 .

5. Compute Y = y^f Z.

■®° 706 4- Return X = μ + AY, where A is the Cholesky factor ο / Σ , so that AAT = Σ .

4.3.5 Wishart Distribution

Let x = (xij,i,j = Ι,.,.,η) denote an n x n positive definite matrix; the latter
property is written as x >- 0. Note that x is necessarily symmetric. The W i s h a r t
distribution on the space of such matrices has pdf

/ (x) = c" 1 d e t (x) (l / - " - 1) / 2 e x p f - i t r (Σ _ 1 χ)] , x X 0 ,

where v ^ n is the n u m b e r of deg ree s of f reedom, E ^ O i s a n n x n covariance
matrix, and the normalization constant c is

n - i l

= det^)"/2
 2-/2πη(„-ΐ)/4 l[r(V~3 + 1)

MULTIVARIATE DISTRIBUTIONS 1 4 9

We denote the distribution by Wishart(^, Σ) .
The Wishart distribution is closely related to the multivariate normal distribu-

tion. In particular, if Y i , . . . , Y r ~üd N(0, Σ) are n-dimensional normal variables
with d e t ^) > 0, then

^ Y f c Y j - W i s h a r t (r ^) .
fc=l

In Bayesian statistics, the Wishart distribution is the conjugate prior for Σ - 1 of a "S* 675
Ν(μ, Σ) random variable, when μ is known.

Table 4.30 Moment properties of the Wishart(y, Σ) distribution.

Property Condition

Expectation matrix νΈ

Moment gen. function E e t r (T X) = det(7 - 2 Σ T) - » ' 2 (Σ " 1 - 2T) y 0

Other properties and relations are:

1. Sums: If X i ~ Wishart(^i, Σ) and X2 ~ Wishart(i/2, Σ) are independent, then

X i + X 2 ~ Wishart(1/1 + v2, Σ) .

2. χ2. distribution: Wishart(r, 1) = χ2, if r is a positive integer. Thus, the
Wishart distribution is the multivariate analogue of the χ2. distribution.

3. Scaling: If X ~ Wishart(i/, Σ) is an n x n random matrix and A is an n x m
constant matrix, then ATXA is an m x m random matrix with

Α Τ Χ Λ ~ Wishart(i/, ΑΤΣΑ) .

The special case where A = a is an n x 1 vector (m = 1) and v = r is a
positive integer gives

a T X a ,

&
Τ Σ &

 Xr'

4. Bartlett decomposition: Let Σ = CCT be the Cholesky factorization of the
n x n matrix Σ, and let A be an n x n lower diagonal matrix of the form
given in (4.14), such that α -̂ ~üd N(0,1) for all j < i and an = ^/Ϋϊ, where

i+l Yi ~ Xr-t+ii * = 1, · · ■ i ^ are independent. Then, we have

X = CAA ' C ' ~ Wishart(r, Σ) .

Generation from the Wishart(r, Σ) distribution for small integer values of r ^ n
follows directly from its defining property.

1 5 0 PROBABILITY DISTRIBUTIONS

Algor i thm 4.73 (Wishart(r, Σ) Generator)

1. Draw the random column vectors Y i , . . . , Y r ~ N(0, Σ) .

2. Return the matrix X = Σ £ = 1 Yfc Y ^ ·

The above algorithm becomes inefficient for large values of r. An alternative and
more efficient algorithm is based on the Bartlett decomposition; see Property 4 and
[29].

Algor i thm 4.74 (Wishart(r, Σ) Generator via Bart let t Decompos i t ion)

706 1. Compute C in the Cholesky factorization Σ = CCT of the n x n matrix Σ .

2. Generate the lower diagonal matrix A in (4.14), with Oij ~nd N(0,1) for all
j < i and an = Λ/ΫΪ, where Yi ~ χ^- ϊ+ΐ ' « = 1, · · · , ^ are independent.

3. Output the matrix X = CAATCT.

Further Reading

Further information on discrete and continuous distributions may be found in [9, 15]
and [9, 16, 17, 18, 20], respectively. Phase-type distributions and their applications
are discussed in [26]. Details on stable distributions are given in [11, 12, 27, 32].
For a comprehensive reference on random variable generation algorithms, see [8].

REFERENCES

1. J. H. Ahrens and U. Dieter. Computer methods for sampling from gamma, beta,
Poisson, and binomial distributions. Computing, 12(3):223-246, 1974.

2. J. H. Ahrens and U. Dieter. Sampling from binomial and Poisson distributions: A
method with bounded computation times. Computing, 25(3):193-208, 1980.

3. A. C. Atkinson. The computer generation of Poisson random variables. Journal of
the Royal Statistical Society, Series C, 28(l):29-35, 1979.

4. R. W. Bailey. Polar generation of random variâtes with the t-distribution. Mathe-
matics of Computation, 62(206):779-781, 1994.

5. D. J. Best. A note on gamma variate generators with shape parameters less than
unity. Computing, 30(2):185-188, 1983.

6. J. M. Chambers, C. L. Mallows, and B. W. Stuck. A method for simulating stable
random variables. Journal of the American Statistics Association, 71(354):340-344,
1976.

7. R. C. H. Cheng and G. M. Feast. Some simple gamma variate generators. Computing,
28(3):290-295, 1979.

8. L. Devroye. Non-Uniform Random Variate Generation. Springer-Verlag, New York,
1986.

9. M. Evans, N. Hastings, and B. Peacock. Statistical Distributions. John Wiley & Sons,
New York, second edition, 1993.

REFERENCES 1 5 1

10. P. J. Forrester and S. O. Warnaar . The importance of the Seiberg integral. Bulletin
of the American Mathematical Society, 45(4):489-534, 2008.

11. B. V. Gnedenko and A. N. Kolmogorov. Limit Distributions for Sums of Independent
Random Variables. Addison-Wesley, Reading, Massachusetts, 1954.

12. P. Hall. A comedy of errors: The canonical form for a stable characteristic function.
The Bulletin of the London Mathematical Society, 13(l):23-27, 1981.

13. C. C. Heyde. On a property of the lognormal distribution. Journal of the Royal
Statistical Society, Series B, 25(2):392-393, 1963.

14. W. Hörmann. A simple generator for the t distribution. Computing, 81(4):317-322,
2007.

15. N. L. Johnson and S. Kotz. Distributions in Statistics: Discrete Distributions.
Houghton Mifflin Company, New York, 1969.

16. N. L. Johnson and S. Kotz. Distributions in Statistics: Continuous Univariate Dis-
tributions, Volume 1. Houghton Mifflin Company, New York, 1970.

17. N. L. Johnson and S. Kotz. Distributions in Statistics: Continuous Univariate Dis-
tributions, Volume 2. Houghton Mifflin Company, New York, 1970.

18. N. L. Johnson and S. Kotz. Distributions in Statistics: Continuous Multivariate
Distributions. John Wiley & Sons, New York, 1972.

19. A. J. Kinderman, J. F . Monahan, and J. G. Ramage. Computer methods for sampling
from Student 's t distribution. Mathematics of Computation, 31(140):1009-1018, 1977.

20. C. Kleiber and S. Kotz. Statistical Size Distributions in Economics and Actuarial
Sciences. John Wiley & Sons, New York, 2003.

21. S. Kotz and S. Nadarajah. Multivariate t Distributions and Their Applications. Cam-
bridge University Press, Cambridge, 2004.

22. P. L'Ecuyer and R. Simard. Inverting the symmetrical be ta distribution. ACM Trans-
actions on Mathematical Software, 32(4):509-520, 2006.

23. G. Marsaglia. Improving the polar method for generating a pair of normal ran-
dom variables. Technical Report Dl-82-0203, Boeing Scientific Research Laboratories,
September 1962.

24. G. Marsaglia and T. A. Bray. A convenient method for generating normal variables.
SIAM Review, 6(3):260-264, 1964.

25. G. Marsaglia and W. Tsang. A simple method for generating gamma variables. ACM
Transactions on Mathematical Software, 26(3):363-372, 2000.

26. M. F . Neuts. Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Ap-
proach. Dover Publications, New York, 1981. Unabridged and corrected edition from
1994.

27. J. P. Nolan. Stable Distributions - Models for Heavy Tailed Data. Birkhäuser, Boston,
2009. In progress, Chapter 1 online at h t t p : / / a c a d e m i c 2 . a m e r i c a n . e d u / - j p n o l a n .

28. R. Y. Rubinstein and D. P. Kroese. Simulation and the Monte Carlo Method. John
Wiley & Sons, New York, second edition, 2007.

29. W. B. Smith and R. R. Hocking. Algorithm AS 53: Wishart variate generator. Jour-
nal of the Royal Statistical Society, Series C, 21(3):341-345, 1972.

30. M. P. Wand and M. C. Jones. Kernel Smoothing. Chapman & Hall, London, 1995.

31. R. Weron. On the Chambers-Mallows-Stuck method for simulating skewed stable
random variables. Statistics and Probability Letters, 28(2):165-171, 1996.

32. V. M. Zolotarev. One-Dimensional Stable Distributions. American Mathematical
Society, Providence, Rhode Island, 1986.

http://academic2.american.edu/-jpnolan

This page intentionally left blank

CHAPTER 5

RANDOM PROCESS GENERATION

This chapter lists the major random processes used in Monte Carlo simulation,
along with their main properties and how to generate them. Further background
on stochastic processes is given in Sections A.9-A.13 of the appendix. The following *& 626
processes are discussed.

• Gaussian processes 154

• Markov chains 162

• Markov jump processes 166

• Poisson processes 170

• Wiener process (Brownian motion) 177

• Stochastic differential equations (SDEs) and diffusion processes 183

• Brownian bridge 193

• Ornstein-Uhlenbeck process 198

• Reflected Brownian motion 200

• Geometric Brownian motion 196

• Fractional Brownian motion 203

• Random fields 206

• Levy processes 208

• Time series 219

Handbook of Monte Carlo Methods. By D. P. Kroese, T. Taimre, Z. I. Botev 153
Copyright © 2011 John Wiley & Sons, Inc.

1 5 4 RANDOM PROCESS GENERATION

5.1 GAUSSIAN PROCESSES

A real-valued stochastic process {Xt,t € &} is said to be a Gaussian process
if all its finite-dimensional distributions are Gaussian (normal); that is, if X =

■®° 143 (Χχ,..., Xn) = (Xtl,..., Xt„)T has a multivariate Gaussian distribution for any
choice of n and t\,..., tn G ^ , or equivalently, if any linear combination ΣΗ=Ι hXti

has a normal distribution.

The probability distribution of a Gaussian process is determined completely by
its expectat ion function

Jk = EXt, t e &

and covariance function

ËM = Cov(xs,xt), s.tasr.

A zero-mean Gaussian process is one for which μ4 = 0 for all t.

Gaussian processes can be thought of as generalizations of Gaussian random
vectors. To generate a realization of a Gaussian process with expectation function
(jit) and covariance function (ESj i) at times ti,...,tn we can simply sample a
multivariate normal random vector X = (Xi,..., Xn)

T = (Xu ,-■·, Xtn)
T ■ As

"3° 146 such, the fundamental generation method is the same as given in Algorithm 4.71.

Algor i thm 5.1 (Gaussian Process Generator)

1. Construct the mean vector μ = (μχ , . . . , μη)
Τ and covariance matrix E =

(Σί;7·) by setting μ, = Jiu, i = 1 , . . . , n and Ey = Etittj, i, j = 1 , . . . , n.

"S" 706 2. Derive the Cholesky decomposition E = AAT.

3. Generate Z1,...,Zn ~ N(0,1). Let Z = (Zu..., Zn)
T.

4. Output X = μ + AZ.

It is sometimes useful to employ an "online" version of the above algorithm,
especially when the length of the Gaussian vector X is not known in advance, for
example when the length is a stopping time. Specifically, given a fixed sequence
of times i i , Î2 , · · ·, denote X n = (Xi,. ■ . , X „) T = (Xtl!. ■ ■ ,Xtn)

T■ Write Era =
C o v (X n , X n) and let An be the corresponding lower-triangular Cholesky matrix,
n = 1,2,. . . . We can partition E n + i and An+\ as

Ση+1 = (b l bh
n

n
+1)

 and A^ = (if al) '
for some column vectors b n , a „ , and constants 6n+i and αη+χ. It follows that the
Cholesky matrix can be updated row by row, where the (n + l)-st row is obtained
by forward substitution from the linear equation

and

an+i = ybn+i - a j a „ . (5.2)

GAUSSIAN PROCESSES 155

A Gaussian vector can also be generated from its precision matrix A = Σ - 1 "^ 144
instead of its covariance matrix Σ. Namely, if DDT is the Cholesky factorization of
A, and if Y satisfies Z = D Y , where Z is a vector of iid N(0,1) random variables,
then Y is a zero-mean multivariate normal vector with covariance matrix

E Y Y T = £ > " 1 E Z Z T { D ' Y = (DTD)-1 = {AT)'1 = (Λ - 1) τ = Σ .

This leads to the following algorithm.

Algor i thm 5.2 (Gaussian Process Generator Us ing a Precis ion Matrix)

1. Derive the Cholesky decomposition A = DDT of the precision matrix.

2. Generate Zu...,Zn ~ N (0,1). Let Z = (Z i , . . . ,Zn)
T.

3. Solve Y from Z = -DY, using forward substitution.

4- Output X = μ + Y .

As the Cholesky decomposition of a general n-dimensional positive definite ma-
trix takes 0 (n 3) floating point operations, the generation of large-dimensional Gaus-
sian vectors becomes cumbersome for large n, unless some extra structure is intro-
duced that allows efficient square root factorization of the covariance or precision
matrix. This is the case, for example, when the covariance matrix or the preci-
sion matrix is sparse. The Cholesky matrix can then be evaluated efficiently, for
example via the band-Cholesky method; see Algorithm 5.33.

■ EXAMPLE 5.1 (Gaussian Markov R a n d o m Field Generat ion)

A Gaussian Markov random field can be viewed as Gaussian vector X =
(X\,... ,Xn) that is defined by means of an undirected graph Q = (V,E), where
the vertex set V corresponds to the indices { 1 , . . . , n} and the edge set E specifies
the dependencies between the variables. Specifically, the (i , j) - th element of the
precision matrix A = (λ^) is 0 if and only if (i,j) $ E (see also Page 208). A
consequence of this construction is that the conditional distribution of each random
variable Xi given all other random variables is equal to the conditional distribution
of Xi given only its neighbors; more precisely,

(xi\x1,...,xn)^(xi\xjjeMi),

where Mi = {j : (i,j) G E} is the set of indices to which i is adjacent. Thus, if each
vertex i has only a small number of adjacent vertices, then the precision matrix is
typically sparse and the Gaussian vector can be generated efficiently.

An important application is found in image analysis, where the vertices cor-
respond to positions on a grid { 1 , . . . , m } x { 1 , . . . ,m} of n = m2 points, as in
Figure 5.1. In this particular case internal vertices have four neighbors, vertices on
the edge have three neighbors and the corner vertices each have two neighbors.

156 RANDOM PROCESS GENERATION

- 0
UU

0-
-o-

-o

u
Figure 5.1 Adjacency graph for a Gaussian Markov random field.

Figure 5.2 depicts an outcome of a zero-mean Gaussian Markov random field
for a 200 x 200 grid. Note that each of the 2002 rows of the precision matrix has
at most 5 elements; so that the matrix is very sparse. For each row/vertex i the
diagonal element of the precision matrix is taken as λ& = 1; and λ^ = —0.25 for
each neighboring element j of i.

Figure 5.2 A realization of a Gaussian Markov random field.

The following MATLAB code is used.

7,gp_sparsechol .m
m = 200; dl = 1; d2 = - 0 . 2 5 ; '/.at most d l / 4 in absolute value
n e l s = m*(5*m-4);
°/0preallocate memory to form sparse p r e c i s i o n matrix
a = z e r o s (1 , n e l s) ; b = z e r o s (l . n e l s) ; c = z e r o s (l , n e l s) ;
^compute the links and weights for the precision matrix
k=0;
for i=l:m

GAUSSIAN PROCESSES 157

for j= l :m
A = f i n d n e i g h (i , j , m) ;
nnb = s i z e (A , 1) ;
fo r h=l :nnb

a(k+h)= i j 2 k (i , j , m) ;
b(k+h)= i j 2 k (A (h , l) , A (h , 2) , m) ;
i f h==l

c(k+h) = d l ;
e l s e

c(k+h) = d2;
end

end
k = k+nnb;

end
end
Lambda = spa r se (a ,b , c ,m~2 ,m~2) ; '/«Construct t h e p r e c i s i o n ma t r ix
D = chol (Lambda , ' lower ') ; ' /«calculate t h e cholesky ma t r ix
Z = r a n d n (n T 2 , l) ;
x = D\Z; '/« g e n e r a t e t h e Gaussian p r o c e s s
colormap g ray , b r i g h t e n (- 0 . 2)
imagesc(reshape(x,m,m)) 7» p l o t t h e r e s u l t

The function f indneigh.m returns the set of neighboring sites to the (i,j)-th
site on an m x m lattice.

°/.f indneigh.m
function A = findneigh(i,j,m)
’/, find neighbors of the (i,j)-th site of an m by m grid
if i==l

if j==l
A = [l,l;l,2;2,l];

elseif j==m
A = [l,m;l,m-l;2,m];

else
A = [l,j;l,j-l;l,j+l;2,j];

end
elseif i==m

if j==l

A = [m,l;m,2;m-l,l];
elseif j==m

A = [m,m;m,m-l;m-l,m];
else

A = [m,j;m,j-l;m,j+l;m-l,j];
end

else

if j==l
A = [i,l;i,2;i-l,l;i+i,l];

elseif j==m

1 5 8 RANDOM PROCESS GENERATION

A = [i , m ; i , m - l ; i + l , m ; i - l , m] ;
e l s e

A = [i , j ; i , j - l ; i , j + l ; i + l , j ; i - l , j] ;
end

end

°/0ij2k.m
funct ion k =
k = (i - l)*m

= i j 2 k (i
+ j ;

>j ,m)

The conditional distributions property of Gaussian vectors (Property 4 on
Page 146) makes it easy to generate Gaussian Markov random fields in which some
of the values are specified in advance. For example, if X is decomposed as

x-(£)·
leading to a decomposition of the precision matrix as in (4.16), then, conditional
on X ? = x 9 , the vector X p is again Gaussian with (sparse) precision matrix Ap

and mean vector μρ | q that is solved from (4.17). Since this linear equation involves
sparse matrices, it can be solved efficiently. The left pane of Figure 5.3 depicts the
same Gaussian Markov random field as in Figure 5.2 but now conditioned upon the
values at (l,i),i = 1 , . . . ,m being equal to 20. The right pane depicts the mean
vector μ ρ ι 9 · The corresponding MATLAB program gp_sparsechol_cond.m can be
found on the Handbook website.

Figure 5.3 Conditional Gaussian Markov random field and its conditional expectation.

GAUSSIAN PROCESSES 159

5.1.1 Markovian Gaussian Processes

Let {Xt,t > 0} be a real-valued Markovian Gaussian process. Thus, in addition to
being Gaussian, the process also satisfies the Markov property "^" 628

{Xt+s \Xu,u^t)~ (Xt+s IXt) for all s , t > 0 .

If the mean (pt) and covariance function (Σ8 ι ί) are known, then it is straight-
forward to generate realizations (Χχ,..., Xn) = (Xt!, · · ·, Xtn) of the process at
any selection of times 0 ^ t\ < ... < tn by using the conditional distributions
property of the multivariate normal distribution; see Property 4 on Page 146. De-
note the expectation and variance of Xi = Xtt by ßi and σ,,ί, respectively, and
let σ ^ + ι = Cov(Xi,Xi+i), i = 1 , . . . , n — 1. Then, by the marginal distributions
property (Property 3 on Page 145),

ΧΛ ., ft ff &\ f σΜ σΜ+ι
\Xi+l) \\ßi+lj \&i,i+l &i+l,i+l

Hence, by the conditional distributions property we have

(Xi+i I Xi = x) ~ N (μί+1 + l'l+1 (x - ßi), ai+lii+i ^1^-
V °~i,i °~i,i

This leads to the following algorithm.

Algori thm 5.3 (Generat ing a Markovian Gaussian Process)

1. Draw Z ~ N(0,1) and set Χ\—μ\ + i /STJ Z.

2. For i = 1 , . . . , n — 1, draw Z ~ N(0,1) and set

v , Q~i+l,i (v -, / °"i,t + l y

σ»,ί y ft,»

The algorithm can be easily generalized to generate multidimensional Markovian
Gaussian processes. In particular, let {Xt , i > 0} be a d-dimensional Markovian
Gaussian process with expectation function μ (= Ε Χ ί ; t ^ 0, and covariance func-
tion Σ 8 ι ί = C o v (X s , X t) , s,t ^ 0. The following algorithm generates realizations
of the process at times 0 ^ t\ < ... < tn.

Algori thm 5.4 (Generat ing a Mult idimensional Markovian Gaussian
Process)

1. Draw Z ~ N(0, 7) and set X t l = Jit + BZ, where B is the (lower-triangular)

Cholesky square root matrix ο /Σ Ε 1 ι ί ι .

2. For k = l , . . . , n - 1,

(a) Compute the Cholesky square-root of

and denote it C.

(b) Draw Z ~ N(0,1) and set

Xtfc+i =Mt fc+1 +Sifc+i,tfc
Sifc,tfc (X i* ~P-tk) +CZ .

160 RANDOM PROCESS GENERATION

5.1.2 Stationary Gaussian Processes and the FFT

631 Let {Xt,t G M.} be a real-valued stationary Gaussian process. Thus, in addition to
having the Gaussian property, the expectation ~EXt and covariance Cov(Xt,Xt+s)
do not depend on t. Without loss of generality we will assume that E X t = 0 for all t.
We wish to generate realizations of the process at equidistant times ok, k = 0 , . . . , n
for some i5 > 0. Let Xk = Xsk, k = 0, ■.. ,n. Then {Xk} is a discrete-time zero-
mean stationary Gaussian process. Its covariance matrix, Σ say, takes the form of
a symmetric Toeplitz matrix:

(σο
c\

σ2

C l

Co

C l

C2

C l

co

C n - 2 C n _ 3 C n _ 4 ' · C 0 C i σ 2

C n - 1 C n _ 2 C n _ 3 . . . C l UQ U\

\ ση ση-ι ση-2 ■ · · c 2 c i σ0 J

Such a matrix can be uniquely embedded in a 2n x 2n symmetric circulant matrix
C, given by

c n - 2 c n _ i ση \
C n - 3 C n _ 2 C „ _ i

ση ση σ„

C

l co ci
Cl Co

cn~\ c�_2 •
cn cn_i

Cra^l C�

Cra-2 C n_i .

C2 C 3

\ Cl C 2 .

C�_l C n

� C�_2 C�_l

C 0 Cl

Cl C 0

C 2 Cl

c3 c2

� C n_i C�_2

Cn Cn-1

C�~l C�_2 .

Cn Cn-1

C 2 C3

Ci ó 2

Co Ci

Cl C 0

Cn-3 Cn-4 ■

Cn-2 Cn-3 ■

Cl Ci \

c3 ó2

� C n^i Cn

■ Cn-2 Cn-\

■ Cn-3 Cn-2

■ Cn-4 Cn-3

co ci

Cl C 0 /

Note that the upper-left (n + 1) x (n + 1) quadrant of C is Σ.
The fundamental relation between circulant matrices and the discrete Fourier

706 transform (see Section D.4) provides the opportunity to use the fast Fourier trans-
form (FFT) to generate realizations of the process {Xk}- The main condition that
has to be satisfied is that the matrix C has nonnegative eigenvalues — so that C
itself is a covariance matrix. A sufficient condition [11] is

• c 0 ^ c i ^ . . . > ση > 0,

• 2ak < fffc_i + ak+i for k = 1 ,2 , . . . , n - 1.

This implies that all variables are nonnegatively correlated. Another sufficient
condition is σ^ ^ 0 for k Φ 0; see [10].

Let c denote the first row of C and let F be the 2n x 2n discrete Fourier trans-
form matrix, with entries Fpq = exp(—2π ipq/(2n)), p, q = 0 , 1 , . . . , 2n — 1. As is
explained in Section D.4, the vector of eigenvalues λ of C is given by λ = Fc

GAUSSIAN PROCESSES 1 6 1

(= F c since the eigenvalues of a symmetric matrix are real), and the matrix
D = Fy'diag(\/2n) is a complex square root matrix of C, in the sense that

DD = C'. Moreover, the real and imaginary parts of the random vector X = DZ,
where Z is complex-valued normal, are dependent 2n-dimensional Gaussian vectors
with covariance matrix C. The first n components of these vectors therefore are
Gaussian with covariance matrix Σ. This leads to the following algorithm, which
employs the F F T to perform fast O(n lnn) evaluations of linear transformations of
the form b = F a .

Algori thm 5.5 (Generat ing a Zero-Mean Stat ionary Gaussian Process)

1. Compute the vector λ = Fc via the FFT.

2. Compute the vector rj with entries f]u = \ / λ ϊ / (2 Ϊ ϊ) .

3. Generate Z = Yx + i Y 2) where Y1, Y 2 ~ N(0,I) and dim(J) = In.

4- Compute the vector ζ with entries ζ^ = Ζ^,η^.

5. Compute Y = FQ via the FFT.

6. Let A be the vector of the first n + 1 components of V .

7. Output X = 9?(A).

■ EXAMPLE 5.2 (Stat ionary Simulation via Circulant Embedding)

The following MATLAB program provides an implementation for simulating a sta-
tionary, zero-mean Gaussian process on an equally spaced mesh of n + 1 = 104 + 1
points on [a, b] — [0,5], with σ^ = exp(—(b — a)k/N), k = 0 , 1 , . . . , N. A typical
realization is given in Figure 5.4.

'/oStatgaus.m
n=10"4; a=0; b=5;
t = l i n s p a c e (a , b , n + l) ; sigma=exp(-
c=[sigma s i g m a ((e n d - l) : - l : 2)] ' ;
lambda=f f t (c) ; "/.eigenvalues
e ta=sqrt (lambda. / (2*n)) ;

- (t - t (l))) ;

Z=randn(2*n , l)+sqrt (- l) .*randn(2*n , l) ;
Zeta= Z.*eta;
X2n=fft(Zeta);
A=X2n(l:(n+D);
X=real(A);
p l o t (t , X)

Vocomplex normal vec tors

1 6 2 RANDOM PROCESS GENERATION

Figure 5.4 Realization of a stationary Gaussian process.

5.2 MARKOV CHAINS

A Markov chain is a stochastic process {Xt,t 6 &} with a countable index set
J c l which satisfies the Markov property

(Xt+a\Xu,u^t)~(Xt+a\Xt).

"5" 628 Markov chains are discussed in more detail in Sections A.9.2 and A.10. We discuss
■®° 632 here only the main points pertinent to the simulation of such processes. We assume

throughout that the index set is 2Ï = { 0 , 1 , 2 , . . . } .
A direct consequence of the Markov property is that Markov chains can be

generated sequentially: XQ, XI, ..., as expressed in the following generic recipe.

Algor i thm 5.6 (Generat ing a Markov Chain)

1. Draw XQ from its distribution. Set t = 0.

2. Draw Xt+i from the conditional distribution of Xt+i given Xt.

3. Set t = t + 1 and repeat from Step 2.

The conditional distribution of -Xt+i given Xt can be specified in two common
ways as follows.

• The process {Xt, t = 0 ,1 , 2 , . . . } satisfies a recurrence relation

Xt+i =g{t,Xt,Ut), * = 0 , 1 , 2 . . . , (5.3)

MARKOV CHAINS 163

where g is an easily evaluated function and Ut is an easily generated random
variable whose distribution may depend on Xt and t.

• The conditional distribution of Xt+i given Xt is known and is easy to sample
from.

An important instance of the second case occurs when the Markov chain
{Xoi Xi, ■ ■ ■} has a discrete state space E and is time-homogeneous. Its distribution
is then completely specified by the distribution of Xo (the initial distribution) and
the matrix of one-step transition probabilities P = (pij), where

Pij=¥(Xt+1=j\Xt = i), i,j£E.

The conditional distribution of Xn+\ given Xn = i is therefore a discrete distri-
bution given by the i-th row of P. This leads to the following specification of
Algorithm 5.6.

Algori thm 5.7 (Generat ing a T ime-Homogeneous Markov Chain on a
Discrete State Space)

1. Draw XQ from the initial distribution. Set t = 0.

2. Draw Xt+i from the discrete distribution corresponding to the Xt-th row of
P.

3. Sett = t+l and go to Step 2.

■ EXAMPLE 5.3 (A Markov Chain Maze)

At time t = 0 a robot is placed in compartment 3 of the maze in Figure 5.5. At
each time t = 1,2, . . . the robot chooses one of the adjacent compartments with
equal probability. Let Xt be the robot's compartment at time t. Then {Xt} is a
time-homogeneous Markov chain with transition matrix P given below.

0 0 0 0 0 \
0 0 0 0 0

5 ° ° I °
0 \ 0 0 0

\ o \ \ o
0 1 0 0 0
0 \ 0 0 \
0 0 0 1 0 /

Figure 5.5 A maze and the corresponding transition matrix.

1

2

8

3

start

7

6

4

5

/o
1
2
0

1
3

0 0
0 0
0 0 0
0 0 i

\ 0 0 0

The following MATLAB program implements Algorithm 5.7. The first 100 values
of the process are given in Figure 5.6.

164 RANDOM PROCESS GENERATION

%maze.m
n = 101
a = 0.5; b = 1/3;
P = [0, 1, 0, 0, 0, 0,

0, b, 0, b, 0, 0,
0, 0, 0, b, 0, b,
0, 0, b, 0, b, 0,

x = zerosd ,n) ;
x(l)= 3;
for t=l:n-l

x(t+l) = min(find(
end
hold on
plot(0:n-l,x,’.’)
plot(0:n-l,x)
hold off

0, 0
b, 0
b, 0
0, b

a, 0, a, 0,
0, 0, a, 0,
0, 0, 0, 0,
0, 0, 0, 0,

cumsum(P(x(t),:))>

0, 0, 0,
a, 0, 0,

1, 0, 0,
0, 0, 1,

rand));

0;
0;
0;
0]

Figure 5.6 Realization of the maze process.

■ EXAMPLE 5.4 (R a n d o m Walk on an n-Dimensional Hypercube)

A typical example of a Markov chain that is specified by a recurrence relation such
as (5.3) is the random walk process. Here the recurrence is simply

Xt+i = Xt + Ut , t = 1 ,2 , . . . ,

where Ui,U~2, ■ ■ ■ is an iid sequence of random variables from some discrete or con-
tinuous distribution.

A similar recurrence can be used to generate a random walk on the set of vertices
of the unit n-dimensional hypercube — that is, the set of binary vectors of length
n. Denote by e i , . . . , e n the unit vectors in Kra. Starting with X 0 somewhere on

MARKOV CHAINS 165

the unit hypercube, define

Xt+i = X* + e j t mod 2 ,

where Ii,l2, ■ ■ ■ ~ D U (1 , . . . , n) . Note that e/ is simply a uniformly chosen unit
vector. Thus, the process performs a random walk on the unit hypercube, where
at each step the process jumps from one vertex to one of the n adjacent vertices
with equal probability. Since X<+i and X t only differ in position It, each state
transition can be generated by simply flipping the component of XÉ at a randomly
chosen index It- The following MATLAB program gives an implementation of the
generation algorithm for a 20-dimensional hypercube. In Figure 5.7 the progress
of the Markov chain X t = (Xtl,..., Xtn)

T, t = 0 , 1 , 2 , . . . , 200 can be observed
through its representation Yt = Σ™=1 2~l-Xti, t = 0 ,1 , 2 , . . . , 200 on the interval
[0,1].

'/«hypercube. m
N = 200; '/„ number of
n = 20; "/„dimension
x = z e r o s (N , n) ;
fo r t= l :N

I = c e i l (r a n d * n) ;
x (t + l , :) = x (t , :)
x (t + l , I) = ~x(t+ l

end
b = 0 . 5 . - [l : n] ;
y = x * b ' ;
hold on

samples

70choose random
; '/„copy
, 1) ; '/„flip

p l o t (0 : N , y , ' . ') , p l o t (0 : N , y)
hold off

b i t

p o s i t i o n

a t p o s i t i o n I

Figure 5.7 Realization of the process {Yt}-

166 RANDOM PROCESS GENERATION

628

5.3 MARKOV JUMP PROCESSES

A Markov j u m p process is a stochastic process {Xt,t € 3?} with a continu-
ous index set 2Ï Ç R and a discrete state space E, which satisfies the Markov
property

{Xt+a\Xu,u^t)~(Xt+s\Xt).

Markov jump processes are discussed in more detail in Section A . l l . We discuss
here only the main points pertinent to the simulation of such processes. We assume
throughout that the index set is & = [0, oo) and that the state space is E =
{ 1 , 2 , . . . } .

A time-homogeneous Markov jump process is often defined via its Q-matrix,

Q

f-Qi 912 913
921 _ 9 2 923

931 932 — 93

V ; ; :
where qij is the transit ion rate from i to j :

P(Xt+h =j\Xt = i)
<Hj l im ■

hlO h

. . . '

' ■ ■ /

ϊφί, i,jeE (5.4)

and qi is the holding rate in i:

q% = l im
h|0

1 t+h = i\Xt = i)
h

i€E .

A typical assumption is that 0 ^ q^ < oo and that qi = ^j^uQijj s o that all row
sums of Q are 0. Theorem A.11.1 specifies the behavior of such a Markov jump
process: if the process is in some state i at time t, it will remain there for an
additional Exp(Qj)-distributed amount of time. When the process leaves a state i,
it will jump to a state j with probability Kij = qij/qi, independent of the history
of the process. In particular, the jump states YQ, Y\,... form a Markov chain with
transition matrix K = {Κ^). Defining the holding times as Α\,Α·2,... and the
jump times as T\, T2, ■ ■ ■, the generation algorithm is as follows.

Algor i thm 5.8 (Generat ing a T ime-Homogeneous Markov J u m p Process)

1. Set TO = 0. Draw YQ from its distribution. Set XQ = YQ and n = 0.

2. Draw Αη+ι ~ Exp(q,yn).

3. Set Tn+i =Tn + An+\.

I Set Xt = Yn for Tn^t< Tn+1.

5. Draw Yn+\ from the distribution corresponding to the Yn-th row of K. Set
n = n + 1 and go to Step 2.

MARKOV JUMP PROCESSES 167

■ E X A M P L E 5.5 (R e p a i r a b l e S y s t e m)

Consider a reliability system with two unreliable machines and one repairman.
Both machines have exponentially distributed life and repair times. The failure
and repair rates are λ ι , μ ι and λ2,μ2 f° r machine 1 and machine 2, respectively.
The repairman can only work on one machine at a time, and if both have failed
the repair man keeps working on the machine that has failed first, while the other
machine remains idle. All life and repair times are independent of each other.

Because of the exponentiality and independence assumptions, the system can be
described via a Markov jump process with 5 states: 1 (both machines working), 2
(machine 2 working, machine 1 failed), 3 (machine 1 working, machine 2 failed),
4 (both failed, machine 1 failed first), 5 (both failed, machine 2 failed first). The
transition rate graph and Q-matrix are given in Figure 5.8.

/ - (λ ι + λ 2)
μι

m
0

V 0

λι
- (μ ι + λ 2)

0
0

β2

λ2

0
-(μ2 + λι)

M
0

0
λ2

0
- μ ι

0

0
0

λι
0

-μι

Q

Figure 5.8 Transition rate graph and Q-matrix of the repairable system.

The following MATLAB program implements Algorithm 5.8 for the case where
λι = 1,\? = 2, μι = 3, and μ$ = 4. A realization of the process on the interval
[0,5], starting in state 1, is given in Figure 5.9.

°/0mjprep.m
c l e a r a l l , e l f
laml= 1; lam2 = 2; mul= 3 ; mu2 = 4;
Q = [- (laml + lam2), l ami , lam2, 0, 0;

mul, -(mul+ lam2), 0, lam2, 0;
mu2, 0, -(mu2 + l a m l) , 0, l aml ;
0, 0, mul, -mul, 0 ;
0, mu2, 0, 0, -mu2];

q = - d i a g (Q) ;
K = d i a g (l . / q) * Q + e y e (5) ;
T = 5;
n=0;
t = 0; y = 1;
yy = [y] ; t t = [t] ;
while t < T

A = - l o g (r a n d) / q (y) ;
y = min(f ind(cumsum(K(y, :))> r a n d)) ;
t = t + A;
t t = [t t , t] ;

yy= [yy.y] ;

1 6 8 RANDOM PROCESS GENERATION

n= n+1;
end
for i=l:n

line([tt(i),tt(i+l)], [yy(i),yy(i)],’Linewidth’,3);
line([tt(i+l),tt(i+l)],[yy(i),yy(i+l)],’LineStyle’,

end
axis([0,T,1,5.1])

: ’) ;

Figure 5.9 Realization of the reliability Markov jump process.

The above algorithm is easily extended to the nonhomogeneous case, where the
rates in (5.4) depend on t. Let 0 ^ Qij(t) < oo denote the right-hand side of (5.4)
and let g»(i) = Σ ? ^ ί % (ί) · The process jumps from state to state according to
a time-nonhomogeneous Markov chain, while staying a certain amount of time in
each state. Suppose at some time Tn the process jumps to state Yn = i. Let An+i

denote the holding time in state i. We have

P(i -Tn< An+1 <t + h-Tn\ An+l >t-Tn) qi(t) = hm
h io h

F(t + h- Tn) - F(t - Tn) f{t - Tn)
I™ (1 - F(t - Tn))h 1-F(t- Tn)

= - ^ l n (l - F (i - T „)) ,

where F(t) denotes the cdf of An+i and f(t) its pdf. It follows that

F{t)=V(An+1 ^t) = l-e-ttn+to^ds , t^O. (5.5)

At time Tn+i = Tn + An+i the process jumps to state j with probability
qij(Tn+i)/qi(Tn+i), j € E. We thus have the following algorithm.

MARKOV JUMP PROCESSES 1 6 9

Algori thm 5.9 (Generat ing a N o n h o m o g e n e o u s Markov J u m p Process)

1. Set T0 = 0. Draw Yo from its distribution. Set Xç, — Yj and set n = 0.

2. Draw Αη+χ from the cdf given in (5.5).

3. Set Tn+x = Tn + An+i.

4. Set Xt = Yn for Tn^t< Tn+1.

5. Draw Y„+i from the distribution ^γηιΉ(Τη+ι)/ςγη(Τη+ι), y E E}. Set n =
n + 1 and repeat from Step 2.

■ EXAMPLE 5.6 (A N o n h o m o g e n e o u s Markov J u m p Process)

Consider a nonhomogeneous Markov jump process with three states, 1, 2, and 3,
with transition rates quit) = sin (i), q2i{t) = 1 + sin(i), q2z{t) = 1 — cos(i), t ^ 0,
and the other rates are 0. Note that state 3 is an absorbing state. From (5.5) the
holding time cdf for state 1 is given by

F i (i) = 1 - eï(-K-sM2Tn)+sin(2(t+Tnm ^ t > Q ^

with pdf

fx{t) = e i(-2t-sin(2Tn)+ein(2(t+T„))) ^ + ^ ^ ^-t/2 ^ 1 / 2 ; f ^ n (5 6)

Similarly, for state 2 the holding time cdf is

Fn(t) = 1 - e-2 i-cos(T«)+cos(i+T")^ s in(T™)+ s in(t+T») t > 0

and the pdf satisfies

f2(t) = β-2*-«»(Τ„)+οοβ(ί+Γ„)-«η(Τ„)+»η(ί+Τ„)(_ c o s (i + Tn) + s i n (i + fj + 2)

< 2 e " 2 ' e 2 V 5 (l + V 2 / 2) , i > 0 .

Holding times for states 1 and 2 can thus be generated via acceptance-rejection "3° 59
using an exponential proposal. The following MATLAB program implements Al-
gorithm 5.9 and simulates the nonhomogeneous Markov jump process until the
absorbing state is reached. See also Example 5.8 for an alternative holding time
generation method.

"/ononhommjp.m
q l2 = <3(t) s i n (t) ~ 2 ;
q21 = @(t) 1 + s i n (t) ;
q23 = @(t) 1 - c o s (t) ;
q2 = <3(t) q21(t) + q 2 3 (t) ;
f l = @(t,Tn) e x p (- t / 2 + (-s in(2*Tn) + s i n (2 * (t + T n))) / 4) * s i n (t + T n) ~ 2 ;
f2 = @(t,Tn) e x p (- 2 * t - c o s (T n) + c o s (t + T n) - s i n (T n) + s i n (t + T n)) * . . .

(2 - c o s (t + T n) + s i n (t + T n)) ;

1 7 0 RANDOM PROCESS GENERATION!

y=l; tn=0; n=0; yy=[y]; tt=[tn];
while y ~= 3

if y==l
accept=false;
while "accept

A = -log(rand)*2;
accept = rand < fl(A,tn)/exp(-(A-l)/2);

end
tn = tn + A; y = 2;

else °/(y==2
accept =false;
while "accept

A = -log(rand)/2;
accept=rand<f2(A,tn)/(exp(-2*(A-sqrt(2)))*(2+sqrt(2)));

end
tn = tn + A;
if rand < q21(tn)/q2(tn)

y =i;
else

y=3;
end

end
ÕÕ = [yy.y]; tt = [tt,tn]; n = n+l;

end
°/t for plotting
for i=l:n

line([tt(i),tt(i+l)],[yy(i),yy(i)],’Linewidth’,3);
line([tt(i+l),tt(i+l)],[yy(i),yy(i+D],’LineStyle’,’:’);

end

5.4 POISSON PROCESSES

Poisson processes are used to model random configurations of points in space and
time. Specifically, let E be some subset of Rd and let £ be the collection of Borel
sets o n £ . To any collection of random points {Tn} in E corresponds a random
counting measure N defined by

N(A) = ^I{TkeA}, Ae£,
k

counting the random number of points in A. Such a random counting measure is
said to be a Poisson random measure with mean measure μ if the following
properties hold:

1. N(A) ~ Ρο\(μ(Α)) for any set A £ 6, where μ(Α) denotes the mean measure
of A

2. For any disjoint sets A\,..., An £ £, the random variables Ν(Αχ),..., N(An)
are independent.

POISSON PROCESSES 1 7 1

In most practical cases the mean measure has a density, called the intensity or
rate function, λ(χ) ; so that

μ(Α) = [λ (χ) α χ .
JA

We will assume from now on that such a rate function exists.
Informally, both the collection {Tk} and the random measure N are referred to

as a Poisson process on E. The Poisson process is said to be homogeneous if
the rate function is constant. An important corollary of Properties 1 and 2 above
is:

3. Conditional upon N(A) = n, the n points in A are independent of each other
and have pdf / (x) = λ(~χ)/μ(Α).

This leads immediately to the following generic algorithm for generating a Poisson
process on E, assuming that μ{Ε) = JE λ(χ) dx < oo.

Algori thm 5.10 (Generat ing a General Poisson R a n d o m Measure)

1. Generate a Poisson random variable N ~ Ρο\(μ(Ε)).

2. Given N = n, draw X i , . . . , X „ ~ / , where / (x) is the mean density
λ(χ) /μ{Ε) , and return these as the points of the Poisson process.

■ EXAMPLE 5.7 (Convex Hull of a Poisson Process)

Figure 5.10 shows six realizations of the point sets and their convex hulls of a
homogeneous Poisson process on the unit square with rate 20. The MATLAB code
is given below. A particular object of interest could be the random volume of the
convex hull formed in this way.

Figure 5.10 Realizations of a homogeneous Poisson process with rate 20. For each case
the convex hull is also plotted.

172 RANDOM PROCESS GENERATION

"/ohompoich.m
for i=l:6

N = poissrnd(20);
x = rand(N,2);
k = convhull(x(:,1),x(:
°/«[K,v] = convhulln(x);
subplot(2,3,i);
plot(x(k,l).x(k.2),’r-’

end

,2));
%v is the area

,x(:,l),x(:,2),’.’)

For one-dimensional Poisson processes more direct generation algorithms can
be formulated, using the additional properties of such processes. Consider first a
homogeneous Poisson process with rate λ on M+ . Denote the points of the process
by 0 < T\, Γ2 , . . . , interpreted as arrival points of some sort, and let Ai = Ti — Ti_i
be the i-th interarrivai time, i = 1,2,. . . , setting To = 0. The interarrivai times
{Ai} are iid and Εχρ(λ) distributed; see, for example, [8, Pages 79-80]. We can
thus generate the points of the Poisson process on some interval [0, T] as follows.

Algor i thm 5.11 (One-Dimensional Homogeneous Poisson Process)

1. SetT0 = 0 andn= 1.

2. Generate [7 ~ U (0 , 1) .

3. SetTn = T n _ i -jlnU.

4- IfTn > T, stop; otherwise, set n = n + 1 and go to Step 2.

Notice that the corresponding Poisson counting process {Nt,t ^ 0}, defined
by Nt = N([0,i\), is a Markov jump process on {0 ,1 ,2 , . . . } with NQ = 0 and
transition rates ςΐ,ι+ι = λ, i = 0 , 1 , 2 , . . . and qij = 0 otherwise. The process
jumps at times T\, Τ2,... to states 1,2,. . . , staying an Exp(A)-distributed amount
of time in each state (including in state 0). In a similar way, the counting process
corresponding to a nonhomogeneous one-dimensional Poisson process on R + with
rate function λ(ί) , t ^ 0 is a nonhomogeneous Markov jump process with transition

rates q^i+i(t) = X(t), i = 0,1,2, Similar to (5.5), the tail probabilities of the
interarrivai times are

¥{An+i > t) = exp (- / X(s) ds j , t ^ 0 .

Therefore, a variety of generation methods are available to generate the interarrivai
times directly. However, it is often easier to construct the points indirectly, as
illustrated in Figure 5.11: First select a constant λ > s u p s < t X(s), assuming it exists.
Then, generate the points of a two-dimensional homogeneous Poisson process, M
say, on [0, t] x [0, X] with rate 1. Finally, project all points of M that lie below the
graph of X(s), s ^ t onto the t-axis.

POISSON PROCESSES 173

λ(ί)

A

Figure 5.11 Constructing a nonhomogeneous Poisson process.

Let S£t = {(s, y), 0 ^ s ^ t, y < A(s)}. For each t ^ 0, we have

P(jVt = 0) = F(M(âët) = 0) = exp (- j \{s) ds) ,

which shows that the stochastic process {Nt,t ^ 0} constructed in this way is a
nonhomogeneous Poisson counting process with rate function \(t),t ^ 0. If instead
all points of M are projected onto the i-axis, we obtain a homogeneous Poisson
counting process with rate λ. To obtain the nonhomogeneous process we accept
each point r with probability -χ· This leads to the following algorithm.

Algorithm 5.12 (One-Dimensional Nonhomogeneous Poisson Process)

1. Set t = 0 and n = 0.

2. Generate E/~U(0,1).

3. Sett = t - \\aU.

4- Ift> T, stop; otherwise, continue.

5. Generate V ~ U(0,1).

6. IfV^ - ^ , increase n by 1 and set Tn = t. Repeat from Step 2.

■ EXAMPLE 5.8 (A Nonhomogeneous Poisson Counting Process)

Figure 5.12 gives a typical realization of a nonhomogeneous Poisson counting pro-
cess {Nt,t > 0} with rate function λ(ί) = sin2(i) on the interval [0,50]. The
realization is obtained using the following MATLAB code, which implements Algo-
rithm 5.12. An alternative is to generate the interarrivai times via acceptance-
rejection, as in Example 5.6, with an Exp(l/2) proposal distribution and target
density / i in (5.6).

174 RANDOM PROCESS GENERATION

Zpois.m
T = 50;
t = 0; n = 0;
t t = [t] ;
while t < T

t = t - log(rand);
if (rand < sin(t)~2)

t t = [t t . t] ;
n = n+1;

end
end
nn = 0:n;
for i =l:n

l i n e ([t t (i) , t t (i + D] , [nn(i) ,nn(i)] ,
end

'Linewidth.' ,2) ;

Figure 5.12 A typical realization of a nonhomogeneous Poisson counting process with
rate function λ(ί) = sin2(i) .

5.4.1 Compound Poisson Process

Let N be a Poisson random measure on K+ x Rd with mean measure dt t'(dy).
We assume that λ = v(WLd) < oo. The process {Kt} with Kt = N([0,t] x Kd) is a
homogeneous Poisson process with rate λ. The process {Xt,i ^ 0} defined as

X t = / / yJV(du,dy), i ^ O
Jo JRd

is the compound Poisson process corresponding to the measure v. The process
can be thought of as a "batch" Poisson process, where arrivals occur according to

POISSON PROCESSES 175

a Poisson process with rate λ, and each arrival adds a batch of size Y ~ ^(dy)/A
to the total, so that we may also write

where Y i , Y 2 , . . . ~ v(ay)/\ are independent of Kt. The compound Poisson pro-
cess is an important example of a Levy process: a stochastic process with inde-
pendent and stationary increments; see Section 5.13. In this context the measure
v is called the Levy measure.

The characteristic function of X t can be found by conditioning on Kt :

E e i s X t = E E sT E S x Yi Kt E (E e i s Ύ)κ* = e x p (- A i (l - E e i s Y))

= exp (\t / (e i s T y - 1) v(dy)\ . (5.7)

Denoting the jump times of the compound Poisson process by {Tk} and the jump
sizes by {Yfc}, we have the following generation algorithm.

Algori thm 5.13 (Generat ing a C o m p o u n d Poisson Process (I))

1. Set k — 0, Tk = 0, and Xj"fe = 0.

2. Generate Ak ~ Εχρ(λ).

3. Generate Yfc ~ ι/(άγ)/\.

4- Set Tk+1 =Tk + Ak and X.n+1 = XT)c + Yfc.

5. Set k = k + 1 and repeat from Step 2.

■ EXAMPLE 5.9 (C o m p o u n d Poisson Process)

Consider a compound Poisson process with Levy measure

"(dl/) = |y | " 3 / 2 I{ i< |» |< e }dy. 2 / ^ K (5.8)

for some 0 < δ < ε ^ 00. We have λ = 4(5^x^2 — ε~1'2). The reader may verify
that if U ~ U(0,1) and R ~ Ber(l/2) are independent, then

(2R - 1)6

{l-U + υλβ/ε)'1

has distribution v/\, so generating random variables from this distribution is easy.
The MATLAB program below implements Algorithm 5.13. A typical realiza-

tion for (5 = 10~6 and ε = oc is given in the left-hand pane of Figure 5.13.
Note that this process can be seen as the superposition of independent com-
pound Poisson processes, having jump sizes \y\ restricted to disjoint intervals (δ, δ{),
(<Si)62), ■ ■ ■, (δη,ε). Note also that for small (<5i, #2) — as on the right pane of Fig-
ure 5.13 — the process has sample paths that start to resemble those of a Brownian
motion process. The path on the left-hand pane is thus not as smooth as it seems.

176 RANDOM PROCESS GENERATION

Figure 5.13 Typical realizations of the compound Poisson process with Levy measure
(5.8). On the left pane δ = 10 - 6 and ε = oo; on the right pane δ = 10_β and ε = 10 - 5 .

%compp.i
T = 5;
lambda

X = [];
while t

a =
t =
R =
U =

y =
x =
X =
tt

end
N = mim
hold on
for i=l

n
delta = 10~-6; eps
= 4*(l/sqrt(delta)
tt = [] ; t=0; x=
< T
-log(rand)/lambda
t + a;
(rand < 0.5);
rand;

Lion = inf;
- 1/sqrt(epsilon));

0;

(2*R-l)*delta/(l-U + sqrt(delta/epsilon)

x + y;
[×,÷];

= [tt,t];

el(tt);

:N-1
line([tt(i),tt(i+l)],

end
[X(i),X(i)],’Linewidth’

*U)"2;

,D;

An alternative procedure to generate compound Poisson processes is based on
Algorithm 5.10. It generates a compound Poisson process on a fixed interval [0,T].

Algor i thm 5.14 (Generat ing a C o m p o u n d Poisson Process (II))

1. Generate N ~ Ροΐ(λΤ).

2. Generate Uu ..., UN ~ U(0, T).

3. Generate Y i , , . . . , Yjv ~ v(ày)/\.

4. Return Xt = T,i:u^tYi> l e [° ' T] ·

WIENER PROCESS AND BROWNIAN MOTION 1 7 7

5.5 WIENER PROCESS AND BROWNIAN MOTION

A Wiener process is a stochastic process W — {Wt,t ^ 0} characterized by the
following properties.

1. Independent increments: W has independent increments; that is, for any
t\ < t2 < t3 < U

Wu-Wta and Wt2-Wtl

are independent random variables. In other words, Wt — Ws, t > s is inde-
pendent of the past history of {Wu, 0 < u ^ s}.

2. Gaussian stationarity: For all t ^ s ^ 0,

Wt-Ws~ N (0 , i - s) .

3. Continuity of paths: {Wt} has continuous paths, with Wo = 0.

The Wiener process plays a central role in probability and forms the basis of
many other stochastic processes. It can be viewed as a continuous version of a
random walk process. Two typical sample paths are depicted in Figure 5.14. US' 164

Remark 5.5.1 (Starting Posit ion) Although by definition the Wiener process
starts at position 0, it is useful to consider Wiener processes starting from some
arbitrary state x under a probability measure P x .

Figure 5.14 Two realizations of the Wiener process on the interval [0,1].

We list some of the many properties of the Wiener process W = {Wt,t ^ 0}.
For more details see [19, 25].

1. Gaussian process: VF is a Gaussian process with EWt = 0 and Cov(Ws, Wt) =
mm{s,t}. It is the only Gaussian process with continuous sample paths that
has these properties.

2. Infinite variation sample path: The sample paths of IF on [0, T] do not have
bounded variation; that is,

lim Y,\Wti-Wu_1\ = oo a.s. ,

178 RANDOM PROCESS GENERATION

where 0 = to < t\ < ■ ■ ■ < tn = t and linin^oo maxj{ij+ i — U} = 0. In
particular, almost surely each sample path has infinite "length" and is not
differentiable.

3. Quadratic variation: The quadratic variation of W on [0, t] is given by

n

lim J2(Wti+1-Wti)
2=t a.s. ,

i = l

where 0 = to < ti < ■ ■ · < tn = t and Ιίπΐη-,οο maxi{i t+ i — U} = 0. In-
deed, a Wiener process is the unique continuous martingale with WQ = 0 and
quadratic variation process t.

4. Martingales: Both {Wt,t ^ 0} and {W2 — t,t > 0} are martingales with
respect to their own filtration. Indeed, any real-valued continuous stochastic
process for which this holds must be a Wiener process. In addition, for any Θ
the process {e6Wt~e */2 , i ^ 0} is a martingale.

5. Donsker's invariance principle: Let Χχ,Χ2,... be iid random variables with
mean 0 and variance 1. Define XQ = 0 and

st = Yjxl + {t-[t\)xltl+u fzo,
i = 0

where [t\ is the largest integer smaller than or equal to t. Denote by S^ the
scaled process

£?<"> = % , t e [o , i] .

\Jn

Then, a s n - t o o

£<(«) A+w = {Wu t € [0 , l] } ,
where convergence in distribution is with respect to the space C[0,1] of con-
tinuous functions on [0,1] with supremum norm ||s|| = s u p 0 < É < 1 s(t). In
particular, for any continuous functional h on C[0,1] we have

lim E/i(S (n)) = Eh(W) .
n—*oo

6. Orthogonal series expansions: Let E — K + or [0, b] for some b > 0. Viewed
•®° 619 as a random element of L2(E), {Wt,t € E} has the series expansion

oo rt

Wt = y Zn I hn(x)ax

iid where ZQ, Ζχ,... ~ N(0,1) and {hn{x)}^=Q is any complete orthonormal basis
of L2(E) for which the above random series converges in L2-norm. Typical
examples on E = [0,1] are the Haar functions [13] and the basis of cosine
functions ho{x) = l,hn(x) = V2cos(nnx),n = 1,2, The latter gives the
sine series expansion:

„ v 2 v—> „ sin(wrf)
Wt = Z0t+ — V ^ „ — - , t e 0,1 .

π ^—' n
n = l

WIENER PROCESS AND BROWNIAN MOTION 1 7 9

Similarly, the orthonormal basis y / 2/6cos((l + 2η)πχ/(2b)), x E [0,&],n =
0 ,1 , 2 , . . . gives the Karhunen—Loève expansion:

7. Markov property: VF is a time-homogeneous strong Markov process. In par-
ticular, for any finite stopping time τ and for all t ^ 0,

(WT+t\Wu,u^T)~(WT+t\WT).

The transition density Pt{x, y) of W is given by the Gaussian kernel

pt(x,y) = -==e~i "~* , t > 0, x,y£R.
yZnt

8. Time-reversal: The time-reversed process {W s , s G [0,t]} defined by Ws =
Wt-s — Wt is a Wiener process on [0, t].

9. Reflection principle: Let rx be the first time that {Wt} hits x. Then {Wt,t ^
0} defined by

Wt = Wt I { i ^ } + (2x - Wt) I { t > r , }) t > 0

is a Wiener process.

10. Reciprocal time: If {Wt} is a Wiener process, then so is {Xt}, with Xt =
tWi/t, t > 0, Xo = 0.

11. Invariance under scaling: If {Wt} is a Wiener process, then so is {Xt}, with
Xt = Wat/\/ä, t ^ 0 for any a > 0.

12. Maximum and hitting time: Let M t = maxo^s<;t Ws be the maximum of the
Wiener process, and let rx — inf{i > 0 : Wt = x} be the hitting time of (or
first passage time to) x. For x ^ 0 the two are related via

{Aft >x} = {TX < t} . (5.10)

Consequently,

P(M t > i) = Ρ(τ χ < t) = Ρ(τ χ < t, Wt < x) + P(rx ^t,Wt> x)

= 2Ψ{τχ ^ t,Wt > x) = 2P(Wt > x) (5.11)

= 2 - 2 φ (- ^ =] , x ^ 0 . (5.12)

The second equality in (5.11) is due to the reflection principle, as from τχ

onwards the Wiener process and its reflection around x have the same distri-
bution. By differentiating (5.12) with respect to x it follows that

V 7rt

1 8 0 RANDOM PROCESS GENERATION

That is, Mt has a N(0,i) distribution truncated to [0, oc). Similarly, by
differentiating (5.12) with respect to t we find

y In

Thus, τχ ~ Stable(| , l ,0 ,a ; 2) Ξ lnvGamma(l/2,a;2/2). Finally, Mt and Wt

have joint cdf

ψ(Μί^χ,πί^ν) = φ (^ ^ \ - φ (^ \ , x^0,x^y, (5.13)

which can again be derived from the reflection principle, as

P(M t >x,Wt^y)= P(M t ^x,Wt>2x- y)

¥{Wt >2x-y) = l - $ ' 2 x ~ y

Vt

13. Exit time: Starting from x 6 (a, b), the expected time to exit the interval [a, b]
is (x — a)(b — x). Moreover, W exits through b rather than a with probability
(x — o)/(6 — a).

14. TTie arcsine law of zeros: The probability that {Wt} has no zeros in the time
interval (ίι , É2) is given by

V(Wt φ 0 for all t e (ί ι , ί 2)) = - arcsin J— .
π y *2

15. Laiu 0/ iterated logarithm: W satisfies almost surely,

hm sup = = 1 ,
t^oo V2i In In t

Wt lim inf . = — 1 .
*^°° \ / 2 i l n l n i

The basic generation algorithm below uses the Markovian and Gaussian proper-
ties of the Wiener process.

Algori thm 5.15 (Generat ing the Wiener Process)

1. Let 0 = to < t\ < Î2 < ■ ■ · < tn be the set of distinct times for which
simulation of the process is desired.

2. Generate Z\,..., Zn ~ N(0,1) and output

Wtk = Ύ] y/tk - tk-i Zj, fc = l , . . . , n .

The algorithm is exact, in that the {Wifc} are drawn exactly according to their
respective distributions. Nevertheless, the algorithm returns only a discrete skeleton

WIENER PROCESS AND BROWNIAN MOTION 1 8 1

of the true continuous process. To obtain a continuous path approximation to
the exact path of the Wiener process, one could use linear interpolation on the
points Wtl,..., Wtn- In other words, within each interval [tk-i,tk], k = Ι,.,.,η
approximate the continuous process {Ws,s G [ifc-i,tfc]} via:

Ws = 77 , se[tk-i,tk\.
(tk — tk-l)

It is possible to adaptively refine the path by using a Brownian bridge process,
see Section 5.7. An alternative to interpolation is to exploit the Karhunen-Loève
expansion (5.9) to approximately generate a Wiener process on the interval [0,6].

Algori thm 5.16 (Wiener Process Generat ion via Karhunen-Loève)

1. Generate Z\,..., Zn ~ N(0,1) for a sufficiently large n.

2. Output the approximation to the Wiener process at time t:

2^/2b . f{2k-l)nV ^'-Σ^Α-Ο - , . . . 26
fc=l v ' N

A process {Bt,t ^ 0} satisfying

Bt = ßt + aWt, ί ^ Ο ,

where {Wt} is a Wiener process, is called a Brownian mot ion with drift μ and
diffusion coefficient σ2 . It is called a s tandard Brownian mot ion if μ = 0 and
σ2 = 1 (Wiener process). Many properties of the Brownian motion follow directly
from those of the Wiener process. Some additional properties are given next.

1. Stochastic differential equation: The Brownian motion process is the solution
to the stochastic differential equation (see Section 5.6)

dBt= ßdt + aaWt, t > 0, B0 = 0 .

Since Bt — BQ ~ Ν(μ ί ,σ 2 ί) , the transition density pt(x,y) is given by the
Gaussian kernel

Pt(x,y) = - 7 = = j = e 5 ^ , i ^ O , x,yeR,
V2nazt

which satisfies the Kolmogorov backward equations (A.81) ^ 647

¥tPt(x,y) = ß~Pt(X,y) + ^^Pt(x,y)

and Kolmogorov forward equations (A.82)

d , , d . , σ2 d2 . .

öjVt{x,v) = -μ-^Μχ,ν) + Yo^P^'yî ■
Note that for a standard Brownian motion (Wiener process) this reduces to
Laplace's heat equation.

182 RANDOM PROCESS GENERATION

2. Distribution of hitting time: For μ > 0 and σ > 0, let τχ be the first time that
■a? 135 {Bt} hits z ^ 0. Then τχ ~ Wald(a;^ ,a ; 2 /^ 2) -

3. Exit probabilities: By Theorem A.13.5, the probability that the Brownian
motion process exits the interval [a, b] through &, starting from x € [a,b], is

Px(n < τβ)

2/j.a 2 μ ζ

e ? - e 7

e "î5" — e ^5" (5.14)

μ = 0,
b — a

and the corresponding exit time τ = ηιΐη{τα, η,} has expectation

2 μ α 2 μ χ

6 — a e ~ ? 5 ~ — e - ? 5 ' x — a

E x r = ^
μ e ^τ — e ^τ μ e <** — e

(6 — χ)(χ — a) μ = 0

4. Maximum: A consequence of (5.14) is that for μ < 0 and x ^ 0,

P° (max S i > x) = Ρ°(τ* < oo) = β
2μχ/σ2,

which shows that , for a Brownian motion starting at 0 and with negative drift
μ, the maximum has an Exp(—2μ/σ2) distribution.

The generation of a Brownian motion at times t\,..., tn follows directly from its
definition.

Algor i thm 5.17 (Generat ing Brownian Mot ion)

1. Generate outcomes Wtl,..., Wtn of a Wiener process at times ti,...,tn.

2. Return Bti = μ ί ί + crW^, i = l , . . . , n as the outcomes of the Brownian
motion at times t\,... ,tn.

Let {Wtli,t ^ 0}, i = l , . . . , n b e independent Wiener processes and let W t =
(W t ; i , . . . , Wtl„). The process { W 4 , i ^ 0} is called an n-dimensional Wiener
process.

■ EXAMPLE 5.10 (Three-Dimensional Wiener Process)

The following MATLAB program generates a realization of the three-dimensional
Wiener process at times 0,1/N,2/N,... ,1, for N = 104. Figure 5.15 shows a
typical realization.

STOCHASTIC DIFFERENTIAL EQUATIONS AND DIFFUSION PROCESSES 1 8 3

Figure 5.15 Three-dimensional Wiener process {Wt,0 ^ t ^ 1}. The arrow points at
the origin.

%wp3d. m
N=10~4; 1
X=cumsum(
p l o t 3 (X (:

'= i ; dt= =T/N %step
[0 , 0 , 0 ; r a n d n (N , 3) *
,1) ,X(,2) X (: , 3))

s i z e
s q r t (d t)] ,D;

5.6 STOCHASTIC DIFFERENTIAL EQUATIONS AND DIFFUSION
PROCESSES

A s tochas t i c differential e q u a t i o n (SDE) for a stochastic process {Xt,t > 0} is
an expression of the form

dXt = a{Xt, t) di + b{Xu t) dWt , (5.15)

where {Wt, t ^ 0} is a Wiener process and a(x, t) and b{x, t) are deterministic func-
tions. The coefficient (function) a is called the drift and b2 is called the diffusion
coefficient — some authors call b the diffusion coefficient. The resulting process
{Xt,t > 0} is referred to as an (Itô) diffusion.

Stochastic differential equations are based on the same principle as ordinary
differential equations, relating an unknown function to its derivatives, but with
the additional feature that part of the unknown function is driven by randomness.
Intuitively, (5.15) expresses that the infinitesimal change in dXt at time t is the
sum of an infinitesimal displacement a(Xt,t)dt and an infinitesimal noise term
b(Xt,t)dWt- The precise mathematical meaning of (5.15) is that the stochastic

1 8 4 RANDOM PROCESS GENERATION

process {Xt,t ^ 0} satisfies the integral equation

Xt = Xo + [a(Xs, s)ds+ f b(Xs, s) dWs , (5.16)
Jo Jo

where the last integral is an I tô integral. The definition of such integrals is
"®° 639 discussed in Section A.12, and the theory behind SDEs is discussed in more detail
■®° 643 in Section A. 13. In this section we focus on the computer generation of SDEs, after

recalling some of their main properties:

1. Markov process: The diffusion process {Xt} solving (5.15) is a Markov process
with continuous sample paths.

2. Time-homogeneous: When a and b do not depend on t explicitly (that is,
a(x, t) = 2(x), and b(x, t) = b(x)), the diffusion process is a time-homogeneous
Markov process. The corresponding SDE is then referred to as being homo-
geneous or autonomous .

"^ 644 3. Existence and uniqueness: Theorem A. 13.1 gives conditions on functions a
and b to guarantee the existence and uniqueness of strong solutions to (5.16)
on an interval [0, T]. Such solutions express Xt as a functional of the under-
lying Wiener process {Ws, s ^ i } and t.

4. Linear SDEs: When a and 6 are linear in x, the SDE is said to be linear. For
■®° 645 such SDEs the strong solution Xt can be given explicitly; see Example A. 12.

5. Kolmogorov equations: If (pt(x, y)) is the transition density of a diffusion that
satisfies a homogeneous SDE

dXt = a{Xt)dt + b(Xt)dWt,

"^ 646 then under mild conditions (see Section A. 13.1) the transition density satisfies
the Kolmogorov backward equations

d d i d 2

—Pt(x,y) = a{x)—pt(x,y) + -b2(x)-^pt(x,y) (5.17)

and the Kolmogorov forward equations (or Fokker-Planck equations)

d d Id2

—pt{x,y) = ~-^-(a(y)pt(x,y)) + --^(b2(y)pt(x,y)) . (5.18)

Multidimensional SDEs can be defined in a similar way as in (5.15). A stochastic
differential equation in Km is an expression of the form

d X t = a (X t) t) d t + B (X t) t) d W t , (5.19)

where { W t } is an n-dimensional Wiener process, a(x, t) is an m-dimensional vector
(the drift) and B(x, t) an m x n matrix, for each x G R m and t > 0. The m x m
matrix C = BBT is called the diffusion matrix. The resulting diffusion process
is Markov, and if a and B do not depend explicitly on t then the diffusion pro-
cess is time-homogeneous. Existence and uniqueness follow from exactly the same

■S" 646 conditions as in Theorem A. 13.2.

STOCHASTIC DIFFERENTIAL EQUATIONS AND DIFFUSION PROCESSES 1 8 5

We next discuss three general techniques for approximately simulating diffusion
processes, and one less general technique for exactly simulating certain diffusion
processes. The approximate methods discussed are the direct Euler method, Mil-
stein's method, and the implicit Euler method. The exact method is due to Beskos
and Roberts [6].

5.6.1 Euler's Method

Let {Xt,t ^ 0} be a diffusion process defined by the SDE

dXt = a{Xt,t)dt + b{Xt,t)dWt , i ^ O , (5.20)

where XQ has a known distribution.
The Euler or Euler—Maruyama method for solving SDEs is a simple general-

ization of Euler's method for solving ordinary differential equations. The idea is to
replace the SDE with the stochastic difference equation

Yk+1 = Yk + a(Yk, kh) h + b(Yk, kh)VhZk , (5.21)

where Z\,Zi,... ~iid N(0,1). For a small step size h the time series {Yk,k =
0 ,1 ,2 , . . . } approximates the process {Xt,t ^ 0}; that is, Yk « Xkh, k = 0 , 1 , 2 ,

Algori thm 5.18 (Euler's M e t h o d)

1. Generate Yo from the distribution of XQ. Set k = 0.

2. Draw Zk ~ N (0 , 1) .

3. Evaluate Yk+i from (5.21) as an approximation to Xkh-

4- Set k = k + 1 and go to Step 2.

Remark 5.6.1 (Interpolation) The Euler procedure only returns approxima-
tions to {Xt} at times that are multiples of the step size h. To obtain approxima-
tions for times s φ kh one could simply approximate Xt by Yk for t € [kh, (k + l)h),
or use the linear interpolation

k + 1 ~ i) Y k + (ji~k)Yk+u *e[kh'{k+1)h]■

Remark 5.6.2 (Non-Gauss ian Noise) Instead of using a Gaussian noise term
ξ = s/hZ ~ N(0,/i), one could use any random variable ξ for which

EC = 0, Ε ξ 2 = /ι, Ε ξ 3 = 0(/ ι2) , Ε ξ 4 = 0 (/ ι 2) .

A convenient choice is to take ξ = (2B — l)\/h, where B ~ Ber(l/2); that is, ¥(ξ =
y/h) = ψ(ξ = -y/h) = | . See [2, Page 296] and [18, Page 464] for implementations
of this idea.

1 8 6 RANDOM PROCESS GENERATION

For a multidimensional SDE of the form (5.19) the Euler method has the follow-
ing simple generalization.

Algorithm 5.19 (Multidimensional Euler Method)

1. Generate Yo from the distribution o/Xo- Set k = 0.

2. DrawZk ~N(0,7) .

3. Evaluate

Yfc+1 = Yfc + a(Yfc,kh) h + S(Yfc, kh) VhZk

as an approximation to Xfc .̂

4- Set k = k + 1 and go to Step 2.

■ EXAMPLE 5.11 (Simplified Duffing-Van der Pol Oscillator)

Consider the following two-dimensional SDE [18, Page 427]:

dXt = Ytàt,

dYt = (Xt (a - Xf) - Yt) at + aXt aWt.

The following MATLAB code generates the process with parameters a = 1 and
σ = 1/2 for t G [0,1000], using a step size h = 10~3 and starting at (—2,0); see
Figure 5.16. Note that the process oscillates between two modes.

’/�vdpol.m
alpha = 1 ; sigma = 0.5;
al = @(xl,x2,t) x2;
a2 = fi(xl,
bl = fi(xl,
b2 = @(xl,

n=10~6; h=
xl(l)=-2;
x2(l)=0;
for k=l:n

xl(k+l)

x2(k+l)

end
step = 10C
figure(1),
figure(2),

x2,t) xl*(alpha-
x2,t) 0 ;
x2,t) sigma*xl;

-xl~2)

10"(-3); t=h.*(0:l:n)

=xl(k)+al(xl(k)
bl(xl(k),x2(k)
=x2(k)+a2(xl(k)
b2(xl(k),x2(k)

x2(k)
t(k))
x2(k)
t(k))

-x2;

; xl=zeros(l,n+l); x2=xl;

,t(k))*h+ ...
*sqrt(h)*randn;
,t(k))*h+ ...
i<sqrt (h) *randn ;

; %plot each 100th value
plot(t(l:step:n;
plot(xl(l: step

,xl(l :step:n),’k-’)
n),x2(l:step:n),’k-’);

STOCHASTIC DIFFERENTIAL EQUATIONS AND DIFFUSION PROCESSES 1 8 7

Figure 5.16 A typical realization with parameters a = 1 and σ = 1/2, starting at
(-2,0).

5.6.2 Milstein's Method

By Itô's lemma in Rm, "3? 642

db{Xs, s) = bx{Xs, s) dXs + bs{Xs, s) ds + -bxx{Xs, s) d[Xs, Xs]

= bx{Xs,s){a{Xs,s)ds + b(Xs,s)dWs}

+ bs{Xs,s)ds + -bxx(Xt,s) b(Xs,s)2ds ,

where bx, bt, and bxx are the corresponding partial derivatives of b(x,t). It follows
that

/

t+h pt+h

a{Xu, u)du+ b(Xu, u) dWu

= Xt + ha(Xt,t) + b(Xut)(Wt+h - Wt) + 0{hVh)+

/

t-\-h pu

/ bx(Xs,s)b(Xs,s)dWsdWu,

where the last term can be written as

bx(Xt,t)b(Xt,t)^((Wt+h - Wtf -h) + 0(/i2) .

This suggests that we can replace the SDE (5.20) with the difference equation

Yk+i =Yk + a(Yk,kh) h + b(Yk, kh)VhZk + bx(Yk, kh) b(Yk, kh){Zl - 1)^ , (5.22)
v v '

additional term

where Ζχ,Ζ-ι,... ~ N(0,1). This is Milstein's method . The only difference with
the Euler method is the additional term involving the partial derivative of b(x71)
with respect to x. The approximation algorithm is now as follows.

1 8 8 RANDOM PROCESS GENERATION

Algor i thm 5.20 (Milstein's M e t h o d)

1. Generate YQ from the distribution of X$. Set k = 0.

2. Draw Zk~ N(0,1).

3. Evaluate Yk+\ from (5.22) as an approximation to Xkh-

4- Set k = k + 1 and go to Step 2.

5.6.3 Implicit Euler

In the implicit Euler method the difference equation (5.21) is replaced with

Yk+i =Yk+ a(Yk+l,kh)h + h{Yk, kh) VhZk . (5.23)

differs from Euler

Note that Yk now has to be solved from (5.23).

■ EXAMPLE 5.12 (Geometr ic Brownian Mot ion)

We illustrate the different SDE generation methods via the geometric Brownian
motion SDE (see Section 5.8):

άΧί=μΧίΜ + σΧίά\νί

for t e [Ο,Γ] and initial value XQ. The (strong) solution is given by

T 2 ,

Xt = X0 exp Π μ - y y + σ WA

for te [Ο,Γ] and the Wiener process {Wt,t ^ 0}.
In order to compare the Euler and Milstein schemes to the above exact solution,

we use the same random variables Vi, V2, ■ ■ ■ ~üd N(0, h) for a given step size h.
The exact solution at time nh can be written as

/ 2 n \

Xnh = Xo exp ί ί μ - -χ-Jnh + σ ^ Vk j .
^ fc=i '

Euler's method gives the approximation

Υ(ε)=Υ^Λΐ+μ}ι + σνη), η = 1 , 2 ,

Milstein's method gives the approximation

YJim)=Y±-l(l + Vh + aVn + C{VZ-hf) , n = l,2,....

For values not at the approximation points, we use linear interpolation.
To compare the different approximations we use several different step sizes,

h, 2h, Ah,..., while ensuring that the appropriate common random numbers are
used. In particular, if we use a step size h — mh, then for k = 1, 2 , . . . set

m

Vfc = 2jV(f c _i) m + j .

STOCHASTIC DIFFERENTIAL EQUATIONS AND DIFFUSION PROCESSES 1 8 9

The exact solution at time nh on the h time scale is generated as

Xnh = -^o exp ί (μ - y j n / i + σ ^ Î4 J = Xo exp ((μ - —)nh + σ] Γ VJ) ■
^ fc=l ' ^ j=l '

Euler's approximation on this time scale is computed as

l + Mft + a ^ V (n _ 1) m + j) ,
3 = 1 '

and similarly for the Milstein scheme.
Figure 5.17 depicts the output of the exact, Euler, and Milstein schemes for the

case μ = 2, σ = 1, and initial value XQ = 1. The different time steps used were
2 - 2 , 2 ~ 4 , 2 - 6 , and 2 - 8 . The corresponding MATLAB program gbm_comp.m can be
found on the Handbook website.

20

15

><10

5

0

Exact
Euler
Milstein

0

20

15

><10

5

0
0

0.5
t (h = 2~2)

0.5
t {h = 2~6)

Figure 5.17 Approximation schemes and exact solution for a geometric Brownian motion
trajectory.

5.6.4 Exact Methods

In contrast to approximate simulation schemes, for certain classes of SDEs ex-
act simulation algorithms are known [6]. Suppose that we have a general one-

1 9 0 RANDOM PROCESS GENERATION

dimensional autonomous SDE, given by

dYt = a(Yt)dt + b(Yt)dWt , 0 ^ t < T , Y0 = y0.

Such an SDE can be transformed into one with unit diffusion coefficient via a
Lampert i transform (see, for example, [15, Page 40]):

Xt = F(Yt) - F(yo),

where

and z is an arbitrary point in the state space of {Yt}- The transformed process
{Xt} satisfies the unit variance autonomous SDE

dXt = a{Xt) dt + dWt , 0 ^ t ^ T , X0 = 0 , (5.24)

where
a(F~\x + F[y0})) _ 1 ^ - 1 (F f }))

a[X) b(F-i(x + F[y0})) 2°[V + 'Wol))-

We now give conditions on the SDE (5.24) and its drift coefficient a under which
exact simulation can be performed [6].

Assumpt ions 5.6.1 (Exact Simulation)

■®° 643 1. There is a unique weak solution to (5.24) (see Section A.13).

2. The drift coefficient a is everywhere differentiable, with derivative a'.

3. There exist constants ki,k,2 G R such that k\ ^ ^ (a 2(M) +a'(u)) ^ &2 for
any n 6 l .

4- The following condition is satisfied:

F
J —c

exp j A{u) - —) du <

where A{u) = J0 a(y) dy for all t / e R .

In particular, Points 3 and 4 of Assumptions 5.6.1 hold if there exist constants
fcj, k'2 e M such that k[^ a(u) and a'(u) ^ k'2 for any M É I .

Before giving the exact algorithm, we briefly provide some intuition. The exact
algorithm is of acceptance-rejection type, where candidate paths over [0, T] are
drawn from a Brownian motion process, conditional on an exactly sampled endpoint
(that is, a Brownian bridge process, see Section 5.7). Unlike typical acceptance-
rejection algorithms, a complete realization of the candidate path is not needed
before deciding whether to accept or reject the sample path. Instead, if a particular
random skeleton of a candidate path is accepted or rejected, then further refinement
of the path does not change the decision. As a consequence, valid paths on any
time discretization can be drawn by first simulating an accepted random skeleton,
and subsequently filling in the gaps using Brownian bridge processes. The exact
algorithm that returns such a random skeleton is as follows [6].

STOCHASTIC DIFFERENTIAL EQUATIONS AND DIFFUSION PROCESSES 1 9 1

Algor i thm 5.21 (Exact Acceptance—Rejection Algor i thm for SDEs)
Given a fixed terminal time T satisfying 0 < T < l/(/c2 — ki), execute the following
steps.

1. Fix the endpoints of the candidate Brownian bridge {Yt,0 < t ^ T} by setting

YQ = 0 and Υχ = Z, where Z ~ h, with h(y) = exp (A(y) — %f)/c .

2. Draw U ~ U(0,1) and set k = 0.

3. Draw V ~ U(0,T) and W ~ U(0, l / T) independently, and setk = k + l.

4- Sample Yy from a Brownian bridge (see Algorithm 5.23), given the current
random skeleton.

5. Let φ{υ) = \ [a2{u) + a'(u)) - ki.

(a) If<j>{Yv) <W orU > \/k\, then:

i. If k is even, the random skeleton is rejected. Return to Step 1.

ii. If k is odd, the random skeleton is accepted. Proceed to Step 6.

(b) Otherwise, return to step 3.

6. Output the current random skeleton as a realization from (5.24).

If further refinement at some time s is required (for example, if we wish to simulate
on a regular time-mesh), simply proceed as in Step 4 and sample Ys from a Brownian
bridge given the current skeleton. To draw from the univariate distribution h, apply
the techniques discussed in Chapter 3. " ^ 43

5.6.5 Error and Accuracy

Most approaches for solving SDEs, such as Euler's or Milstein's methods, are not
exact (Algorithm 5.21 is an exception). For example, Yk in (5.21) is not exactly
distributed as Xkh- Moreover, even if the process {Xt} could be simulated exactly
at discrete time steps t\,..., tn, the path between those time steps would still need
to be approximated — for example, via linear interpolation.

The accuracy of approximating an m-dimensional stochastic process {Xt, t ^ 0}
with a simulated process {Xt , i ^ 0} can be measured using various error criteria.
If one is interested solely in generating from the distribution of X T accurately, then
one criterion is

S U P | E 5 (X T) - E 5 (X T) | , (5.25)

where ^ is a suitable class of smooth functions g : R™ —» R. If instead one is
interested in the accuracy of the entire path and X and X can be generated on the
same probability space, then natural error criteria are

II ~ II fT II ~ I I 2

E sup X t - X t and E / X t - X t d*. (5.26)
t€[0,T] " " Jo " "

We assume from now on that the process of interest, {X t , t ^ 0}, is approximated
by a discrete-time process ~Kh = { X j \ i = 0, h, 2h,...}, as is typically the case in

192 RANDOM PROCESS GENERATION

the SDE setting. Denote by fép the space of r times continuously differentiable
functions g : R m —> K that have polynomial growth as well as polynomial growth
of their partial derivatives of order up to and including r . The following definitions
are motivated by the criteria (5.25) and (5.26).

The process X h is said to converge weakly wi th order ß > 0 to X at time

T as h I 0 if for each g G ffp there exists a positive constant C, independent
of h, as well as a finite ho > 0, such that

| E 5 (X r) - Eg{X^)\ iC CbP for all h G (0, h0) .

The process X.h is said to converge strongly wi th order 7 > 0 to X at time
T if there exists a positive constant C, independent of h, as well as some ho > 0,
such that

E | | X T - X £ | | ^ Ch1 for all h G (0, ho) .

We now discuss the convergence order of Euler's and Milstein's method. Kloeden
and Platen [18] show that Euler's method converges strongly with order 7 = 1/2

■s* 646 under assumptions slightly stronger than those given in Theorem A.13.2. In par-
ticular, we have the following result from [18, Page 342].

T h e o r e m 5.6.1 (Weak Order Convergence of Euler's m e t h o d) Suppose
the coefficients of the diffusion SDE (5.19) satisfy the assumptions of Theorem
A. 13.2, and additionally:

E U X o - X g l l i C C h 1 / 2

and (for all x G R m and s, t G [0, T])

| |a(x,S) - a (x , t) | | + | |B(x , s) - B(x , i) | | < C{\ + | |x | |) | s - t\1'2 (5.27)

for some constant C. Then, Euler's method converges strongly with orders = 1 / 2 .

Kloeden and Platen [18, Page 473] show that if a and B are four times con-
tinuously differentiable in all components (spatial and temporal) and a number of

BS' 644 its derivatives satisfy the linear growth condition (A.73), then Euler's scheme con-
verges with weak order ß = 1. They note that if the coefficients are only Lipschitz
continuous (see (A.74)), then Euler's method still converges weakly, but with weak
order ß < 1.

Kloeden and Platen [18, Page 350] also show that if a and B, and a number of its
derivatives satisfy the linear growth condition (A.73), Lipschitz continuity (A.74),
and (5.27), then Milstein's method converges strongly with order 7 = 1. However,
the weak order convergence is still ß — 1 — the same as for Euler's method.

Finally, if we use interpolation between the points of the approximation, then
under some technical conditions (see [18, Pages 361-362]) a strongly convergent
scheme of order 7 at time T is also strongly convergent uniformly over the whole
path in the sense that

E sup | | X t - X £ | | ^Ch?.

BROWNIAN BRIDGE 193

5.7 BROWNIAN BRIDGE

The s tandard Brownian bridge process {Xt,t € [0,1]} is a stochastic process
whose distribution is that of the Wiener process on [0,1] conditioned upon X\ = 0.
In other words, the Wiener process is "tied-down" to be 0 at both time 0 and time
1. It plays a crucial role in the Kolmogorov-Smirnov test. The standard Brownian «®° 336
bridge process can be viewed as a nonhomogeneous diffusion process satisfying the
linear SDE

dXt = - γ ^ - dt + dWt, 0 < « < 1, Xo = 0 .

Using the general solution of linear SDEs in Example A. 12 and the fact that X\ = 0, "S" 645
we find that the strong solution is given by

Xt = I f—- dWa, 0 < ί ^ 1 . -ß1-
k 1 A realization of the process is given in Figure 5.18.

Figure 5.18 Two realizations of the standard Brownian bridge process on the interval
[0,1].

Some properties of the standard Brownian bridge process include:

1. If {Wt} is a Wiener process, then,

Xt = (l-t)W_L_, O ^ i s i l ,

defines a standard Brownian bridge (see the time-change property, Property
8 on Page 642), where Χλ = l i m t n (l - t) W_L_ = 0, almost surely. «^ 642

2. If {Wt} is a Wiener process, then,

Xt = Wt-tWi, 0 < i ^ l ,

defines a standard Brownian bridge.

3. A standard Brownian bridge is a Gaussian process with mean 0 and covariance
function Cov(Xs,Xt) = min{s, i} — st.

1 9 4 RANDOM PROCESS GENERATION

4. The random variable K = sup t er0 ji \Xt\, where {Xt} is the standard Brown-
ian bridge process, has the Kolmogorov distribution

¥(K < x) = 1 - 2 ^(-l)"-^"2«2-2
 = lalJ2 e-i2""1)2-2/^2).

n=l n=l

Generation of a sample path of the standard Brownian bridge is most easily
accomplished using Property 2 above.

Algor i thm 5.22 (Generat ing a Standard Brownian Bridge)

1. Let 0 = to < i i < <2 < · · · < ίη+ι = 1 be the set of distinct times for which
simulation of the process is desired.

2. Generate a Wiener process on t\,... ,tn using, for example, Algorithm 5.15.

3. Set XQ = 0 and X\ = 0, and output for each k = 1 , . . . , n:

xtk = wtk-tkwtn.

A general (nonstandard) Brownian bridge is a stochastic process {Xt,t G
[ίθι ίη+i]} whose distribution in that of the Wiener process on [to, in+i] conditioned
upon Xto = a and Xt„+1 = b. Generalizing Property 3, the Brownian bridge is a
Gaussian process with mean function

= a | (b-a){t-to)

(tn+l — to)

and covariance function

Cov(X s , Xt) = min{S - t0, t - t0} - (8 ~ f°)(f ~ *°) .
(tn+l ~ to)

A frequent use of the Brownian bridge is for adaptive refinement of the discrete-
time approximation of the Wiener process. Suppose that we have generated the
Wiener process at certain time instants and wish to generate the process for addi-
tional times. Specifically, suppose Wt0 = a and Wtn+1 = b and we wish to generate
the Wiener process for additional times ti,... ,tn in the interval [to,tn+l]·

Figure 5.19 Conditional on Wt0 — a and Wtn+1 = b, the point Wt,t e [to,tn+i] has a
normal distribution.

BROWNIAN BRIDGE 195

Conditional on Wt0 = a and Wt„+1 = b, the process {VFt,i G [to , t n + i]} is
a Brownian bridge; see Figure 5.19. In particular, the distribution of Wt with
t G [ίο,ίη+i] is normal with mean a + (b — a)(t — to)/(tn+i — to) and variance
(tn+i — t)(t — ίο) / (ί η +ι — to)· We can thus generate the process at any number
of additional points t± < ■ ■ ■ < t„ within the interval [to,tn+i] using the following
algorithm.

Algori thm 5.23 (Brownian Bridge Sampling B e t w e e n Wt0 and Wtn+1)

1. Generate Zu...,Zn ~ N(0,1).

2. For each k = 1 , . . . , n, output:

(tn+ l — tfc)(tfc — tfc-l) „
^k ·

tn+1 — tk-1

In principle we need not generate the intermediate points Wtl, · ■ ■, Wt„ in any
particular order as long as at each step we condition on the two closest time points
already sampled. The following code implements the algorithm given above.

function X=brownian_bridge(t,x_r
n=length(t)-2;X=nan(l,n+2);
X(l)=x_r; X(n+2)=x
for k=2:n+l

mu=X(k-l)+(x_s
sig2=(s-t(k))*

_s;s=t(n+2);

-X(k-l))*(t(k)-
(t(k)-t(k-l))/(

X(k)=mu+sqrt(sig2)*Z(k-l);
end

x_s,Z)

-t(k-l))/(s
’s-t(k-D);

-t(k--D);

Sampling using a Brownian bridge is useful in combination with stratification. " ^ 356
For example, in option pricing via simulation (see Chapter 15) one frequently has to *& 521
compute the expectation of payoffs that depend on the terminal value of the under-
lying asset price process. The variance in the estimate can be reduced by stratifying
the asset price process along the terminal value. In the following example we gen-
erate Brownian motion that is stratified along its terminal value. Stratification
for geometric Brownian motion — the most widely used asset price model — is
essentially the same, because it can be represented as a monotone transformation
of Brownian motion.

■ EXAMPLE 5.13 (Stratified Brownian Mot ion)

Suppose we wish to construct a Brownian motion path starting at 0 and finishing
at t = 1 in K distinct strata, as in Figure 5.20. For simplicity we assume μ = 0 and
σ = 1, so that the Brownian motion reduces to a Wiener process. The following
code generates K stratified values at f = 1 and then conditional on these values
samples Brownian paths in the interval [0,1] using Algorithm 5.23. Figure 5.20
depicts an outcome involving K = 7 strata.

Wt, Wt^+ib-Wt^) tfc — t fc-1

n+l tfc- +

1 9 6 RANDOM PROCESS GENERATION

°/0brownian_bridge_strat if i c a t i o n . m
K=7; '/»number of s t r a t a
n=10~3; °/,number of points for path construction
T=l; ’/, terminal time at which we stratify
t=[0:T/(n+l):T];
for i=l:K

U=(i-l+rand)/K; % stratified uniforms
x_s=sqrt(T)*norminv(U); % stratified terminal value
X=brownian_bridge(t,0,x_s,randn(n,1));
plot(t,X), hold all

end

Figure 5.20 Terminal stratification of the Wiener process at t
different paths which finish in the K = 7 strata depicted at t = 1.

1. There are seven

5.8 GEOMETRIC BROWNIAN MOTION

The geometric Brownian mot ion process satisfies the homogeneous linear SDE

aXt = ßXtat + aXtaWt

which has strong solution

The special case where μ = 0 and σ = 1 is called the s tochast ic exponent ia l of
the Wiener process {Wt}.

" ^ 524 An important application is the Black-Scholes equity model (see Example 15.1),
where Xt is the price of the equity at time t, and the interest rate at time t is
modeled as the sum of a fixed rate μ and an uncertain rate σ%, with r\t = dWt/dt
denoting Gaussian "white noise" and σ a volatility factor.

GEOMETRIC BROWNIAN MOTION 1 9 7

One usually takes XQ = 1. The expectation and variance of Xt are then given
by

EXt = βμί and Var(X t) = β2μ* UaH - l) .

The strong solution of the geometric Brownian motion suggests the following
exact simulation algorithm.

Algori thm 5.24 (Geometr ic Brownian Mot ion) Let 0 = to < h < ti <
■ ■ ■ < tn be the set of distinct times for which simulation of the process is desired.

1. Generate Z\ iid
i · · · ? ^n N(0 ,1)

2. Output

/ 2 ^ \
Xtk = X0 exp ί (μ - γ J*fe + σ Σ \A* _ *ΐ- ι Z%Y fe = 1 , . . . , η .

^ i= i '

The following code implements the algorithm.

7ogeometricbm.m
T=l; '/. f i n a l t ime
n=10000; h=T/(n
mu = 1; sigma =
W = s q r t (h) * [0,
x = xo*exp((mu
p l o t (t , x)
hold on

- 1) ; t= 0 :h :T ;
0 . 2 ; xo=l ; % pa ramete rs
c u m s u m (r a n d n (l , n - l))] ;

- s igma"2/2)* t + sigma*W)

p l o t (t , e x p (m u * t) , ' r ') ; '/.plot exac t mean func t i on

Figure 5.21 depicts two realizations of a geometric Brownian motion on the
interval [0,1], with parameters μ = 1 and σ = 0.2.

Figure 5.21 Two realizations of a geometric Brownian motion on the interval [0,1], with
parameters μ = 1 and σ = 0.2. The smooth line depicts the expectation function.

198 RANDOM PROCESS GENERATION

5.9 ORNSTEIN-UHLENBECK PROCESS

The Ornste in-Uhlenbeck process satisfies the SDE

dXt = θ{ν - Xt) at + σ dWt , (5.28)

with σ > 0, Θ > 0, and i / £ l . The (strong) solution of this linear SDE is given by

Xt = e-etX0 + i/(l - e~et) + ae~et [ees dWs .
Jo

It follows that {Xt} is a Gaussian process whenever XQ is Gaussian, with mean
function

EXt = e~et EX0 + v{l - e~9i)

and covariance function

Cow{Xs,Xt) = ^*-e{a+t) (e2 e m l"i e ' t> - l) .

In particular,
I _ - 2 9 t

V a x (X t) = ^ 2 i - ^ — ·

This shows that Xt converges in distribution to a N(f, σ2/(2θ)) random variable
as t —> oo. Moreover, when XQ has this limiting distribution, the Markov process

631 {Xt} is stationary and time-reversible. Another way to see this is to consider the
forward equation for the Ornstein-Uhlenbeck SDE. The forward equation gives the
following ODE for the stationary distribution (Θ > 0):

σ2 d2 d
,2 (*(V)) - Ί7. W" - VMV)) = ° ·

The solution is (see Section A.13.2 on Page 648)

which we recognize as the density of the N(^, σ2/(2θ)) distribution. Also, by the
time-change property (Property 8 on Page 642) we have that

Xt = e~etX0 + v{l - e~et) + σβ^ W (^ 1) , t>0

defines an Ornstein-Uhlenbeck process, where {W^(t) = Wt} is a Wiener process.
In particular, if Yt = Xt - i/(l - e~et), t > 0, then {Yt} is an Ornstein-Uhlenbeck
process with v = 0, Yo = Xo and exact solution:

Yt = e~etYo + aW i J , t>0. (5.29)

It follows that if we can simulate from an Ornstein-Uhlenbeck process with v = 0,
say {Yt}, then we can also simulate from an Ornstein-Uhlenbeck process, say {Xt},

ORNSTEIN-UHLENBECK PROCESS 199

with v ^ 0. The following exact algorithm simulates {Yt} exactly and then uses the
relation Xt = Yt + v(\ — e~et) to construct a sample path for {Xt}· The algorithm
simulates {Xt} exactly for any discretization, see [12].

Algori thm 5.25 (Generat ing an Ornstein—Uhlenbeck Process) Let 0 =
to < ti < Î2 < · · · < tn be the set of distinct times for which simulation of the
process is desired.

1. If XQ is random, draw XQ from its distribution. Set YQ = XQ.

2. For k = 1 ,2 , . . . , n compute:

h - e-28(tk-tk-i)

Yk = e - ^ - ' - ^ - r + σ\Γ Zk 2Θ

where Ζχ,..., Zn ~ N(0,1).

3. Output {XQ,Xtl,...,Xtn), where

Xtk=Yk + v{l-e-etk), k = l,...,n.

A realization of the process is given in Figure 5.22 using three different starting
conditions. The following code implements the algorithm.

°/,ou_timechange_ex. m
T=4; 7, f i n a l t ime
N=10"4; 7, number of steps

theta=2;nu=l;sig=0.2; % parameters
x=nan(N,l); x(l)=0; % initial point
h=T/(N-l); % step size
t=0:h:T; % time
°/, code the right-hand side of the updating formula
f=0(z,x)(exp(-theta*h)*x+sig*sqrt((l-exp(-2*h*theta))/(2*theta))*z)
for i=2:N

x(i)=f(randn,x(i-l));
end

x=x+nu*(l-exp(-theta*t’));
plot(t.x)

2 0 0 RANDOM PROCESS GENERATION

Figure 5.22 Three realizations of an Ornstein-Uhlenbeck process with parameters v =
1,0 = 2, and σ = 0.2, starting from 0,1, and 2. After about 2 time units all paths have
reached "stationarity" and fluctuate around the long-term mean v.

The Ornstein-Uhlenbeck process has applications in physics and finance. For
example, Xt is used to describe the velocity of a Brownian particle. The term v is
then usually taken to be 0, and the resulting SDE is said to be of Langevin type.
In finance, the process is used to describe price fluctuations around a mean price
v such that the process "reverts to the mean" — that is, when Xt > v the drift
is negative, and when Xt < v the drift is positive, so that at all times the process
tends to drift toward v.

5.10 REFLECTED BROWNIAN MOTION

Consider a Brownian motion process {Bt, t ^ 0} starting at bo ^ 0 with drift μ ^ 0
and diffusion coefficient σ2. Thus,

Bt = b0+ßt + aWt ,

where {Wt,t > 0} is a Wiener process (starting at 0). The process X = {Xt, t ^ 0}
defined by

Xt = Bt + max (o , - inf Bs\

is called a Brownian mot ion reflected at 0. We write X ~ RBM(bo, μ,σ2).
Some properties of the process include:

1. Scaling: If X ~ RBM(60, μ ,σ 2) , then X = σΧ, with X ~ RBM{b0/a,ß/a, 1).

2. Markov process: X is a time-homogeneous strong Markov process whose sam-
ple paths are almost surely continuous.

3. Marginal distribution: When bo = 0 the distribution of the random variable
Xt = Bt — infs^t Bs = mîs^t{Bt — Bs) is the same as that of s u p s < t Bs.

4. Stationarity: If μ < 0 then Xt converges in distribution to an Exp(—2μ/σ2)
distributed random variable as t —> oo. Moreover, if bo is chosen according to
this distribution, then the process is stationary.

REFLECTED BR0WNIAN MOTION 201

5. Absolute value: The reflected Wiener process W = RBM(0, 0,1) has the same
distribution as the absolute value process {|Wt|, t ^ 0} of the Wiener process.

For the purpose of generating a reflected Brownian motion we may assume by
Property 1 that σ = 1. We make this assumption from now on.

Since {Xt, t ^ 0} is a Markov process, we may generate it consecutively at times
i i < <2 < · - ■> starting from XQ = bo- In particular, to generate Xh, given XQ = bo,
we have

Xh = Bh + max { - inf B3, θ) = max{Ti + T2, T J ,

where 7\ = bo + ßh — (—Wh) and Γ2 = — bo — ßh — mia:g,hWs. The process
{(—Wt, — inf s^t Ws),t ^ 0} has the same distribution as {(Yt,Mt),t > 0}, where
Yt = —Wt and Mt = s u p s < t Ws. The joint distribution of (Yh,Mh) is given in
(5.13). In particular, Yh ~ N(0, h) and the conditional cdf of Mh given Yh = y is

F(m I y) = F{Mh ^m\Wh = y) = l - e ~^Γν) , m ^ y ,

with inverse

F-1(u\y) = ^{y+^-2h\n(l-u)) .

Thus, the random variable Xh can be generated in three steps:

1. Ora.wYh = N(0,ft).

2. Draw U ~ U(0,1) and set M h = | ΓΥ^ + ^y fe
2 - 2 / i I n u) .

3. Return Xh = maxjM^ — Yh, x + ßh — Yh}-

To generate the process at time 2h, we can use the same steps, where we first
generate a realization at time h of a reflected Brownian motion {Xt} with the same
drift, but starting at Xh, and then set X2/1 = Xh, and so on. This leads to the
following algorithm.

Algor i thm 5.26 (Generat ing a Reflected Brownian Mot ion)

1. Set k = 0 and generate XQ-

2. Draw Z ~ N(0,1) and set Y = Z\fh.

3. Draw U ~ U(0,1) and set

Y + s/Y2 - 2h\nU

4- Return X(k+\)h = max{M — Y,X^h + ßh — Y}. Set k = k + 1 and go to
Step 2.

It is interesting to note that when μ = 0, the random variable max{M — Y, x — Y}
in Step 4 of the algorithm has the same distribution as \x + Y\. Namely, for any

2 0 2 RANDOM PROCESS GENERATION

a > 0 we have P (m a x { M - Y , x-Y} > a) = F(M-Y > a, x-Y < a)+F(x-Y > a).
The first term satisfies

P (M -Y > a, x-Y <a)= P (M - F > a, x-Y < a)

= P(sup(W s -Wt)>a, x-Wt< a)

= P(sup Ws> a, x + Wt < a)

= F(Wt > a + x) = F(Y + x < -a) , (5.30)

where Wu = Wt-U — Wt, and where the fourth equation follows from the reflection
principle. Adding (5.30) to F(x - Y > a) = F{Y + x > a) gives F(\Y + x\ > a) as
had to be shown.

It follows that for a Wiener process {Wt,t > 0}, its reflected process, {Wt —
infs^t Ws, t ^ 0}, has the same distribution as its absolute value process {|VFS|> s ^
i). This is Property 5 above and suggests the following simpler algorithms for
generating the reflected Wiener process at times 0, h, 2h,....

Algori thm 5.27 (Generat ing the Reflected Wiener Process (I))

1. Setk = 0 and X0 = 0.

2. Draw Z ~ N(0,1) and set Y = Zy/h.

3. Return X(k+i)h = \Xkh + ^ | · Set k = k + 1 and go to Step 2.

Algor i thm 5.28 (Generat ing the Reflected Wiener Process (II))

1. Set k = 0, X0 = 0, and W0 = 0.

2. Draw Z ~ N(0,1) and set Y = Z\fh.

3. Let W(k+1)h = Wkh + Y.

4- Return X(u+i)h = |W(fc+i)/t|· Set k = k + 1 and go to Step 2.

■ EXAMPLE 5.14 (Simulating Reflected Brownian Mot ion)

The following MATLAB program provides an implementation for simulating a sample
path of a reflected Brownian motion {Xt, t ^ 0} at equally spaced times t\ = 0, t-i =
h, Î3 = 2 / i , . . . , starting at Xo = 3 and with drift μ = —1. A typical sample path is
depicted in Figure 5.23. In addition, a realization of the process {Xt — Bt,t ^ 0}
is plotted, where {Bt,t > 0} is the Brownian motion process. Notice that the

"3° 609 path of this process resembles the Cantor function: the path is continuous and
nondecreasing (it increases only at times when the reflected process hits 0) and its
derivative is almost surely 0.

y.rbm. m
n=10~4; h=10~(-3); t = h . * (0 : n) ; mu=-l;
X=zeros (l ,n+ l) ; M= X; B=X;
B(l) =3; X(l) = 3 ;

FRACTIONAL BROWNIAN MOTION 2 0 3

for k= 2:n+l
Y= sqrt(h)*randn; U=rand(l);
B(k) = B(k-l) + mu*h - Y;
M=(Y + sqrt(Y"2-2*h*log(U)))/2;
X(k)=max(M-Y, X(k-l)+h*mu-Y);

end
subplot(2,1,1)
plot(t,X,’k-’);
subplot(2,1,2)
plot(t,X-B,’k-’);

Figure 5.23 A realization of a reflected Brownian motion and the process Xt — Bt

max{0,-infssSt_Bs}.

5.11 FRACTIONAL BROWNIAN MOTION

An important property of the Wiener process (standard Brownian motion) is its
invariance under scaling; that is, {Wt, t ^ 0} has the same distribution as the scaled
process {Wct/^/c,t ^ 0}. More generally, a stochastic process Z = {Zt,t > 0} is
said to be self-similar with self-similarity or Hurst parameter H > 0, if for any
c > 0 the rescaled process {c~H Zct,t ^ 0} has the same distribution as Z.

Self-similar processes with s tat ionary increments (that is, for any t > s the
distribution of Zt — Zs only depends out — s) and ZQ = 0 have a specific covariance
structure. First, note that KZt = 0 for all t, because E Z m = m E Z i and, by
self-similarity, also E m ~ H Z m = ΚΖχ. Second, if we define σ2

isr 179

EZf, then
E(Zs-Zt)

2=E(Zs Z0f
On the other hand,

E {Z„ - Zt EZt+EZf - 2 E Z , Zt a2s2H

{s-t)

■ σ t

2if

2Cov(Z s ,Z i)

204 RANDOM PROCESS GENERATION

This leads to the following result.

T h e o r e m 5.11.1 (Self-Similar Process) Let {Zt,t ^ 0} be a self-similar pro-
cess with stationary increments, Hurst parameter H G (0,1), and ZQ = 0. Define
σ2 = EZ\. Then EZt = 0 for all t and

Cov{Zs,Zt) = ^a2(s2H -(t-s)2H + t2H), O^s^t. (5.31)

A continuous zero-mean Gaussian process {Zt} with ZQ = 0 and covariance
function (5.31) — which is therefore a self-similar process with Hurst parameter
H 6 (0,1) — is called a fractional Brownian motion. The time series {Xi} of
increments Xi = Zi — Zi-\, i = 1,2, . . . is called fractional Gaussian noise.

The fractional Gaussian noise time series is a discrete-time zero-mean Gaussian
process with variance Var(Xi) = σ 2 , ί = 1,2, . . . and covariance function

Cov(Xi, Xl+k) = i σ2 {(k + l)2H - 2k2H + (k- l)2H) , k = 1 ,2, . . .

631 and is therefore weakly stationary. It follows that for large k the autocorrelations
Qk = Cov(Xi, Xi+k)/o2 has the asymptotic behavior

Sk « k2{i-H) ■ (5 · 3 2)

In particular, for H 6 (1/2,1) the autocorrelations are positive and can decay arbi-
trarily slowly for H close to 1. Such a process is said to be long-range dependent .
For H — 1/2 the autocorrelations are zero — in fact the {Xi} are independent and
the process {Zt} is a Wiener process. For H G (0,1/2) the autocorrelations are
negative and increase to 0 at a rate faster than 1/fc. Figure 5.24 depicts the re-
alizations of a fractional Brownian motion for H = 0.9 and H = 0.3. Note that
the first path is much smoother than a Wiener path, whereas the second path is
rougher than a Wiener path.

Figure 5.24 Fractional Brownian motion realizations.

Fractional Gaussian noise is used in telecommunications, for example, to model
the number of arriving bytes during consecutive time intervals. Specifically, let

FRACTIONAL BROWNIAN MOTION 2 0 5

{Χι,Χϊ, ■ ■ ■} be fractional Gaussian noise with variance σ2 and Hurst parameter
H e (0,1). The stochastic process {ΥΊ,Υ^·- ·} with Yt = Xi + μ, where μ is
a fixed constant, is a 3-parameter model for the arrival process of traffic. The
corresponding cumulative process approximates the sum of a fractional Brownian
motion and a linear drift term (μί).

Fractional Brownian motion with σ = 1 can be represented in several ways as
the deterministic integral with respect to a Wiener process. For example, Norros
et al. [22] give the following representation:

Jo
dWs,

with

where

z(t,s) CH

a = H

t{t-s)\a

<& =
2HTŒ-H)

Τ(Η+±)Γ{2-2Η)

For H G (1/2,1) (or a > 0) another expression for z(t, s) is

z(t,s) CH asa I ua(u- s)a~lau = cH (t - s)a
 2 ί ι (- α, α; α + 1; 1 - -)

where 2^1 denotes the hypergeometric function. Other properties and references " ^ 716
may be found in [20].

Since the fractional Gaussian noise process is a stationary Gaussian process, one
can use Algorithm 5.5 to generate sample paths. " ^ 161

■ EXAMPLE 5.15 (Generat ing Fractional Gaussian Noise)

The following MATLAB code implements Algorithm 5.5 to generate a fractional
Gaussian noise process with Hurst parameter 0.9. The fractional Gaussian noise
process is scaled and then summed to obtain a realization of the fractional Brownian
motion on [0,1] at the grid points k/N, k = 0 , . . . , N. A typical realization is given
in Figure 5.24.

•/.fbm.m
N=2~15;
s i g = 1;
t= 0:N;
H = 0 . 9 ; %Hurst parameter
s igma(l) = s i g ;
fo r k=l:N

sigma(k+l) = 0.5*sig*((k+l)~(2*H) - 2*k~(2*H) + (k-l)*(2*H));
end
c=[sigma sigma((end-l):-l:2)]’;
lambda=f ft(c) ; "/«eigenvalues
eta=sqrt(lambda./(2*N));
Z=randn(2*N,l)+sqrt(-l).*randn(2*N,1); %complex normal vectors

2 0 6 RANDOM PROCESS GENERATION

Zeta= Z.*eta;
X2n=fft(Zeta) ;
A=X2n(l:(N+D);
X=real(A);
c = 1/N;
XI = c~H*cumsum(X) ; "/.scaled process
plot(t*c,Xl);

5.12 RANDOM FIELDS

A random field is a real-valued stochastic process Z = {Zt, t G ^} with a discrete
or continuous index set & Ç R™, n ^ 2, typically R2 or R3 . A random field is said to

• ^ 627 be Gaussian if it is a Gaussian process. A random field is said to be a Markovian
for a neighborhood structure J\f = {Nt} if

(Z t | Z B) s e ^ \ { t }) ~ (Zt\Zs, se Aft), (5-33)

where Λ/t is the set of neighbors of t . A random field Z is called a Gibbs random
field if its pdf is of the form

a-E(z)

/(.)=V ■
The corresponding distribution is called a Gibbs or Bo l t zmann distribution with
energy function E. The constant Z = J2z

e~E^ is called the part i t ion func-
tion.

■ EXAMPLE 5.16 (Brownian Sheet)

The Brownian sheet or Wiener sheet process on the unit square is the contin-
uous Gaussian random field {Wx<y, {x,y) G [0, l]2} with zero mean and covariance
function

Cav(WXuyi,WX2iy2) = m i n { z i , z 2 } min{yi,y2} ■

It can be viewed as a spatial version of the Wiener process and as a limiting version

(as n —> oo) of the lattice process {W>^ ,i = 0 , 1 , . . . ,n,j = 0 , 1 , . . . , n } , defined by

WQ- — W>Q = 0 and the partial sums

fc=l i = l

where {Zk,i} are independent N(0,1/n2) random variables. The process {W>n- } is
a Gaussian Markov random field with the natural (nearest neighbor) neighborhood
structure on the lattice. Other properties of the Brownian sheet include:

1. S elf-similarity: Wax,by ~ Va~b Wx%y.

2. Marginal process: For each fixed y, {WXiy/^/y, x ^ 0} is a Wiener process.

RANDOM FIELDS 207

3. Symmetry: WXtV has the same distribution as WVtX.

4. Stationary Gaussian increments: For each rectangle a x b = [01,02] x [61,62]
the increment Wi l i i2 — Wai^a2 has a N(0, (62 — &ι)(θ2 — ai)) distribution.

5. Independent increments: For each pair of nonoverlapping rectangles a x b and
c x d the increments Wbltb2 — W a i l 0 2 and W^^ — WCltC2 are independent.

A realization of the process is given in Figure 5.25.

Figure 5.25 Brownian sheet.

Markov random fields are usually defined on a graph Q = (V, E), where V is the
vertex set and E the edge set. The Markovian property (5.33) extends that of the
ordinary Markov chain (A.34). The Hammersley—Clifford theorem [5] links the l®° 233
"local" behavior of Markov random fields to the "global" behavior of Gibbs random
fields.

Theorem 5.12.1 (Hammersley—Clifford) A Markov random field satisfying
the positivity condition / (x) > 0 for all x is a Gibbs random field, and any Gibbs
random field is a Markov random field.

208 RANDOM PROCESS GENERATION

The Gibbs distribution for a Gaussian Markov random field on a graph Q with
\V| = n vertices, labeled 1 , . . . , n, is simply the Gaussian pdf

/(z) = (27r)-n/2Vd^t(Äye-^z-^TA(z-ii) ,

where Λ = (Aj,,·, i,j 6 { 1 , . . . , n}) is the precision matrix (the inverse of the covari-
ance matrix) and μ the mean vector. The elements of Λ can be interpreted in the
following way, see, for example, [23, Page 22]:

1. E[Zi | Zk, k φ i] = μί - — ^ Xik{xk ~ ßk) ,
" fceM

2. Wai(Zi\Zk,k^i) = ^ - ,

3. Corr iZi .Z; | Zk,j φ i,j) = - i ! L _ .

Gaussian Markov fields are widely used in image analysis. In practice, the matrix Λ
is a sparse matrix, which greatly speeds up the simulation and analysis of Gaussian
Markov fields. The simulation of Gaussian Markov random fields is illustrated in
Example 5.1.

5.13 LEVY PROCESSES

A d-dimensional Levy process is a stochastic process {Xt , i > 0} taking values in
Rd with the following properties:

1. Independent increments: For any t\ < t^ ^ £3 < £4 the random variables
X t 4 — X t 3 and X t 2 — X t l are independent.

2. Stationarity: The law of X.t+h — Xt does not depend on t.

3. Stochastic continuity: For all e > 0, limh_,oP(||Xt+/i — Xtll ^ ε) = 0.

4. Zero initial value: Xo = 0 almost surely.

A Levy process can be viewed as a continuous-time generalization of a random
walk process. Indeed the process observed at times 0 = io < i i < Î2 < · · · forms a
random walk,

n

X t n = ^ (X t l - X t l _ J , (5.34)
i= l

whose increments {X*; — X t ^ j } are independent. Moreover, if the times are chosen
at an equal distance from each other, U — ij_i = h, then the increments are iid,
and so the distribution of the Levy process is completely specified by its increment
distribution in any time interval of length h > 0, for example by the distribution

"S" 705 of X i . Moreover, the increment distributions are infinitely divisible.
Let {XÉ, t ^ 0} be a Levy process on Kd and let N([0, t] x A) denote the number

of jumps of X during the interval [0, t] whose size lies in A € Bd, excluding 0.

LEVY PROCESSES 209

Let ΔΧΕ denote the size of the jump of the process at time t. The measure v
defined by

v{A) = EJV([0, l] x i) = E [# { i € [0,1] : ΔΧ* φ 0, ΔΧ* 6 A}] , A e Bd

is called the Levy measure of X. The random measure N(dt, dx) is called the
jump measure.

Levy processes can be thought of as a combination of a diffusion process and
a jump process. Both Brownian motion (a pure diffusion process) and Poisson
processes (pure jump processes) are Levy processes. Levy processes represent a
tractable extension of Brownian motion to processes based on a far richer family of
distributions. All infinitely divisible distributions, including the gamma, Cauchy,
and stable distributions can serve as a basis for Levy processes. In addition, Levy
processes allow the modeling of discontinuous sample paths, whose properties match
those of empirical phenomena such as financial time series.

A main theorem on Levy processes is the following. A complete proof can be
found in [1, Pages 96-111] using a martingale-based approach.

Theorem 5.13.1 (Lévy-Itô Decomposition) Let {Xt,i ^ 0} be a Levy process
with Levy measure v. Then, the following properties hold.

1. /Krfmin{||x| |2 ,l}i/(dx)<oo.

2. The jump measure N(dt, dx) is a Poisson random measure on R+ x Hd with "^ 170
mean measure EiV(dt, dx) = dti/(dx).

3. X(can be decomposed as X t = B t + Y i + Z t , where {B t , i > 0} is a Brownian
motion process, {Yt,£ ^ 0} is the compound Poisson process "^ 174

Yt= f [x N(ds, dx), t St 0 ,
Jo J\W\>1 /o J||x||>i

and {Zt,t > 0} is the limit of a compensated compound Poisson process:

Zt = lim Zs
t with Z\ = \ \ x [N{ds, dx) - ds i/(dx)] . (5.35)

δί° Jo Λ<||χ||ζ1

4- The processes {B t}, {Yt}, and {Z*} are independent of each other, and so
are{Bt}, {Yt}, and{Zt}.

5. Convergence of Z\ to Zt is with probability 1 and uniform in t on any interval
[0,T].

Remark 5.13.1 (Truncation Level) The choice of 1 for the truncation level in
the above theorem is arbitrary. It may be changed to any positive number. How-
ever, this will change the drift of {B t}.

A second main result for Levy processes is a direct result of the Lévy-Itô decom-
position, the characteristic functions of a compound Poisson random vector (5.7),
and the moment generating function of a normal random vector (see Table 4.28). "^ 145

2 1 0 RANDOM PROCESS GENERATION

Theorem 5.13.2 (Levy—Khinchin Representat ion) The characteristic func-
tion of Xt satisfies E e l s X t = e**^, where the characteristic exponent i/>(s)
is of the form

- i s T E s + i s T 7 + / (e i s T x - l) i/(dx) + / (e i s T x - 1 - i s T x) i/(dx)
. 2 , ^||x||>l V ' J||x||^i V '

from B t „ v „ „

= - i s T S s + i s T
7 + y (e i s T x - 1 - i s T x I { | W K 1 }) !/(dx) (5.36)

/or some vector 7 and covariance matrix Σ . Λ follows that each Levy process is
characterized by a characteristic triplet (7 , Σ, v).

Let {Xi, t ^ 0} be a Levy process with characteristic triplet (7, Σ, v). Properties
of the process include:

705 1. Infinite divisibility: For each t the random variable Xt has an infinitely divis-
ible distribution with characteristic function given in Theorem 5.13.2. Con-
versely, for any infinitely divisible distribution Dist there is a Levy process
{Xt,f£ 0} for which Xx ~ Dist.

2. Finite versus infinite activity: If the Levy measure v{ßr) < 00 then almost
all paths of {Xt , i ^ 0} have a finite number of jumps on every compact
interval. Such a process is said to be a finite act ivi ty process. If i/(Rd) = 00
then almost all paths display infinite jumps on every compact interval. Such
a process is said to be an infinite act ivi ty Levy process.

3. Expectation and variance: For a Levy process on R with characteristic triplet
(7, σ2,ν), if Lxi>1 |x|2^(da;) < 00 (in particular, when the jump sizes are
bounded), then

EXt =t(j+ I xv(dx))

\ J\x\>l)

and

Var(X t) = t (σ2 + [x2v{àx) j .

4. Finite variation: A Levy process has finite variation if and only if its charac-
teristic triplet (7, Σ,ί^) satisfies

Σ = 0 and / ||x|| i/(dx) < 00 .

For a finite variation process the Lévy-Itô decomposition takes the form

X i = b i + / / x iV(ds ,dx) ,

where b = 7 - Γ. , , ^ x y (d x) .

LEVY PROCESSES 2 1 1

5. Linear transformation: Let {Xt} be a Levy process on R n with characteristic
triplet (7, Σ, v). If A is a m x n matrix, then Y t = AX.t defines a Levy process
on Rm with characteristic triplet (7, Σ, i7), where (see [9])

Ί = ΑΊ+ I y (l { |] y | K 1 } - I { y es l }) ?(dy) , Si = {Λχ : ||x|| < 1} ,

Σ = ΑΈΑΤ,

V{B) = v ({ x e K n : A x e B}) for all B e Bm .

6. Markov property: A Levy process is a strong Markov process; that is, for each
finite stopping time r and for all t ^ 0

(X r + i I X„ , U ΐξ T) ~ (Xr+t I X T) ·

Moreover, an m-dimensional Levy process with characteristic triplet (7, Σ, v)
has infinitesimal generator " ^ 646

i= l j = l

+ / / (x + y) - / (x) - ^ W (x) i { | | y | | < 1 } U d y) .

In the one-dimensional case with triple (7, σ2 , ν), this reduces to

Lf(x) = 7 / ' (x) + l-a2f"{x) + [(f{x + y)- f(x) - yf'(x) l{lyKl}) v{ày).

5.13.1 Increasing Levy Processes

A special class of one-dimensional Levy processes are increasing Levy processes.
They play an important role in practice, because they can be used to time-change
simpler Levy processes such as Brownian motion. Specifically, a Levy subordi-
nator {Xt,t > 0} is an almost surely increasing Levy process on R. For a Levy
subordinator, the following are equivalent (see, for example, [9, Page ;

1. Xt ^ 0 for some t > 0.

2. Xt ^ 0 for all t ^ 0.

3. Xt > Xs for all t > s.

4. The characteristic triplet {η,σ2,ν) of {Xt,t ^ 0} satisfies

(a) Positive jumps: v{(—00,0]) = 0.

(b) Positive drift: 7 — JQ x v(dx) ^ 0.

(c) Finite variation: σ2 = 0 and JQ x ν(άχ) < c».

212 RANDOM PROCESS GENERATION

■ EXAMPLE 5.17 (G a m m a Process)

Let N be a Poisson random measure on K + x R +

dtg(x)dx, where
with mean measure di v(dx)

9{x)
ae

-Xx
x^O

Define
l*t POO

Xt = / / xN(ds, dx), t > 0 .
Jo Jo

Then {Xt, t > 0} is, by construction, an increasing Levy process. The characteristic
exponent is

ψ{8)= j{j< 1) g(x) dx = α(\τιλ — 1η(λ — is)) ,

113 which shows that Χι ~ Gamma(a,A), hence the name g a m m a process. The
characteristic triplet is thus (7,0,1/), with 7 = J" g(x)dx = j (l — e _ A) . This is
an example of an infinite activity subordinator. Note that an increment Xt+S — Xt
has a Gamma(as,A) distribution. A typical realization on [0,1] with a = 10 and
λ = 1 is given in Figure 5.26.

20

15

5

0.
0 0.2 0.4 0.6

t
0.8

Figure 5.26 Gamma process realization for a = 3 and λ = 1.

with EiV(di, dx)

Let {St,t ^ 0} be a subordinator of the form

/>oo

St=ßt+ / N(ds,dx),
Jo

where ß ^ 0 and N is a Poisson random measure on R + x
dtg(dx) — thus, g(dx) is the Levy measure. Let {Xt,£ > 0} be a Levy process
on M.d with characteristic triplet (7, Σ, v) independent of {St,t ^ 0}. The process
{ Y t , i ^ 0 } defined by

Y t = X S t , i ^ 0

is called subordinate to the process {Χ*,ί ^ 0}. The following theorem summa-
rizes the main results for subordinated processes.

LEVY PROCESSES 213

Theorem 5.13.3 (Subordinat ion of a Levy Process)

1. The subordinate process {Yt,t ^ 0} is again a Levy process.

2. Let ζ and ψ be the characteristic exponents of {St} and {X*}, respectively.
The characteristic exponent of {Yt,t ^ 0} is given by

E e i r T Y t = E E ie i rTXs« \St] = E e S t , / , (r) = β^~ίψ^ .

3. The characteristic triplet (7, Σ,ζ7) of {Yt} is given by

Ί = βΊ+ I If xp,(dx))e(de),
JO \ i] | x |Kl /

POO

v{B) = β v{B) + ps(B)g(ds) for all B € Bd ,
Jo

where ps is the probability distribution of X s .

■ EXAMPLE 5.18 (Variance G a m m a Process)

Let {Bt} be a one-dimensional Brownian motion with drift μ and diffusion coeffi-
cient σ2 . Let {St} be a gamma process with a = X and independent of {Bt}. Con-
sider the subordinate process {Yt,t > 0}, where Yt = Bst. Prom Theorem 5.13.3
we see that {Yt,t ^ 0} has Levy measure

f°° 1
i/(dx) = dx / .—

Jo v 2π

-as . 1 (x — μβ) \ a e
exp 5 ds

dx a exp

0 ν /2πσ2β V 2 a2s ,

χ(μ — \Jμ2 + 2 a σ2 sgn(x))

a e v

dx I{x>o} - dx I{x<o} , (5-37)

where
^μ2 + 2ασ2 - μ , λ ^μ2 + 2ασ2 + μ

M = and λ2 = ~

We recognize (5.37) as the Levy measure belonging to the difference of two gamma
processes, with parameters (a, Aj), i = 1,2. Since both the linear drift term of
{Yt,t ^ 0} and the diffusion coefficient are 0, the process is completely determined
by its Levy measure. Therefore, we may write

Yt = x[1)~x\2\ i^o,

where {Xt , t ^ 0}, « = 1,2 are gamma processes with parameters (a, Aj), i — 1,2.
The subordinated process {Yt,t ^ 0} is thus a variance g a m m a process: a Levy
process that is the difference of two independent gamma processes.

2 1 4 RANDOM PROCESS GENERATION

5.13.2 Generating Levy Processes

We describe various approaches to simulating one-dimensional Levy processes
{Xt,t^0}.

5.13.2.1 Random Walk The simplest method to generate certain Levy processes
is based on the random walk property (5.34). For this approach to work, the
distribution of Xt needs to be known for all t.

Algor i thm 5.29 (Known Marginal Distr ibutions) Suppose Xt has a known
distribution Dist(i), t ^ 0. Generate a realization of the Levy process at times
0 = io < i i < . . . < tn as follows.

1. SetX0 = 0 andk = 1.

2. Draw A ~ Dist(ifc -tk-i)-

3. Set Xtk = Xtk^ + A.

4- If k — n then stop; otherwise, set k = k + 1 and return to Step 2.

An important class of Levy processes with known increment distributions is the
class of s table processes. Here the increments have a stable distribution. In
particular, if X\ ~ Stable(a,/3, μ,σ), then by (4.8) and the Lévy-Khinchin Theo-
rem 5.13.2 we have Xt ~ Stable(o,/3, μ ί , ί χ / α σ) . Hence,

Xt = ßt + t1/aaZ, where Z ~ Stable(a,/3,0,1) = Stable(a,/3) .

"S" 129 The generation of Stable(a,/3) random variables is discussed in Section 4.2.14.

■ EXAMPLE 5.19 (Cauchy Process)

Let {Xt} be a Levy process such that Χχ ~ Stable(l,0) = Cauchy(0,1) = t i . We
use Algorithm 5.29 and the ratio-of-normals method for Cauchy random variables

"S" 107 (see Section 4.2.2) to simulate this process at times tk = kA, for k = 0 , 1 , . . . , and
Δ = 10~5. Sample MATLAB code is given below, and a typical realization on [0,1] is
given in Figure 5.27. Note that the process is a pure jump process with occasional
very large increments.

%rpcauchy.m
Delta=10~(-5);
Z=randn(l,N+l)

N=10"5;
. /randnd

Z=Delta.*Z; Z(1)=0;
X=cumsum(Z);
plot(times,X)

times=

,N+1);

= (0 1:N) �Delta;

LEVY PROCESSES 2 1 5

0.1 r

-°-4~ v, , _
".w .

-0.5 -

n c l I I I I ! I I I I ^ J
' 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

Figure 5.27 Cauchy process realization.

Another example where the increment distributions are known is the gamma
process introduced in Example 5.17, where Xt ~ Gamma(o;i, X),t ^ 0. The gener-
ation of Gamma(a, λ) random variables is discussed in Section 4.2.6. The normal "3" 112
inverse Gaussian process provides another example; see Example 5.22.

5.13.2.2 Compound Poisson Process and Brownian Motion A second general ap-
proach to generate Levy processes is based on the Lévy-Itô decomposition in The-
orem 5.13.1. It is assumed that the characteristic triplet (^,σ2,ν) is known.

For simulation purposes, there are two broad cases, namely finite activity
(^(R) < oo) versus infinite activity (V(R) = oo). In the finite activity case, we
have the decomposition

Xt=^t + aWt+Yt, (5.38)

where {Wt} is a Wiener process and {Yt} is a compound Poisson process, with
Levy measure v; that is, with rate λ = i/(R) and jump-size distribution v/\. The
process is called a j u m p diffusion. It was introduced as a model for stock prices
by Merton [21]. Since {Wt} and {Yt} are independent of each other, simulation in
this case is achieved by melding appropriate algorithms for the Wiener process and
for compound Poisson processes; for example, Algorithms 5.15 and 5.14.

■ EXAMPLE 5.20 (Jump Diffusion)

The following MATLAB program generates a jump diffusion of the form (5.38) on the
interval [0,1]. The jump size distribution is N(a,&2). The specific parameters are
7 = 5, σ — 2, λ = 7, a = 0, and b = 1. A typical realization is given in Figure 5.28.

216 RANDOM PROCESS GENERATION

5r

4 -

3

2

* 1

0

-1

-2

-3,

^VvA

^Y/^/y/V"
jjj^

0.5
t

ΛΓΆ

Figure 5.28 A jump-diffusion process.

"/.jumpdif f .m
T = 1; nsteps = 10~3; h = T/nsteps;
lambda = 7 ; a = 0 ; b = l ; "/.Jump Parameters
gamma = 5; sigma = 2; °/,BM Parameters
"/.Generate BM increments
dX = gamma*h + sigma*sqrt(h)*randn(nsteps,1);
dX(l) = 0;
"/.Generate Jump Process Part
N = poissrnd(lambda);
jumpidx = zeros(N.l); jumpsize = zeros(N,1);
for i = 1:N

jumpidx(i) = ceil(rand*T*nsteps);
jumpsize (i) = a + b*randn;
dX(jumpidx(i)) = dX(jumpidx(i)) + jumpsize(i);

end
t = h:h:T;
X = cumsum(dX);
if N==0

plot(t,X,’k-’)
else

j idx=sort(jumpidx);
plot(t(l:jidx(l)-l),X(1:jidx(l)-l),’k-’).hold on
for k=2:N

plot(t(jidx(k-l):jidx(k)-l),X(jidx(k-l):jidx(k)-l),’k-’)
end
plot(t(jidx(N):nsteps),X(jidx(N):nsteps),’k-’).hold off

end

LEVY PROCESSES 217

Next, consider an infinite activity Levy process {Xt}, with characteristic triplet
(7, σ2,ν). Write the Lévy-Itô decomposition as

Xt=1t + aWt + Yt + Zt,

where {Yt} is a compound Poisson process with Levy measure v(dx) I{|x |>i}, {Wt}
is a Wiener process, and {Zt} is the limit of compensated compound Poisson pro-
cesses, as in (5.35). This suggests the following approximation to Xt:

Xs
t = 1 t + aWt+Yt + Z&

t (5.39)

/ xv{àx)] +aWt + Yt
s , (5.40)

where {Yt
s} is a compound Poisson process with Levy measure v(dx)l{\x\>gy. The

process {Xf} can thus be generated by separately generating the Wiener and the
compound Poisson parts.

The stochastic process {Rt,t ^ 0}, where

Rt = Xt- Xf = l imZ\ - Zt = lim(Zt
e - Zà

t)

is the error of the approximation at time t, is again a Levy process, with charac-
teristic triplet (0, 0, v(dx) IIM^S})· Since the jumps are bounded, the expectation
and variance of Rt are given by (see Property 3 on Page 210) ERt = 0 and

Vai(Rt) = t [x2 v(dx) d= t σ2 .
J\x\<S

This suggests that the error process {Rt} could be approximated by a zero-mean
Brownian motion process with diffusion coefficient σ | . The following theorem (see
[2, Page 334] and [3]) specifies a practical condition under which such an approxi-
mation is justified. A sufficient condition is that δ/σ$ —> 0 as δ —> 0.

Theorem 5.13.4 (Convergence of Error Process) Assume v has a density of
the form L(x)/\x\a+l for all small x, where BS' 704

lim ^ Ι = 1 for all t>0,
χ^ο L(x)

and 0 < a < 2. Then, {Rt/ag,t > 0} converges in distribution a Wiener process
{Wt,t ^ 0 } asô^O.

5.13.2.3 Subordination A third general approach to generate Levy processes is to
use subordination (see Section 5.13.1). In particular, suppose we wish to generate
a subordinated Levy process {Yt}, with Yt = Xst, where {Xt} is a Levy process
and {St} the subordinator. If both {Xt} and {St} are easy to generate at times
i i , Î 2 , . . . , tn (for example, via Algorithm 5.29), then generating {Yt} at those times
is straightforward.

2 1 8 RANDOM PROCESS GENERATION

Algor i thm 5.30 (Generat ion via Subordination) Suppose that realizations
of {Xt} and {St} at arbitrary times are easily obtained. Generate a realization of
{Yt = Xst} at times t\ < ... < tn as follows:

1. Draw Stl, i = 1 , . . . , n.

2. Draw Yu = Xst. ,i = l,...,n.

■ EXAMPLE 5.21 (Variance G a m m a Process Generat ion)

Let {Yt} be the variance gamma process in Example 5.18 defined by subordinating
a Brownian motion {Bt} (with drift μ and diffusion coefficient σ2) with a Gamma
process {St} (with parameters a and λ = a).

Such a process is easily simulated at time points ti,t2,...,t„ (with the convention
that io = 0 and XQ = 0), using the facts that St ~ Gamma(ai,ct) and Bt =
μί + σ\/ϊZ, Z ~ N(0,1). This gives the following algorithm.

Algor i thm 5.31 (Variance G a m m a Process Simulation)

1. Set k = 1.

2. Generate S ~ Gamma(a(ifc — ife-i), a) .

3. Generate Z ~ N(0,1).

4. Set Xtk = Xtk_x + σΖ-JS + μ S.

5. Set k = k + 1, and repeat from Step 2.

■ EXAMPLE 5.22 (Normal Inverse Gaussian Process)

Let St be the first time a Brownian motion with drift 7 > 0 and diffusion coefficient
K2 hits t > 0. The process {St,t ^ 0} is a subordinator, as it has independent
and stationary increments and is increasing. Moreover, St has a Wald(i/7,£2/re2)

"^ 135 (inverse Gaussian) distribution; see Section 4.2.17. The process is called an inverse
Gaussian process.

Let {Bt} be Brownian motion with drift μ and diffusion coefficient σ2 , indepen-
dent of {St,t ^ 0}. The subordinated process {Bst,t ^ 0} is called a normal
inverse Gaussian process (the qualifier "normal" indicates that the subordina-
tion is with respect to the Brownian motion). The procedure for generating such
processes is exactly the same as in Algorithm 5.31 except that Step 2 is replaced
by

2'. Generate S ~ Wald((tfc - tk-i)h, {tk - i f c_i)2 / 'κ2) .

"S1- 137 A simple method for generating Wald random variables is given in Algorithm 4.65.

TIME SERIES 219

5.14 TIME SERIES

A t ime series is an ordered sequence of random variables Xtl, Xt2,... measured
at successive times t\ < £2 < ·■·■ In other words, a time series is a stochastic
process with a discrete index set corresponding to an ordered set of time epochs.
In most cases the index set is chosen to be either N or Z, for example, by defining
Xi = Xti. Moreover, for many applications it is assumed that the process is
(weakly) stationary (see Section A.9.5), in which case it is convenient to take the ·®° 631
index set as Z. In that case the autocovariance function R{s) = Cov(Xt, Xt-s) is
symmetric: R(s) = R(—s).

Prom now on we consider time series {Xt,t € Z} , unless otherwise specified.
Below, {st} is a whi te noise process; that is, the {st} satisfy:

1. Zero mean: Ε ε (= 0

2. Constant variance: Var(£ t) = σ2 ,

3. Uncorrelated: Cov(et,et-k) = 0, k ^ 0 .

If, in addition, et ~ N(0, σ2) for all t, the process {ε*} is said to be Gaussian
white noise; in this case the {ε^} being uncorrelated is equivalent to them being
independent.

A time series {Xt,t € Z} is said to be a p-th order autoregressive process,
denoted AR(p), if

p

Χί = Σ akxt~k + et, (5.41)
fc=l

where 0 1 , . . . , ap are constant coefficients. The current observation in this time
series is thus a linear combination of the p previous values in the series, perturbed
by a zero-mean, constant variance error term that is independent of past errors and
the past terms in the time series.

If, further, the time series is assumed to be weakly stationary, then EXt = 0 for
all t, and the autocovariance function R(s) = Cov(Xt,Xt-s) satisfies the Y u l e -
Walker equations:

p

R(s) = Y2 a-k R{s - k) for all s = 1, 2 ,
fc=l

This is obtained from (5.41) by multiplying both sides by Xt-S and then taking ex-
pectations. Similarly, by multiplying both sides by Xt and then taking expectations
one finds

p

R(0) = ^ a f c Ä (f c) + σ2 ,
fc=l

from which, in combination with the Yule-Walker equations, R{s) can be found. A
necessary and sufficient condition for such a stationary version to exist is that the
roots of the polynomial q(z) = 1 — 5^fc=i akZk lie outside the unit circle [17, Page
63]. In particular, for the AR(1) process

2
R(S) = ~Λ 72 «I8' '

-L t i l

2 2 0 RANDOM PROCESS GENERATION

and the stationarity condition is equivalent to |αι| < 1.
If we can sample from the white-noise process {et}, and are given the initial p

values X~p+i,... ,XQ, a straightforward generation algorithm is the following.

Algor i thm 5.32 (Generat ing an Autoregress ive Process)

1. Sett = l.

2. Generate et-

3. Set Xt = et + J2k=i akXt-k-

4- Set t = t + 1 and repeat from Step 2.

If {et] is a Gaussian white noise process with Var(et) = σ2 , and we wish to
generate a number of autoregressive time series of length n, we can do so using a
band-Cholesky version of the multivariate normal sampling algorithm given in Sec-

" ^ 146 tion 4.3.3. The main work is in computing the Cholesky factorization of the preci-
sion matrix Λ = Σ " 1 = DDT, where Σ = Cov(X, X) , and X = (X1} X2, ■ ■ ■, Xn)

T■
Let p be the bandwidth of the matrix Λ; that is p = maxjj-fji — j \ : \j φ 0}.

In this case, the bandwidth is the order of our autoregressive process p.

Algor i thm 5.33 (Band-Cholesky Factorization)

For j = 1 to n:

1. Set r = min{j + p, n}

2. For I = j to r, set vi = Xij.

3. For k = max{l , j — p} to j — 1,

(a) Set i = min{fc +p,n}.

(b) For I = j to i, set vi = vi - D^kD^k.

4- For I = j to r, set Dij = vi/^/vJ.

This algorithm returns the Cholesky factorization of any positive definite matrix
Λ, and takes n(p2 + 3p) flops or in other words G(n) when p < n . Once the matrix
D is determined, a realization of X can be generated using the standard generation

"3° 146 algorithm for multivariate normal random variables (see Section 4.3.3).
A time series {Xt,t 6 Z} is said to be a q-th order moving average process,

denoted MA(g), if
1

Xt = YJbket-k+et, (5.42)
k=l

where b\,...,bq are constant coefficients. The MA(q) process is weakly stationary,
with KXt = 0 and autocovariance function R(s) = Gov(Xt, Xt-s) given by

R(s) = o~2^2hbt-s ,
fc=l

s = 1 , 2 , . . . , q, and R(0) = Var(X t) = σ2(1 + ^ L i bD- F o r N > 1the autocovari-
ance R(s) is zero. An algorithm for generating Χο,Χχ,... follows directly from the
definition.

TIME SERIES 221

Algori thm 5.34 (Generat ing a Moving Average T ime Series)

1. Define h = (bq,bq-i,... ,b\,l)T. Set t = 0 and generate ε _ ι , . . . , e _ ? .

2. Generate et and set et = (ε*-9, · · · ,£t)T■

3. SetXt =bTet.

4- Increase t by 1 and return to Step 2.

■ EXAMPLE 5.23 (Generat ing a Moving Average T ime Series)

The following MATLAB program generates realizations of a moving average time
series of order q = 20, with bi = i7i = 1 , . . . ,20 , and where the {st} are iid and
standard normal. A typical realization is given in Figure 5.29.

°/0movav. m
pars
b =

q =
N =
eps
for

end

3 = [1
[pars
numel
10*3;

: 2 0] ' ;

, i] ;
(p a r s) ;

= r a n d n (q + l , l) ;
i= l :N
X(i)
eps =

p lo t (X)

= b ' * e p s ;
[eps (2 :q+ l) , r a n d n] ;

Figure 5.29 A moving average time series.

222 RANDOM PROCESS GENERATION

A time series {Xt,t 6 Z} is said to be an autoregressive moving average
process of order (p,q), denoted ARMA(p, q) if

P 9

Xt = 2^/ °* Xt-i ~ Z-^i ^k £t~k ~*~ £* '
i = l fc=l

where α,χ,..., ap and b\,..., bq are constant coefficients.
A time series {Xt,t G Z} is said to be autoregressive integrated moving-

average process of order (p, q, d), denoted ARIMA(p, q, d) if the d-th backward
difference process {Yt}, defined by

yt = Vdxt = £(-i)fc(f)xt„fc
fc=0 ^ '

is an ARMA(p, q) process.
For example, the first backward difference is V-Xt = Xt — Xt-i, the second

backward difference is V 2 X t = V(VX t) = V(X t - Xt-i) = Xt - 2X t _i + Xt-2,
and so on.

Further Reading

A general reference on stochastic process generation is Asmussen and Glynn [2].
Kloeden and Platen [18] is the standard reference on the numerical simulation of
stochastic differential equations, giving convergence properties of the schemes, as
well as instructive numerical exercises. Burrage et al. [7] covers stability issues
for numerical schemes with variable step sizes. Cont and Tankov [9] provide an
accessible treatment of Levy processes, with a particular view to simulation and
applications in finance. Various sampling techniques for generating variance gamma
processes are proposed in [4]. Karatzas and Shreve [16] provide a comprehensive
account of Brownian motion, and Sato [24] and Applebaum [1] give encompassing
treatments on Levy processes. Çinlar [8] is a resource for Markov chains and jump
processes. A reference for Gaussian Markov random fields and their generation is
the monograph of Rue and Held [23]. A useful reference for time series analysis is
[17], and a reference for time series models is [14].

REFERENCES

1. D. Applebaum. Levy Processes and Stochastic Calculus. Cambridge University Press,
Cambridge, 2004.

2. S. Asmussen and P. W. Glynn. Stochastic Simulation: Algorithms and Analysis.
Springer-Verlag, New York, 2007.

3. S. Asmussen and J. Rosinski. Approximations of small jumps of Levy processes with
a view towards simulation. Journal of Applied Probability, 38(2):482-493, 2001.

4. T. Avramidis and P. L'Ecuyer. Efficient Monte Carlo and quasi-Monte Carlo option
pricing under the variance-gamma model. Management Science, 52(12):1930-1944,
2006.

REFERENCES 223

5. J. Besag. Spatial interaction and the statistical analysis of lattice systems. Journal
of the Royal Statistical Society, Series B, 36(2):192-236, 1974.

6. A. Beskos and G. 0 . Roberts . Exact simulation of diffusions. The Annals of Applied
Probability, 15(4):2422-2444, 2005.

7. K. Burrage, P. Burrage, and T. Mitsui. Numerical solutions of stochastic differential
equations implementation and stability issues. Journal of Computational and Applied

- Mathematics, 125(1&2):171-182, 2005.

8. E. Çinlar. Introduction to Stochastic Processes. Prentice Hall, Englewood Cliffs, 1975.

9. R. Cont and P. Tankov. Financial Modelling with Jump Processes. Chapman &
Hal l /CRC, Boca Raton, FL, 2004.

10. P. F . Craigmile. Simulating a class of stat ionary Gaussian processes using the Davies-
Harte algorithm, with application to long memory processes. Journal of Time Series
Analysis, 24(5):505-511, 2003.

11. C. R. Dietrich and G. N. Newsam. Fast and exact simulation of s tat ionary Gaussian
processes through circulant embedding of the covariance matrix. SIAM Journal on
Scientific Computing, 18(4):1088-1107, 1997.

12. D. T. Gillespie. Exact numerical simulation of the Ornstein-Uhlenbeck process and
its integral. Physical Review E, 54(2):2084-2091, 1996.

13. A. Haar. Zur Theorie der orthogonalen Funktionensysteme. Mathematische Annalen,
69(3):331-371, 1910.

14. A. C. Harvey. Time Series Models. Harvester Wheatsheaf, New York, second edition,
1993.

15. S. M. Iacus. Simulation and Inference for Stochastic Differential Equations: With R
Examples. Springer-Verlag, New York, 2008.

16. I. Karatzas and S. E. Shreve. Brownian Motion and Stochastic Calculus. Springer-
Verlag, Berlin, second edition, 2000.

17. M. Kendall and J. K. Ord. Time Series. Oxford University Press, Oxford, third
edition, 1990.

18. P. E. Kloeden and E. Platen. Numerical Solution of Stochastic Differential Equations.
Springer-Verlag, Berlin, 1999.

19. N. V. Krylov. Introduction to the Theory of Random Processes, volume 43 of Graduate
Studies in Mathematics. American Mathematical Society, Providence, RI, 2002.

20. B. B. Mandelbrot and J. W. van Ness. Fractional Brownian motions, fractional noises
and applications. SIAM Review, 10(4):422-437, 1968.

21. R. C. Merton. Option pricing when underlying stock returns are discontinuous. Jour-
nal of Financial Economics, 3(1-2):125-144, 1976.

22. I. Norros, E. Valkeila, and J. Virtamo. An elementary approach to a Girsanov formula
and other analytical results on fractional brownian motions. Bernoulli, 5(4):571-587,
1999.

23. H. Rue and L. Held. Gaussian Markov Random Fields: Theory and Applications.
Chapman & Hall, London, 2005.

24. K. Sato. Levy Processes and Infinitely Divisible Distributions. Cambridge University
Press, Cambridge, 1999.

25. D. W. Stroock and S. R. S. Varadhan. Multidimensional Diffusion Processes.
Springer-Verlag, New York, 2005.

This page intentionally left blank

CHAPTER 6

MARKOV CHAIN MONTE CARLO

Markov chain Monte Carlo (MCMC) is a generic method for approximate sam-
pling from an arbitrary distribution. The main idea is to generate a Markov chain
whose limiting distribution is equal to the desired distribution. In this chapter we
describe the most prominent MCMC algorithms:

1. The Metropolis-Hastings algorithm and in particular the independence sam-
pler and random walk sampler;

2. The Gibbs sampler, which is particularly useful in Bayesian analysis;

3. The hit-and-run sampler — commonly used in Bayesian settings with a highly
constrained parameter space and for generic rare-event simulation problems;

4. The shake-and-bake algorithm — a practical approach for generating points
uniformly distributed on the surface of a polytope;

5. Metropolis-Gibbs hybrids and the multiple-try Metropolis-Hastings method,
in which ideas from different MCMC algorithms are combined;

6. Auxiliary variable samplers such as the slice sampler and the Swendsen-Wang
algorithm;

7. The reversible-jump sampler, which has applications in Bayesian model selec-
tion.

For exact methods for random variable generation from commonly used distri-
butions, see Chapter 3. Applications of MCMC to optimization can be found in "^* 43
Chapter 12, in particular Section 12.3, which discusses simulated annealing. We "a" 449
refer to Appendix A. 10 for more details on Markov chains. MCMC algorithms "S" 632

Handbook of Monte Carlo Methods. By D. P. Kroese, T. Taimre, Z. I. Botev 225
Copyright © 2011 John Wiley & Sons, Inc.

2 2 6 MARKOV CHAIN MONTE CARLO

are frequently used in statistical data analysis, in particular in Bayesian statistics.
653 Elements of mathematical and Bayesian statistics are discussed in Appendix B.

Analysis of statistical data, for example, generated from an MCMC algorithm, is
301 discussed in Chapter 8.

6.1 METROPOLIS-HASTINGS ALGORITHM

The MCMC method originates from Metropolis et al. [54] and applies to the fol-
lowing setting. Suppose that we wish to generate samples from an arbitrary multi-
dimensional pdf

/ (x) = ^ , X € J ,

where p(x) is a known positive function and Z is a known or unknown normalizing
constant. Let q(y | x) be a proposal or instrumental density: a Markov transition
density describing how to go from state x to y. Similar to the acceptance-rejection

59 method, the Metropolis-Hastings algorithm is based on the following "trial-and-
error" strategy.

Algori thm 6.1 (Metropolis—Hastings Algori thm) To sample from a density
/ (x) known up to a normalizing constant, initialize with some Xo for which
/ (Xo) > 0. Then, for each t = 0 , 1 , 2 , . . . , T — 1 execute the following steps:

1. Given the current state X i ; generate Y ~ q{y | X t) .

2. Generate U ~ U(0,1) and deliver

X t + 1 = (Y «U«*<*>Y) (6.1)
I X t otherwise ,

where
f º · / / (y) <?(χ I y) ¸ ,„„,

^ ^ i T w O T ö ' 1 ; · (6·2)

The probability α(χ , y) is called the acceptance probability. Note that in (6.2)
we may replace / by p.

We thus obtain the so-called Metropolis—Hastings Markov chain,
Χ ο , Χ ι , . . . , Χ τ , with Χ χ approximately distributed according to / (x) for large
T. A single Metropolis-Hastings iteration is equivalent to generating a point from
the transition density «(xt+i | Xt), where

« (y | x) = a (x , y) 9 (y | x) + (l - a * (x)) (J x (y)) (6.3)

with a*(x) = / a (x , y) q{y | x) dy and <5x(y) denoting the Dirac delta function.
Since

/ (x) a (x , y) q(y | x) = / (y) a(y, x) q(x \ y)

and
(1 - a*(x)) J x (y) / (x) = (1 - a*(y)) 5y(x) / (y) ,

■®° 635 the transition density satisfies the detailed balance equation (A.48):

METROPOLIS-HASTINGS ALGORITHM 2 2 7

/ (x) K (y | x) = / (y) « (x | y) ,

from which it follows that / is the stationary pdf of the chain. In addition, if the
transition density q satisfies the conditions

P (a (X t , Y) < l | X t) > 0 ,

that is, the event {Xt+i = X*} has positive probability, and

q(y | x) > 0 for all x, y G 3C,

then / is the limiting pdf of the chain. As a consequence, to estimate an expecta-
tion E i / (X) , with X ~ / , one can use the following ergodic estimator (see also
Section 8.3): "®" 309

t=o
The original Metropolis algorithm [54] is suggested for symmetric proposal func-

tions; that is, for q>(y|x) = çr(x|y). Hastings [37] modified the original MCMC
algorithm to allow nonsymmetric proposal functions, hence the name Metropolis-
Hastings algorithm.

6.1.1 Independence Sampler

If the proposal function q(y | x) does not depend on x, that is, q(y | x) = g(y) for
some pdf g{y), then the acceptance probability is

«<->^"{i^4
and Algorithm 6.1 is referred to as the independence sampler. The independence
sampler is very similar to the acceptance—rejection method in Chapter 3. Just as
in that method, it is important that the proposal density g is close to the target
/ . Note, however, that in contrast to the acceptance-rejection method the inde-
pendence sampler produces dependent samples. In addition, if there is a constant
C such that

for all x, then the acceptance rate in (6.1) is at least 1/C whenever the chain is in
stationarity; namely,

P(U ^ a (X , Y)) = j j min j f
f^

 9J^ , l j / (x) 5 (y) d x d y

-//'{iëM«*>~

In contrast, the acceptance rate in Algorithm 3.9 (acceptance-rejection) using g as "®" 59
a proposal is always equal to 1/C.

2 2 8 MARKOV CHAIN MONTE CARLO

■ EXAMPLE 6.1 (Sampling on the Surface of an Ellipsoid)

Consider the problem of sampling uniformly on the surface of an ellipsoid defined by
"S· 77 the parametric equations (3.19); see Example 3.21. This problem requires that we

sample from the surface density ||ri X r2||/>S'(a, 6, c) of the ellipsoid, where S(a, b, c)
is the surface area of the ellipsoid and | |ri x r21| is defined in (3.20). In Example 3.21
we show that the efficiency (probability of acceptance) of the acceptance-rejection
approach is given by S(a, b, ο)/{Απτ2), where r = max{a, b, c}. It can be shown [61]
that

ab + ac + be S(a, b, c) Va2b2 + a2c2 + b2c2

3r2 ^ 4πτ·2 " r2\f?> '

Thus, the acceptance-rejection approach in Example 3.21 becomes inefficient when
one of the parameters o, b, c is significantly larger than the other two. For exam-
ple, for (a,b,c) = (400,2,1) the acceptance probability lies in the interval [0.0050,
0.0065]. An alternative is to use the independence sampler with x = (f i , - ^) 1 " and
proposal pdf ç(y | x) = g(y) = g{vi,V2) = 8Ϊη(υ2)/(4π). This gives the following
MATLAB implementation for generating an array d a t a with (approximate) surface
density corresponding to (a, b, c) = (400,2,1). An estimate of the acceptance prob-
ability Ψ(ΙΙ ^ α (Χ, Υ)) of the independence sampler is 0.88, which is significantly
larger than the acceptance probability of the acceptance-rejection Algorithm 3.9.

7,independence_sampler .m
clear all, a=400; b=2; c=l;
p=@(x)sqrt((b*c)~2*sin(x(2))."2.*cos

(a*c)~2*sin(x(2)).~2.*sin(x(l)).
(a*b)~2*cos(x(2)).~2);

"/«define alpha(x.y) in the Metropolis
alpha=@(x,y)min(l,sqrt (p(y) ./ p(

(x(l)).-2+...
"2+...

algorithm

x)));
X=ones(2,l)*pi/2; 7, initial starting point
T=10"4; data=nan(T,2); % preallocate
accept_prob=0;
for t=l:T

Y=[rand*2*pi;acos(l-2*rand)]; %
if rand<alpha(X,Y) 7, Metropolis

memory

make proposal
criterion

X=Y; accept_prob=accept_prob+l ;

end
data(t,:)=X’;

end
accept_prob=accept_prob/T
K=20; x=data(:,1); ell=mean(x);
for k=0:K

R(k+1)= (x(l:end-k)-ell)’*(x(k+l
R(k+l)=R(k+l)/(length(x)-k-l);

end
plot([0:K],R)

: end)-ell);

"a" 309 Figure 6.1 shows the estimated autocovariance function (k = 0 , . . . , K, K < T)

METROPOLIS-HASTINGS ALGORITHM 2 2 9

T-k

t = l i = l

based on the simulated values {.Xt,i} = {V^i} in the code above. The covariance
function decays fast and is negligible after the first 10 lags. Failure to detect such
fast decay may indicate that the independence sampler converges slowly to its sta-
tionary distribution (that is, it is not mixing well, see Section 6.4). In practice,
we can consider the th inned chain X 0 , X t » , X 2 i « , . . . , constructed from the out-
put Xo, X i , X2, ■ · · , of the independence sampler so that Xo, Xt», Χ2**, · · · , are
approximately iid random variables. A possible choice for t* is 10, because R{k) is
negligible after k ^ 10.

Figure 6.1 The estimated autocovariance function for the {Xt,i} for lags k up to 20.

As an additional assessment of the performance of the sampler Figure 6.2 shows
the first 104 points generated by the sampler on the surface of the ellipsoid. A
visual inspection suggests that the points cover the whole surface uniformly.

Figure 6.2 The first 104 points (generated by the independence sampler) on the surface
of the ellipsoid. The estimated acceptance probability of the independence sampler is 0.88.

2 3 0 MARKOV CHAIN MONTE CARLO

An assessment of the quality of the approximation obtained from any MCMC
509 sampler is in general a difficult task, see Section 6.4 and Section 14.7. For the

independence sampler it is possible to compute an upper bound on the total vari-
ation distance between the sampling pdf and the target pdf. The tota l variation
distance between two probability measures μ and v is defined as

sup \μ{Α) - i^{A)\
A

for all sets A in the corresponding σ-algebra. Mengersen and Tweedie [52] show
that the convergence of the independence sampler is geometric, that is,

sup
A

/"My|x)-/(y))dy
JA

^ 2 (1 - 1

where nt is the i-step transition density of the independence sampler, when there
exists an enveloping constant C such that / (x) = Z~lp{-x) ^ Cg{~x) for all x.

While this bound rigorously quantifies the convergence of the independence sam-
pler, the bound is typically loose and cannot be used to adequately assess the
convergence of the chain. For instance, for the surface density of the ellipsoid in
Example 6.1 we have

l k i x r 2 | | r2sin(t;2) 4πΓ2

<-^7—r—T = ~o?—nS^i.^J. r = max{a,6,c} . S(a,b,c) S(a,b,c) S(a,b,c)'

Hence, the constant C = . .3r ., ^ gf"T N is such that the total variation distance
' ab-\-ac-\-oc -̂ o(a,o,c)

between the transition density of the independence sampler and the target pdf is
less than 2 (l — ^) . Therefore, to guarantee a discrepancy smaller than 10%, we
need to run the independence sampler for t ^ ("— ln(10)/ ln(l — 1/C)] steps, which
is larger than the expected number of trials before a success in the acceptance-
rejection method. Figure 6.2 and the estimated autocovariance plot on Figure 6.1,
however, suggest that it is not necessary to run the chain for so long to achieve
satisfactory performance.

6.1.2 Random Walk Sampler

If the proposal is symmetric, that is, q(y | x) = ç(x | y) , then the acceptance prob-
ability (6.2) is

■{$·'}■ a (x , y) = min< —r—, 1 L (6.5)

and Algorithm 6.1 is referred to as the random walk sampler. An example of
a random walk sampler is when Y = X t + σΖ in Step 1 of Algorithm 6.1, where
Z is typically generated from some spherically symmetrical distribution (in the
continuous case), such as N(0, /) .

■®° 643 Consider the Langevin diffusion defined by the SDE

d X t = i v i n / (X t) d i + d W É ,

where V l n / (X t) denotes the gradient of l n / (x) evaluated at X^. The Langevin
diffusion has stationary pdf / , and is nonexplosive and reversible. Suppose the

METROPOLIS-HASTINGS ALGORITHM 2 3 1

proposal state Y in Step 1 of Algorithm 6.1 corresponds to the Euler discretization
of the Langevin SDE for some step size h: *& 185

Y = X t + ^ V l n / (X t) + v/feZ, Z ~ N (0 , J) .

This gives a more sophisticated random walk sampler with a "drift" term V In / (x t) .
Such random walk samplers are collectively known as Langevin M e t r o p o l i s -
Hast ings algorithms [70]. Note that the gradient can be approximated numerically
via finite differences and does not require knowledge of the normalizing constant of i®° 423
/ (x) . In some cases the Langevin Metropolis-Hastings algorithms are more efficient
than the simple random walk algorithms [66, 70]. For a discussion of the optimal
tuning of Langevin Metropolis-Hastings algorithms see [58].

■ EXAMPLE 6.2 (Bayesian Analys is of the Logit Model)

Consider the Bayesian analysis of the logistic regression model or logit model . This
is a commonly used generalized linear model [25], where binary data yi,...,yn (the
responses) are assumed to be conditionally independent realizations from Ber(pi)
given pi,-..,Pn (that is, yi\pi ~ Ber(pj), i = 1 , . . . , n, independently), with

1
Pi = -, , _xTfl . » = l , . . . , n .

1 + e xi &

Here, x^ = (xn,Xi2, · · · , %ik)T are the explanatory variables or covariates for the i-th
response and β = (βι,..., ßk)T are the parameters of the model with multivariate
normal prior: N(/30, VQ). Thus, the Bayesian logit model can be summarized as:

. Prior: f(ß) a exp (- | (/ 3 - ßQ)TV^\ß - ß0)), ß € Rk.

. Likelihood: f(y\ß) = Π?=ιΡΓ(1 - P i) 1 - " 1 , P,"1 = 1 + e x p (- x T / 3) .

Since the posterior pdf f(ß | y) oc f(ß,y) = f(ß)f(y \ ß) cannot be written in a
simple analytical form, the Bayesian analysis proceeds by (approximately) drawing
a sample from the posterior f(ß | y) in order to obtain estimates of various quan-
tities of interest such as E[/3 | y] and Cov(/3 | y) . In addition, simulation allows a
convenient way to explore the marginal posterior densities of each model parameter.

To approximately draw from the posterior we use the random walk sampler with
a multivariate ΐ„(μ, Σ) proposal tailored to match the overall shape of the posterior " ^ 147
around its mode. The vector μ is taken as the mode of the posterior; that is, as
argmax^ ln / (/3 | y) , which can be obtained approximately via a Newton-Raphson
procedure (see Section C.2.2.1) with gradient " ^ 688

V l n / 0 9 | y) = £ (vi ~ 1 + ^ I ß) Xi-V^iß-ßJ ,

and Hessian

^ (1 + e-*T/3)2 « » 0

where we have used the fact that the logarithm of the posterior (ignoring constant
terms) is:

1 n

--{β-β0γνο-\β-β0)-Υ^υί\η (l + e-x.T^) +(l-yi) (x7/3 + ln (l + e " x ^)) .

2 3 2 MARKOV CHAIN MONTE CARLO

■®° 147 The scale matrix Σ of the proposal distribution t ^ / x , Σ) is chosen as the inverse of
the observed Fisher information matrix: Σ = —if-1. Finally, the shape v (degrees
of freedom) is arbitrarily set to 10. The random walk sampler is initialized at the
mode μ of the posterior. If β* is a newly generated proposal and β is the current
value, the acceptance criterion (6.2) in the Metropolis-Hastings algorithm can be
written as:

The following MATLAB code implements this procedure for the logit model using
an artificial data set.

%logit_model.m
clear all.clc
n=5000; % number of data points (y_l,...,y_n)
k=3; ’/, number of explanatory variables
'/, generate artificial dataset
randnCseed’, 12345); randCseed’, 67890);
truebeta = [1 -5.5 1]’;
X = [ones(n.l) randn(n,k-l)*0.1]; °/0 design matrix
Y = binornd(l,l./(l+exp(-X*truebeta)));
bo=zeros(k,l) ; °/� we set Vo=100*eye(k) ;
% determine the mode using Newton Raphson
err=inf; b=bo; % initial guess
while norm(err)>10~(-3)

p=l./(l+exp(-X*b));
g=X>*(Y-p)-(b-bo)/100;
H=-X’*diag(p.~2.*(l./p-l))*X-eye(k)/100;
err=H\g; % compute Newton-Raphson correction
b=b-err; % update Newton guess

end
% scale parameter for proposal
Sigma=-H\eye(k); B=chol(Sigma);
’/, logarithm of joint density (up to a constant)
logf=@(b)(-.5*(b-bo)’*(b-bo)/100-Y’*log(l+exp(-X*b))...

-(l-Y)’*(X*b+log(l+exp(-X*b))));
alpha=@(x,y)min(1,exp(logf(y)-logf(x)));
df=10; T=10~4; data=nan(T,k) ; ’/.allocate memory
for t=l:T

% make proposal from multivariate t
b_star= b + B*(sqrt(df/gamrnd(df/2,2))*randn(k,1));
if rand<alpha(b,b_star)

b=b_star;
end
data(t,:)=b’;

end
b_hat=mean(data)
Cov_hat=cov(data)

GIBBS SAMPLER 2 3 3

Typical estimates for the posterior mean E[/3 | y] and covariance Cov(/3 | y) are

/ 0.980 \ / 0.0011 -0.0025 0.0005 \
E[ß\y} = -5 .313 and CovoeTjy) = -0.0025 0.1116 -0.0095 .

\ 1.136 / \ 0.0005 -0.0095 0.1061 /

Since the prior we employed is relatively noninformative, it is not surprising that
the estimated posterior mean is very similar to the maximum likelihood estimate:
ß = (0.978, —5.346,1.142)T. Marginal likelihood computation for the logit model is
discussed in Example 14.3. "®° 498

6.2 GIBBS SAMPLER

The Gibbs sampler can be viewed as a particular instance of the Metropolis-
Hastings algorithm for generating n-dimensional random vectors [31]. Due to its
importance it is presented separately. The distinguishing feature of the Gibbs
sampler is that the underlying Markov chain is constructed from a sequence of
conditional distributions, in either a deterministic or random fashion.

Suppose that we wish to sample a random vector X = (X\,..., Xn) according to
a target p d f / (x) . Let f{xi | x\,..., χ ,_ ι , χ%+\,..., xn) represent the conditional pdf
of the i-th component, Xi, given the other components x i , . . . , Xi-\, Xi+i,..., xn-
Here we use the Bayesian notation introduced in Appendix B.3. "®° 672

Algori thm 6.2 (Gibbs Sampler) Given an initial state Xo, iterate the following
steps for t = 0 ,1 , —

1. For a given Xt , generate Y = (Y±,... ,Yn) as follows:

(a) Draw Υχ from the conditional pdf f(xi | Xt,2, · · · > Xt,n)-

(b) Draw Yt from f(xt | Y i , . . . , Yi-i, Xt,i+i,- ■ ■, Xt,n), i = 2 , . . . , n - 1.

(c) Draw Yn from f(xn | Y i , . . . , Y n - i) .

2. LetXt+i = Y .

The transition pdf is given by

n

« i - n (y | x) = Y_f(yi\yu---,Vi-i,Xi+i,---,Xn), (6.6)

where the subscript 1 —> n indicates that the components of vector x are updated in
the order 1—>2—>3—>··■—> n. Note that in the Gibbs sampler every "proposal"
y, is accepted. The transition density of the reverse move y —» x, in which the
vector y is updated in the order n —* n — 1—>■ n — 2 —> · · · —> 1 is

n

«;„_,! (x | y) = Y[f(xi\y1,... ,yi_i,xi+1,... ,xn) .

Hammersley and Clifford [36] prove the following result. E F 207

2 3 4 MARKOV CHAIN MONTE CARLO

Theorem 6.2.1 (Hammersley—Clifford) Let f{xi) be the i-th marginal density
of the pdf / (x) . Suppose that density / (x) satisfies the posi t iv i ty condit ion, that
is, for every y € {x : f{xi) > 0, i = 1 , . . . , n}, we have / (y) > 0. Then,

/ (y) κ η _ ι (χ | y) = / (x) K i - n (y | x) .

Proof (outline): Observe that

«i^n(y|x) = TT f{yi\yi,---,yi-i,Xj+i,---,Xn\

κ „ - + ι (χ I y) ^ ι ί(χίIyi.··-,yi-i,Xi+i,·■-,£«)

_ A f{yi,---,yi,Xi+i,---,Xn)

f = i f(yi,---,yi-i,Xi,---,xn)

= / (y) Y ï i = i f(yi>■ ■ -,yi,xi+i,·■■,χη)

/ (x) Π " = 2 f(VU ■■■, Vj-l,Xj, ■■■,Χη)

/ (y) ΠΓ^ι1 /ù/i> ■ ■ ■ ■ &> ^ + ι , ■ ■ ■ > χη) = / (y)

/ (Χ) Π"=1 Ζ(ΐ/1» · · · > î/j> ̂ J + l. ■ · · > ^η) / (Χ)

The result follows by rearranging the last identity.

The Hammersley-Clifford condition is similar to the detailed balance condition
for the Metropolis-Hastings sampler, because integrating both sides with respect

634 to x yields the global balance equation:

/
/ (x) « i ^ n (y | x) d y = / (y) ,

from which we can conclude that / is the stationary pdf of the Markov chain with
transition density Ki^„(y | x) . In addition, it can be shown [65] that the positivity
assumption on / implies that the Gibbs Markov chain is irreducible and that / is
its limiting pdf. In practice the positivity condition is difficult to verify. However,
there are a number of weaker and more technical conditions (see [43, 65]) which
ensure that the limiting pdf of the process {Xt , i = 1,2, . . .} generated via the
Gibbs sampler is / , and that the convergence to / is geometrically fast.

Algorithm 6.2 presents a sys temat ic (coordinatewise) Gibbs sampler. That is,
the components of vector X are updated in the coordinatewise order 1 —> 2 —>
• · · —> n. The completion of all the conditional sampling steps in the specified order
is called a cycle. Alternative updating of the components of vector X are possible.
In the reversible Gibbs sampler a single cycle consists of the coordinatewise
updating

1 ^ 2 ^ > n - l ^ n ^ n - l ^ > 2-► 1 .

In the random s w e e p / s c a n Gibbs sampler a single cycle can either consist of
one or several coordinates selected uniformly from the integers 1 , . . . ,n , or a ran-
dom permutation πι —> W2 —►···—> πη of all coordinates. In all cases, except
for the systematic Gibbs sampler, the resulting Markov chain { X t , t = 1,2, . . .} is

"S" 635 reversible. In the case where a cycle consists of a single randomly selected coordi-
nate, the random Gibbs sampler can be formally viewed as a Metropolis-Hastings
sampler with transition function

« (y | x) = -f(yi\xi,---,Xi-i,Xi+i,---,xn) = - ^ — T ^ T > n n Σ„4 /(y)

GIBBS SAMPLER 2 3 5

where y = (χι,... ,Xi^i,yi,Xi+i,... ,xn). Since Σν / (y) c a n a^so be written as

ΣΧί / (x) , we have

/ (y) g (x | y) = / (y) / (x)

/ (x) 9 (y | x) / (x) / (y) '

so that the acceptance probability a (x , y) is 1 in this case.

■ EXAMPLE 6.3 (Zero-Inflated Poisson Model)

Gibbs sampling is one of the main computational techniques used in Bayesian analy-
sis. In the zero-inflated Poisson model, the random data X\,..., Xn are assumed
to be of the form Xi — RiYi, where the Yi,...,Yn ~üd Ροί(λ) are independent of
i ? i , . . . , Rn ~üd Ber(p). Given an outcome x = (x i , . . . , x„), the objective is to esti-
mate both λ and p. A typical Bayesian data analysis gives the following hierarchical
model: «S° 673

• p ~ U(0,1) (prior for p),

• (X \p) ~ Gamma(a, b) (prior for λ),

• (r» \ρ,λ) ~ Ber(p) independently (from the model above),

• (xi | Γ,λ,ρ) ~ Poi(Arj) independently (from the model above),

where a and b are known parameters. It follows that the joint pdf of all parameters
and x is

!.α\α-1„-ΐ>λ " „X,

The posterior pdf f(X,p, r | x) oc / (x , r, Χ,ρ) is of large dimension, which makes an-
alytical computation using Bayes' formula intractable. Instead, the Gibbs sampler
(Algorithm 6.2) provides a convenient tool for approximate sampling and explo-
ration of the posterior. Here the conditionals of the posterior are:

• /(A | p, r, x) oc λ ° - 1 + Σ * X i
 Θ - λ (6 + Σ * r i \

. / (p | A , r , x) a p S i n (1 _ p) n - E i r s

. / (r f c | A , p , x) c c (^) V ·

In other words, we have:

• (A | p, r, x) ~ Gamma (a + } Xj, b + y ^ n),
i i

• (p |A , r ,x)~Be ta (l + ^ r i , n + l - ^ r i) ,
i i

Ό 6—

(rfc|A,p,x) ~ Beri pe λ + (1 - p)l{xk=o}

To test the accuracy of the Gibbs sampler (Algorithm 6.2), we generate n = 100
random data points from the zero-inflated Poisson model using parameters p = 0.3

2 3 6 MARKOV CHAIN MONTE CARLO

and λ = 2. To recover the parameters from the data, we choose a = 1 and b = 1 for
the prior distribution of λ, and generate a (dependent) sample of size 105 from the
posterior distribution using the Gibbs sampler. A 95% Bayesian confidence inter-

■®" 672 val (credible interval) is constructed using the script below. Note that MATLAB'S
statistics toolbox function gamrnd(a,b) draws from the Gamma(o, 1/b) distribution.
The estimated Bayesian confidence intervals are (1.33,2.58) for λ and (0.185,0.391)
for p. Observe that the true values lie within these intervals.

y.zip.m
n=100; p=.3; lambda=2;
7. generate ZIP random variables
data=poissrnd(lambda,n,1).*(rand(n,l)<p);
7» now try to recover the ZIP parameters from the data
P=rand; '/, starting guess for p
lam=gamrnd(l,l); '/, starting guess for lambda
r=(rand(n,l)<P) ; '/, starting guess for r
Sum_data=sum(data);
gibbs_sample=zeros(10~5,2);
'/, apply the Gibbs sampler
for k=l:10~5

Sum_r=sum(r);
lam=gamrnd(l+Sum_data,l/(l+Sum_r));
P=betarnd(l+Sum_r,n+1-Sum_r);
prob=exp(-lam)*P./(exp(-lam)*P+(1-P)*(data==0));
r=(rand(n,l)<prob);
gibbs_sample(k , :)=[P, lam];

end
'/, 957· probab i l i ty in t erva l for lambda
p r c t i l e (g i b b s _ s a m p l e (: , 2) , [2 . 5 , 9 7 . 5])
7» 957» probab i l i ty in t erva l for p
p r c t i l e (g i b b s _ s a m p l e (: , 1) , [2 . 5 , 9 7 . 5])

Gibbs sampling is advantageous whenever it is easy to sample from the condi-
tional distributions of the joint density. Note that it is not necessary to update
each component of the random vector X individually. Instead, blocks or groups of
variables can be updated simultaneously. For example, to sample from the joint
pdf f{xi,X2,Xz) we can consider the following version of the Gibbs sampler.

Algor i thm 6.3 (Grouped Gibbs Sampler) To sample from f{xi,X2,xz) with
a given initial state Xo, iterate the following steps for t = 0 ,1 , 2 ,

1. For a given X t = {Xt,i,Xt,2>Xt,3), generate Y = (Y\,Y2,Yz) as follows:

(a) Draw (ΥΊ, Y2) from the conditional pdf / (t / i , 2/2 I Xt,s)-

(b) Draw Y3 from the conditional pdf /(ί/3 | Y\, Y2).

2. Let X t + i = Y .

The grouped variables in Algorithm 6.3 are X\ and X2- Significant speed-up of
the convergence of the chain can be achieved when highly correlated variables

GIBBS SAMPLER 237

are grouped together [69]. Grouped Gibbs sampling is an essential idea in the
Swendsen-Wang algorithm, to generate samples from the Potts model; see Exam-
ple 6.12.

The essential idea of the Gibbs sampler — updating some component of the ran-
dom vector while holding the other components fixed — is useful in many instances
where the state variable is a random variable taking values in a general space, not
just in M.n, see [41]. The next example illustrates how this idea can be used to
compute the normalizing constant of a complex multidimensional density.

■ EXAMPLE 6.4 (Chib's M e t h o d)

Suppose we wish to estimate the normalizing constant Z of

/ (x) = —~-, x = (x i , . . . , x „) ,

where p(x) is known. Rearranging gives the identity

cr P (x)

/(x)
for all x e {x : / (x) > 0} .

In particular, the identity holds for a single point x = x*. Thus, to compute Z
we need to evaluate / (x) at a point x*. For numerical accuracy, the point x* is
generally taken to be in a high-density region of / . We proceed to estimate / (x*)
in the following way.

By the product rule of probability theory, we can write / (x*) as " ^ 616

f(x*) = f(x*1)f(x*2\x*1)f(xl\xl,x*2)---f(x*n\x*1,...,x*n^). (6.7)

It is assumed that each of the conditional densities

/ \Xi | Xl, ■ ■ · , Xi — 1, Xi-\-X-i · - - , Xn) ·> Ί 1, . . . , i l ,

is known. In particular, the conditional f{x^ \ x\, ■ ■ ■, x*n-\) in (6.7) is known.
However, all other densities in the factorization of / (x*) are generally unknown
and have to be estimated. The first term on the right-hand side of (6.7), f(xt),
can be estimated via

where (Χ[τ , ■ ■ ■,Xn) ~ / (x) i * = 1,... ,N are obtained from a run of the Gibbs
sampler. The values of the first component x\ are ignored. Similarly, the fc-th term,

x\,..., £fc_i), can be estimated via

1 N

Λ^Σ/ΚΙ^- '^^Ι ι . - .^ k^n-l, (6.9)
i = l

where (Χ^,Χ^,..., Χ^) ~ f(xk,... ,xn\x*, ■ ■ ■, 4 - i) > i = 1, · · · , N are ob-
tained from a different Gibbs run in which (χχ,..., Xk-i) is fixed to {x\,..., x%_i),
the component Xk is discarded, and the Gibbs cycle runs over (xk,... ,xn). Note

2 3 8 MARKOV CHAIN MONTE CARLO

that by assumption the last term / „ = f(x„ \xt, ■ · · ,Xn-i) is available and need
not be estimated. Thus, an estimator of Z is:

Z= Ρ (^ . (6.10)
Jnlifc=lJk

The above procedure was proposed in [18] and is summarized below.

Algor i thm 6.4 (Chib's M e t h o d) Given a point x* = (χΐ,.,.,χ^) in a high-
density region o / / (x) , perform the following steps.

1. Generate (X{ ,Χ^ , ■ ■ ■, Xn) ~ / (x)> i = 1,- ■ ■ ,N using a run of the Gibbs
sampler and compute f\ as given in (6.8).

2. For k = 2 , . . . , n — 1, run a Gibbs sampler in which (χχ,..., Xk-i) is fixed
to be (x{,..., x%_i) and the Gibbs cycle runs over (x^, ■ ■ ■, xn)- Given draws

(Xfrli, ■ ■ ■, Xn), i — 1,... ,N, from the Gibbs sampler, compute the estima-

tor fk via (6.9).

3. Evaluate fn = f(xn \ x\,...,Xn-i) and deliver the estimator (6.10).

As a numerical example, consider the case where

p(x) = e - (x i + - + a 5 e) I { s (x»e} , x = (x ! , . . . , x 5) , x € K ^ ,

and
S(x) = min{a;i + x4, x\ + X3 + £5, x-i + X3 + X4, X2 + X5} ■

Thus, S(x) represents the shortest path from A to B in the bridge network in Figure
" ^ 348 9.1, and Z is the probability that the shortest path exceeds 8 when the lengths of

the links are X\ ..., X$ ~üd Exp(l). We have

f{xi\x-i) = e x*+ßi, Xi>ßi, i = l,

deno
max{0,x})
where x_ ; denotes the vector x with the i-th element removed and (x+ =

/5i = (8 — min{x4, X3 + Xs})+

ß2 = (8 - min{x5 , x3 + XA})+

Â = (8 - min{xi + x5,x2+ XA})+

ß± = (8 - minjx i , x2 + ΧΆ})+

ß5 = (8 - min{x2 , x\ + ^})"1" ·

■®° 50 Sampling from these truncated exponential densities is straightforward: to obtain
Xi ~ f(xi I x_j) generate Ut ~ U(0,1) and set Xi = ßi - ln[7j. The MATLAB code
below applies Chib's method with N — 104. The constants {ßi} are coded in the
function bet .m. This setup gives a typical estimate of Z = 3.55 x 1 0 - 6 . The
relative error can be estimated by running the algorithm independently a number
of times. Keeping x* fixed to be the same across all independent runs, we obtain
an estimated relative error of 5% from 10 runs. Note that the choice of x* can
significantly affect the performance, see [18].

GIBBS SAMPLER 2 3 9

°/0chibs .m
clear all.clc
N=10~4;
xs=ones(l,5)*8; '/, x-star
for j=l:4 % number of conditional densities

pi(j)=0;
x=xs;
for iter=l:N

for k=j:5
x(k)=bet(x,k)

end
pi(j)=pi(j)+exp(-

end
pi(j)=pi(j)/N;

end
’/0 step 3
pi(5)=exp(-(xs(5)-bet(xs,
°/0 estimator
exp(-sum(xs))/prod(pi)

function out=bet(x.idx)

switch idx
case 1

-log(rand);

xs(j)+bet(x

5)))

out=8-min([x(4),x(3)+x(5)]);
case 2

out=8-min([x(5),x(3)+x(4)]);
case 3

,j));

out=8-min([x(l)+x(5),x(2)+x(4)]);
case 4

out=8-min([x(l),x(2)+x(3)]);
case 5

out=8-min([x(2),x(l)+x(3)]);
end

out=max(out,0);

Chib's method is widely used to compute the marginal likelihood, which plays n®" 673
an important role in Bayesian model selection. The original method [18] is only
applicable when the Gibbs sampler is used for simulation from the posterior, that is,
when the normalizing constants of all full conditionals are known. The method has
been extended to settings where the Metropolis-Hasting sampler is used instead,
see [19]. For an interacting particle splitting approach to computing the marginal
likelihood see Example 14.3. «3° 498

2 4 0 MARKOV CHAIN MONTE CARLO

6.3 SPECIALIZED SAMPLERS

While MCMC is a generic method and can be used to approximately generate ran-
dom variables from virtually any target distribution, regardless of its dimensionality
and complexity, potential problems with the MCMC method include:

1. The resulting samples are often highly correlated.

2. The Markov chain may fail to explore all of the modes of the target density.

3. The estimates obtained via MCMC samples often tend to have much greater
variances than those obtained from independent sampling from the target
distribution.

Various attempts have been made to overcome these difficulties. A number of
extensions of the Metropolis-Hastings algorithm have been suggested that aim to
speed up convergence to the steady-state regime and reduce the correlation among
samples [43, 65]. In this section we review some of these enhancements.

6.3.1 Hit-and-Run Sampler

The hit-and-run sampler, pioneered by Smith [75], is among the first MCMC
samplers in the category of line samplers [1]. As in previous sections, the objective
is to sample from a target distribution /(x) = p(x)/Z on SC Ç ffin.

We first describe the original hit-and-run sampler for generating from a uniform
distribution on a bounded open region S£ of Kn. At each iteration, starting from
a current point x, a direction vector d is generated uniformly on the surface of
an n-dimensional hypersphere. The intersection of the corresponding bidirectional
line through x and the enclosing box of X defines a line segment Jzf. The next
point y is then selected uniformly from the intersection of Jif and S£.

Figure 6.3 illustrates the hit-and-run algorithm for generating uniformly from
the set 3C (the gray region) which is bounded by a rectangle. Given the point x in
9£, the direction d is generated, which defines the line segment ££ — uv. Then, a
point y is chosen uniformly on Jz? Π $C, for example, by the acceptance-rejection
method, that is, generate a point uniformly on _S? and then accept this point only
if it lies in 9£.

Figure 6.3 Illustration of hit-and-run on a square in two dimensions.

SPECIALIZED SAMPLERS 2 4 1

The uniform hit-and-run sampler asymptotically generates uniformly distributed
points over arbitrary open regions of K"; see [75]. One desirable property of hit-
and-run is that it can globally reach any point in the set in one step; that is, there is
a positive probability of sampling any neighborhood in the set. Lovâsz [45] proves
that hit-and-run on a convex body in n dimensions produces an approximately
uniformly distributed sample in polynomial time, G(n3). He notes that in practice
the hit-and-run algorithm appears to offer the most rapid convergence to a uniform
distribution [45, 46]. Hit-and-run is unique in that it only takes polynomial time
to get out of a corner, whereas, in contrast, ball walk takes exponential time to get
out of a corner [47].

We now describe a more general version of the hit-and-run algorithm for sampling
from any strictly positive continuous pdf / (x) = p(x)/Z on any region JT —
bounded or unbounded [16, 17]. Similar to the Metropolis-Hastings algorithm we
generate a proposal move, which is then accepted or rejected with probability that
depends on / . A proposal move y is generated by stepping away from the current
point (at iteration t) x in the direction d with a step of size λ. The step size λ at
iteration t is generated from a proposal density gt(X | d, x) . The candidate point
y = x + λ d is then accepted with probability

, Ϊ · f / (y) g t (| A | | - s g n (A) d , y) \
a (x , y) = mm ^ —— j—] . , U , (6.11)

1 / (χ) # (| λ | | sgn(A)d,x) J

as in the Metropolis-Hastings acceptance criterion (6.1); otherwise, the Markov
chain remains in the current state x. The condition (6.11) ensures that gt satisfies
the detailed balance condition:

9t\ | | x - y |
v — x

n iï,x)a(x,y)/(x) = fft(| |x-y | l l ^ y ^ y)e(y.*)/(y)·

We refer to proposal densities that satisfy the detailed balance equations as valid
proposals. At iteration t, let

4 d = { A e R : χ + A d e J T } .

A valid proposal density gt(\\d,x) can be one of the following:

• gt(\\d,x) = 3t(x + Ad), A £ I . The acceptance probability (6.11) then
simplifies to

, , ■ f / (y) 5 Î (x) A
a (x , y) = m u W , U .

l / (x) S t (y) J

A common choice is

gt (A|d ,x)= . ^ ^ ^ l , . λ Ε · ^ > (6·12)

in which case (6.11) further simplifies to a (x , y) = 1.

• <? t(A|d,x) = <?t(A), A € K, is a symmetric (<?t(A) = g~t(—A)) continuous
pdf that may depend only on Jïf The acceptance probability (6.11) then
simplifies to

a (x , y) = m i n { / (y) / / (x) , l } .

2 4 2 MARKOV CHAIN MONTE CARLO

If 3C is unbounded it is common to choose g~t(X) as the normal pdf with
mean 0 and variance that depends on ^t- Alternatively, if SC is bounded a
common choice is

~ iw ^{Ae^#t}
9ύλ) — ΤΊ τ~ ■

In summary, the hit-and-run algorithm reads as follows.

Algor i thm é.5 (Hit -and-Run)

1. Initialize with X i € 3£ and set t = 1.

2. Generate a random direction dt according to a uniform distribution on the
unit n-dimensional hypersphere. In other words, generate:

where ||Z|| = y/Zf + --- + Z*.

3. Generate X from a valid proposal density gt(\ | d t , X t) .

4- Set Y = X(+ Ad (; and let:

Y with probability a (Xt , Y) in (6.11)
Xt+i — X t otherwise.

5. If a stopping criterion is met, stop; otherwise, increment t and repeat from
Step 2.

Note that the proposal (6.12) gives a Gibbs-type sampling algorithm in which
every candidate point is accepted and Xt+i φ Xt.

■ EXAMPLE 6.5 (Truncated Mult ivariate Normal Generator)

A common computational problem in Bayesian data analysis involves sampling from
a truncated multivariate normal pdf:

/ (x) oc p(x) = exp (- - (x - μ) τ Σ _ 1 (χ - μή I { x 6 j r } ,

where I C R " . For specific examples, see [6, 13, 16, 49, 50]. The hit-and-run
sampler can be used to sample efficiently in such cases. With (6.12) as the proposal,
the pdf of λ is:

/ d T 5]~ 1 d \
3 t (A |d ,x) ocexp ί A2 - d T E _ 1 (x - μ) λ) I{x +Adejr} >

which corresponds to a truncated univariate normal distribution with mean

α τ Σ ~ 1 (χ - μ)

d T E !d

SPECIALIZED SAMPLERS 243

and variance (d T E _ 1 d) _ 1 , truncated to the set Jit = {λ : x + A d e JT}. For
example, suppose that 3£ = {x € M.2 : x T x > 25}, then denoting D = (d T x) 2 —
x T x + 25, we have two cases:

• J/t = K, if D< 0;
• Jtt = (- co , -VD - d T x] U [VD - d T x , oo), if D > 0.

The following code implements this particular example and generates 104 points in
R2 with μ = (1/2,1/2)Ύ and covariance matrix with S u = Σ22 = 1, Σ12 = 0.9.
Figure 6.4 shows a scatter plot of the output and the boundary of S£.

Figure 6.4 Hit-and-run sampling from a truncated bivariate normal density.

%Hit_and_run.m
S i g = [l , 0 . 9 ; 0 . 9 , l] ; M u = [l , l] ' / 2 ; B=cho l (S ig) ' ;
x=[5,5]’; ’/.starting point
T=10"4; data=nan(T,2);% number of points desired
for t=l:T

d=randn(2,1); d=d/norm(d);
D=(d’*x)~2-x’*x+25;
zl=B\d; z2=B\(x-Mu);
% determine mean and variance of lambda dist.
sig=l/norm(zl); mu=-zl’*z2*sig"2;
if D<0

lam=mu+randn*sig;
else

lam=normt2(mu,sig,-sqrt(D)-d’*x,sqrt(D)-d’*x);
end
x=x+lam*d;
data(t,:)=x’ ;

2 4 4 MARKOV CHAIN MONTE CARLO

end
plot(data(:,1),data(:,2),’r.’),axis equal,
hold on
ezplot(’x~2+y~2-25’)

The code above uses the function normt2.m, which draws from the Ν(μ,σ2)
distribution truncated on the set (—oo, a]u[&, oo), via the inverse-transform method.

function out=normt2(mu,sig,a,b)
pb=normcdf((b-mu)/sig);
pa=normcdf((a-mu)/sig);
if rand<pa/(pa+l-pb)

out=mu+sig*norminv(pa*rand(size(mu)));
else

out=mu+sig*norminv((l-pb)*rand(size(na

end
0) +pb);

Note that while the Gibbs or Metropolis-Hastings samplers can be used for
generation from truncated multivariate distributions [22, 64], the hit-and-run sam-
pler has been observed to perform better in such settings, see Chen and Schmeiser
[14, 15]. In particular, Chen and Schmeiser argue that the hit-and-run approach is
especially useful in cases where the variables are highly constrained.

■ EXAMPLE 6.6 (Simulating a Stock Price Process)

Consider a typical stock price trajectory 5 t l , St2, ■. ■, S*„ used in option pricing (see
•er 526 Section 15.2):

Stk=S0exp({r-?-}kô + aVôJ2xi)' k=l,...,n, (6.13)
^ t = i '

where δ = T/n, tk = k6, and X\,... ,Xn ~ud N(0,1). In this example, r, σ,
"^ 536 K,ß,Sc,,n,T are given parameters that specify the value of a down-and-in Asian

call option. We are interested in sampling from the minimum variance importance
sampling density for the estimation of the value of a down-and-in Asian call option
with payoff (S t n — K)+ I {mini S^ ^ ß}, where ß is the barrier of the down-and-in
option; see Example 15.8. This is equivalent to sampling X = {X\, ■ ■ ■ ,Xn)

T from
the pdf

/ (x) a p(x) = H(x) ε - 5 χ Τ χ , H(X) = (Stn - K)+1{ nain Su < β) ,

and then computing the stock price trajectory {Stk} from (6.13). In other words,
under / the final stock price St„ = ST is above K and one of the past stock prices
St1,- ■., St„_1 is below the barrier β. With the parameters (r, σ, K, β, SO, n, T) =
(0.07,0.2,1.2,0.8,1,180,180/365), typical realizations of the stock price process un-
der / are depicted in Figure 6.5. The thick smooth line is the average over all
TV = 105 trajectories; that is, it is an estimate of l&fSti for all i.

SPECIALIZED SAMPLERS 2 4 5

Figure 6.5 Five stock price trajectories under / . The thick smooth line shows the average
of all N = 105 trajectories.

To generate the process {S^} or, equivalently, the vector X ~ / , we implement
Algorithm 6.5 with the proposal gt(X | d ,x) = §t(x + Äd) oc e— 2 ϋχ+λ<1ϋ ; giving the
acceptance probability a (x , y) = m in{ i ï (y) / i 7 (x) , 1}. Figure 6.6 shows the mean
of all vectors X i , . . . , XJV p ~ ° x ' / (x) as an estimate of E /X.

Figure 6.6 The empirical mean approximating E /X together with a smoothing spline
showing the trend.

The code below calls the function down_in_call. m, which evaluates -ff(x) for the
given set of parameters. In addition, the code uses the function csaps .m from the
MATLAB spline toolbox. If this function is available to the user, then the last three
lines can be uncommented.

2 4 6 MARKOV CHAIN MONTE CARLO

%down_and_in_Call.m
clear all,
r=.07; '/, annual interest
sig=.2; % stock volatility
K=1.2; °/o strike price
b=.8; ’/, barrier
S_0=1; */, initial stock price
n=180; % number of stock price observations
T=n/365; % length of observation period (in years)
dt=T/n; V, time step
N=10~5; ’/, length of chain
x= [-ones(1,60) ,ones(l,n-60)] *0.4; ’/, initial starting point
[H,path]=down_in_call(x,dt,r,sig,S_0,K,b); % evaluate

’/, now we simulate N sample paths of the stock process
'/, and compute averages
mu=0;paths=0;
for i=l:N

% apply hit-and-run
d=randn(l,n); d=d/norm(d);
lam=-d*x’+randn;
y=x+lam*d; % make proposal
'/, evaluate H(y)
[H_new,path_new]=down_in_call(y,dt,r,sig,S_0,K,b);
'/, accept or reject the proposal
if rand<min(H_new/H,1)

x=y; % update
H=H_new;
path=path_new;

end
mu=mu+x/N; ’/. compute an estimate of E[X]
paths=paths+path/N ; °/0 compute average stock price
if mod(i,2*10"4)==0 ’/, plot every 2*10~4-th step oi

H(x)

trajectory
the chain

plot(0 :dt:T,path,0 :dt:T,0*path+b,0 :dt:T,0*path+K)
axis([0,T,b-0.1,K+.2]),hold all
pause(.1)

end
end
’/, plot the average price trajectory
plot(0:dt:T,paths,’r’,’LineWidth’,3)
figure(2)
plot(mu,’k.’), hold on
'/, smooth the trajectory of E[X] using a spline
7,pp = csaps(dt:dt:T,mu,l/(l+(dt*10)~3)) ;
°/,mu_t = f nval (pp, [dt : dt : T]) ;
’/«plot (mu_t, ’r ’) % plot the smoothed trajectory

SPECIALIZED SAMPLERS 2 4 7

func t ion [H , S _ t] = d o w n _ i n _ c a l l (z , d t , r , s i g , S _ 0 , K , b)
'/, implements H(x)
y = (r - s i g ~ 2 / 2) * d t + s i g * s q r t (d t) * z ;
S_t=exp(cumsum([log(S_0) ,y])) ;
H=max(S_t(end)-K,0)*any(S_t<=b);

■ EXAMPLE 6.7 (The H o l m e s - D i a c o n i s - R o s s M e t h o d)

Suppose we wish to estimate the probability

* = P (S (X) ^ 7) , X ~ / o (x) , Χ = (Χ Ι , . . . , Χ „) Τ ,

where 5 : W1 —> R is a given function, 7 is a threshold parameter such that I is a
very small probability, and /o(x) is a known pdf. The Holmes—Diaconis—Ross "3° 382
method [8, 9, 23, 72] is a method for estimating £ using MCMC. It is related to the
particle splitting method in Section 14.2. " ^ 485

Let —00 = 70 < 71 < · · · < 7 T - I < Ίτ = 7 be an increasing sequence of
thresholds. Define the sequence of pdfs

f /vï / o (x) I{S(x)>7t} + n Λ Τ
/ t W - -ç , t — U, 1, . . . , i ,

where £t = P(S'(X) ^ j t) - Define the conditional probabilities

ct = - ~ = P(S(X) > 7* I S(X) > 7 t - i) , X ~ /o, ί = 1, · · · ,T .

Let K t(x I y) be the transition density of a Markov chain sampler with stationary
pdf ft. The Holmes-Diaconis-Ross algorithm is as follows.

Algori thm 6.6 (Holmes—Diaconis—Ross) Given a parameter m (the approxi-
mate simulation effort at each level t) and a sequence 7 0 , 7 1 , . . . , 7 τ , set the counter
t = 2 and execute the following steps.

1. Initialization. Compute

k

B\ = min { k : V Gi > m
k t=0

where GQ,GX, ..., are independent Geom (c\) random variables. The variables
Go, Gi,... ~üd Geom (ci) can be generated by executing the following steps for
t = 0 , l ,

(a) Let Gi = l.

(b) Generate X i ~ /o(x)·

(c) If 5 (X i) < 71, increment Gi = Gi + 1 and 30 io Step ("&); otherwise,
output Gi as an outcome from Geom (ci).

2 4 8 MARKOV CHAIN MONTE CARLO

2. M C M C sampling. Compute

Bt = min < k : ^ J Gj > m > ,
^ t=o '

where G o , G i , . . . , are dependent random variables generated according to a
Markov chain by setting Y = X t - i and then executing the following steps for
* = 0 , 1 , . ' . . .

(a) Letd = 1.

(b) Generate Xj ~ / t t_i(x | Y) .

(c) If 5(Xt) < "ft and Gi <m + l, increment Gi = Gi + 1, resei (overwrite)
Y = X t ; and 50 io Siep fè); otherwise, output Gi as an approximate
outcome from Geom (c t) .

3. Stopping condit ion. Ift = T, go to Step 4- If Bt = 0, set

Bt+i = Bt+2 = · · · = BT = 0

and go to Step 4; otherwise, reset t = t + 1 and repeat from Step 2.

4- Final es t imate . Let Ct = Bt/m for all t. Output X as an approximate
random variable from / T (X) and deliver the estimator

î=f[ct.
t=\

Note that Βχ ~ Bin(m,ci) (see Property 6 on Page 88) and therefore B\jra is
an unbiased estimator of c\. However, unlike the exact sampling from /o(x) in
Step 1, the sampling from / t _ i (x) via the transition density Kt-\ in Step 2 is only
approximate. As a result, each random variable Bt, t = 2 , 3 , . . . , is approximately
distributed from Bin(m, c t), t — 2 , 3 , . . . , so that Bt/m is an estimator of ct.

Figure 6.7 illustrates the typical evolution of the Markov chain in the Holmes-
Diaconis-Ross algorithm for the two-dimensional case (X = (Xi,Ä2))- The three
level sets {x : 5(x) = j t } , t = 1,2,3 are plotted as nested curves. Suppose that
TO = 24 and that Bi = 1 with SÇX-i) ^ 71. We have c\ = 1/24. To estimate C2,
starting from point X i a Markov chain with transition density rei (x | y) (solid line)
is run until S reaches 72 in Go = 10 steps. The first point above 72 is encircled. The
same chain continues to run and S is above 72 for the second time after G0+G1 = 15
(Gi = 5) steps. Similarly, S is above 72 for the third time after Go + G\ + Gi = 24
(G2 = 9) steps, and for the fourth time after G0 + Gi + G2 + G 3 = 25 (G3 = 1)
steps. Since TO = 24 we have B2 = 3 and C2 = 3/24. The 25-th state of the solid
line chain is denoted by a star, because it is the initial state for a new Markov
chain (dashed line) with transition density K2(x | y)· For the dashed chain we have
four points above 73 with (Go,Gi ,G2,G 3) = (9,2,2,18), and hence B3 = 3 and
c3 = 3/24. It follows that î3 = 9/243 .

SPECIALIZED SAMPLERS 2 4 9

Figure 6.7 Typical evolution of the chain in the Holmes-Diaconis-Ross algorithm.

As a numerical example, we consider the shortest path problem in Example
6.4. Namely, we wish to estimate i = P(S(V) ^ 8), V = (V i , . . . , ^) , where
V i , . . . , V 5 ~ i i d Exp(l), and

5(v) = S(v!, ...,v5) = min{>i + v4, vi + v3 + v5, v2+v3+ v4, v2 + v5} .

As in Example 6.4, the function S(v) represents the shortest path from A to B in
the bridge network in Figure 9.1, and i is the probability that the shortest path »S* 348
exceeds 8.

The hit-and-run sampler does not apply directly to generate the Markov chain
in Step 2 of the Holmes-Diaconis-Ross Algorithm 6.6. However, we can easily
modify the problem in order to make the application of the hit-and-run sam-
pler straightforward. In Example 6.5 we show that sampling from a truncated
multivariate normal density is simple via the hit-and-run sampler. Observe that
every integral of the form E I { s (v) ^ j , where the components V\,...,Vn of V
are iid, can be written as an expectation with respect to a multivariate nor-
mal density as follows: ΕΙ{Α(/ι(χ))>7}, where X ~ N(0,7) and h is a transfor-
mation such that /i(X) has the same distribution as V . Thus, to simplify the
implementation of the hit-and-run sampler we formulate the estimation prob-
lem so that I = F(S{h(Xi),..., h(X5)) > 8), with Λ Ί , . . . , X5 ~ i i d N(0,1) and
h(x) = — In Φ(χ), where Φ is the cdf of the standard normal distribution. It follows
that /o(x) = (27r) _ 5 / 2 e _ x x / 2 , X É ! 5 , and / i , . . . , / r is a sequence of truncated
multivariate normal pdfs. A move from y to x using the hit-and-run algorithm is
as follows.

2 5 0 MARKOV CHAIN MONTE CARLO

Algor i thm 6.7 (Performing a Hi t -and-Run Move According to « t (x | y))
Given y = (j / i , . . . , ys)T such that S(h(yi),..., /i(ys)) ^ 7t, execute the steps:

1. Generate a random direction vector d uniformly distributed on the unit 5-
dimensional sphere. Given a, generate Λ ~ N(—yTd, 1). Set x = y + Ad.

2. If S(h(x\),..., h(xs)) ^ 7t, output X = x ; otherwise, output X = y.

Using 30 independent runs of Algorithm 6.6 with (7 1 , . . . ,7s) = (1 , . . . ,8) and
m = 104, we obtain the estimate i = 3.46 x 1 0 - 6 with an estimated relative
error of 3.5%. The function hdr .m below implements Algorithm 6.6 and hi t_run.m
implements the hit-and-run sampling step.

°/,HDR/main_hdr. m
m=10~4 ;N=30;gam=1:8 ;
e l l = n a n (N , l) ;
for i=l :N

c=hdr(gam,m);
e l l (i) = p r o d (c) ;

end
mean(el l) '/, est imate
s t d (e l l) / m e a n (e l l) / s q r t (N) 7, r e l a t i v e error

function [c,x]=hdr(gam,m)
7. gam is a vector with increasing levels
T=length(gam); c=zeros(T,1);
sum=0; B(l)=-1; 7» negative binomial
while sum<m+l

x=randn(l,5); G=l; % generate from f_0
while S(x)<gam(l)

G=G+l;x=randn(l,5) ; '/, generate from f_0
end
sum=sum+G; B(1)=B(1)+1; % binomial r.v.

end

for t=2:T
sum=0; B(t)=-l; '/, negative binomial
while sum<m+l

x=hit_run(x,gam(t-l)); G=l;
while (S(x)<gam(t))&&(G<m+l)

G=G+1; x=hit_run(x,gam(t-l));
end
sum=sum+G; B(t)=B(t)+l; °/t binomial r.v.

end
[gam(t),B(t)/m]
7. stopping condition
if (B(t)==0)|(t==T), break, end

SPECIALIZED SAMPLERS 2 5 1

end
c=B/m; % estimate conditional probabilities

function x=hit_run(x,gam)
°/, hit-and-run sampler
n=length(x);
d=randn(l,n) ; d=d/norm(d) ; ’/,
lam=-x*d’+randn;
y=x+lam*d; '/, make proposal
if S(y)>gam

x=y;
end

sample direction

funct ion out=S(x)
x=- log(normcdf(x)) ;
o u t = m i n ([x (l) + x (4) , x (l) + x (3) + x (5) , x (2) + x (3) + x (4) , x (2) + x (5)]) ;

A discrete hit-and-run version has been developed in Baumert et al. [5, 53]; see
also [73]. An alternative approach for discrete problems is to use the continuous
hit-and-run algorithm with a transformation that maps the continuous random
variables generated by the sampler into the desired discrete random variables. More
precisely, the idea is to use a transformation h such that the random variable /i(U),
where U ~ U(0, l) n , has the same distribution as the discrete random variable
Y . Examples of such transformations are given in the discussion of the inverse-
transform method, see Section 3.1.1. " ^ 45

The hit-and-run algorithm can be embedded within an optimization framework
to yield various global optimization algorithms, see [53, 71, 77, 79]. It has been
applied successfully to practical problems including composite material design and
shape optimization, and has been shown to have polynomial complexity, on average,
for a class of quadratic programs [79]. In Section 12.3 we show how to turn any "3° 449
MCMC sampler into an optimization algorithm, using simulated annealing.

6.3.2 Shake-and-Bake Sampler

The shake-and-bake algorithms [7] form a class of MCMC algorithms for generat-
ing (approximately) uniform points on the boundary dJT of a bounded nonempty
convex polytope with non-zero volume. The polytope is defined by a system of
linear inequalities Ax ^ b , where A = (a i , . . . , a m) T is an m x n matrix with nor-
malized rows (||aj|| = 1 for all i) and b = (6χ, . . . , bm)T is a vector. It is assumed
that there are no redundant rows in A, in that removing any of the rows changes
the polytope. The boundary of the polytope is then

m

dSC = U {x : a^x = h, a j x < bj for all j φ i} .
i=l

2 5 2 MARKOV CHAIN MONTE CARLO

That is, the boundary is the set of points for which exactly one of the m inequality
constraints is active.

An iterative step of the shake-and-bake algorithm consists of the following proce-
dure. Given a point Xt on 33ί', generate a random feasible search direction vector
d. A feasible direction is one for which a j d < 0 whenever the fc-th constraint
is active at X t . The intersection point of the bidirectional line through X t with
the boundary d3£ closest to Xt is called the hit point. In other words, the hit
point is the intersection point of the search direction d with the constraint that
becomes active first. The hit point then becomes the starting point Xt+i for the
next iteration.

Figure 6.8 illustrates the shake-and-bake algorithm for generating points uni-
formly on the boundary of a two-dimensional polygon.

Figure 6.8 Illustration of the (running) shake-and-bake algorithm.

Given the point x i on d2£, the direction d is generated, which hits d3£ at X2.
Similarly, a random search direction vector through X2 generates X3 and so on.
To determine the hit point X2 one computes all the intersection points of the line
x i + Ad, λ > 0, passing through Xi in the direction d with all the hyperplanes
(facets of 3£) defined by the constraints a ^ x = bi, i = 1 , . . . , m. These intersection
points correspond to the values

_ bj - a ^ x i . _
Λ i — =̂ — , I — 1, . . . , TO, .

& i ' d

The hit point X2 is the intersection point corresponding to the smallest positive
value in the set {Xi}- In other words X2 = x i + A*d, where

λ* = min{Ài : λ, > 0} .

It remains to specify the mechanism for the generation of the search direction
vector d. Suppose that the fc-th constraint is active at the current point x i ; that is,
a j x i = bk (and hence Afc = 0). Generate a point y i uniformly distributed on the

" ^ 74 surface of the n-dimensional unit hypersphere centered at the origin, as illustrated
in Figure 6.9.

SPECIALIZED SAMPLERS 2 5 3

Figure 6.9 Construction of the random search direction d. The hyperplane {x : a j x =
0} is shown cutting through the sphere. The lower part of the sphere that is cut by the
hyperplane lies in the region for which {x : a j x < 0}.

Compute the projection y2 of y i onto the hyperplane {x : a ^ x = 0}, that is,
Y2 = y i - (a^yi)a f c . Next, set y 3 = y 2 / | |y2 | | , so that ||y3 | | = 1 and y 3 lies at
the intersection of the unit sphere and the hyperplane. Compute y4 = Ä y 3 , where
R is distributed according to the radius of a uniformly chosen point in the unit
ball; that is, _Rn_1 ~ (J(0,1). Finally, the search direction d is defined as the unit
vector whose projection on the hyperplane {x : a ^ x = 0} is given by the vector
y4 under the condition a ^ d < 0. In other words the search direction is given by
d = y4 — y/l — R? a.k- This iterative procedure can be summarized as follows.

2 5 4 MARKOV CHAIN MONTE CARLO

Algor i thm 6.8 (Shake-and-Bake) Given an initial state Xo, iterate the follow-
ing steps for t = 0 , 1 ,

1. Given Xt G d3£, assume that the k-th constraint is active, that is, a^~Xt = bk-

2. Construct a search direction vector d using the following steps.

(a) Generate a point Ύχ uniformly distributed on the surface of the n-
dimensional unit hypersphere centered at the origin.

(b) Compute Y 2 = Y i - (a ^ Y i) afe and Y 3 = πψπτ·

(c) Compute R = Ul^n~l\ where U ~ U(0,1), and output

d = E Y 3 - v / l - ß 2 a f c .

3. Update to the next hit point Xt+i = X t + X*d, where

X* = miniÀi : λ^ > 0}, λ^ = ——ψ1 , ί = 1 , . . . , m .
a i d

There are different variants of the shake-and-bake algorithm [7]. Algorithm 6.8 is
referred to as the running shake-and-bake algorithm, because each new hit point
automatically becomes the starting point for the next iteration. In an alternative
version, called the l imping shake-and-bake algorithm, a new hit point is subjected
to an acceptance-rejection step, as a result of which the algorithm may start from
the same point over a number of iterations. Boender et al. [7] show that of all shake-
and-bake versions Algorithm 6.8 has the fastest theoretical rate of convergence as
an MCMC sampler.

Similar to the hit-and-run algorithm, the shake-and-bake algorithm can be used
for optimization purposes. For example, optimizing a concave function over 3£ is
achieved by searching for optimal values on the boundary dSC [7, 62].

■ EXAMPLE 6.8 (Sampling on a Polyhedron)

Consider the polyhedron defined by the set {x : Ax ^ b } , where b = (0, 0, 0, ~js)T

and

Γ ° - 1
1

0
0

- 2

\ /6

-1]
0
0
1

Ve J

We ran Algorithm 6.8 for 103 iterations starting from x i = (1 /2 ,1 /2 , 0) T . The
result is displayed in Figure 6.10.

SPECIALIZED SAMPLERS 2 5 5

Figure 6.10 A thousand points (approximately) uniformly distributed on the surface of
a polyhedron.

To verify the accuracy of the shake-and-bake algorithm, we can count the number
of times each facet of the polyhedron is visited. In this simple example the number
of times each constraint]T\ AijXj — hi, i = 1, 2, 3,4, is active has distribution

(0.1301, 0.2602, 0.2909, 0.3187) ,

which is easily obtained by computing the area of all triangular faces of the polyhe-
dron. Since the empirically observed frequencies of (0.1334, 0.2543, 0.2957, 0.3166)
are close to the true ones, we conclude that the algorithm converges satisfactorily.
The following MATLAB code implements Algorithm 6.8.

°/,snb_polyhedron.m
A= [0 , 0 , - 1 ; - 1 , 0 , 0 ; 1 , - 2 , 0 ; 1 , 2 , 1] ;
A (4 , :) = A (4 , :) / s q r t (6) ;
A (3 , :) = A (3 , :) / s q r t (5) ;
b = [0 ; 0 ; 0 ; 2 / s q r t (6)] ;
x= [1 / 2 , 1 / 2 , 0] ' ; "/„init ial p o i n t
k= l ; "/which c o n s t r a i n t i s a c t i v e a t x
T=10~3; "/«run shake-and-bake 10~3 t imes
a = A (k , :) ; d a t a = n a n (T , l e n g t h (x)) ; " /p rea l loca t e memory
for t = l : T

Y l = r a n d n (l , 3) ;
Y1=Y1. / sqr t (sum(Yl .~2)) ;
Y2=Y1- (a*Yl ') *a ;
Y3=Y2/sqrt(sum(Y2.~2));
R = r a n d - (l / 2) ;
d=R*Y3-sqrt(l -R~2)*a;
l am=(b-A*x) , / (A*d ') ;
% next compute lam_s=lambda_star and update k

2 5 6 MARKOV CHAIN MONTE CARLO

lam(k)=inf;
x=x+lam_s*d
a=A(k,:);
datait,:)=x
Index(t)=k;

end
°/0 display data
plot3(data(:,1)

lam(lam<0)=inf; [lam_s,k]=min(lam);
; °/0 update to new hit point

°/, new active constraint
% accumulate data

datai:,2),data(:,3),’k.’,’MarkerSize’ ,10)

6.3.3 Metropolis-Gibbs Hybrids

Every cycle of the Gibbs sampler (Algorithm 6.2) requires sampling from condi-
tional pdfs of the form / (y , |x~i)> where x_i denotes the vector x with the i-th
element removed. In many practical problems some or all of the univariate con-
ditional pdfs cannot be simulated easily. In such cases one can approximately
sample from f(yi | x_;) by taking a Metropolis-Hastings move (a single iteration
of Algorithm 6.1) with proposal qi{yt \x—i) and target pdf /(j/j | x - i) · Note that
making multiple Metropolis-Hastings moves to better approximate the conditional
f(yi | x - i) does not necessarily lead to faster convergence toward the joint density
/ (x) , see [15, 32]. Some other hybrid algorithms use the Metropolis-Hastings Al-
gorithm 6.1 with a proposal q(y | x) corresponding to a single cycle of the Gibbs
sampler, that is,

/ n — l

<?(y|x) = f{yi | x - i) (Y[f(yi\yi,---,yi-i,Xi i+l,---,Xn)jf(yn\y-n) ■

All such hybrid algorithms are valid since the stationary distribution remains un-
changed [32]. Theoretical results relating to such hybrids are given in [58], where
the authors find that an acceptance rate of 0.234 for the Metropolis-Hastings step
is optimal in some sense.

For the case where Gibbs sampling is applied on a discrete space, Liu [42] pro-
poses that instead of sampling directly from a given conditional pdf f(yi | x_ i) , one
samples from f(yi | x_;) conditional on y^ φ Xi and then applies the Metropolis-
Hastings acceptance criterion (6.1). This gives the following hybrid algorithm used
as an alternative to sampling directly from the conditional pdf f(%)i | X-i) .

Algor i thm 6.9 (Metropolis—Gibbs Hybrid on a Discrete Space) Given an
initial state Xo, iterate the following steps for t = 0 , 1 ,

1. Given X t = x, generate Yi from / (y , | x_j) conditionally on Yi ψ xt; that is,
generate Yi from the pdf

fiVi I x-i)
Vi^Xi ■

1 - f{xi\-x.-iY

Set Y = (x i , . . . ,Xi-i,Yi,xi+i,... ,xn).

2. Apply the Metropolis-Hastings acceptance criterion (6.1) with

a (x , Y) = min
f l - / fo lx_ i) Ί
\ ι - / (* | χ _ 0 ' / ·

SPECIALIZED SAMPLERS 2 5 7

Liu [42] shows that the Markov chain sequence obtained via Algorithm 6.9 gives an
ergodic estimator (6.4) with smaller variance than would otherwise be obtained by
sampling directly from the conditional pdf f{yt | x_j) .

6.3.4 Multiple-Try Metropolis-Hastings

The mult iple-try Metropolis—Hastings [44] algorithm is an extension of the
Metropolis-Hastings algorithm (Algorithm 6.1) that generates M multiple propos-
als and then resamples the proposals in an attempt to encourage large-step transi-
tions of the chain. One of the simplest versions of the algorithm assumes that the
proposal density q(y | x) is symmetric and reads as follows.

Algori thm 6.10 (Multiple-Try Metropolis—Hastings) Initialize with some
Xo for which / (Xo) > 0. Given the parameter M and the symmetric proposal
density q(y | x) , perform the following steps for each t = 0,1,2 ... ,T.

1. Generate proposals Y\,..., Y M ~ l{y I X*) ■

2. Sample a random index J from the set { 1 , . . . , M} such that

, (J ° J " » ° / (v .) / ™ / (Y M) · ' = ' .■■■·" ·

3. Given J, generate proposals Z i , . . . , Z ^ - i ~ q(z | Ύj) and set Z « = XÉ .

4- Generate U ~ U(0,1) and deliver

\Yj ifU^a(Xt,Yj)
X t+ i X* otherwise

where
, Y v Ï . J7(YI) + --- + /(YM) / a(Xt'Yj) = m m l / (z 1) + - + / (z M) ' \

For a proof that / is the invariant distribution of the Markov chain {Xj}, see [44].
Liu et al. [44] provide examples where the multiple-try Metropolis-Hastings sam-

pler performs better than the simpler Metropolis-Hastings sampler. The multiple-
try Metropolis-Hastings sampler can be generalized and enhanced using antithetic
and stratified sampling ideas, see [20].

■ EXAMPLE 6.9 (Two-Humps Dens i ty)

Consider sampling from the bimodal pdf

, / x\ + xl + (xix2)
2 - 2Xx1x2\ 2

/ (x ; A) c c e x p , x 6 l ,

for some parameter λ, say λ = 12. The density is depicted in the left panel of Figure
6.11. The code below implements the multiple-try Metropolis-Hastings algorithms
using 103 steps and M = 100 proposal points. The result is depicted in the right
panel of Figure 6.11. Compare this with the right panel of Figure 14.5, which shows *&" 514
that the Gibbs sampler is not suitable for this problem.

2 5 8 MARKOV CHAIN MONTE CARLO

Figure 6.11 Left panel: plot of the two-humps density. Right panel: empirical
distribution using 103 steps of the multiple-try Metropolis-Hastings algorithm with M = 102

proposal points. The initial point is the origin.

%multiple_try.m
T=10~3;M=100; ’/, set up parameters
sigma=5; lam=12;
7, define target pdf
f=@(x)exp(-(x(l)~2+x(2)~2+(x(l)*x(2))-2-

X=[0,0]; 7. X_0
data=nan(T,2); count=0;
for t=l:T

'/. step 1
Y=repmat(X,M,l)+randn(M,2)*sigma;
7. step 2
for i=l:M

p(i)=f(Y(i,:));
end
Sum_p=sum(p);p=p/Sum_p;
[dummy,J]=histc(rand,[0,cumsum(p)])
7. step 3

-2*lam*x(l)*x(2))/2);

Z=repmat(Y(J,:),M-1,l)+randn(M-l,2)*sigma;
Z(M,:)=X;
% step 4
for i=l:M

w(i)=f(Z(i,:));
end
if rand<min(Sum_p/sum(w),1)

X=Y(J,:); count=count+l;
end
data(t,:)=X;

end
count/T '/, acceptance rate estimate
plot(data(:,1),data(:,2),’.’)

SPECIALIZED SAMPLERS 2 5 9

6.3.5 Auxiliary Variable Methods

Auxil iary variable m e t h o d s form a general class of methods in computational
statistics that exploit the fact that every density / (x) can be viewed as a marginal
density:

/(x) = y/(x,y)dy,

where / (x , y) is the joint density of random variables X and Y . Here, Y is called
an auxiliary or latent variable. The vector (X, Y) is said to be an augmented
version of X. The auxiliary variable Y may be a natural part of a statistical model
with hidden or unobserved data. However, in general Y is an artificially introduced
variable that has no natural interpretation within the statistical model (as given by
/ (x)) , and is used purely as a computational device. One of the earliest auxiliary
variable methods is the expectat ion-maximizat ion (EM) method for likelihood
optimization [51]. In the EM algorithm the random variables X are augmented by
hidden or unobserved variables Y to obtain the so-called completed log-likelihood;
see Section D.7 for a discussion. The idea of introducing auxiliary variables to make "S" 711
statistical inference easier is also known under the name data augmentat ion.

Another example of data augmentation is the composition method of Sec-
tion 3.1.2.6. Namely, suppose we want to sample from the mixture pdf "3" 53

K

/ (χ) = J2Pifi(x) ■

To simplify sampling from / , let Y be the discrete random variable taking values
in { 1 , . . . , K} with probabilities

P(Y = y)=Py, y = l,...,K,

and consider sampling from the joint density f(x,y) = pyfy(x): first draw Y ac-
cording to {py} and then sample X conditional on y = y; that is, sample from
fy(x)- By simply ignoring Y we obtain a sample from the marginal density f(x).

The auxiliary variable technique is usually specific to the setting in which it is
applied and there are no general rules for a successful design of auxiliary variables
[38]. The following examples illustrate the idea.

■ EXAMPLE 6.10 (Bayesian Analys is of the Probit Model)

The probit regression model is an alternative to the logit model given in Example
6.2. The only difference is that in the probit model the Bernoulli success probabil-
ities {pi} take the form pi = Φ (x^/3), where Φ is the cdf of the standard normal
distribution. Thus, the Bayesian model can be summarized as:

. Prior: f(ß) ce exp (-±(/3 - ß^V^iß - ß0)), ß G Rk.

. Likelihood: / (y | ß) = Π ? = 1 pf (1 - ft)1""', Ρί = Φ(χ[β).

While the random walk sampler (Algorithm 6.1.2) can be easily applied here
to sample from the posterior, a more efficient approach is to introduce the auxil-
iary vector y* = (Î/J , . . . , y^)T such that , given β, {y*} ~ i i d N(xjß, 1). Then, the

2 6 0 MARKOV CHAIN MONTE CARLO

response variables can be written as j/j = l^y->0y and

f(ß,y'\y)^f(ß)f(y*\ß)f(y\y*,ß)

oc
(υ' -*> ß)

e~ 2 (l { y ! = 1 } I { y . > 0 } + I { ? / , = o } I {y,=o} Hv'^o})
i = l

Thus, to sample from the posterior f(ß | y) we can apply a grouped or blocked
Gibbs sampler (Algorithm 6.3) to the joint density / (/3 , y* | y) to obtain a sample
{(ßi,y*)} and then ignore the {y*} variables. Each iteration of the grouped Gibbs
sampler consists of two parts. First, sample from the conditional pdf

(ν*-χ> ßY

/G9|y*,y)a/03)rïe-
i = l

which corresponds to a Ν(μ, Σ) distribution with Σ = (V^~ + Χ Τ Χ) _ 1 and
μ = T<{Volß0 + X T y *) · Second, sample from / (y * \ß,y) = Y\J(y*\ß,y) with
truncated normal marginal pdfs:

e * ï ^ o } , l f 2/» = 0 .

The following MATLAB code implements this procedure using an artificial data
set. Although for k = 3 this is not strictly necessary, the code computes the
Cholesky decomposition of the 3 x 3 matrix V ^ 1 + X T X = Σ - 1 to avoid using the
numerically inferior inv.m function. Note that we arbitrarily set VQ = 100diag(l) ,
that is, VQ is a diagonal matrix with diagonal entries equal to 100.

°/«probit_model .m
c l e a r a l l . c l c
n=5000; °/B number of d a t a p o i n t s (y _ l , . . . , y _ n)
k=3; °/0 number of exp lana to ry v a r i a b l e s
% g e n e r a t e a r t i f i c i a l d a t a s e t
r a n d n O s e e d ' , 12345); r a n d C s e e d ' , 67890);
t r u e b e t a = [1 - 5 . 5 1] ' ;
X = [o n e s (n . l) r a n d n (n , k - l) * 0 . 1] ; °/„ des ign ma t r ix
Y = b i n o r n d d . n o r m c d f (X*t ruebe ta)) ;
b o = z e r o s (k , 1) ; % we s e t Vo=100*eye(k);
I l= f ind (Y==l) ; Io=find(Y==0);
Y_s t a r= randn(n ,1) ;
°/0compute the Cholesky decomp. to avoid using inv.m
L=chol(eye(k)/100+X’*X);
T=10~4; data=nan(T,k) ; °/,allocate memory
for t=l:T

7, sample beta given Y~*
b=L\(L’\(bo/100+X’*Y_star))+L\randn(k,1);
°/0 sample Y~* given beta
M=X*b;
Y_star(Il)=normt(M(Il),l,0,inf);

SPECIALIZED SAMPLERS 2 6 1

Y _ s t a r (I o) = n o r m t (M (I o) , l , - i n f , 0) ;
d a t a (t , :) = b ' ;

end
b_hat=mean(data)
Cov_hat=cov(data)

The code uses the normt.m function from Example 3.6. The posterior mean "S* 51
E[/3 | y] and covariance Cov(/3 | y) are estimated as

_____ / 0.993 \ / 0.0007 -0.0028 0.0007 \
E_/3Jy] = -5.4186 , CcMßJy) = -0.0028 0.0643 -0.0051 .

\ 1.143 / \ 0.0007 -0.0051 0.0469 /

Compare this with the true value of ß = (1, —5.5,1

■ E X A M P L E 6.11 (Slice S a m p l e r)

Suppose we wish to generate samples from the pdf

,τ

/(χ) = &Π^(χ)' x € j f ' (6·14)
fc=l

where b is a known or unknown constant, and the {pk} are known positive functions
— not necessarily densities. Introduce the auxiliary variables y = (j/i, · ■ ·, ym) such
that the joint density of y and x is given by

m

/ (x > y) « Π :{o<î/fc<pfc(x)} · (6 · 1 5)
k=l

In this way, given x, each j/i has uniform density on the interval [0,p/t(x)], and
the marginal density J / (x , y) dy is equal to the target density (6.14). In addition,
note that all {yt} are independent. The idea of the slice s a m p l e r [59] is to apply
a grouped Gibbs sampler on the augmented space by iteratively sampling from the
conditional densities / (x | y) and / (y | x) .

A l g o r i t h m 6.11 (Slice S a m p l e r) Let / (x) be of the form (6.14). Initialize with
X i € 1 " and t = 1.

1. Generate Y from the conditional density / (y | X t) ; that is, for k = 1 , . . . , m
let Yk = Ukpk(Xt), where Uu...,Um - i i d U(0,1).

2. Generate X t + i from the conditional density / (x | Y) ; that is, draw Xt+i uni-
formly from the set {x : Pfc(x) ^ Yk, fc = 1 , . . . , m} Π X'.

3. Stop if a stopping criterion is met; otherwise, set t = t + 1 and repeat from
Step 2.

While sampling from / (y | x) is relatively easy, generating random variables from
the conditional pdf / (x | y) can be a challenging task [59].

To illustrate the algorithm, we consider sampling from a truncated gamma den-
sity. Note that generation from the gamma distribution (Section 4.2.6) is a non- " ^ 113

2 6 2 MARKOV CHAIN MONTE CARLO

trivial task. Algorithm 4.33 requires the generation of one uniform and one normal
random variable and can be quite inefficient in cases where the aim is to obtain
samples from the truncated gamma density on an interval [a, b\. The slice sampler
provides an alternative (approximate) method for sampling from the truncated
gamma density, which is easy to code and requires the generation of two uniform
random variables. Here the target is given by:

f(x) oc a;""1 e" a > 1, x € [a, b]

and we use the slice sampler with p\(x) = xa~l and P2(x) = e~Xx. Suppose that at
iteration t, Xt = z, and U\ and u^ have been obtained in Step 1. Then, in Step 2,
Xt+i is drawn uniformly from the set

Pi(x) . P2Jx) .
x : — — ^ MI, — r T > w2

Pi(z) Vi\z)
i n [a, b],

which implies that the interval from which to sample is such that

: < z uf 1, a > ^ x ζ min < z — , b> , α > 1, λ > 0 .

This leads to the MATLAB implementation below, which also plots a kernel density
319 estimate using the function kde.m from Section 8.5.

Figure 6.12 depicts the kernel density estimate (restricted on the interval [1,6]),
along with the true pdf (solid line). We see that the two are in close agreement.

%slice_sampler.m
lam=l;alpha=2; a=l;b=6;
x=2; T=10~4; data=nan(T,1);
for t=l:T

u=rand(l,2);
Up=min(x-log(u(2))/lam,b);
Lo=max(x*u(l)~(l/(alpha-l)),a);
x=rand*(Up-Lo)+Lo;
data(t)=x;

end
°/0 plot density estimate and compare with true one
[bandwidth,density,xmesh]=kde(data,2~13,a,b);
plot(xmesh,density),hold on
C=gamcdf(b,alpha,1/lam)-gamcdf(a,alpha,1/lam);
plot(xmesh,gampdf(xmesh,alpha,1/lam)/C,’r’)

SPECIALIZED SAMPLERS 2 6 3

Figure 6.12 True density (solid line) and kernel density estimate (dashed line) of samples
produced by the slice sampler.

For various applications and extensions of the slice sampler see [12, 56, 68].
In particular, Roberts and Rosenthal [68] propose a version of the slice sampler
suitable for the frequently used class of log-concave densities. Convergence results ·®° 63
for the slice sampler are given in [57, 67]. In particular, [67] establishes geometric
ergodicity under appropriate assumptions and derives an upper bound for the total
variation distance between the sampling and the target distributions.

■ EXAMPLE 6.12 (Pot t s Model)

Let x = (xi,..., xj) be a vector with each x,; G { 1 , . . . , K} for some integer K > 2,
and let SC = { 1 , . . . , K}J be the set of all such vectors. Suppose we wish to generate
random vectors from the discrete multivariate Bo l t zmann pdf

e--E(x)
/ (x) = — g - , ^ f , (6.16)

where Z is a normalization constant called the partit ion function, and E is the
so-called energy function defined as

Ε(χ) = -βΣψίμ{Χί=χ.} + ^Σψί3, β>0, (6.17)
i<3 i<3

with tpij a given J x J symmetric matrix containing only zeros and ones. The
Boltzmann pdf arises in Bayesian variable selection and spatial statistics [60]. In
particular, it arises in the P o t t s model — a model in statistical mechanics for
the interaction of idealized magnets located on a d-dimensional lattice [21]. In the
basic two-dimensional case we have a lattice { 1 , . . . , n} x { 1 , . . . , n} with J = n2

spatial positions (sites). Each of the n2 sites has four nearest neighbors, with the
exception of the boundary sites, which have either two or three nearest neighbors;
see Figure 6.13.

2 6 4 MARKOV CHAIN MONTE CARLO

Figure 6.13 A lattice with J = 52 = 25 sites. The boundary site 1 has two neighbors
(dark sites) and boundary site 15 has three neighbors.

The symmetric matrix (ipij) is used to indicate whether sites i and j on the nxn
lattice are neighbors:

J 1 if i and j are neighbors,

[0 otherwise.

Let { 1 , . . . , J } with J = n2 be the enumeration of all the sites. To each site we
can assign a color Xi out of K possible colors. Then, the configuration of the
lattice is described by the vector x = (x\,..., xj). The case K = 2 gives the Ising
mode l (see, for example, [21]), which has 2J — 2" possible configurations. In the
Ising model it is common to write the configuration and the energy E in terms of
variables s — (s i , . . . , s„2), where Si = 2 Ι ^ . = 1 } — 1 for all i. The energy (6.17) can
then be written in terms of s as

where <-»■ indicates that the summation is taken over neighboring sites (i,j).
By generating random configurations from / (x) one can estimate quantities of

interest such as the partition function Z and the mean value EfEÇX.). Unfortu-
nately, none of the techniques in Chapter 3 can be easily applied to sample from
/ (x) . Thus, one has to resort to MCMC.

We now show how to generate a sample from the target pdf / (x) in (6.16) using
the auxiliary variable method of Swendsen and Wang [26, 38, 76]. First, observe
that the target density is of the form (6.14):

i<j

Second, define the auxiliary random variables Yij, 1 ^ i < j ^ J such that the joint
pdf of X and Y is given by

/(x,y)aI]l{0<!/ i i<e
W y l 1^ *>}.

i<j

SPECIALIZED SAMPLERS 2 6 5

In this way, given x, the variables y^ are independent and uniformly distributed
on the interval

(O . e " * " 1 « * ' ^) ,

and the marginal density f / (x , y) dy is equal to the target pdf / (x) = e~EW /Z.
The idea now is to sample from the joint pdf / (x , y) via the Gibbs sampler on the
augmented space, by iteratively sampling from the conditional densities / (x | y)
and / (y | x) . Sampling from the conditional density / (y | x) is straightforward
since y^ ~ U(0, e 3 ^ ^ J ') for all i,j, independently. To sample from the condi-
tional density / (x | y) , note first that exp (ßipij l{Xi=x }) ^ 1 for all i < j . Second,
observe that for each i < j , either y^ G [0,1] or y^ G (Ι,β'3]· If yij ^ 1, then
the variables Xi and Xj are not constrained and each of them has a uniform dis-
tribution over the states Ι,.,.,Κ. Alternatively, if y^ > 1, then the variables Xi
and Xj are constrained to be in the same state, Xi = Xj, such that Xi (= Xj) is
uniformly distributed over 1,..., K. Thus, if all variables for which y^ > 1, i < j
are gathered into clusters, then the color of the sites within each cluster is the same
and uniformly distributed over all the K possible colors. The same holds for the
remaining variables, which can be viewed as clusters with a single member, see
Figure 6.14. This idea leads to the Swendsen-Wang algorithm.

Figure 6.14 Clustering on a two-dimensional lattice with n = 8 and two colors (K = 2).
Sites bonded with a line belong to a single cluster of one color. There are 17 single-site
clusters.

2 6 6 MARKOV CHAIN MONTE CARLO

Algor i thm 6.12 (Swendsen—Wang) For a given lattice with neighboring sites
characterized by matrix (4>ij), initialize by generating a configuration X = (X\,
. . . , Xj) with Xi uniformly distributed over 1 , . . . , K for all i. Then, iterate the
following steps.

1. Given X, generate Yi:j ~ U (θ , e ß l p i j : i ^ = ^ > j for all 1 ^ i < j < J. Set

Bij = I{yy>i} for all i < j .

2. Given {B^}, generate X by clustering all the sites and choosing each cluster
color independently and uniformly from the K possible colors.

Note that in Step 2 we need only know the values of the Bernoulli variables
{Bij}. Thus, in Step 1 we can generate B^ ~ud Ber(l^xi=xj(l — e ~ ^ y)) , for
1 ^ i < j ^ J directly, instead of first generating {Yij} and then computing {B^}.

As a numerical example consider sampling on a two-dimensional lattice with
n = 20 and three colors {K = 3). We set 0 = 0.8. Figure 6.15 shows an outcome
from / after 40 steps of the Swendsen-Wang algorithm.

Figure 6.15 Configuration of X after 40 iterations of the Swendsen-Wang algorithm.

The algorithm is implemented in the following MATLAB code, which uses the
" ^ 155 functions f indneigh.m (given in Example 5.1) and mkclust .m (given after the

script below).

SPECIALIZED SAMPLERS 2 6 7

7« Potts.m
set(0,’RecursionLimit’,100000) ’/, used by clust.m
n = 20; 7, size of square lattice
N = 40; °/,number of Gibbs steps
nels =n*(5*n-4); % number of ones in psi_ij
beta =.8 ; 7.
a = zeros(l,nels); % preallocation of memory
b = zeros(l,nels);
c = zeros(l,nels);
k=0;
7»set up sparse Psi matrix
for i=l:n

for j=l:n
A = findneighCi,j,n); %index of the neighbors of site (i,j)
number_of_neigh = size(A,1);
for h=l : number _of_neigh '/, convert (i,j) to a linear index

a(k+h)=sub2ind([n;n],j,i);
b(k+h)=sub2ind([n;n] ,A(h,2) ,A(h,D) ;
c(k+h) = 1;

end

k = k+number_of_neigh;
end

end

Psi = sparse(a,b,c,n~2,n~2); % build adjacency matrix
K=3; % number of colors;
x = ceil(rand(l,n~2)*K) ; 7oinitial state
for iter=l:N

iter

7.step 1 of S-W
B=sparse([],[],[],n~2,n~2); % allocate for {B_ij}
for i=l:n~2

neighbors_of_i = find(Psi(i,:));
for k= neighbors_of_i

if i < k
B(i,k) = (rand < (1 - exp(-beta))*(x(i)==x(k)));
B(k,i) = B(i,k);

end
end

end

7.step 2 of S-W
[nclust.C] = mkclust(B) ;'/, given B, c lus ter s i t e s
lims = [0,find(~O] ; '/, t e l l s where the zeros are
csizes = diff (lims)-l; 7»cluster sizes
for k=l:nclust

xc = ceil(rand*K); % sample colors uniformly
for l=(lims(k)+l):(lims(k)+csizes(k))

2 6 8 MARKOV CHAIN MONTE CARLO

x(C(l)) = xc; °/0 assign color xc to the remaining sites
end

end
imagesc(reshape(x-l,n,n)) '/, plot the lattice and state of X
colormap gray
pause(.01)

end

function [nc,C] = mkclust(B)
°/,given the auxiliary variables {B.
"/�matrix B, this function clusters
Xoutput:
% nc - number of clusters
% C - gives the indexes of sites
% separated by zeroes;
n = size(B,1);
S = l:n;
nc = 0;

C = [];
while ~isempty(S)

i = min(S);
c = clust([i],i,B);
S = setdiff(S,c);
C = [C,c,0] ;
nc = nc+1;

end

function out= clust(c,i,A)
out = unique([c,i]);
for j=setdiff(find(A(i,:)),out)

out = sort(unique(clust(out,j

end

_ij} organized in the symmetric
the sites;

belonging to each cluster,

.A)));

Generalizations of the Swendsen-Wang algorithm are given in [3, 4]. The au-
thors apply a generalized Swendsen-Wang algorithm to arbitrary probability den-
sities defined on graph partitions. The primary focus is on image analysis prob-
lems, for which the authors provide numerical results showing that their generalized
Swendsen-Wang algorithm is at least two orders of magnitude faster in terms of
CPU time than the Gibbs sampler. Convergence results for the Swendsen-Wang
algorithm are discussed in [78], where sharp bounds for the mixing time for various
values of ß are provided.

SPECIALIZED SAMPLERS 2 6 9

6.3.6 Reversible Jump Sampler

So far, we have assumed that the dimension of the multivariate random variables
Χ ο , Χ ι , . . . generated by an MCMC algorithm remains the same across iterations.
Reversible j u m p samplers [34] are MCMC algorithms specifically designed to
sample from target spaces that contain vectors of different dimensions. This often
occurs in Bayesian inference when different models for a given data set are consid-
ered. For example, suppose that we are given data z and have a countable set of
possible models { 1 , 2 , 3 , . . . , M} for the data. Suppose each model is characterized
by a parameter vector ß(m> = (/ 3 1 ; . . . , ßm) of dimension m such that:

• The prior distribution over the set of models is given by f(m), m = 1 , . . . , M.

• The prior distribution of ß^m\ given model m, is f(ß^m' | TO).

• The likelihood of the data, given model m with parameter ßm\ is
/ (z | / 3 (m) , m) .

In order to determine the most plausible model and draw inference for the corre-
sponding vector of parameters, we wish to generate random variables of different
dimensions from the posterior density

f(ß{m\m | z) cc / (z | ß(m\ m) f(ß™ \ m)f{m) .

In the general setting (not necessarily Bayesian), we wish to sample from a
joint density / (x , m), where dim(x) = m. The reversible jump sampler jumps be-
tween spaces of different dimensions according to a set of allowed jumps (also called
moves). If we allow only jumps between vectors that differ in dimension by at most
1, then possible jumps are: x i —> x'1; x i —> (χ.Ί,χ'2), (xi,X2) —* x'i· The reversible
jump sampler may be viewed as a generalization of the Metropolis-Hastings sam-
pler in which a move is proposed from the density q(n, y | x) = q(n | x) q(y \ x, n) .
Thus, given the current state x, a new dimension n is sampled from q(n \ x) , where
typically q(n \ x) = q(n\m); that is, q depends on the current dimension only.
Given the new dimension n, a new state y with dim(y) = n is selected according
to transition function q(y \ x, n) . This gives the following algorithm.

Algori thm 6.13 (Reversible J u m p Sampler) Given the current state Xi with
dim(X t) = m, iterate the following steps.

1. Generate n ~ q{n\m).

2. Generate Y ~ ç(y | X t , n) with dim(Y) = n.

3. Generate U' ~ U(0,1) and deliver

X t + 1 = i Y tf^^'Y) (6.19)
X t otherwise ,

where
, \ · ί fi.y;n)q(m\n)q(x\y,m)

a(x.,y) = mini — - - — — — — ; r, 1
{f{^,m)q(n \m)q(y x , n)

(6.20)

2 7 0 MARKOV CHAIN MONTE CARLO

A difficulty in applying the reversible jump sampler is the selection of an appropriate
transition density q(y | x, n) for the generation of the transdimensional proposal Y .
After sampling a new dimension from q{n \ m), a common way to construct the
transition x —> y is to generate auxiliary variables u and v such that (y, v) matches
the dimension of (x, u) :

n + dim(v) = m + dim(u) .

Suppose that for the move x —> y we draw U according to some density g(u | n, x)
and set

(Y , V) = 0 (X , U)

for some differentiable bijective transformation φ depending on m and n. Further,
assume that the reverse move, y —» x, requires generation of V ~ <?(v | m, y) . By

620 (A.33) we can formally write the joint density of (Y, V) in terms of the joint density
of (X , U) (suppressing n and m in the notation):

/ \ \ (λ S (u | x) <7(x)
£f(v | y) <?(y) = i 1 ,

de t (J^(x ,u))

where | det(J^(x, u)) | is the absolute value of the determinant of the matrix of
Jacobi of φ at (x, u) . Rearranging the last equation and using ç(x|y)<z(y) =
q(y | x) q(x) gives:

<?(*|y) _ ?(x) __ # (v ly) det(J^(x,u)) .
<?(y I χ) a(y) i?(u I χ)

Thus, the acceptance rate (6.20) can be written as [34, 35]:

, x . [/ (y , n) Q{m | n) g(v | m, y) | ι
a (x , y) = m m ^ — — — : — — — det (J^(x ,u)) , 1

The following simple example is adapted from [34] and illustrates the workings
of the algorithm.

■ EXAMPLE 6.13 (Model Choice in Regression)

Suppose the data z = (zi,..., ZN) is the outcome of independent random variables
{Zi} of the form

m— 1

Zi=Y^ßka
k
i+£i, e i ~ N (0 , l) , i = l,...,N, (6.21)

k=0

where a i , . . . , ajv are known variables, and the parameters m G {1,2,3} and ß^m' =
(ßo, ■ ■ ■ ,ßm-i) are unknown. Taking uniform (that is, constant) priors for m and
ß gives the posterior density

f(ß^, m I z) a exp - - ^ (z, - ^ ßk at)) . (6.22)

SPECIALIZED SAMPLERS 2 7 1

The objective is to draw from the posterior to obtain information about the param-
eters ß-m' and also about which model (expressed by m) is the most appropriate.

Figure 6.16 shows data z simulated from (6.21) with N = 101, o, = (i —1)/20, i =
1 , . . . , 101, and (βο,βι,βζ) = (1,0.3,0.15). From the scatter plot it is not clear if
a linear model (m = 2) or a quadratic model (m = 3) is more appropriate. To
assess the appropriate model denote x = ß^m' and run a reversible jump sampler
by selecting a dimension n € {1, 2, 3} at random and then proposing a move x —> y
according to the n-dimensional N(0,7) distribution with pdf q(y | x, n) = q(y \ n).

In other words, we have the following iterative procedure:

Algori thm 6.14 (Reversible J u m p Sampler for Regression)

1. Given the current state X t with dim(X t) = m, generate n ~ DU(1,3), that
is, choose n e {1,2,3} with equal probability.

2. Generate Y ~ N(0, 7), where dim(Y) = n.

3. Generate U' ~ U(0,1) and deliver

Y if 77' < min i / (Y ' " ' z) g(Xt 'm) l l ij υ ^ m i n | / (X t m | z) q (Y | n) , i j - ,

Xt otherwise

where q(y | n) is the pdf of Y.

Figure 6.16 Regression data and fitted models for m = 2 and m = 3 (linear and
quadratic).

The above reversible jump sampler is implemented in the code that follows. We
ran the chain for T = 105 steps and produced 1008 two-dimensional vectors β^ ' and
98984 three-dimensional vectors /3' '. This gives posterior probabilities of approxi-
mately 0.0101 and 0.9898 for model m = 2 and m = 3, respectively. The posterior

2 7 2 MARKOV CHAIN MONTE CARLO

probability for the constant model is negligible. This indicates that the quadratic
model has the best fit. The regression parameters ß^"1' are estimated via the sam-
ple means of the { X t } , for m = 2 or 3, and are (0.48,1.03) and (1.49, - 0 . 0 1 , 0.21).
The corresponding regression curves are depicted in Figure 6.16.

°/0Reversible_jump.m
r a n d n O s t a t e ' ,4)
a = (0 : 1 0 0) ' / 2 0 ;
b = [l , 0 . 3 , 0 . 1 5] ;
A=[a.~0,a,a.~2]; % coefficient matrix
z=A*b’+randn(101,1) ; ’/, generate data
% posterior density
f=S(beta)exp(-0.5*norm(z-A(:,1 : length(beta))*beta’)"2);
°/0 proposal
g=S(u)(exp(-0.5*norm(u)~2)/(2*pi)~(length(u)IT));
m=l;x=randn(l,m) ; T=10~5; ’/, initialize
data=nan(T,l); beta0=0; betal=beta0; beta2=betal;
for t=l:T

n=ceil(rand*3);
y=randn(l,n) ; % make proposal
if rand<min(f(y)/f(x)*g(x)/g(y),1)

x=y; m=n; '/, accept or reject proposal
end
data(t)=m;
°l, determine parameters for each ’m’
if m==l

beta0=beta0+x;
elseif m==2

betal=betal+x;
elseif m==3

beta2=beta2+x;
end

end
beta0=beta0/sum(data==l);
betal=betal/sum(data==2);
beta2=beta2/sum(data==3);
7• plot models for each, ’m’
plot(a,z,’.’), hold on
y2 = betal(l)*A(:,l) + betal(2)*A(:,2);

y3 = beta2(l)*A(:,l) + beta2(2)*A(:,2) + beta2(3)*A(:,3);
plot(a,y2,’r’);
plot(a,y3,’b’);

f i g u r e (2) , p rob=[sum(data==l) , sum(data==2) , sum(data==3)] /T;
s t em(prob) , x l i m ([0 . 8 , 3 . 5]) °h p l o t p o s t e r i o r model p r o b a b i l i t i e s

More general constructions of proposals are given in [11]. There, auxiliary vari-
ables are used to make all models part of a maximal-dimensional space. The inclu-

IMPLEMENTATION ISSUES 2 7 3

sion of the auxiliary variables aims to make the sampling fixed-dimensional, instead
of transdimensional. Applications to time series models are given in [27].

One of the difficulties in using the reversible jump sampler is assessment of
convergence. Various diagnostic tests for convergence are considered in [10, 28, 74].
Lunn et al. [48] use graphical models to help facilitate the implementation of the
reversible jump sampler.

The reversible jump sampler has successfully been used in combination with
sequential Monte Carlo methods [39, 40], where chains are run in parallel on spaces "3° 482
of different dimension.

6.4 IMPLEMENTATION ISSUES

Key issues when using MCMC are the following.

1. Stationarity: Determining the so-called burn-in period of the chain, that is,
the number of points in the sequence XQ, X\,..., Χχ that have to be discarded ·®° 226
before the chain is deemed to be in a stationary (steady-state) regime and
the dependence on the initial point XQ becomes irrelevant.

2. Iid sampling: Choosing the number of steps T that have to be used so that the
empirical distribution of XQ, X\,..., Χτ (possibly after some burn-in period)
provides a good approximation to the target pdf. A good approximation is
one that can provide (approximately) iid random variables via subsampling
or thinning of the chain X0,Xi,X2, ■. ■, for some large enough t*:

3. Convergence to average: Selecting the number of steps T needed for the er-
godic average (6.4) to converge to the true value EfH(X).

Typically, stationarity (Point 1) is much easier to achieve and is a necessary
condition for Points 2 and 3, which depend on how rapidly the chain converges
to its limiting distribution (also known as the mix ing speed). In other words,
a stationary chain does not guarantee the ability to generate iid random variables
from the target.

The problem of selecting the appropriate burn-in period and total number of
steps T is still not resolved satisfactorily. Most approaches perform statistical
hypothesis testing for the steady-state regime of the chain. Such tests are known
as conve rgence d iagnos t ics . All such tests are designed to detect nonstationary
behavior of the chain. But they cannot be used to establish whether the chain is in
fact stationary. In other words, if a chain passes a convergence diagnostic test, then
this should be considered a necessary but not sufficient condition that the chain is
actually in stationarity.

A simple and popular diagnostic is based on the covariance method described
in Section 8.3.1. Fast decay of the estimated autocovariance function {R(k)} is " ^ 309
desirable and is an indication of a well-mixing chain, as illustrated in Examples 6.1
and 8.5.

Another commonly used convergence diagnostics is the Gelman-Rubin test [10,
30, 33].

2 7 4 MARKOV CHAIN MONTE CARLO

Algor i thm 6.15 (Gelman—Rubin Convergence Diagnost ic)

1. Generate M independent chains of length T + D such that they are starting
from different points in the support of the density. Discard the first D steps
of the chains as burn-in and denote the remaining output of the chains by
Xn,...,XiTfori = l,...,M.

2. Select a statistic, say Hu = H{Xu), and compute:

1 T

row means: Hi, = — N^Hij ,

1 M

overall mean: H = — > Hi, ,
i - l

I M -
between chain variance: B = —- N f i / j . — H)2 ,

i=\

1 τ M

within chain variance: W = y / , (^ i j ~~ Hi,)2

j = l i = l

— T - 1
posterior variance: σ2 = ———W + B .

3. For a given T define the ratio rj· = | p . Monitor the sequence rr,rT+\, ■··,
and run the MCMC algorithm until r? is less than, say, 1.1.

The idea behind the test is that asymptotically σ2 and W must be equivalent,
but for a finite T the quantity σ2 overestimates the true variance Vary (if (X)) ,
while W underestimates it, see [29].

509 For another diagnostic based on to the Gelman-Rubin test, see Algorithm 14.7.

6.5 PERFECT SAMPLING

Suppose that we wish to generate a random variable X taking values in { 1 , . . . , m)
according to a discrete density f(i),i = l,...,m. The MCMC method generates
samples {Xt} that are only asymptotically distributed according to / :

lim Ρ(Χί = t) = f(i) .
t—>oo

Surprisingly, it is possible to use Markov chain methodology to generate samples
exactly distributed according to / . This methodology is called perfect sampling.

Propp and Wilson [63] proposed the following perfect sampling scheme. Let
{Xt} be a Markov chain with state space { l , . . . , m } , transition matrix P, and
stationary pdf / . We assume that {Xt} has a limiting and stationary distribution,
and, in particular, that it is aperiodic and irreducible. The idea of perfect sampling
is to identify a finite stopping time in the past, t = — T < 0, so that the statistical
properties of a chain started at t = —T and evolved forward in time to t = 0 are
the same as the properties of a chain started from infinitely long ago, t = - c o , and

PERFECT SAMPLING 275

c* t
-T -τ 0

Figure 6.17 All Markov chains have coalesced at time — r.

evolved forward in time to t = 0. Since the latter chain is in stationarity, so will
be the chain started from t = —T. Thus, we wish to generate a stopping time —T,
and states {Xt, t = 0 , - 1 , — 2 , . . . , Χ~τ} in such a way that XQ has pdf / . This is
done as follows.

First, given X-i, we can use Algorithm 5.6 to draw XQ from the m-point distri-
bution corresponding to the X_i-s t row of P. This can, for example, be done using
the inverse-transform method, which requires the generation of a random variable
UQ ~ U(0,1). In other words, Xo depends on X-i and UQ. Similarly, X _ i can
be generated from X_2 and U-\ ~ U(0,1). In general, for any negative time —t,
the random variable Xo depends on X-t and the independent random variables
[/_É+1,..., i/o ~iid U(0,1).

Second, consider starting m chains from every state 1 , . . . , m in the state space,
using the same random numbers U _ t + i = (U-t+i, · · · , U-2, U-±, UQ) to evolve the
chains. Thus, the chains are dependent, because they use common random vari-
ables.

Third, if two Markov chain paths coincide, or coalesce, at some time, then from
that time onwards, both paths will be identical. The paths are said to be coupled.
For example, in Figure 6.17 all the m paths have coalesced at time —r, and — τ
can be interpreted as the time at which the initial states of the chains have been
"forgotten".

Finally, Propp and Wilson show that with probability 1 there exists a finite
negative time —T such that all m paths will have coalesced before or at time 0. In
other words, there exists, with probability 1, a stopping time — T < 0 such that by
time 0 all m chains coupled by the common random variables \J-T+I have coalesced
into a single path (are coupled).

Since a chain started from t = - c o will be in one of the m possible states at
time t — —T, it follows that one of the m chains evolved forward in time from — T
is in stationarity. Moreover, since this stationary chain is coupled with all other
chains, by time ί = 0 all of the m coupled chains are distributed according to / at
time t = 0.

45

■a? 349

2 7 6 MARKOV CHAIN MONTE CARLO

To compute — T we can work backwards from t = 0, by first generating £/_i, and
checking if —T = —1. If this is not the case, generate L7_2 and check if — T = —2,
etc. This leads to the following algorithm [63], called coupling from the past.

Algor i thm 6.16 (Coupling From the Past)

1. Generate U0 ~ U(0,1). Set U 0 = U0. Set t = - 1 .

2. Generate m Markov chains, starting at t from each of the states l , . . . , m ,
using the same random vector Uj+i .

3. Check if all chains have coalesced before or at time 0. If so, return the common
value of the chains at time 0 and stop; otherwise, generate Ut ~ U(0,1), reset
U(= (Ut, U t + i) and t = t — 1, and repeat from Step 2.

Although coupling from the past returns an exact sample from the target / , the
algorithm has practical limitations. First, the technique is difficult to use for most
continuous simulation systems. Second, in many cases coupling from the past
requires a large number of iterations before coalescence occurs, that is, the stopping
time T may be too large. Finally, unless the sample space possesses the so-called
stochastic monotonicity property [24], evolving the Markov chains from all possible
states in the sample space is difficult due to large memory requirements.

Further Reading

Markov chain Monte Carlo is one of the principal tools of statistical computing and
Bayesian analysis. A comprehensive discussion of MCMC techniques can be found
in [65], and practical applications are discussed in [33]. For more details on the
use of MCMC in Bayesian analysis we refer to [29]. For an in-depth and rigorous
treatment of MCMC convergence results see [55]. An early paper on stationarity
detection in Markov chains, and closely related to perfect sampling is [2].

REFERENCES

1. D. J. Aldous and J. Fill. Reversible Markov chains and random walks on graphs.
Available at: http://www.stat.berkeley.edu/~aldous/RWG/book.html, 2002.

2. S. Asmussen, P. W. Glynn, and H. Thorisson. Stationary detection in the initial tran-
sient problem. ACM Transactions on Modeling and Computer Simulation, 2(2):130-
157, 1992.

3. A. Barbu and S.-C. Zhu. Generalizing Swendsen-Wang to sampling arbitrary poste-
rior probabilities. IEEE Transactions on Pattern Analysis and Machine Intelligence,
27(8):1239-1253, 2005.

4. A. Barbu and S.-C. Zhu. Generalizing Swendsen-Wang for image analysis. Journal
of Computational and Graphical Statistics, 16(4):877-900, 2007.

5. S. Baumert, A. Ghate, S. Kiatsupaibul, Y. Shen, R. L. Smith, and Z. B. Zabinsky.
Discrete hit-and-run for sampling points from arbitrary distributions over subsets of
integer hyperrectangles. Operations Research, 57(3):727-739, 2009.

REFERENCES 277

6. J. O. Berger and M.-H. Chen. Predicting retirement pat terns: Prediction for a multi-
nomial distribution with constrained parameter space. Journal of the Royal Statistical
Society, Series D, 42(4):427-443, 1993.

7. C. G. E. Boender, R. J. Caron, J. F . McDonald, A. H. G. Rinnooy Kan, H. E.
Romeijn, R. L. Smith, J. Teigen, and A. C. F . Vorst. Shake-and-bake algorithms
for generating uniform points on the boundary of bounded polyhedra. Operations
Research, 39(6):945-954, 1991.

8. Z. I. Botev. The Generalized Splitting method for Combinatorial Counting and Static
Rare-Event Probability Estimation. P h D thesis, University of Queensland, available
at: h t tp : / / e space . l ibrary .uq .edu .au /v iew/UQ:198531 , 2009.

9. Z. I. Botev and D. P. Kroese. The generalized cross entropy method, with applications
to probability density estimation. Methodology and Computing in Applied Probability,
DOI: 10.1007/sll009-009-9133-7, 2009.

10. S. P. Brooks and P. Giudici. Markov chain Monte Carlo convergence assessment
via two-way analysis of variance. Journal of Computational and Graphical Statistics,
9(2):266-285, 2000.

11. S. P. Brooks, P. Giudici, and A. Philippe. Efficient construction of reversible j ump
Markov chain Monte Carlo proposal distributions. Journal of the Royal Statistical
Society, Series B, 65(l) :3-39, 2003.

12. G. Casella, K. L. Mengersen, C. P. Robert, and D. M. Tit terington. Perfect sam-
plers for mixtures of distributions. Journal of the Royal Statistical Society, Series B,
64(4):777-790, 2002.

13. M.-H. Chen and J. J. Deely. Bayesian analysis for a constrained linear multiple
regression problem for predicting the new crop of apples. Journal of Agricultural,
Biological, and Environmental Statistics, l(4):467-489, 1996.

14. M.-H. Chen and B. Schmeiser. Performance of the Gibbs, hit-and-run, and Metropolis
samplers. Journal of Computational and Graphical Statistics, 2(3):251-272, 1993.

15. M.-H. Chen and B. Schmeiser. Toward black-box sampling: A random-direction
interior-point Markov chain approach. Journal of Computational and Graphical
Statistics, 7 (l) : l - 22 , 1998.

16. M.-H. Chen and B. W. Schmeiser. General hit-and-run Monte Carlo sampling for
evaluating multidimensional integrals. Operations Research Letters, 19(4):161-169,
1996.

17. M.-H. Chen, Q. M. Shao, and J. G. Ibrahim. Monte Carlo Methods in Bayesian
Computation. Springer-Verlag, New York, 2000.

18. S. Chib. Marginal likelihood from the Gibbs output . Journal of the American Statis-
tical Association, 90(432):1313-1321, 1995.

19. S. Chib and I. Jeliazkov. Marginal likelihood from the Metropolis-Hastings output .
Journal of the American Statistical Association, 96(453):270-281, 2001.

20. R. V. Craiu and C. Lemieux. Acceleration of the multiple-try Metropolis algorithm
using anti thetic and stratified sampling. Statistics and Computing, 17(2):109-120,
2007.

21. N. A. C. Cressie. Statistics for Spatial Data. John Wiley & Sons, New York, second
edition, 1993.

22. P. Damien and S. G. Walker. Sampling t runcated normal, beta, and gamma densities.
Journal of Computational and Graphical Statistics, 10(2):206-215, 1998.

23. P. Diaconis and S. Holmes. Three examples of Monte Carlo Markov chains: At the
interface between statistical computing, computer science, and statistical mechanics.
Discrete Probability and Algorithms (Aldous et al. editors), pages 43-56, 1995.

http://espace.library.uq.edu.au/view/UQ:198531

2 7 8 MARKOV CHAIN MONTE CARLO

24. P. Djuric, Y. Huang, and T. Ghirmai. Perfect sampling: a review and applications to
signal processing. IEEE Transactions on Signal Processing, 50(2):345-356, 2002.

25. A. J. Dobson and A. G. Barnet t . Introduction to Generalized Linear Models. Chap-
man & Hall, Boca Raton, FL, third edition, 2008.

26. R. G. Edwards and A. D. Sokal. Generalization of the Fortuin-Kasteleyn-Swendsen-
Wang representation and Monte Carlo algorithm. Physical Review D, 38(6):2009-
2012, 1988.

27. R. S. Ehlers and S. P. Brooks. Adaptive proposal construction for reversible j ump
MCMC. Scandinavian Journal of Statistics, 35(l):677-690, 2003.

28. Y. Fan, G. W. Peters, and S. A. Sisson. Automating and evaluating reversible jump
MCMC proposal distributions. Statistics and Computing, 19(4):409-421, 2009.

29. A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data Analysis.
Chapman & Hall, Boca Raton, FL, second edition, 2003.

30. A. Gelman and D. Rubin. Inference from iterative simulation using multiple sequences
(with discussion). Statistical Science, 7(2):457-511, 1992.

31. S. Geman and D. Geman. Stochastic relaxation, Gibbs distribution and the Bayesian
restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 6(6):721-741, 1984.

32. W. R. Gilks, N. G. Best, and K. K. C. Tan. Adaptive rejection Metropolis sampling
within Gibbs sampling. Journal of the Royal Statistical Society, Series C, 44(4) :455-
472, 1995.

33. W. R. Gilks, S. Richardson, and D. J. Spiegelhalter. Markov Chain Monte Carlo in
Practice. Chapman & Hall, New York, 1996.

34. P. J. Green. Reversible j ump Markov chain Monte Carlo computat ion and Bayesian
model determination. Biometrika, 82(4):711-732, 1995.

35. P. J. Green. Highly Structured Stochastic Systems, volume 35, chapter : Trans-
Dimensional Markov Chain Monte Carlo, pages 179-198. Oxford University Press,
London, 2003.

36. J. Hammersley and M. Clifford. Markov fields on finite graphs and lattices. Avail-
able at: h t t p : / /www.s t a t s l ab . cam.ac .uk /~g rg /books /hami i i f e s t / han im-c l i f f . pd f .
Unpublished manuscript, 1970.

37. W. K. Hastings. Monte Carlo sampling methods using Markov chains and their ap-
plications. Biometrika, 57(1):92-109, 1970.

38. D. M. Higdon. Auxiliary variable methods for Markov chain Monte Carlo with appli-
cations. Journal of the American Statistical Association, 93(442):585-595, 1998.

39. A. Jasra, A. Doucet, D. A. Stephens, and C. C. Holmes. Interacting sequential Monte
Carlo samplers for trans-dimensional simulation. Computational Statistics and Data
Analysis, 52(4): 1765-1791, 2008.

40. A. Jasra, D. A. Stephens, and C. C. Holmes. Population-based reversible jump Markov
chain Monte Carlo. Biometrika, 94(4):787-807, 2007.

41. J. M. Keith, D. P. Kroese, and D. Bryant. A generalized Markov chain sampler.
Methodology and Computing in Applied Probability, 6(l) :29-53, 2004.

42. J. S. Liu. Metropolized Gibbs sampler: an improvement. Preprint , University of
Stanford, available at: www. fa s .ha rva rd . edu /~ jun l iu /TechRep t /96 fo lde r /mg ibbs .
ps , 1995.

43. J. S. Liu. Monte Carlo Strategies in Scientific Computing. Springer-Verlag, New
York, 2001.

REFERENCES 279

44. J. S. Liu, F . Liang, and W. H. Wong. The multiple-try method and local optimization
in Metropolis sampling. Journal of the American Statistical Association, 95(449):121-
134, 2000.

45. L. Lovâsz. Hit-and-run mixes fast. Mathematical Programming, 86(3):443-461, 1999.

46. L. Lovâsz and S. Vempala. Hit-and-run is fast and fun. Technical report , Microsoft
Research, MSR-TR-2003-05, 2003.

47. L. Lovâsz and S. Vempala. Hit-and-run from a corner. SIAM Journal of Computing,
35(4):985-1005, 2006.

48. D. J. Lunn, N. Best, and J. C. Whit taker . Generic reversible j ump MCMC using
graphical models. Statistics and Computing, 19(4):395-408, 2009.

49. R. E. McCulloch, N. G. Poison, and P. E. Rossi. A Bayesian analysis of the multi-
nomial probit model with fully identified parameters. Journal of Econometrics,
99(1):173-193, 2000.

50. R. E. McCulloch and P. E. Rossi. An exact likelihood analysis of the multinomial
probit model. Journal of Econometrics, 64(l&2):207-240, 1994.

51. G. J. McLachlan and T. Krishnan. The EM Algorithm and Extensions. John Wiley
& Sons, Hoboken, New Jersey, second edition, 2008.

52. K. Mengersen and R. Tweedie. Rates of convergence of the Hastings and Metropolis
algorithms. Annals of Statistics, 24(1):101-121, 1996.

53. H. O. Mete, Y. Shen, Z. B. Zabinsky, S. Kiatsupaibul, and R. L. Smith. Pa t t e rn dis-
crete and mixed hit-and-run for global optimization. Journal of Global Optimization,
DOI: 10.1007/sl0898-010-9534-8, 2010.

54. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller.
Equations of s tate calculations by fast computing machines. Journal of Chemical
Physics, 21(6):1087-1092, 1953.

55. S. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability. Cambridge
University Press, London, second edition, 2009.

56. A. Mira, J. M0ller, and G. 0 . Roberts. Perfect slice samplers. Journal of the Royal
Statistical Society, Series B, 63(3):593-606, 2001.

57. A. Mira and L. Tierney. Efficiency and convergence properties of slice samplers.
Scandinavian Journal of Statistics, 29(1):1-12, 2002.

58. P. Neal and G. O. Roberts. Optimal scaling for partially updating MCMC algorithms.
Annals of Applied Probability, 16(2):475-515, 2006.

59. R. Neal. Slice sampling (with discussion). Annals of Statistics, 31(3):705-767, 2003.

60. D. J. Nott and P. J. Green. Bayesian variable selection and the Swendsen-Wang
algorithm. Journal of Computational and Graphical Statistics, 13(1):141-157, 2004.

61. R. E. Pfiefer. Surface area inequalities for ellipsoids using Minkowski sums. Geome-
triae Dedicata, 28(2):171-179, 1988.

62. B. T. Polyak and E. N. Gryazina. Randomized methods based on new Monte
Carlo schemes for control and optimization. Annals of Operations Research, DOI:
10.1007/sl0479-009-0585-5, 2009.

63. J. G. Propp and D. B. Wilson. Exact sampling with coupled Markov chains and
applications to statistical mechanics. Random Structures and Algorithms, 9(1&2):223-
252, 1996.

64. C. P. Robert . Simulation of t runcated normal variables. Statistics and Computing,
5(2):121-125, 1995.

2 8 0 MARKOV CHAIN MONTE CARLO

65. C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer-Verlag, New
York, second edition, 2004.

66. G. O. Roberts and J. S. Rosenthal. Optimal scaling of discrete approximations to
Langevin diffusions. Journal of the Royal Statistical Society, Series B, 60(l):255-268,
1998.

67. G. O. Roberts and J. S. Rosenthal. Convergence of slice sampler Markov chains.
Journal of the Royal Statistical Society, Series B, 61(3):643-660, 1999.

68. G. O. Roberts and J. S. Rosenthal. The polar slice sampler. Stochastic Models,
18(2):257-280, 2002.

69. G. O. Roberts and S. Sahu. Updating schemes, correlation structure, blocking and
parameterization for the Gibbs sampler. Journal of the Royal Statistical Society,
Series B, 59(2):291-317, 1997.

70. G. O. Roberts and R. Tweedie. Exponential convergence for Langevin diffusions and
their discrete approximations. Bernoulli, 2(4):341-363, 1996.

71. H. E. Romeijn and R. L. Smith. Simulated annealing for constrained global optimiza-
tion. Journal of Global Optimization, 5(2):101-126, 1994.

72. S. M. Ross. Simulation. Academic Press, New York, third edition, 2002.

73. Y. Shen. Annealing Adaptive Search with Hit-and-Run Sampling Methods for Stochas-
tic Global Optimization Algorithms. PhD thesis, University of Washington, 2005.

74. S. A. Sisson and Y. Fan. A distance-based diagnostic for trans-dimensional Markov
chains. Statistics and Computing, 17(4):357-367, 2007.

75. R. L. Smith. Efficient Monte Carlo procedures for generating points uniformly dis-
tributed over bounded regions. Operations Research, 32(6):1296-1308, 1984.

76. R. H. Swendsen and J.-S. Wang. Nonuniversal critical dynamics in Monte Carlo
simulations. Physical Review Letters, 58(2):86-88, 1987.

77. W. Wang, A. Ghate, and Z. B. Zabinsky. Adaptive parameterized improved hit-and-
run for global optimization. Optimization Methods and Software, 24(4&5):569-594,
2009.

78. L. Yun. Mixing Time of the Swendsen-Wang Dynamics on the Complete Graph and
Trees. PhD thesis, University of California, Berkeley, 2009.

79. Z. B. Zabinsky, R. L. Smith, J. F. McDonald, H. E. Romeijn, and D. E. Kaufman. Im-
proving hit-and-run for global optimization. Journal of Global Optimization, 3(2):171-
192, 1993.

CHAPTER 7

DISCRETE EVENT SIMULATION

Monte Carlo simulation generally involves simple algorithms for computing numer-
ical quantities (expectations, probabilities) that are formulated in terms of basic
random objects (random vectors, stochastic processes). In this respect Monte Carlo
simulation differs from large-scale simulation modeling, in which the objective is
to understand the workings of a real-life system by imitating it as well as possible
on a computer. Applications are found in telecommunications, production schedul-
ing, traffic control, reliability and maintenance, military planning, and inventory
control, to mention but a few.

Despite their different levels of complexity and focus (computational versus mod-
eling), Monte Carlo and simulation methods are much the same, as they both in-
volve computer implementations of random experiments. As a result, most of the
concepts and statistical techniques in this book can be applied in a general sim-
ulation setting. On the other hand, large-scale simulation requires a higher level
of modeling and programming structure than Monte Carlo. The purpose of this
chapter is to provide a brief introduction to the most common aspects of computer
simulation and modeling, in particular with regard to discrete event systems.

7.1 SIMULATION MODELS

Simulation models aim to imitate the behavior of real-life systems. By a s y s t e m
we mean a collection of interacting entities or objects forming a complex whole.
As a concrete example, consider a post office. Here, arriving customers queue

Handbook of Monte Carlo Methods. By D. P. Kroese, T. Taimre, Z. I. Botev 281
Copyright © 2011 John Wiley & Sons, Inc.

282 DISCRETE EVENT SIMULATION

up at one of several counters where they wait to be served. After having been
served, the customers either leave the post office or reenter other queues to complete
additional transactions. The objects of this system are the customers, the servers,
and the queues. These objects are characterized by certain numerical attributes,
such as the numbers of available waiting places in the queues, the customer types
(high/low priority), the service times and arrival rates of customers, and so on.
The attributes and the interaction between the objects determine the behavior of
the system over time.

A first step in trying to better understand the workings of a real-life system is to
make a mathematical model for the system, which summarizes the essential parts
of the system in mathematical language, involving variables, parameters, formulas,
probability distributions, relations, diagrams, etc. In order to be useful, a model
must necessarily incorporate elements of realism and simplicity — two ideals that
are usually in conflict. On the one hand, the model should serve as a reasonably
close approximation to the real system and incorporate most of the important
aspects of the real system. On the other hand, the model must not be overly
complex so as to preclude its understanding and manipulation. When the model
is relatively simple, it may be possible to study it analytically; that is, closed-form
expressions may be available that describe the behavior of certain aspects of the
system. For more complex systems, analytical approaches are usually much more
difficult or impossible to realize. Instead the system is often analyzed numerically
through computer simulation, with the assumption that the simulated system will
bear enough resemblance to the real system to draw valid conclusions about the
latter. The situation is schematized in Figure 7.1.

Real-World
System -+> Mathematical

Model
w
W

Simulation
Model

Analysis

Figure 7.1 Simulation modeling and analysis.

Going back to our post office example, a standard mathematical model for such
service systems is that of a queueing s y s t e m — an example is depicted in Fig-
ure 7.2. In this model, customers arrive at random times, wait in queues, are
processed by servers within random periods of time, and randomly move between
queues, just as in the real-life system. However, unlike real life, the arrival and
service processes are described by precise probability laws. Likewise, the routing
protocol (which queue to go to next) and service discipline (the way in which clients
are served, for example, first-in-first-out) follow specific rules.

Figure 7.2 A queueing system with different types of customers.

DISCRETE EVENT SYSTEMS 2 8 3

It is possible to analyze various aspects of a queueing system analytically, under
certain simplifying conditions; indeed, much research has gone into this area — see,
for example, [1, 9, 18]. However, many performance measures of queueing systems,
even of very simple ones, can only be derived via simulation.

A queueing system is a typical example of a discrete event sys tem. These are
systems where the system's "state" is changed at discrete points in time through the
occurrence of certain events. For example, in the queueing system the state could
be the numbers of customers in various queues, which changes whenever an arrival
or departure event takes place. In practice such systems are stochastic and dynamic
in nature, as they typically involve random variables and evolve over time. Discrete
event systems can be readily simulated on a computer by specifying precisely when
events occur and how they affect the system state, the details of which form the
basis for the remainder of this chapter.

7.2 DISCRETE EVENT SYSTEMS

Discrete event systems model the behavior of a wide variety of systems in engineer-
ing and operations research. Applications can be found, for example, in production
scheduling, reliability, traffic and transportation, inventory control, manufacturing,
defence, finance, telecommunications, and computer systems. Two main ingredients
in a discrete event simulation study are:

• S y s t e m state: The collection of variables/attributes needed to describe the
system at a particular time, relative to the object of study. In general, the
collection of states, {Χί , ί ^ 0} say, forms a stochastic process taking values
in some state space.

• Event: An instantaneous occurrence that may change the state of the system.
Each event is characterized by:

— Event t ime: The time at which the event occurs.

— Event type: An identifier that determines how the event affects the
system state at the event time and thereafter.

Discrete event systems are observed only at the event times. Between event times
the system is allowed to change only in a predictable (that is, deterministic) way.
Because of their dynamic nature, discrete event systems require a time-keeping
mechanism called a s imulation clock to advance the simulation time from one
event to the next. To keep track of events, the simulation maintains a list of all
pending events. This list is called the event list, and its task is to maintain all
pending events in chronological order; that is, events are ordered by their time of
occurrence. In particular, the most imminent event is always located at the head
of the event list.

2 8 4 DISCRETE EVENT SIMULATION

Clock

1.234

A

2.354

B

3.897

C

4.554

D

Event List

Figure 7.3 The advancement of the simulation clock and event list.

The situation is illustrated in Figure 7.3. The simulation starts by loading the
initial events into the event list (chronologically ordered), in this case four events.
Next, the most imminent event is unloaded from the event list for execution, and
the simulation clock is advanced to its occurrence time, 1.234. After this event is
processed and removed, the clock is advanced to the next event, which occurs at
time 2.354. In the course of executing a "current" event, based on its type, the
state of the system is updated, and future events are possibly generated and loaded
into (or deleted from) the event list. In the above example, the third event — of
type C, occurring at time 3.897 — schedules a new event of type E at time 4.231.
Subsequently, the event of type E schedules an event of type F to occur at the same
time 4.231, and an event of type G at the later time of 5.231.

There are two fundamental approaches to implementing a discrete event simu-
lation program:

• Event-oriented approach: Here separate subroutines are specified for every
type of event. The task of each event subroutine is to update the system
state and to schedule new events in the event list. The principal role of the
main program is to progress through the event list and call the corresponding
subroutines at each of the event times.

• Process-oriented approach: Events can often be grouped into processes
— sequences of related events. For example, in a reliability system, the
events and actions associated with the failure and repair of a specific machine
form a relevant process. Intuitively, a process can be viewed as a repeating
program that can be interrupted and (re)activated at certain times, and in
turn can manipulate other processes and data structures. In the process-
oriented setting there is again a simulation clock and a list that keeps track
of which event happens when, but this list contains processes rather than
individual events. The process at the top of the list is the one that is currently
active.

Our focus will be on event-oriented simulation, which is generally easier to im-
plement in a general-purpose programming language. In addition, event-oriented

2.354

B

3.897

C

4.554

D

3.897

C

4.231

E

4.554

D

4.231 —

4.231

4.554

5.231

Event time

Event type

EVENT-ORIENTED APPROACH 2 8 5

programs tend to be faster than process-oriented ones. However, process-oriented
simulation programs tend to be simpler conceptually, and lend themselves to easy
implementation in object-oriented programming languages, allowing one to build
large-scale simulation projects. There are many freely available object-oriented
simulation environments nowadays, such as SSJ, J-Sim, and C++Sim, all of which
have been inspired by the pioneering simulation language SIMULA [5].

7.3 EVENT-ORIENTED APPROACH

Figure 7.4 gives a flowchart of a general event-oriented simulation program. The
program starts by initializing the state variables, statistical counters, and system
parameters. This includes setting up the event list. The initialization could be car-
ried out by a separate subroutine. The simulation clock mechanism is implemented
as a loop consisting of three steps: (1) determine the current event time and type
from the head of the event list, (2) invoke a separate event routine corresponding
to this (current) event, (3) gather statistical data and advance the event list to the
next event, which now becomes the current event. These steps are repeated until
some stopping criterion is met — for example, when the event time exceeds some
set time T. Finally, the statistical information gathered during the simulation run
is reported and the simulation stops.

durant Even* Roytine

Determine next event
time and type

T
Invoke current
event routine

Gather data and
advance clock

Update system state
and other data structures

Generate future events

Figure 7.4 Event-oriented program flow chart.

2 8 6 DISCRETE EVENT SIMULATION

The main modeling and programming effort lies in the specification of the event
routines. For each event one needs to specify how the system state and other data
structures (queues, counters, etc.) are affected by its occurrence. In addition each
event can trigger other events, which need to be scheduled in the event list. Finally,
statistical data may be gathered during (or usually at the end of) an event routine.

To elucidate the interactions between events, it is sometimes useful to construct
an event graph [17]. Here the vertices in the graph correspond to events and an arc
from an event A to an event B indicates that the occurrence of event A "triggers"
event B; that is, schedules an occurrence of B in the event list. Figure 7.5 shows a
possible event graph for the queueing system in Figure 7.2. There are six events,
corresponding to arrivals at queue 1 and 2, and departures from queue 1, 2, 3, and
4. A departure at queue 4 (D4), for example, can trigger another departure at the
same queue, if upon departure there are still people in the waiting line at queue 4
— one of these will move to the server and be served. In addition, D4 can trigger
a departure at queue 2, if the customer that currently departs returns to queue 2
and at the same time there are no customers in the waiting line at queue 2. Dashed
arcs indicate that the events (Al and A2) have to be scheduled at the initialization
phase.

Figure 7.5 An event graph.

The event list can be implemented in different ways. It can be a simple linear
array, or a more complicated data structure [11, Chapter 2]. Often the event list
is constructed as a doubly linked list, where each event record contains pointers
to the previous and the next record in the list, as illustrated in Figure 7.6. The
insertion and deletion of event records is easy in such lists. However, searching a
linked lists of size n in a sequential manner takes 0(n) operations, which is inefficient
for large n. In such cases it may be better to implement the event list as a binary
tree or indexed list.

Figure 7.6 Insertion of an event record in a doubly linked event list.

EVENT-ORIENTED APPROACH 2 8 7

The general steps in setting up an event-oriented simulation study are as follows.

1. Construct a mathematical model for the system.

2. Identify the system state, depending on which aspect of the system is being
investigated.

3. Set up the appropriate data structures: queues, lists, variables, statistical
counters, etc.

4. Identify the possible events and their interactions, for example using an event
graph.

5. Set up an appropriate event list and main simulation routine.

6. Implement subroutines for each of the possible events. Draw flow charts for
each of the subroutines if necessary.

7. Test and debug. This is a crucial and often time-consuming step. To check
for programming errors, verify that the system behaves properly by stepping
through the program and/or by plotting realizations of the state process.
Compare the simulation results with known special cases.

8. Perform a statistical analysis of the data.

9. Report the results.

■ EXAMPLE 7.1 {GI/G/1 Queueing Sys tem)

In the classical GI/G/1 queueing system customers arrive to a single queue accord-
ing to a renewal process with interarrivai times distributed according to some cdf "S* 630
F. Customers are served by a single server in the order in which they arrive. If
a customer arrives when the server is busy serving another customer, the arriving
customer joins the end of the waiting line. The service times of the customers
are independent of each other and of the interarrivai times, and have a common
distribution function G. The special case where the interarrivai and service times
are exponentially distributed corresponds to the M/M/l queue discussed in Ex-
amples A.8 and A.9 on Pages 630-631. A quantity of interest is the steady-state
number of customers in the system. We wish to assess this via simulation.

Let the system state at time t correspond to the number of customers in the
system at that time, denoted by Xt. Note that the stochastic process {Xt} is a
regenerative process; the regeneration times can be chosen to be the arrival times
of customers that find the system empty. We assume XQ = 0; that is, the system
is initially empty.

There are two types of events: arrival events and departure events. Suppose t is
an event time. If the event is an arrival event, the state (the number of customers in
the system) is increased by 1; in the case of a departure event the state is decreased
by 1. An arrival event also triggers the next arrival event at time t + A, where
A ~ F. In addition, if the system is empty at time t (that is, at the arrival event),
then the arrival triggers a departure event at t + D, where D ~ G. Each departure
event at time t triggers another departure event at time t + D, where D ~ G,
provided that there is at least one customer next in line to be served.

2 8 8 DISCRETE EVENT SIMULATION

Since our programming environment is MATLAB, we simply take the event list
to be a 3 x 2 matrix, where each row corresponds to an event-time and event-type
(1 = arrival, 2 = departure). Note that at any time no more than three events are
scheduled: the current event, and at most two future events (either one arrival or
an arrival and a departure). After each time steps of the clock, the current event
record is emptied (set to (οο,οο)) and the event list is resorted, so that its first
element corresponds to the next current event.

The following MATLAB code implements the GI/G/1 simulation model, using
Εχρ(λ) interarrivai and Εχρ(μ) service times — these can be readily replaced with
arbitrary distributions, if required. During the simulation, the integral It = J0 Xsds
(represented by the variable t o t) is updated after each step of the clock. The
simulation is stopped at the first event time, say T\, greater than or equal to
T = 10000. The output of the simulation is i ^ / T i , which for large T approximates

■®° 313 the steady-state number of customers in the system (see also Section 8.3.3).
In the M/M/l case with λ < μ we may verify the correctness of the program by

comparing its output with the theoretical value

1 Γτ

lim - / Xt di = — — ,
T^TJo 1 - Q

■®° 639 where ρ = λ/μ < 1 is the traffic intensity; see Example A.11.

%MMl/main.m
mu = 3; lambda = 2;
rho = lambda/mu;
T = 10000;
x = 0; xold = 0 ; % initialize current
ev_list = inf*ones(3,2) ; '/, initialize
t = 0; told = 0; '/, initialize current
tot = 0; ’/,
ev_list(l,:) = [- log(rand)/lambda, 1]
N_ev = 1 ; ’/, number of
while t < T

t = ev_list(l,l);
ev_type = ev_list(l,2);
switch ev_type

case 1
arrival

case 2
departure

end
ev_list(l,:) = [inf.inf];
N_ev = N_ev - 1;

state and previous
event list
and previous event

state

time

; "/.schedule the first arrival
scheduled events

ev_list = sortrows(ev_list ,1) ; ’/, sort event list
tot =tot + xold*(t - told);
xold = x; told =t;

end
res = tot/t
exact = rho/(l-rho)

MORE EXAMPLES OF DISCRETE EVENT SIMULATION 2 8 9

%MMl/arrival.m
N_ev = N_ev + 1 ;
ev_list(N_ev,:) = [t - log(rand)/lambda,
if x == 0 % if queue is empty

N_ev = N_ev + 1 ;
ev_list(N_ev,:) = [t - log(rand)/mu,

end
x = x+1;

7,MMl/departure .m
x = x-1; °/(go out of queue
if x -= 0

N_ev = N_ev + 1;
ev_list(N_ev,:) = [t - log(rand)/mu,

end

i];

21;

2];

"/.schedule new arrival

% schedule departure

% schedule departure

7.4 MORE EXAMPLES OF DISCRETE EVENT SIMULATION

7.4.1 Inventory System

The (s, S) policy is a classic control policy for inventory systems of the following
form. Demand for a certain commodity occurs over time according to a renewal
process with an interarrival cdf F. The size of the demand is distributed according
to a cdf G and is independent of the arrival process. When a demand occurs it
is either filled or back-ordered (to be satisfied by delayed deliveries). The net
inventory (on-hand inventory minus back orders) at time t is denoted by Xt, and
the inventory posit ion (net inventory plus on-order inventory) by Yt. The (s, S)
policy prescribes that at any time t when a demand of size D is received that
would reduce the inventory position to less than s (that is, Yt- — D < s, where
Yt- denotes the inventory position just before t), an order of size S — (Yt- — D) is
placed, which brings the inventory position immediately back to S. Otherwise, no
action is taken. The order arrives R time units after it is placed, where the lead
t ime R is distributed according to some cdf H that is assumed to be independent
of the demand process. Both inventory processes are illustrated in Figure 7.7 for
s = 5, S = 10, and a lead time of 1.

Figure 7.7 Sample paths for the two inventory processes.

2 9 0 DISCRETE EVENT SIMULATION

Under the back-order policy and the above assumptions, both the inventory
position process {Yt} and the net inventory process {Xt} are regenerative. In
particular, each process regenerates when it is raised to S. For example, each time
an order is placed, the inventory position process regenerates.

A natural state for the system at time t is here the vector (Xt,Yt). There are
two types of event, which are depicted in the event graph in Figure 7.8. A demand
arrival event at some time t and of size D triggers another demand arrival event,
at time t + A of size D\, where A ~ F and D\ ~ G, independently. If Yi_ — D ^ s,
the state (Xt, Yt) is changed to (Xt — D,Yt — D). However, if Yt- — D < s, then
an order of size S — (Yt- — D) is scheduled for time t + T, where T ~ H; and the
state (Xt, Yt) is changed to (Xt, S). An order event of size O at some time t does
not trigger any additional events, but changes the state (Xt, Yt) to (Xt + O, Yt). At
initialization one demand arrival event needs to be scheduled.

Figure 7.8 The event graph for the inventory system.

The MATLAB programs that follow implement an event-oriented simulation al-
gorithm for the above system. The event list is here a k x 3 matrix, where k is
initially 3 but can increase during the simulation. Note that there is always one
demand event scheduled, but there could be several order events scheduled simulta-
neously. The first two columns correspond to the event time and type (1 = demand,
2 = order). The third column contains the demand size or order size. During the
course of the simulation the program keeps track of the total amount of time the
net inventory position is negative, and the number of orders placed. At the end the
long-run average cost per unit of time is given, computed as

C = CiS + C2 jneg + C 3 / o r d ,

where S is the upper limit in the (s, S) policy, / n e g is the fraction of time where
the net inventory process is negative, and /o rd is the frequency of orders (per unit
of time). A possible aim of the simulation is to select the cost-optimal values of s

■®° 458 and S, for given values of c\,ci, and c$ (see also Example 12.6).
In the following example code, the demand size, interarrivai, and lead time dis-

tributions are taken to be U(0,10), Exp(l/5), and U(5,10), respectively, but can be
easily modified to any specific distribution by changing the corresponding MATLAB
functions. The cost parameters are taken as C\ = 5, c-i = 500, and C3 = 100.

The subroutine p l o t t r a c e . m can be used to plot realizations of the inventory
processes (uncomment the corresponding lines in the code).

MORE EXAMPLES OF DISCRETE EVENT SIMULATION 2 9 1

"/̂ Inventory/main. m
s = 10; S = 40;
T = 200000;
÷ = S; y = S; °/0x net inventory, y inventory position
xold = x;
t = 0; told=0;
% xx = x; yy=y; tt=0; 70uncomment for
ev_list = inf*ones(3,3); gentries : (t
totneg = 0; num_ord = 0;

plotting
Lme, type, order-

ev_list(l,:) = [interarrivai, 1 .demandsize] ; ’/«schedule
N_ev = 1 ; '/, number of
while t < T

t = ev_list(l,l);
ev_type = ev_list(l,2);
ev_par = ev_list(l,3);
switch ev_type

case 1
demand;

case 2
order ;

end
7. tt=[tt,t]; xx=[xx,x]; yy=[yy,y]
N_ev = N_ev - 1 ;
ev_list(l,:) = [inf,inf,inf];
ev_list = sortrows(ev_list, 1) ; '/,

totneg = totneg + (xold < 0)*(t -
xold = x; told = t;

end
frac_neg = totneg/t
freq_ord = num_ord/t
cl = 5; c2 = 500; c3 = 100;

-size)

first demand
events scheduled

; "/uncomment for

sort event list

told);

plotting

cost = cl*S + c2*frac_neg + c3*freq_ord 7,cost per unit of time
7. plottrace "/uncomment for plotting

"/Inventory/demand. m
demsize = ev_par;
x = x - demsize;
y = y - demsize;
if (y <s) ’/, if net inventory is under s limit

N_ev = N_ev + 1;
ev_list(N_ev,:) = [t + leadtime,2
°/o size of order is S - x

y = s;
end
N_ev = N_ev + 1 ;
ev_list(N_ev,:) = [t + interarrivai,1

, S-y] ; 7, schedule order

.demandsize] ; 7oSchedule demand

2 9 2 DISCRETE EVENT SIMULATION

"/«Inventory/order. m
ord = ev_par;
num_ord = num_ord + 1 ;
x = x + ord;

%Inventory/interarrival.m
function out = interarrivai;
out = -log(rand)*5;

°/,Inventory/demandsize .m
function out = demandsize
out = 10*rand;

"/»Inventory/leadtime .m
function out=leadtime;
out = 5 + rand*5;

Zlnventory/plottrace.m
figure(l),subplot(2,l,l),
for i =1 : length(yy)-l,
line([tt(i),tt(i+l)],[yy(i),yy(i)]);
line([tt(i+l),tt(i+l)],[yy(i),yy(i+l)]);

end

aa=axis;
axis([0,tt(end),aa(3),aa(4)]),xlabel(’t’),ylabel(’Inventory Pos.’);

subplot(2,1,2),
for i =1:length(xx)-l,
line([tt(i),tt(i+l)],[xx(i),xx(i)]);
line([tt(i+l),tt(i+l)],[xx(i),xx(i+l)]);

end

aa=axis;
axis([O.tt(end),aa(3),aa(4)]),xlabel(’t’),ylabel(’Net Inventory’)

MORE EXAMPLES OF DISCRETE EVENT SIMULATION 2 9 3

7.4.2 Tandem Queue

The purpose of this example is to show how the basic GI/G/1 model discussed in
Example 7.1 can be readily modified to handle more complicated queueing systems.
Consider the model depicted in Figure 7.9, where customers who leave the first
GI/G/1 queue enter a second queue, where they are served by a different server, or
take a place in a waiting line if that server is busy. The service times in the second
queue have a fixed cdf H. All service and interarrivai times are independent.

ti}-— .«»fr>-—

Figure 7.9 A tandem queueing system.

The state of the system at time t could be the numbers of customers, Xt and Yt,
in the first and second queue, respectively, where we regard a customer who is being
served as part of the queue. Figure 7.10 depicts a typical realization of the queue
length processes {Xt, t ^ 0} and {Yt,t ^ 0}, obtained via discrete event simulation,
where the interarrivai times and the service times are all U(0,1) distributed.

Figure 7.10 Realizations of the queue length processes {Xt, t ^ 0} and {Yt, t ^ 0}.

The system state (Xt,Yt) only changes when one of the following events occur:
an arrival to the first queue, a departure from the first queue, and a departure from
the second queue. A typical sequence of events is given in Figure 7.11. Arrivals to
the second queue do not require separate events, as they coincide with departures
from the first queue.

A Dl A A D2 Dl A

1 1—H 1 1 1 ^t
Figure 7.11 A sequence of discrete events: A = arrival, Dl = departure from the first
queue, D2 = departure from the second queue.

The following MATLAB programs implement the tandem system with U(0,1)
interarrivai and service times. The main difference with the implementation for the

2 9 4 DISCRETE EVENT SIMULATION

GI/G/l queue in Example 7.1 is the additional event subroutine depar ture2 .m.
Another difference is that during the simulation the total time the second server
is busy is updated (stored in s2busy). The output of the program is the average
occupancy s2busy / t for server 2 and the total number of events occurring during
the simulation period. Finally, when the appropriate lines are uncommented, the
program plots a realization of the state processes, as in Figure 7.10.

VoTandemQ/main. m

T = 5000;

totevents = 0;

x = 0; y = 0; yold =0;

s2busy = 0 ; '/, total time server 2 is

7, xx=x; yy=y;

tt=0;

ev_list = inf*ones(4,2);

t = 0; told = 0;

ev_list(l,:) = [rand, 1] ; °/,s

N_ev = 1 ; 7.

while t < T

totevents = totevents+1;

t = ev_list(l,l);

7,tt=[tt,t] ;

ev_type = ev_list(l,2);

switch ev_type

case 1

arrival

case 2

departure1

case 3

departure2

end
ev_list(l,:) = [inf,inf]

N_ev = N_ev - 1 ;

ev_list = sortrows(ev_li

7. ÷÷=[÷÷,÷]; yy=[yy,y];

s2busy = s2busy + (yold

yold = y; told=t;

end
7» plottraces;

res = s2busy/t

totevents

busy

chedule the first

number o:

»

st,l); '/.

> 0)*(t -

events

arrival

sort event list

- told);

7oTandemQ/arrival. m
N_ev = N_ev + 1 ;
e v _ l i s t (N _ e v , :) = [t + r and , 1] ; 7.schedule new a r r i v a l
i f x == 0 7o i f queue i s empty

N_ev = N_ev + 1 ;

MORE EXAMPLES OF DISCRETE EVENT SIMULATION 2 9 5

ev_list(N_ev,:) = [t + rand, 2]; % schedule departure at queue 1
end
x = x+1;

%TandemQ/departurel.m
x = x-1; % go out of first queue
if x ~= 0

N_ev = N_ev + 1 ;
ev_list(N_ev,:) = [t + rand, 2];

end
if y == 0

N_ev = N_ev + 1;
ev_list(N_ev,:) = [t + rand, 3];

end
y = y + 1 ; ’/, go in second queue

% schedule departure at queue 1

% schedule departure at queue 2

"/»TandemQ/departur e2. m
y = y-1; °k go out of second queue
if y -= 0
N_ev = N_ev + 1;
ev_list(N_ev,:) = [t + rand, 3];

end
% schedule departure at queue 2

%TandemQ/plottraces.m
figure,subplot(2,1,1),
for i =1:length(xx)-l,

line([tt(i),tt(i+l)],[xx(i),xx(i)])
line([tt(i+l),tt(i+l)],[xx(i),xx(i+l)]);

end
aa=axis;
axis([0,tt(end),aa(3),aa(4)]),xlabel(’t

subplot(2,1,2),
for i =1:length(yy)-l,

line([tt(i),tt(i+l)],[yy(i),yy(i)])
line([tt(i+l),tt(i+l)],[yy(i+l),yy(]

end
aa=axis;
axis([0,tt(end),aa(3),aa(4)]),xlabel(’t

),ylabel(>Queue 1’);

L)]);

),ylabel(’Queue 2’),

2 9 6 DISCRETE EVENT SIMULATION

7.4.3 Repairman Problem

Consider a repair system consisting of m repairmen and n ^ m nonidentical ma-
chines, as depicted in Figure 7.12 (where TO = 4 and n = 8).

When a machine breaks down it is immediately repaired by one of the available
repairmen; if none are available the machine is placed into a waiting room to be
served in first-come-first-served order once a repairman becomes available. As soon
as a machine is repaired (and is then as good as new), the repairman takes the first
machine from the waiting room, if there are any; otherwise, the repairman remains
idle until the next machine failure occurs. Each machine is assumed to have a fixed
lifetime distribution and repair time distribution. The lifetimes and repair times
are assumed to be independent of each other.

Functioning Machines Under Repair

Figure 7.12 A repair system.

Two performance measures of interest are the utilization of the machines (how
many machines are active over the long run) and the utilization of the repairmen
(how many are busy over the long run). These quantities need to be assessed in
general via simulation. Figure 7.13 depicts a typical realization of the number of
busy repairmen and working machines for the MATLAB implementation below.

Figure 7.13 A realization of the processes describing the number of busy repairmen and
functioning machines.

MORE EXAMPLES OF DISCRETE EVENT SIMULATION 2 9 7

The state of the system at time t is characterized by the configuration of ma-
chines that are operational, under repair, and waiting to be repaired. The order
of machines in the waiting queue is essential, as the machines are not necessarily
identical. Therefore, the state must include an ordered list (queue) Qt of waiting
machine numbers. Other state variables are the number of available repairmen Rt

and the number of failed machines Ft.
There are two types of events for this system: failure events and repair events.

Each event triggers the execution of the corresponding failure or repair procedure.
Because each machine can have different failure and repair distributions, the event
procedures are machine dependent.

In the program below the event list is simply implemented as a 9 x 3 array where
the columns correspond to the event time, event type (l=failure, 2=repair) and
machine number, respectively. Note that at each time no more than n + 1 events
are scheduled, including the current one. The waiting queue is implemented as a
dynamic array.

Upon failure of a machine, a repair needs to be scheduled at a time equal to
the current time plus the required repair time for the machine only if there is a
repairman available to carry out the repairs. Otherwise, the machine is placed in
the waiting queue. The number of failed machines is always increased by 1.

Upon repair, the number of failed machines is decreased by 1. The machine that
is just repaired is scheduled for a failure, after the lifetime of the machine. If the
"failed" queue is not empty the repairman takes the next machine from the queue
and schedules a corresponding repair event. Otherwise, the number of available
repairmen is increased by 1.

In the MATLAB program below the lifetime of machine i is assumed to be
Weib(i,l) distributed, i = 1 , . . . ,8 and the repair times are U(0,1) distributed.
Realizations of {m — Rt} and {n — Ft} can be obtained by uncomrnenting the
appropriate lines in the main program.

%Repairman/main. m
g l o b a l a lpha
T = 1000;
mach_num = 0; repairq = [];
nrep = 4; nmach = 8; "/»number of repairmen and machines
alpha = [1,2,3,4,5,6,7,8];
r = nrep; °/,the number of repairmen available
f = 0; /»the number of machines failed
7,rr= r; ff=f; tt=0; %save the history (needed for plotting)
tot_util_rep = 0;
tot_util_mach = 0;
rold = r; fold = f; told = 0;

ev_list = inf*ones(nmach+l, 3); °/0event time, type, machine number
t = 0;
for i=l:nmach

e v _ l i s t (i , :) = [l i f e t ime(i) , l , i] ; "/«schedule the fa i lures
end
ev_l is t = so r t rows(ev_ l i s t , l) ; % sort event l i s t

2 9 8 DISCRETE EVENT SIMULATION

N_ev = nmach;
while t < T

t = ev_list(l,l);
�/.tt=[tt,t] ;
ev_type = ev_list(l,2);
mach_num = ev_list(l,3);
switch ev_type

case 1

failure
case 2

repair
end
N_ev = N_ev - 1;
ev_list(l,:) = [inf,inf,inf];
ev_list = sortrows(ev_list,1); % sort event list
tot_util_rep = tot_util_rep + (nrep - rold)*(t - told);
tot_util_mach = tot_util_mach + (nmach - fold)*(t - told);
rold=r; told=t; fold =f;

7. rr=[rr,r];ff=[ff,f];
end
fprintf (’repair util. = 7»g, machine util. = 7og\n’, ...

tot_util_rep/t, tot_util_mach/t);
7.plottrace

7.Repairman/f ailure .m
if (r > 0) 7trepairman available

N_ev = N_ev + 1 ;
7«schedule repair
ev_list(N_ev,:) = [t + repairtime(mach_num), 2,mach_num];
r = r -1 ;

else
repairq = [repairq,mach_num];

end
f = f+ 1;

7»Repairman/repair. m
f = f - 1 ; 7o one less fa i led
sq = s ize (repa i rq ,2) ;
if (sq > 0) 7oStill one in the queue

N_ev = N_ev + 1;
7»schedule next repai r
ev_list(N_ev,:) = [t + repairtime(mach_num), 2 , r e p a i r q (l)] ;
repairq = repairq(2: sq) ; 7oremove machine

else
r = r+1;

end

MORE EXAMPLES OF DISCRETE EVENT SIMULATION 2 9 9

N_ev = N_ev + 1;
"/«schedule failure of current machine
ev_list(N_ev,:) = [t + lifetime(mach_num), l,mach_num];

7oRepairman/plottrace .m
figure(1)
subplot(2,1,1),
for i =l:length(rr)-l,

line([tt(i),tt(i+l)],[(nrep -
line([tt(i+l),tt(i+l)],[(nrep

end
aa=axis;

rr(i)),
-rr(i))

axis([0,tt(end),aa(3),aa(4)]),xlabel(’t’)
subplot(2,1,2),
for i =l:length(ff)-l,

line([tt(i),tt(i+l)],[(nmach -
line([tt(i+l),tt(i+l)],[(nmach

end
aa=axis;

ff(i))
- ff(i

axis([0,tt(end) ,aa(3) ,aa(4)]) ,xlabel(’t’)

7.Repairman/lif etime .m
function out = lifetime(i)
global alpha
out = (-log(rand))~(l/alpha(i));

°/0Repairman/repairtime. m
function out = repairtime(i)
out = rand;

(nrep -rr [i))]);
,(nrep -rr(i+l))]);

,ylabel(’busy rep.’);

,(nmach -
)),(nmach

ff(i))]);
- ff(i+l))]);

,ylabel(’working mach.’);

Further Reading

One of the first books on Monte Carlo simulation is Hammersley and Handscomb [7].
Kalos and Whitlock [8] is another classical reference, and Ross [15] is a good modern
starting point. The event- and process-oriented approaches to discrete event simu-
lation are elegantly explained in Mitrani [14]. Among the great variety of discrete-
event simulation books, all focusing on different aspects of the modeling and simu-
lation process, we mention [2, 4, 6, 12, 16]. Additional introductory texts are [3] and
[13]. The choice of computer language in which to implement a simulation program
is very subjective. The simple models discussed in this chapter can be implemented
in any standard computer language, even standard MATLAB, although it does not
provide easy event list manipulation. Commercial simulation environments such as
ARENA/SIMAN and SIMSCRIPT II.5 make the implementation of larger models

3 0 0 DISCRETE EVENT SIMULATION

much easier — the book [10] introduces the reader to simulation with ARENA. Al-
ternatively, various free SIMULA-like Java packages exist that offer fast implemen-
tation of event- and process-oriented simulation programs. Examples are SSJ, de-
veloped by Simard and L'Ecuyer: w w w . i r o . u m o n t r e a l . c a / ~ s i m a r d r / s s j / , DSOL
developed by the Technical University Delft: s k - 3 . t b m . t u d e l f t . n l / s i m u l a t i o n / ,
and J-SIM: www. j - s im.zcu .cz / .

REFERENCES

1. S. Asmussen. Applied Probability and Queues. John Wiley & Sons, New York, 1987.

2. J. S. Banks, J. S. Carson II, B. L. Nelson, and D. M. Nicol. Discrete-Event System
Simulation. Prentice-Hall, Englewood Cliffs, NJ, fifth edition, 2009.

3. C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Springer-
Verlag, New York, second edition, 2007.

4. J. R. Clymer. System Analysis Using Simulation and Markov Models. Prentice Hall,
Englewood Cliffs, NJ, 1990.

5. O.-J. Dahl and K. Nygaard. SIMULA: an ALGOL-based simulation language. Com-
munications of the ACM, 9(9):671-678, 1966.

6. G. S. Fishman. Discrete Event Simulation: Modeling, Programming, and Analysis.
Springer-Verlag, New York, 2001.

7. J. M. Hammersley and D. C. Handscomb. Monte Carlo Methods. John Wiley & Sons,
New York, 1964.

8. M. H. Kalos and P. A. Whitlock. Monte Carlo Methods, Volume I: Basics. John
Wiley & Sons, New York, 1986.

9. F. P. Kelly. Reversibility and Stochastic Networks. John Wiley & Sons, New York,
1979.

10. W. Kelton, R. Sadowski, and N. Swets. Simulation with Arena. McGraw-Hill, New
York, fifth edition, 2009.

11. D. E. Knuth. The Art of Computer Programming, volume 1: Fundamental Algo-
rithms. Addison-Wesley, Reading, MA, third edition, 1997.

12. A. M. Law and W. D. Kelton. Simulation Modeling and Analysis. McGraw-Hill, New
York, third edition, 2000.

13. L. M. Leemis and S. K. Park. Discrete-Event Simulation: A First Course. Prentice-
Hall, Englewood Cliffs, NJ, 2006.

14. I. Mitrani. Simulation Techniques for Discrete Event Systems. Cambridge University
Press, Cambridge, 1982.

15. S. M. Ross. Simulation. Academic Press, New York, third edition, 2002.

16. R. Y. Rubinstein and B. Melamed. Modern Simulation and Modeling. John Wiley &
Sons, New York, 1998.

17. L. Schruben. Simulation modeling with event graphs. Communications of the ACM,
26(ll):957-963, 1983.

18. R. W. Wolff. Stochastic Modeling and the Theory of Queues. Prentice-Hall, Engle-
wood Cliffs, NJ, 1989.

CHAPTER 8

STATISTICAL ANALYSIS OF SIMULATION
DATA

This chapter describes various statistical techniques that can be used for analyzing
random data produced by Monte Carlo simulation experiments. Further back-
ground on (mathematical) statistics can be found in Appendix B. " ^ 653

8.1 SIMULATION DATA

Similar to real-world data, computer-simulated data may take many different forms.
In contrast to real-world data, however, simulation data are strictly reproducible,
because the simulation model is completely known. Moreover, the amount of data
that can be gathered from the model is limited only by the maximum amount of
time one wishes to impose on the simulation runs and the amount of storage space
on a computer.

The data produced by a simulation experiment can be viewed as outcomes of
random variables, random vectors, time series, or stochastic processes. In general
the objective of the simulation is to draw conclusions about various characteristics
of these random objects, such as their expectations, correlations, and distributions.

Before embarking on a mathematical analysis of the data it may be worthwhile to
detect patterns in the data through visualization and summarization. We mention
a few useful standard techniques. In many cases the underlying assumption is that
the data, say Χι,... ,XN, form an iid sample from some distribution; that is,
X\,..., XM are independent and identically distributed according to some known
or unknown distribution.

Handbook of Monte Carlo Methods. By D. P. Kroese, T. Taimre, Z. I. Botev 301
Copyright © 2011 John Wiley & Sons, Inc.

3 0 2 STATISTICAL ANALYSIS OF SIMULATION DATA

8.1.1 Data Visualization

Let Xi,..., XN be an iid sample from some distribution. The following graphical
techniques are often used to visualize the data; various other graphical techniques
may be found in, for example, [23].

1. Scatter plot: For a d-dimensional scatter plot (d = 1, 2, or 3), plot the data
as points in Rd.

2. Histogram: Partition the real line into a finite number of intervals or classes.
Count how many data points fall in each class. For each class plot a rectangle
whose width corresponds to the length of the class and whose area (or some-
times height) corresponds to the number (or alternatively, to the frequency)
of points in that class.

3. Empirical cdf. The empirical cdf is an estimate of the true cdf of the data.
It is a nondecreasing step function which jumps up by an amount of 1/N at
each of the data points. More information on the empirical cdf is given in
Section 8.4.

4. Density plot: A density plot provides an estimate of the true pdf of the data.
More information on the density plots and kernel density estimation is given
in Section 8.5.

■ EXAMPLE 8.1 (Visualizing G a m m a Data)

Suppose X1,...,XN,Y1,...,YN ~ Exp(l). Let Zt = Xi + Yh i = 1 , . . . ,JV. Note
that Zi ~ Gamma(2,1). The following MATLAB program provides four graphical
views of the data for .ΛΓ = 1000, as displayed in Figure 8.1.

y.stateda.m
N = 10~3;
x = -log(rand(l
y = -log(rand(l

z = x + y;
subplot(2,2,1),

,N)); %the data
,N)); y.the data

hist(z,20);
[f,xi] = ksdensity(z); %matlab’s
subplot(2,2,2),
subplot(2,2,3),
subplot(2,2,4),

plot(xi,f);
ecdf(z); /(empirical
scatter(x,z,’.’);

kernel

cdf

density function

SIMULATION DATA 303

Figure 8.1 Graphical displays of data.

8.1.2 Data Summarization

Let Χι,..., ΧΝ be an iid sample from some distribution, and denote the ordered
data by X(i) ^ ■ · · ^ X(N)- It is often useful to summarize various characteristics
of the sample as given in the following list.

1. Centrality characteristics:

(a) The sample mean gives the average of the data:

1 N

ί=1

(b) The sample median is

X = Γ-^((ΛΓ+Ι)/2) if N is odd

\(X(N/2) + Χ(Ν/2+ι))β if N is even.

3 0 4 STATISTICAL ANALYSIS OF SIMULATION DATA

2. Dispersion characteristics:

(a) The sample variance is

i=\ v i=l '

(b) The sample standard deviat ion is the square root of the sample vari-

ance: S = \ W .

(c) The range of the data is X(N) ~ X(i)-

(d) The sample fc-th m o m e n t is -^ J2i=i Xi-

(e) The sample fc-th central m o m e n t is -^ ^2i=1(Xi — X)k ■

(f) The sample 7-quanti le or 7 x 100 percenti le of X\,..., XN is
x(hN])·

3. Dependency characteristics: Let (Χχ,Υι),..., (XN, YN) be an iid sample from
a bivariate distribution.

(a) The sample covariance is

i—1

(b) The s a m p l e c o r r e l a t i o n coefficient is

Y.^jXi-XWi-Y)

y/nliixi- x)2 \/Y.ti{Yi - Ϋ)2 '

■ EXAMPLE 8.2 (Summariz ing G a m m a Data)

Suppose, as in Example 8.1, that X\,..., XN, YI, ■ ■ ■, YN ~ Exp(l), so that {Z{\
with Zi = Xi + Yi, i = l,...,N, forms an iid sample from Gamma(2,1). The follow-
ing MATLAB program contains the most common functions for data summarization.

%stateda2.m
N = 10-3 ;
x = -log(rand(1,N));
y = -log(rand(1,N));
z = x + y;
meanz = mean(z);
medz = median(z);
stdz = std(z);
varz = var(z);
maxz = max(z);

ESTIMATION OF PERFORMANCE MEASURES FOR INDEPENDENT DATA 3 0 5

minz= min(z);
ql = quantile(z,0.25); % first quartile
q3 = quant ile (z,0.75) ; °/0 third quartile
display([meanz,stdz, varz])
display([minz, ql, medz, q3, maxz])
covyz = cov(y.z)

Typical output from this program is:

1.9945 1.4136 1.9983 Zsample mean, s t a n d a r d d e v i a t i o n , v a r i a n c e of Z

0.0379 0.9702 1.6426 2.7192 10.7030 ’/.min, ql, med, q3, max

0.8987 0.9215 ’/�covariance matrix of Y and Z
0.9215 1.9983

In many cases the data summarization quantities can be calculated dynamically;
that is, as soon as new data become available the quantity is updated. An advan-
tage of this online updating is that only one sample point needs to be stored in
memory rather than the entire sample. The following algorithm illustrates how this
is achieved for the sample mean and sample variance.

Algori thm 8.1 (Online Calculation of the Sample M e a n and Variance)

1. Initialize a = Χχ, b = Xf, and t = 1.

2. Set a = a + Xt+i and b = b + X?+1-

3. Let
XW = ^ (8.1)

and

s ? + i _ »-(« + 11*3» m

4- Ift + l<N,sett = t + l and repeat from Step 2; otherwise, stop.

8.2 ESTIMATION OF PERFORMANCE MEASURES FOR INDEPENDENT
DATA

Suppose the data Y\,..., YN from a simulation experiment are independent and
identically distributed according to some known or unknown discrete or continuous
pdf / . Often such data are obtained by executing ,/V independent runs of the
simulation, producing output Y{ for the i-th run. Suppose the aim of the simulation
is to estimate the performance measure i = ΈΥ, with Y ~ / . Assuming \£\ < oo,
an unbiased estimator for £ is the sample mean of the {Yi}; that is,

? = ̂ ί>· (8·3)

3 0 6 STATISTICAL ANALYSIS OF SIMULATION DATA

Provided that the variance of Y, say σ2, is finite, Ϋ approximately has a N(£, σ2/Ν)
625 distribution for large N (an immediate consequence of the central limit theorem).

If σ2 is unknown, it can be estimated without bias via the sample variance of the

N
<?2 _ _ l—Y^{Yi-Y)2, (8.4)

which (by the law of large numbers) tends to σ2 as TV —> oo. This leads to an
approximate I — a confidence interval for £:

Ϋ~Ζι~α/27Ν' Ϋ + Ζι-α,27Ίϊ) ' (8'5)

where ζΊ denotes the 7-quantile of the N(0,1) distribution.
Instead of specifying the confidence interval, the following measures of accuracy

are often reported in simulation studies:

1. Width of confidence interval: 2zi_a/2S/VN.

2. Half-width of confidence interval: Zi^a/2S/\/N.

3. Relative width of confidence interval: 2 Zi_a/2S/(Y\/N).

4. Estimated standard error: S/y/N. This is an estimator for the true s tandard
error, that is, the standard deviation of the estimator Ϋ, which is σ/\/~Ν.

5. Estimated relative error: S/(YyN). This is an estimator for the true rela-
t ive error of the estimator Y:

^ss = * . (8 .6)
EY £^N K '

The basic estimation procedure for independent data is summarized below. The
348 procedure is sometimes referred to as crude M o n t e Carlo (CMC). Chapter 9 dis-

cusses various estimation techniques that can potentially improve on the accuracy
of CMC.

Algor i thm 8.2 (Crude M o n t e Carlo for Independent Data)

1. Generate Υχ,..., YN ~ / (for example, from independent simulation runs).

2. Calculate the point estimate Ϋ and confidence interval (8.5) of £ = EY.

It is often the case that the output Y is a function of some underlying random
vector or stochastic process; that is,

Y = H(X) ,

where H is a real-valued performance function and X is a random vector or process.
Provided that independent copies of Y can be generated in finite time, Algorithm 8.2
can be used for both static simulation models (in which case X is a random vector)
and dynamic models (in which case X represents a time-dependent stochastic
process).

ESTIMATION OF PERFORMANCE MEASURES FOR INDEPENDENT DATA 3 0 7

■ EXAMPLE 8.3 (Monte Carlo Integration)

In Monte Carlo integration, simulation is used to evaluate integrals (see also
Section 2.1). Consider, for example, the integral ·®° 25

/

oo yoo *·οο
/ / y/\xi +X2 + a*I e" (^+^+ a :3)/2 dXl dx2 άχ3 .

-oo J —oo J — oo

Defining Y = \XX + X2 + X3|1/2(27r)3/2, with Χχ,Χ2,Χ3 ~ N(0,1), we can write
£ = ΈΥ. The following MATLAB program provides an estimate and 95% confidence
interval for £. Note that here £ι_α/2 = zo.975 ~ 1-96. Typical output is Y = 17.04
with confidence interval (17.026,17.054), using a sample size of N = 106. From
the fractional moments of the normal distribution (Property 7 on Page 123) we can
compute the exact value: £ « 17.0418.

'/, meint.m
c = (2*pi)-(3/2);
H = @(x) c*sqrt(abs(sum(x,2)));
N = 10"6; alpha = 0.05;
x = randn(N,3); y = H(x);
mY = mean(y); sY = std(y);
RE = sY/mY/sqrt(N);
z = icdf (’norm’ .l-alph.a/2,0,1) ;
fpr intfCEst imate = '/.g, CI = ('/.g, 7,g)\n', . . .

mY, mY*(l- z*RE), mY*(l + z*RE))

The generalization of Algorithm 8.2 to vector-valued simulation output Y =
(Yi,. . . , Yn) ~ / with performance vector £ = EY is as follows, under the assump-
tion that each element of the expectation vector Y and covariance matrix Σ is
finite.

Algorithm 8.3 (Estimation for Independent Vector-Valued Data)

1. Generate Y i , . . . , YN ~ / (for example, from independent simulation runs).

2. Calculate the point estimate Y = (Ϋι,... ,Ϋη)
τ, where Yj = ■ ^ _ 1 Σ ί = ι ^ '

and Yij is the j-th component of Yj, i = 1 , . . . , N, j = 1 , . . . , n.

3. An approximate 1 — a confidence region for £ is

^=|yeK' l : (Y-y) T (E)- 1 (Y-y)^^|^J, (8.7)

where Σ is the sample covariance matrix,

δ =ΛΓΓΐΣ(Υ *- γ) (Υ *- γ) Τ >
i= l

and x^.1_Q is the (1 — a)-quantile of the χ^ distribution.

3 0 8 STATISTICAL ANALYSIS OF SIMULATION DATA

The confidence region if forms the interior (including the surface) of an ellipsoid.
The interpretation is that the true vector I is contained in the random confidence
region with probability approximately 1 — a. This follows from the fact that for
large N and Σ = BBT, the random vector Z = y/N Β~Χ{Ϋ — I) approximately has
a N(0, /) distribution, so that

Ψ{1 e if) » p f (Ϋ - £) Τ Σ _ 1 (Ϋ -1)ζ Χ " ; 1 _ α

N

= F(ZTZ^xl;1_a)=l-a.

For plotting purposes it is useful to write the surface of the confidence ellipsoid as

Y + I % ß z : ||z|| = l 1 ,

which is an affine transformation of the unit hypersphere in M™.

8.2.1 Delta Method

625 The del ta method can be viewed as a generalization of the central limit theorem.
Let Z i , Z 2 , . . . be a sequence of random vectors such that

ν ^ (ΖΛΓ - μ) - ^ K ~ N(0, Σ) .

An example is where Zjv is the sample mean of iid random vectors X i , . . . , XJV,
each with expectation vector μ and covariance matrix Σ. The delta method states
that a similar convergence result holds for a function of Zjv. Specifically,

> / W (g (Z J V) - g (M)) - 1 * I l ~ N (0) J E . 7 T)) (8.8)

710 where J = Jg(ß) = {dgi{ß)/dxj) is the Jacobi matrix of g evaluated at μ. Note
that the delta method assumes that g is differentiable at μ, and hence the Jacobi
matrix exists. The key step in the proof is the construction of the first-order Taylor
expansion of g around μ, which is

S(ZN) = g(M) + Jsfr)(ZN -μ) + 0 (| | Z J V - μ | 2 \

As TV —> 00, the remainder term goes to 0 because Ζ^—+ μ. Hence, the left-hand
side of (8.8) is approximately y/NJ{ZN — μ) = J \/~N(ZN — μ). For N —» 00
this converges in distribution to a random vector J K , where K ~ Ν(Ο,Σ). Thus,
R = J K ~ N(0, J E J T) .

■ EXAMPLE 8.4 (Rat io Est imator)

Let (X±, Y i) , . . . , (XN;YN) be iid copies of a random vector (X, Y) with mean vec-
tor (μχ, μγ) and covariance matrix Σ. Suppose we wish to estimate ί = μχ/μγ- A
straightforward estimator is the so-called ratio es t imator Χ/Ϋ, the asymptotic
distribution of which can be derived with the delta method. Let Zjv be the vector
(X, Ϋ) and g(x, y) = x/y. Then,

dg(x,y) dg(x,y)\ = / l - x

dx dy) \y Jg{x>y) — \ Q„ i a.. / — I „. ' „2

ESTIMATION OF STEADY-STATE PERFORMANCE MEASURES 3 0 9

Let J = Jg(ßx,ßY). It follows from (8.8) that X/Y = g(X,Y) approximately has
a Ν (μ χ / μ γ , -^σ2) distribution, with a symptot ic variance

π2 _ / Γ ί τ _ (J_ ΖΕΛ (V a r W Cov(X,Y)\ / Ü7
~~ \μγ' μ\) \Cov(X,Y) Var(y)) [=£

Var(X) - 21 Cov(X, Y) +12 Var(y)
μγ

μγ
(8.9)

Note that σ2 can be easily estimated from the iid sample.

8.3 ESTIMATION OF STEADY-STATE PERFORMANCE MEASURES

Suppose that the data from a simulation experiment are described by a collection
{Xt, t > 0} of dependent random variables such that Xt converges in distribution to <®° 623
some random variable X as t —► oo. Such data could, for example, be the result of
a single run of an MCMC sampler, where X is distributed according to the limiting "3° 225
distribution of the Markov chain. To estimate the s teady-s tate or equil ibrium
performance measure E X we discuss the following methods (see also [21]).

• Covariance method.

• Batch means method.

• Regenerative method.

In order to cancel the effects of time dependence and the initial distribution, it is
common practice to discard the data that is collected during the burn-in period;
that is, the period of time in which the distribution of Xt significantly deviates from
that of X. However, it is not always clear how long the burn-in period should be —
but see [1] for a case where this can be determined. For regenerative processes the
regenerative method, discussed in Section 8.3.3, avoids the burn-in issue altogether.

8.3.1 Covariance Method

Suppose that {Χχ,Χ2, ■ ■ ■ ,ΧΝ} is a stationary process, so that no burn-in is re- ^ 631
quired. An unbiased estimator for the steady-state expected value I = EX = EXt

(assumed to be finite) is the sample average X = iV _ 1 J2t=i -^ί· The variance of
X is given by (see Section A.4.3) "®" 617

1 , N N-l N ·.

Var(X) = ^ (£ Var(X t) + 2 £ £ Cov(X s ,X t)) . (8.10)
^ t= l 3=1 t=s+ l '

Since {Xt} is stationary, we have Cov(X s ,X t) = E[X sXt] — £2 = R(t — s), where
R is the (auto)covariance function of the stationary process. Note that R(0) =
Var(Xt). As a consequence, we can write (8.10) as

i V V a r (X) = i ? (0) + 2 ^ (1 - -) R(t) . (8.11)
t= i ^ '

3 1 0 STATISTICAL ANALYSIS OF SIMULATION DATA

In many applications R{t) decreases rapidly with t, so that only the first few
terms in the sum (8.11) are relevant. These autocovariances, say -R(O),... ,R(K),
can be estimated via their (unbiased) sample averages:

JV-fc

R(k) = ^j—[Y^(Xt-X)(Xt+k-X), k = 0,l,...,K.
t=i

Thus, for large N the variance of X can be estimated as S2/N, where

K

S2=R{0)+2Y^R{t).
t=i

To obtain confidence intervals, one again uses the central limit theorem; that is,
the fact that the cdf of \fN{X — £) converges to the cdf of the normal distribution
with expectation 0 and asymptotic variance σ2 = limjv^oo NVav(X). Using S2 as
an estimator for σ2 , we find that an approximate 1 — a confidence interval for i is
given by

X-z1_a/2^=, X + Zl_a/2-^=) . (8.12)

■ EXAMPLE 8.5 (R a n d o m Walk Sampler)

230 Consider the random walk sampler with target distribution N(10,1) and proposal
Y ~ N(x,0.04). The acceptance probability is therefore

a{x,y)
f / (y - i Q) 2 - f r - i Q) 2 \ Ί

un | exp (̂ j , 1 j .

Suppose the objective is to estimate I = E X , where X is distributed according to
the steady-state distribution of the Markov chain (that is, N(10,1)). The following
MATLAB script implements the random walk sampler and provides a 95% confidence
interval for I using the covariance method. The sample size is N = 105. To ensure
stationarity, a burn-in period of 300 is used. The maximal lag is also set to K = 300.
Figure 8.2 shows that the autocovariance function decays sufficiently fast to make
it negligible after approximately 200 lags.

Figure 8.2 Estimated autocovariance function for the data from the random walk
sampler.

ESTIMATION OF STEADY-STATE PERFORMANCE MEASURES 3 1 1

A typical outcome for the confidence interval is (9.91,10.04), which contains the
true value I = 10. The asymptotic variance of the sample average for these depen-
dent data is about a factor of 100 larger than the sample variance for independent
data from the N(10,1) distribution, leading to a confidence interval that is 10 times
wider than would be obtained if the data were independent.

"/.covmethod.m
N=10~5; "/.sample size, including burn-in
tstat = 300; °/,burn-in period and maximal lag
sample = zeros(N,l);
sigma = 0.2; "/.standard deviation of proposal
X = randn*sigma; ’/.generate an initializing point
for k=l:N

Y = X + randn*sigma; "/.generate t h e p roposa l move
i f rand<min(exp(- .5*(Y-10)~2+.5*(X-10)~2) , 1) '/ .acceptance s t e p

X = Y; '/.update X
end
sample (k) = X; ’/.store sample

end
K = tstat; x = sample(tstat:N);
[R.lags] = xcov(x,K,’unbiased’) ; ’/.calculate covariance function
plot (lags (K+1:2*K) ,R(K+1:2*K) , ’ • ’) ’/.plot covariance function
S2 = R(K+1) + 2*sum(R(K+2:2*K)); ’/.asymptotic variance
ell = mean(x);

RE = sqrt(S2)/ell/sqrt(numel(x));
fprintfCell = "/.g ; CI = ("/.g , "/.g) \n’,. . .

ell,ell*(1-1.96*RE),ell*(1+1.96*RE))

8.3.2 Batch Means Method

In the b a t c h m e a n s method, the first K values of the data X\,..., XM are dis-
carded, corresponding to the burn-in period. The remaining M — K values are
divided into N batches, each of size T = (M — K)/N (we assume that T is an inte-
ger). Let Xt:i denote the i-th observation from the i-th batch. If the burn-in period
is large enough, each Xt,i has approximately the same distribution, corresponding
to the steady-state variable X. Let Yi be the sample mean of the i-th batch:

1 T

The sample mean of the {Χκ+ι, · · · , XM} — {-Χι,ΐι · ■ · i ΧΤ,Ν} gives an estimator
of I = EX. This estimator coincides with the sample mean of the batch means
YU...,YN:

1 M 1 N

t=K+l i=\

3 1 2 STATISTICAL ANALYSIS OF SIMULATION DATA

By choosing the batch size T large enough, one can ensure approximate indepen-
dence of the batch means Y\,..., YM , so that approximate confidence intervals can
be constructed as described in Section 8.2 for independent data.

The procedure is illustrated in Figure 8.3 and summarized in Algorithm 8.4.

M

Figure 8.3 Illustration of the batch means procedure.

Algor i thm 8.4 (Batch Means M e t h o d)

1. Perform a single simulation run of length M, and delete K observations cor-
responding to the humain period.

2. Divide the remaining M — K observations into N batches, each of length
T = (M - K)/N.

3. Calculate the point estimator and the confidence interval for i from (8.13) and
(8.5), respectively, where S is the sample standard deviation ofYi,..., Y/v·

EXAMPLE 8.6 (R a n d o m Walk on the Posi t ive Integers)

86

633

Let Jo, i i , . Ber(p) be a Bernoulli process for some 0 < p < 1/2. Consider the
random walk {Xn,n = 0 ,1 , 2 , . . . } on N defined by

Xn+i = max{X n + 27„ - 1,0}, 1 0 ,1 ,2 .

with some Xo e N. Thus, from any state x > 0 the random walk jumps to x + 1
with probability p and to x — 1 with probability q = 1 — p. From state x = 0 the
random walk jumps to state 1 with probability p and remains in 0 with probability
q. By Markov chain theory (see Section A.10.2) Xn converges in distribution to
X ~ Geomo(l — p/q)- Suppose the objective is to estimate i = Έ,Χ = p/(q — p).
The following MATLAB program implements the random walk with p = 0.25 starting
from Xo = 0, and calculates a 95% confidence interval for I = 0.5 using the batch
means method. A typical 95% confidence interval is (0.480,0.507).

ESTIMATION OF STEADY-STATE PERFORMANCE MEASURES 3 1 3

’/.batchmeans .m
clear all
p=0
K =
B =
N =
T =
for

end

25;q=l-p;M=100000;
100; ’/.throw away
300; ’/.number of batches
M-K; ’/.remaining samples
(M-K)/B; x = zeros(1,M);
i=2:M
x(i)=max(0,x(i-l)+2*(rand<p)-

y=zeros(l,B) ; ’/.the batch means
for

end
ell
RE =

k=l:B
y(k) = mean(x(K+l + (k-l)*T

= mean(y);
= std(y)/ell/sqrt(B);

true_ell = p/(q-p);
fprintf (’true_ell=’/.g; ell=°/.g; CI=

-1)

K + k*T));

= (°/.g,°/,g) \n’,...
true_ell, ell, ell*(l-1.96*RE), ell*(l+1.96*RE))

Remark 8.3.1 (Replication—Deletion) In the replication—deletion m e t h o d
N independent runs are carried out rather than a single simulation run as in the
batch means method. From each replication one deletes K initial observations corre-
sponding to the burn-in period and then calculates the point estimator and the con-
fidence interval for Î via (8.13) and (8.5), respectively, exactly as in the batch means
approach. Note that the confidence interval obtained with the replication-deletion
method is unbiased, whereas the one obtained from the batch means method is
slightly biased. However, the replication-deletion method requires deletion from
each replication, as compared to a single deletion in batch means method. For
this reason the replication-deletion method is not as popular as the batch means
method. For more details on the replication-deletion method see [21].

8.3.3 Regenerative Method

For a discrete- or continuous-time regenerative process {Xt} the existence of a lim- " ^ 630
iting distribution is guaranteed under very mild conditions, see the regeneration
Theorem A.9.1. Moreover, by the same theorem the behavior of the limiting dis-
tribution depends only on the behavior of the process during a typical cycle. In
particular, consider a regenerative process with regeneration times TQ,TI,T-2, ...
and cycle lengths r, = Tï — Tj_i, i = 1,2,. . . . Define the reward in cycle i as

Ri= Σ Xt or R i = I x « d < ' (8 ·14)
t=T4_i JTi-i

depending on whether {Xt} is a discrete-time or continuous-time process. We
assume for simplicity that TQ = 0 and that in the discrete case the cycle lengths are

3 1 4 STATISTICAL ANALYSIS OF SIMULATION DATA

not always a multiple of some integer greater than 1. Let τ = T\ be the length of
the first regeneration cycle and R = R\ the first reward. Then, under the conditions
of Theorem A.9.1, Xt —> X for some random variable X, and

£ = E X = g . (8.15)

To estimate I via simulation, note that (RI,TI), (R21T2),... is a sequence of iid
random vectors. The steady-state performance measure £ can thus be estimated
via the ratio estimator

î=à = Σί=ι R* . (8.16)
f V T-

L-ii=\ '»

The estimator £ is biased; that is, E£ φ £. However, £ is s trongly consistent;
that is, it converges to £ with probability 1 as N —» oo. This follows directly from
the fact that, by the law of large numbers, R and τ converge almost surely to ER
and E T , respectively.

The main advantage of the regenerative simulation method is that no burn-in
period is required. A disadvantage is that the method is not as generally applicable
as, for example, the batch-means method. In particular, it may be difficult to
identify the regeneration points, and the regenerative cycles could be very long.

Let S^S2, and SR,T be, respectively, the sample variance of R, the sample
variance of r , and the sample covariance of R and r , based on the data {(Ri, Ti)}.
Then, by (8.9), an approximate 1 — a confidence interval for £ is of the form

'-Zl-a"7N' ΐ+Ζι~α/27Ν) ' (8 · 1 7)

where

T1

is an estimator of the asymptotic variance of £; that is, of σ2 = lim^v^oo NVax(£).
An algorithm for constructing an approximate 1 — a confidence interval for t is thus
as follows.

Algor i thm 8.5 (Regenerat ive Simulation M e t h o d)

1. Simulate N regenerative cycles of the process {Xt}-

2. Compute the sequence {(Ri,Ti), i = 1 , . . . , N}.

3. Calculate the point estimator £ and the confidence interval of £ from (8.16)
and (8.17), respectively.

Note that one could also use two independent simulations of length N — one for
estimating ER and the other for estimating E T . In that case S2 = (SR + £ 2S2)/f2.

Remark 8.3.2 (Steady-State and Long-Run Average Performance) If
the reward in each cycle is of the form (8.14), then £ = EX can be viewed as
both the expected steady-state performance and the long-run average performance.

ESTIMATION OF STEADY-STATE PERFORMANCE MEASURES 3 1 5

This last interpretation is valid even if the reward in each cycle is not of the form
(8.14), as long as the {(ri,Ri)} are iid. In that case,

^ = i i m ^ t o " 1 f i i = | g (8 . 1 9)

t^oo t ET V '

where Nt is the number of regenerative cycles in [0, i\; see, for example, [28].

■ EXAMPLE 8.7 (R a n d o m Walk via Regenerat ive Simulation)

Consider the random walk {Xn, n = 0 ,1 , . . . } of Example 8.6. The MATLAB pro-
gram below implements the random walk starting from XQ = 0 with p = 0.25 and
calculates a 95% confidence interval for £ = 0.5 using the regenerative method. The
regeneration times are taken to be the times when the process hits 0. A typical
95% confidence interval is (0.454,0.488). Figure 8.4 shows a typical outcome of the
random walk for n = 0 , . . . , 59.

y.regenmeth. m
c l e a r a l l , p=0 .25 ;q= l -p ;
N=10000;
z = zeros(1,N);R = zeros(1,N); tau = zeros(1,N);
Rsum=0;regcount = 0;lastregtime = 1;
for i=2:N

if rancKp
z(i)=z(i-l)+l;

elseif z(i-l) %if z is not zero
z(i)=z(i-l)-l;

end
Rsum = Rsum + z(i);
if z(i)==0 "/.regeneration detected

regcount = regcount + 1 ;
R(regcount) = Rsum;
tau(regcount) = i - lastregtime;
Rsum = 0;
lastregtime = i;

end
end

stairs(0:59,z(l:60)),hold on, plot(0:59,z(l:60),’.’)
ell = mean(R)/mean(tau)
C = cov(R.tau);
s = sqrt(C(l,l) - 2*ell*C(l,2) + ell~2*C(2,2))
RE = s/mean(tau)/sqrt(N)
fprintfCell lg ; 0.95 CI (’/.g , */.g) \n\ . . .

ell,ell*(1-1.96*RE),ell*(1+1.96*RE))

3 1 6 STATISTICAL ANALYSIS OF SIMULATION DATA

Figure 8.4 The random walk on the positive integers as a regenerative process. The
regeneration times are taken to be the times when the process hits 0.

8.4 EMPIRICAL CDF

An important instrument in analyzing iid samples is the empirical cdf, defined as
the function

F»(x)=ititi{*<&}=i{i:xt
N

<x}]> *eR' (8-2°)
i—1

for given data Xi,..., XN- The empirical cdf is a nondecreasing step function which
jumps up by an amount of 1/N at each of the data points {xi}. Note that -Fjv is
right-continuous and bounded between 0 and 1. In other words, FN is a genuine
cdf. It is precisely the cdf of the random variable that takes the values χχ,..., XM
with probabilities 1/N,..., 1/N (if all the observations are distinct). In Figure 8.5
the empirical cdfs are shown of iid samples of size 10 (left) and 100 (right) from
the Exp(l) distribution. The true cdf is plotted as well.

Figure 8.5 The empirical cdfs for a sample of size 10 (left) and 100 (right) from the
Exp(l) distribution, together with the true cdf.

EMPIRICAL CDF 317

If instead of deterministic {xi}, random Xi are taken in (8.20), then F^(x)
becomes random as well. To distinguish between the deterministic and the random
case, we denote the random empirical cdf by FN(X).

Transforming the data Χχ,..., XM to U\ = F{X\),..., UM = F{XM) gives an
iid U(0,1) sequence of random variables, assuming that F is continuous and strictly
increasing. The empirical cdf of the { l ^ } , denoted by GJV(W), is called the reduced
empirical cdf. Letting x and u be related via x = ί 1 - 1 (κ) and u = F(x), we have

1 N

FN(x) - F(x) = - ^ I W < I } - F(x)
i=\

1 N
= JjYshUi<u} - u = GJV(W) - u .

The maximum distance between the empirical and the true cdf,

DN = sup \FN{x) - F{x)\ = sup \GN(u) - u\ , (8.21)

is called the Kolmogorov statist ic of the data. Note that the distribution of D^
does not depend on F. Properties of the empirical cdf include [33]:

1. Order statistics: If cc(i) < X(2) < · · · < X(N) denote the (distinct) ordered
samples, then

"(«) = Jî ■ (8·22)

2. Binomial distribution: NFN(X) ~ Bin(iV, F(x)) and NGpr(u) ~ Bin(TV, u).

3. Glivenko-Cantelli: D jv^-^0 . Consequently, FN(X)^^ F(X), uniformly in x.

4. Central limit theorem: </N(FN(x) - F(x)) -^ Z ~ N(0 ,F(x) (l - F{x))) as
TV -» co.

5. Conditional Poisson: The probability distribution of the reduced empirical
cdf {GJV(M) ,0 ^ u ^ 1}, viewed as a stochastic process on [0,1], is the same
as the conditional distribution of a Poisson process {M„,0 ^ u ^ 1} with
rate 1/TV given that Mi = TV. «^ 170

6. Brownian bridge: The stochastic process {VTV(GTV(W) ~~ w)> 0 ^ M ^ 1} con-
verges in distribution to a Brownian bridge process on [0,1] (see, for example, ·®° 193
[31]).

7. Kolmogorov distribution: If F is continuous, then

oo

lim ¥(VNDN ζχ) = V (- l) f ee" 2 (f c x) 2 , x > 0 . (8.23)
fc=—oo

8. Confidence interval: An approximate 1 — a confidence interval for F(x) is

(T?„(-r\ y ,/FN(X)(1-FN(X)) p „ („ \ , y JFN(X)(1-FN(X)A
I ÏN\X) — Zl-a/2\J jj > ΓΝ(Χ) + Zl-a/2y jy I ·

3 1 8 STATISTICAL ANALYSIS OF SIMULATION DATA

Equivalently, an approximate 1 — a confidence interval for F{xu\) is

i i{l-i/N) i i(l-i/N)

■ EXAMPLE 8.8 (Confidence Bounds for the Cdf)

In Figure 8.6 the upper and lower 90% confidence curves for the cdf F are depicted
based on an iid sample of size N = 50 from the Exp(l) distribution. The true cdf
is plotted as well.

Figure 8.6 90% confidence curves for the cdf of the Exp(l) distribution based on 50 iid
samples.

The following MATLAB code is used.

%empcdfr.m
clear all,clc
randO state’ ,123) ;*
N = 50; °/0sample size
x = sort (-log (rand (1,N))) ; "/�generate and sort sample
x=[0,x]; 7, append 0 for plotting purposes
z =(0:N)/N;
zl = z - 1.65*sqrt(z.*(l-z)/N) ; '/, lower curve
zu = z + 1.65*sqrt(z.*(l-z)/N); % upper curve
axes(’FontSize’,16),hold on
for i=l:N °/,plot the confidence bounds

line([x(i),x(i+l)],[zl(i),zl(i)],’LineWidth’,3);
line([x(i+D,x(i+l)],[zl(i),zl(i+l)]);
line([x(i),x(i+l)],[zu(i),zu(i)],’LineWidth’,3);
line([x(i+D,x(i+l)],[zu(i),zu(i+l)]);

end
t = 0:0.01:max(x);plot(t,l-exp(-t))

KERNEL DENSITY ESTIMATION 3 1 9

8.5 KERNEL DENSITY ESTIMATION

A popular approach for estimating a probability density from (simulated) data is
kernel density es t imat ion [30, 35, 38]. Kernel density estimates are used in
many applications, including:

• structural assessment of a distribution (multimodality, skewness, etc.) [30,
34],

• summarization of Bayesian posterior pdfs, classification and discriminant
analysis [35],

• smoothed bootstrap sampling and particle filtering [15].

Let Χχ,...,XN be independent realizations from an unknown continuous prob-
ability density function / on some space l " c l . A univariate kernel densi ty
est imator of / is defined as a function

N

/ (^) 4 Σ Κ (Ϊ) · xe
i=l

where κ is a symmetric (κ(—x) = κ(χ)) pdf on K, called the kernel function, and
h is a positive parameter, called the bandwidth.

In a Gaussian kernel densi ty es t imator the kernel is standard normal; there-
fore, for a given scale parameter t — h2 the Gaussian kernel density estimator is of
the form

1 N

f{x;t) = -Y/<p(x,Xi;t), i f R , (8.24)

with
1 (x-X,-)2

<p{x,Xi;t) = -j=e 2* .
y Δπι

The asymptotic properties of the kernel density estimate depend crucially on the
choice of the bandwidth parameter. The choice of the kernel function is much less
important [38, Page 31]. Nevertheless, a preference for smoothness of the kernel
density estimate for all sample sizes makes the Gaussian kernel density estimator
the most popular choice.

A well-studied criterion for the quality of the estimate / is the mean integrated
squared error (MISE):

MISE(i) = EfJ\f(x;t) - f(x)}2 άχ ,

which can be decomposed into integrated squared bias and integrated variance
components:

MISE(i) = j (Ef[f(x;t)]-f(x))2dx + J VBif(f(x;t)) dx .

pointwise bias of / pointwise variance of /

Here the expectation and variance operators apply to the iid sample {Xi,..., XN}·
An alternative error criterion is the expec ted L1 error,

■J\f(x;t)-f(x)\ax,

3 2 0 STATISTICAL ANALYSIS OF SIMULATION DATA

which is scale invariant and has generally better theoretical properties [14], but is
not as computationally tractable as the MISE.

For the Gaussian kernel density estimator (8.24) a first-order asymptotic approx-
imation of the MISE (under certain regularity assumptions), is given by

i i2 | | /" | |2 + — ί = , (8.25)

where | | / " | | 2 = J(f"(x))2 dx. The asymptotically optimal value of t is the mini-
mizer

*'= (Μ Τ Γ · (M · '
giving the optimal asymptotic rate of decay of the MISE (for a proof see [38]):

Uli /""H2/5

MISEfi*) = N~4'h j[J.K " + o(iV-4 /5) , N^oo. (8.27)
4 ' / Ô 7 T / &

In order to compute the optimal t* for the Gaussian kernel density estimator
(8.24) one needs to estimate the functional | | / " | | 2 · The Gaussian rule of t h u m b
is to assume that / is the density of the Ν(μ, σ2) distribution, where μ and σ2 are
the sample mean and variance of the data, respectively [34]. In this case | | / " | | 2 =
σ _ 5 7τ _ 1 / 2 3/8 and the Gaussian rule of thumb becomes:

If the data has outliers and is far from normally distributed, then a more robust
rule of thumb is the following choice [35]:

_ / 4 S 5 ^ 2 / 5

W - {W

where S = min {σ, y/fj } is a robust measure of the spread of the data. Here R is
the interquartile range of the data defined as follows:

-R = X(\0.75N]) — ^(|"0.25ΛΓ|) ·

75% quantile 25% quantile

■ EXAMPLE 8.9 (Bimodal Dens i ty Est imation)

Consider a Gaussian kernel density estimator for the estimation of the density of
the skewed bimodal mixture distribution

| N (0 . 1) + i N (| . i

53 by which we mean that an outcome is drawn from the N(0,1) distribution with
probability 3/4, and similarly for the second component. We sample 103 points
from this density and use v^Rot as an estimate of the bandwidth. The left panel
of Figure 8.7 shows that the density estimation using ÎRot is satisfactory for this
problem. However, the estimation of the density of the separated bimodal mixture

1 Ν (- , , 1) + 1 Ν (, 1

KERNEL DENSITY ESTIMATION 321

based on 103 points, is not so successful, as is seen from the right panel of Figure
8.7. The reason for this poor performance is that while min (σ, y/^j) accurately
captures the spread of the data in the skewed bimodal density, it overestimates the
spread in the separated bimodal case. Thus, although the Gaussian rule of thumb
is easy to implement and computationally fast, one must exercise caution when
using it.

0.45 r

0.4

0.35

0.3

0.25-

0.2

0.15

0.1

0.05-

o' — v
- 6 - 4 - 2 0 2 4 6 - 5 0 5

Figure 8.7 Density estimation using the robust Gaussian rule of thumb ÎRot- The dotted
curve is the estimate and the solid line is the true density. The right panel shows that the
Gaussian rule of thumb can oversmooth.

To address the shortcomings of the Gaussian rule of thumb, two conceptually
different automatic data-driven bandwidth selection methods have been proposed.
The first one is based on a classical performance criterion — least squares cross
validation (LSCV) — and the second one is commonly referred to as the plug-in
bandwidth select ion method.

8.5.1 Least Squares Cross Validation

In LSCV the optimal bandwidth is defined as the global minimizer of an unbiased
estimate of the integrated squared error (ISE), given by

ISE(t) = j[f(x;t)-f(x)]2dx.

Minimization of the ISE(i) is equivalent to minimization of

J[f(x;t)]2 dx-2Eff(X;t).

Note that unlike the MISE, the ISE is a random variable depending on the particular
data. The term E / / (X ; t) can be estimated without bias via the cross-validation
estimator:

1 N ~ 1 N

j = l V ' i=l ίφί

3 2 2 STATISTICAL ANALYSIS OF SIMULATION DATA

Here / _ ; is the Gaussian kernel density estimator based on all data points except
Xi. Using the property J*K φ(χ, y\ t) φ(χ, z; t) ax = <p(y, z; 2i) of the Gaussian kernel,
the term f[f(x; t)]2 ax can be written as:

/

TV N

tf(x; t)]2 άχ = ~ϊΣΈ Ψ(χ» X* 2t) ■ N2

i=l 3 = 1

Thus, the LSCV bandwidth y^LS is formally defined as follows:

ÎLS = argmins(i) ,
t>o

where

1 N N 1 JV

i=l j = l \ ' i= l ίφί

Practical implementation of the LSCV procedure requires that we find a computa-
tional device to reduce the cost of evaluating g(t). Direct evaluation of g(t) for a
given value of t requires 0(N2) evaluations of the Gaussian kernel. This computa-
tional cost can be substantially reduced by exploiting the fact that the Gaussian
kernel density estimator is the solution of the PDE

|/(*;i) = iJ^./WM>0, (8.28)

with x e K, limx_^±oo f(x;t) = 0 and initial condition f(x;0) = Δ(χ) , where
Δ(χ) = i Σ ί = ι δχΛχ) i s the empirical density of the data Xi,..., Χχ, and
δχ^χ) is the Dirac measure at Xi [7, 9, 12]. In other words, instead of computing
the Gaussian kernel density estimator f(x; t) directly, it can be obtained by evolving
the solution of the PDE (8.28) up to time t. The key observation is that (8.28)
can be solved on a finite domain efficiently using an FFT-related transform. The
procedure is as follows. First, without loss of generality we can consider the data to
be on the unit interval [0,1]. If the raw data is not on the unit interval, then it can
be rescaled so that the main body of the data is in the interior of [0,1] and away
from the boundaries at 0 and 1. Second, the data is binned into n bins, where n is
a power of 2 — as required by the fastest implementations of the FFT. Third, note
that away from the boundaries the Gaussian kernel φ(χ,Χ^ί) is approximated by

714 the theta function [6, 8] :

oo

9(x,Xi;t)= Σ <p(x,2k + Xi-,t) + ip(x,2k-Xi;t), x € (0,1) .
k= — oo

In fact, for a fixed Xi the theta function satisfies (8.28) on the interval (0,1), and
the Gaussian kernel ψ(χ, Xi\ t) satisfies (8.28) on the domain i e l . The difference
between the theta function and the Gaussian kernel becomes negligible as t becomes
smaller in the sense that

r θ(χ'Χ^) Λ w n ι ϊ
hm —,———- = 1, x G (0,1) .
UO (p(x,Xi\t)

KERNEL DENSITY ESTIMATION 3 2 3

Application of the method of separation of variables for solving (8.28) on the interval
(0,1) shows that the theta function has the following Fourier series expansion:

oo

θ(χ, Xi; t) = Σ e"*2"2*/2 cos(knx) cos{kwXi), x G (0,1)
k=—oo

oo

= 1 + 2 Σ e~kVt/2 cos(knx) cos{knXi) .
fc=l

Thus, on the interval (0,1) we can approximate the Gaussian kernel density
estimator (8.24) using the truncated Fourier series expansion:

« - I

/ (z ; t) «] T ak e " * ^ 2 ' / 2 cos(kwx), n > 1 , (8.29)
k=0

where the coefficients {ak}^0 are given by the cosine transform of the empirical
data:

2 N

a0 = 1, Qfc = — y^^cosjknXj), fc = l , 2 , 3 , (8.30)
i = l

Next, given the binned data over the grid of size n, we compute the coefficients
{flfc}fc=o u s m S t n e fast cosine transform — an FFT-related transform, see Ap-
pendix D.5. Finally, for a given t, the values of f(-;t) on the grid are efficiently "S" 708
computed using the inverse fast cosine transform with input the set of smoothed
coefficients K e ^ 2 * 2 ' / 2 } ^ .

Hence, using the theta kernel we can evaluate f(-;t) on a uniform grid of size n
in O(n lnn) operations. This idea is summarized in the following algorithm.

Algori thm 8.6 (Fast Evaluation of / (· ; *) Us ing (8.29)) Given iid random
data X\,... ,XN, parameters n(= 2m for an integer m) and t, execute the fol-
lowing steps.

1. Define a uniform grid of size n:

k
yk = - , k = 0,...,n.

n

Bin the data to compute

f _ #{Xi --Xi £ {Vk,yk+i)} , _ „ n
Jk — T7 i Ä — u , . . . , n — i .

Thus, we have that fk « f(y; 0), y € (yk, 2/fc+i)·

2. Compute the fast cosine transform {/fc}^Z0 of the data and let {ak}^I.0 be the
coefficients of the fast cosine transform. We have thus efficiently computed
the first n coefficients in (8.30). These coefficients are computed only once
and stored in memory.

3. Let ak(t) = ak e~k π */2 for k = 0 , . . . , n — 1. Compute the inverse fast cosine
transform ο/{α*,(ί)}£~0, so that we obtain the (approximate) values of f(-;t)
over the uniform grid via (8.29).

3 2 4 STATISTICAL ANALYSIS OF SIMULATION DATA

If evaluation of / (· ; t) is required for a different value of t > 0, we execute only Step
3 in the above algorithm.

The following MATLAB code implements the LSCV method using the fast cosine
transform to evaluate g(t). The standard MATLAB function fminbnd.m is used to
find the minimum of g(t).

function [bandwidth,f,y_k]=LSCV(X,n,MIN,MAX)

X=X(:); "/.make data a column vector
7, set up the grid over which the density estimate i s computed;
R=MAX-MIN; dy=R/n; y_k=MIN+[0 :dy:R]; N=length(X);
7,bin the data uniformly using the grid define above;
[f_k,bins]=histc(X,y_k);f_k=f_k/N;
f_k(end) = [] ; y_k(l)=[] ; bins(bins==n+l)=[] ;
a=dctld(f_k) ; 7, d i scre te cosine transform of i n i t i a l data
'/, now compute the optimal bandwidth~2 using the LSCV
t_LS= fminbnd(®g,0,.01);
'/, defines the LSCV function g(t) tha t i s to be minimized

function out=g(t)
a_t=a.*exp(-[0:n-l] ' .~2*pi~2*t/2);
f=idct ld(a_t) /dy;
int_f2_dy=(f'*f)*dy;
out=int_f2_dy-2/(N-l)*sum(f(bins))+2/(N-l)/sqrt(2*pi*t*R~2);

end

a_t=a.*exp(-[0:n-l]’.~2*pi~2*t_LS/2); % smoothed coefficients
f=idctld(a_t)/dy; % take the IFCT of the data
bandwidth=t_LS*R~2; 7. adjust the bandwidth after the rescaling

end

We use the following subroutine which computes the discrete cosine transform
"3° 708 of the column vector data; see Section D.5.

function data=dctld(data)
7o computes the d iscre te cosine transform of a vector
data=data(:) ; % make data a column vector
nrows=length(data);
'/, Compute weights to multiply DFT coefficients
weight = [l ;2*(exp(- i*(l :nrows- l)*pi / (2*nrows))) . '] ;
’/, Reorder the elements of the columns of x
data = [data(l:2:end); data(end:-2:2)];
7. Multiply FFT by weights:
data= real(weight.* f f t (d a t a)) ;

We use the following subroutine for the inverse cosine transform; see Section D.5.

KERNEL DENSITY ESTIMATION 3 2 5

function out = idctld(data)
% computes the inverse discrete cosine transform of a vector
data=data(:); % make data a column vector
nrows=length(data);
'/, Compute weights
weights = exp(i*(0:nrows-l)*pi/(2*nrows)).’;
data = real(ifft(weights.*data));
'/, Reorder elements
out = zeros(nrows,1);
out(1:2:nrows) = data(l:nrows/2);
out(2:2:nrows) = data(nrows:-l:nrows/2+l);

■ EXAMPLE 8.10 (Bimodal Dens i ty Est imat ion Revis i ted)

Figure 8.8 shows the performance of the LSCV method on the bimodal densities
from Example 8.9. Notice that the estimate for the separated bimodal density
(right panel) is much better than the estimate obtained using the Gaussian rule of
thumb.

Figure 8.8 Density estimation using the LSCV method. The dotted curve is the estimate.

The bandwidth estimator computed via the LSCV method has been shown to
be highly variable [27] compared to alternatives such as the plug-in estimator de-
scribed in the next section. In addition, occasionally a minimizer of g(t) for t > 0
does not exist. However, unlike the plug-in methods, the LSCV method makes no
smoothness assumptions about the target density. For a more detailed discussion
of the advantages and disadvantages of the LSCV method, see [22].

326 STATISTICAL ANALYSIS OF SIMULATION DATA

8.5.2 Plug-in Bandwidth Selection

An alternative to the LSCV method is the Sheather—Jones plug-in method
[9, 32]. Recall from (8.26) that if we knew | | / " | | 2 , then the asymptotically MISE-
optimal bandwidth for (8.24) is known. One possible estimator for | | / " | | 2 is moti-
vated by the identity | | / ω | | 2 = (-l)jEf[fW>{X)], j ^ 1, where fü) denotes the
j - t h derivative of / . The idea is to estimate | | / ^ | | 2 = | | / " | | 2 via the estimator
U = 2):

ιι/^^Ίι/^ωιι2

’ r
^ I ω^(χ. Xu-tAio^(x. Χ^-ΛΔΛχ

(8.31)
=] ^ Σ Σ / Λ ζ , Xk; tj) <pU\x, Xm; tj) àx

C-lV N N

k—l m=l

where / is the Gaussian kernel density estimator with bandwidth ^/t], different
from y/t*. Thus, we need to select a value for tj in order to estimate H/^H2- A
choice for tj with good practical performance is (see [9])

t3 = f1 + ^ l * 3 x 5 x - : x (2 j - l) \ ^

Computation of H/^-1-1^!2 requires knowledge of t j+i , which in its turn requires
the estimate tj+2 and so on, as seen from formulas (8.31) and (8.32). We are faced
with the problem of computing the infinite sequence {ij+fc, k ^ 1}. However, given
ti+i for some integer I we can compute all {tj, 1 ^ j· SC 1} recursively, and then
estimate t* from (8.26). This motivates the Z-stage direct plug-in bandwidth
selector [32, 38], defined as follows.

Algor i thm 8.7 (Z-stage Direct Plug- in Bandwidth Selector) Given an in-
teger I ^ 3, execute the following steps.

1. Compute Wf^+^W2 by assuming that f is the normal pdf with mean and vari-
ance estimated from the iid sample X\,..., XN ■ Set j = I + 1.

2. Using | | / ^ + 1) | | 2 compute tj via (8.32).

3. Usingîj compute H /^H 2 via (8.31).

4- If j > 2, reset j = j — 1 and repeat from Step 2; otherwise, go to Step 5.

5. Use ti to compute | | / ' - 2 ·) | | 2 and deliver t* from (8.26).

The i-stage direct plug-in bandwidth selector thus involves the estimation of
| | /w) | |2 ,2 < j < I + 1 via the plug-in estimator (8.31). To improve the method
we describe the procedure in a more abstract way as follows. Denote the functional
dependence of tj on tj+i in formula (8.32) as

tj — 7j (tj. +i)

KERNEL DENSITY ESTIMATION 3 2 7

It is then clear that t,- = 7j(7j+i(ij+2)) = 77(77+1(73+2(^+3))) = ■ ■ · · For simplic-
ity of notation we define the composition

7 [*1 (ί)=7 1 (· - · 7*_ 1 (7* (ί)) - - -) , k ^ l .

fc times

Inspection of formulas (8.32) and (8.26) shows that the estimate of t* satisfies

Γ* = ξΓ1 = ξ7
[11(Ϊ2) = ξ7[21(Ϊ3) = ··· = ξ7[ι1(Ϊι+0. £ = (^ 4 ^) "° · 9 0 -

Then, for a given integer I > 0, the Z-stage direct plug-in bandwidth selector consists
of computing

Γ*=Ε7 ['] (ί ί+ι) .

where tt+i is computed via (8.32) by assuming that / in | | /^ i+2^||2 is a normal
density with mean and variance estimated from the data. The weakest point of
this procedure is that we assume that the true / is a Gaussian density in order
to compute | | .p / + 2) | |2 · This assumption can lead to arbitrarily bad estimates of
t*, when the true distribution is far from being normal. One of the steps in the
Sheather-Jones plug-in method [32, 38] uses the Z-stage direct plug-in bandwidth
selector and this affects its performance adversely.

Instead, we use the improved plug-in method, which gives a (typically unique)
solution of the nonlinear equation:

ί = ξ7Μ(ί) for some large enough I, (8.33)

as the (near) optimal bandwidth estimate. The improved plug-in method dispenses
with any normality assumptions on / and as a consequence is more reliable and
accurate than most alternative plug-in methods [3, 9].

We now give the implementation details of the improved plug-in method. Similar
to the LSCV implementation in Algorithm 8.6 we assume the data to be on the
interval [0,1] and use the theta function approximation in (8.29). The data is
binned on a grid of size n and the coefficients {a,k}^Zo m (8-29) are computed using
the fast cosine transform. Then, for a given t,

I I / ^ I I ^ V E ^ : k27T2t

v -uk c

fc=l

Thus, computation of the right-hand side of (8.33) is an Ό(η) operation. The
following MATLAB code uses f zero.m to compute the root of (8.33) and uses the
fast cosine transform and inverse fast cosine transform routines from Sections 8.5.1
and D.5. In addition, we use I = 7. Our simulation experience is that larger values " ^ 708
of I do not change the value of the root of (8.33) in any significant way.

3 2 8 STATISTICAL ANALYSIS OF SIMULATION DATA

function [bandwidth,density,xmesh]=kde(data,n,MIN,MAX)
7« set up the grid over which, the density estimate is computed;
data=data(:);
R=MAX-MIN; dx=R/(n-l); xmesh=MIN+[0:dx:R]; N=length(data);

°/obin the data uniformly using the grid define above;
initial_data=histc(data,xmesh)/N;
a=dctld(initial_data) ; '/, discrete cosine transform of initial data
7, now compute the optimal bandwidth~2 using the referenced method
I=[l:n-1]’.~2;
7. use f zero to solve the equation t=zeta*gamma~ [1] (t)
t_star=fzero(@(t)fixed_point(t,N,I,a(2:end)."2),[0,.01]);
7« smooth the discrete cosine transform of initial data using t_star
a_t=a.*exp(-[0:n-l]’.~2*pi~2*t_star/2);
7o now apply the inverse discrete cosine transform
density=idctld(a_t)/dx;
'/, take the rescaling of the data into account
bandwidth=sqrt(t_star)*R;

function out=fixed_point(t,N,I,a2)
7» this implements the function t-zeta*gamma" [1] (t)

1=7;
f=l/2*pi~(2*1)*sum(I."1.*a2.*exp(-I*pi~2*t));
for s=l-l:-l:2

K0=prod([l:2:2*s-l])/sqrt(pi/2); Kl=(l+(l/2)"(s+l/2))/3;
time=(Kl*K0/N/f)~(2/(3+2*s));
f=l/2*pi~(2*s)*sum(I.~s.*a2.*exp(-I*pi~2*time));

end
out=t-(2*N*sqrt(pi)*f)~(-2/5);

■ EXAMPLE 8.11 (Comparison with LSCV)

Typically, the improved plug-in method is more accurate than the LSCV method
and the Sheather-Jones method [9]. For example, consider estimating the asym-
metric double claw density described by:

t;(*-.©>at<-^)^t<Ks
using N iid samples. Figure 8.9 shows the typical performance of the improved
plug-in and LSCV methods with N = 105. Note that the LSCV method does not
detect the three smaller claws in the left mode of the density very well. To make a
more rigorous assessment of accuracy we use the error criterion,

Ratio = l l / (- ^) - / l l 2

II/(-;*LS)-

KERNEL DENSITY ESTIMATION 3 2 9

that is, the ratio of the integrated squared error of the plug-in estimator to the
integrated squared error of the LSCV estimator. The second row of Table 8.1
reports the average Ratio over 10 independent simulations for different sample
sizes. We can see that the performance of the LSCV method is inferior for large
sample sizes.

Table 8.1 Comparison between the LSCV and improved plug-in estimators for the
asymmetric double claw density.

N 104 105 106 107

Ratio 1.01 0.37 0.55 0.0083

Figure 8.9 Estimation of the asymmetric double claw density using the LSCV method
(top panel) and the improved plug-in method (bottom panel). The dashed curve is the
estimate.

In addition to the computational advantages of using the approximation (8.29),
the theta function can handle boundary effects when the support of the data is
known [9]. Figure 8.10 shows the kernel density estimate based on N = 102 samples
from the Beta (1,2) distribution using the Gaussian (κ = ψ) and the theta (κ = Θ)
functions as kernels with the same bandwidth of 0.0520. The theta kernel performs
much better at the boundaries.

For a comprehensive simulation study of the improved plug-in method see [9],
where the simple partial differential equation (8.28) can be generalized using the

3 3 0 STATISTICAL ANALYSIS OF SIMULATION DATA

Figure 8.10 Using the theta function as the kernel (κ(χ) = θ(χ)) results in better
performance near the boundary of the support: x = 0 and x = 1.

linear diffusion PDE

—g(x; t) = Lg{x; t), xe3T,t>0. (8.34)

Here:

• the linear differential operator L is of the form | ^ (a(x) ^ (-τ^τ 1 1 ;

• a(x) can be any positive function on 3£ and p(x) is a pilot density estimate
of the true pdf / ;

• both a(x) and p{x) have bounded second derivatives;

• the initial condition is g(x, 0) = A(x), where A(x) is the empirical density.

The advantages of this more general model for density estimation stem from the
fact that (8.34) defines a diffusion process with limiting and stationary pdf p. In ad-
dition, the diffusion model (8.34) subsumes many of the so-called variable location-
scale kernel density estimators [2, 20, 29, 36], and it performs substantially better
than the simpler Gaussian kernel density estimator [3].

Remark 8.5.1 (Multivariate Kernel Density Estimation) In general, band-
width selection for multivariate kernel density estimation is significantly more diffi-
cult than its univariate counterpart [9,19, 26, 37]. One difficulty is that the support
of the density in high dimensions can have an arbitrarily complex geometry. For
example, we can consider multivariate kernel density estimation over arbitrary con-
nected domains that satisfy certain regularity conditions, and which require the
solution of a two-dimensional diffusion PDE over this complex domain. For more
details on this approach see [9].

RESAMPLING AND THE BOOTSTRAP METHOD 3 3 1

8.6 RESAMPLING AND THE BOOTSTRAP METHOD

The idea behind resampling is very simple: an iid sample x = (x\,... ,xn) from
some unknown cdf F represents our best knowledge about F if no further assump-
tions on F are made. Consequently, if further gathering of data is expensive or
impossible, one can still resample the {xi} by drawing from the empirical cdf Fn.
In this way one can approximately repeat the experiment that gave the original
data many times. This is useful if one wants to assess the distributional properties
of some statistic T = T(X) of the data X = (X\,..., Xn), such as the variance,
bias, or mean square error.

The boots trap m e t h o d is a formalization of the resampling idea. Suppose we
wish to estimate a performance measure £ = ¥.ph(T) of T, where h is a real-valued
function. It is assumed that T does not depend on the order of the {Xi}. To esti-
mate I via Monte Carlo one could draw independent replications X i , . . . , XJV of X
and use the sample average ip = N~x Σί=ι M^i)j where ΤΪ = T(Xj) , i = 1,...,N,
as an estimator for t. However, it may be too time-consuming, or simply not
feasible, to obtain such replications. An alternative is to resample the original
data. That is, given an outcome x = [x\,... ,xn) of X, draw an iid sample X* =
(XI,■.. ,X„) from the empirical cdf Fn, and repeat this N times to obtain con-
ditionally independent vectors X * , . . . ,X]^ with the same distribution as X*. For
large n, Fn is close to F and consequently Kph(T) can be approximated well by
¥,p„h(T). The latter is usually difficult to evaluate, but can be simply estimated
via Monte Carlo simulation as

1 N

^Σ^ϊΤ), (8-35)
i= l

where T* = T(X*), i = 1 , . . . , N. Table 8.2 gives various commonly used bootstrap
estimators. The bootstrap procedure is summarized as follows.

Algori thm 8.8 (Boots trap M e t h o d) Let X = (Χι,... ,Xn) be the original
data. Set i = 1.

1. Draw U\, ■ ■ ■ ,Un ~ U(0,1), set Ij = \nUf\ and X? = Xij, j = 1 , . . . ,n .

2. Set X* = {XI..., X*) and T* = T(X*) .

3. If i < N, set i = i + 1 and go to Step 1; otherwise, go to Step 4-

4- Return (8.35) as the bootstrap estimate of I.

Estimators T and (S*)2 are simply the sample mean and sample variance of
the {T*}. When T is an estimator of some unknown parameter Θ, the bootstrap
estimators of its bias and mean square error are obtained by replacing Θ with T. The
first bootstrap confidence interval in Table 8.2 corresponds to the usual approximate
confidence interval (8.5) for the {Xi}. This is called the normal method . The
second confidence interval consists of the a/2 and 1 — a / 2 sample quantiles of the
{T*}. This is called the percenti le m e t h o d [17].

3 3 2 STATISTICAL ANALYSIS OF SIMULATION DATA

Table 8.2 Common bootstrap estimators.

Quantity to estimate Estimator

E T

Var(T)

Mean square error: E(T — Θ)2

Bias: ET - Θ

1 — a confidence interval for E T (normal)

1 — a confidence interval for E T (percentile)

1 N

-YT* N

1 N _
(5*)2 = ΑΓ^ϊΣ(τ*-τ*

i = l

2
N ■ !

T* -T

T ±Zl_a/2S*/^N

(T(V«/2J)' T(V(l-«/2)l)j

■ EXAMPLE 8.12 (Boots trapping the Rat io Est imator)

Let the data (Χχ,Υι),..., (Xn, Yn) be independent copies of some random vector
(X, Y). Suppose we wish to estimate the ratio of expectations μχ/μγ via the ratio
estimator T = Χ/Ϋ; see also Example 8.4. The bootstrap method provides an easy
way to derive confidence intervals for μχ/μγ without the need for an asymptotic
analysis.

For concreteness, consider n — 100 iid copies of (X, Y) with X ~ N(10,25) and
Y = XZ, where Z ~ U(0,1) is independent of X. Hence, μχ/μγ = 10/5 = 2.
We have plotted in Figure 8.11 a kernel density estimate of the bootstrap values
T-j",.. . , T£ (solid line) and the pdf of the Ν(Χ/Ϋ, S2/N) distribution (dashed line)
for each of three data sets (three iid samples of size n) , where S2 is the estimate of
the asymptotic variance of the ratio estimator as in (8.18).

3-

2-

-

-

„ ' „ /

A
/ /

LAA7

A A
V
\

V-,

- - Bootstrap
— Delta method

\

^>>A>^_
1.6 2.2 2.4 2.6 2.8

Figure 8.11 The a/2 and 1 — a/2 quantiles of each pair of pdfs correspond to 1 — a
confidence intervals for the delta and bootstrap methods.

GOODNESS OF FIT 333

The a / 2 and 1 — a/2 quantiles of these pdfs correspond to 1 — a confidence
intervals. The figure illustrates that a bootstrap confidence interval (percentile
method) is close to the corresponding approximate confidence interval obtained via
the delta method. The following MATLAB code has been used. It uses the kde.m
function from Section 8.5.2.

°/0resampratio .m
n = 100; / .s ize of d a t a
N = 50000; °/0resample s i z e
T = z e r o s (l . N) ;
hold on
for count=l:3 "/.generate three sets of data

xorg = 10 + 5*randn(l ,n) ; "/»original x data
yorg = rand(l.n) .*xorg; ’/»original y data
x = zeros(l,n);
y = zeros(l,n);
T = zeros(l,N); /̂ bootstrap values for ratio estimator
for i=l:N

ind = ceil(n*rand(l,n)) ; '/, draw random indices
x = xorg(ind) ; ’/, resampled y data
y = yorg(ind); % resampled x data
T(i) = mean(x)/mean(y);

end
Torg = mean(xorg)/mean(yorg);
cv = cov(xorg,yorg);
S2 = Torg~2*(var(xorg)/mean(xorg)~2 ...

+ var(yorg)/mean(yorg)"2 - 2*cv(1,2)/mean(xorg)/mean(yorg));
tt = [Torg-4*sqrt(S2/n):0.01: Torg+4*sqrt(S2/n)];
z = normpdf(tt,Torg,sqrt(S2/n));
plot(tt,z,’r-.’)
[bandwidth,density,xmesh]=kde(T,2~14,min(tt),max(tt));
plot(xmesh,density)

end
hold off

8.7 GOODNESS OF FIT

Goodness of fit procedures can be used to assess how well simulation data fit a
specified statistical model. This is particularly important for the construction of
good random number generators, where the output should resemble a sequence of
iid U(0,1) random variables, see Section 1.5.2. Goodness of fit procedures are also "^" 14
frequently encountered in Monte Carlo investigations of asymptotic convergence
results; for example, how well the distribution of a finite sum of iid random variables
is approximated by a normal distribution.

Goodness of fit approaches fall roughly into three categories: (1) graphical pro-
cedures, (2) statistical tests based on the empirical cdf, and (3) statistical tests
based on binning of the data.

3 3 4 STATISTICAL ANALYSIS OF SIMULATION DATA

8.7.1 Graphical Procedures

Suppose the output data of a simulation. The {xi} could for example
be the output of an MCMC sampler, in which case the data are dependent. We
describe a number of methods that can be used to verify graphically whether the
data represents (possibly dependent) samples from some pdf / or cdf F.

A straightforward graphical approach is to compare a kernel density estimate of
the data to the proposed pdf / , as in Section 8.5, or to compare the empirical cdf
to F, as in Section 8.4. An alternative is to use a probability plot. This refers
to a general procedure where the data are plotted in such a way that the points
should lie approximately on a straight line if the data come from the hypothesized
pdf / or cdf F.

The two most common examples of probability plots are the p-p plot (p stands
for percentile) and the q-q plot (q stands for quantité).

In the p-p plot each F(xi) is plotted against the corresponding Fn(xi) of the
empirical cdf. In particular, using ordered observations, F(x^) is plotted against
i/n, which is the same as plotting the reduced empirical cdf. In the q-q plot each
X(i) is plotted against the corresponding F~l(i/{n + 1))- This gives the following
algorithms.

Algor i thm 8.9 (One-Sample p-p P lo t W i t h K n o w n Theorized Cdf) Let

x\,...,xn be the data and F the theorized cdf.

1. Order the data: x^ ^ · · ■ ^ X(n)-

2. For i = 1 , . . . ,n plot i/n (y-axis) against F(x^) (x-axis).

3. Examine if the points lie approximately on a straight line with slope 1.

Algor i thm 8.10 (One-Sample q-q P lo t W i t h K n o w n Theorized Cdf) Let

x\,..., xn be the data and F the theorized cdf.

1. Order the data: x^ ^ · · · ^ X(n)-

2. For i = 1 , . . . , n plot F _ 1 (i / (n + 1)) (y-axis) against x^ (x-axis).

3. Examine if the points lie approximately on a straight line with slope 1.

A q-q plot can also be used to test whether two samples and yi,...,yn

share a common cdf F by replacing the unknown i 7 _ 1 (i / (m + 1)) with the sample
i/(m + l)- th quantile of the {yi}; that is, the order statistic 2/([m/(m+i)~|)·

Algor i thm 8.11 (Two-Sample q-q P lo t) Let x\,... ,xm and yi,...,yn be the
data.

1. Order the data: X(i) ^ · · ■ ^ X(m) and j/(i) < · · ■ < j/(n).

2. For i = 1 , . . . , m plot y(\ni/(m+i)]) (y-axis) against χ^ (x-axis).

3. Examine if the points lie approximately on a straight line with slope 1.

A q-q plot can also be used to check whether the data χχ,..., xn could have come
from a family of distributions. The most common case is to verify whether the
data come from a location-scale family of cdfs {F(x; μ,σ)} with some base cdf
F(- ;0 ,1) = F(·) . Thus,

F(x-^,a)=F m

GOODNESS OF FIT 3 3 5

so that
x = μ + σ F~1(F(x;ß, σ)) .

By replacing F(x\ μ, σ) with the empirical cdf estimate Fn(x) = Fn(x; μ, σ), we see
that the points {{xt, F~l(Fn(xi)))} will lie approximately on a straight line if the
data are distributed according to some member of this location-scale family.

Algor i thm 8.12 (One-Sample q-q Plot for a Location—Scale Family) Let
xi,... ,xn be the data and F the base cdf of the location-scale family.

1. Order the data X(i) ^ · · · ^ X(n).

2. For i = 1 , . . . , n plot F~l(i/(n + 1)) (y-axis) against x^ (x-axis).

3. Examine if the points lie approximately on a straight line,

Useful additional information from a q-q or p-p plot can be gained by carrying
out a regression analysis on the plotted points. In particular, for Algorithm 8.12
the estimated slope and intercept of the regression line give the scale and location
parameters of the location-scale family, respectively. If the hypothesized family
of distributions is not location-scale it may still be possible to employ a q-q plot
by transforming the data such that the transformed data do have a location-scale
form. An example is the Weib(a, λ) distribution. Namely, if X ~ Weib(a, λ), then
— l n X ~ Gumbel(lnA, 1/a), which is a location-scale distribution; see Property 3
on Page 138.

Finally, the estimated correlation coefficient provides a measure for the goodness
of the fit.

■ EXAMPLE 8.13 (Normal q-q P lo t s for the G a m m a Distr ibut ion)

Consider four iid samples from a Gamma(fc, 1) distribution with k = 1,10,10,100
and sample sizes n = 100,100,1000,10000, respectively. Figure 8.12 shows the q-q
plots obtained via Algorithm 8.12 with the normal distribution as the theorized
location-scale family.

Figure 8.12 Normal q-q plots for an iid sample of size n from the Gamma(fc, 1)
distribution for various values of k. The x-axis shows the sorted data x^, i = 1 , . . . ,n
and the y-axis shows the corresponding theorized normal inverse cdf value Φ_1(ΐ/("- + 1)).

3 3 6 STATISTICAL ANALYSIS OF SIMULATION DATA

By the central limit theorem the distribution of Gamma(fc, 1) is approximately
normal for large k. The points in the normal q-q plot for k = 10 and n = 100 lie
approximately on a straight line, indicating that the sample is difficult to distin-
guish from normal data, as opposed to the q-q plot for the Gamma(l, 1) = Exp(l)
distribution. However, by increasing the sample size to n = 1000 a clear deviation
from normality can be observed. A similar deviation can be observed even for the
case where k = 100, when using a large sample size n = 10000. The following
MATLAB code is used.

/Oqqplotex.m
nk = [100,1;

100, 10;
1000, 10;
10000,100];

hold on
for count = 1:4;

n= nk(count.l);
k = nk(count,2);
x = sum(-log(rand(k
x = sort (x) ; ’/.sort
i = 1:n;
y = icdf(’normal’,i
subplot(2,2,count)
plot(x,y,’.’)
hold on

p = polyfit(x,y,l)
f = polyval(æ,÷);
plot(x,f)

end

hold off

,n)),l)
it

/(n+1),

; ’/«generate the data

0,1) ’/.compute the inverse cdf

"/.find the regression parameters
’/»the values of the regression line

8.7.2 Kolmogorov-Smirnov Test

Let X I , . . . , X J V be an iid sample from some continuous distribution. The Kol-
mogorov statistic Djv in (8.21), or more commonly its scaled version Κχ = y/ND^,
is often used as a test statistic to assess whether the true sampling cdf is equal to
some given F or not. The null hypothesis is rejected for large values of the Κχ.
The exact distribution of Kjsr under the null hypothesis is given in the following
theorem; see [16] and [25].

T h e o r e m 8.7.1 (Distr ibution of the Kolmogorov Statist ic) For a given
u € (0,1), let p = 2 \Nu\ — 1 and δ = \Nu\ — Nu. Define H as the p x p matrix

H=T-C-R+E,

GOODNESS OF FIT 337

where T is the Toeplitz matrix

/ I

T =

à
h

1
1
2!

\p\ (p - 1) !

o\
0

0

à V
where C, R, and E are zero matrices except that the (i,l)-th element of C is
δι/ί\ ,i = 1 , . . . ,p, the {p,j)-th element of R is δρ~:>+1/(ρ — j + l)\,j = 1 ,2, . . . ,p,
and the (p, l)-th element of E is (max{0,26 — l})p/p\. Then, denoting H = HN

as the N-th power of matrix H,

¥{KN ^ VNu) = F(DN ^ u) = _ ff(\Nu] , \Nu]) , « € (0 , 1) , (8.36)

where H(\Nu] , \Nu~\) is the \Nu\-th diagonal element of the N-th power of H,
Moreover,

Ψ(Κ < y) = hm Ψ(ΚΝ < y) = V (-1) V
Ν—>οο Δ—'

2(ky)2

V>0. (8.37)
fc——οο

The limit result (8.37) follows from the fact that under the null hypothesis the
stochastic process {\fN{G^{u) — it), u G [0,1]}, where G;v is the reduced empirical
cdf, converges in distribution to a Brownian bridge process, say {Yu,u G [0,1]};
see, for example, [31]. Therefore, by the continuity theorem (see Property 3 on
Page 624), K^ converges in distribution to the random variable K — sup 0 < 1 1 < 1 11^ | ,
the distribution of which is given in (8.23).

Algori thm 8.13 (Kolmogorov—Smirnov Test)

1. Order the data x^ < ■ ■ ■ < Χ(ΛΓ)·

2. Calculate d* max max ■
i= l , . . . , JV

Hi) N Hi) N

3. SetkN = VNdN.

4- Calculate the p-value P(iOv ^ ICN) υ*β (8.36), or, for large N, the asymptotic
p-value F(K > kN) via (8.37).

■ EXAMPLE 8.14 (Kolmogorov-Smirnov Test)

Suppose the data are N = 103 independent copies of the random variable X = Υ+ε,
where Y ~ Logistic(0,1) and ε ~ N(0,1) are independent. Hence, X would be
Logistic(0,1) distributed without the Gaussian noise term. The following MATLAB
program generates the sample (it uses the Logistic(0,1) generator of Algorithm 4.45) 120

file:///Nu/-th

3 3 8 STATISTICAL ANALYSIS OF SIMULATION DATA

and applies the Kolmogorov-Smirnov test to assess the hypothesis Ho that the sam-
ple is from the Logistic(0,1) distribution. Figure 8.13 shows the reduced empirical
cdf GJV(W) and a line with slope one. The maximum distance between GN(U) and
u is about 0.0620 in this case. Hence, the Kolmogorov-Smirnov statistic KN takes
the value kN = y/N0.0620 « 1.9601. The asymptotic p-value PHo(KN > kN)
is 9.2 x 10~4 (rounded). The exact p-value is 8.6 x 1 0 - 4 . Thus, there is reason-
able to strong evidence from the data to suggest that the true distribution is not
Logistic(0,1).

’/»kolsmir .m
N = 1000; ’/.sample size

U=rand(l,N); x = log(U./(l-U))+randn(l,N);
x = sort(l./(l+exp(-x)));
i=l:N;
dn_up = max(abs(x-i/N));dn_down = max(abs(x
dn = max(dn_up, dn_down);
kn = sqrt(N)*dn; °/,KS statistic
k = -20:1:20;
a = (-1).~k.*exp(-2*(k.*kn).~2); ’/.calculate
p = 1 - sum (a) ’/. return the p-value
’/.or use matlab Statistics toolbox function
[ß,p,ksstat,cv] = kstest(x,[÷’,÷’])
’/. plot the reduced empirical cdf

stairs([0,x],[0,i/N],’r’), hold on, line([0

’/.generate sample

-(i-

KS

-…/˝));

probabilities

sstest

,1] ,[0,1])

Figure 8.13 The reduced empirical cdf GN{U) and the line with slope one.

GOODNESS OF FIT 339

8.7.3 Anderson-Darling Test

The Anderson—Darling test is used as an alternative to the Kolmogorov-Smirnov
test for testing if an iid sample x±,... ,XN could have come from a given cdf F.
The test statistic here is

Λοο F{x){l-F(x)) V ; J0 u (l - u)

J L fî/i+i (ilM _ ,Λ2 1 JL
= ΝΈ] u{l-u) àu = -N--^2(2i-l)\n(y1(l-yN+1_1)),

where y, = F(x^), i = Ι,.,.,Ν, and yo = 0 and J/JV+I = 1· The null hypothesis is
rejected for large values of Αχ.

If Gjv is the random reduced empirical cdf (that is, Gjv(w) = f jv(-F - 1(u))) ,
then the stochastic process {v^V(Gjv(w) — u),u € [0,1]} converges in distribution
to a Brownian bridge process {Xu,u € [0,1]} as N —> oo. Consequently, by the
continuity theorem (Property 3 on Page 624) AN converges in distribution to the
random variable

f1 xl

The characteristic function of A^ is given in [4] as

Ax= I ,. " d u .
u)

π (k{k + l) \ 1 / 2 A (~27rit

I I TTT-^—r and as '
, 1 1 \k(k + l)-2it) fc=l

k{k + l)-2itj \ c o s (f V l + 8ii)

1/2

The first expression shows that ^co = $^ïï=i Zj, where the {Zj} are independent
with Zj ~ Gamma(l/2, j(j + l) / 2) , j = 1,2, From the characteristic function
the following expression for the cdf can be found [4]:

F{Aoo ^ x) = y^L g H) (4fc + i)e-^+D2fl Γ eiof^T-»2(4fc+1)2É d w .
x
 k = 0 \ k J Jo

Numerical values for the cdf can be obtained by numerical integration of the above
expression or by numerical inverse Fourier transformation of the characteristic func-
tion. Some care needs to be taken regarding the branches of the complex square
root function. Marsaglia and Marsaglia [24] provide an · approximating function
a(x) of the cdf:

™, . * / x 1 ο,ι(χ) if 0 < x < 2

I a2(x) if x ^ 2 ,

with

αι(χ) = x-1/2e-bl/x(b2 + (&3 - (64 - (6B - (&e - &7 χ) ι) χ) χ) ι)
a2(a;) = exp (- e<=i-(^-(^-(c4-(c5-cex)x)x)x)x^ ^

where the coefficients are given in Table 8.3. The approximation via a(x) gives an
absolute error within ±0.0005, but the relative error increases rapidly as x increases.

3 4 0 STATISTICAL ANALYSIS OF SIMULATION DATA

T a b l e 8.3 Coefficients used for the approximating functions.

k bk Ck dk rnk

1
2
3
4
5
6
7

1.2337141
2.00012
0.247105
0.0649821
0.0347962
0.0116720
0.00168691

1.0776
2.30695
0.43424
0.082433
0.008056
0.0003146
�

0.00022633
6.54034
14.6538
14.458
8.259
1.91864
�

130.2137
745.2337
1705.091
1950.646
1116.360
255.7844
�

For finite N the cdf of AM is difficult to compute and depends on the cdf F (note
that the distribution of the Kolmogorov-Smirnov statistic K^ does not depend on
F). Numerical values are generally obtained via Monte Carlo simulation. An
important special case is where F is the cdf of the U(0,1) distribution; that is,
F{x) = x, 0 ^ x ^ 1. Based on a large simulation study, Marsaglia and Marsaglia
[24] propose the following approximation for finite N for the U(0,1) case:

¥{AN ^ x) « a{x) + e(N,a(x)) ,

where a(x) is defined in (8.38) and the correction function e(N, y) is given by

e{N,y) = {

1
105

Î370 , l i |
(N3 -r N2 -T Njyi vc(jv)

V-C(N)

)9i(
1 M365 , 4213\„ I y

A3 (y)
N

)

c(Nj)

if y < c{N)

if c(N) ^ y < 0.8

if 0.8 ϊξ y ,

with (see coefficients in Table 8.3)

c(N) = 0.01265 + 0.1757/JV

ffi(y) = Vy (i - Î /) (49I/ - 1 0 2)

52(y) = -di + (d2 - (d3 - (d4 - (d5 - d6 y)y)y)y)y

9i{y) = - ™ i + (™2 - (m3 - (m4 - (m5 - m6 y)y)y)y)y

m 141

8.7.4 x2 Tests

In a χ 2 goodness of fit test, the model for the data is

(Xi,...,Xk)~ Mnom(N,Pl,...,Pk) .

Each Xi can be interpreted as the total number of balls in the i-th urn, where ./V
balls are thrown independently into urns 1 , . . . , k with probabilities pi,... ,Pk', see
Section 4.3.2. The aim is to verify whether the {pi} are equal to specified values
{7i"i}. The test statistic is generally of the form

Λ (Oj - Etf

^ Ei '

where Oi is the observed number of observations (balls) in class (urn) i and Ei is
the expected number of observations in class i. The distribution of T under the null

GOODNESS OF FIT 341

hypothesis is asymptotically χ2, and is based on the following theorems (proofs can
be found, for example, in [31]).

Theorem 8.7.2 (Goodness of Fit W i t h K n o w n Parameters) Suppose that
(Xi,... ,Xk) ~ Mnom(A r ,pi , . . . ,pk). Then, for large N

Σ (Λ , — I\ Pi) approx. 2

Theorem 8.7.3 (Goodness of Fit W i t h U n k n o w n Parameters) Suppose that
(X\,...,Xk) ~ Mnom(N,pi,... ,pk), where each pi = Ρί{θ) depends on an un-
known parameter vector θ = (θχ,..., 9r). Let Θ be the MLE of Θ and pi = Ρί{θ) ^ 667
the MLE ofpi{0). Then, for large N

approx. 2
JjJ ~ Xfc-l-r ·

As a rule of thumb, one can use the approximations above provided that Npi (or
Npi) is greater than 5, for all i.

We discuss two types of χ2 goodness of fit test that frequently appear in Monte
Carlo studies.

8.7.4.1 Goodness of Fit Test With Known Parameters Let (Χχ,... ,Χ^) ~
Mnom(./V,pi,... ,pk). The objective is to test Ho : p\ = πχ , . . . ,pk = 7t> against the
alternative hypothesis that HQ is not true, by using the test statistic

"(Χ,-Νπ^

^ Νπι
i—l

By Theorem 8.7.2, under HQ and for large N, the statistic T has approximately a
χ1_ι distribution. HQ is rejected for large values of T. For an outcome ί of T we
therefore have the p-value

Ρ Η ο (Τ ^ ί) « 1 - χ 2 _ 1 ; ί ,

where x1_vt is the i-quantile of the χ2._1 distribution.

■ EXAMPLE 8.15 (χ 2 Test ing for Equidistribution)

A fundamental test for random number generators is the equidistribution test, where
the theoretical distribution is tested against the observed output; see Section 1.5.2.1. " ^ 17
Such a test can be implemented as a χ2 goodness of fit test. As an example,
suppose we generate N samples and count how many of these fall in each interval
((i — l)/k, i/k), i = 1 , . . . , k for some integer k > 1. The following MATLAB program
generates the data via the default uniform random number generator and performs
a χ2 test for the case N = 106 and k = 50. The outcome of T is in this case
t = 34.03, which gives a p-value of 0.95. Hence, this t is likely to occur under the
null hypothesis that the data are genuinely U(0,1) distributed, and therefore there

3 4 2 STATISTICAL ANALYSIS OF SIMULATION DATA

is no reason to reject the null hypothesis. Figure 8.14 corroborates this finding
graphically.

y,chi2eq.m
c l e a r a l l ,
N = 10"6;]
u = r a n d (l
fo r i = l : k

x (i) =
end
t = sum((x
pva l = 1 -
b a r (x , 0 . 5)

r a n d C
t = 50;
,N); x

sum((

- N*p)

s t a t e ' , 1)
p = o n e s (l ,

= z e r o s (l , k)

i - l) / k < u &

. ~ 2 . / (N * p)) ;
c d f (, c h i 2 ' , t , k - l)

k) / k ; '/.true
J

u< i / k) ;

%test s t a t
"/, p - v a l u e

p r o b a b i l i t i e s

"/.observed

i s t i c

count

Figure 8.14 Counts of uniform numbers in the intervals ((i —1)/50, i/50), i = 1 , . . . , 50.
The total sample size is N = 106.

8.7.4.2 Goodness of Fit Test With Unknown Parameters Let (Xi,...,Xk) ~
Mnom(N,pi,... ,pk). The objective is to test HQ : pi = πχ(θ),... ,pk = 7^(0),
where the {7Tj} are known functions but θ = (θχ,..., 6r) is an unknown parameter
vector, against the alternative hypothesis that HQ is not true. The test statistic is

l=1 N%

where π, = π^θ) is the MLE of πί(θ), i = 1 , . . . , k. By Theorem 8.7.3, under Ho
and for large ΛΓ, T approximately has a xl_1_r distribution. Therefore, an outcome
t of T gives the approximate p-value

P i i o (r > i) « l - x 2 - l - r ; t .

where xjc_1_r.t is the i-quantile of the xl_1_r distribution.

REFERENCES 343

■ EXAMPLE 8.16 (Cont ingency Tables)

Contingency tables are used to test the independence of data. Consider a random
vector (U, V) taking values in { 1 , . . . , r } x { 1 , . . . , c}. We wish to test for inde-
pendence of U and V. To this end we take iV iid copies (U\, V\),..., (UN, VN) of

=iyk=j} be the total number of observations in "urn"
(i,j). Then (Xn,... ,Xrc) ~ M n o m ^ p u , . . . ,prc), with Pij = P(U = i,V = j).
The random variables U and V are independent if and only if

Ho :pij =PiQj for all i,j ,

holds for some (unknown) marginal probabilities p\ = F(U = 1) , . . . ,pr = P(U = r)
and qi = P(V = l),...,qc = P(V = c). We can test HQ against its negation by
using the test statistic

^ = ΣΣ (Xij - NpiCj)

where Pi — Υ^=1 Xij/N and qj = Σ1=1 Xij/N are the MLEs of Pi and qj, i =
1 , . . . , r, j = 1 , . . . , c. By Theorem 8.7.3, the test statistic T approximately has a
X(V_i)(c_i) distribution under Ho. Note that there are re classes, and the number
of parameters that need to be estimated is (r — 1) + (c — 1). HQ is rejected for large
values of T.

Further Reading

The regenerative method in a simulation context is introduced and developed by
Crane and Iglehart [13]. A more complete treatment of regenerative processes is
given in [5]. Fishman [18] treats the statistical analysis of simulation data in great
detail. Efron and Tibshirani [17] cover the bootstrap method. For a book dedicated
to graphical methods for data analysis see Chambers et al. [11]. Useful references
on statistical inference and data analysis are Casella and Berger [10], Maindonald
and Braun [23], and Law and Kelton [21].

REFERENCES

1. J. Abate and W. Whitt. Transient behavior of regulated Brownian motion. Advances
in Applied Probability, 19(3):560-631, 1987.

2. I. S. Abramson. On bandwidth variation in kernel estimates—a square root law.
Annals of Statistics, 10(4):1217-1223, 1982.

3. N. Agarwal and N. R. Aluru. A data-driven stochastic collocation approach for un-
certainty quantification in MEMS. International Journal for Numerical Methods in
Engineering, 2010. DOI: 10.1002/nme.2844.

4. T. W. Anderson and D. A. Darling. Asymptotic theory of certain "goodness of fit" cri-
teria based on stochastic processes. The Annals of Mathematical Statistics, 23(2):193-
212, 1952.

3 4 4 STATISTICAL ANALYSIS OF SIMULATION DATA

5. S. Asmussen. Applied Probability and Queues. John Wiley L· Sons, New York, 1987.

6. R. Bellman. A Brief Introduction to Theta Functions. Holt, Rinehart and Winston,
New York, 1961.

7. Z. I. Botev. A novel nonparametric density estimator. Technical report, The Univer-
sity of Queensland, 2006. Available from ht tp : / /espace . l ibrary .uq.edu.au/view/
UQ:12535.

8. Z. I. Botev. Nonparametric density estimation via diffusion mixing. Technical report,
The University of Queensland, 2007. Available from h t tp : / / e space . l ib ra ry .uq .
edu.au/view/UQ: 120006.

9. Z. I. Botev, J. F. Grotowski, and D. P. Kroese. Kernel density estimation via diffusion.
The Annals of Statistics, 38(5):2916-2957, 2010.

10. G. Casella and R. L. Berger. Statistical Inference. Duxbury Press, Pacific Grove,
second edition, 2001.

11. J. M. Chambers, W. S. Cleveland, B. Kleiner, and P. A. Tukey. Graphical Methods
for Data Analysis. Wadsworth, Boston, 1983.

12. P. Chaudhuri and J. S. Marron. Scale space view of curve estimation. The Annals of
Statistics, 28(2):408-428, 2000.

13. M. A. Crane and D. L. Iglehart. Simulating stable stochastic systems, II: Markov
chains. Journal of the Association for Computing Machinery, 21(1):114-123, 1974.

14. L. Devroye and L. Györfi. Nonparametric Density Estimation: The L\ View. John
Wiley & Sons, New York, 1985.

15. A. Doucet, N. de Freitas, and N. Gordon. Sequential Monte Carlo Methods in Practice.
Springer-Verlag, New York, 2001.

16. J. Durbin. Distribution Theory for Tests Based on the Sample Distribution Function.
Society for Industrial & Applied Mathematics, Philadelphia, 1972.

17. B. Efron and R. Tibshirani. An Introduction to the Bootstrap. Chapman & Hall, New
York, 1994.

18. G. S. Fishman. Discrete Event Simulation: Modeling, Programming, and Analysis.
Springer-Verlag, New York, 2001.

19. M. L. Hazelton and J. C. Marshall. Linear boundary kernels for bivariate density
estimation. Statistics and Probability Letters, 79(8):999-1003, 2009.

20. M. C. Jones, I. J. McKay, and T. C. Hu. Variable location and scale kernel density
estimation. Annals of the Institute of Statistical Mathematics, 46(3):521-535, 1994.

21. A. M. Law and W. D. Kelton. Simulation Modeling and Analysis. McGraw-Hill, New
York, third edition, 2000.

22. C. R. Loader. Bandwidth selection: Classical or plug-in. The Annals of Statistics,
27(2):415-438, 1999.

23. J. Maindonald and J. Braun. Data Analysis and Graphics Using R: An Example-
Based Approach. Cambridge University Press, Cambridge, second edition, 2007.

24. G. Marsaglia and J. C. W. Marsaglia. Evaluating the Anderson-Darling distribution.
Journal of Statistical Software, 9(2), 2004.

25. G. Marsaglia, W. W. Tsang, and J. Wang. Evaluating Kolmogorov's distribution.
Journal of Statistical Software, 8(18), 2003.

26. J. C. Marshall and M. L. Hazelton. Boundary kernels for adaptive density estimators
on regions with irregular boundaries. Journal of Multivariate Analysis, 101(4):949-
963, 2010.

http://espace.library.uq.edu.au/view/
http://espace.library.uq

REFERENCES 345

27. B. U. Park and J. S. Marron. Comparison of data-driven bandwidth selectors. Journal
of the American Statistical Association, 85(409):66-72, 1990.

28. R. Y. Rubinstein and D. P. Kroese. Simulation and the Monte Carlo Method. John
Wiley & Sons, New York, second edition, 2007.

29. M. Samiuddin and G. M. El-Sayyad. On nonparametric kernel density estimates.
Biometrika, 77(4):865-874, 1990.

30. D. W. Scott. Multivariate Density Estimation: Theory, Practice and Visualization.
John Wiley & Sons, New York, 1992.

31. P. K. Sen and J. M. Singer. Large Sample Methods in Statistics. Chapman & Hall,
New York, 1993.

32. S. J. Sheather and M. C. Jones. A reliable data-based bandwidth selection method
for kernel density estimation. Journal of the Royal Statistical Society, Series B,
53(3):683-690, 1991.

33. G. R. Shorack and J. A. Wellner. Empirical Processes With Applications to Statistics.
SIAM, Philadelphia, 2009.

34. B. W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman &
Hall, New York, 1986.

35. J. S. Simonoff. Smoothing Methods in Statistics. Springer-Verlag, New York, 1996.

36. G. R. Terrell and D. W. Scott. Variable kernel density estimation. The Annals of
Statistics, 20(3):1236-1265, 1992.

37. M. P. Wand and M. C. Jones. Multivariate plug-in bandwidth selection. Computa-
tional Statistics, 9:97-117, 1994.

38. M. P. Wand and M. C. Jones. Kernel Smoothing. Chapman & Hall, London, 1995.

This page intentionally left blank

CHAPTER 9

VARIANCE REDUCTION

The estimation of performance measures in Monte Carlo simulation can be made
more efficient by utilizing known information about the simulation model. The
more that is known about the behavior of the system, the greater the amount of
variance reduction that can be achieved. The main variance reduction techniques
discussed in this chapter are:

1. Antithetic random variables.

2. Control variables.

3. Conditional Monte Carlo.

4. Stratification.

5. Latin hypercube sampling.

6. Importance sampling.

7. Quasi Monte Carlo. «®" 25

For application of variance reduction techniques in rare-event simulation see Chap-
ter 10. In particular, Section 10.6 and Chapter 14 both present a splitting approach us* 381
to rare-event simulation. "®° 409

, , , ^ 4 8 1

Handbook of Monte Carlo Methods. By D. P. Kroese, T. Taimre, Z. I. Botev 347
Copyright © 2011 John Wiley h Sons, Inc.

3 4 8 VARIANCE REDUCTION

9.1 VARIANCE REDUCTION EXAMPLE

Each of the variance reduction methods is illustrated using the following estimation
problem concerning a bridge network. The problem is sufficiently complicated to
warrant Monte Carlo simulation, while easy enough to implement, so that the
workings of each technique can be concisely illustrated within the same context.

■ EXAMPLE 9.1 (Bridge Network)

Consider the undirected graph in Figure 9.1, depicting a bridge network.

Figure 9.1 What is the expected length of the shortest path from A to B?

Suppose we wish to estimate the expected length ê of the shortest path between
nodes (vertices) A and B, where the lengths of the links (edges) are random vari-
ables X^,...,X5. We have I = EH(X), where

if (X) = min{X! + X4, X^X3 + X6, X2 + X3 + X4, X2 + Xs} ■ (9.1)

Note that if(x) is nondecreasing in each component of the vector x. Suppose the
lengths {Xi} are independent and Xi ~ U(0, a»), i = 1 , . . . , 5 with (a i , . . . , as) =
(1,2,3,1,2). Writing Xi = a, Ui, i = 1 , . . . , 5 with {Ui} ~üd U(0,1), we can restate
the problem as the estimation of

i = Eh(U) , (9.2)

where U = (Ui,... ,11$) and /i(U) = H(a,iUi,... ,α^ΙΙζ). The exact value can be
determined by conditioning (see Section 9.4) and is given by

133Q
1= = 0.9298611111... .

1440

■^ 306 Crude Monte Carlo (CMC) proceeds by generating U i , . . . , UJV ~ U(0, l) 5 and
returning

?=4Eft(ufc)
fc=l

as an estimate for I.
The following MATLAB program implements the CMC simulation. For a sample

size of TV = 104 a typical estimate is I = 0.930 with an estimated relative error of
0.43%.

ANTITHETIC RANDOM VARIABLES 3 4 9

'/.bridgeCMC.m
N = 10"4;
U = r a n d (N , 5) ;
y = h(U);
e s t = mean(y)
percRE = s t d (y) / s q r t (N) / e s t * 1 0 0

func t ion out=h(u)
a = [l , 2 , 3 , l , 2] ; N = s i z e (u . l) ;
X = u . * r e p m a t (a , N , l) ;
Path_l=X(
Path_2=X(
Path_3=X(
Path_4=X(

,1)+X(
,1)+X(
,2)+X(
,2)+X(

, 4) ;
, 3) + X (: , 5) ;
, 3) + X (: , 4) ;
, 5) ;

o u t = m i n ([P a t h _ l , P a t h _ 2 , P a t h _ 3 , P a t h _ 4] , [] , 2) ;

9.2 ANTITHETIC RANDOM VARIABLES

A pair of real-valued random variables (Y, V*) is called an a n t i t h e t i c p a i r if Y and
Y* have the same distribution and are negatively correlated. The main application
of antithetic random variables in Monte Carlo estimation is based on the following
theorem; see, for example, [18].

T h e o r e m 9.2.1 (A n t i t h e t i c E s t i m a t o r) Let N be an even number and let
(Y"i, Y{) , . . . , {XN/2I ^jv/2) ^e independent antithetic pairs of random variables,
where each Yk and Yfc* is distributed as Y. The a n t i t h e t i c e s t i m a t o r

JV/2

? a) = JV Σθΐ+**}> (9 · 3)

fc=l

is an unbiased estimator of £ = EY, with variance

V a r i a i) = ^ (Var(Y) + Var(Y*) + 2Cov(Y,Y*))
Nz

= (Var(Y) + Cov(Y, Y*))/N

Var(Y) .
= — ^ (1 + 0Υ,Υ·),

where QY,Y* is the correlation between Y and Y*.

Note that (9.3) is simply the sample mean of the independent random variables

is {{Yk + Yfc*)/2}. Since the variance of the CMC estimator I = A ^ E L i 1 *
Var(Y)/A r, the above theorem shows that the use of antithetic variables leads to a
smaller variance of the estimator by a factor of 1 + βγ,γ' ■ The amount of reduction

3 5 0 VARIANCE REDUCTION

depends crucially on the amount of negative correlation between the antithetic
variables.

In general, the output of a simulation run is of the form Y = h(XJ), where h is a
real-valued function and U = (U\, U2,...) is a random vector of iid U(0,1) random
variables. Suppose that U* is another vector of iid U(0,1) random variables which
is dependent on U and for which Y and Y* = /i(U*) are negatively correlated.
Then (Y,Y*) is an antithetic pair. In particular, if h is a monotone function in
each of its components, then the choice U* = 1 — U, where 1 is the vector of Is,
yields an antithetic pair.

306 An alternative to the CMC Algorithm 8.2 for estimating I = ΈΥ = E/i(U) is

thus as follows.

Algor i thm 9.1 (Ant i thet ic Est imat ion for M o n o t o n e h)

1. Generate Y\ = / i (U i) , . . . , Y N / 2 = MUjv/2) from independent simulation
runs.

2. Let Y{ = ft(l - U i) , . . . ,Y*/2 = h(l - UN/2).

3. Compute the sample covariance matrix corresponding to the pairs {(Yk, Υ£)}:

[τφτ Σ^? (η - WZ - Ϋ*) τη^ϊ Σ,ΐίϊ (Yk - Y*)2) '

4- Estimate ί via the antithetic estimator ν·°^ in (9.3) and determine an approx-
imate 1 — a confidence interval as

(> > - Zl_a/2SE, #»> + Zl_a/2SE) ,

where SE is the estimated standard error:

ΟΓ1 /C1.1 + C12 + 2Ci 2
SE--

2N

and ζΊ denotes the ■y-quantile of the N(0,1) distribution.

For each of the iV/2 runs in Step 2 one does not necessarily have to store the
complete sequence U = (U\, U2, ■..) of random numbers in memory, but simply
save the random seeds for each sequence.

■ EXAMPLE 9.2 (Ant i thet ic Est imat ion for the Bridge Network)

The following MATLAB program implements an antithetic estimator of the expected
length of the shortest path i in Example 9.1. A typical estimate using N — 104

samples is fi-a') = 0.929 with an estimated relative error of 0.2%. Figure 9.2 illus-
trates that the correlation between h(U) and h(l — U) is relatively high in this
case. The correlation coefficient is around —0.77, which means a more than four-
fold reduction in simulation effort when compared to CMC. Function h.m in the
code that follows is the same as in Example 9.1.

CONTROL VARIABLES 3 5 1

7«compare_CMC_and_ARV. m
N=10~4;
U=rand(N/2,5) ; 7» get uniform random variables
y = h(U); ya = h(l-U);
ell=(mean(y) + mean(ya))/2;
C=cov(y,ya);
var_h = sum(sum(C))/(2*N);
corr = C(l,2)/sqrt(C(l,l)*C(2,2));
fprintf (’ell= 7,g, RE = 7«g, corr = 7«g\n’ ,ell,sqrt(var_h)/ell, corr)
plot(y,ya,’.’)
U = rand(N,5);
yb = h(U);
var_hb = var(yb)/N;
ReB = s q r t (v a r _ h b) / e l l

Figure 9.2 Scatter plot of N = 104 antithetic pairs (Y, Y*) for the bridge network.

Remark 9.2.1 (Normal Ant i thet ic R a n d o m Variables) Antithetic pairs can
also be based on distributions other than the uniform. For example, suppose that
Y = H(Z), where Z = (Zi,Z2,.-.) is a vector of iid standard normal random
variables. By the inverse-transform method we can write Y = /i(U), with h(u) = "^ 45
■Η"(Φ_1(ΐίι),Φ_1(ΐί2),...), where Φ is the cdf of the N(0,1) distribution. Taking
U* = 1 - U gives Z* = (φ - ^ ί / ^ , φ - 1 ^ *) , . . .) = - Z , so that (Y,Y*) with
Y* = H(—Z) forms an antithetic pair provided that Y and Y* are negatively
correlated, which is the case if H is a monotone function in each of its components.

9.3 CONTROL VARIABLES

Let Y be the output of a simulation run. A random variable Y, obtained from the
same simulation run, is called a control variable jor Y iiY and Y are correlated
(negatively or positively) and the expectation of Y is known. The use of control
variables for variance reduction is based on the following observation.

3 5 2 VARIANCE REDUCTION

Theorem 9.3.1 (Control Variable Est imation) Let Υχ,...,Υ^ be the output
of N independent_simulation runs, and letYi,... , Yjv be the corresponding control
variables, with EYj, = t known. Let ργ γ be the correlation coefficient between each

Yk and Yfc. For each a £ l the (linear) estimator

, N

C) = NT,[Y>°-<&-*)] (9·4)
fc=l

is an unbiased estimator for I = Έ.Υ. The minimal variance of ^ is

Var(?c>) = 1 (1 - 4 ?) V a r (r) (9.5)

which is obtained for a = Cov(Y, Y)/Var(Y).

Usually the optimal a in (9.5) is unknown, but it can be easily estimated from the

sample covariance matrix of the {(Yk, Yk)}- This leads to the following algorithm.

Algor i thm 9.2 (Control Variable Est imation)

1. From N independent simulation runs generate Υι,.,.,Υ^ and the control
variables Y j , . . . , Yjv.

2. Compute the sample covariance matrix of {(Yk,Yk)}-'

VivtrE£U (Yk-Ϋ)(% -Y) Λ £ Ϊ E t i (Yk -Y)2)

3. Estimate I via the control variable estimator ?c> in (9.4) with a = Ci,2/C2 ,2
and determine an approximate 1 — a confidence interval as

(? c) - Zl_a/2SE, ? c) + Zl_a/2SE)

where ζΊ denotes the η-quantile of the I\I(0,1) distribution and SE is the esti-
mated standard error:

SE--
^ N ^ - C ^ C ^ ^ 1 · 1

■ EXAMPLE 9.3 (Control Variable Est imat ion for the Bridge Network)

Consider again the stochastic shortest path estimation problem for the bridge net-
work in Example 9.1. As a control variable we can use, for example,

Y = mm{X1+X4,X2+X5} .

This is particularly convenient for the current parameters (1 ,2 ,3 ,1 ,2) , as with
high probability the shortest path will have a length equal to Y; indeed, it will

CONTROL VARIABLES 3 5 3

most likely have length X\ + X4, so that the latter would ako be useful as a
control variable. With a little calculation, the expectation of Y can be found to
be EY = 15/16 = 0.9375. Figure 9.3 shows the high correlation between the
length of the shortest path Y = -ff(X) defined in (9.1) and Y. The corresponding
correlation coefficient is around 0.98, which shows that a fiftyfold variance reduction
in simulation effort is achieved compared with CMC estimation. The MATLAB
program below implements the control variable estimator, using a sample size of
N = 104. A typical estimate is v-c^ = 0.92986 with an estimated relative error of
0.05%. Function h.m in the code below is the same as in Example 9.1.

’/.bridgeCV.m
N=10"4;
u = rand(N,5);
Y = h(u);
Yc = hc(u);
plot(Y,Yc,’.>)
C = cov(Y,Yc);

cor = C(l,2)/sqrt(C(l,l)*C(2,2))
alpha = C(l,2)/C(2,2);
yc = 15/16;
est = mean(Y - alpha*(Yc -
RE = sqrt((l - cor~2)*C(l,

function out=hc(u)

a=[l,2,3,i,2];
N = size(u,1);
X = u.*repmat(a,N,1);
Path_l=X(:,l)+X(:,4);
Path_4=X(:,2)+X(:,5);
out=min([Path_l,Path_4],[]

yc))
l)/N)/est

,2);

Figure 9.3 Scatter plot oi N = 104 pairs (Y, Y) for the output Y and control variable
Y of the stochastic shortest path problem.

354 VARIANCE REDUCTION

Remark 9.3.1 (Mult iple Control Variables) Algorithm 9.2 can be extended
straightforwardly to the case where more than one control variable is used for each
output Y. Specifically, let Y = (Yi , . . . ,Ym)T be a (column) vector of m control
variables with known mean vector I = E Y = {ίΎ,... ,£m)T, where ^ = EYi.
Then, the control vector estimator of the optimal^ I = EY based_ on independent
random variables Υχ,..., Υχ with control vectors Y i = (Y n , . . . , Yim)T ' , ■ ■ ■, YJV =
(ΥΛΓΙ, ■ · · , Y/Vm)T is given by

i N

fc=l

where a is an estimator of the optimal vector a* = Σ^. <τγγ- Here Σ γ is the

mx m covariance matrix of Y , and <τγγ is the m x 1 vector whose i-th component

is the covariance of Y and Y,, i = 1 , . . . , m. The variance of ν-°*> for a = a* is

V a r (^) = 1 (1 - 4 i Y) V a r (Y) , (9.6)

where

is the square of the mult iple correlation coefficient of Y and Y . Again, the
larger B^.- is, the greater the variance reduction.

9.4 CONDITIONAL MONTE CARLO

Variance reduction using condit ional M o n t e Carlo is based on the following
result.

Theorem 9.4.1 (Condit ional Variance) Let Y be a random variable and Z a
random vector. Then

Var(Y) = E Var(Y | Z) + Var(E[Y \ Z]) , (9.7)

and hence Var(E[Y | Z]) ^ Var(Y).

Suppose that the aim is to estimate t = EY, where Y is the output from a Monte
Carlo experiment, and that one can find a random variable (or vector), Z ~ g, such
that the conditional expectation E[Y | Z = z] can be computed analytically. By the

«3s 618 tower property (A.28),
^ = EY = E E [Y | Z] , (9.8)

it follows that E[Y | Z] is an unbiased estimator of I. Moreover, by Theorem 9.4.1
the variance of E[Y | Z] is always smaller than or equal to the variance of Y. The
conditional Monte Carlo idea is sometimes referred to as Rao—Blackwellization.

CONDITIONAL MONTE CARLO 3 5 5

Algori thm 9.3 (Condit ional M o n t e Carlo)

1. Generate a sample Z\,..., ZJV ~ g.

2. Calculate E[Y | Z^], k = 1,... ,N analytically.

3. Estimate £ = EY by

1 N

^ = ^ E E [y i z ^ i (9·9
fe=l

and determine an approximate 1 — a confidence interval as

? S ?± S

where S is the sample standard deviation of the {E[Y | Z^]} and ζΊ denotes
the "/-quantité of the N(0,1) distribution.

■ EXAMPLE 9.4 (Condit ional M o n t e Carlo for the Bridge Network)

We return to Example 9.1. Let Z\ = min{X4, X3 + X5}, Z2 = min{X5, X3 + X4},
Y1=X1 + Zi,Y2 = X2 + Z2, and Z = (Ζχ, Z2). Then, Y = H{X) can be written
as

Y = min{Y1,Y2},

where conditional upon Z = z, (Yi,Y2) is uniformly distributed on the rectangle
^ ζ = [ζι,ζχ + 1] x [z2,2:2 + 2]. The conditional expectation of Y given Z = z can
be evaluated exactly, and is given by

if z e M)

if z e séx

i (5 - 3zj2 + 3z2 - 34 + 2:1(9 + 6z2)) if z € stf2

E[y|z = z] = ̂ è + T 1 - T - î 5 + f + iT2 + £T^-T-£f i + î2 if z e M

where

&/0 = {z : 0 < zx < 1, zi + 1 < z2 < 2},

M = {z : 0 ^ zx ^ 1, zx < 22 ^ Zi + 1},

^2 = {z : 0 ^ 2:1 ^ 1, 0 < z2 < 2:1} .

For example, if z € ^ ι , then the domain 3ëz of (Yi, Y2) intersects the line y\ = y2

at yi = 2:2 and yi = z\ + 1, so that

/>z2 ÇZ2+2 -i />2! + 1 ΛΖ2+2 -1

E[Y I Z = z] = / / y i - di/2 dî/i + / / 2/1 - dj/2 dyi

/•zi + 1 i-yi 1

+ / / V2^dy2 dj/i .

The following MATLAB program gives an implementation of the corresponding con-
ditional Monte Carlo estimator. A typical outcome for sample size N = 104 is

3 5 6 VARIANCE REDUCTION

£c = 0.9282 with an estimated relative error of 0.29%, compared with 0.43% for
CMC, indicating more than a twofold reduction in simulation effort. Interestingly,
the joint pdf of Z on [0,1] x [0,2] can, with considerable effort, be determined an-
alytically, so that I = Έ,Υ can be evaluated exactly. This leads to the exact value
given in the introduction:

E r = —— = 0.9298611111
1440

’/.bridgeCondMC.m
N =
S =
for

end
est
RE

10~4;
zeros(N,l);
i = 1:N
u = rand(l,5);
Z = Zcond(u);
if Z(2)> Z(l) + 1

S(l) = 1/2 + Z(l);
elseif (Z(2) > Z(l))

S(i) = 5/12 + (3*Z(l))/4 - Z(l)"2/4 - Z(l)
+ (Z(l)*Z(2))/2 + (ZU)-
- Z(2)"2/4 - (Z(1)*Z(2)

else
S(i) = (5 - 3*Z(1)"2 + 3*Z(2)

+ Z(l)*(9 + 6*Z(2)))/12;
end

= mean(S)
= std(S)/sqrt(N)/est

function Z=Zcond(u)

a=[l,2,3,l,2];
X =
Z =

u*diag(a);

[min([X(:,4), X(:,3) + X(:,5)],[]
min([X(:,5), X(:,3) + X(:,4)],[],

2*Z(2))/4 ..
"2)/4 + Z(2)~

- 3*Z(2)~2

,2),...
2)];

"3/12 + Z(2)/4 ...

3/12;

9.5 STRATIFIED SAMPLING

Stratified sampling is closely related to both the composition method of Sec-
"3" 53 tion 3.1.2.6 and the conditional Monte Carlo method discussed in the previous

section. Let Y be the simulation output. The objective is to estimate I = ΈΥ.
Suppose that Y can be generated via the composition method. Thus, we assume

that there exists a random variable Z taking values in { 1 , . . . , m } , say, with known
probabilities {pi, i = 1 , . . . , m } . We further assume that it is easy to sample from
the conditional distribution of Y given Z. The events {Z = i},i = l , . . . , m ,
partition the sample space Ω into disjoint strata; hence the name stratification.

"^ 618 Using the tower property (A.28), we can write

m

£ = ΈΕ[Υ\Ζ] =^2PiE[Y\Z = i] . (9.10)

STRATIFIED SAMPLING 3 5 7

This representation suggests that we can estimate I via the following stratified
sampling estimator:

m ^ Ni m

i—1 j=\ i=\

where Yij is the j ' - th of N, independent observations from the conditional distribu-
tion of Y given Z = i, i = 1,... ,m. How the strata should be chosen depends very
much on the problem at hand. From (9.11), the variance of the stratified sampling
estimator is given by

Var(#e>) = JT PÎ°Ï
■ Λ Ni '

where σ\ = Var(y | Z = ϊ) is the variance of y within the i-th stratum, i = 1 , . . . , m.
For any given choice of the strata one can select the sample sizes {Ni} in an

optimal manner, as specified in the next theorem. A simple proof based on Lagrange
multipliers can be found in [10].

Theorem 9.5.1 (Optimal Al locat ion of Sample Sizes) The allocation of sam-
ple sizes (rounded to integers)

N, = N = £ ^ , i = l,...,m, (9.12)
2^fc=i Pk crk

where of = Var (y \Z = i) provides the smallest variance for Pî over all choices
of Ni,..., Nm for which Σί Ni = N. The minimum value for the variance is

Ml"·)
An obvious difficulty in applying Theorem 9.5.1 is that the standard deviations

{σ^} are usually unknown. In practice, one can estimate the {σ^} from a pilot run
and then proceed to estimate the optimal sample sizes from (9.12).

Algori thm 9.4 (Stratified Sampling)

1. Choose the m strata and the sample sizes Ni,i = 1,... ,m — the latter deter-
mined from (9.12) via a pilot run, for example.

2. For each stratum i = 1 , . . . , m draw Yn, · · · , YiNi independently from the con-
ditional distribution of Y given Z = i, and let Ϋχ,,... ,Ym, be the sample
means.

3. Estimate I via (9.11), and calculate an approximate \ — a confidence interval
as

Ζΐ-α/2/ι

n2^2
V Pi(Jl fa) 4-7

^ΣΊνΓ< £ +Z^\U Nl y
yPi

2 2

where ζΊ denotes the η-quantile of the N(0,1) distribution and σ\

J2i=i(Yij ~ Yi»)2/(Ni — 1) is the sample variance of {Yij,j = 1 , . . . , Ni}.

3 5 8 VARIANCE REDUCTION

If the sample size for the i-th s tratum is chosen to be proportional to p, , that is,
Ni = pi N for some overall sample size N, then

m 2 2 i i

Var(^) = Σ ^ = NEV™(Y\Z) ^ ^ V a r (y) , (9.14)

so that the stratified estimator in this case (and hence under the optimal choice
(9.12)) has a variance at least as small as the variance of the CMC estimator.
This is called proportional stratified sampling. Sys temat ic sampling [3] is
proportional stratified sampling with equal weights; that is, Pi = 1/m and N, =
N/m = n. The estimator (9.11) then reduces to

p) ^ Σ Σ ^ Σ ^ Μ Σ ^ - «"»>
i= l j = l j = l V i=\ / j = l

Note that the {Y»j} are iid random variables, so that the standard error of?8) can
simply be estimated as S/\/n, where S is the sample standard deviation of {ÎV,}·

Systematic sampling is especially useful when dealing directly with uniform ran-
dom variables. Specifically, let Y = h(U), where U ~ U(0,1), and define Z = \mU~\
for some fixed m € { 1 , 2 , . . . } . The events {Z = i} = {(i — \)/m < U < i/m},
i = 1 , . . . , m divide the sample space into m equiprobable strata. Sampling Y con-
ditional on (i — l) / m ^ U < i/m is immediate. The systematic sampling procedure
for the d-dimensional case is summarized in the following algorithm.

Algor i thm 9.5 (Systemat ic Sampling for the d-Dimensional Hypercube)
Let I = E/i(U), where U ~ 11(0,1)^. Suppose that the k-th component of the
hypercube (0, l)d is divided up into K\. equal-length intervals, k = 1 , . . . , d, so that
(0, l)d is divided into m = Π&=ι Kk hyperrectangles (ignoring the boundaries)

n(£ ·^) . « ·«**■
where Ψ = {(ii,...,id) ■ ik e { 0 , 1 . . . , Kk - 1}, k e { 1 , . . . ,d}} .

1. For each i = (i j , . . . ,id) £ W generate V i , . . . , V n ~ U(0, l)d and evaluate

Y- = h(il + Vjl k+IiA j = 1 n

Let

m - ^

2. Estimate I via (9.15), which is the sample mean of Ϋ , ι , . . . , ? , „ , and deter-
mine an approximate 1 — a confidence interval as

IS) - Zl-a/2-7=, ? S) + Z l - c / 2 - p

where ζΊ denotes the η-quantile of the N(0,1) distribution and S is the sample
standard deviation of Υ , ι , . . . , Y,„.

STRATIFIED SAMPLING 3 5 9

Figure 9.4 shows a typical outcome for the d = 2-dimensional case with K = 5
classes per dimension, so that the total number of strata is m = Kd = 25. The total
sample size is N = 150, so that each stratum has exactly n = N/m = 6 samples.

Figure 9.4 Systematic sampling on the unit square. Both dimensions are divided into
K = 5 classes, giving a total of m = 25 strata. Each stratum has n = 6 samples for a total
sample size of N = 150.

■ EXAMPLE 9.5 (Systemat ic Sampling for the Bridge Network)

We return again to Example 9.1. The MATLAB program below implements Algo-
rithm 9.5 where each of the d = 5 dimensions is divided into K = 4 classes, giving
a total of m = 45 = 1024 strata. For a total sample size of around N = 104 (the
code below uses N = 10240) a typical estimate is v-"*1 = 0.9301 with an estimated
relative error of 0.13%. This means a tenfold variance reduction in comparison with
CMC. Function h.m in the code below is the same as in Example 9.1.

°/0str at bridge .m
K =
m =
N =
n =

est

4;
K~5; %number of strata
10~4; "/«total number of samples
ceil (N/m); "/.number
= zeros(n,l);

R=(l:m)>;
W=zeros(m,5);
W(:
for

end

l)=mod(R,K);
i=2:5
W(:,i)=(mod(R,K-i)-

of samples

-mod(R,K~(i-

per

-1)))

stratum

./(K- (i-�D);

3 6 0 VARIANCE REDUCTION

for j=l:n
V=(W+rand(m,5))./K;
est(j)=mean(h.(V)) ;

end
mest = mean(est)
percRE = std(est)/sqrt(n)/mest*100

9.6 LATIN HYPERCUBE SAMPLING

The main drawback of stratification for high-dimensional estimation problems is
that the number of strata grows exponentially in the number of classes. For ex-
ample, if systematic sampling is applied to the d-dimensional hypercube and each
coordinate is divided into K classes, then the number of strata is m = Kd, which
is only practical for small K and d, say K = 1 , . . . , 5 and d = 1 , . . . , 10. For higher-
dimensional problems a useful remedy is to apply latin hypercube sampling
instead. The idea is to sample on the d-dimensional hypercube in such a way that
only the marginal distributions are stratified. Figure 9.5 provides an illustration.
In contrast to the full stratification in Figure 9.4 not all cells have the same number
of samples. Instead, both the x and y coordinates are stratified in K = 5 classes,
with 30 samples per class.

Figure 9.5 Latin hypercube sampling in dimension d = 2 with K = 5 strata per
dimension and N = 150 samples. Each one-dimensional stratum has n = N/K = 30
samples.

LATIN HYPERCUBE SAMPLING 3 6 1

Algor i thm 9.6 (Latin Hypercube Sampling) Starting with i = 1, execute the
following steps:

1. Generate U i , . . . ,U*r ~ U(0, l) d .

2. Generate K independent uniform permutations, Τί,χ,..., ΐΐκ, of (1,..., K).

3. Set
Uk + 1 - Ufc

Vfe = — , k = l,...,K.

Let
K yi = iËh(Vfc) K

k=l

4- If i = n, then go to Step 5; otherwise, set i = i + 1 and go to Step 1.

5. Estimate I as W1) = ^ X^™=1 Yi and determine an approximate 1—a confidence
interval as

S ^Μ J[_

where ζΊ denotes the η-quantile of the N(0,1) distribution and S is the sample
standard deviation ofY\,...,Yn.

(iv - z^a/2^=, p* + Zx_a/2-

■ EXAMPLE 9.6 (Latin Hypercube Sampling for the Bridge Network)

Consider again Example 9.1. The MATLAB program below implements a latin
hypercube sampling scheme with K = 50 classes for each of the d = 5 dimensions.
At each of the n = 2000 iterations, 50 points are generated in the five-dimensional
hypercube, giving a total of TV = 104 of such points. A typical estimate is
0.9287 with an estimated relative error of 0.16%, which is comparable with the
0.13% of the full stratification in Example 9.5. Function h.m in the code below is
the same as in Example 9.1.

%lhcsbridge.m
d = 5;
K = 50;
N = 10~4;
n = N/K;
est = zeros(n,l);
for i = l:n

U = rand(K.d);
[x,p] = s o r t (r a n d (K , d)) ;
V = (p + 1 - U)/K;
e s t (i) = mean(h(V));

end
mean(est)
percRE = s t d (e s t) / s q r t (n) / m e a n (e s t) * 1 0 0

3 6 2 VARIANCE REDUCTION

9.7 IMPORTANCE SAMPLING

One of the most important variance reduction techniques is importance sam-
pling. This technique is especially useful for the estimation of rare-event probabil-
ities (see Chapter 10). The standard setting is the estimation of a quantity

I = EfH{X) = [H(x) / (x) dx , (9.16)

where H is a real-valued function and / the probability density of a random vector
X, called the nominal pdf. The subscript / is added to the expectation operator
to indicate that it is taken with respect to the density / .

Let g be another probability density such that H f is dominated by g. That
is, <?(x) = 0 =>· -ff(x) / (x) = 0. Using the density g we can represent I as

l- I ff (x) M fl(x) dx = EgH(X) ffl . (9.17)

Consequently, if X i , . . . , Xj\r ~üd <?> then

is an unbiased estimator of I. This estimator is called the importance sampling
est imator and g is called the importance sampling density. The ratio of densities,

W(K) = M , (9.19)

is called the l ikelihood ratio — with a slight abuse of nomenclature, as the likeli-
664 hood is usually seen in statistics as a function of the parameters (see Section B.2).

Algor i thm 9.7 (Importance Sampling Est imation)

1. Select an importance sampling density g that dominates Hf.

2. Generate X i , . . . , X^r ~ g and let Yj = J i (X i) / (X j) / g (X i) , i = 1 , . . . , N.

3. Estimate I via £ = Ϋ and determine an approximate 1 — a confidence interval

as
S ^ S

where ζΊ denotes the η-quantile of the N(0,1) distribution and S is the sample
standard deviation ofY\,..., Υχ.

IMPORTANCE SAMPLING 363

EXAMPLE 9.7 (Importance Sampling for the Bridge Network)

The expected length of the shortest path in Example 9.1 can be written as (see
(9.2))

£ = Eh(V) = ί h(u)du,

iid where U = (JJ\,..., U5) and U\,..., U$ ~ U(0,1). The nominal pdf is thus / (u) =
1, u e (0, l) 5 . Suppose the importance sampling pdf is of the form

5

ff(u) = Π V; U^ X

which means that under g the components of U are again independent and Ui ~
Beta(^j,l) for some i/$ > 0, i = 1 , . . . , 5 . For the nominal (uniform) distribution
we have 1̂ = 1, i = 1 , . . . , 5. Generating U under g is easily carried out via
the inverse-transform method — see Algorithm 4.18. A good choice of {i>i} is of
course crucial. The MATLAB program below implements the importance sampling
estimation of t using, for example, [y\,..., 1/5) = (1.3,1.1,1,1.3,1.1). For a sample
size of N = 104 a typical estimate is I = 0.9295 with an estimated relative error of
0.24%, which gives about a fourfold reduction in simulation effort compared with
CMC estimation, despite the fact that the {ν{\ are all quite close to their nominal
value 1.

y.bridgelS.m
N = 10~4;
nuO = [1 . 3 , 1 . 1 , 1, 1 .3 , 1 .1] ;
nu = repmat (nuO,N, l) ;
U = r a n d (N , 5) . " (1 . / m i) ;
W = p r o d (l . / (n u . * U . ~ (n u - 1)) , 2) ;
y = h(U).*W;
e s t = mean(y)
percRE = s t d (y) / s q r t (N) / e s t * 1 0 0

The main difficulty in importance sampling is how to choose the importance
sampling distribution. A poor choice of g may seriously compromise the estimate
and the confidence intervals. The following sections provide some guidance on
choosing a good importance sampling distribution.

«3» 105

9.7.1 Minimum-Variance Density

The optimal choice g* for the importance sampling density minimizes the variance
of £, and is therefore the solution to the functional minimization program

min Var„

It is not difficult to show (see for example [10]) that

| t f (x) | / (x)
<7*(x) / | t f (x) | / (x) d x

(9.20)

(9.21)

364 VARIANCE REDUCTION

In particular, if -ff(x) ^ 0 or H(x) ^ 0 then

**(x) = ̂ ψ ^ , (9-22)

in which case Vars»(£) = Var s»(i i(X)W /(X)) = Varg» (ê) = 0, so that the estimator
I is constant under g*. An obvious difficulty is that the evaluation of the optimal
importance sampling density g* is usually not possible. For example, g*(x) in (9.22)
depends on the unknown quantity £. Nevertheless, a good importance sampling
density g should be "close" to the minimum variance density g*.

One of the main considerations for choosing a good importance sampling pdf
is that the estimator (9.18) should have finite variance. This is equivalent to the
requirement that

E f f i / 2 (X) ^ j | j = E / f f ^ X j f f i < oo . (9.23)

This suggests that g should not have lighter tails than / , and that , preferably, the
likelihood ratio, f/g, should be bounded.

9.7.2 Variance Minimization Method

When the pdf / belongs to some parametric family of distributions, it is often
convenient to choose the importance sampling distribution from the same family.
In particular, suppose that / (· ; #) belongs to the family

{/(·;τ?), ηββ}.

Then, the problem of finding an optimal importance sampling density in this class
reduces to the following parametric minimization problem

minVar r) (J i (X)W r (X;6l , r /)) , (9.24)

where]Υ(Χ.;θ,η) = / (X ; 0) / / (X ; η). We call Θ the nominal parameter and η
the reference parameter vector or t i l t ing vector. Since under any /{-',η) the
expectation of H(X) VF(X; θ, η) is £, the optimal solution of (9.24) coincides with
that of

minV(Tj) , (9.25)

where
ν{η) = ΈνΗ

2 (X) W2 (X; θ,η) = ΈΘΗ2 (X) W(X; 0, η) . (9.26)

We call either of the equivalent problems (9.24) and (9.25) the variance mini-
mizat ion (VM) problem; and we call the parameter vector *r? that minimizes the
programs (9.24) and (9.25) the VM-opt ima l reference parameter vector. The
VM problem can be viewed as a stochastic optimization problem, and can be ap-
proximately solved via Monte Carlo simulation by considering the sample average

Kf 446 version of (9.25) and (9.26):

mini>(7,), (9.27)

IMPORTANCE SAMPLING 3 6 5

where
1 N

V{r}) = ^YJH
2{Kk)W{Kk;e,r1), (9.28)

fe=l

and X i , . . . , Xj\r ~üd / (· ; Θ). This problem can be solved via standard numerical
optimization techniques. This gives the following modification of Algorithm 9.7.

Algori thm 9.8 (Variance Minimizat ion M e t h o d)

1. Select a parameterized family of importance sampling densities {f(-;Tf)}.

2. Generate a pilot sample Χ χ , . . . , XJV ~ / (· ; Θ), and determine the solution *rj
to the variance minimization problem (9.27).

3. Generate Xi,...,XNl ~ / (· ; »ij) and let YJ = H'(Χ,) / (Χ , ; θ) /f'(Χ*; *rj),i =
Ι,.,.,Ν,.

4- Estimate I via £ = Y and determine an approximate 1 — a confidence interval
as

Î7 S 7 S \

{e~Zl-a/2Wi' +Zl-a/27wJ'
where ζΊ denotes the ■y-quantile of the l\l(0,1) distribution and S is the sample
standard deviation ofYi,..., Y^i ·

■ EXAMPLE 9.8 (Variance Minimizat ion for the Bridge Network)

Consider the importance sampling approach for the bridge network in Example 9.7.
There, the importance sampling distribution is the joint distribution of independent
Beta(i/j, 1) random variables, for i = 1 , . . . , 5. Hence, the reference parameter is v =
(ι/ι,...,ι/5).

The following MATLAB program determines the optimal reference parameter vec-
tor *P via the VM method using a pilot run of size N = 103 and the standard
MATLAB minimization routine fminsearch. A typical value for „i? is (1.262,1.083,
1.016,1.238,1.067), which is similar to the one used in Example 9.7; the relative
error is thus around 0.24%.

'/«vmceopt. m
N = 10~3;
U = r a n d (N , 5) ;
[nuO.minv] =fminsearch(@(nu)f.
Nl = 10"4;
nu = repmat(nuO
U = rand(Nl ,5) .
w = p r o d (1 . / (n u
y = h(U).*w;
e s t = mean(y)

Nl
~(1
*U

i) ;
/nu) ;
" (nu - D)

_var(nu

, 2) ;

percRE = s t d (y) / s q r t (N l) / e s t * 1 0 0

,ϋ,Ν) o n e s (l 5))

3 6 6 VARIANCE REDUCTION

function out = f.
nul
W =

y =
out

_var
= repmat(nu,N,1)
prod(l./(nul
H(U);
= W’*y.~2;

*U.

(nu
»

,ß,˝)

"(nul - D) ,2);

9.7.3 Cross-Entropy Method

An alternative approach to the VM method for choosing an "optimal" importance
sampling distribution is based on the Kullback-Leibler cross-entropy distance, or
simply cross-entropy (CE) distance. The CE distance between two continuous
pdf s g and h is given by

= / £ / (x) lngr(x)dx- / 0 (x) l n / i (x) d x .

(9.29)

For discrete pdfs replace the integrals with the corresponding sums. Observe that,
614 by Jensen's inequality, rD(gih) ^ 0, with equality if and only if g = h. The

CE distance is sometimes called the Kullback-Leibler divergence, because it is not
symmetric, that is, T>(g,h) Φ T>(h,g) for g φ. h.

The idea of the CE method is to choose the importance sampling density, h say,
such that the CE distance between the optimal importance sampling density g* in
(9.21) and h, is minimal. We call this the CE-opt imal pdf. This pdf solves the
functional optimization program min^ D (g*, h). If we optimize over all densities h,
then it is immediate that the CE-optimal pdf coincides with the VM-optimal pdf

g*-
As with the VM approach in (9.24) and (9.25), we shall restrict ourselves to a

parametric family of densities {f{-',r]),r} £ Θ} that contains the nominal density
/ (· ; Θ). Moreover, without any loss of generality, we only consider positive functions
H. The CE method now aims to solve the parametric optimization problem

mmV(g*,f(-,V)) . (9.30)

The optimal solution coincides with that of

max £»(77) , (9.31)
ϊ?6θ

where

£ > (t ï) = E e i r (X) I n / (X ; î ï) . (9.32)

Similar to the VM program (9.25), we call either of the equivalent programs
(9.30) and (9.31) the C E program; and we call the parameter vector η* that
minimizes the program (9.30) and (9.31) the CE-opt imal reference parameter.

446 Similar to (9.27) we can estimate η* via the stochastic counterpart method as

IMPORTANCE SAMPLING 3 6 7

the solution of the stochastic program

1 N

max£>(»j) = max - V i T (X f c) ln/(X f c ;T,) , (9.33)
n i| iv ί—'

k=\

where X i , . . . , X j v ~ ü d / (- ; ö) .
In typical applications the function D in (9.33) is convex and differentiable with

respect to η (see [19]). In such cases the solution of (9.33) may be obtained by
solving (with respect to η) the following system of equations:

1 N

- £ £ r (X f c) V l n / (X f c ; » 7) = 0 , (9.34)
fc=l

where the gradient is with respect to η. Various numerical and theoretical studies
[17] have shown that the solutions to the VM and CE programs are qualitatively
similar. The main advantage of the CE approach over the VM approach is that
the solution to (9.33) (or (9.34)) can often be found analytically, as specified in the
following theorem. A proof can be found in [17, Pages 69-70].

Theorem 9.7.1 (Exponential Families) / / the importance sampling density is
of the form

/(x;rç) = Y[fi(xi;rh),
i=l

where each {fi(xi',rii),rii 6 θ^} forms a 1-parameter exponential family parameter- "3° 701
ized by the mean, then the solution to the CE program (9.33) is rj* = (fjl,... ,η^),
with

where Xki is the i-th coordinate o/Xfc.

For rare-event simulation the random variable H(X.) often takes the form of an
indicator I{s(x)^7}. If the event {<S(X) ^ 7} is rare under f(-;0), then with high
probability the numerator and denominator in (9.35) are both zero, so that the
CE-optimal parameter cannot be estimated in this way. Section 10.5 discusses how "3° 404
this can be remedied by using a multilevel approach or by sampling directly from
the zero-variance importance sampling pdf g*.

■ EXAMPLE 9.9 (CE M e t h o d for the Bridge Network)

In Example 9.8 the VM-optimal reference parameter is obtained by numerical min-
imization. We can use the CE method instead by applying (9.35) after suitable
reparameterization. Note that for each i, Beta^ i , 1) forms an exponential family,
and that the corresponding expectation is r\i = Vi/(1 + vî). It follows that the
assignment i/j = ?7;/(l — 77») reparameterizes the family in terms of the mean r/j.

The first four lines of the following MATLAB program implement the CE
method for estimating the CE-optimal reference parameter. A typical outcome is
ή = (0.560,0.529,0.500,0.571,0.518), so that v = (1.272,1.122,1.000,1.329,1.075),

3 6 8 VARIANCE REDUCTION

which gives comparable results to the VM-optimal parameter vector. The corre-
sponding relative error is estimated as 0.25%.

y.bridgeCE.m
N = 10"3;
U = rand(N,5);
y = repmat(h(U),1,5) ;
v = sum(y.*U)./sum(y)
Nl = 10-4;
nu = repmat(v./(l-v),N1,1);
U = rand(Nl,5).~(l./nu);
w = prod(l./(nu.*U.~(mi - 1)),2);
y = h(U).*w;
est = mean(y)
percRE = std(y)/sqrt(Nl)/est*100

9.7.4 Weighted Importance Sampling

Algorithm 9.7 can be modified slightly by allowing the likelihood ratio (9.19) to be
known up to a constant; that is, W(X.) = / (X) / g (X) = cw(X.) for some known
function w(-), but possibly unknown constant c. Since EgW(X.) = 1, we can write
I = EgH(X) W(X) as

EgH(X)W(X)
EgW(X) ■

This suggests as an alternative to the standard importance sampling estimator
(9.18) the following weighted sample estimator:

EÊUtf(x. k)Wk

Σ Ν
k=lWk

(9.36)

Here the {u>k}, with u>k = w(Xfc), are interpreted as weights of the random sample
{Xfc}, and the population {(Xfc,Wfc)} is called a weighted sample from g(x).

308 Since the estimator is a ratio estimator (see Example 8.4), the weighted sample
estimator (9.36) introduces some bias, which tends to 0 as N increases. Loosely
speaking, we may view the weighted sample {(Xfc, Wfc)} as a representation of / (x) ,
in the sense that £ = EfH(X.) « £w for any function H.

■ EXAMPLE 9.10 (Weighted Sample Est imator for the Bridge Network)

For the bridge example it is tempting to use the zero-variance pdf g*(u) = j h(u)
as the importance sampling pdf, in conjunction with (9.36). Note that h(u) ^ 2
for all u. Sampling from g* can therefore be done via acceptance-rejection: sample
U ~ U(0,1)5 and V ~ U(0,2) independently, and accept U if V < h(U). Since
w(u) = l / / i (u) , the weighted sample estimator becomes

■7- 1

£ELii/fc(ufc)'

IMPORTANCE SAMPLING 3 6 9

where U i , . . . , UJV ~ g*. By the delta method, \fN{iw—l) converges in distribution "3° 308
to a N(0, σ2ίΑ) distribution, where σ2 is the variance of l / f t (U), which can be
readily estimated from the simulation. The MATLAB program below implements the
weighted sample estimator. Although the program produces unbiased estimates,
the relative error is around 0.65%, which is worse than the one for CMC.

/Owsbridge.m
clear all
N = 10~4;w = zeros(N,l);
for k=l:N

cont = true ;
while cont

R = rand(l,5);v = rand*2;y
if v < y

w(k) = l/y;cont=false;
end

end
end
est = l/mean(w)
percRE = std(w)*est/sqrt(N)*100

= h(R);

9.7.5 Sequential Importance Sampling

Sequential importance sampling (SIS), also called dynamic importance
sampling, is simply importance sampling carried out in a sequential manner. To
explain the SIS procedure, consider the expected performance i = E / f f (X) and its
importance sampling estimator

? = ^ è ^ (X f c) ^ g | , Χ Χ , . - . , Χ Λ Τ ^ Α , (9.37)

where g is the importance sampling pdf. Suppose that (a) X can be written as a
vector X = (-ΧΊ,..., Xn), where each of the Xi may be multidimensional; and (b)
it is easy to sample from p(x) sequentially. Specifically, suppose that g(x) is of the
form

#(x) = Si (zi) 32(22 \xi)··· gn(xn\xi,---,Xn-i), (9-38)

where it is easy to generate Χχ from the density gi(xi), and conditional on X\ = X\
the second component from the density 32(^2 | xi), and so on, until one obtains a
single random vector X from <?(x). Repeating this independently N times, one
obtains an iid sample X i , . . . ,XJV from g(x) and estimates I according to (9.37).

To further simplify the notation we abbreviate (χχ, ...,xt) to xi : t for all t. In
particular, x i : n = x. Typically, t can be viewed as a (discrete) time parameter and
xi : t as a path or trajectory. By the product rule of probability (A.21), the target " ^ 616
pdf / (x) can also be written sequentially as

/ (x) = / (an) f(x2 I xi) ■ ■ ■ f(xn I x i : „ - i) , (9-39)

3 7 0 VARIANCE REDUCTION

672 where we use a Bayesian notational convention (see Section B.3) for notational
convenience. From (9.38) and (9.39) it follows that we can write the likelihood
ratio in product form as

W(x) = / (» O / f r l ' i) - / ^ ! ^ - !) . (9.40)
gi(xi) 92(χ21 xi) ■ ■ ■ gn(Xn | χι:™-ι)

If Wt(x-i:i) denotes the likelihood ratio up to time t, we can write it recursively as

W t (x i : t) = « t W t _ 1 (x 1 : t _ i) , t = l , . . . , n , (9.41)

with initial weight WQ(XI:O) = 1 and incremental weights u\ = f(xi)/gi(xi) and

ut=
f{*t\Xl*-1\=T(ψψ>-. T > * = 2 , . . . , n . (9.42)

gt{xt | x i : t - i) / (x i ; t _ i) gt(xt j x i : t - i)

In order to update the likelihood recursively as in (9.42) one needs to know the
marginal pdf / (x i : t) for each t. This may not be simple when / does not have a
Markov structure, as it requires integrating / (x) over all Xt+i,..., xn. Instead, one
can introduce a sequence of auxiliary pdfs / i , /b, ■ · ■, /n that are easily evaluated,
and such that each / t (x i : t) is a good approximation to / (x i : t) . The terminating
pdf / „ must be equal to the original / . Since

/ (χ) = / ΐ (* ΐ) /,(*!,,). /η(Χΐ:„) ^

1 h(Xl) 7n-l(Xl:n-l)

as a generalization of (9.42) we have the incremental updating weight

ut = . , M*l*> , T , (9.44)
ft-l{Xl:t-l) 9t(Xt |Xl:t-l)

for t = 1 , . . . ,n, where we put /o(xi :o) = 1· Note that the incremental weights
Ut only need to be defined up to a constant, say Q , for each t. In this case the
likelihood ratio W(x) is known up to a constant as well, say W(x) = Ciu(x) ,
where 1/C = E gw(X) can be estimated via the corresponding sample mean. In
other words, when the normalization constant is unknown, one can still estimate t
using the weighted sample estimator (9.36) rather than the importance sampling
estimator (9.18).

Summarizing, the SIS method can be written as follows.

Algor i thm 9.9 (Sequential Importance Sampling)

1. For each t = 1 , . . . , n, sample Xt from gt(xt | x i : t - i) ·

2. Compute Wt = UtWt-i, where WQ = 1 and

/t(Xl:t) , -, In Ar\
ut = -f—7^ x ,γ | Υ r, t=l,...,n. (9.45)

/t-l(Xl:t-l)fl,t(^i|Xl:t-l)

3. Repeat the steps above N times and estimate £ via I in (9.18) or £w in (9.36).

Applications of sequential importance sampling frequently involve random
627 stopping times. Many importance sampling results concerning stopping times are

direct generalizations of similar results for fixed times, as exemplified by the fol-
lowing theorem. Proofs can be found, for example, in [18, Pages 143 and 225].

IMPORTANCE SAMPLING 371

Theorem 9.7.2 (Importance Sampling W i t h a Stopping Time) Let τ be a
stopping time with respect to the stochastic process {Xt,t = 1 ,2 , . . . } . Let P and
P be two measures under which X j : i = (Χχ,... ,Xt) has pdf ft(x-i:t) and gt(x-i:t)>
respectively, for t = 1,2, Then, for each sequence of real-valued functions Ht of
Xl:t, t = 1,2,. . . ,

T r

E ^ / r t (X 1 : t) = Ê ^ J H - t (X i : t) W t 5 (9.46)
t = i *= i

and

EHT(X1:T) = ÎËfrT(Xi:T) WT , (9.47)

where Wt = / t (X i ; t) / j t (X i : i) is ifte likelihood ratio ofX-i-.t-

■ EXAMPLE 9.11 (R a n d o m Walk on the Integers)

Consider a random walk process {St, t = 0 ,1 , . . . } on the integers: St = St-i + Xt,
where the {Xt} are independent P(Xt = 1) = p and P(Xt = —1) = q = 1 — p ΐοτ
all t = 1,2, Suppose that p < q, so that the walk has a drift toward — oo. Our
goal is to estimate the rare-event probability £ of reaching state K before state 0,
starting from state 0 < έ « f i , where K is a large number. Let P be the probability
measure under which the {Xt} are again independent, but now with P(Xt = 1) = p
and F(Xt — —1) = q = 1 — p for all t = 1,2,. . . . Define r as the first time that
either 0 or K is reached. As τ is a stopping time for {St} we have by (9.47) that

£ = EI{ST=K}=EI{ST=K}WT ,

where Wt, t = 1, 2 , . . . can be computed sequentially as Wt = Wt-i ut with

\p/p if xt = 1 ,
lq/q iîxt = - l ,

where WQ = 1. Consider the exponential family of pdfs {f(x; θ), Θ € K} defined by

/ (ζ ; 0) = β β * - « β > / ο (*) , z G { - 1 , 1 } ,

where /o(l) = p and /o(—1) = q (corresponding to the nominal pdf of Xt) and
ζ(θ) = ln(pee 4- qe~e). Note that p can be related to Θ via p = pee/(pee + qe~e).
The family can be reparameterized by the mean v = ζ'(θ) = (pee — qe~e)/(pee +
qe~e). The CE-optimal parameter v* for estimating I can be derived similarly to
Theorem 9.7.1 and is given by (see [4]):

v* = ψ{3Τ=κ} Σ Γ = 1 Xi _ (K-k)¥(ST = K) _ K-k

ET 1{ST=K} E T 1{ST=K} E[r | ST = K] '

Stern [21] shows that

E [T I ST = K] =
(p-q){l-rk)

{K-k)(rk + l) + 2K
rK -1

3 7 2 VARIANCE REDUCTION

where r = q/p. Thus, the CE-optimal tilting parameter is

(K-k)(p-q)(l-rk)

(K-k)(rk + l) + 2K^^-) '

The likelihood ratio of X i ; t = (Xi,..., Xt) is given by

where Θ is related to v via Θ = | In ((1 + v)q/((l — v)p)). It follows that under
CE-optimal tilting,

In the MATLAB code below the CE-optimal importance sampling procedure for
estimating i is carried out for the case k = 10, K = 30, and p = 0.3. The actual
probability is given by

I = r ~ l « 4.3689140 x 10~8 .
rK — 1

A typical estimate using N = 104 samples is 4.3685 x 1 0 - 8 , with an estimated
relative error of 1.7 x 1 0 - 4 . Through experimentation we observed that the relative
error is severely underestimated if ./V is too small, for example if TV = 1000 for this
case.

°/«gamble_CE_A. m
N = 10~4; ’/�Run Size
results = zeros(N,l);
k = 10; K = 30; ’/«Initial value and absorbing barrier
p = . 3 ; q = l - p ; r = q/p; ’/.Actual probabilities

’/.Tilt the distribution using CE
v = ((K - k)*(p - q)*(l - r~k)) / ((K-k)*(r"k +1) ...

+ 2 * K * ((r~k - r~K) / (r"K - 1)))
theta = .5*(log((l+v)*q)-log((l-v)*p));
p_tilde = (p * exp(theta)) / (p * exp(theta) + q * exp(-theta));
q_tilde = 1 - p_tilde;

for i = 1:N
t = 0;
sum = k;
while (sum "= K) && (sum "= 0)

t = t+1;
U = rand;
sum = sum + (2*(U < p_tilde) - 1);

end
results(i) = exp(-theta * (K - k) + t*(log(p*exp(theta) ...

IMPORTANCE SAMPLING 3 7 3

+ q*exp(-theta))))*(sum == K);
end

ell = (r~k - 1) / (r*K - 1) ’/.Actual Probability
ell_hat = mean(results) ’/.Estimated Probability
RE = std(results) / sqrt(N) / ell_hat ’/.Estimated Relative Error

9.7.6 Response Surface Estimation via Importance Sampling

Let the performance measure of a simulation be of the form

£{θ) = ΕβΗ(Χ) ,

where X ~ / (x ; Θ) depends on a parameter Θ G Θ. Importance sampling makes it
possible to gain information on a subset of the response surface {£(θ),θ G θ }
from a single simulation run [2]. The idea is to write £(θ) as

£{θ) = Ε θ ο Η (X) W(X; θ, θ0) , (9.48)

where θο G Θ is such that / (x ;0o) = 0 dominates / (x ; 0) i i (x) . As usual,
\ν(Χ.;θ,θο) = / (X ; Θ) / / (Χ ; θο) is the likelihood ratio. The corresponding esti-
mator is

1 N

£(θ; θ0) = ^ Σ H(Xk) W(Xk; θ, θ0) , (9.49)
fc=l

where X i , . . . , XJV ~ / (x ; θο)· The variance of the estimator £(θ; θο) under the
importance sampling density / (x ; 0o) can be estimated by the sample variance of
{iï(Xit)W/(Xfc; θ, θο)}- The procedure is summarized in the following algorithm.

Algori thm 9.10 (Response Surface Est imation)

1. Generate Χ χ , . . . ,ΧΛΓ ~ / (x ; θο)-

2. Estimate £(θ) via (9.49) and determine an approximate 1 — a confidence in-
terval as

(? - Ζ ΐ - α / 2 ^ , ? + * 1 - α / 3 ^ =) ,

where ζΊ denotes the η-quantile of the N(0,1) distribution and S is the sample
standard deviation of {ii(Xfc)H /(Xfc;0,0o)}·

Two advantages of the above procedure are:

1. Only a single simulation run (under 6Q) is needed to estimate the performance
for many different values of Θ.

2. The estimated response surface i(0; 0Q) as a function of Θ is typically piece-
wise differentiable, allowing easy estimation of the gradient of £(θ) through
differentiation of £{θ; 9Q). This is the idea behind the score function method
for gradient estimation; see Section 11.4. " ^ 428

3 7 4 VARIANCE REDUCTION

«s1 692
■s? 430

The main disadvantage is that although £(θ; 0o) is an unbiased estimator of
£{9), its variance can be very large (or even infinite) depending on (θ,θο). This
is typically the case when under 0o the distribution has thinner tails than under
Θ, which leads to a blowing up of the likelihood ratio. In such cases the estimator
typically underestimates the true value and the standard error, so that the con-
fidence intervals are unreliable (too small). Therefore, one should not expect to
be able to reliably estimate the whole response surface from a sample, but only
a subset thereof, sometimes called the trust region; see also Section C.2.2.6 and
Section 11.4.1. A discussion on the dangers of importance sampling may be found,
for example, in [18, Pages 209-211].

■ EXAMPLE 9.12 (Response Surface for the Bridge Network)

We return to Example 9.1. Let the lengths Χι,.,.,Χ^ of the links be indepen-
dent and uniformly distributed on (0, Θ), (0,2), (0, 3), (0,1), and (0, 2), respectively.
Hence, the only change in the setting of Example 9.1 is that the first component
has a U(0,#) distribution, rather than a U(0,1) distribution. Denote the expected
length of the shortest path by £{9). Suppose that N iid copies of X = (X\,..., Χ5)
are available for the case where Θ = 0Q = 3. Then £{9) can be estimated via

Wo) ^Σ>(χ*)ι
fc=l

I{0<Xfci«?}/fl

{o<xki<e0} /θ0

Note that for Θ > 0Q the importance sampling pdf / (x ;#o) does not dominate
f f (x) / (x ;0) , so £(θ) can only be estimated via importance sampling for Θ < 9Q.
Figure 9.6 depicts a typical estimate for the response curve for the case 0Q = 3
using N = 104 samples.

Figure 9.6 Response surface estimates with 95% confidence bounds for the uniform case.

The simulation is implemented via the following MATLAB program.

IMPORTANCE SAMPLING 3 7 5

%responsesurfis.m
N = 10000; thetaO = 3;
a = [thetaO.2,3,1,2]; u = rand(N,5);
X = u.*repmat(a,N,1); W = zeros(N,l);
y = H1(X); thŒta = 0:0.01:thetaO;
num = numel(thŒta);
ell = zeros(1,num); ellL = zeros(1,num);
ellU = zeros(l,num); stell = zeros(l,num);
for i=l:num

th = theta(i);
W = thetaO/th*(X(:,l)< th);
ell(i) = mean(Hl(X).*W);
stell(i) = std(Hl(X).*W);
ellL(i)= ell(i) - stell(i)/sqrt(N)*l.95;
ellU(i)= ell(i) + stell(i)/sqrt(N)*l.95;

end
plot(thŒta,ell, thŒta, ellL, thŒta, ellU)

function out=Hl(X)
Path_l=X(:,l)+X(:,4);
Path_2=X(:,l)+X(:,3)+X(:,5);
Path_3=X(:,2)+X(:,3)+X(:,4);
Path_4=X(:,2)+X(:,5);
out=min([Path_l,Path_2,Path_3,Path_4],[],2);

Next, suppose that X\ is simulated under an Exp(l/#o) distribution instead, and
that we wish to estimate how ί{θ) behaves under general Θ > 0. The estimator is
now

Wo) = ^±H^)^JL· = ^Σ*™^1'*-1'* · (9·5°)
fc=i ' u fc=i

A typical estimate for the response curve for the case N = 104 and θο = 3 is
depicted in Figure 9.7. The MATLAB code for this exponential case is available on
the Handbook website.

Figure 9.7 Response surface estimates with 95% confidence bounds for the exponential
case.

3 7 6 VARIANCE REDUCTION

Two significant differences with the uniform case are that (1) the estimated
response curve is a smooth function of Θ, and (2) it is possible to obtain estimates
for all Θ > 0. However, as noted above, when Θ is too large both the estimate
and the confidence interval are unreliable. This is illustrated by the fact that the
true response function must be monotone increasing in Θ, whereas the estimate is
decreasing from about Θ > 7 onward. It is not difficult to show, see [18, Page
210], that the variance of the estimator is infinite for θ > 2Θ® — 6. Thus, it is not
recommended to estimate ί(θ) in this way for Θ larger than 5, say. Note that for
Θ > #o the importance sampling pdf / (x ; #o) has thinner tails (decays quicker) in
the x\ variable than / (x ; Θ).

Finally, we mention that it is not difficult in this particular case to estimate
the entire response function using only a single simulation run without importance
sampling. The idea is to write

£{θ) = ΕΗ(ϋ;θ) ,

where, in the uniform case, h(U; Θ) = Η(ΘΙΙι, 2[/2, 3£/3, 2U4, U5) and Ui,..., U5 ~
U(0,1), as in Example 9.1. Thus ί(θ) is simply estimated as

1 N

fc=l

from a single iid sample U i , . . . , Ujy ~ U(0, l) 5 .

9.8 QUASI MONTE CARLO

Quasi Monte Carlo provides a powerful way to estimate d-dimensional integrals of
the form

i= f/i(u)du

by means of the sample average

h Σ Mu),

" ^ 25 where VN is a set of TV quasirandom points, as is explained in Chapter 2. Error
estimates can be obtained by randomizing the point set via a random shift (Sec-
tion 2.7) and producing K independent copies of the estimator (2.10). Significant
variance reduction can be obtained in this way; see, for example, [12]. The general
procedure is summarized as follows.

Algor i thm 9.11 (Quasi M o n t e Carlo Est imation)

1. Generate a quasi Monte Carlo point set VN = {uj , j = 1) ■ · · > ^V}·

2. Generate independent random vectors Ζ ι , . , . , Ζ χ ~ U(0, l) d .

3. Form the shifted point sets VN' = (PN + Zj) mod 1, i = l,...,K.

QUASI MONTE CARLO 377

4- Calculate

1 Σ ft(u), i = l,...,K.
N

5. Estimate £ as £ = ^^2k=i^k and determine an approximate 1 — a confidence
interval as

U-Zl-a/2-7=, t+Zl-a/2-7=J , (9-51)

where ζΊ denotes the η-quantile of'the N(0,1) distribution and S is the sample

standard deviation of £\,..., £χ ■

■ E X A M P L E 9.13 (Quas i M o n t e C a r l o for t h e B r i d g e N e t w o r k)

As the expectation £ in (9.2) involves a relatively low-dimensional problem {d = 5),
quasi Monte Carlo integration is expected to work well here. The MATLAB program
below implements Algorithm 9.11 using a Faure point set, constructed via the
MATLAB function faure.m defined on Page 33. The number of replications K is
chosen to be 20, in order to give reasonable estimates for the relative error. The
size of each of the 20 shifted point sets is N = 500, so that the total number
of function evaluations of h(u) is 104. A typical estimate is £ = 0.9308 with an
estimated relative error (that is, S/(\f~K£) with 5 as in (9.51)) of 0.072% which,
for this particular problem, is better than those that were obtained by the other
variance reduction methods in this chapter.

y.br
K =
N =
F =
fo r

end
for

end
e l l
se :

LgeQMC_faure.m
20;
10~4/K;
f a u r e (5 , 5 , N - l) ;
i = l :K
U (: , : , i) = mod(F

i=l :K
y (i) = mean(h(U(l

= mean(y);
= s t d (y) / s q r t (K) ;

+ r epmat (r and(1 ,5)

: N , : , i))) ;

'/»estimate
7 (standard e r r o r

f p r i n t f (>ell=°/(g, percRE = "/.g \ n ' , e l l ,

, N , 1) , l) ;

1 0 0 * s e / e l l) ;

To further demonstrate the accuracy of the quasi Monte Carlo program, a typical
outcome for N = 50000 and K = 20 is £ = 0.929862, with an estimated relative
error of 0.0027%. Recall that the true value is 0.929861111....

Finally, Figure 9.8 depicts, for different (quasi)random point sets, the conver-
gence behavior of the estimator £ in Algorithm 9.11 using K = 40 repetitions and
a point set of size N ranging from 8 to 105. All Monte Carlo methods are repeated
K = 40 times. It is clearly seen that CMC has a significantly larger standard error
(that is, Sj\[K with S as in (9.51)) over the whole range of N. Moreover, CMC

3 7 8 VARIANCE REDUCTION

decreases at a slower rate than the SoboP, Faure, and Korobov point sets. The lat-
ter three are comparable in performance for this example. We used an extensible
Korobov point set with parameter a = 14471.

Figure 9.8 Standard error of the estimator I with K = 40 versus the number of points
N for different (quasi)random point sets.

«3=481

In conclusion, in Figure 9.9 we summarize our subjective simulation experience
of the different variance reduction techniques, as a guide for the practitioner. The
figure indicates both the difficulty of implementation and the potential for im-
provement over CMC for each of the techniques. For completeness we include the
splitting method from Chapter 14.

complexity

A
H splitting

importance sampling

H control variable

quasi Monte Carlo
—i stratified, latin hypercube

antithetic

H conditional MC

improvement over
crude Monte Carlo

Figure 9.9 A guide for selecting a variance reduction technique.

REFERENCES 379

Further Reading

T h e fundamen ta l p a p e r on var iance r educ t i on t echn iques is K a h n a n d M a r s h a l [7].

T h e r e a re m a n y good M o n t e Car lo t e x t b o o k s w i t h c h a p t e r s on var iance r educ t i on

techniques . A m o n g t h e m are [1, 5, 6, 8, 9, 11 , 13, 14, 15, 16, 20].

REFERENCES

1. S. Asmussen and P. W. Glynn. Stochastic Simulation: Algorithms and Analysis.
Springer-Verlag, New York, 2007.

2. S. Asmussen and R. Y. Rubinstein. Response surface estimation and sensitivity anal-
ysis via efficient change of measure. Stochastic Models, 9(3):313-339, 1993.

3. W. G. Cochran. Sampling Techniques. John Wiley & Sons, New York, third edition,
1977.

4. P. T. de Boer, D. P. Kroese, and R. Y. Rubinstein. A fast cross-entropy method for
estimating buffer overflows in queueing networks. Management Science, 50(7) :883-
895, 2004.

5. G. S. Fishman. Monte Carlo: Concepts, Algorithms and Applications. Springer-
Verlag, New York, 1996.

6. P. Glasserman. Monte Carlo Methods in Financial Engineering. Springer-Verlag,
New York, 2004.

7. M. Kahn and A. W. Marshall. Methods of reducing sample size in Monte Carlo
computations. Journal of the Operations Research Society of America, l(5):263-278,
1953.

8. J. P. C. Kleijnen. Statistical Techniques in Simulation, Part 1. Marcel Dekker, New
York, 1974.

9. J. P. C. Kleijnen. Analysis of simulation with common random numbers: A note on
Heikes et al. (1976). Simuletter, 11(2):7-13, 1979.

10. D. P. Kroese, T. Taimre, Z. I. Botev, and R. Y. Rubinstein. Solutions Manual to
Accompany: Simulation and the Monte Carlo Method, Second Edition. John Wiley &
Sons, New York, 2007.

11. A. M. Law and W. D. Kelton. Simulation Modeling and Analysis. McGraw-Hill, New
York, third edition, 2000.

12. P. L'Ecuyer and C. Lemieux. Variance reduction via lattice rules. Management
Science, 46(9):1214-1235, 2000.

13. J. S. Liu. Monte Carlo Strategies in Scientific Computing. Springer-Verlag, New
York, 2001.

14. D. L. McLeish. Monte Carlo Simulation and Finance. John Wiley & Sons, New York,
2005.

15. C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer-Verlag, New
York, second edition, 2004.

16. S. M. Ross. Simulation. Academic Press, New York, third edition, 2002.

17. R. Y. Rubinstein and D. P. Kroese. The Cross-Entropy Method: A Unified Ap-
proach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learn-
ing. Springer-Verlag, New York, 2004.

3 8 0 VARIANCE REDUCTION

18. R. Y. Rubinstein and D. P. Kroese. Simulation and the Monte Carlo Method. John
Wiley & Sons, New York, second edition, 2007.

19. R. Y. Rubinstein and A. Shapiro. Discrete Event Systems: Sensitivity Analysis and
Stochastic Optimization via the Score Function Method. John Wiley & Sons, New
York, 1993.

20. I. M. Sobol'. A Primer for the Monte Carlo Method. CRC Press, Boca Raton, FL,
1994.

21. F. Stern. Conditional expectation of the duration in the classical ruin problem. Math-
ematics Magazine, 48(4):200-203, 1975.

CHAPTER 10

RARE-EVENT SIMULATION

In this chapter we describe algorithms for the efficient estimation of rare-event
probabilities. We start by defining the notion of efficiency in the context of rare-
event simulation, and then consider the following algorithms that are efficient in a
particular rare-event setting.

1. Importance sampling for light tails — this covers the estimation of stopping-
time and overflow probabilities using an exponential change of measure;

2. Conditional Monte Carlo for the estimation of probabilities arising from com-
pound sums of heavy-tailed random variables;

3. State-dependent importance sampling for rare-event overflow probabilities;

4. General importance sampling — such as the cross-entropy method — with
applications to financial risk modeling;

5. Splitting methods for estimation of hitting probabilities of Markov processes.

General variance reduction techniques leading to improved efficiency of estima-
tors are discussed in Chapter 9. More details on the cross-entropy method can be "S" 347
found in Chapter 13. Splitting methods in non-Markovian settings and the closely "S° 463
related sequential Monte Carlo framework are discussed in Chapter 14. "S5 481

Handbook of Monte Carlo Methods. By D. P. Kroese, T. Taimre, Z. I. Botev 381
Copyright © 2011 John Wiley L· Sons, Inc.

3 8 2 RARE-EVENT SIMULATION

10.1 EFFICIENCY OF ESTIMATORS

Suppose £ is an unbiased estimator of £ = ¥(A) = E I ^ , where £ is small, say, 10~4

or less. Event A is called a rare event and t is called a rare-event probability.
Often A is of the form A = {S(X) > 7} for some function S : Rn -► R, vector X =
(Xi, · . . , Xn)

T, and level or threshold parameter 7. ϊΐΖχ,..., Ζχ are independent
replications of some random variable Z for which E Z = £, then

i= l

is an unbiased estimator of £. In particular, if Z = 1^, then (10.1) is the crude
305 Monte Carlo (CMC) estimator of ¥{A); see Section 8.2.

The accuracy of the estimator £ can be measured in terms of its relative error:

\ /var(£)

evN
where σ = y /Var(Z). This can be estimated from the iid sample Z\,..., Ζ^ via

where σ =
£VÏV' \

N

N ̂ Σ^-ο2
i = l

In the rare-event context, £ typically depends on a rarity parameter; for example,
£ = £(7) = P(S(X) > 7), such that £(7) -► 0 as 7 -> 00. It is of interest to study
the asymptotic properties of £(7) as a function of 7.

For a random variable Z = Z(pf) such that Έ.Ζ(Ύ) = £(7) —> 0 as 7 —> 00, we have
the following second-order efficiency measures; see, for example, [6, 10, 43, 47].

1. The estimator (10.1) is said to have (asymptot ical ly) vanishing relative
error if

Var(Z(7))

2. The estimator (10.1) is said to have bounded relative error if

Var(Z(7)) „
hmsup — 3 y " < K < 00 ,

7->oo « (7)

where K is a constant that does not depend on 7.

3. The estimator (10.1) is said to be logarithmically efficient if

l i m s u p V " (Z e ^ = 0 f o r a l l e > 0 ,
7 - 0 0 £ 2 - £ (7)

or equivalently if
lnVar(Z(7))

lim inf
7—>oo In P (7)

^ 1

EFFICIENCY OF ESTIMATORS 383

Arranged from the strongest to the weakest condition we have:

vanishing relative error =Φ> bounded relative error =4· logarithmic efficiency.

In most cases of interest it is much more difficult to find an estimator with bounded
relative error than it is to find a logarithmically efficient estimator. Estimators with
vanishing relative error are given in [15, 42, 45]. In practice, to verify any of the
second-order efficiency measures it is convenient to work with the second moment
EZ 2 (7) instead of the variance.

Remark 10.1.1 (Simulation Time) The efficiency measures above do not take
into account the simulation time, say r , to generate one random variable Z. One
can account for it by replacing Var(2"(7)) with r Var(Z(7)) in the definition of any
of the second-order efficiency measures. This gives the work normalized squared
relative error or relative t ime variance product ·®° 656

TVar(Z(7))

A potential problem with the second-order efficiency measures is that they do not
convey any information about the accuracy of the estimator σ2 of the true variance
<72. As a result, the quality of the central limit approximation i apÇJox' |\|(£; σ2/Ν)
may be difficult to quantify and any inference based on this approximation can be
challenged. To address this issue one has to consider higher moments of Z(j). This
motivates the following more general higher-order efficiency measures [15].

1. The estimator (10.1) is said to have vanishing relative centered moment
of order fc if for k € [1, oo)

r E | Z (7) - £ (7) | f c

hmsup \ ' y = 0 .

2. The estimator (10.1) is said to have bounded relative m o m e n t of order
k if for k 6 [1, oo)

KZkh) „
l l m s u P oki \ ^ K < °° '

where K is a constant independent of 7.

3. The estimator (10.1) is said to be logarithmically efficient of order k if

l i m g u mEZ f c(7) = 1

7—»OO

4. The estimator (10.1) is said to have a bounded normal approximation if

"■"■' Ύν7ϊ^"'<°°- M
7-.OC (Var(z))d / ' i

Note that the bounded normal approximation property is not equivalent to
bounded relative moment of order 3. The motivation for introducing the concept of

3 8 4 RARE-EVENT SIMULATION

625 bounded normal approximation is derived from the Berry-Esséen theorem, which
implies that under (10.2) the normal approximation to the cdf of the standardized
estimator £ is accurate up to order G(AT -1/2), uniformly in 7; see also [63].

Properties of the higher-order efficiency measures include [15]:

1. Vanishing relative centered moment of order k implies vanishing relative cen-
tered moment of order m for k ^ m ^ 1.

2. Vanishing relative centered moment of order k (for k > 1) is equivalent to
bounded relative moment of order k with upper bound 1, that is,

E\Z{-f)-lh)\k _ .. EZ f e(7)

3. Bounded relative moment of order 2 is equivalent to bounded relative error.

4. Bounded relative moment of order k implies bounded relative moment of order
m for k > m ^ 1.

5. If Ζ(η) has bounded relative moment of order mk, then Zm(-y) has bounded
relative moment of order k.

6. If ci ^ Var(Z)/£2 ^ c% for some constants c\ and C2, then bounded relative
moment of order 2k for Z implies bounded relative moment of order k for σ2

for any k ^ 1.

7. If estimator (10.1) has vanishing relative centered moment of order (1 + ε)
for some ε > 0, then the pdf of Z converges to the zero-variance importance
sampling density for the estimation of £(7).

■ EXAMPLE 10.1 (The C M C Est imator is not Logarithmically Efficient)

Consider the estimator (10.1) with Z = Z(pj) = I{s(x)^7}. We have

ΈΖ2 = EZ = t ,

so that

I nEZ 2 __ \nJ_ _ 1

7 ^ o 1 b ^ ~ ~ I n ^ " 2

Hence, the CMC estimator is not logarithmically efficient. Indeed, for small i the
relative error, κ say, of the CMC estimator satisfies

V V a r (?)
E? v i v y * V îvi · <10·3)

If, for example, £ = 10~6, then in order to estimate £ accurately with relative error
of 1%, we need to choose a sample size

W-à-io».
This shows that alternative estimators must be found to estimate ^(7) for large 7.

IMPORTANCE SAMPLING METHODS FOR LIGHT TAILS 3 8 5

■ EXAMPLE 10.2 (An Est imator W i t h B o u n d e d Relat ive Error)

Suppose we wish to estimate via simulation the probability £ = P (X ^ 7), where
X ~ Exp(w_1), with pdf / . We thus know the exact £ = e - 7 / " . Suppose further
that 7 is large compared to u, so that £ is a rare-event probability. We wish to
use importance sampling with a Cauchy importance sampling density g(x; μ, τ) =
J (τ 2 + (x — μ)2) , where the location and scale parameters μ and r are chosen to
give minimal variance for the corresponding importance sampling estimator (10.1)
with Z = f(X)l{x^7y/g(X; μ, τ) . This means minimizing

EgZ
2=Ef

fiXll{X^} (10.4)
giX-,μ,τ)

with respect to the parameters μ and r . Now (10.4) gives

r le-2x/u fT2 + {χ_) 2) d x = U ^ l (2 r 2 + (7 _ μ)2 + {u + 7 _ μ) 2) ;

r 4 r

which has minima at (μ,τ) = (7 + u/2, ±u/2). We take the solution with r > 0,
giving (α,μ, „τ) = ('y + u/2, u/2) as the parameter pair that minimizes the variance
of I. The corresponding minimum value is

E.z2=f»-2-2-'"v(?+Mï+D)
and the relative error of (10.1) is given by

àx = \e,

^(ψ2-Ρ)/Ν
2N

The last expression does not depend on 7. and hence the estimator has bounded
relative error.

10.2 IMPORTANCE SAMPLING METHODS FOR LIGHT TAILS

In this section we describe some of the classical algorithms for estimating rare-event
probabilities using importance sampling. These algorithms apply to a restricted
class of problems in which the rare-event probability decays exponentially or faster,
and are shown to have desirable efficiency properties within that class. In more
complex settings the knowhow obtained from such restricted and simple settings is
often used to reduce the variance significantly, but usually without achieving any
of the efficiency criteria of the previous section. We first introduce the following
notation and assumptions.

• Under probability measure P, let X = (Xi, ■ ■ ■, Xn)
T be a vector of iid light-

tailed random variables, each with cdf F, pdf / , and finite expectation EX, = "3° 703
EX = μ.

Denote Sn = 5 (X) = ΣΓ=ι *i-

• Define an exponential family of pdfs {/#, θ € Θ} via KF 701

3 8 6 RARE-EVENT SIMULATION

/ e (x) = jii(ö) /(x) = e9X"InM(9)/(:c)'
where Μ(θ) = J eexf(x)dx, Θ G Θ is the moment generating function of X,
and Θ is the set of Θ for which M(Θ) is well-defined and finite. The pdf fg is
said to be derived from / via an e x p o n e n t i a l tw i s t Θ. Note that the moment
generating function is convex, with M(0) = 1 and M'(0) = μ.

• Let Pfl denote the probability measure under which X\,..., Xn ~üd /#. The
362 corresponding likelihood ratio is given by

w e x - m - / (χ ι) · · · / (χ ") _ -s„e+nç(ô)
W(*'0)- fe(Xi)---fe(Xn)~

where ζ(θ) = ΙηΜ(θ) is the cumulant function of X.

• Let μβ be the changed increment mean (drift):

eex Μ'(θ)

10.2.1 Estimation of Stopping Time Probabilities

One of the earliest rare-event simulation algorithms is Siegmund's algorithm [61]
for the estimation of

£ = F{T<OO), where r = inf{n : Sn > 7} . (10.5)

It is assumed that μ < 0, so that £ becomes small as 7 —> 00. We also assume that
there exists a *θ > 0 such that Μ(*θ) = 1. Because Μ(θ) is a convex function
with M(0) = 1 and M'(0) = μ < 0, such a *0 exists in the light-tailed case if, for
example, lime^0max Μ{θ) = oo for some 0 < 0 m a x ^ 00.

Algor i thm 10.1 (Siegmund's Algori thm) To estimate I = P (r < 00) from
simulation, execute the following steps.

1. Compute the root *θ > 0 of Μ{θ) = 1 (or equivalently ζ(θ) = 0).

2. Set So = 0. Until Sn > 7, set

Sn+i = Sn + Xn+i, n = 0 ,1 , 2 , . . . ,

where Χχ, Χ2, ■ ■ ■ ~üd f,e- Let τ be the smallest n for which Sn > 7.

3. SetZ = W(X;J) = e-s-*9.

4. Repeat Steps 2 and 3 to obtain N independent replications Z\,..., Ζχ of Z
and return their sample mean as an estimator of t.

Note that under the importance sampling pdf / ,# the drift μ^ is positive and
P, e (r < 00) = 1.

The representation I = E e _ S x "θ has various implications. For example, define
the overshoot at time τ to be £(7) = ST — 7, so that

i = e " 7 'θ E e " i (7) 'θ .

IMPORTANCE SAMPLING METHODS FOR LIGHT TAILS 3 8 7

Note that the "saw-tooth" process {£(7),7 ^ 0} is regenerative. As a result,
]ge-€(7) *θ —s- C" for some constant 0 < C < o o a s 7 — > o o — under the as-
sumptions of Theorem A.9.1. This leads to the celebrated Cramer—Lundberg us* 631
approximation:

P (T < 00) « C e ~ 7 *θ as 7 -> 00 .

Another implication is the following efficiency result [7, Page 165].

Theorem 10.2.1 (Efficiency of Siegmund's Algori thm) Siegmund's estima-
tor has bounded relative error. Moreover, Siegmund's estimator is the only log-
arithmically efficient estimator among all importance sampling estimators whose
change of measure is of the form Χχ,..., Xn ~üd g for some importance sampling
pdfg-

Siegmund's algorithm has applications in the computation of ruin probabilities and
probabilities arising in queueing theory [4].

■ EXAMPLE 10.3 (R a n d o m Walk)

As a numerical example, consider the case where X ~ Ν(μ, 1), μ < 0. In this case
Μ{β) = β^+^2 /2 , and the nontrivial solution of M(0) = 1 is «0 = - 2 μ . Hence,
ftg(x) = e-

2^xf(x) cc e-<-x+rf/2, which shows that f,e is the pdf of the Ν (- μ , 1)
distribution. The MATLAB code below implements Algorithm 10.1 with μ = — 1
and 7 = 13. A typical outcome is i = 1.6367 x 10~12 with relative error of 0.1%.

'/■siegmund.m
mu=-l;N=10~6;gamma=13;W=nan(N,l);
fo r i= l :N

S=0;
while S<gamma

X=-mu+randn;
S=S+X;

end
W(i)=exp(2*mu*S);

end
ell_hat=mean(W),RE=std(W)/mean(W)/sqrt(N)

■ EXAMPLE 10.4 (Wait ing T ime in a GI/G/1 Queue)

In this example we consider the GI/G/1 single server queue model with interarrivai «3° 287
times Ai,A2,... ~üd FA and service times Βι, Β2, ■ ■ ■, ~üd FB- Let Yn denote the
waiting time of the n-th customer (excluding the service time). Then, the process
{Υη,η = 1, 2 , . . . } satisfies the Lindley recursion

Yn = m a x ^ - i + Bn - An, 0} , n = 1,2, . . . , (10.6)

with YQ = 0. If the expected service time E B is less than the expected interarrivai
time E^4, then (under mild conditions; see Theorem A.9.1) Yn converges in distri- " ^ 631

3 8 8 RARE-EVENT SIMULATION

bution to a steady-state waiting time Y as n —> oo. Suppose we wish to estimate
the rare-event probability ¥(Y > 7) for large 7. Standard steady-state simulation

312 techniques such as the batch-means and regenerative methods are inefficient for
this problem, as event {Yn ^ 7} will rarely occur during a simulation run. Instead,
one can use importance sampling as follows. Define Sn = Bn — An, n = 1,2, . . .
and So = 0. Then {Yn} may be viewed as the reflection at 0 of the random walk
{Sn}; that is,

Yn = Sn - min Si = max \Sn - Sn-i} . min Si
OtCi<n

max \S„
0<i<n

Because {(£>„ — S„-i),i = 0 , 1 , . . . , n } has the same distribution as {Si,i =
0 , 1 , . . . , n}, Yn has the same distribution as m a x o ^ ^ „ Si. Consequently, V(Y >
7) = P (m a x { S 0 , 5 i , . . . } #s 7) = P(r < 00), where r = inf{n : Sn ^ 7} . The
probability i = P (r < 00) can be efficiently estimated via Siegmund's algorithm
using an exponential twist *θ that is the positive root of

M(0) = ^ee(B~A) = ΜΒ{Θ)ΜΑ(-Θ) ,

where MA and MB are the moment generating functions of the interarrivai and
service times, respectively.

For the M/M/l case, where A ~ Εχρ(λ) and B ~ Εχρ(μ) we have Μ(θ) =
so that *0

μ-θ λ+θ
function of the increment X under fg, then

λ. Thus, if we denote by Mg(t) the moment generating

Μ. θ (ί) = Et()e
tx = Ε ε (μ ^ + ί) ; ί =

λ - ί μ + t

which shows that under f^g the increment X is the difference of two independent
exponential random variables with rates λ and μ, respectively. In other words,
under ftg the interarrivai and service times are interchanged. The code below
implements Algorithm 10.1. With 7 = 13, μ = 2, and λ = 1/2, we obtain I =
8.501 x 10"1 0 with an estimated relative error of 0.3%. Note that for this case the
exact value is known (see, for example, [3]):

ί{Ί)
λ - (μ - λ) 7 8.496 x 10' - io

•/.waitGGl.m
N=10~5;gamma=13;W=nan(N,l);mu=2; lam=l/2;
for i=l:N

S=0;
while S<gamma

X=-log(rand)/lam+log(rand)/mu;
S=S+X;

end
W(i)=exp(-(mu-lam)*S);

end
mean(W),std(W)/mean(W)/sqrt(N)

IMPORTANCE SAMPLING METHODS FOR LIGHT TAILS 3 8 9

10.2.2 Estimation of Overflow Probabilities

Consider the efficient estimation of £n = ¥(Sn ^ nb) for large n and fixed b > μ.
Note that here the rarity parameter is n and μ = EX is not restricted to be negative.

Algori thm 10.2 (Est imat ion of P(S„ > nb)) To estimate £n = ¥(Sn > nb)

from simulation, execute the following steps.

1. Compute the root Θ* ofC{9) = ΕΘΧ = b.

2. Generate Χχ,..., Χη ~JJ<J /#» and compute the likelihood ratio Wn =

3. Use N independent replications of Sn and Wn to compute the estimator:

N

N ■

1 N

fe=l

The efficiency of the algorithm is given by the following result [17, 44, 55].

Theorem 10.2.2 (Efficiency of the Overflow Probabil i ty Est imator) Of
all importance sampling estimators whose change of measure is of the form Χχ,...,
Xn ~iid g for some g, the estimator with g = fg* in Algorithm 10.2 is the only one
that is logarithmically efficient. Subject to some smoothness conditions on Μ(θ)
the first-order asymptotic behavior of i„ is

e-n(e*b-c(fl*))
(l + o(l)) o s n ^ o o . (10.8)

Θ*\ζ"{θ*)\ν2πη

Regarding the higher-order efficiency properties, we have that the estimator
(10.7) is logarithmically efficient of order k for any k ^ 2 with

.. lnEZ f c

hm —: = Θ b- ζ(θ) .
n^oo kn

Under additional assumptions, the state-dependent importance sampling in Section
10.4 can provide an estimator with bounded relative moment of order k, see [15].

■ EXAMPLE 10.5 (N e y m a n - P e a r s o n Test)

Let Y ~ Laplace(—1,1); that is, the pdf of Y is given by fy(y) = | e _ ^ + 1 L Consider
the transformation X = g(Y) with g(y) = —1 for y ^ —1, g(y) = y for — 1 < y < 1,
and g(y) = 1 for y ^ 1. Then X has pdf

f(x) = 2 1{a;=-i} + 2 e ~ X _ 1 ' { - K K i } + 2^2 1{^=i} '

with respect to the sum of the Lebesgue measure and the Dirac measure at —1 and
1. The cdf corresponding to / is depicted in the left panel of Figure 10.1. We are
interested in computing ln = F(S„ ^ 0) = P(Xi H l· X„ ^ 0). This problem
arises in the computation of the error rates for a Neyman-Pearson test using a
log-likelihood ratio [17].

3 9 0 RARE-EVENT SIMULATION

Figure 10.1 Cumulative distribution functions F{x) (left panel) and Fe· (x) (right panel),
where Fe· {x) is the cdf corresponding to the optimal importance sampling pdf fe· (x).

The moment generating function of X is

e"~-+e~ „9 -2
+ 2Î0-11 ' & T ^ Μ{θ) = { 2 τ , 2(β-ι

v ' Λ 2e - 1 , 0 = 1

with M ' (l) = 0. Therefore, Θ* = 1 and the corresponding importance sampling pdf
is

ea:+l γ
ΐθ»(χ) = - ^ - / 0) = ^ ·

The right panel of Figure 10.1 shows the cdf corresponding to fe·. The likelihood
ratio is Wn — e ~ s » " n + n l n 2 = 2ne~Sn~n. For n = 16 the code below gives £n =
8.22 x 1 0 - 4 with an estimated relative error of 0.6%.

’/.NeyPea
N=10~5;
for i=l

S=0
for

end
W(i

end

m
n=16;W=nan(N,l);
N

j=l:n
U=rand ;
if U<l/4

x=-l;
elseif U<l/2

x=l;
else

x=2*rand-l;
end
S=S+x;

)=exp(-S+n*(log(2)--1))*(S>=0);

ell=mean(W), std(W)/sqrt(N)/mean(W)

IMPORTANCE SAMPLING METHODS FOR LIGHT TAILS 3 9 1

10.2.3 Estimation For Compound Poisson Sums

In this section we consider the problem of estimating

£(7) = ¥(SR >Ί)= P(Xi + ■ · · + XR > 7) ,

where R ~ Ροί(λ) is independent of X\,X2, ■ ■ ■ ~üd / · The random variable SR is
called a compound Poisson sum. We further assume that the {Xi} are positive
and that / is light-tailed and satisfies either one of the following conditions:

• / decays like the density of a Gamma(a, λ) distribution: "S* 113

f(x) = cxa-le-Xx{l + o(l)) as x -+ oo ,

where c > 0 is a constant. Examples include the pdfs of the exponential,
phase-type, and inverse Gaussian (or Wald) distributions. "3° 135

• L fa(x) dx < oo for any a £ (1, 2) and / can be written as:

f(x) = q(x)e-h^ ,

where 0 < q(x) < oo and h(x) is ultimately convex in the right tail of / ,
that is, h is convex on [a, b) for a < b = sup{:r : f(x) > 0}. Examples of
such pdfs / include densities with finite support or the pdf of the Weib(a, λ) BS" 137
distribution for a > 1.

Let M(i) be the moment generating function of X and ζ the cumulant function of
SR. By conditioning on R we find ζ{ί) = l nEe t s « = m e ^ W ' 1) = λ(Μ(ί) - 1).
Under an exponential twist of SR, with parameter Θ, we have for the cumulant
function of SR:

ζθ{ή = ΙηΕβ etSR = l n E e ' ^ e 9 ^ - « 9 ' = ζ(ί + θ) - ζ(θ)

= λ(Μ(ί + 0) - Μ (0)) (10.9)

and, in particular,
VeSR = ζ'θ(0) = ΧΜ'{Θ) . (10.10)

By writing (10.9) as λ θ (Μ θ (ί) - 1) , where \θ = \Μ(Θ) and Mg(t) = Μ(ί+Θ)/Μ(θ),
we see that to obtain realizations of SR under Θ, we may simulate compound Poisson
sums with rate Xg and increments X with moment generating function Mg. It
remains to find a good twisting parameter Θ. One straightforward choice is to take
Θ such that (10.10) matches 7. This leads to the following algorithm.

Algori thm 10.3 (Est imat ion of P (S J J ^ 7) v ia Exponent ia l Twist ing)

1. Compute the root Θ* of the equation \Μ'(Θ) = η, where Μ(θ) is the moment
generating function of X.

2. Simulate R ~ Ροι(λΜ(0*)).

3. Generate R iid random variables Χχ,..., XR, with moment generating func-
tion

Mjt + Θ*)
Me'{t)~ Μ(θ*) ■

SetSR = X1 + --- + XR.

3 9 2 RARE-EVENT SIMULATION

4- Generate N independent replications of SR and deliver the importance sam-
pling estimator

1 N

îw = ^E I
(S ï , « e x p (" r s «) + A (M (r) " 1)) · (1(m)

fc=l

Regarding the efficiency of the estimator, we have the following result [44].

Theorem 10.2.3 (Logarithmic Efficiency) The importance sampling estima-
tor (10.11) is logarithmically efficient and

exp (- 0*7 + λ(Μ{θ*) - 1))
Îh) = P(SR ^ 7) = ^ ; (1 + o(l)) as 7 -* 00 .

Simulation of compound Poisson sums frequently arises in insurance problems
[3, 24, 29].

■ EXAMPLE 10.6 (Est imating the Risk of Insurer Default)

Suppose that on average λ = 300 major insurance claims per year are processed
and paid by an insurance company with a core capital of 109 dollars. The num-
ber of claims per year is assumed to be R ~ Ροί(λ). The sizes of the claims
X\,..., XR, measured in millions of dollars, are assumed to be iid outcomes from
the Gamma(2,1) distribution (with pdf f(x) = xe~x,x ^ 0). We are interested in
the probability that the size of all claims in a given year exceeds the core capital
(that is, X\ + ■ ■ ■ + XR ^ 7 = 103). Here the moment generating function of each
Xi is M{t) = (1 - t)-2, t < 1 and hence Θ* = 1 - (2A/7)1 /3 . It follows that

(1 _ ff* \ 2

which is the moment generating function of the Gamma(2,1 — Θ*) distribution.
For the importance sampler we thus simulate the number of claims from the
Poi(Ag.) distribution with λ#» = (7 2 λ/4) 1 / 3 , and the size of each claim X from
the Gamma(2, (2A/7)1/3) distribution. We apply Algorithm 10.3 with N = 104

using the code below, and obtain 3.06 x 1 0 - 1 7 with an estimated relative error of
3%.

%compsum.m
c l e a r a l l
N=10"4; W=nan(N,l); gamma=10~3;lambda=300;
t he t a_s t a r= l - (2* l ambda /gamma)" (1 /3) ;
fo r k=l:N

R=poissrnd((gamma~2*lambda/4)"(1/3));
S=sum(gamrnd(2,l/(1�theta_star),1,R));
if S>gamma

W(k)=exp(-theta_star*S+lambda*((l-theta_star)~(-2)-l));
else

W(k)=0;

CONDITIONING METHODS FOR HEAVY TAILS 3 9 3

end
end
mean(W), std(W)/sqrt(N)/mean(W)

10.3 CONDITIONING METHODS FOR HEAVY TAILS

Consider the problem of estimating

ί{Ί) = ¥{Sn >Ί)= P (X ! + ■ · · + Xn ^ 7) , (10.12)

where the {Xi} are iid with cdf F from the subexponential class of distributions
(see Section D.2). We are interested in the case where 7 is large, making £(7) small. "^" 703
Typically the methods for light-tailed problems do not perform well in heavy-tailed
cases [6]. For example, methods based on the moment generating function are not
applicable because the moment generating function is not defined on the positive
real axis for heavy-tailed distributions. Instead, one of the most successful ap-
proaches is based on a conditioning idea that exploits the subexponential property:

hm P j f " ^ \ = 1 . (10.13)
7 ^ ° o n P (X i ^ 7)

The subexponential property essentially states that most of the time the rare event
happens because a single variable exceeds the threshold. This is in contrast with
the light-tailed case where the rare-event occurs primarily when most or all of the
variables take on a large value. The following algorithm given in [8] illustrates the
idea and is based on the identity

(
rt —1 \

(Ί-Σ xj) v m a x l j) ,
j = l

where F(x) = 1 — F(x) and a V b = max{a, b}.

Algor i thm 10.4 (Condit ional Est imator for P(Sn > 7))

1. Generate Xi,..., Xn ~ F.
2. Compute

(
n—l \

7 = 1 3-

3. Using N independent replications of Y, deliver the unbiased estimator

1 N

Φ) = ^Σ7"· (1 0 ·1 4)
fe=l

3 9 4 RARE-EVENT SIMULATION

The estimator (10.14) has the following efficiency properties [8, 42].

T h e o r e m 10.3.1 (Efficiencies for the Heavy-Tailed Case)

1. If F is regularly varying, then the estimator (10.14) has vanishing relative
error. More generally, (10.14) can be shown [42] to have vanishing relative
error if F is long-tailed and satisfies the condition:

F~(tx)
sup -=^-f < oc, i e (0,1) .

x F{x)

2. In the Pareto(a, λ) case, the estimator (10.14) has bounded relative error.
In fact, bounded relative error holds for the more general estimator (10.18),
where all {Xi} are independent, but not necessarily identical Pareto random
variables.

3. In the LogN(0,1) case, the estimator (10.14) has vanishing relative error;
see [42].

4. In the Weib(a, 1) case with 0 < a < ln(3/2)/ ln(3) « 0.369, the estimator
(10.14) has vanishing relative error; see [42].

5. If F is Weibull-like, that is,

Fix) = (1 + o(l)) as x -> 00 ,
a

and 0 < a < ln(3/2)/ ln(2) « 0.585, then the estimator (10.14) is logarithmi-
cally efficient; see [8[.

Although the above theorem considers only special cases of heavy-tailed distribu-
tions, the relevance to applications of such modeling assumptions has been cogently
argued in [1, 28, 62].

10.3.1 Estimation for Compound Sums

Now consider the case SR = Xi + ■ ■ ■ + XR, where R is an integer-valued ran-
dom variable with ER2 < 00 and pdf f^. As usual we assume that the sequence
Xi, X2, ■ ■ ■ is independent of R. In this case a good estimator of i(j) = V(SR > 7)

" ^ 352 combines both conditioning and control variable ideas [8].

Algor i thm 10.5 (Control Variable Est imator for ¥(SR > 7))

1. Generate R ~ fn and Χχ,..., XR ~ F, independently.

2. Compute

Y RF~M>y-J2 xj) v maxX/ j - {R - ER) F (-y) ,
j = l

where it is assumed that we have a closed-form formula for ER.

CONDITIONING METHODS FOR HEAVY TAILS 3 9 5

3. Repeat Steps 1 and 2 to obtain N independent replications ofY. Deliver the
unbiased estimator:

1 N

£^ = ΝΣΥ*- (10-15)
k=l

The efficiency properties of (10.15) are summarized in the following result [42].

Theorem 10.3.2 (Efficiencies for R a n d o m R)

1. If F is regularly varying with index a > 0 and

ER2(a+l+c) < ^ j Q r S(jme c > 0 ^

then the estimator (10.14) has vanishing relative error.

2. In the LogN(0,1) case with

Eexp ((lni?) 2 + c) < oo for some c > 0 ,

the estimator (10.14) has vanishing relative error.

3. In the Weib(a, 1) case with 0 < a < ln(3/2)/ ln(3) « 0.369 and R ^ c for
some c > 0, the estimator (10.14) has vanishing relative error.

Asmussen and Kroese [8] report that in practical simulations the conditional esti-
mator (10.15) performs much better than estimators based on importance sampling
[5, 47].

The problem of computing the probability ¥(SR > 7) arises frequently in queue-
ing theory, telecommunications, and insurance risk [1, 56]. The following example
illustrates a typical application in queueing theory.

■ EXAMPLE 10.7 (Pol laczek-Khinchin Formula)

In Example 10.4 an importance sampling procedure is given for estimating the
tail distribution of the steady-state waiting time in a GI/G/1 queue, based on an
exponential change of measure. However, the procedure only works for light-tailed
distributions. In the case where the interarrivai times are exponential — in which
case the queueing system is said to be of M/G/l type — a different estimation
method can be used which also applies to heavy-tailed service time distributions.
This method is based on the Po l laczek-Khinchin formula [3]:

The steady-state waiting time Y of an M/G/l queue with arrival rate λ and
service time B ~ G is distributed as the random sum SR — Xi + ■■· + XR,
where R ~ Geom0(l - XEB) and each X has pdf f(x) = P(B ^ x)/EB
corresponding to the steady-state service time.

Consider, for example, the case where the service time tail distribution is given
by P (S ^ x) = a(\ + x)~^a+1\x ^ 0 for some a > 0. Hence, the expected service
time is Έ,Β = 1 and the steady-state service time is X ~ Pareto(a, 1). We wish to
estimate £("/) = ¥(Y ^ 7) for large 7 and assess how close the estimate is to the

3 9 6 RARE-EVENT SIMULATION

approximation ERV(X ^ 7) suggested by (10.13). The following MATLAB code
implements Algorithm 10.5, where 7 is chosen such that y ^ P (X ^ 7) = 1 0 - 1 1 ,
a = 1/2, and ρ = λ = 3/4. Note that £(7) = £>P(Xi + l· XR > 7), where

" ^ 91 R ~ Geomo(l — £>). Using a sample size of N = 103 we obtain the estimate

£(7) = 1 0 - 1 1 + 2.4 x 10~25 , with an estimated relative error of 10^1 5 .

°/0polkinex. m
rho=0 .75 ; a lpha=0 .5 ;
g a m m a = ((l - r h o) / r h o * 1 0 " (- l l)) ~ (- l / a l p h a) - l ;
b a r _ F = 0 (x) (1 + x) . " (- a l p h a) ;
N=1(T3; Y=nan(N,l) ;
fo r i= l :N

R=l;
while rand<rho

R=R+1;
end;
if R==l

val=gamma;
else

X=rand(l,R-1)."(-l/alpha)-l;
S=sum(X);M=max(X); val=max(M,gamma-S);

end
% control variable estimator
Y(i)=R*bar_F(val)+(1/(1-rho)-R)*bar_F(gamma);

end
format long
ell=mean(Y)*rho
RE = std(Y)/sqrt(N)/ell

10.3.2 Sum of Nonidentically Distributed Random Variables

Consider again the estimation of (10.12), but this time the Χχ, Χ2, ■ ■ ■ have a dif-
ferent subexponential cdfs ί \ , F 2 , In other words, Χι, Χ2, ■ ■ ■ is a sequence of
independent nonidentically distributed random variables. In this case we can
use the following algorithm [57], motivated by the identity

l{Sn > 7> XJ = m a x ? Xj }

ˇW J '
with Fi(x) a= 1 — Fi(x) and

*>='<^>=sSI^=Ä>· '-1 - <1016)

v-> - < ^(Sn ^ 7, Xi = max,- ΧΛ

r f PW

CONDITIONING METHODS FOR HEAVY TAILS 3 9 7

Algor i thm 10.6 (Sum of Independent Nonident ical R a n d o m Variables)

1. Simulate a discrete random variable J with discrete pdfp(j) given in (10.16).

2. Generate Χι,Χ2,. ■ ■ ,Xj~i,Xj+i,- ■ ■ ,Xn with corresponding distributions
Fi,F2,..., i j - i , FJ+i, ...,Fn and compute

y ^ F ^ - ^ V m a x X ,) .
ίφ3

3. Using N independent replications of Y, deliver the unbiased estimator:

?W = ̂ I > · (10·17)
fe=l

The choice of pdf in (10.16) is close to the minimum variance pdf p*(i) = V(Xi =
maxj Xj | Sn > 7). Regarding the efficiency of the estimator, we have the following
result [57].

Theorem 10.3.3 (Bounded Relat ive Error) The estimator (10.17) in Algo-
rithm 10.6 has bounded relative error when all {Xi} are independent and have
either log-normal or regularly varying distributions.

Under certain conditions it is possible to drop the independence assumption [57,
Page 50]. An alternative to the estimator in Algorithm 10.6 is [23]:

1 N n / \

*w 4 Σ Σ ^ (7 - Σ ^) ν ^ ί η (10·18)
fc=l i = l \ jjti Jt~ '

where xf\ k = Ι,.,.,Ν are independent random variables with cdfs Fj, j =

1 , . . . ,n. This estimator has bounded relative error when the {X, } have Pareto
distributions, and is used for estimating the probability of large portfolio losses,
where the monetary values of the losses follow a Student's t copula model. " ^ 69

Another estimator has been proposed by Juneja [45], based on the identity

P(5„ > 7) = PfmaxX,· ^ 7) + ¥(Sn > 7, m a x X , < 7) .
j j

When the {Xi} have a regularly varying distribution, then

P(Sn >Ί)= P(max.Xj > 7) (1 + o(l)) as 7 -> 00 ,

and the so-called residual probabil ity P(S„ > 7, max^ Xj < 7) becomes asymp-
totically negligible. Typically, P(maxj Xj ^ 7) can be evaluated exactly and all
that is required is to estimate the residual probability efficiently. To this end, one
can use a combined conditional and importance sampling estimator; see [45]. Note
that the residual probability itself can be similarly decomposed into a leading term
and a residual probability. This recursive idea has been successfully applied in
network reliability estimation [18].

3 9 8 RARE-EVENT SIMULATION

■ EXAMPLE 10.8 (Sum of Log-Normals)

Consider the case where n = 10 and each Xi is drawn independently from LogN(z —
10, i2) , i = 1 , . . . , n. This problem arises in the computation of portfolio measures
such as value-at-risk [9]. For 7 = 4 x 104 the following code, which implements
Algorithm 10.6, gives an estimate of 4.6312 x 10~4 with an estimated relative error
of 7 x 10~5.

7oSumlognor. m
clear all,clc
n=10; gamma=4*lCT4; N=10"
p = 1-logncdf(gamma,paran
J = randsample(ç,˝,’true’
°/0 generate r.v.’s X_1,X_2
X = lognrnd(param(ones(N,
% set the J-th entry in e
X((J’-1)*N+(1:N))=0;
% compute estimator
Y=l-logncdf(max([gamma-
Y=Y’./p(J);

5;
-10

,p)
» � �

1),
ach

sum

mean(Y), std(Y)/sqrt(N)/mean

3aram=l:n;
,sqrt(param)); p=p/sum(p);
; ’/.sample index J

:)-10,sqrt(param(oneg
row to 0.

(X,2),X],[],2),J-10,

(Y)

(N,l),:

sqrt(J)

)));

);

10.4 STATE-DEPENDENT IMPORTANCE SAMPLING

In this section we review an importance sampling approach that applies to dynamic
processes. The main feature of the approach is that the importance sampling change
of measure depends on the progress of the underlying process in reaching the rare-
event set. In other words, we have state-dependent importance sampling. The
general framework for applying importance sampling to dynamic processes, such as
Markov chains, Markov jump processes, and generalized semi-Markov processes, is
given by Glynn and Iglehart [39]. The authors also discuss the application of im-
portance sampling to steady-state simulation and to the case where the simulation
horizon depends on a stopping time.

Here we review a state-dependent importance sampling procedure that yields
estimators with bounded relative error for a broad class of entrance probability
problems. We use the following framework.

"S" 162 · Let {Zn, n = 0 ,1 , . . . } be a time-homogeneous Markov chain with state space

S and transition density p(y | a;).

• Let P 2 denote the probability measure under which {Zn} starts at Z0 = z.

• Let se C & C g; see Figure 10.2.

• Let r = inf{n ^ 0 : Z„ 6 âê} be the first time that the process {Zn} enters
the region 2%.

STATE-DEPENDENT IMPORTANCE SAMPLING 3 9 9

Figure 10.2 Two realizations of the Markov chain {Zn,n = 0 ,1 , . . .} , starting from
Zo = z. The chain evolves until the process enters the set âê.

We are interested in estimating the probability that , starting from z £ M, the
process enters the region Si through the set srf\ that is, the probability

oo

h(z) =Fz(Zr € £/,τ < oo) = ^Fz(Zt €#/,T = t) . (10.19)
t=o

Many of the rare-event problems discussed in the previous sections can be for-
mulated via an entrance probability of the form (10.19).

■ EXAMPLE 10.9 (Entrance Probabil i t ies for Stopping Times)

Consider the stopping-time probability from Section 10.2.1:

ί{Ί) = P(inf{n : Sn > 7} < 00), Sn = Χλ + ■ ■ ■ + Xn, S0 = 0 ,

where Χχ,Χι,... ~ ü d / · In this case {Zn, n = 0 ,1 , . . . } = {Sn, n = 0 , 1 , . . . } ,
ZQ = 0, and M = si = (7,00), so that τ = inf{n : Zn > 7} , [ZT e Ä / } = { T < 00},
and

1(Ί)=Ψ°(ΖΤ £ ^ , T < O O)

is of the form (10.19).

■ EXAMPLE 10.10 (Overflow Probabil i t ies as an Entrance Problem)

Consider the overflow probability £n = f(Sn > nb) in Section 10.2.2. Define the
Markov chain {Zk, k = 0 ,1 , . . . } = {(fc, Sk), k = 0 , 1 , . . . } , with Z0 = z = (0,0),
and let &f = âë = {{n,s) : s ^ nb}. Then, r = inf{£ : St ^ nb,t = n} , which is
either n, if Sn ^ nb, or 00 otherwise. It follows that

in = P (5 n > nb) = p(°'°)(ZT E < r < o o) ,

which is of the form (10.19).

4 0 0 RARE EVENT SIMULATION

Returning to the general problem of estimating (10.19), observe that by the
Markov property we have for all t ^ 1

Vz(Zt eaf,T = t\Zi=zi) =PZl(Zt-i es/,τ = ί - 1) .

By conditioning on Z\ we thus have

oo

h(z) = Y^Vz{Zt Esrf,r = t)
t = l

oo

= Σ Σ^Ζ{Ζι£^,τ = ί\Ζι=ζλ)ρ{ζ1\ζ)
t = l Zi6<?

oo

Zle<? t = i

=]Γ)ρ(ζι|ζ)Μζι) .

which shows that

i (y |a :) = ^ p (y | a :) , y G <?, a: G 0e , (10.20)

defines a proper transition density on S. Let Q z be the probability measure under
which {Zn} is a Markov process on S starting at z with transition density q(y \ x).
Then, it is not difficult to see [7] that under Qz:

1. QZ(Z1 = Zl,...,Zt = zt) = %$ VZ(Z1 = 2 ! Z(= zt);

2. <QZ{ZT £ i / , r < o o) = l;

3. Q 2 (Zi =zi,...,ZT = zT) = WZ{Z1 = ζι,...,Ζτ = zT\ZT e £/,τ <οο).

In other words, the distribution of {Zn} under Q2 is the same as the distribution
under ¥z given the rare event {ZT e œ/,τ < oo}. Therefore, the measure Qz is the
zero-variance measure for simulation of the rare event {ZT G se, τ < oo}.

In practice one cannot simulate under Qz, because h(z) is unknown and hence
the transition density q is not available. The situation is similar to the problem of
simulating from the zero-variance pdf g* in the cross-entropy method (see Section
10.5). Suppose, however, that one has a good approximation to h, say h. Define
the transition density

Vt S \ Γ

q(z | y) = p(z | y) ——, where c{y) = p(z\ y) h(z) àz . (10.21)

Then, estimation of h(z) can be accomplished using the following algorithm [39].

Algor i thm 10.7 (S ta te -Dependent Importance Sampling) Given the ap-

proximation h(z), execute the following steps.

1. Simulate a trajectory Z\, Zi..., of the Markov chain {Zn} until the stopping
time T = inf{i : Zt G M}. The simulation is carried out under Qz corre-
sponding to the transition density q, so that the joint density of the path is
(setting ZQ = z):

q(zi I z0) q{z2 | zi) ■ ■ ■ q(zT | z r - i) ■

STATE-DEPENDENT IMPORTANCE SAMPLING 4 0 1

2. The corresponding likelihood ratio is

w , „ ^ _ P{z\ | zp) · · ·ρ(ζτ I zT-i) _ π c(zt-i)
w[Zl,...,zT) ~{ζι1ζο)...~{ΖτΙΖτ_ύ 1 1 ~h{zt) ■

3. By repeating Steps 1 and 2 above, generate N instances of Y
W(Z\,..., Ζτ) Ι{Ζτ<Ξβ?} and output the estimator h(z) = -^ J2i=i ^ί ·

To apply Algorithm 10.7 successfully, a number of issues need to be resolved [16]:

1. The choice of the transition density g is crucial. Typicallyxa candidate for q
is suggested by considering an asymptotic approximation h(z) of h(z).

2. It is important to be able to efficiently calculate the normalizing constant
c(y) in (10.21). In practice it has to be evaluated numerically. Blanchet
and Liu [16] propose approximating c(y) via path sampling in cases where
deterministic integration is not practical.

3. The simplicity of sampling from the transition density q is also an important
factor in the overall efficiency of Algorithm 10.7. Typically one uses the
acceptance-rejection algorithm as in [14].

State-dependent importance sampling strategies are typically more efficient and
reliable than their state-independent counterparts. For example, Blanchet and
Glynn [14] show that if estimation of the stopping-time probability (10.5) with
heavy-tailed increments is required, then their state-dependent importance sam-
pling algorithm yields an estimator with vanishing relative error. In addition,
Bassamboo et al. [11] show that there is no state-independent importance sam-
pling algorithm that will give an efficient estimator in the regularly varying case.
Note that state-dependent importance sampling algorithms are usually much more
difficult to implement than their state-independent counterparts.

■ EXAMPLE 10.11 (Sta te -Dependent and State-Independent Sampling)

Consider again the problem of estimating the overflow probability £n = P(Sn ^
nb\So = 0) of the random walk process {Sn,n = 0 ,1 ,2 , . . . } with increments
X1,X2,... ~ i id / - Define £(k,s) = F(Sk ^ s\SQ = 0), so that ln = i(n,nb).
Using the framework of Example 10.10 we have

h{{k, sk)) = F(sfc + Xk+1 + ---+Xn>nb\Sk = sk)

= P(5 n _ f c > nb - sfc | S0 = 0)

= £(n — k,nb — sk) ,

and

h((k + 1, sfc + xk+i)) = P(sfc + Xk+i + Xk+2 H l· X„>nb\ Sk+1 = sk+1)

= ¥{Sn-k-i ^nb- sk - xk+i \ S0 = 0)

= i(n - k - 1, nb - sk - xk+i) ■

4 0 2 RARE-EVENT SIMULATION

The zero-variance transition density (10.20) can thus be written as

£(n- k - l,nb- sk - Xk+i)
q({k + 1, sk + xk+i) \ {k, sk)) = f(xk+i)-

£{n — k,nb — sk)

There are a number of possible approximations to £{ ■, ·) and hence to q(- | ■). For
example, using the asymptotic approximation (10.8), we have that

£(n- k- l,nb- sk - xk+\) « ce9"Xk+1 ,

where c is a constant independent of xk+i and Θ* is the root of ζ'(θ) — lEgX = b.
This gives the approximating transition density (10.21) as:

q({k + l,sk+ xk+i) I (fc, sk)) = Ϊθ' {xk+i) = f(xk+i) eÉ 'xk+1-C(6') (10.22)

Notice that (10.22) does not depend on sk, and thus under this change of measure
we generate the increments Xi,X2, ■ ■ ■, Xn as iid samples from fe*(xk+i)- We
recognize this sampling procedure as Algorithm 10.2, which is state-independent
importance sampling. The left panel of Figure 10.3 illustrates that the increments
are chosen independent of the current state. The angle formed between each vector
started at zk = (k,sk) and the n-axis is tan_1(i>).

n7

s 6 -

Si-

^/\"tan !(7)

x^

^•^"'
s

/ " ■ ■ ' ' ' S6

S i

0 0

Figure 10.3 Comparison between the state-independent (left panel) and state-dependent
(right panel) importance sampling. Each point on the graphs is a realization of Sk for a given
k.

An alternative approximation to q takes into account the progress of the random
walk {Sk} in reaching the level nb:

q((k + 1, sk + Xk+i) I (k, sfc)) = f(xk+i) e^+i*"*1-«*;+*> ,

0 , . . . , n — 2, solves the equation

nb — Sk

(10.23)

where each θ£+1, k

C'(#fc+i n — k

and the final Xn is sampled conditional on Xn > nb — s n _ i . Unlike (10.22), the
transition density (10.23) depends on Zk = (k,Sk) and yields a state-dependent
importance sampling algorithm, in which at each step k, the twisting parameter
#fc+i depends on the progress of the underlying process at step k in attaining the
rare-event set. Figure 10.3 shows the difference in applying the state-dependent

STATE-DEPENDENT IMPORTANCE SAMPLING 4 0 3

transition density (10.23) versus the state-independent transition density (10.22).
Each vector originating from Zk = (fc,Sfc) points to (n,nb), and hence has slope
Eg· Xk+i- The resulting estimator has bounded relative error [13]. In contrast,
Siegmund's Algorithm 10.1 only gives a logarithmically efficient estimator. More
importantly, Blanchet et al. [15] and L'Ecuyer et al. [49] show that the state-
dependent scheme gives an estimator with bounded relative moment of order k, see
Page 383.

As a concrete example, consider the case where each increment of the random
walk has a Laplace(0,1) distribution. Then, ζ(θ) = - ln(l - Θ2) for |0| < 1, and the
likelihood ratio for a given path is

W = e- Σ*=« <>1+ιχ*+ι+«(>1+ι) ρ (χ η > nö - s„_ i) ,

where 0*k+1 is the root of 20/(1 - Θ2) = ^Εη^ for |0| < 1. Sampling from the
transition kernel q(zk+\ \ Zk) is equivalent to generating Xk+i = BY\ — (1 — B)Y2,
where B ~ Ber((l + 9*k+1)/2), Yx ~ Exp(l - 0*+ 1), and Y2 ~ Exp(l + 9*k+1). The
following code implements the algorithm for n = 10 and 6 = 4. For this particular
example 9k+1 solves a quadratic equation with a unique root in the interval (—1,1).
The code uses the function fzero.m to compute the unique 0£+ 1 . We obtained
£n = 1.12 x 1 0 ~ n with an estimated relative error of 3%.

%state_dependent_IS_Laplace.m
N=1000; S(1)=0; gamma=4; n=10; % set-up the parameters
for i=l:N

for k=l:n-l
°/, find root for twisting
theta(k)=fzero(@(t)(2*t/(l-t~2)...
-(n*gamma-S(k))/(n+l-k)), [-0.999,.999]);
7, sample from twisted density
if rand<(l+theta(k))/2

x(k)=-log(rand)/(l-theta(k));
else

x(k)=log(rand)/(l+theta(k));
end
S(k+l)=S(k)+x(k) ; '/, increment the walk

end
7, compute the likelihood ratio of the path
W(i)=exp(-x*theta’-sum(log(l-theta.’"2)))*. . .
(1-cdf_laplace(n*gamma-S(end)));

end

ell=mean(W)
RE=std(W)/ell/sqrt(N)

4 0 4 RARE-EVENT SIMULATION

10.5 CROSS-ENTROPY METHOD FOR RARE-EVENT SIMULATION

In this section we review the cross-entropy (CE) method in the context of rare-event
463 simulation. We refer to Chapter 13 for a more detailed account of the CE method.
366 See also Section 9.7.3 for a description of the CE method in the context of variance

reduction.
While the methods presented in the previous sections apply to a narrow range of

problems for which analytical approximations exist, the CE method is more broadly
applicable for estimating rare-event probabilities of the form £ = P(S(X) > 7) for
a performance function S : K" —> K and threshold 7. Here X is assumed to have a
general probability density / (x ; u) , which is parameterized by a vector u.

The main idea of the CE method is to use an importance sampling density
from the same parametric family as the nominal pdf / (x ; u) , say / (x ; v *) . The
parameter v* is chosen as the estimated maximizer of the CE program (see (13.6)
with H(x) = I{s(x)>7}):

v* = argmax / I{<?(x)^7} / (x ; u) l n / (x ; v) dx = a r g m a x E r l n / (X ; v) , (10.24)
V J V

where g*(x) = / (x) I{s (x)^ 7 }/^ is the zero-variance importance sampling pdf,
which is simply the conditional pdf of X ~ / given 5 (X) ^ 7; see (13.4).

465 In Algorithm 13.1, a general procedure is described for estimating the optimal
CE parameter v* using a multilevel approach. However, as observed in [59], such
an approach may not always be necessary or desirable. We next describe how to
estimate v* directly from g* without a multilevel approach. Suppose one can easily
sample (approximately) from g*. For example, we may use any of the Markov
chain samplers described in Chapter 6 to simulate from g*. Let Χ χ , . . . , X;v ~
g*, then we may estimate v* via v* = argmaxv X] f c = 1 ln / (X f c ; v) . Thus, the CE

667 program reduces to a standard maximum likelihood optimization problem. Once
v* is computed we use the importance sampling estimator

? = ^ ë w ^ W *) > 7 > . Χ χ , . - , Χ * - / (S ? *) (10.25)
1 k=\ J *■ fc' '

to estimate i. This motivates the following CE algorithm.

Algor i thm 10.8 (CE M e t h o d for Rare-Event Probabil i ty Est imation)
Given the parameters N and iVi, execute the following steps.

1. Run a Markov chain sampler to generate

-v approx. *
-Λ-1,· · · ,Λ-Ν ~ 9 1

where g*(x) oc / (x) I { s (x) > 7 } .

2. Compute v* by solving the maximum likelihood optimization problem

N

■ argmax ^ m / (x f c ! v)
fc=l

3. Given v*, deliver the importance sampling estimator (10.25) of the rare-event
probability t = P(5(X) ^ 7) .

CROSS-ENTROPY METHOD FOR RARE-EVENT SIMULATION 4 0 5

■ EXAMPLE 10.12 (Bridge Network Revis i ted)

Consider the bridge network in Example 9.1, which is used to illustrate the various "^- 348
variance reduction techniques in Chapter 9. Suppose that instead of estimating
the expected length of the shortest path, E i i (X) , we are interested in estimating
the probability that the shortest path exceeds a given threshold 7. Thus, here
we wish to estimate I = P(i f (X) ^ 7), where the lengths {Xi} are independent
and Xi ~ U(0, a;), i = 1 , . . . , 5 with (αχ , . . . , as) being fixed parameters. Writing
Xi = aiUi, i = 1, . . . , 5 with {i/,} ~udU(0 , l) , we can write i = P(/i(U) > 7) ,
where U = (Ux,..., U5) and /i(U) = H(a1U1,..., a5U5), as in (9.2).

We use the same parametric family of importance sampling densities as in Ex-
ample 9.7. In other words, the importance sampling pdf is " ^ 363

5

3(u) = Π^(Μί) '

where each gi is the pdf of the Beta(t' i, 1) distribution: gi{u) = Vi u " i _ 1 , u s [0,1].
For Step 1 of Algorithm 10.8 we use the following Gibbs sampler to simulate from
3*(u) = I { f t (u) ^ 7 } / l «s-233

Algori thm 10.9 (Gibbs Sampling From g*) Given an initial state U such
that h(\J) ^ 7, iterate the following steps N times.

1. Sample a random index I uniformly from the integers 1 , . . . , 5.

2. Let U* = (Ι Ί , . . . , [/j_i,0, t / / + i , . . . , U5); that is, U* is the same as U except
that the I-th position is set to 0.

3. Sample Ui uniformly on (0,1) such that Ui ^ 7 — h(U*).

I Reset U = (£ / ! , . . . , i / / - i , UI} UI+U..., U5).

Let the output of the Gibbs sampler be Ui = (Un,..., U^), i = 1 , . . . , ΛΓ. Then,

the solution of the maximum likelihood optimization problem in Step 2 of Algorithm
10.8 is

"* N ■ 1

"j = N , j = l , . . . , 5 .
- E i = i In in-

put t ing all of the above together results in the MATLAB code below. With
7 = 1.99 and using the function h.m on Page 349, we obtain £ = 2.38 x 10~5 with
an estimated relative error of 0.6%. In this case the estimate for the optimal v* is
v* = (295.4, 2.66, 1.26, 300.8, 2.51).

’/.CE.

n=5
_example_gibbs.m
gamma=l.99;

N=1(T5; 7. length of
u=ones(l,n); '/, starting
v=0
7o run the Gibbs sampler
for i=l:N

I=ceil(rand*n);u(I)=

Markov chain
value for Gibbs

0;

sampling

4 0 6 RARE-EVENT SIMULATION

lower=max(gamma-h(u),0);
u(I)=lower+(1-lower)*rand;
v=log(u)+v; '/„ compute the mean of the log(u)

end
°/0 compute the Maximum Likelihood estimate
v=-N./v;

% apply Importance sampling
Nl=10~5;
nu = repmat(v,Nl,1);
U = rand(Nl,5).~(l./nu);
I =h(U)>gamma;
w=zeros(size(D) ; °/0 ensure w=0 where h(U)<gamma
w(I) = prod(l./(nu(I,:).*U(I,:).-(nu(I,:) - 1)),2);
’/, deliver the final estimator
est = mean(w)
percRE = std(w)/sqrt(Nl)/est*100

In the next example we apply the CE method to the problem of estimating the
probability of large portfolio losses in a popular financial model [40, 53]. For an
alternative approach using an exponential change of measure; see [38].

■ EXAMPLE 10.13 (Credit Risk in a Normal Copula Mode l)

Consider a portfolio of loans consisting of n obligors each of whom has probability
of default p , = F(Xi ^ x«), i = l , . . . , n for some continuous latent variables
Xi,...,Xn. In other words, the i-th obligor defaults if and only if the latent
variable Xi exceeds the threshold Xi. The threshold Xi is sometimes called a default
boundary. The total loss incurred from defaults can be written as

n

^ (X) = 2-^Cl^{Xi>xÛ i %-= {Χΐτ- -,Χη) ,
1 = 1

where each Cj is the monetary loss incurred from the default of the i-th obligor. We
wish to estimate the probability of a large loss: I = P(L(X) ^ 7) , 7 G (0, ^ c,),
where X is specified by the linear factor model

m

Xi = ai Zi + 2_. aij Zji i = 1,... ,n ,
i=i

with Z i , . . . , Z m , Z i , . . . , Z r l ~ i i d N (0 , l) and af + Σ7=ιαΙ = λ> so t h a t Xi ~
"S1- 68 N(0,1), i = 1 , . . . , n. This is the normal copula model described in [40, 53]. For the

extended case of Student's t-copula model see [12, 22].

Let / (z) a e " z T z / 2 be the joint density of Z = (Zi,..., Zm, Ζλ,..., Zn)
T. Then

X = BZ for some n x (m + n) matrix B depending on the {<%}. Thus I can
be written as i = P(S(Z) ^ 7), with S(Z) = L(BZ), which can be estimated via
importance sampling on Z. Note that the minimum variance importance sampling
density g*(z) = / (z) I{s(z)^ 7 }/^ is a truncated multivariate normal density. We

"S" 242 use the hit-and-run sampler to generate from g*.

CROSS-ENTROPY METHOD FOR RARE-EVENT SIMULATION 4 0 7

Algori thm 10.10 (Hit -and-Run) Initialize t = 1. Given the (m + n) x 1 vector
Yt such that S(Yt) ^ 7, iterate the following steps N times.

1. Generate d = (J^,··· ' lj$t) > Zi> · · ■ > Zn+m ~ N(0,1).

2. Generate A ~ N (- d T Y t , 1).

3. If 5 (Y t + Ad) > 7, set Y t + 1 = Y t + Ad; otherwise, set Yt+1 = Yt. Set
t = t + l.

We apply the CE method to seek the optimal change of measure in the family of
multivariate normal densities with mean μ = (μι,..., μ„ι+η) an<i covariance matrix
with diagonal σ1 = [σ\,..., σ^η+η) and zeros off the diagonal. In other words, the
importance sampling density is

/ (z ; v*)cc J] e ~ ^ Γ " ,

where (see Step 2 of Algorithm 10.8) the parameters μ and σ are simply the sample
mean and sample variance of the data, Y i , . . . , Yjv, generated by the hit-and-run
sampler.

As a particular numerical example, consider the m = 21 factor model with
n = 103 obligors given in [38] :

• The probabilities of default are given by pk = 0.01(1 + sin(167rfc/n)), k =
Ι , . , . , η .

• The monetary loss Cfc increases linearly from 1 to 100 as k increases from 1
to 103.

• The factors {aij} are the entries of the following 103 x 21 matrix A with block
structure:

A= r

where r is a column vector of 1000 entries, all equal to 0.8; f is a column
vector of 100 entries, all equal to 0.4; G is a 100 x 10 matrix with g a column
vector of 10 entries, all equal to 0.4.

• The (positive) factors {<Zj} are computed from a, = »/ l — Σ " 1 χ
 alj·

• Set 7 = 4 x 104, and use sample sizes N = 105 and N± = 105.

The code below implements this example with the following additional modifi-
cation. After running the hit-and-run sampler and computing the parameters μ
and σ we decide which components of Z are important, that is, which components
require a change of measure. If Φ(μ,/σί) > 0.95, where Φ is the cdf of the standard
normal density, then at the 5% level the i-th component is important. Other-
wise, if Φ(μί/σ,) < 0.95, then the i-th component is simulated under the original

G

G

with G :

4 0 8 RARE-EVENT SIMULATION

probability measure. This is essentially the screening idea of Lieber, Rubinstein,
and Elmakis [54, 60], in which importance sampling is applied only to a subset of
the components z with the goal of making the likelihood ratio of the importance
sampling estimator more stable.

Using this approach it turns out that only the first component of μ is important
and μι ft 3.9109. The other m + n — 1 components did not warrant a change of
measure.

%loss_probab.m
clear all
clc
% set up parameters
n=10~3; gamma=4*10~4;m=21;
k=l:n;
p=0.01*(l+sin(16*pi*k/n));
x=norminv(l-p);
c=l:99/(n-l):100;
% set up matrix for factor design
R=ones(n,l)*0.8;
G=zeros(100,10);
for j=l:10

G(l+(j-l)*10:10*j,j)=0.4;
end
FF=zeros(1000,10);
for j=l:10

FF(l+(j-l)*100:100*j,j)=0.4;
end
A=[R)FF,repmat(G,10,l)] ;
a=sqrt(l-sum(A.~2,2));
% finish setting up matrix for factor design

°/(run the Hit-and-Run sampler
Y=randn(1,m+n)+4; % find a starting point
mu=0;mu2=0;N=10~5;
for i=l:N

d=randn(1,m+n); d=d/norm(d);
lam=-d*Y’+randn;
Y_new=Y+lam*d; % make proposal
if score(Y_new(l:m),Y_new(m+l:m+n),x,c,A,a)>gamma

Y=Y_new; % accept or reject proposal
end
mu=mu+Y/N; °/0 estimate CE parameters
mu2=mu2+Y.~2/N;

end
sig=sqrt(mu2-mu.~2);
stem(mu(l:m))
% identify the important changes of measure
p_value=l-normcdf(abs(mu)./sig);

SPLITTING METHOD 409

idx=find(p_value<0.05);

7,now apply importance sampling
Nl=10~5;
W=zeros(Nl,l) ; '/, set up likelihood ratio
for i=l:Nl

Y=randn(l,m+n); Y(idx)=Y(idx).*sig(idx)+mu(idx);
i f score(Y(l :m),Y(m+l:m+n),x,c ,A,a)>gamma

W (i) = p r o d (s i g (i d x)) * . . .
e x p (s u m ((Y (i d x) - m u (i d x)) . ~ 2 / 2 . / s i g (i d x) . ~ 2 - Y (i d x) . ~ 2 / 2)) ;

end
end
ell=mean(W)
s t d (W) / s q r t (N l) / e l l
R e d u c t i o n _ f a c t o r = (e l l * (l - e l l)) / v a r (W)

function S=score
7, implements
X=A*Z’+a
S=c*(X>x

*Zb
);

the
»

(Z,Zb,x,c,
portfolio

A,a)
loss funct ion

With the above code we obtain a typical estimate of i = 7.43 x 10~5 with an
estimated relative error of 0.8%. The variance reduction over CMC is about a factor
of 103, which is comparable with the performance of the exponential twisting used
by Glasserman and Li [38]. Note that while Glasserman and Li derive the optimal
exponential change of measure from theoretical arguments, here we have learned
the optimal importance sampling by means of MCMC simulation.

10.6 SPLITTING METHOD

One of the first Monte Carlo techniques for rare-event probability estimation is the
spl itt ing method , proposed by Kahn and Harris [48] and later by Hammersley
and Handscomb [41]. In the splitting technique, sample paths of a Markov process
are split into multiple copies at various stages of the simulation, with the objective
of generating more occurrences of the rare event. The method uses a decomposition
of the state space into nested subsets so that the rare event is represented as the
intersection of a nested sequence of events. Then, the probability of the rare event
is the product of conditional probabilities, each of which can be estimated much
more accurately than the rare-event probability itself.

A basic description of the classical splitting method is as follows. Consider a
Markov process {X«, u ^ 0} with state space 3C Ç]Rn, and let S be a real-valued
function on S£, referred to as the importance function. Assume for definiteness
that S(X.Q) = 0. For any threshold or level 7 > 0, let ΙΙΊ denote the first time
that the process {S(X„), u > 0} hits the set [7,00), and let UQ denote the first
time after 0 that the same process hits the set (—00, 0]. We assume that ΙΙΊ and

4 1 0 RARE-EVENT SIMULATION

Uo are well-defined finite stopping times with respect to the history of { X u } . One
is then interested in the probability, £, of the event ΕΊ = {[/7 < Uo}', that is, the
probability that {«S^X«)} up-crosses level 7 before it down-crosses level 0. Note
that £ depends on the distribution of Xo.

The splitting method [31, 34] is based on the observation that if 72 > 71,
then _E72 C ΕΊ1. Therefore, we have that £ = C\C2, with c\ = Ψ(ΕΊ1) and

616 C2 = P(-E72 I-E7J by the product rule of probability. In many cases, estimation
of c\ C2 by estimating c\ and C2 separately is more efficient than the direct crude
Monte Carlo (CMC) estimation of £. Moreover, the same argument may be used
when the interval [0,7] is subdivided into multiple subintervals [70,7i), [71 ; 72), ■ · ■,
[7τ- ΐ)7τ]) where 0 = 70 < 71 < · · · < 7 r = 7· Again, let Elt denote the
event that the process {^(Χ^)} reaches level "ft before down-crossing level 0. Since
ΕΊο D ΕΊι D ■ ■ ■ D ElT is a nested sequence of events, denoting ct = W(E7t \ Eltl),

we have I = Π*=ι ct-
The estimation of each c t is performed in the following way. At stage t = 1 we run

S1N0 (a fixed number) independent copies of {X„} and evolve the corresponding
process {S(X U)} . Each copy of {X„} is evolved until {S(X„)} either hits the set
(—00,0] or up-crosses the level 71; that is, each copy is evolved for a time period
equal to min{?77l, i/o}. The number s\ is an integer referred to as the spl i t t ing
factor at stage f = 1. Define Ij to be the indicator that the j-th copy of {^(Xu)}
hits the set [71, 00) before (—00, 0], j = 1 , . . . , S\N0, and let Νχ be the total number
of copies that up-cross 71 ; that is,

aiNo

J = l

An unbiased estimate for c\ is ci = 7 ^ - · For every realization of {5(X U)} which
up-crosses 71, we store the corresponding state X u at the time u of crossing in
memory. Such a state is referred to as the entrance s tate [30]. In the next stage,
when t — 2, we start si new independent copies of the chain {X.u} from each of the
Ni entrance states, giving a total of S2N1 new chains. Again, if we let I? indicate
whether the j - t h copy of {5(ΧΜ)} hits the set [72,00) before (—00,0] (with the
process {X u } starting from an entrance state at level 71), then C2 = —j§-, where

N2 = Σ ' ! !] / Ij, is an estimate of C2. This process is repeated for each subsequent
t = 3 , . . . ,T, such that stJVt_i is the s imulation effort at stage t, and JVt is the
number of entrance states at stage t. The indicators {/j} at stage t are usually
dependent, and hence the success probabilities {P(/j = 1)} depend on the entrance
state from which a copy of the chain {X u } is started. It is well known [7, 34] that
despite this dependence, the estimator

T IV T

< = Il3=jf IK1 (10.26)
t = i u t = i

is unbiased.
The idea of the splitting method is illustrated in Figure 10.4, where three level

sets {x : 5(x) = 7t} , t = 0,1,2 are plotted. Here three independent paths of the
process {S'(XU)} are started from level 70 = 0. Two of these paths die out by
down-crossing level 0 and one of the paths up-crosses level 71. Three new indepen-
dent copies of the chain are started from the entrance state at level 71 (encircled

SPLITTING METHOD 4 1 1

1

7?

7ι

S(X„)

i±

split

. * *̂ .- '

/''"""··.
yL/

up-cross

Figure 10.4 Typical evolution of the splitting of {5(Χι,)}.

X2

Figure 10.5 Typical evolution of the splitting algorithm for a two-dimensional Markov
process

on the graph), two of these copies down-cross 0, but one copy up-crosses level
72. Figure 10.5 shows a typical realization of a two-dimensional Markov process
{(Xi. \Xu),u ^ 0} that corresponds to the scenario described on Figure 10.4.

Of great importance is the choice of the importance function S, which determines
how the sample space is partitioned into nested subsets. The problem of selecting
an efficient importance function is similar to the problem of selecting an optimal
change of measure for importance sampling. Hence, it is not surprising that it is an
unresolved problem in general [32, 58]. Dean and Dupuis [25] suggest an efficient
design of the importance function derived from the solution of a nonlinear partial
differential equation, for cases where large deviation approximations are available.

4 1 2 RARE-EVENT SIMULATION

For a given importance function S, the efficiency of the splitting method de-
pends crucially on the number of levels T, the choice of the intermediate levels
7 i , . . . , 7 T - I , and the splitting factors s i , . . . , sy. Ideally one would select the lev-
els so that the conditional probabilities {c t} are not too small and easily estimated
via CMC. Assuming that the cost of running the Markov process is independent of
t, the total simulation effort is a random variable with expected value

T T i - l T t - 1

J2 stENt-i =N0J2st ^(7t-i) Π si = N° Σ s* Π ci si
t=i t=i i=i t=i j=i

T 1 t

= N° Σ - Π CJ si

(10.27)

t = l 3 = 1

An inappropriate choice of the splitting factors may lead to an exponential growth
of the simulation effort. For example, if CjSj = a > 1 for all j , then the simulation
effort (10.27) grows exponentially in T. This is referred to in the splitting literature
as an explosion [35]. On the other hand, if CjSj = a < 1 for all j , then ΕΝχ =
NQ aT decays exponentially, and with high probability Νχ and i will be 0, making
the algorithm inefficient. Thus, it is desirable that CjSj = 1 for all j ; that is, the
splitting is at the critical value [35]. In practice, one obtains rough estimates {QJ}
of {CJ } via a pilot run and then initializes st = Q^ paths from each entrance state
j = 1 , . . . , Nt, at every stage t. In the case where 1/Qj is not an integer, one can
generate a Bernoulli random variable with success probability ρ~ — _gj J and then
add it to [gj1] to obtain a random integer-valued splitting factor Sj with expected
value 1/QJ, see [35]. This version of the splitting algorithm is called the fixed
splitting implementation, because at every stage t one generates a fixed expected
number of copies ρ^-1 from each entrance state. An alternative to the fixed splitting
implementation is the fixed effort implementation, where the simulation effort is
fixed to TV at each stage, instead of fixing the number of copies. The estimator is
then

T
F̂E = n

Nt
N

t=i

The fixed effort implementation prevents explosions in the number of total Markov
chain copies, but has the disadvantage that it is more difficult to analyze the vari-
ance of ^FE; see [31].

Other implementations of the splitting method include fixed success splitting
[33], where the number of entrance states at each stage is maintained to be a
predetermined number of trajectories; and fixed probability of success splitting
[20, 30], where the conditional probabilities {ct} are (approximately) equal under
the proposed simulation strategy. We now summarize the fixed effort splitting [31].

Algor i thm 10.11 (Fixed Effort Splitt ing) Set the counter t = 1. Given the
importance function S and the levels 7i , · · · ,7τ> execute the following steps.

1. Initialization. Generate N copies of the Markov process { X u } where each
copy is run until {S^X«)} either hits the set (—co,0] or up-crosses the level
7i . If 1} is the indicator that the j-th copy of {S(X.U)} hits the set [71,00)
before (—00,0], then ΛΊ = J2i=i Ij *s the total number of copies that up-cross
71. Store the entrance state for each of the ΛΊ copies in memory.

SPLITTING METHOD 413

2. Boots trap Resampl ing . Resample the Nt (^ N) entrance states uniformly
to obtain a new population of N entrance states (with possibly repeated values).

3. Markov Chain Evolut ion. Start N independent copies of the Markov pro-
cess {X-u} from each of the N bootstrapped entrance states from Step 2. Run
each copy until {S(X.U)} either hits the set (—oo,0] or up-crosses the level ^t-
If Ij is the indicator that the j-th copy of {5(X U)} hits the set [yt, oo) before

(—oo,0], then Nt = Σ , · = 1 Ij is the total number of copies that up-cross 7 t .
Store the entrance states for these Nt copies in memory.

4. Stopping Condit ion. Ift = Tgoto Step 5. If Nt = 0, set Nt+1 = Nt+2 =
■ ■ ■ = NT = 0 and go to Step 5; otherwise, set t = t + 1 and repeat from
Step 2.

5. Final Est imator. Deliver the estimator ^FE = Π ί= ι Nt/N.

An analysis of the fixed effort splitting method in an idealized asymptotic setting
[31] suggests that good values for the splitting parameters are T « — ln(£)/2 with
thresholds {7t} chosen such that c\ = ■ ■ ■ = CT « e - 2 . Such a choice will (ap-
proximately) give a variance of e2£2(lnf)2 /4 per single simulation trial. For more
elaborate results in this direction, including central limit results, see [21, 35] and
the summary in [58].

■ EXAMPLE 10.14 (Hit t ing Probabil i ty)

Suppose the position of the particle in the plane is described by the process
{(Xt,Yt),t ^ 0}, where {Xt} and {Yt} are independent copies of the Ornstein-
Uhlenbeck SDE (see [7]): «sr 199

dZt = -Ztdt + dWt, Z0 = l .

We are interested in computing the probability that the particle hits the quarter
circle,

{(x,y): x>0,y>0, x2+y2 = 2 5 } ,

before the x- or y-axis; see Figure 10.6.
To apply the splitting method, we first need to specify an importance function.

A natural, but not necessarily optimal, choice is

c /„ ,Λ _ / χ/χ2 + y2 i f x > 0 and y > 0,
ü ^ y > - \ 0, i f ^ O o r i / ^ 0 .

The levels

0 = 70 < 71 < 72 < · ■ ■ < 7 τ = 5

can then be interpreted as the increasing radii of a nested set of quarter circles. In
other words, we aim to hit a circle with smaller radius before attempting to hit a
circle with larger radius. These intermediate circles serve as stepping stones toward
the rare-event set.

4 1 4 RARE-EVENT SIMULATION

Figure 10.6 A realization of the Ornstein-Uhlenbeck process hitting the quarter circle
before the x- or j/-axis.

The code below uses fixed effort splitting with N = 104 and estimates the rel-
ative error from 10 independent runs. We use the levels (71,72,73,74,75,76) =
(3, 3.5, 4, 4.5, 4.7, 5). The function o u . s p l i t . m implements Algorithm 5.25 with
step size of h = 0.01 and determines if the Ornstein-Uhlenbeck process has hit a
quarter circle with radius 7 t . We obtained the estimate 5.6026 x 1 0 - 1 0 with an es-
timated relative error of 0.049. Figure 10.6 shows a path of the process conditional
on hitting the quarter circle before the axis.

%0U_process_splitting.m
c lear a l l . c l c
gam=[3:0 .5 :4 .5 ,4 .7 ,5] ; "/.splitting l e v e l s
N=10~4;
for i t e r = l : 1 0 °/B repeat 10 independent times to est imate RE

x _ i n i = l ; y _ i n i = l ;
da ta=repmat ([x_ in i ,y_ in i] ,N ,1) ;
for t=l: length(gam)

'/.resample the paths
d a t a = d a t a (c e i l (r a n d (N , l) * s i z e (d a t a , l)) , :) ;
e l i t e = [] ;
for i=l:N

[i n d i c a t o r , x , y] = o u _ s p l i t (g a m (t) , d a t a (i , 1) , d a t a (i , 2)) ;
i f ind icator

e l i t e = [e l i t e ; x (e n d) ,y(end)] ;°/,store succes s fu l h i t s
end

SPLITTING METHOD 415

end
t
c(t)=size(elite, 1)/N; ’/, conditional probability estimate
data=elite;

end
ell(iter)=prod(c);

end
mean(ell)
std(ell)/sqrt(10)/mean(ell)

function [indicator,x,y,tau]=ou_split(gam,x_ini,y_ini)
% implements the exact sampling of an OU process
h=0.001; °/� step size
% OU updating formula for exact simulation
f=0(x,z)(exp(-h)*x+sqrt((1-exp(-2*h))/2)*z);
x(l)=x_ini; y(l)=y_ini;
tau_axis=inf; tau_circ=inf;
for i=2:10~7 % choose an arbitrarily large loop to ensure hitting

x(i)=f(x(i-l),randn);
y(i)=f(y(i-l),randn);
if (x(i-l)*x(i)<0)I(y(i-l)*y(i)<0)

tau_axis=h*i; 7, determine axis hitting time
end
if (x(i-l)~2+y(i-l)~2<gam~2)&(x(i)~2+y(i)"2>gam’ �2)

tau_circ=h*i; % determine circle hitting time
end
tau=min(tau_circ,tau_axis);
if isinf(tau)==0

break
end

end
indicator=tau_circ<tau_axis; %did we hit the circle first?

Further Reading

A good starting point on rare-event simulation is [7, Chapter VI], and a recent
volume on many of the topics and applications of rare-event simulation is [58].
See [59] for the cross-entropy method with applications to rare-event simulation.
Glasserman and Kou [37] give the first example where exponential twisting does not
yield asymptotically optimal estimators. Dupuis, Sezer, and Wang [26] provide the
first asymptotically optimal importance sampling for total population overflow in
tandem networks; this is further generalized to general Jackson networks in Dupuis
and Wang [27]. Anantharam et al. [2] show the connection between the overflow
probabilities of a queueing process and its time-reversed process; see also Juneja
and Nicola [46].

4 1 6 RARE-EVENT SIMULATION

For a n overview of sp l i t t ing for r a r e event s imula t ion , see [30, 36]. Var ious

app l ica t ions of t h e sp l i t t ing m e t h o d include: par t i c le t r ansmis s ion [48], queue ing

sys t ems [31, 32, 64, 65, 66], a n d rel iabi l i ty [19, 58]. For theore t i ca l resu l t s a b o u t t h e

o p t i m a l selection of t h e sp l i t t i ng levels, see [20]. A var ian t of t h e sp l i t t ing m e t h o d

t h a t uses quasi M o n t e Car lo e s t i m a t o r s is given in [51]. Var ious s t ra teg ies for t h e

t r u n c a t i o n a n d sp l i t t ing of t h e Markov chain a re descr ibed in [50, 52].

REFERENCES

1. R. J. Adler, R. E. Feldman, and M. S. Taqqu. A Practical Guide to Heavy Tails:
Statistical Techniques and Applications. Birkhäuser, New York, 1998.

2. V. Anantharam, P. Heidelberger, and P. Tsoucas. Analysis of rare events in continuous
time Markov chains via t ime reversal and fluid approximation. Technical Report RC
16280, IBM, Yorktown Heights, New York, 1990.

3. S. Asmussen. Applied Probability and Queues. Springer-Verlag, New York, second
edition, 2003.

4. S. Asmussen and H. Albrecher. Ruin Probabilities. World Scientific Publishing, River
Edge, NJ, 2010.

5. S. Asmussen and K. Binswanger. Simulation of ruin probabilities for subexponential
claims. A S TIN Bulletin, 27(2):297-318, 1997.

6. S. Asmussen, K. Binswanger, and B. Hojgaard. Rare events simulation for heavy-
tailed distributions. Bernoulli, 6(2):303-322, 2000.

7. S. Asmussen and P. W. Glynn. Stochastic Simulation: Algorithms and Analysis.
Springer-Verlag, New York, 2007.

8. S. Asmussen and D. P. Kroese. Improved algorithm for rare event simulation with
heavy tails. Advances in Applied Probability, 38(2):545-558, 2006.

9. S. Asmussen and L. Rojas-Nandayapa. Asymptotics of sums of lognormal random
variables with Gaussian copula. Statistics & Probability Letters, 78(16):2709-2714,
2008.

10. S. Asmussen and R. Y. Rubinstein. Steady state rare events simulation in queuing
models and its complexity properties. In J. H. Dshalalow, editor, Advances in Queu-
ing: Theory, Methods, and Open Problems, pages 429-462. CRC Press, Boca Raton,
FL, 1995.

11. A. Bassamboo, S. Juneja, and A. Zeevi. On the efficiency loss of state-independent
importance sampling in the presence of heavy-tails. Operations Research Letters,
35(2):251-260, 2007.

12. A. Bassamboo, S. Juneja, and A. Zeevi. Portfolio credit risk with extremal depen-
dence: Asymptotic analysis and efficient simulation. Operations Research, 56(3):593-
606, 2008.

13. J. Blanchet and P. W. Glynn. Strongly efficient estimators for light-tailed sums. Pro-
ceedings of the 1st International Conference on Performance Evaluation Methodolo-
gies and Tools (ValueTools), Pisa, 180 of ACM International Conference Proceedings
Series:article 18, 2006.

14. J. Blanchet and P. W. Glynn. Efficient rare-event simulation for the maximum of
heavy-tailed random walks. The Annals of Applied Probability, 18(4):1351-1378, 2008.

REFERENCES 417

15. J. Blanchet, P. W. Glynn, P. L'Ecuyer, W. Sandmann, and B. Tuffin. Asymptotic
robustness of estimators in rare-event simulation. Proceedings of the 2007 INFORMS
Simulation Society Research Workshop, Fontainebleau, France, 2007.

16. J. Blanchet and J. C. Liu. Path-sampling for state-dependent importance sampling.
Proceedings of the 2007 Winter Simulation Conference, Washington, DC, pages 380-
388, 2007.

17. J. A. Bucklew, P. Ney, and J. S. Sadowsky. Monte Carlo simulation and large devi-
ations theory for uniformly recurrent Markov chains. Journal of Applied Probability,
27(l):44-59, 1990.

18. H. Cancela and M. El Khadiri. The recursive variance-reduction simulation algorithm
for network reliability evaluation. IEEE Transactions on Reliability, 52(2):207-212,
2003.

19. H. Cancela, L. Murray, and G. Rubino. Splitting in source-terminal network reliability
estimation. Proceedings of the 7th International Workshop on Rare Event Simulation
(RESIM 2008, France), 2008.

20. F . Cérou and A. Guyader. Adaptive multilevel splitting for rare event analysis.
Stochastic Analysis and Applications, 25(2):417-443, 2007.

21. F . Cérou, P. Del Moral, F . Le Gland, and P. Lezaud. Limit theorems for the multilevel
splitting algorithm in the simulation of rare events. Proceedings of the 2005 Winter
Simulation Conference, Orlando, pages 682-691, 2005.

22. J. C. C. Chan and D. P. Kroese. Efficient estimation of large portfolio loss probabilities
in t-copula models. European Journal of Operational Research, 205(2):361-367, 2010.

23. J. C. C. Chan and D. P. Kroese. Rare-event probability estimation with conditional
Monte Carlo. Annals of Operations Research, 2010. DOI:10.1007/sl0479-009-0539-y.

24. M. G. Cruz. Modeling, Measuring and Hedging Operation Risk. John Wiley & Sons,
Chichester, 2003.

25. T. Dean and P. Dupuis. Splitting for rare event simulation: A large deviations
approach to design and analysis. Stochastic Processes and Their Applications,
119(2):562-587, 2008.

26. P. Dupuis, A. D. Sezer, and H. Wang. Dynamic importance sampling for queueing
networks. Annals of Applied Probability, 17(4): 1306-1346, 2007.

27. P. Dupuis and H. Wang. Importance sampling for Jackson networks. Queueing Sys-
tems, 62(1-2):113-157, 2009.

28. P. Embrechts, C. Klüppelberg, and T. Mikosch. Modelling Extremal Events for In-
surance and Finance. Springer-Verlag, Berlin, 1997.

29. A. Frachot, O. Moudoulaud, and T. Roncalli. Loss distribution approach in practice.
In M. K. Ong, editor, The Basel Handbook: A Guide for Financial Practitioners. Risk
Books, London, 2004.

30. M. J. J. Garvels. The Splitting Method in Rare Event Simulation. P h D thesis, Uni-
versity of Twente, 2000.

31. M. J. J. Garvels and D. P. Kroese. A comparison of RESTART implementations. In
Proceedings of the 1998 Winter Simulation Conference, pages 601-609, Washington,
DC, 1998.

32. M. J. J. Garvels, D. P. Kroese, and J. C. W. van Ommeren. On the importance
function in splitting simulation. European Transactions on Telecommunications,
13(4):363-371, 2002.

33. F . Le Gland and N. Oudjane. A sequential algorithm tha t keeps the particle sys-
tem alive. In H. Blom and J. Lygeros, editors, Stochastic Hybrid Systems: Theory

4 1 8 RARE EVENT SIMULATION

and Safety Critical Applications, Lecture Notes in Control and Information Sciences,
volume 337, pages 351-389. Springer-Verlag, New York, 2006.

34. P. Glasserman, P. Heidelberger, P. Shahabuddin, and T. Zajic. A look at multilevel
splitting. In H. Niederreiter, editor, Monte Carlo and Quasi Monte Carlo Methods
1996, Lecture Notes in Statistics, volume 127, pages 99-108. Springer-Verlag, New
York, 1996.

35. P. Glasserman, P. Heidelberger, P. Shahabuddin, and T. Zajic. A large deviations
perspective on the efficiency of multilevel splitting. IEEE Transactions on Automatic
Control, 43(12):1666-1679, 1998.

36. P. Glasserman, P. Heidelberger, P. Shahabuddin, and T. Zajic. Multilevel splitting
for estimating rare event probabilities. Operations Research, 47(4):585-600, 1999.

37. P. Glasserman and S.-G. Kou. Limits of first passage times to rare sets in regenerative
processes. Annals of Applied Probability, 5(2):424-445, 1995.

38. P. Glasserman and J. Li. Importance sampling for portfolio credit risk. Management
Science, 51(11):1643-1656, 2005.

39. P. W. Glynn and D. L. Iglehart. Importance sampling for stochastic simulations.
Management Science, 35(11):1367-1392, 1989.

40. G. Gupton, C. Finger, and M. Bhatia. Creditmetrics technical document. Technical
report, J. P. Morgan & Co., New York, 1997.

41 . J. M. Hammersley and D. C. Handscomb. Monte Carlo Methods. Methuen, London,
1964.

42. J. Hartinger and D. Kortschak. On the efficiency of the Asmussen-Kroese-estimator
and its application to stop-loss transforms. Blätter der DGVFM, 30(2):363-377, 2009.

43. P. Heidelberger. Fast simulation of rare events in queuing and reliability models.
ACM Transactions on Modeling and Computer Simulation, 5(l) :43-85, 1995.

44. J. L. Jensen. Saddlepoint Approximations. Clarendon Press, Oxford, 1995.

45. S. Juneja. Estimating tail probabilities of heavy tailed distributions with asymptoti-
cally zero relative error. Queueing Systems, 57(2-3):115-127, 2007.

46. S. Juneja and V. Nicola. Efficient simulation of buffer overflow probabilities in Jackson
networks with feedback. ACM Transactions on Modeling and Computer Simulation,
15(4):281-315, 2005.

47. S. Juneja and P. Shahabuddin. Simulating heavy-tailed processes using delayed hazard
rate twisting. ACM Transactions on Modeling and Computer Simulation, 12(2):94-
118, 2002.

48. H. Kahn and T. E. Harris. Estimation of Particle Transmission by Random Sampling.
National Bureau of Standards Applied Mathematics Series, 1951.

49. P. L'Ecuyer, J. H. Blanchet, B. Tuffin, and P. W. Glynn. Asymptotic robustness of
estimators in rare-event simulation. ACM Transactions on Modeling and Computer
Simulation, 20(1):Article 6, 2010.

50. P. L'Ecuyer, V. Demers, and B. Tuffin. Splitting for rare-event simulation. Proceed-
ings of the 2006 Winter Simulation Conference, pages 137-148, 2006.

51. P. L'Ecuyer, V. Demers, and B. Tuffin. Rare events, splitting, and quasi-Monte Carlo.
ACM Transactions on Modeling and Computer Simulation, 17(2):l-44, 2007.

52. P. L'Ecuyer and B. Tuffin. Splitting and weight windows to control the likelihood
ratio in importance sampling. In L. Lenzini and R. Cruz, editors, Proceedings of
the 1st International Conference on Performance Evaluation Methodologies and Tools
(ValueTools), Pisa, 2006. Article 21.

REFERENCES 419

53. D. Li. On default correlations: A copula function approach. Journal of Fixed Income,
9(4):43-54, 2000.

54. D. Lieber, R. Y. Rubinstein, and D. Elmakis. Quick estimation of rare events in
stochastic networks. IEEE Transactions on Reliability, 46(2):254-265, 1997.

55. V. V. Petrov. On the probabilities of large deviations for sums of independent random
variables. Theory of Probability and Its Applications, 10(2):287-298, 1965.

56. S. I. Resnick. Heavy tail modeling and telegraphic data . Annals of Statistics,
25(5): 1805-1869, 1997.

57. L. R. Rojas-Nandayapa. Risk Probabilities: Asymptotics and Simulation. P h D thesis,
University of Aarhus, 2008.

58. G. Rubino and B. Tuffin, editors. Rare Event Simulation Using Monte Carlo Methods.
John Wiley & Sons, Chichester, 2009.

59. R. Y. Rubinstein and D. P. Kroese. The Cross-Entropy Method: A Unified Ap-
proach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learn-
ing. Springer-Verlag, New York, 2004.

60. R. Y. Rubinstein and D. P. Kroese. Simulation and the Monte Carlo Method. John
Wiley & Sons, New York, second edition, 2007.

61. D. Siegmund. Importance sampling in the Monte Carlo study of sequential tests. The
Annals of Statistics, 4(4):673-684, 1976.

62. K. Sigman. Appendix: A primer on heavy-tailed distributions. Queueing Systems,
33(l-3):261-275, 1999. DOI: 10.1023/A:1019180230133.

63. B. Tuffin. Bounded normal approximation in simulations of highly reliable Markovian
systems. Journal of Applied Probability, 36(4):974-986, 1999.

64. M. Villén-Altarnirano and J. Villén-Altamirano. RESTART: A method for acceler-
ating rare event simulations. In J. W. Cohen and C. D. Pack, editors, Proceedings
of the 13th International Teletraffic Congress, Queueing, Performance and Control in
ATM, pages 71-76, 1991.

65. M. Villén-Altamirano and J. Villén-Altamirano. RESTART: A straightforward
method for fast simulation of rare events. In J. D. Tew, S. Manivannan, D. A. Sad-
owski, and A. F . Seila, editors, Proceedings of the 1994 Winter Simulation Conference,
pages 282-289, 1994.

66. M. Villén-Altamirano and J. Villén-Altamirano. About the efficiency of RESTART.
In Proceedings of the RESIM'99 Workshop, pages 99-128. University of Twente, The
Netherlands, 1999.

This page intentionally left blank

CHAPTER 11

ESTIMATION OF DERIVATIVES

In this chapter we discuss four methods for gradient estimation: the finite differ-
ence method, infinitesimal perturbation analysis, the likelihood ratio or score func-
tion method, and weak derivatives. In addition, we discuss gradient estimation for
regenerative processes. The efficient estimation of derivatives is important in sensi-
tivity analysis of simulation output and in stochastic or noisy optimization. Details
on noisy optimization are given in Chapter 12. "S" 441

11.1 GRADIENT ESTIMATION

It is often the case that the performance measure i from a Monte Carlo simulation
can be viewed as a function of various parameters"* used in the simulation. These
parameters can pertain to the distributions used in the simulation and to the mech-
anism under which the simulation is carried out. A typical setting is where i is the
expected output of a random variable Y whose value is dependent on a simulation
parameter vector 0, such that

£(θ) =ΈΥ = Εθ2#(Χ; 0α) = J H(x; 0!)/(x; 02) dx , (11.1)

where 0 = (0i,é>2)> Η(·;θ\) is a sample performance function, and / (· ;02) is a
pdf (for the discrete case replace the integral with a sum). In this context we
refer to the parameter θ\ as a structural parameter and 02 as a distributional

Handbook of Monte Carlo Methods. By D. P. Kroese, T. Taimre, Z. I. Botev 421
Copyright © 2011 John Wiley L· Sons, Inc.

4 2 2 ESTIMATION OF DERIVATIVES

parameter. An estimation problem formulated with only distributional parameters
can often be transformed into one with only structural parameters, and vice versa;
see Remark 11.1.1. It should be noted, however, that not all performance measures
are of the form (11.1). For example, ί(θ) could be the median or a quantile of

r ~ / (y ; 0) .
In addition to estimating £(θ) it is often relevant to estimate various derivatives

(gradients, Hessians, etc.) of i{ff). Two main applications are:

1. Sensitivity analysis: The gradient V£(0) indicates how sensitive the output
£(θ) is to small changes in the input parameters 0, and can thus be used to
identify its most significant components.

2. Stochastic optimization and root finding: Gradient estimation is closely re-
lated to optimization through the root-finding problem V£(0) = 0, as any
solution of the latter is a stationary point of £ and hence a candidate for
a local maximum or minimum. Estimating the gradient via simulation can
therefore be used to approximately determine the optimal solution(s), leading

441 to gradient-based noisy optimization algorithms; see Sections 12.1-12.2.

Central to the discussion of gradient estimation is the interchange between dif-
ferentiation and integration. The following theorem provides sufficient conditions.
See also Asmussen and Glynn [2, Chapter VII].

Theorem 11.1.1 (Interchanging Differentiation and Integration) Let the
function g(x.; Θ) be differentiable at θο G Kfc. Denote the corresponding gradient by
Ve </(x;0o). We assume that as a function o / x this gradient is integrable. If there
exists a neighborhood Θ of 0o and an integrable function M(x ; 6Q) such that for all
θβθ

\9(κ;θ)-9(κ;θ0γ
\\θ-θ0\\

< Μ (χ ; 0 ο) , (11.2)

then

Proof: Let

V e / 5 (x ; 0) d x = / v e 5 (x ; 0 o) d x . (11.3)
J Θ=Θ0 J

,, a a , g(x; Θ) - fl(x; 00) - (0 - 0 O) T V g g(x; 0O)

^(X; θ>θθ) = iJö^öoTi ·

Condition (11.2) implies that | i / i(x;0,0o) | < M (x ; 0 o) + ||Vea'(x;0o)|| for all 0 G Θ.
Moreover, by the existence of the gradient at 0o, we have that ψ(χ.;θ,θο) —> 0 as

■®° 615 0 —> 0Q. Therefore, by the dominated convergence theorem, f ψ(χ.; 0, 0o) dx —► 0
as 0 —> 0o, which shows that (11.3) must hold.

An important special case where differentiation and integration can be inter-
"S* 701 changed arises in the theory of (natural) exponential families as summarized by the

following theorem. See, for example, [13, Section 2.7] and [3, Pages 32-34].

FINITE DIFFERENCE METHOD 4 2 3

Theorem 11.1.2 (Interchange in Exponent ia l Families) For any function
for which

(x) e 7 ? T t (x) d x < o o / ■

the integral as a function of η has partial derivatives of all orders, for all η in the
interior of the natural parameter space. Moreover, these derivatives can be obtained " ^ 701
by differentiating under the integral sign. That is,

V , / « x) e ^ . « d x = ^ (x) t (x) ^ « d x .

Remark 11.1.1 (Distributional and Structural Parameters) In many cases
it is possible to switch from structural to distributional parameters and vice versa
by making appropriate transformations. We discuss two common situations for
the case where x = x is scalar (generalizations to the multidimensional case are
straightforward).

1. Push-out method: Suppose the estimation problem involves only structural
parameters; for example,

£(θ) = (H(x; Θ) f{x) dx . (11.4)

The push-out m e t h o d [17] involves a (problem-dependent) change of vari-
able y = a(x; Θ) such that the transformed integral has the form

i(0) = JL(y)g(y;e)dy. (11.5)

In other words, the parameter Θ is "pushed-out" into the pdf g.

As a simple example consider the estimation of £(θ) = Eexp(—X e) , Θ > 0,
where X ~ f(x) is a positive random variable. This is of the form (11.4) with
H(x; Θ) = exp(—xe). Defining y = χθ, L(y) = exp(—y), and

g(y;0) = f{y^yi-1 = f(x)^xl-e,

the structural problem (11.4) is transformed into a distributional one (11.5).

2. Inverse-transform method: The inverse-transform method for random vari- "3° 45
able generation can be used to convert distributional estimation problems
into structural ones. In particular, suppose £{θ) = EeL(Y) is of the form
(11.5), and G{y\9) is the cdf of Y ~ g(y;0). By the inverse-transform
method we can write Y = G _ 1 (X ; 0) , where X ~ U(0,1). If we now de- ^ 45
fine Η(Χ;Θ) = L i G " 1 ^ ; 0)), then ί(θ) = ΈΗ(Χ;Θ) is of the form (11.4)
with f(x) = I{0<;c<i}·

11.2 FINITE DIFFERENCE METHOD

Let the performance measure ί{θ) depend on a parameter Θ 6 Rd. Suppose 1{θ)
is an estimator of £(θ) obtained via simulation. A straightforward estimator of the

4 2 4 ESTIMATION OF DERIVATIVES

i-th component of V£(0), that is, δ£(θ)/δθί, is the forward difference es t imator

1(0 + ej ä) - 1(0)
ä

where e* denotes the i-th unit vector in Rd and δ > 0. An alternative is the central
difference est imator

1(0 + e, ä/2) - 1(0 - et ä/2)
ä

In general, both estimators are biased. The bias of the forward difference estimator
is of the order 0(<5), whereas the bias of the central difference estimator is of the
order 0(<52) (see, for example, [2, Page 209]), so that the latter estimator is generally
preferred. However, the forward difference estimator requires the evaluation of only
d + 1 points per estimate, while the central difference estimator requires evaluation
of 2d points per estimate.

A good choice of δ depends on various factors. It should be small enough to
reduce the bias, but large enough to keep the variance of the estimator small.
The choice of δ is usually determined via a trial run in which the variance of the
estimator is assessed.

It is important to implement the finite difference method using c o m m o n ran-
"S" 349 d o m variables (CRVs). The idea is similar to that of antithetic random variables

and is as follows. As both terms in the difference estimator are produced via a
simulation algorithm, they can be viewed as functions of a stream of independent
uniform random variables. The important point to notice is that both terms need
not be independent. In fact (considering only the central difference estimator), if
we denote Zx = Ϊ(θ - e{ δ/2) and Z2 = £(θ + e» δ/2), then

Var(Z2 - Zi) = Var(Zi) + Var(Z2) -2Cav{ZuZ2) , (11.6)

so that the variance of the estimator (Z2 — Ζ\)/δ can be reduced (relative to the
independent case) by an amount 2Cov(Zi , ·Ζ2)/<52, provided that Z\ and Z2 are
positively correlated. This can be achieved in practice by taking the same random
numbers in the simulation procedure to generate Z\ and Z2. Because δ is typi-
cally small, the correlation between Z\ and Z2 is typically close to 1, so that a
large variance reduction can be achieved relative to the case where Z\ and Zi are
independent.

For the case where ί{θ) =ΈΥ = E H (X ; 0) = E/i(U; 0), with U ~ U(0, l) d , this
leads to the following algorithm.

Algor i thm 11.1 (Central Difference Est imat ion W i t h CRVs)

1. Generate IJ!,...,\JN'l~ U(0 , l) d .

2. Let Lk = h(Uk; 0 - et δ/2) and Rk = h(Uk; 0 + e» δ/2), k = l,...,N.

3. Compute the sample covariance matrix corresponding to the pairs {(Lk, Rk)}:

I j^lY.k=ALk-Lf ^ E t ! (Lk - L) (Rk -R)\

\7^îZk=ALk-L)(Rk-R) ^^=l(Rk-Rf) '

FINITE DIFFERENCE METHOD 4 2 5

4- Estimate d£{O)/d0i via the central difference estimator

R-L

δ

with an estimated standard error of

on 1 /Cl , l + ^2,2 — 2Ci 2
SE=öV N ·

■ EXAMPLE 11.1 (Bridge Network via the Finite Difference M e t h o d)

Consider the bridge network in Example 9.1 on Page 348. There, the performance
measure £ is the expected length of the shortest path between the two end nodes and
is of the form £(a) = h(XJ; a) , where U ~ U(0, l) 5 and a is a parameter vector. We
wish to estimate the gradient of £(a) at a = (1 ,2 ,3 ,1 , 2) T . The central difference
estimator is implemented in the MATLAB program below. A typical estimate for
the gradient based on N = 106 samples is

/ 0.3977 ± 0.0003 \
0.0316 ± 0.0001

0.00257 ± 0.00002 ,
0.3981 ± 0.0003

\ 0.0316 ± 0.0001 /

where the notation x ± e indicates an estimate of x with an estimated standard
error of ε. The above estimate suggests that the expected length of the shortest
path is most sensitive to changes in the lengths of components 1 and 4, as is to
be expected for these parameter values, because the shortest path is highly likely
to consist of these two edges. Component 3 contributes very little to the shortest
path and its gradient is close to 0.

°/0fd_bridge.m

N = 10~6;
a = [1,2,3,1,2];
delta = 1CT-3;
u = rand(N,5);
for comp=l: 5

de = zeros(1,5);
de(comp) = delta;
L = hl(u,a - de/2);
R = hl(u,a + de/2);
c = cov(L,R);
se = sqrt((c(l,l) + c(2 2) -
gr = (mean(R) - mean(L))/delt
fprintf(’%g pm %3.1e\n’

end
gr,

2*c(l

a;
se) ;

,2))/N)/delta;

W(a) =

4 2 6 ESTIMATION OF DERIVATIVES

func t ion o u t = h l (u , a)
N = s i z e (u , 1) ;
X = u . * r e p m a t (a , N , l) ;
P a t h _ l = X (: , l) + X (: , 4) ;
P a t h _ 2 = X (: , l) + X (: , 3) + X (: , 5) ;
P a t h _ 3 = X (: , 2) + X (: , 3) + X (: , 4) ;
Pa th_4=X(: , 2)+X(: , 5) ;
ou t=min([Pa th_ l ,Pa th_2 ,Pa t l i_3 ,Pa th_4] , [] ,2) ;

11.3 INFINITESIMAL PERTURBATION ANALYSIS

Inf in i tes imal p e r t u r b a t i o n ana lys i s (IPA) concerns the estimation of the gra-
dient of a performance measure £(θ) of the form (11.1) with only structural param-
eters. In particular, the objective is to estimate W (0) = VeEi f (X; Θ) for some
function Η(χ;θ) and X ~ / (x) through an interchange of the gradient and the
expectation operator; that is,

V e E i i (X ; Θ) = EVeH(X; Θ) . (11.7)

Such an interchange is allowed under certain regularity conditions on H, see The-
orem 11.1.1. If (11.7) holds, then the gradient can be estimated via crude Monte
Carlo as

_ 1 N

V£(e) = uT,VeH(Xk-,e), (11.8)

where X i , . . . , XJV ~üd / · In contrast to the finite difference method, the IPA
estimator is unbiased. Moreover, because the procedure is basically a crude Monte
Carlo method, its rate of convergence is G(l / \ / /V); see also [4, 8, 20]. The IPA
procedure is summarized in the following algorithm.

A l g o r i t h m 11.2 (IPA E s t i m a t i o n)

1. Generate X i , . . . , XJV ~ / .

2. Evaluate Ve-ff(Xfc;0), k = Ι,.,.,Ν and estimate the gradient of £(Θ) via
(11.8). Determine an approximate 1 — a confidence interval as

(w(0) - Zl.a/2 S/VN, W(0) + 2!_α/2 S/VN) ,

where S is the sample standard deviation of {Ve-if(Xfc; 0)} and ζΊ denotes
the j-quantile of the N(0,1) distribution.

■ E X A M P L E 11.2 (B r i d g e N e t w o r k v ia IPA)

We consider the same derivative estimation problem as in Example 11.1, but deal
with it via IPA. Denote the four possible paths in the bridge network by

7Ί = {1,4}, V2 = {1,3,5}, 7̂ 3 = {2,3,4}, P 4 = { 2 , 5 } .

Then we can write
/ i (U ; a) = min V a» C/» . (11.9)

fe=l....,4 ^—'
ievk

INFINITESIMAL PERTURBATION ANALYSIS 4 2 7

Let K G {1,2,3,4} be the (random) index of the minimum-length path; hence,
/ i (U;a) = £

i£VK
 ai Ui- The partial derivatives of / i (U;a) now follow immediately

from (11.9):

dfe(U;a) _jUj iî K € Ai,

dai] 0 otherwise,

where Ai is the set of indices of all paths that contain component i; that is,

A! = {1,2}, Λ = {3,4}, A3 = {2,3}, A i = {1,3}, A = { 2 , 4 } .

The IPA procedure is implemented in the MATLAB program below. A typical esti-
mate for the gradient at a = (1 ,2 ,3 ,1 ,2) T is

/ 0.3980 ± 0.0003 \
0.0316 ± 0.0001

0.00255 ± 0.00002 ,
0.3979 ± 0.0003

\ 0.0316 ± 0.0001 /

where the same notation is used as in Example 11.1. We see that the accuracy
is similar to that of the central difference method with common random numbers.
However, the IPA estimate is unbiased.

y.ipabridge.m
N = 10~6;
a = [1 , 2 , 3 , 1 , 2] ;
A = [1 , 2 ; 3 , 4 ; 2 , 3 ; 1 , 3 ; 2 , 4] ;
u = r a n d (N , 5) ;
fo r comp=l: 5

dh = z e r o s (N , 1) ;
[y,K] = HK(u.a) ;
ind = find(K == A(comp,l) | K==A(comp,2));
dh(ind) = u (ind ,comp) ;
gr = mean(dh);
se = s t d (d h) / s q r t (N) ;
fprintf C’/.g pm 7�3.1e\n’, gr, se);

end

func t ion [y,K]=HK(u,a)
N = s i z e (u . l) ;
X = u . * r e p m a t (a , N , l) ;
P a t h _ l = X (: , l) + X (: , 4) ;
P a t h _ 2 = X (: , l) + X (: , 3) + X (: , 5) ;
Pa th_3=X(: , 2)+X(: , 3)+X(: , 4) ;
Pa th_4=X(: , 2)+X(: , 5) ;
[y,K] = m i n ([P a t h _ 1 , P a t h _ 2 , P a t h _ 3 , P a t h _ 4] , [] , 2) ;

W (a) =

4 2 8 ESTIMATION OF DERIVATIVES

11.4 SCORE FUNCTION METHOD

In the score function method , also called the l ikelihood ratio method , the
performance function £(θ) is assumed to be of the form (11.1) with only distribu-
tional parameters. In particular, the objective is to estimate (in the continuous
case) the gradient of

ί(θ) = Eefl-(X) = j tf(x) / (x ; 0) dx

for some function H and pdf / (for the discrete case replace the integral with a
sum). As with the IPA method the key is to interchange the gradient and the
integral; that is,

V e j H(X) / (x ; 0) dx = j ff (X) V e / (x ; 0) dx , (11.10)

which is allowed under quite general conditions (see Theorem 11.1.1). Note that
the right-hand side of (11.10) can be written as

j HÇX) V„ / (x ; 0) dx = j HÇX.) ^ ^ ^ / (x ; Θ) dx

= y # (X) [V „ l n / (x ; 0)] / (x ; 0) d x

= Ε θ ί ί (Χ) § (0 ; Χ) ,

664 where S(0; x) = Ve In / (x ; 0) is the score function of / ; see Section B.2. Hence, if
(11.10) holds, the gradient can be estimated via crude Monte Carlo as

— 1 N

w (ö) = i v E ^ x ^ s (9 i x ^ · (η ·η)
fc=l

where X i , . . . , XJV ~üd / · The score function estimator is unbiased, and, being the
sample mean of iid random variables, achieves 0 (l / \ / iV) convergence.

Algor i thm 11.3 (Gradient Est imat ion via the Score Funct ion M e t h o d)

1. Generate X i , . . . , Χ ^ ~ / (· ; Θ).

2. Evaluate the scores S(0; Xfc), k = 1 , . . . , N and estimate the gradient of £(θ)
via (11.11). Determine an approximate 1 — a confidence interval as

(W (0) - Zl_a/2 σ/VJV, W (0) + Zl_a/2 σ/y/N) ,

where σ is the sample standard deviation of {iï(Xfc)S(0; Xfc)} and z7 denotes
the j-quantile of the N(0,1) distribution.

Remark 11.4.1 (Higher-Order Derivatives) Higher-order derivatives of £ can
be estimated in a similar fashion. Specifically, the r- th order derivative is given by

V £ (0) = E e [# (X) S (r) (0 ; X)] , (11.12)

SCORE FUNCTION METHOD 4 2 9

where

§ (r) (0 ; x) = z ^r (11Λ3)

is the r - th order score function, r = 0 , 1 , 2 , In particular, §(°'(0; x) = 1 (by
definition), S « (0 ; x) = S(0;x) = V e l n / (x ; 0) , and §(2)(0;x) can be represented
as

S<2)(0; x) = VeS(0; x) + S(0; x) S(0; x) T

(11.14)
= ν 2 1 η / (χ ; 0) + ν θ 1 η / (χ ; 0) [ν θ 1 η / (χ ; 0)] τ .

The higher-order Vr£(0), r = 0 , 1 , . . . , can be estimated via simulation as

TV

N

1 AT

V ^ (0) = ^ ^ H (X f c) § « (0 ; X f c) . (11.15)
fe=l

It follows that the function £(θ), and all the sensitivities V 7 (0) can be estimated
from a single simulation, because in (11.12) all of them are expressed as expectations
with respect to the same pdf, / (x ; 0).

■ EXAMPLE 11.3 (Bridge Network via the Score Function M e t h o d)

Consider again the derivative estimation problem in Examples 11.1 and 11.2. As
in Example 9.1 on Page 348 we can write

* (a) = | f f (x) / (x ; a) d x ,

with i f (x) = min{:ri + X4, X\ + £3 + X5, X2 + £3 + £4, x2 + £5} and

/ (x ; a) = fl1«**'«** . (11.16)

This is a typical example where the interchange of gradient and integral is not
appropriate, because of the discontinuities at αι,.-.,α^. However, the situation
can easily be fixed by including a continuity correction. Taking the derivative with
respect to α,γ gives,

d

da
-£(a) = £ - f * (Γ · · · / 5 ff(x) dx2 ■ --άχλ dan
1 σοι J 0 \J0 J0 en ■ ■ ■ a5)

/ · ■ ■ / H(c
Jo Jo

- / H (X) / (X ;
ï l J

fa5 ^

(a1,x2,...,x5) dx2 ■ --dx5

ai · · · a5 (11.17)

;a) dx

= — ÇEHÇK*) -EHÇX.)) ,
ai

where X ~ / (x ; a) and X* ~ / (x ; a | a : i = <n). Both Etf(X*) and E i i (X) or
E[iï(X*) — ff(X)] can easily be estimated via Monte Carlo. The other partial
derivatives follow by symmetry.

4 3 0 ESTIMATION OF DERIVATIVES

The following MATLAB program implements the procedure. The results are sim-
ilar to those of the IPA and finite difference methods.

°/,sf b r i d g e , m
N = 10~6;
a = [1 , 2 , 3 , 1 , 2] ;
u = r a n d (N , 5) ;
fo r comp=l:5

X = u . * r e p m a t (a , N , l) ;
hx = H(X);
X(:,comp) = a(comp);
hxs = H(X);
R = (-hx + hxs) /a (comp) :
g r = mean(R);
se = s t d (R) / s q r t (N) ;
f p r i n t f (''/.g pm %3. l e \ n '

end
g r , s e) ;

f unc t i on out=H(X)
Path_l=X(
Path_2=X(
Path_3=X(
Path_4=X(

,D+X(
,1)+X(
,2)+X(
,2)+X(

, 4) ;
,3)+X(:
,3)+X(:
, 5) ;

, 5) ;
, 4) ;

o u t = m i n ([P a t h _ l , P a t h _ 2 , P a t h _ 3 , P a t h _ 4] , [] , 2) ;

373

11.4.1 Score Function Method With Importance Sampling

By combining the score function method with importance sampling one can es-
timate the derivatives V r£(0) = Ee[i ï (X) S ^ (0 ; X)] simultaneously for several
values of Θ e Θ, using a single simulation run. The idea is a generalization of
the arguments in Section 9.7.6. In particular, let g(x) be an importance sampling
density. Then Vr£(0) can be written as

V r£(0) = Eg[H{X) S (r)(0; X) W(X; Θ)]

where

VF(x;0) /(x;0)

(11.18)

(11.19)

is the likelihood ratio of / (x ; Θ) and <?(x). The importance sampling estimator of
V £ (0) can be written as

— 1 N

VW) = - Σ H(*k) S(r)(Ö; Xfc) W(Xfc; Θ) (11.20)
fc=l

where X i , . . . , XJV ~iid 9- Note that Vr£(0) is an unbiased estimator of V £ (0)
for all Θ. This means that by varying Θ and keeping g fixed we can, in principle,

SCORE FUNCTION METHOD 4 3 1

estimate the whole response surface {V r £(0) ,0 6 Θ} without bias from a single
simulation.

Often the importance sampling distribution is chosen in the same class of distri-
butions as the original one. That is, <?(x) = / (x ; 0g), f° r some 0o € Θ. If we denote
the importance sampling estimator of £(θ) for a given 0o by ί(θ; 0o), that is,

1 N

m Θ0) = ~ Σ if(Xfc) W(Xk; 0; 0O) , (11.21)
fc=l

with \¥(χ;θ,θ0) = / (χ ; 0) / / (χ ; 0 ο) , and the estimators in (11.20) by V ^ (0 ; 0 O) ,
then

V * (0 ; 0 O) = V ^ (0 ; 0 O) = ^ ^ f l (X k) §(r)(Ö;Xfe) VF(Xfc; 0;0O) . (11.22)
fc=l

Thus, the estimators of the sensitivities are simply the sensitivities of the estimators.
For a given importance sampling pdf / (x ;0o) , the algorithm for estimating the

sensitivities V r£(0) , r = 0 , 1 , . . . , for multiple values of 0 from a single simulation
run, is as follows.

Algori thm 11.4 (Gradient Est imat ion via the Score Function M e t h o d)

1. Generate a sample X i , . . . ,XJV ~ / (· ;#ο) ·

2. Calculate the sample performance if(Xfc) and the scores §(r)(0;Xfc), k =
1 , . . . , N, for the desired parameter 0.

3. Calculate ντ
θί{θ\θ0) according to (11.22).

Confidence regions for V r£(0) can be obtained by standard statistical techniques.
In particular (see, for example, [18] and Section A.8), N1'2 [V£ £(θ; 0O) - V £ (0)]
converges in distribution to a multivariate normal random vector with mean zero
and covariance matrix

Cove0(H S{r} W) =Έθο \H2 W2 §M§M T 1 - [V r ^(0)] [V^(0)] T , (11.23)

using the abbreviations H = H(X), S<r) = SM(0 ;X) and W = VF(X;0,0 o) .

■ E X A M P L E 11.4 (G r a d i e n t Est imat ion for the Bridge Network)

We return to (9.50) in Example 9.12, which gives the estimator for the expected "3° 375
length of the minimal path in the bridge network as a function of Θ. Here Χι ~
Exp(l/0) and the simulation is carried out under Θ = 6>o = 3. We wish to estimate
the derivative W (0 ; 0 Q) f° r a n Θ in the neighborhood of 0Q. This is achieved by

4 3 2 ESTIMATION OF DERIVATIVES

differentiating £(θ;θο), giving

Vi(0; θ0) = W (0 ; βο) = V - ^ - £ H(Xk) ex* (Ι / θ ο - 1 / β)

fc=l

ΛΓ

6>37V
^ - ^ i / (X f c) (X f c l - Ö) e ^ (^ o - i /e)

fc=l

1 *

- £ ff(Xfc) W(X fc; θ; θο) S(0; X fc l) ,

with S(0;a;) = (a; — #)/# 2 being the score function corresponding to the Exp(l/#)
666 distribution; see also Table B . l l . The estimate of the derivative curve is given in

Figure 11.1, which is the pathwise derivative of the estimated response curve in
Figure 9.7.

Figure 11.1 Estimates of the gradient of 1(θ) with 95% confidence bounds.

The following MATLAB program differs from the one used for the estimation of
the response surface in Example 9.12 only in the score function calculations.

'/igradresponsesurf i s .m
N = 10000;
thetaO = 3;
a = [thetaO.2,3,1,2];
u = rand(N,5);
X = u.*repmat(a,N,l);
X(:,l) = -log(u(:,l))*thetaO;
W = zeros(N,l);
Sc = zeros(N,1);
HX = H(X);
theta = 0.1:0.01:theta0*2;
num = numel(theta);
gradell = zeros(1,num);

WEAK DERIVATIVES 4 3 3

gradellL = zeros(l,num);
gradellU = zeros(1,num);
stgradell = zeros(1,num);
for i=l:num

th = theta(i);
Sc = (-th + X(:,l))/trT2;
W = (exp(-(X(:,l)/th))/th)./(exp(-(X(:,l)/thetaO))/thetaO);
HWS = H(X).*W.*Sc;
gradell(i) = mean(HWS);
stgradell(i) = std(HWS);
gradellL(i)= gradell(i) - stgradell(i)/sqrt(N)*l.95;
gradellU(i)= gradell(i) + stgradell(i)/sqrt(N)*l.95;

end
plot(theta,gradell, theta, gradellL, theta, gradellU)

11.5 WEAK DERIVATIVES

Let F(-;9) be a cdf depending on a real-valued parameter Θ. If there exist a constant
c(9) and cdfs F\(-;9) and F2{-;9) such that for every continuous bounded function
H the following holds:

d

άθ
ÎH(^dF{x-,e) = c(e)(ÎH(^dF1{x-,e)-ÎH(x)dF2(x-,e)\ , (11.24)

then the triple (c(9),Fi(-;9),F2(-;9)) is said to be a weak derivative for F with
respect to Θ. The weak derivate concept is closely related to that of the score
function method [7, 14).

For any distribution it is possible to find a weak derivative triple. In general,
the weak derivative triple is not unique and the most convenient representation is
taken. It is possible that F is the cdf of a continuous distribution, while ί \ and/or
i<2 are discrete.

Table 11.1 lists some weak derivatives for common univariate distributions. Here
DSM denotes the double-sided Maxwel l distribution, with pdf

il n\ β 2 β \X ~ W

which defines a location-scale family of distributions with base pdf f(x) =
2 o

f(x;0,1) = e ~ ^ x 2 / \ / 2 π , x G R. Generating a random variable X ~ / can
be achieved by generating Y ~ Gamma(3/2,1/2) and B ~ Ber(l/2) independently,
and returning X = (2B — 1)VY. AS a consequence, μ + ΘΧ ~ / (· ; μ, Θ).

4 3 4 ESTIMATION OF DERIVATIVES

Table 11.1 Weak derivatives for common distributions.

Distribution c(9) X ~ F± X ~ F2

Bin(n,é»)

Geom(ö)

Poi(6»)

Ν(0,σ2)

Ν(μ,02)

Gamma(a,ö)

U(O,0)

Weib(a,é>)

n

1/θ

1

1

1/0

α/θ

1/θ

1/θ

1 + Bin(n- l ,é»)

Geom(ö)

1 + Poi(ö)

Ö + Weib(2,2^)

DSM(M,0)

Gamma(a + 1,0)

Θ

Weib(a, Θ)

Bin (n -1 ,0)

NegBin(2,0)

Poi(6»)

0 - W e i b (2 , ^)

Ν(μ,02)

Gamma(a,0)

υ(ο,β)

Gamma(2,0)1/Q

The estimation of the gradient of £(θ) = Egi i (X) = J i7(x) dF(x ; Θ) is summa-
rized in the next algorithm.

Algor i thm 11.5 (Weak Derivat ive Est imation) Let (c(0), Fi{-,e),F2(-,9))
be a weak derivative triple for F(-;ff) and let H be a continuous bounded function.

1. Generate X i , . . . , XJV ~ i*i and Ύχ,..., Y;v ~ F2, possibly dependently.

2. Estimate the derivative of £(θ) via

_ 1 N

w w = C(0)- Ó (#(χ*) - ff(Yfc)) ·
fc=l

Determine an approximate 1 — a confidence interval as

(W (0) - Zl_a/2 σ/VÏÏ, V£(0) + Ζ !_ β / 2 σ / ν ^) ,

where σ is the sample standard deviation o/{i ï(X/ c) — iî(Yfc)} and z7 denotes
the η-quantile of the N(0,1) distribution.

Taking the random samples from F\ and F2 dependently, for example via common
random numbers, can give considerable variance reduction, as in the finite difference
method.

■ EXAMPLE 11.5 (Weak Derivat ive for the Bridge Network)

Consider Example 11.3 where the gradient of (.{&) is estimated via the score function
method using a continuity correction. The main result (11.17) can be derived
directly using weak derivatives. Namely, from Table 11.1 a weak derivative triple
corresponding to Xi ~ U(0, a i) is given by (l/αι,αχ, U(0, a i)) , and as a consequence
a weak derivative triple corresponding to X is of the form (l/ai,Fi,F2), where
F2 has pdf / (x ; a) as given in (11.16) and F1 has pdf / (x ; a | a ; i = a i) , exactly
as (11.17). The estimation procedure is therefore identical to the one given in
Example 11.3.

SENSITIVITY ANALYSIS FOR REGENERATIVE PROCESSES 4 3 5

11.6 SENSITIVITY ANALYSIS FOR REGENERATIVE PROCESSES

Although most of the sensitivity results in this chapter have been formulated in
terms of static systems, where X is a fixed-dimensional random vector, much of
the theory carries through to time-dependent processes {Xt}· In particular, let
Xi,JÎ2i · · · be an input sequence of (possibly multidimensional) random variables
driving an output process {Ht,t = 0 , 1 , 2 , . . . } . More precisely, Ht = Ht(X-t), for
some performance function Ht, where the vector X t = (Χχ, Ä2, ■ · · , Xt) represents
the history of the input process up to time t. Let the pdf of X t be given by /t(x*; Θ),
which depends on some parameter vector Θ. Assume that {Ht} is a regenerative ^ 630
process with a cycle length of finite expectation. A typical example is an ergodic
Markov chain. The expected steady-state performance, £{θ), can be written as

MM - **«>) - E ^ E * Σ Γ = ι Ht _ E g Σ Γ = 1 Ht Wt
m - ίτ(θ) - Εθτ - Έθτ " EgJ2T

t=1Wt ' (i i - ' 5 j

where R is the reward during a cycle, r is the cycle length, and g is an importance
sampling pdf, which defines the likelihood ratios {Wt}; see Section 8.3.3 and Theo- "9° 313
rem 9.7.2. Using the fact that Wt = W t (X t ; Θ) is a function of 0, but Ht = Ht(Xt) *& 371
is not, by direct differentiation of (11.25) we have

W(0)
W f l(0)
ιτ(θ)

Ε9ΣΓ=ι

£R(9)VeT(0)
Ρτ{β)

HtVWt Ε 9 Σ[= ι
=iWt Ε 9 Σ ;

HtWt

=1W Ε,Σ[=

Lvw t

=1w (11.26)

assuming that the expectations and gradients can be interchanged. Observe that
VWj = WtSt, where § t is the score function Ve l n / t (x t ; 0). Using (11.25) and
(11.26), one can estimate the performance £(θ) and gradient W (0) as follows:

ΐ(θ) = ^ιΡτ^τ
Η^Η (η·27)

EÎLiEZiWti
and, with V£(0) = W (0) ,

y î (g) = Σ ί = ι E t L i HtjWtiBu Σ»=ι Σ ί ί ι HtjWti Σ ί = ι Σ ί ί ι Wtjg t i (1128)

Σ?=ι ΣΠ=ι w« Σ,^ι ΣΙ=ι w« Σϋι Σΐ"=ι w«
Here, S^ is the value of the score function at the ί-th step in the ί-th regenerative
cycle, and similarly for Hti and Wti- Note that , similar to the static case, only a
single simulation run (under g) is required to estimate the performance έ(θ) and
the gradient W (0) for different values of 0.

Algor i thm 11.6 (Gradient Est imat ion for Regenerat ive Processes)

1. Generate the process {Xt} under g until N regenerative cycles have been ob-
tained.

2. Simultaneously generate the output processes {Ht} and {VW^} = {WjSt}.

3. Calculate W (0) from (11.28).

4 3 6 ESTIMATION OF DERIVATIVES

■ EXAMPLE 11.6 (Expec ted Wait ing T ime in a GI/G/1 Queue)

The waiting time process in a GI/G/1 queue is driven by sequences of interarrivai
times A1,A2,... and service times Bi,B2,. ■ ■ via the Lindley equation

Jfft = m a x { J f f t _ 1 + S t - i 4 t , 0}, t = 1, 2 , . . . , (11.29)

■ap 387 with Ho = 0; see Example 10.4. Writing Xt = (At,Bt), the {Xt,t = 1,2, . . .}
are independent and identically distributed. The process {Ht,t = 0 ,1 , . . . } is a
regenerative process, which regenerates at each time t where Ht = 0. Let r > 0
denote the first such time and let H denote the steady-state waiting time. We wish
to estimate the steady-state performance

£ = E H = E ^ H t .
E r

Consider, for instance, the case where A ~ Εχρ(λ) and B ~ Εχρ(μ), indepen-
dently. Thus, H is the steady-state waiting time in the M/M/l queue, and EH =
λ/(μ(μ — λ)), for μ > λ; see for example [6]. Suppose we carry out the simulation
using the service rate μ and wish to estimate ί(μ) = EH for different values of μ
using the same simulation run. Let (Αι, Βχ),..., (AT, BT) denote the interarrivai
and service times in the first cycle. Then, for the first cycle we have

. ρ - μ Β (

%t = %t-x + - - B u t=l,2,...,r (§o = 0) ,
M

and Ht is as given in (11.29). From these the sums ΣΙ—iHtWt, X)t= 1 Wt,
Σζ=1 WtSt, and Y^l=iHtWt§>t can be computed sequentially. Repeating this for
the subsequent cycles, one can estimate £(μ) and νΐ(μ) from (11.27) and (11.28),
respectively. Figure 11.2 displays the estimates and true values of W(/x) for
1.5 ^ μ < 5.5, using a single simulation run of N = 105 cycles. The simulation is
carried out under the service rate μ = 2 and arrival rate λ = 1.

Figure 11.2 True (solid line) and estimated (points) values for the derivative of the
expected steady-state waiting time as a function of μ.

SENSITIVITY ANALYSIS FOR REGENERATIVE PROCESSES 4 3 7

We see that the gradient is estimated accurately for μ > 2, but for μ < 2 the
quality of the estimates rapidly deteriorates. Indeed, the estimation should not be
extended much below μ = 1.5 as the importance sampling will result in unreliable
estimates. The following MATLAB program is used.

%wtgrad.m
N = 10~5;
K = 40;
for i=l:K

mu(i) = 1.5 + (i-l)*0.1;
end
mutil = 2; "/«simulate under this
lam = 1;
Rmat = zeros(N,K);
taumat = zeros(N,K);
gradWmat = zeros(N,K);
gradWmatHmat = zeros(N,K);
W = zeros(l,K);
Scor = zeros(l,K);
tau = zeros(1,K);
R = zeros(1,K);
for i = 1:N

B = -log(rand)/mutil;
W = mu.*exp(-mu.*B)/(mutil*exp(-mutil*B));
A = -log(rand)/lam;
H = max(B - A, 0);
Scor = 1./mu - B;
tau = W; °/0sum of W’s
R = H*W; °/,sum of H*W’s
gradW = Scor.*W; ’/.sum of W*S
gradWH = Scor.*W*H; ’/.sum of W*S*H
while (H > 0)

B = -log(rand)/mutil;
W = W.*mu.*exp(-mu.*B)/(mutil*exp(-mutil*B));
A = -log(rand)/lam;
H = max(H + B - A, 0);
Scor = Scor + l./mu - B;
tau = tau+W;
R = R + H*W;

gradW = gradW + Scor.*W; "/.sum of W*S’s
gradWH = gradWH + Scor.*W*H; 7,sum of W*S*H

end
taumat(i,:) = tau;
Rmat(i,:) = R;
gradWmat(i,:) = gradW;
gradWmatHmat(i,:) = gradWH;

end
ell = zeros(l.K);

4 3 8 ESTIMATION OF DERIVATIVES

eltrue = lam.*(lam - 2*mu)./(lam - mu).~2./mu.~2;
for k=l:K

ell(k) = mean(gradWmatHmat(:,k))/mean(taumat(:,k))
-(mean(Rmat(:,k))/mean(taumat(:,k))) ...
*(mean(gradWmat(:,k))/mean(taumat(:,k)));

end
elf

hold on
plot(mu,ell,’.’);
plot(mu,eltrue,’r’);
hold off

Further Reading

The four methods for gradient estimation presented here have a long history.
Overviews of the techniques can be found, for example, in [4, 11, 18, 19]. Whereas
the finite difference methods simply extend ideas present in the numerical analysis
literature, infinitesimal perturbation analysis was first presented in [9], and later
rediscovered in [5] and [15] under the likelihood ratio name (see also [12] for a dis-
cussion on convergence rates). The score function method is older yet, appearing
in [1] and [16]. An introduction to weak derivatives can be found in [14]. A unified
view of the various gradient estimation techniques can be found in [10]. The paper
also suggests hybrids between the two methods.

REFERENCES

1. V. M Aleksandrov, V. I. Sysoyev, and V. V. Shemeneva. Stochastic optimization.
Engineering Cybernetics, 5(1):11-16, 1968.

2. S. Asmussen and P. W. Glynn. Stochastic Simulation: Algorithms and Analysis.
Springer-Verlag, New York, 2007.

3. D. L. Brown. Fundamentals of Statistical Exponential Families. Institute of Mathe-
matical Statistics, Hayward, CA, 1986.

4. P. Glasserman. Gradient Estimation via Perturbation Analysis. Kluwer, Norwell,
MA, 1991.

5. P. W. Glynn. Likelihood ratio gradient estimation for stochastic systems. Communi-
cations of the ACM, 33(10):75-84, 1990.

6. D. Gross and C. M. Harris. Fundamentals of Queueing Theory. John Wiley & Sons,
New York, second edition, 1985.

7. S. G. Henderson and B. L. Nelson, editors. Handbooks in Operations Research and
Management Science, volume 13, chapter 19: Stochastic Gradient Estimation. North
Holland, Amsterdam, 2006.

8. Y.-C. Ho and X.-R. Cao. Perturbation Analysis of Discrete Event Dynamic Systems.
Kluwer, Norwell, MA, 1991.

REFERENCES 439

9. Y.-C. Ho, M. A. Eyler, and T. T. Chien. A gradient technique for general buffer stor-
age design in a serial production line. International Journal on Production Research,
17(6):557-580, 1979.

10. P. L'Ecuyer. A unified view of the IPA, SF, and LR gradient estimation techniques.
Management Science, 36(11):1364-1383, 1990.

11. P. L'Ecuyer. An overview of derivative estimation. In B. L. Nelson, W. D. Kelton, and
G. M. Clark, editors, Proceedings of the 1991 Winter Simulation Conference, pages
207-217, Piscataway, NJ, December 1991.

12. P. L'Ecuyer and G. Perron. On the convergence rates of IPA and F D C derivative
estimators. Operations Research, 42(4):643-656, 1994.

13. E. L. Lehmann and J. P. Romano. Testing Statistical Hypotheses. Springer-Verlag,
New York, third edition, 2008.

14. G. Ch. Pflug. Optimization of Stochastic Models. Kluwer, Boston, MA, 1996.

15. M. I. Reiman and A. Weiss. Sensitivity analysis for simulations via likelihood ratios.
Operations Research, 37(5):830-844, 1989.

16. R. Y. Rubinstein. Some Problems in Monte Carlo Optimization. P h D thesis, Univer-
sity of Riga, Latvia, 1969. In Russian.

17. R. Y. Rubinstein. Sensitivity analysis of discrete event systems by the push out
method. Annals of Operations Research, 39(l-4):229-250, 1993.

18. R. Y. Rubinstein and A. Shapiro. Discrete Event Systems: Sensitivity Analysis and
Stochastic Optimization via the Score Function Method. John Wiley & Sons, New
York, 1993.

19. J. C. Spall. Introduction to Stochastic Search and Optimization: Estimation, Simula-
tion, and Control. John Wiley & Sons, New York, 2003.

20. R. Suri and M. A. Zazanis. Per turbat ion analysis gives strongly consistent sensitivity
estimates for the M / G / l queue. Management Science, 34(l):39-64, 1988.

This page intentionally left blank

CHAPTER 12

RANDOMIZED OPTIMIZATION

In this chapter we discuss optimization methods that have randomness as a core
ingredient. Such randomized algorithms can be useful for solving optimization
problems with many local optima and complicated constraints, possibly involving
a mix of continuous and discrete variables. Randomized algorithms are also used
to solve noisy optimization problems, in which the objective function is unknown
and has to be obtained via Monte Carlo simulation.

We consider randomized optimization methods for both noisy and deterministic
problems, including stochastic approximation, the stochastic counterpart method,
simulated annealing, evolutionary algorithms, and the cross-entropy method.

We refer to Appendix C for background on deterministic optimization, and to " ^ 677
Chapter 11 for gradient estimation techniques. Chapter 13 describes the cross- E3= 421
entropy method in more detail. " ^ 463

Throughout this chapter we use the letter S to denote the objective function.

12.1 STOCHASTIC APPROXIMATION

Suppose we have a minimization problem on 3C Ç M" of the form

min She), (12.1)

where S is an unknown function of the form KS(x, £), with £ a random vector and
S a known function. A typical example is where Shi) is the (usually unknown)

Handbook of Monte Carlo Methods. By D. P. Kroese, T. Taimre, Z. I. Botev 441
Copyright © 2011 John Wiley & Sons, Inc.

4 4 2 RANDOMIZED OPTIMIZATION

expected performance measure from a Monte Carlo simulation. Such a problem is
said to be a noisy optimization problem, as typically only realizations of 5(x , £)
can be observed.

Because the gradient VS is unknown, one cannot directly apply classical op-
timization methods. The s tochast ic approximation m e t h o d mimics simple

■®° 690 gradient descent (see Section C.2.2.4) by replacing a deterministic gradient with
a random approximation. More generally, one can approximate a subgradient in-
stead of the gradient. It is assumed that an estimate of the gradient of S is available
at any point x € X. We denote such an estimate by VS(x) . There are several
established ways of obtaining VS(x) . These include the finite difference method,
infinitesimal perturbation analysis, the score function method, and the method of

'S" 421 weak derivatives — see Chapter 11, where S is replaced by £ and x by Θ.
In direct analogy to gradient descent methods, the stochastic approximation

method produces a sequence of iterates, starting with some Xi € Ä", via

x t + 1 = n a r (x t - / 3 t V 5 (x t)) , (12.2)

where βι, /?2, · · · is a sequence of strictly positive step sizes and Π^- is a projection
operator that takes a point in Kn and returns a closest (typically in Euclidean
distance) point in S£, ensuring that iterates remain feasible. That is, for any
y € M", n j r (y) e axgmin,e Ä- ||z - y| | . Naturally, if X = R n , then n«r(y) = y. A
generic stochastic approximation algorithm is as follows.

Algor i thm 12.1 (Stochast ic Approximat ion)

1. Initialize x i £ X. Set t = 1.

2. Obtain an estimated gradient VS(xt) of S at x*.

3. Determine a step size ßt-

4. Set x t + 1 = Π-r (x t - ßt V S (x t)) .

5. If a stopping criterion is met, stop; otherwise, set t = t + 1 and repeat from
Step 2.

There are many theorems on the convergence of stochastic approximation algo-
rithms; see, for example, [14]. In particular, for an arbitrary deterministic positive
sequence β\, βι,... such that

oo oo

ί = 1 t = l

the random sequence x i , X2 , . . . converges in the mean square sense to the minimizer
x* of S(x) under certain regularity conditions (see, for example, [15] for details).

We now present one of the simplest convergence theorems, drawn from Section
5.9 of [25].

STOCHASTIC APPROXIMATION 4 4 3

T h e o r e m 12.1.1 (Convergence of Stochast ic Approximat ion) Suppose the
following conditions are satisfied:

1. The feasible set 3£ C M™ is convex, nonempty, closed, and bounded.

2. Π^- is the Euclidean projection operator.

3. The objective function S is well defined, finite valued, continuous, differen-
tiable, and strictly convex in X with parameter ß > 0. That is, there exists
a ß > 0 such that

(y - x) T (V S (y) - V S (x)) > / ? | | y - x | | 2 for all x , y e f .

4- The error in the stochastic gradient vector V5(x) possesses a bounded second
moment. That is, for some K > 0,

E | |V5(x) | | 2 < K2 < oo for all x G StT .

Then, if ßt = c/t for c > 1/(2/?),

E | | x t - x * | | 2 ^ ^ , t = l,2,...,

where
Q{c) = max{c 2 f sT 2 (2c /? - l) - 1 , ||xx - x*||2} ,

with minimal Q attained by choosing c = 1/ß. In other words, the expected error
in terms of Euclidean distance of the iterates is of order 0 (t ~ 1 / 2) .

Moreover, if x* is an interior point of X and if there is some constant L > 0
such that

| | V S (y) - V S (x) K L | | y - x | | for all x j e f ,

(that is, VS(x) is uniformly Lipschitz continuous in S£), then

E | S (x t) - S (x *) l < ^ ^ . * = 1 ,2 ,

In other words, the expected error in terms of Euclidean distance of the objective
function values is of order 0 (£ - 1) .

An attractive feature of the stochastic approximation method is its simplicity
and ease of implementation in those cases where the projection ΐΐ^ can be easily
computed. For example with box-constraints , where 3£ = [oi, &i] x · · ■ x [a„, bn],
any component Xk of x is projected to a^ if χ^ < α^ and to bk if Xk > bk, and
otherwise remains unchanged.

A weak point of the method is the ambiguity in choosing the step size sequence
βι, /?2, · · ■ ■ Small step sizes lead to slow convergence and large step sizes may result
in "zigzagging" behavior of the iterates. A commonly used choice is ßt = c/t for
some constant c, as suggested by Theorem 12.1.1. The practical performance of
the algorithm using this step size rule depends crucially on c. This naturally leads
to the idea of adaptively tuning this constant to the problem at hand.

If ßt/ßt+i = 1 + o(ßt), as is the case when ßt = l / ί 7 with 7 € (0,1), then the
averaged iterate sequence defined by x t = | Σ ^ = ι xfe tends to give better results

444 RANDOMIZED OPTIMIZATION

than {x(} itself; see [14, Chapter 11]. This is known as Polyak averaging or
i terate averaging. One advantage here is that the algorithm will take larger step
sizes than the 1/i case, speeding up the location of a solution.

When V5(xt) is an unbiased estimator of VS(xt) in (12.2) the stochastic approx-
imation Algorithm 12.1 is referred to as the R o b b i n s - M o n r o algorithm. When
finite differences are used to estimate V5(x t) the resulting algorithm is known as

■®" 423 the Kiefer—Wolfowitz algorithm. As noted in Section 11.2, the gradient estimate
usually has a bias that depends on the length of the interval corresponding to the
central or forward difference estimators.

In high dimensions the random directions procedure can be used instead of
the usual Kiefer-Wolfowitz algorithm, reducing the number of function evaluations
per gradient estimate to two. This can be achieved as follows. Let D i , D 2 , . . . be a
sequence of random direction vectors in R n , typically satisfying (though these are
not strictly required [14]) the following conditions.

• The vectors are iid and symmetrically distributed with respect to each of the
coordinate axes, with EDtDt = I and ||-Dt||2 = n.

For example, one can take each Dt distributed uniformly on the sphere of radius
y/n, or each Dt distributed uniformly on {—1, l } n (that is, each component takes
the values ± 1 with probability 1/2). However, the random directions method can
exhibit poor behavior if the number of iterations is not sufficiently large (see [14]).

■ EXAMPLE 12.1 (Noisy Optimizat ion by Stochast ic Approximat ion)

We illustrate the stochastic approximation procedure via a simple problem of the
form (12.1), with

5(x,0 = ll£-x||2, ί~Ν(μ,7) .

The function 5(x) = ES(x, £) has its minimum at x* = μ, with S(x*) = n. For
this example we have V5(x) = 2(x —μ). An unbiased (Robbins-Monro) estimator
is

-, *

VS(x)RM = ^£>(x-£ f c) ,
fc=l

where £ 1 ; . . . ,ξΝ ~;;d Ν(μ, I). A central difference (Kiefer-Wolfowitz) estimator,
with difference interval δ, is

fc=l

" ^ 423 where ξ1,ζ1,..., ξΝ, ζΝ ~ Μ Ν(μ, 7). As observed in Section 11.2, the variance of
this estimator can be reduced significantly by using common random variables. A
practical way to do this here is to take Qk = £k for each k = 1 , . . . , TV.

Figure 12.1 illustrates the typical performance of the Robbins-Monro and Kiefer-
Wolfowitz algorithms for this problem. The Kiefer-Wolfowitz algorithm is run
with and without using common random variables. For each method we use 104

iterations. The problem dimension is n = 100 and μ= (η,η- 1 , . . . , 2 , 1) T . Each
gradient estimate is computed using N = 10 independent trials. The MATLAB
implementation is given below.

STOCHASTIC APPROXIMATION 4 4 5

Figure 12.1 Typical convergence of Robbins-Monro and Kiefer-Wolfowitz algorithms
(with and without making use of common random variables).

XStochApprox.m
maxits=10~4; '/, number of iterations
n=10"2; '/, dimension
N=10~l; 7, number of trials
mu=(n:-l:l); rmu=repmat(mu,N,l); 7. problem data
L=zeros(N,n) ; R=L; '/, allocate space for the central diff. estimator

c=l; % constant for the step size
delta = 1; 7. constant for the FD sequence
betat=@(t) c./t; '/, step size functions
deltat=@(t) delta/t. "(1/6) ; '/, difference interval function

xrm=10.*n.*ones(l,n); '/, initial Robbins-Monro iterate
xkw=10.*n.*ones(l,n); 7» initial Kiefer-Wolfowitz iterate
xkwCRV=10.*n.*ones(l,n); 7. initial Kiefer-Wolfowitz iterate w. CRV

7. allocate space for the convergence history of each iterate
rmhist=zeros(l.maxits);
kwhist=zeros(l,maxits);
kwCRVhist=zeros(l,maxits);
7. compute initial distance to optimal solution
rmhist(l)=sqrt(sum((xrm-mu).~2));
kwhist(l)=sqrt(sum((xkw-mu).~2));
kwCRVhist(l)=sqrt(sum((xkwCRV-mu)."2));

t=l; 7. iteration Counter
while (t<maxits)

7« RM gradient est.
xi=rmu+randn(N,n);
grm=mean(2.*(repmat(xrm,N,l)-xi),1); 7. unbiased est.
7. KW gradient est.

446 RANDOMIZED OPTIMIZATION

xiL=rmu+randn(N,n);
xiR=rmu+randn(N,n);
xkwN=repmat(xkw,N,1);
el=zeros(l,n);el(l)=deltat(t)/2;
ekN=repmat(e1,N,1);
for k=l:n

L(:,k)=sum((xiL-(xkwN+ekN)).~2,2);
R(:,k)=sum((xiR-(xkwN-ekN))."2,2);
ekN=circshi f t (ekN,[0 1]) ;

end
gkw=mean((L-R)./deltat(t),1);
7. KW gradient est. with CRV
xiL=rmu+randn(N,n);
xiR=xiL; 7» practical CRV
xkwCRVN=repmat(xkwCRV,N,1);
for k=l:n

L(:,k)=sum((xiL-(xkwCRVN+ekN)).~2,2);
R(:,k)=sum((xiR-(xkwCRVN-ekN))."2,2);
ekN=circshif t (ekN , [0 1]) ;

end
gkwCRV=mean((L-R)./deltat(t),1);
7, Update Iterates
xrm=xrm-betat(t).*grm;
xkw=xkw-betat(t).*gkw;
xkwCRV=xkwCRV-betat(t).*gkwCRV;

7e increase iteration counter and record new distance to optimum
t=t+l;
rmhist(t)=sqrt(sum((xrm-mu).~2));
kwhist(t)=sqrt(sum((xkw-mu)."2));
kwCRVhist(t)=sqrt(sum((xkwCRV-mu)."2));

end

7o plot the results
tt=(l:l:(maxits));
figure,semilogyCtt,rmhist,’k-’,tt,kwhist,’b-’,tt,kwCRVhist,’r-’,...

’Linewidth’,1.5)

12.2 STOCHASTIC COUNTERPART METHOD

Consider again the noisy optimization setting (12.1). The idea of the s tochast ic
counterpart m e t h o d (also called sample average approximation) is to replace
the noisy optimization problem (12.1) with

min 5 (x) , (12.3)
xeR™

where

S>) = ^ S (x , 0
» = 1

is a sample average estimator of 5(x) = ES(x, £) on the basis of N iid samples

ί ΐ ι · · · >£ΛΓ·

STOCHASTIC COUNTERPART METHOD 4 4 7

A solution x* to this sample average version is taken to be an estimator of
a solution x* to the original problem (12.1). Note that (12.3) is a deterministic
optimization problem to which any of the methods in Appendix C could apply.

■ EXAMPLE 12.2 (Stochast ic Counterpart)

Consider the following parametric optimization problem that arises when applying
the CE method: given a family of densities {/(·; v) , v e Ψ} and a target density g, ·®° 463
locate the CE optimal parameter v* that maximizes

i<?(Z) D (v) d ^ E 9 l n / (Z ; v) = E p ■ln / (Z;v)
LP(Z)

where p is any pdf that dominates g; that is, p(z) = 0 =*- g(z) = 0. Typically
this optimization problem is difficult to solve, but one can consider solving the
stochastic counterpart instead, here given by

^ ^ = ^ ^ Σ ^ ^ / (^ ; ν) , (12.4)

where Z i , . . . , Zjv ~üd Ρ· For various parametric families {/(■; v)} this proxy prob-
lem is solvable analytically, providing the key updating formulas for the CE method.

As a particular instance, suppose / is a Cauchy density, given by

f(z; v) = -2 , v = (μ, σ) ,
πσ ι _(_ (^^)

and the target density is

g(z) oc I exp(—22) cos(37rz)| exp (—;
2 V V2

The standard Cauchy density p(z) = 1/(π(1 + z2)) dominates g(z).
Figure 12.2 depicts the pdfs obtained by solving 100 independent instances of the

stochastic counterpart (12.4) for this problem, using approximating sample sizes of
N = 103 and iV = 105, respectively.

Figure 12.2 The pdfs of 100 independent solutions of the stochastic counterpart
procedure using N = 103 (left) and N = 105 (right) samples. The dotted line is the
target density g.

448 RANDOMIZED OPTIMIZATION

Figure 12.3 plots a typical sequence of estimates for μ and σ as a function of the
sample size N = 1 , . . . , 105. The estimates of μ and σ obtained in this way strongly
suggest convergence to an optimal value.

0.35

0.3

a. 0.25

-a

| 0.2

w 0.15

0.1

0.05

0,

a

2000 4000 6000 8000 10000
S a m p l e Size N

0.5,

0.48

0.46

0.44

b 0 . 4 2

l M
0.38

0.36

3 2000 4000 6000 8000
Sample Size N

Figure 12.3 The estimates for μ and σ obtained by solving a sequence of stochastic
counterpart problems for increasing N.

MATLAB code for the left panel in Figure 12.2 follows. Simply change the variable
N to obtain the right panel. Code for Figure 12.3 is quite similar, and can be found
on the Handbook website as SCMb.m.

ZSCM.m
c l e a r a l l
N=10~3; '/, Sample s i z e
M=10~2; */, Number of t r i a l s

g=@(Z) abs(exp(-Z.~2).*cos(3.*pi.*Z)).*...
exp(-0.5.*((Z-l)./sqrt(2))."2)./sqrt(2*pi*2);

h=(3(Z,mu,sigma) (sigma>0)./(pi.*sigma.*(l+((Z-mu)./sigma).~2));
p=fi(Z) l./(pi.*(l+Z.~2)); 7, standard cauchy
f=Q(x,Z) sum((g(Z)./p(Z)).*log(h(Z,x(l),x(2))));’/. St. Counterpart

approxnormg=.2330967533;°/0 Approx. norm, const, for g (for plotting)
zz=linspace(-5,5,10~3) ;°/, Range to plot densities over
figure.hold on
for k=l:M

Z=randn(N,l) ./randn(N,l) ;"/, Z_1,...,Z_N are iid with density p
sol=fminsearch(@(x) -f (x,Z) , [1,2]) ;’/. Solve the SC
plot(zz,h(zz,sol(l),sol(2)),’r-’)

end
plot(zz,g(zz)./approxnormg,’k:’,’LineWidth’,2) % Plot g
hold off

SIMULATED ANNEALING 4 4 9

12.3 SIMULATED ANNEALING

Simulated annealing is a Markov chain Monte Carlo technique for approximately " ^ 225
locating a global maximum of a given density / (x) . The idea is to create a se-
quence of points X i , X 2 , . . . that are approximately distributed according to pdfs
/ i (x), $2 (x), · ■ · with ft (x) oc / (x) 1/T*, where Τχ,Τ?,... is a sequence of t emper-
atures (known as the anneal ing schedule) that decreases to 0. If each Xj were
sampled exactly from / (x) 1 / 1 * , then Xt would converge to a global maximum of
/ (x) as Tt —> 0. However, in practice sampling is approximate and convergence to
a global maximum is not assured.

A high-level simulated annealing algorithm is as follows.

Algor i thm 12.2 (Simulated Anneal ing)

1. Choose a starting state Xo and an initial temperature TQ. Set t = 1.

2. Select a temperature Tt ζ T t_i according to the annealing schedule.

3. Approximately generate a new state X(from / t (x) oc (/(x))1 /1"' .

4- Set t = t + 1 and repeat from Step 2 until stopping.

The most common application for simulated annealing is in optimization. In
particular, consider the minimization problem

min SYx)
x6 . r

for some deterministic real-valued function S(x) . Define the Bo l t zmann pdf as

/ (x)oce- sW, x e f .

For T > 0 close to 0 the global maximum of f(x)1/T oc exp(—S(x)/T) is close to the
global minimum of >i?(x). Hence, by applying simulated annealing to the Boltzmann
pdf, one can also minimize S'(x). Maximization problems can be handled in a similar
way, by using a Boltzmann pdf / (x) oc exp(S(x)). Note that this may not define a
valid pdf if the exponential terms are not normalizable.

There are many different ways to implement simulated annealing algorithms,
depending on (1) the choice of Markov chain Monte Carlo sampling algorithm, (2)
the length of the Markov chain between temperature updates, and (3) the annealing
schedule. A popular annealing schedule is geometr ic cooling, where T t = ßTt-i,
t = 1,2,. . . , for a given initial temperature To and a cooling factor ß G (0,1).
Appropriate values for To and ß are problem-dependent, and this has traditionally
required tuning on the part of the user. Theoretical results on adaptive tuning
schemes may be found, for example, in [22, 26, 27].

The following algorithm describes a popular simulated annealing framework for
minimization, which uses a random walk sampler; that is, a Metropolis-Hastings " ^ 230
sampler with a symmetric proposal distribution. Note that the temperature is
updated after a single step of the Markov chain.

450 RANDOMIZED OPTIMIZATION

Algor i thm 12.3 (Simulated Anneal ing for Minimizat ion)

1. Initialize the starting state Xo and temperature TQ. Set t = 1.

2. Select a temperature Tt ^ Tt~\ from the annealing schedule.

3. Generate a candidate state Y from the symmetric proposal density q(Y | X t)

= i (X t | Y) .

4· Compute the acceptance probability

f (S (Y) - S (X f)) -,

a (X t , Y) = m i n { e - ^ , l j .

Generate U ~ U(0,1) and set

(Y ifU^a(Xt,Y),
t+1 [X t if U > a(Xt,Y).

5. Set t = t + 1 ond repeat from Step 2 until a stopping criterion is met.

■ EXAMPLE 12.3 (Continuous Optimizat ion by Simulated Anneal ing)

We illustrate the simulated annealing Algorithm 12.3 by applying it to the mini-
BS° 697 mization of the trigonometric function. For n-dimensional x, this function is given

by

n

5(x) = 1 + Σ (8sin2(j7(x< - x*)2) + 6 sin2(2»(a;i - x*f) + μ(Χί - χ*)2) ,
i= l

and has minimal value of 1 at x = x*. In this example, we choose n = 10,
x* = (1 0 , . . . , 10), η = 0.8, and μ = 0.1.

In order to implement the method with Metropolis-Hastings sampling, there are
four ingredients we must specify: (1) an appropriate initialization of the algorithm;
(2) an annealing schedule {Tt}; (3) a proposal pdf q; and (4) a stopping criterion.

For initialization, we set To = 10 and draw Xo uniformly from the n-dimensional
hypercube [—50,50]n. We use a geometric cooling scheme with cooling factor ß =
0.99999. The (symmetric) proposal distribution (starting from x) is taken to be
N(x, σ2Ι), with σ = 0.75. The algorithm is set to stop after 106 iterations. The
MATLAB code is given below.

�/.SA.m
°/o Initialization
n=10; % dimension of the problem
beta=0.99999; */, Factor in geometric cooling
sigma=ones(l,n).*0.75; % Variances for the proposal
N=l; VoNumber of steps to perform of MH
maxits=10~6; °/(Number of iterations
xstar=10.*ones(l,n); eta=0.8; mu=0.1;
S=@(X) l+sum(mu.*(X-xstar).~2+6.*(sin(2.*eta.*(X-xstar)."2)).~2+...

8.*(sin(eta.*(X-xstar).~2))."2);
T=10; °/, Initial temperature

SIMULATED ANNEALING 4 5 1

a=-50;b=50; X=(b-a) .*rand(l ,n)+a; "/�Initialize X
Sx=S(X); °/o Score the initial sample

t=l; % Initialize iteration counter
while (t<=maxits)

T=beta*T; % Select New Temperature
% Generate New State
it=l;
while (it<=N)

Y=X+sigma.*randn(l,n);
Sy=S(Y);
alpha=min(exp(-(Sy-Sx)/T),1);
if rand<=alpha

X=Y; Sx=Sy;
end

it=it+l;
end
t = t + l ; °/0 Increment I t e r a t i o n

end
[X,Sx,T] % Display f i n a l s t a t e , score , and temperature

For this example, we can sample exactly from the Boltzmann distribution via a
straightforward application of acceptance-rejection (see Section 3.1.5). As a con- ·®" 59
sequence, we can see precisely how well our approximate sampling performs with
respect to the ideal case.

In Figure 12.4, the average performance per iteration over 10 independent trials
is plotted for both the approximate Metropolis-Hastings sampling from the Boltz-
mann pdf used above and exact sampling from the Boltzmann pdf via acceptance-
rejection. For these parameters, the approximate scheme typically fails to locate
the optimal solution.

Figure 12.4 Average performance per iteration of exact and approximate sampling from
the Boltzmann pdf, over 10 independent trials.

452 RANDOMIZED OPTIMIZATION

The MATLAB code used for this figure can be found on the Handbook website as
SAnnealing_Multi_SA.m.

12.4 EVOLUTIONARY ALGORITHMS

Evolutionary algorithms refer to any metaheuristic framework that is inspired
by the process of natural evolution. An algorithm of this type begins with a pop-
ulation 2? of individuals x: objects such as points in R n , paths in a graph,
etc. The population "evolves" from generation to generation in two stages. First,
some se lect ion mechanism is applied to create a new population. Second, some
alteration mechanism is applied to the newly created population.

The objective is to create a population of individuals with superior qualities with
respect to some performance measure(s) on the population. The simplest example
is where SP is a collection of n-dimensional points x and the goal is to minimize
some objective function 5(x) . In this case the evaluation of !& corresponds to
calculating S(x) for all x G &. Typically this information is used in the selection
phase, for instance by only permitting the best performing 10% to be involved in
creating the new generation.

The general framework for an evolutionary algorithm is summarized next.

Algori thm 12.4 (Generic Evolutionary Algori thm)

1. Set t = 0. Initialize a population of individuals ë?t. Evaluate tPt.

2. Select a new population â^t+i from 2?f

3. Alter the population &t+i-

4- Evaluate S^t+i-

5. If a stopping criterion is met, stop; otherwise, set t = t + 1 and repeat from
Step 2.

To appreciate the diversity of selection and alteration operations, we refer the reader
to [3, 4] and [6].

There are many well-known heuristic algorithms under the umbrella of evolution-
ary algorithms. We will discuss three in particular: genetic algorithms, differential
evolution, and estimation of distribution algorithms.

12.4.1 Genetic Algorithms

The genet ic algorithm metaheuristic is traditionally applied to discrete opti-
mization problems. Individuals in the population are vectors, coded to represent
potential solutions to the optimization problem. Each individual is ranked accord-
ing to a fitness criterion (typically just the objective function value associated with
that individual). A new population is then formed as children of the previous pop-
ulation. This is often the result of cross-over and mutat ion operations applied
to the fittest individuals.

Suppose that individuals in the population are n-dimensional binary vectors x,
and the goal is to minimize some objective function S(x) . A possible cross-over

EVOLUTIONARY ALGORITHMS 4 5 3

mechanism in this case is one-point crossover: given two parents x and y, and
a random location r between 0 and n, create a new individual z = (x\,... ,xr,
2/r+i) · · · i Vn) whose first r components are copied from the first parent and the
remaining n — r components from the second parent.

Determining the M "fittest" individuals could be via tournament select ion
(for example, [6, Pages 75-80]). In basic tournament selection with tournaments
of size K, this involves selecting K individuals uniformly from the population, and
selecting the individual with the lowest objective function value as the winner. The
winner then joins the reproduction pool. This process is repeated M times, until
the desired number of fittest individuals is selected.

A typical binary encoded genetic algorithm is as follows.

Algori thm 12.5 (Binary Encoded Genet ic Algori thm)

1. Set t = 0. Initialize a population of individuals &t = {x* , . . . , xjv} via uni-
form sampling over {0, l } n . Evaluate 2?t-

2. Construct a reproduct ion pool Mt of individuals from &Ί via tournament
selection.

3. Combine individuals in the reproduction pool to obtain an intermediate pop-
ulation ^t via one-point crossover.

4- M u t a t e the intermediate population ^ by flipping each component of each
binary vector independently with probability p = 1/n. Denote the resulting
population by S^t ■

5. Create the new generation as &Ί+ι = ^t- Evaluate t?t+i-

6. If a stopping criterion is met, stop; otherwise, set t = t + 1 and repeat from
Step 2.

■ EXAMPLE 12.4 (Genet ic Algori thm for the Satisfiability Problem)

We illustrate the binary encoded genetic Algorithm 12.5 by applying it to solv-
ing the satisfiability problem (SAT). The problem is to find a binary vector
x = (χι, Χ2, ■ ■ ■, xn) € {0, l } n which, given a set of m clause functions Cj(-), satis-
fies all of them. Each clause function returns Cj (x) = 1 if x satisfies clause j and
Cj(x) = 0 otherwise. (See Section C.3.1 for more details.) " ^ 694

In Algorithm 12.5, we select a population and reproduction pool size of N = 104,
a tournament size of K = 2 (binary tournament selection), and we run the algorithm
for 103 iterations.

In Figure 12.5, the scores of the best and worst performing individuals are plotted
for a typical algorithm run on the difficult problem F34-5-23-31 from h t t p : / /
w w w . i s . t i t e c h . a c . j p / ~ w a t a n a b e / g e n s a t / a 2 / i n d e x . h t m l . Note that there are
361 clauses and 81 literals, and that the algorithm in this case locates solutions
that satisfy at most 359 clauses.

http://
http://www.is.titech.ac.jp/~watanabe/gensat/a2/index.html

454 RANDOMIZED OPTIMIZATION

Figure 12.5 Typical best and worst performances of individuals using Algorithm 12.5 on
the F34-5-23-31 problem.

The MATLAB code used for this example can be found on the Handbook website
as GA_ex_fig.m.

12.4.2 Differential Evolution

The method of differential evolut ion [20] is traditionally applied to continuous
optimization problems. In its simplest version, on each iteration, a new population
of points is constructed from the old parent population by moving each of the old
points by a fixed step size in a direction determined by taking the difference of
two other randomly determined points. The new population then produces a child
population through crossover with the old parent population. Finally, each child
only replaces its corresponding parent in the new parent population if it has a better
performance.

A typical differential evolution algorithm for minimization of a function 5(x) is
as follows.

Algor i thm 12.6 (Differential Evolut ion Algori thm for Minimizat ion)

1. Set t = 0. Initialize a population of individuals &>t = { χ ί , ■ ■ · ; X J V } ; saV v^a

uniform sampling over a known bounding box.

2. For each individual in the population, say individual x£. :

(a) Construct a vector y£.+1 = x'B + a (x'fi — x ^), where R\ φ Ri φ R-$
are three integers uniformly sampled from the set {1, 2 , . . . , k — 1, k +
Ι,.,.,Ν}.

(b) Apply binary crossover between y^.+ and x | to obtain a trial vector
xj_+1; that is,

4 + 1 = (Ul »M + (1 - Ul) 4 , 1 , · · · . Un Vtn + (1 - Un) 4 , J ,

where U\,..., Ud ^ad Ber(p). Additionally, select a random index I, uni-
formly distributed on { 1 , . . . , n} and set 4 + / = V^i ·

EVOLUTIONARY ALGORITHMS 455

(c) If'Α(χ£+1) ^ 5(xj.), set x^1"1 = Xfc+1/ otherwise, retain the old individual
via x | + 1 = xjj..

3. If a stopping criterion is met, stop; otherwise, set t = t + 1 and repeat from
Step 2.

The scaling factor a and the crossover factor p are algorithm parameters.
Typical values to try are a = 0.8 and p = 0.9, with a suggested population size of
JV = 10n.

■ EXAMPLE 12.5 (Differential Evolution)

We illustrate differential evolution by applying it to minimize the 50-dimensional
Rosenbrock function (see Section C.4.1.3), given by " ^ 696

49

S(x) = ^ (10° 0*+i - *?)2 + (*< - !)2) . (12·5)

which has minimal value of 5(x) = 0 at x = (1 , . . . , 1).
The population size is N = 50, the scaling factor is a = 0.8, and the crossover

probability is p = 0.9. The population is initialized by sampling uniformly on
[—50,50]50 and is stopped after 5 x 104 iterations.

Figure 12.6 shows the typical progress of differential evolution on this problem.
The best and worst performance function values per iteration are depicted. A
MATLAB implementation follows.

Figure 12.6 Best and worst performance function values on a typical run of a differential
evolution algorithm on the 50-dimensional Rosenbrock function.

%DE_ex.m
M=50; % Population Size
n=50; % Dimension of the problem
F=0.8; % Scaling factor
CR=0.9; ’/, Crossover factor

456 RANDOMIZED OPTIMIZATION

maxits=5*10~4; °/0 Maximum number of iterations
Smaxhist=NaN.*ones(l,maxits); Sminhist=NaN.*ones(l,maxits);
7, Rosenbrock Function
S=fi(X)sum(100.*(X(:,2:n)-X(:,l:(n-l)).-2).-2+(X(:,l:(n-l))-l).-2,2);
a=-50; b=50; X=(b-a).*rand(M,n)+a; % Initialize population
t=l; °/0 Iteration Counter
while (t<maxits)

SX=S(X); [SX, idx]=sort (SX, 1,’ascend’) ; ’/. Score and Sort
Smaxhist(t)=SX(M); Sminhist(t)=SX(l) ; ’/. Update histories
% Construct the new generation
for i=l:M

°/, Mutation
r=[l:i-l,i+l:M];
r=r(randperm(M-l));
V=X(r(l),:)+F.*(X(r(2),:)-X(r(3),:));
% Binomial Crossover
U=X(i,:);
i d x r = l + f l o o r (r a n d (l) . * n) ;
for j = l : n

i f (rand(l)<=CR)I I(j==idxr)
U(j)=V(j) ;

end
end
i f S(U)<=S(X(i , :))

X(i , :)=U;
end

end
t = t + l ;

end
SX=S(X); [SX, idx]=sort (SX,1 , 'ascend') ; % Score and Sort
Smaxhist(t)=SX(M); Sminhis t (t)=SX(l) ; % Update h i s t o r i e s
% Display worst & best score , and best performing sample
[SX(M) ,SX(l) ,X(idx (l) , :)]
% Plot the r e s u l t s
f i gure , p l o t ((l : l : t) , S m a x h i s t , ' k - ' , (1 : 1 : t) . S m i n h i s t , ' r - ')

12.4.3 Estimation of Distribution Algorithms

The e s t imat ion of distribution [16] heuristic differs from the genetic and dif-
ferential evolution algorithms in that successive populations are not directly con-
structed from previous ones. Instead of directly manipulating the individuals in
the population, one uses the population to establish a probability distribution from
which a subsequent generation of candidates is drawn. Typically, these replace (or
are merged with) individuals in the existing population, according to their perfor-
mance. A generic estimation of distribution algorithm looks as follows.

CROSS-ENTROPY METHOD FOR OPTIMIZATION 4 5 7

Algor i thm 12.7 (Generic Est imat ion of Distr ibut ion Algori thm)

1. Set ί = 0. Initialize a population of individuals 2Pt- Evaluate 2?f

2. Select an intermediate population âêt from £Pt.

3. Estimate a distribution Ft+i from 3£t.

4- Sample the new population â^t+i according to Ft+\.

5. Evaluate £?t+i·

6. If a stopping criterion is met, stop; otherwise, set t = t + 1 and repeat from
Step 2.

This has many similarities with the CE method discussed in the next section.
Indeed, if one selects the best ρ x 100% (with ρ 6 (0,1]) of individuals on the basis
of the performance function, then, for example, the univariate marginal distribu-
tion algorithm of [16] is identical to the standard CE algorithm for optimization,
with 3£ = {0, l } n and a sampling distribution formed of independent Bernoulli
components.

12.5 CROSS-ENTROPY METHOD FOR OPTIMIZATION

The cross-entropy (CE) method can be used for both deterministic and noisy
optimization. Consider first the deterministic minimization problem

min S(x) ,
xesr

where S is some real-valued performance function on a set SC. The basic idea of the
CE method for optimization is to define a parametric family of probability densities
{/(• ;v) ,v G Ψ} on the state space SC, and to iteratively update the parameter v
so that / (· ; v) places more mass closer to solutions than on the previous iteration.

In practice, this results in an algorithm with two basic phases:

• Sampling: Samples X i , . . . , XJV are drawn independently according to / (· ; v) .
The objective function S is evaluated at these points.

• Updating: A new parameter v is selected on the basis of those X; for which
S(X.i) < 7 for some level 7. These {X,} form the el ite sample set, S'.

At each iteration the level parameter 7 is chosen as the worst performance (for
minimization: the largest) of the best performing Ne samples, and the parameter
v is updated as

v = argmax _. m / (X ; v) · (12.6)

This updating formula is the result of minimizing the Kullback-Leibler or CE dis-
tance between the conditional density of X ~ / (x ; v) given 5 (X) < 7, and / (x ; v) ;
see Chapter 13 for more details. Note that (12.6) yields the maximum likelihood " ^ 463
estimator of v based on the elite samples. Hence, for many specific families of " ^ 667
distributions, including exponential families, explicit solutions can be found. An

4 5 8 RANDOMIZED OPTIMIZATION

important example is where X ~ Ν(μ, diag(cr2)), where the mean vector μ and the
vector of variances σ 2 are updated via the sample mean and sample variance of the
elite samples. This is known as normal updating.

A generic CE algorithm for minimization is as follows.

Algor i thm 12.8 (CE Algor i thm for Minimizat ion)

1. Choose an initial parameter vector Vo- Let Ne = \QN~\ be the number of elite
samples. Set t = 1.

2. Generate X i , . . . , XJV ~nd / (· ; ̂ t-i)· Calculate the performances S(Xj) for
all i and order them from smallest to largest: S(x) < . . . ^ 5(JV) · Let j t be the
sample g-quantile of performances; that is, % = S^y

3. Use the same sample X i , . . . , XJV and set

N

vt = a r g m a x ^ I { s (X f c) < c % } l n / (X f c ; v) . (12.7)
v fc=i

4- If some stopping criterion is met, stop; otherwise, set t = t + 1 and return to
Step 2.

Algorithm 12.8 can easily be modified to minimize noisy functions S(x) =

E 5 (x , ξ) , as defined in (12.1). The only change required in the algorithm is that

every function value S(x) be replaced by its estimate S(x) .
In practice, to include smooth ing of the parameter vectors, given a vector of

smoothing parameters a, replace Step 3 of Algorithm 12.8 by

3'. Use the same sample X i , . . . , XJV and set

N

v t = a r g m a x ^ I { S (x f c K 7 t } m/(Xfc; v) , (12.8)
v fc=i

updating v t as

v t = diag(a) v t + diag(l - a) vt-i ■

■ EXAMPLE 12.6 ((r, R) Pol icy Optimization)

B®' 289 Consider the (r, R) inventory system of Section 7.4.1 (we use the notation (r,R)
instead of (s, S) to avoid confusion with the objective function S). There, the
long-run average cost per unit of time to run the system is given as

S(r, R)=CiR + c2 / n e g + c3 / o r d ,

where r and R are the lower and upper limit in the (r, R) policy, / n e g is the fraction
of time where the net inventory process is negative, and /o rd is the frequency of
orders (per unit of time).

CROSS-ENTROPY METHOD FOR OPTIMIZATION 4 5 9

For given values of c\, c-i, and C3, we wish to find the policy constants (r, R) that
minimize S. This gives the minimization problem

argmin S(r, R)
r,R

such that r > 0, R ^ r .

This is a noisy problem when / n e g and /or(j cannot be computed analytically but
are estimates from realizations of the inventory process for a given policy {r,R).
To do this, the system is simulated until a time horizon Γ , yielding estimates / n e g

and /o rd which are then used to form an estimated cost S.
For definiteness, take the constants c\ = 5, C2 = 500, and C3 = 100, and a

time horizon of T = 1000 days. The interarrivai, demand size, and lead time
distributions are taken as Exp(l/5), U(0,10), and U(5,10), respectively.

To solve this problem via CE, we must specify a parametric family of sampling
distributions. For simplicity, we sample two-dimensional Gaussian random vectors
with independent components, X = {X\, -X2)· We associate realizations of X\ and
X2 with r and R in the (r, R) policy, respectively. Policies with r < 0, R < 0, or
R < r, incur a penalty of +00.

In the MATLAB implementation below we use a sample size of N = 100 and
an elite proportion of ρ = 0.1, giving Ne = \Ng\ = 10 elite samples in each
iteration. The algorithm is stopped once the largest standard deviation of the
Gaussian sampling distribution drops below ε = 10~4. The initial parameters for
the Gaussian distribution are μ0 = (100,100)T and Σ 0 = diag(1002,1002).

A typical estimated optimal policy is (r, R) = (15.56,19.42), giving an estimated
average cost of 149.6, with corresponding negative inventory fraction / n e g = 0.0779
and order frequency /o rd = 0.1356. This indeed has lower cost than a reasonable
guess of say (r, R) = (10,40), for which we estimate a cost of 231.9, with / n e g =
0.0578 and /o rd = 0.0302. The function f .m used below is simply adapted from
Section 7.4.1 and is available on the Handbook website. " ^ 289

%opt_policy.m
epsilon=10~(-4);
N=100; rho=0.1; alpha=l; beta=.5; Ne=ceil(N.*rho);
mu=[100,100]; sig=[100,100]; muhist=mu;sighist=sig
while max(sig)>epsilon

x=repmat(mu,N,l)+repmat(sig,N,l).*randn(N,2);
for k=l:N
if (x(k,l)>=0)&(x(k,2)>=x(k,l))

S(k)=f(x(k,l),x(k,2)); ’/.score if policy is
else
S(k)=inf; % otherwise apply a penalty

end
end
[S,I]=sort(S) ; °/� sort performances

%alg. parameters
"/«initialize v

feasible

mu=alpha.*mean(x(I(l:Ne) , :)) + (l-alpha) .*mu; "/»update means
sig=beta.*std(x(I(l:Ne),:),1,l)+(l-beta).*sig;
muhist=[muhist;mu];sighist=[sighist;sig];
[mu, sig, S(l),S(Ne)] 7, Display param. vect. &

end

7,upd. std devs

best and worst

460 RANDOMIZED OPTIMIZATION

12.6 OTHER RANDOMIZED OPTIMIZATION TECHNIQUES

Of the many other randomized optimization techniques we mention the following.
Response surface methods: The idea is to construct a model of the objec-

tive function (for example, by using regression techniques) from carefully selected
sample-score pairs, say via spatial experimental design (see, for example, [10]).

Particle swarm optimization: This is a population- or agent-based optimiza-
tion heuristic, inspired by social behavior such as the flocking of birds. Denote
the population on iteration t by X ' , . . . , Χ ^ . Let X£* be the best individual from
XjJ.,... ,X£.. Let G be the globally best index, so that X g is the best solution of
any individual up to time t.

The positions are updated in a simple way. First, velocities are determined via

vi=K-1+ci tfi (χ ; ^ - xi-1)+c2 u2 (x*-1 ' - x*-i),

where C\, c2 > 0 are constants (typically set to c\ = c2 = 2) and Ui,U2 ~üd U(0,1).
Second, the positions are updated via

x ^ x ^ + v̂ .

See [11] for an early description of this heuristic.
Tabu search: The idea of this metaheuristic is to keep track of recent moves

through the search space, building up a "short term memory", and then using that
information to construct a list of admissible candidate moves that the algorithm
may take on the next iteration. The admissible moves are usually a restriction of all
possible moves by forbidding (or rendering taboo) certain attributes of those moves.
This encourages global exploration of the search space. See [9] for a tutorial.

In addition, Monte Carlo ideas can be incorporated into existing techniques, for
example using quasi Monte Carlo in optimization [28] or the Monte Carlo versions of

"3° 711 the expectation-maximization algorithm (for example, [29], where the expectation
step is replaced by its stochastic counterpart).

Further Reading

For overviews of simulation-based optimization, see [2, 10]. Early work on stochastic
approximation appears in [12, 21]. Convergence proofs can be found in [5, 14];
see also [17]. Research toward more robust algorithms is ongoing [19]. For more
details on the stochastic counterpart method, we refer to [8, 23]. For simulated
annealing, see [1, 13], and [27] for work on adaptive cooling schedules. A wide
range of evolutionary algorithms can be found in [3, 4, 6, 18]. For differential
evolution in particular, we refer to [20], and see [16] for the estimation of distribution
algorithm. The monograph [24] contains more details and applications of the cross-
entropy method. A closely related approach is the probability collectives theory
[30, 31]. Finally, we mention harmony search, a relatively recent population-based
metaheuristic that uses a musical metaphor [7].

REFERENCES 461

REFERENCES

1. E. Aarts and J. Korst. Simulated Annealing and Boltzmann Machines: A Stochastic
Approach to Combinatorial Optimization and Neural Computers. John Wiley & Sons,
New York, 1989.

2. S. Andradottir. A review of simulation optimization techniques. In D. J. Medeiros,
E. F. Watson, J. S. Carson, and M. S. Manivannan, editors, Proceedings of the 1998
Winter Simulation Conference, Washington, DC, pages 151-158, 1998.

3. T. Back, D. B. Fogel, and Z. Michalewicz, editors. Evolutionary Computation 1: Basic
Algorithms and Operators. Institute of Physics Publishing, Bristol, 2000.

4. T. Back, D. B. Fogel, and Z. Michalewicz, editors. Evolutionary Computation 2:
Advanced Algorithms and Operators. Institute of Physics Publishing, Bristol, 2000.

5. H.-F. Chen. Stochastic Approximation and Its Applications. Kluwer, Dordrecht, 2002.

6. D. Dumitrescu, B. Lazzerini, L. C. Jain, and A. Dumitrescu, editors. Evolutionary
Computation. CRC Press, Boca Raton, FL, 2000.

7. Z. W. Geem, J. H. Kim, and G. V. Loganathan. A new heuristic optimization algo-
rithm: Harmony search. Simulation, 76(2):60-68, 2001.

8. C. J. Geyer and E. A. Thompson. Annealing Markov chain Monte-Carlo with ap-
plications to ancestral inference. Journal of the American Statistical Association,
90(431):909-920, 1995.

9. F. Glover. Tabu search: A tutorial. Interfaces, 20(4):74-94, 1990.

10. A. Gosavi. Simulation-Based Optimization: Parametric Optimization Techniques and
Reinforcement Learning. Kluwer, Boston, 2003.

11. J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of the 1995
IEEE International Conference on Neural Networks, volume 4, pages 1942-1948, 1995.

12. J. Kiefer and J. Wolfowitz. Stochastic estimation of the maximum of a regression
function. The Annals of Mathematical Statistics, 23(3):462-466, 1952.

13. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.
Science, 220(4598):671-680, 1983.

14. H. J. Kushner and G. G. Yin. Stochastic Approximation and Recursive Algorithms
and Applications. Springer-Verlag, New York, second edition, 2003.

15. T. L. Lai. Stochastic approximation. The Annals of Statistics, 31(2):391-406, 2003.

16. P. Larranaga and J. A. Lozano, editors. Estimation of Distribution Algorithms: A
New Tool for Evolutionary Computation. Kluwer, Boston, 2002.

17. P. L'Ecuyer and G. Yin. Budget-dependent convergence rate for stochastic approxi-
mation. SIAM Journal on Optimization, 8(l):217-247, 1989.

18. Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.
Springer-Verlag, Berlin, third edition, 1996.

19. A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation
approach to stochastic programming. SIAM Journal on Optimization, 19(4):1574-
1609, 2009.

20. K. V. Price, R. M. Storn, and J. A. Lampinen. Differential Evolution: A Practical
Approach to Global Optimization. Springer-Verlag, Berlin, 2005.

21. H. Robbins and S. Monro. A stochastic approximation method. The Annals of Math-
ematical Statistics, 22(3):400-407, 1951.

462 RANDOMIZED OPTIMIZATION

22. S. Rubenthaler, T. Rydén, and M. Wiktorsson. Fast simulated annealing in K with
an application to maximum likelihood estimation in state-space models. Stochastic
Processes and Their Applications, 119(6):1912-1931, 2009.

23. R. Y. Rubinstein. Some Problems in Monte Carlo Optimization. P h D thesis, Univer-
sity of Riga, Latvia, 1969. In Russian.

24. R. Y. Rubinstein and D. P. Kroese. The Cross-Entropy Method: A Unified Ap-
proach to Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learn-
ing. Springer-Verlag, New York, 2004.

25. A. Shapiro, D. Dentcheva, and A. Ruszczynski. Lectures on Stochastic Programming:
Modeling and Theory. SIAM, Philadelphia, 2009.

26. Y. Shen. Annealing Adaptive Search with Hit-and-Run Sampling Methods for Stochas-
tic Global Optimization Algorithms. P h D thesis, University of Washington, 2005.

27. Y. Shen, S. Kiatsupaibul, Z. B. Zabinsky, and R. L. Smith. An analytically derived
cooling schedule for simulated annealing. Journal of Global Optimization, 38(2):333-
365, 2007.

28. Y. Wang and K.-T. Fang. Number theoretic method in applied statistics. Chinese
Annals of Mathematics, Series B, l l (l) : 5 1 - 6 5 , 1990.

29. G. C. G. Wei and M. A. Tanner. A Monte Carlo implementation of the EM algorithm
and the poor man's da ta augmentat ion algorithms. Journal of the American Statistical
Association, 85(411):699-704, 1990.

30. D. H. Wolpert. Finding bounded rational equilibria part I: Iterative focusing. In
T. Vincent, editor, Proceedings of the Eleventh International Symposium on Dynamic
Games and Applications, Tucson, Arizona, 2004.

31. D. H. Wolpert. Finding bounded rational equilibria part II: Alternative Lagrangians
and uncountable move spaces. In T. Vincent, editor, Proceedings of the Eleventh In-
ternational Symposium on Dynamic Games and Applications, Tucson, Arizona, 2004.

CHAPTER 13

CROSS-ENTROPY METHOD

The cross-entropy methodology provides a systematic way to design simple and
efficient simulation procedures. This chapter describes the method for:

1. Importance sampling (see also Section 9.7.3); " ^ 366

2. Rare-event simulation (see also Section 10.5); "^ 404

3. Optimization, with examples of discrete, continuous, and noisy problems (see
also Section 12.5). «®" 457

13.1 CROSS-ENTROPY METHOD

The cross-entropy (CE) m e t h o d is a generic Monte Carlo technique for solving
complicated estimation and optimization problems. The approach was introduced
by Rubinstein in [42, 43], extending his earlier work on variance minimization meth-
ods for rare-event probability estimation [41].

The CE method can be applied to two types of problems:

1. Est imation: Estimate £ — E i f (X) , where X is a random variable or vector
taking values in some set SC and H is a function on JT. An important special
case is the estimation of a probability £ = P(S(X) ^ 7), where S is another
function on 9£.

Handbook of Monte Carlo Methods. By D. P. Kroese, T. Taimre, Z. I. Botev 463
Copyright © 2011 John Wiley & Sons, Inc.

4 6 4 CROSS-ENTROPY METHOD

2. Optimization: Maximize or minimize S(x.) over all x G 3£, where S is an
objective function on 3C. S can be either a known or a noisy function. In
the latter case the objective function needs to be estimated, for example, via
simulation.

In the estimation setting of Section 13.2, the CE method can be viewed as an
adaptive importance sampling procedure that uses the CE or Kullback-Leibler
divergence as a measure of closeness between two sampling distributions. In the
optimization setting of Section 13.3, the optimization problem is first translated
into a rare-event estimation problem and then the CE method for estimation is
used as an adaptive algorithm to locate the optimum.

13.2 CROSS-ENTROPY METHOD FOR ESTIMATION

Consider the estimation of

E / H (X) = y ' f r (x) / (x) d x) (13.1)

where i f is a sample performance function and / is the probability density of the
random vector X. For notational convenience it is assumed that X is continuous.
If X is discrete, simply replace the integral in (13.1) by a sum. Let g be another
probability density such that g(x) = 0 implies that H(x) / (x) = 0 for all x. Then,
we can represent £ as

/
H{x) ^ .ç(x) dx = EgH(X) ^ \ . (13.2)

Consequently, if X i , . . . , XJV ~üd g, then

362 is an unbiased importance sampling estimator of I. The optimal (minimum vari-
ance) importance sampling probability density is given by

fl*(x)cx|JÏ(x)|/(x), (13.4)

(see, for example, [47, Page 132]), whose normalization constant is unknown. The
idea of the CE method is to choose the importance sampling density g in a specified
class of densities 'S such that the Kullback-Leibler divergence (see (9.29) on Page
366) between the optimal importance sampling density g* and g is minimal. That
is, find a g G S that minimizes

T>{g*,g)=E! •g m'*<x>
5(X)

(13.5)

In most cases of interest the sample performance function H is nonnegative,
and the nominal probability density / is parameterized by a finite-dimensional
vector u; that is, / (x) = / (x ; u) . It is then customary to choose the importance
sampling probability density g in the same family of probability densities; thus,

CROSS-ENTROPY METHOD FOR ESTIMATION 4 6 5

</(x) = / (x ; v) for some reference parameter v. The CE minimization procedure
then reduces to finding an optimal reference parameter vector, v* say, by cross-
entropy minimization:

v* = argmax / i / (x) / (x ; u) l n / (x ; v) d x , (13.6)

which in turn can be estimated via simulation by solving with respect to v the
stochastic counterpart program «®° 446

TV
i

max IVM^W^ ln/(Xk;v) , (13.7)
Ν ^ ν K / / (X f c ; w

where Χ χ , . . . , XJV ~üd / (· ; w) , for any reference parameter w. The maximization
(13.7) can often be solved analytically, in particular when the class of sampling
distributions forms an exponential family; see, for example, [47, Pages 319-320].
Analytical formulas for the solution to (13.7) can be found whenever explicit ex-
pressions for the maximum likelihood estimators of the parameters can be found, "S* 667
see for example [15, Page 36].

Often £ in (13.1) is of the form P(5(X) > 7) for some performance function S
and level 7, in which case H(x) takes the form of an indicator function: H(x) =
I{S(x)>7}> s o th&t (13.7) becomes

- 4 Σ | | ^ ^ / (^ ν) , (13.8)

and S is the el ite set of samples: those X& for which S(X.k) ^ 7·
A complication in solving (13.8) occurs when £ is a rare-event probability; that

is, a very small probability (say less than 10~4). Then, for a moderate sample size
TV most or all of the values -ίί(Χ^) in (13.8) are zero, and the maximization problem
becomes useless. To overcome this difficulty, the following multilevel CE procedure
is used (see, for example, [47, Page 238]).

Algor i thm 13.1 (Multi level C E Algor i thm for Est imat ing P (S (X) ^ 7))

1. Define vo = u. Let Ne = \gN~\. Set t = 1 (iteration counter).

2. Generate X i , . . . , X J V ~nd / (· ; v t _ i) . Calculate the performances 5(Xj) for
all i and order them from smallest to largest: 5(i) ^ . . . ^ ^ΛΓ) · Let j t be the
sample (1 — g)-quantile of performances; that is, -jt = 5'(τν-τνβ+ΐ)· If It > It
reset 7 t to 7.

3. Use the same sample X i , . . . ,Χτν to solve the stochastic program (13.8) with
w = V(_i. Denote the solution by v t .

4- If It < 7; set the counter t = t + 1 and reiterate from Step 2; otherwise,
proceed with Step 5.

5. Let T be the final iteration counter. Generate X i , . . . , Χ ^ ~üd / (· ; vj-) and
estimate £ via importance sampling as in (13.3).

4 6 6 CROSS-ENTROPY METHOD

The algorithm requires specification of the family of sampling probability densities
{/(· ; v) >v € y}, the sample sizes N and Νχ, and the rarity parameter ρ (typically
between 0.01 and 0.1). Typical values for the sample sizes are N = 103 and ΛΊ =
10 s . Under certain technical conditions the deterministic version of Algorithm 13.1
is guaranteed to terminate (reach level 7) provided that ρ is chosen small enough;
see [46, Section 3.5].

■ EXAMPLE 13.1 (Rare-Event Probabil i ty Est imation)

Suppose the problem is to estimate £ = P (m i n { X i , . . . , Xn} > 7), where Xf. ~
Beta(l,Mfc/(l — Uk)), k = 1 , . . . , n independently. Note that this parameterization
ensures that EJTfc = it*, and that we do not assume that the {«&} are the same.
However, if u\ = ■ ■ ■ = un = 1/2, then we have Xi,..., Xn ~üd U(0,1). In that
case £ = (1 — 7)" . In particular, if we take n = 5, 7 = 0.999, and Uk = 1/2 for all
fc, then £ = 10" 1 5 .

For these particular problem parameters, typical output of Algorithm 13.1 using
a rarity parameter of g = 0.1, and sample sizes of N = 103 and N\ = 106, is given
below.

Table 13.1 Typical convergence of parameter vectors with multilevel CE.

t
0
1
2
3
4
5
6

7t
-
0.60117
0.88164
0.96869
0.99184
0.99791
0.999

0.5
0.79938
0.93913
0.98423
0.99586
0.99896
0.99950

0.5
0.80341
0.94094
0.98429
0.99588
0.99895
0.99949

vt

0.5
0.79699
0.94190
0.98446
0.99590
0.99893
0.99949

0.5
0.79992
0.94138
0.98383
0.99601
0.99897
0.99950

0.5
0.80048
0.94065
0.98432
0.99590
0.99896
0.99950

This gives a final estimate of £ = 1.0035 x 10 15 with an estimated relative error
of 0.003.

In this example, we can calculate the exact CE optimal parameters from (13.6).
With Mi = · · · = un = 1/2, and due to independence, each component of the
optimal parameter vector is solved from

v* = argmax / In
«6(0,1) Λ

1
x („/(„_!)_!) da;.

The solution is given by
1 - 7

2 (l - 7) + 7 h i 7

With 7 = 0.999, this gives v* = 0.99950 to five significant digits, which is as found
via the multilevel algorithm in Table 13.1. MATLAB code for this example follows.

CROSS-ENTROPY METHOD FOR ESTIMATION 4 6 7

’/�CEest.m
f =’minbeta’; '/, performance function name
gam=0.999; '/, Desired level parameter
n=5; % dimension of problem
N=10~5; 7» sample size
rho=0.01;
Nl=10~6; '/, Final estimate sample size
N_el=round(N*rho) ; °/0 elite sample size
u=0.5.*ones(l,n); '/, Nominal reference parameter in Beta(l,u/(l-u))
v=u; gt=-inf; 7« Initialize v and gamma
maxits=10~5; '/, Fail-safe stopping after maxits exceeded
it=0; tic
while (gt<gam)&(it<maxits)
it=it+l;
% Generate and score X’s
X=rand(N,n).-(l./repmat(v./(l-v),N,l)); 7, Beta(l,v/(l-v))
S=feval(f,X); [U,I]=sort(S); I Score & Sort
'/, Update Gamma_t
gt=U(N-N_el+l);
if gt>gam, gt=gam; N_el=N-find(U>=gam,l)+l; end
Y=X(I(N-N_el+i:N),:);
7, Calculate likelihood ratios and update v

W=prod(repmat((u./(l-u))./(v./(l-v)),N_el,l)•*•••
Y.~(repmat((u./(l-u))-(v./(l-v)),N_el,l)),2);

v=sum(repmat(W,l,n).*Y)./sum(repmat(W,l,n));
[g t , v] '/, Disp lay gamma and v

end
7. Final estimation step
Xl=rand(Nl,n).~(1./repmat(v./(1-v),N1,1));
Sl=feval(f,X1);

Wl=prod(repmat((u./(l-u))./(v./(l-v)),Nl,l).*.••
Xl.-(repmat((u./(l-u))-(v./(l-v)),Nl,l)),2);

Hl=(Sl>=gam);
ell=mean(Wl.*Hl);
re=sqrt((mean((Wl.*Hl).~2)/(ell"2))-l)/sqrt(Nl);
7, Display final results
time=toc; disp(time), disp(v), disp(ell), disp(re)
ell_true=(l-gam)~n;disp(ell_true) 7« Display true quantity

function out=minbeta(X)
out=min(X, [] ,2) ;

This multilevel approach is really a proxy for the ideal situation in which one
can sample directly from g*, and determine the CE optimal parameters as the
maximum likelihood estimates for the given parametric family — see Section 10.5 |®' 404
and the corresponding Algorithm 10.8, which uses MCMC to obtain an approximate
sample from g*.

4 6 8 CROSS-ENTROPY METHOD

13.3 CROSS-ENTROPY METHOD FOR OPTIMIZATION

Let S be a real-valued performance function on SC. Suppose we wish to find the
maximum of S over JT, and the corresponding state x* at which this maximum is
attained (assuming for simplicity that there is only one such state). Denoting the
maximum by 7*, we thus have

S(x*) = 7 * = max 5(x) . (13.9)

This setting includes many types of optimization problems: discrete (combi-
■®° 677 natorial), continuous, mixed, and constrained problems. If one is interested in

minimizing rather than maximizing S, one can simply maximize —S.
Now associate with the above problem the estimation of the probability I =

P(S(X) ^ 7), where X has some pdf / (x ; u) on 3C (for example corresponding to
the uniform distribution on 3£) and 7 is some level. If 7 is chosen close to the
unknown 7*, then i is typically a rare-event probability, and the CE approach of
Section 13.2 can be used to find an importance sampling distribution close to the
theoretically optimal importance sampling density, which concentrates all its mass
at the point x*. Sampling from such a distribution thus produces optimal or near-
optimal states. A main difference with the CE method for rare-event simulation is
that , in the optimization setting, the final level 7 = 7* is not known in advance.
The CE method for optimization produces a sequence of levels {7t} and reference
parameters {v t} such that the former tends to the optimal 7* and the latter to the
optimal reference vector v* corresponding to the point mass at x* ; see, for example,
[47, Page 251].

Given the class of sampling probability densities { / (· ; ν) , ν 6 Ψ}, the sample
size N, and the rarity parameter g, the CE algorithm for optimization is as follows.

Algor i thm 13.2 (CE Algor i thm for Optimizat ion)

1. Choose an initial parameter vector VQ. Let Ne = \gN~\. Set the level counter
tot = l.

2. Generate X i , . . . , X^r ~üd / (· ; v t _ i) . Calculate the performances 5 (Χ,) for
all i and order them from smallest to largest: S(i) ^ . . . ^ S(N) · Let % be the
sample (1 — o)-quantile of performances; that is, *jt = S(N-Ne+i)·

3. Use the same sample X i , . . . , XJV to determine the elite set of samples £t =
{Xfc : S(Xk) ^ 7*} and solve the stochastic program

max V l n / (X f c ; v) . (13.10)

Denote the solution by v t .

4- If some stopping criterion is met, stop; otherwise, set t = t + 1, and return
to Step 2.

Any CE algorithm for optimization thus involves the following two main iterative
phases:

CROSS-ENTROPY METHOD FOR OPTIMIZATION 4 6 9

1. Generate an iid sample of objects in the search space S£ (trajectories, vec-
tors, etc.) according to a specified probability distribution.

2. U p d a t e the parameters of that distribution, based on the Ne best performing
samples (the elite samples), using cross-entropy minimization.

There are two key differences between Algorithm 13.1 and Algorithm 13.2:
(1) Step 5 is missing for optimization, and (2) the likelihood ratio term
/(X f c ; u) / / (X f c ; v t _ i) in (13.7) is missing in (13.10).

Often a smoothed updating rule is used, in which the parameter vector v t is
taken as

v t = diag(a) v t + diag(l - a) \ t - i , (13.11)

where v t is the solution to (13.10) and a is a vector of smooth ing parameters ,
with each component in [0,1]. Many other modifications can be found in [27, 46, 47]
and in the list of references. When there are two or more optimal solutions, the
CE algorithm typically "fluctuates" between the solutions before focusing on one
of the solutions. The effect that smoothing has on convergence is discussed in
detail in [13]. In particular, it is shown that with appropriate smoothing the CE
method converges and finds the optimal solution with probability arbitrarily close
to 1. Necessary and sufficient conditions for this are also given. Other convergence
results can be found in [33].

13.3.1 Combinatorial Optimization

When the state space 3C is finite, the optimization problem (13.9) is often referred
to as a discrete or combinatorial opt imizat ion problem. For example, SC could
be the space of combinatorial objects such as binary vectors, trees, paths through
graphs, etc. To apply the CE method, one first needs to specify a convenient
parameterized random mechanism to generate objects in 3£. For example, when S£
is the set of binary vectors of length n, an easy generation mechanism is to draw each
component independently from a Bernoulli distribution; that is, X = (X±,..., Xn),
where Xi ~ Ber(j>j), i = 1 , . . . ,n , independently. Given an elite sample set ê of
size Ne, the updating formula is then [15, Page 56]

Ι,.,.,η. (13.12)

A possible stopping rule for combinatorial optimization problems is to stop when
the overall best objective value does not change over a number of iterations. Alter-
natively, one could stop when the sampling distribution has "degenerated" enough.
In particular, in the Bernoulli case (13.12) one could stop when all {pi} are less
than some small distance ε > 0 away from either 0 or 1.

■ EXAMPLE 13.2 (Satisfiability Problem)

We illustrate the CE optimization Algorithm 13.2 by applying it to the satisfiability
problem (SAT) considered in Example 12.4. (See Section C.3.1 for more details on "3° 453
the SAT problem.) «§* 694

We take our sampling pdf g to be of the form

g(x) = Y[p?(i-Pt)
1-

4 7 0 CROSS-ENTROPY METHOD

In this case, the i-th component of x is generated according to the Ber(pi) distri-
bution, independently of all other components.

The Bernoulli probabilities are updated using (13.12), where the set of elite
samples S on iteration t is the proportion ρ of best performers — in this case, the
proportion ρ of samples that satisfy the most clauses.

If we write p t = (jpn,... ,ptn) for the solution from (13.12) in iteration t, then
the idea is that the sequence Ρο,Ρι , · · · converges to one of the solutions to the
satisfiability problem.

We run the algorithm with a sample size of N = 104 and a rarity parameter of
Q = 0.1, giving Ne = 103 elite samples per iteration. We take po = (0 . 5 , . . . , 0.5)
and use a constant smoothing parameter of a = 0.5. Finally, our algorithm is
stopped after 103 iterations, or if the vector p t has degenerated: if every component
Ptk is within ε = 1 0 - 3 of either 0 or 1.

In Figure 13.1, the scores of the best and worst performing elite samples are
plotted for the problem F34-5-23-31. As with the binary coded genetic algorithm
in Example 12.4, the best solutions found only satisfied 359 out of 361 clauses.

Figure 13.1 Typical best and worst elite samples using Algorithm 13.2 on the F34-5-
23-31 problem.

MATLAB code that implements the basic algorithm is given below. It is assumed
there is an efficient function sC.m that accepts TV trial vectors and computes the
number of clauses that each satisfies. Our implementation of sC.m is available on
the Handbook website.

y.CESAT.m
’/.Assumes »sparse* A is loaded in the workspace
[m,n]=size(A) ; 7, Dimensions of the problem
maxits=10~3; epsilon=le-3;
N=10~4; rho=0.1; Ne=ceil(rho*N);
alpha=0.7; % Smoothing parameter
p = 0.5*ones(l,n); it=0; best=-inf; :
Smaxhist=zeros(l,maxits); % Allocate
Sminhist=zeros(l,maxits);
while (max(min(p,1-p)) > epsilon) &&

ibest= [] ;
history memory

(it < maxits) && (best<m)

CROSS-ENTROPY METHOD FOR OPTIMIZATION 4 7 1

it = it + 1;
x = double((rand(N,n) < repmat(p,N,1))) ;
SX = sC(A,x);
[sortSX.iX] = s o r t r o w s ([x SX] ,n+ l) ;
indices=iX(N- Ne + 1:N);
if sortSX(N,n+l)>best
best=sortSX(N,n+l); xbest=sortSX(N,l:n);

end
Smaxhist(it)=sortSX(N,n+l)jSminhist(it)=sortSX(N-Ne+l,n+l);
p=alpha.*mean(sortSX(indices,1:n))+(l-alpha). *p;
disp([it,sortSX(N,n+l),sortSX(N-Ne+l,n+l),p])

end
d i s p ([b e s t x b e s t])
f i g u r e . p l o t ((1 : 1 : i t) , S m a x h i s t , ' r - ' , (1 : 1 : i t) . S m i n h i s t , ' k - ')

13.3.2 Continuous Optimization

It is also possible to apply the CE algorithm to continuous optimization problems;
in particular, when SC = B™. The sampling distribution on R n can be quite
arbitrary and does not need to be related to the function that is being optimized.
The generation of a random vector X = (Χχ,..., Xn) 6 R n is usually established by
drawing the coordinates independently from some two-parameter distribution. In
most applications a normal (Gaussian) distribution is employed for each component.
Thus, the sampling distribution for X is characterized by a vector μ of means
and a vector σ of standard deviations. At each iteration of the CE algorithm
these parameter vectors are updated simply as the vectors of sample means and
sample standard deviations of the elements in the elite set; see, for example, [27].
During the course of the algorithm, the sequence of mean vectors ideally tends
to the maximizer x*, while the vector of standard deviations tends to the zero
vector. In short, one should obtain a degenerated probability density with all mass
concentrated in the vicinity of the point x*. A possible stopping criterion is to stop
when all standard deviations are smaller than some ε. This scheme is referred to
as normal updating.

In what follows, we give examples of CE applied to unconstrained, constrained,
and noisy continuous optimization problems. In each case, we employ normal up-
dating.

■ EXAMPLE 13.3 (Maximiz ing the Peaks Function)

Suppose we wish to maximize MATLAB'S peaks function, given by

5(x) = 3 (1 - Xl)
2 e - ^ - ^ + D 2 - 10 (^ - x\ - x5

2) e"*2"*2 - - e - ^ + 1) a " ^ .
V 5 / 3

This function has three local maxima and three local minima, with global maximum
at x* ?» (-0.0093,1.58) of 7* = S(x*) « 8.1.

With normal updating, the choice of the initial value for μ is not important,
so we choose μ = (—3, —3) arbitrarily. However, the initial standard deviations
should be chosen large enough to ensure an initially "uniform" sampling of the

4 7 2 CROSS-ENTROPY METHOD

region of interest, hence σ = (10,10) is chosen. The CE algorithm is stopped when
all standard deviations of the sampling distribution are less than some small e, say
ε = 1 0 - 5 . A typical evolution of the mean of the sampling distribution is depicted
in Figure 13.2.

Figure 13.2 A typical evolution of the mean vector with normal updating for the peaks
function.

A MATLAB implementation of CE Algorithm 13.2 is given below. The peaks
function is stored in a separate file S. m.

y.peaksXsimplepeaks. m
n = 2;
mu = [-3,-3]; sigma = 3*ones(l
while max(sigma) > eps

X = randn(N,n)*diag(sigma)+
SX= S(X);

n);

mu(

sortSX = sortrows([X, SX],n+l);
Elite = sortSX((l-rho)*N:N,l:n)
mu = mean(Elite,1);
sigma = std(Elite,1);
[S(mu),mu,max(sigma)]

end

%
N =

dimension
= 100;

Dnes(N,l)
VoComput

; %
%
7.
%

elite
take
take

eps =

, :) ;
e the

sampl
sample
sample

output the

1E-5; rho=0

performance

es

i;

mean row-wise
st.dev. row-

result
-wise

CROSS-ENTROPY METHOD FOR OPTIMIZATION 4 7 3

function out = S(X)
out = 3*(1-X(:,l)).~2.*exp(-X(:,l).~2 - (X(:,2)+l).~2) ...
- 10*(X(:,l)/5 - X(:,l)."3 - X(:,2)."5) ...
.*exp(-X(:,l)."2-X(:,2)."2) - l/3*exp(-(X(:,1)+1).'2 - X(:,2)."2);

13.3.3 Constrained Optimization

In order to apply the CE method to constrained maximization problems, we must
first put the problem in the framework of (13.9). Let 3£ be a region defined by
some system of inequalities:

G, (x)sS0, i = l , . . . , f c . (13.13)

Two approaches can be adopted to solve the program (13.9) with constraints (13.13)
(see also Section C.2.1). The first approach uses acceptance-rejection: generate a "^" 685
random vector X from, for example, a multivariate normal distribution with inde-
pendent components, and accept or reject it depending on whether the sample falls
in 3C or not. Alternatively, one could sample directly from a truncated distribu-
tion (for example, a truncated normal distribution) or combine such a method with
acceptance-rejection. Once a fixed number of such vectors has been accepted, the
parameters of the normal distribution can be updated in exactly the same way as
in the unconstrained case — simply via the sample mean and standard deviation
of the elite samples. A drawback of this method is that a large number of samples
could be rejected before a feasible sample is found.

The second approach is the penalty approach (see Section C.2.1.1). Here, the
objective function is modified to

k

5(x) = 5(x) + Σ Hi max{Gi(x), 0} , (13.14)

where Hi < 0 measures the importance (cost) of the i-th penalty.
Thus, by reducing the constrained problem ((13.9) and (13.13)) to an uncon-

strained one ((13.9) with S instead of S), one can again apply Algorithm 13.2.
Further details on constrained multiextremal optimization with the CE method
may be found in [27].

■ EXAMPLE 13.4 (MLE for the Dirichlet Distr ibution)

Suppose that we are given data x i , . . . , x n ~Ü<J Dirichlet(a), where a = (Q I , . . . ,
a j f) T is an unknown parameter vector satisfying a;, > 0, i = 1 , . . . ,K. The condi-
tions on a provide natural inequality constraints: Gi(ct) = —ai ^ 0, i = 1 , . . . , K.

We will use Algorithm 13.2 with normal updating to obtain the MLE by direct
maximization of the log-likelihood for the Dirichlet distribution given the data.
However, due to the constraints for a valid parameter vector a, we apply a penalty
of Hi = ■ ■ ■ = HK = —oo whenever a constraint is violated.

Figure 13.3 displays the distance between the mean vector of the sampling distri-
bution and the true MLE calculated via a fixed-point technique [35] for a data size

4 7 4 CROSS-ENTROPY METHOD

of n = 100 points from the Dirichlet(l,2,3,4,5) distribution. The CE parameters
are a sample size of N = 104 and an elite sample size of Ne = 103. No smoothing
parameter is applied to the mean vector, but a constant smoothing parameter of
0.5 is applied to each of the standard deviations.

10"

1(T
10 15 20 25 30

Iteration ί
35 45

Figure 13.3 Typical evolution of the Euclidean distance between the mean vector and
the MLE a*.

’/,MLE\ce_dirichlet_mle_fp.m
clear all;
a=(l:l:5); n=100;
K=length(a) ; °/(K dim vector
data=dirichletrnd(a,n,K); % Generate data
epsilon=10~(-4) ; ’/, For
N=10~4; rho=0.1; alphamu=l; alphasig=0.5; Ne=ceil(N.*rho);
mu=zeros(l,K) ; sig=ones(l,K) .*10; °/0 Initial parameters
muhist=mu;sighist=sig; '/, History-
while max(sig)>epsilon

x=repmat(mu,N,l)+repmat(sig,N,l).*randn(N,K); % Sample
S=dirichlet_log_like(data,x,n,K); [S,I]=sort(S) ; % Score & Sort
mu=alphamu.*mean(x(I(N-Ne+l:N),:))+(l-alphamu).*mu;
sig=alphasig.*std(x(I(N-Ne+l:N),:),1,l)+(l-alphasig).*sig;
muhist=[muhist ;mu] ;sighist=[sighist ;sig] ; °/0 Update History
[mu, sig, S(end),S(N-Ne+l)]

end
% For comparison, compute the MLE using a fixed-point method
afp=dirichlet_MLE_FP(data,K);
disp([afp,dirichlet_log_like(data,afp,n,K)])

The function d i r i c h l e t _ l o g _ l i k e . m calculates the log-likelihood of the set of
trial parameters for the given data set.

CROSS-ENTROPY METHOD FOR OPTIMIZATION 4 7 5

function out=dirichlet_log_like(data,x
out=zeros(size(x,1),1);
I=any(x<=0,2);nl=~l;
out(I)=-inf;
out(nl)=n.*(log(gamma(sum(x(nl,
for k=l:n

out(nI)=out(nI)+sum((x(nI,1
repmat(log(data(k,1 :(K-
repmat(log(1-sum(data(k

end

:),2)))-

:(K-1))-

n,K)

-sum(log(gamma

-1).*...
l))),sum(nl),l),2)+(x
,1:(K-I)),2)),sum(nl)

(x(nl,

(nl.K)

,D;

:)))

-1).

,2));

*. . .

The function d i r i c h l e t r n d . m generates Dirichlet distributed realizations as in
Algorithm 4.67. «& 141

function
out=zeros
for k=l:n

out=dirichletrnd(a
(n,K);

temp=zeros(l,K);
for i=l
temp(

end
out(k,:

end

:(K)
i)=gamrnd(a

)=temp./sun

(i),D;

(temp);

n,K)

The function dirichlet_MLE_FP.m computes the MLE using a fixed-point tech-
nique [35].

function afp=dirichlet_MLE_FP(data,K)
"/»Compute Dirichlet MLE via a
logpdata=mean(log(data),1);
afp=ones(l,K); afpold=-inf.*
while sqrt(sum((afp-afpold).

afpold=afp; s=sum(afpold)
for k=l:K
y=(psi(s)+logpdata(k));
if y>=-2.22

ak=exp(y)+0.5 ;
else

ak=-l/(y-psi(D);
end
akold=-inf;
while abs(ak-akold)>10~

akold=ak; ak=akold -
end
afp(k)=ak;

end
end

fixed-point

afp;
~2))>1(ˆ(-

;

(-12)

-12)

((psi(akold)

techna .que

-y)/psi(l,akold));

4 7 6 CROSS-ENTROPY METHOD

13.3.4 Noisy Optimization

Noisy (or stochastic) optimization problems — in which the objective function is
corrupted with noise — arise in many contexts, for example, in stochastic scheduling
and stochastic shortest/longest path problems, and simulation-based optimization
[48]. The CE method can be easily modified to deal with noisy optimization prob-
lems. Consider the maximization problem (13.9) and assume that the performance
function is noisy. In particular, suppose that S(x) = ES(x) is not available, but
that a sample value 5(x) (unbiased estimate of E5(x)) is available, for example via
simulation. The principal modification of the Algorithm 13.2 is to replace 5(x) by
£>(x). In addition, one may need to increase the sample size in order to reduce the
effect of the noise. Although various applications indicate the usefulness of the CE
approach for noisy optimization (see, for example, [1, 25, 26, 36]), little is known
regarding theoretical convergence results in the noisy case. Spall [51, Section 2.4]
discusses various divergence results for general types of stochastic methods. A pos-
sible stopping criterion is to stop when the sampling distribution has degenerated
enough. Another possibility is to stop the stochastic process when the sequence of
levels {7t} has reached stationarity; see for example [46, Page 207].

■ EXAMPLE 13.5 (Noisy Peaks Function)

This example is a noisy version of Example 13.3, for which the performance function
S has been corrupted by standard normal noise: 5(x) = S(x) +ε, ε ~ N(0,1). The
following MATLAB code provides a simple implementation of the CE algorithm to
maximize the peaks function when the sample performance values are corrupted
by noise in this way. The CE parameters and the function S.m are the same as
in Example 13.3. Typical evolution of the mean of the sampling distribution is
depicted in Figure 13.4.

Figure 13.4 Typical evolution of the mean vector with normal updating for the noisy
peaks function.

REFERENCES 477

%peaks\simplepeaks_noisy .m
n = 2;
mu = [-3,-3]; sigma = 3*ones(l
while max(sigma) > eps

X = randn(N,n)*diag(sigma)+
SX= S(X);

SX= SX+randn(N,l);

n);

mu(

sortSX = sortrows([X, SX],n+l);
Elite = sortSX((l-rho)*N:N,l
mu = mean(Elite,1);
sigma = std(Elite,1);
[S(mu)+randn,mu,max(sigma)]

end

:n)

°/0 dimens
N = 100;

Dnes(N.l),
"/»Compute
/»Corrupt

� % elite
7. take å
7, take å

%

ion
eps =

:) ;

1E-5; rho=0

the performance
with noise

samples
ample
ample

1;

mean row-wise
st.dev. row-

output the result
-wise

Further Reading

An easy tutorial on the CE method is given in [15]. A more comprehensive treat-
ment can be found in [46]; see also [47, Chapter 8]. The CE method home page
can be found at www. cemethod. org.

The CE method has been successfully applied to a diverse range of estima-
tion and optimization problems, including buffer allocation [1], queueing models
of telecommunication systems [14, 16], model fitting for the truck fleet problem
[3], optimal control of HIV/AID S spread [49, 50], signal detection [30], combina-
torial auctions [9], DNA sequence alignment [24, 39], scheduling and vehicle rout-
ing [4, 8, 11, 20, 23, 54], neural and reinforcement learning [31, 32, 34, 53, 55],
project management [12], rare-event simulation with light- and heavy-tail distribu-
tions [2, 10, 21, 28], and clustering analysis [5, 6, 29]. Applications to combinatorial
optimization problems include the max-cut, traveling salesman, and Hamiltonian
cycle problems, see [17, 43, 44, 45]. For estimation and (noisy) optimization prob-
lems in the context of network reliability and design see [7, 22, 25, 26, 36, 37, 38, 40].
Importance sampling methods that use generalizations of the cross-entropy distance
are developed in [52]. The standard CE algorithms are highly parallelizable. For
details on parallel implementations of the CE method, see [18, 19].

REFERENCES

1. G. Alon, D. P. Kroese, T. Raviv, and R. Y. Rubinstein. Application of the cross-
entropy method to the buffer allocation problem in a simulation-based environment.
Annals of Operations Research, 134(1):137-151, 2005.

2. S. Asmussen, D. P. Kroese, and R. Y. Rubinstein. Heavy tails, importance sampling
and cross-entropy. Stochastic Models, 21(l):57-76, 2005.

3. A. Belay, E. J. O'Brien, and D. P. Kroese. Truck fleet model for design and assessment
of flexible pavements. Journal of Sound and Vibration, 311(3-5):1161-1174, 2008.

4 7 8 CROSS-ENTROPY METHOD

4. I. Bendavid and B. Golany. Setting gates for activities in the stochastic project
scheduling problem through the cross entropy methodology. Annals of Operations
Research, 172(l):259-276, 2009.

5. Z. I. Botev and D. P. Kroese. Global likelihood optimization via the cross-entropy
method, with an application to mixture models. In R. G. Ingalls, M. D. Rossetti,
J. S. Smith, and B. A. Peters, editors, Proceedings of the 2004 Winter Simulation
Conference, pages 529-535, Washington, DC, December 2004.

6. A. Boubezoula, S. Paris, and M. Ouladsinea. Application of the cross entropy method
to the GLVQ algorithm. Pattern Recognition, 41(10):3173-3178, 2008.

7. M. Caserta and M. Cabo-Nodar. A cross entropy based algorithm for reliability
problems. Journal of Heuristics, 15(5):479-501, 2009.

8. M. Caserta and E. Quinonez-Ricob. A cross entropy-Lagrangean hybrid algorithm
for the multi-item capacitated lot-sizing problem with setup times. Computers &
Operations Research, 36(2):530-548, 2009.

9. J. C. C. Chan and D. P. Kroese. Randomized methods for solving the winner de-
termination problem in combinatorial auctions. In Proceedings of the 2008 Winter
Simulation Conference, pages 1344-1349, 2008.

10. J. C. C. Chan and D. P. Kroese. Rare-event probability estimation with conditional
Monte Carlo. Annals of Operations Research, 2009. DOI: 10.1007/sl0479-009-0539-y.

11. K. Chepuri and T. Homem-de-Mello. Solving the vehicle routing problem with
stochastic demands using the cross entropy method. Annals of Operations Research,
134(1):153-181, 2005.

12. I. Cohen, B. Golany, and A. Shtub. Managing stochastic finite capacity multi-
project systems through the cross-entropy method. Annals of Operations Research,
134(1):183-199, 2005.

13. A. Costa, J. Owen, and D. P. Kroese. Convergence properties of the cross-entropy
method for discrete optimization. Operations Research Letters, 35(5):573-580, 2007.

14. P.-T. de Boer. Analysis and Efficient Simulation of Queueing Models of Telecommu-
nication Systems. P h D thesis, University of Twente, 2000.

15. P.-T. de Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein. A tutorial on the
cross-entropy method. Annals of Operations Research, 134(l):19-67, 2005.

16. P.-T. de Boer, D. P. Kroese, and R. Y. Rubinstein. A fast cross-entropy method for
estimating buffer overflows in queueing networks. Management Science, 50(7):883-
895, 2004.

17. A. Eshragh, J. A. Filar, and M. Haythorpe. A hybrid simulation-optimization algo-
ri thm for the Hamiltonian cycle problem. Annals of Operations Research, 2009. DOI:
10.1007/sl0479-009-0565-9.

18. G. E. Evans. Parallel and Sequential Monte Carlo Methods with Applications. PhD
thesis, The University of Queensland, Australia, 2009.

19. G. E. Evans, J. M. Keith, and D. P. Kroese. Parallel cross-entropy optimization. In
Proceedings of the 2007 Winter Simulation Conference, pages 2196-2202, Washington,
DC, 2007.

20. B. E. Helvik and O. Wit tner . Using the cross-entropy method to guide/govern mobile
agent 's pa th finding in networks. In S. Pierre and R. Glitho, editors, Mobile Agents
for Telecommunication Applications: Third International Workshop, MATA 2001,
Montreal, pages 255-268, New York, 2001. Springer-Verlag.

21. T. Homem-de-Mello. A study on the cross-entropy method for rare event probability
estimation. INFORMS Journal on Computing, 19(3):381-394, 2007.

REFERENCES 479

22. K.-P. Hui, N. Bean, M. Kraetzl, and D. P. Kroese. The cross-entropy method for
network reliability estimation. Annals of Operations Research, 134:101-118, 2005.

23. E. lanovsky and J. Kreimer. An optimal routing policy for unmanned aerial vehicles
(analytical and cross-entropy simulation approach). Annals of Operations Research,
2009. DOI: 10.1007/sl0479-009-0609-l.

24. J. Keith and D. P. Kroese. Sequence alignment by rare event simulation. In Proceed-
ings of the 2002 Winter Simulation Conference, pages 320-327, San Diego, 2002.

25. D. P. Kroese and K.-P. Hui. In: Computational Intelligence in Reliability Engineering,
chapter 3: Applications of the Cross-Entropy Method in Reliability. Springer-Verlag,
New York, 2006.

26. D. P. Kroese, S. Nariai, and K.-P. Hui. Network reliability optimization via the
cross-entropy method. IEEE Transactions on Reliability, 56(2):275-287, 2007.

27. D. P. Kroese, S. Porotsky, and R. Y. Rubinstein. The cross-entropy method for contin-
uous multi-extremal optimization. Methodology and Computing in Applied Probability,
8(3):383-407, 2006.

28. D. P. Kroese and R. Y. Rubinstein. The transform likelihood ratio method for rare
event simulation with heavy tails. Queueing Systems, 46(3-4):317-351, 2004.

29. D. P. Kroese, R. Y. Rubinstein, and T. Taimre. Application of the cross-entropy
method to clustering and vector quantization. Journal of Global Optimization,
37(1):137-157, 2007.

30. Z. Liu, A. Doucet, and S. S. Singh. The cross-entropy method for blind multiuser de-
tection. In IEEE International Symposium on Information Theory, page 510, Chicago,
2004. Piscataway.

31. A. Lörincza, Z. Palotaia, and G. Szirtesb. Spike-based cross-entropy method for
reconstruction. Neurocomputing, 71(16-18):3635-3639, 2008.

32. S. Mannor, R. Y. Rubinstein, and Y. Gat . The cross-entropy method for fast policy
search. In The 20th International Conference on Machine Learning (ICML-2003),
pages 512-519, Washington, DC, 2003.

33. L. Margolin. On the convergence of the cross-entropy method. Annals of Operations
Research, 134(1):201-214, 2005.

34. I. Menache, S. Mannor, and N. Shimkin. Basis function adaption in temporal differ-
ence reinforcement learning. Annals of Operations Research, 134(l):215-238, 2005.

35. T. P. Minka. Estimating a Dirichlet distribution, 2000. Available at h t t p : / /
r e s e a r c h . m i c r o s o f t . c o m / e n - u s / u m / p e o p l e / m i n k a / p a p e r s / d i r i c h l e t / .

36. S. Nariai. Cross-Entropy Methods in Telecommunication Systems. P h D thesis, The
University of Queensland, Australia, 2009.

37. S. Nariai and D. P. Kroese. On the design of multi-type networks via the cross-entropy
method. In Proceedings of the Fifth International Workshop on the Design of Reliable
Communication Networks (DRCN), pages 109-114, Naples, 2005.

38. S. Nariai, D. P. Kroese, and K.-P. Hui. Designing an optimal network using the cross-
entropy method. In Intelligent Data Engineering and Automated Learning, Lecture
Notes in Computer Science, pages 228-233, New York, 2005. Springer-Verlag.

39. V. Pihur, S. Dat ta , and S. Dat ta . Weighted rank aggregation of cluster validation
measures: a Monte Carlo cross-entropy approach. Bioinformatics, 23(13):1607-1615,
2007.

40. A. Ridder. Importance sampling simulations of Markovian reliability systems using
cross-entropy. Annals of Operations Research, 134(1):119-136, 2005.

http://

4 8 0 CROSS-ENTROPY METHOD

41. R. Y. Rubinstein. Optimization of computer simulation models with rare events.
European Journal of Operational Research, 99(1):89-112, 1997.

42. R. Y. Rubinstein. The cross-entropy method for combinatorial and continuous opti-
mization. Methodology and Computing in Applied Probability, 1(2): 127-190, 1999.

43. R. Y. Rubinstein. Combinatorial optimization, cross-entropy, ants and rare events.
In S. Uryasev and P. M. Pardalos, editors, Stochastic Optimization: Algorithms and
Applications, pages 304-358, Kluwer, Dordrecht, 2001.

44. R. Y. Rubinstein. Combinatorial optimization via cross-entropy. In S. Gass and
C. Harris, editors, Encyclopedia of Operations Research and Management Sciences,
pages 102-106, Kluwer, Dordrecht, 2001.

45. R. Y. Rubinstein. The cross-entropy method and rare-events for maximal cut and
bipartition problems. ACM Transactions on Modelling and Computer Simulation,
12(l):27-53, 2002.

46. R. Y. Rubinstein and D. P. Kroese. The Cross-Entropy Method: A Unified Ap-
proach to Combinatorial Optimization, Monte Carlo Simulation and Machine Learn-
ing. Springer-Verlag, New York, 2004.

47. R. Y. Rubinstein and D. P. Kroese. Simulation and the Monte Carlo Method. John
Wiley & Sons, New York, second edition, 2007.

48. R. Y. Rubinstein and B. Melamed. Modern Simulation and Modeling. John Wiley &
Sons, New York, 1998.

49. A. Sani. Stochastic Modelling and Intervention of the Spread of HIV/AIDS. PhD
thesis, The University of Queensland, Australia, 2009.

50. A. Sani and D. P. Kroese. Controling the number of HIV infectives in a mobile
population. Mathematical Biosciences, 213(2):103-112, 2008.

51. J. C. Spall. Introduction to Stochastic Search and Optimization: Estimation, Simula-
tion, and Control. John Wiley & Sons, New York, 2003.

52. T. Taimre. Advances in Cross-Entropy Methods. PhD thesis, The University of
Queensland, Australia, 2009.

53. A. Unveren and A. Acan. Multi-objective optimization with cross entropy method:
Stochastic learning with clustered Pareto fronts. In IEEE Congress on Evolutionary
Computation (CEC 2007), pages 3065-3071, Singapore, 2007.

54. J. Wang, X. Gao, J. Shi, and Z. Li. Double unmanned aerial vehicle's path planning
for scout via cross-entropy method. In 8th ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing,
volume 2, pages 632-635, Qingdao, 2007.

55. Y. Wu and C. Fyfe. Topology preserving mappings using cross entropy adaptation.
In 7th WSEAS International Conference on Artificial Intelligence, Knowledge Engi-
neering and Data Bases, pages 176-181, Cambridge, 2008.

CHAPTER 14

PARTICLE METHODS

There is a large diversity of iterative Monte Carlo methods, known under various
names in different fields of engineering and science as evolutionary or population
Monte Carlo, sequential Monte Carlo, branching or interactive particle filters, par-
ticle splitting, genealogical tree models, and mean field or Feynman-Kac particle
models. In this chapter we focus on particle splitting methods with applications in
the following areas.

1. Combinatorial counting problems such as the satisfiability (SAT) counting
problem;

2. Bayesian marginal likelihood estimation and simulation from posterior densi-
ties;

3. Combinatorial optimization problems such as the binary knapsack problem,
the traveling salesman problem, and the quadratic assignment problem;

4. Simulation from complex multidimensional pdfs with applications to network
reliability estimation.

For an account of the classical splitting method for estimation of hitting probabil-
ities of Markov processes, see Section 10.6. In particular, the fixed effort and fixed " ^ 409
splitting methods in Section 10.6 are precursors to the particle splitting approach.
Sequential Monte Carlo is closely related to the sequential importance sampling
method described in Section 9.7.5. For an MCMC approach to estimating marginal "3° 369
likelihoods and sampling from posterior densities, we refer to Section 6.2. Finally, " ^ 233
Section 16.5 gives a detailed account on network reliability estimation via splitting. "S" 567

Handbook of Monte Carlo Methods. By D. P. Kroese, T. Taimre, Z. I. Botev 481
Copyright © 2011 John Wiley & Sons, Inc.

4 8 2 PARTICLE METHODS

14.1 SEQUENTIAL MONTE CARLO

Iterative or sequential Monte Carlo methods form a broad class of techniques that
combine sequential importance sampling and bootstrap resampling. A large number
of sequential Monte Carlo algorithms can be described in the following generic form.

369 Suppose we have the setting of sequential importance sampling in Section 9.7.5.
In other words, we wish to sample from a density / (x) using an importance sampling
density

S(x) = 9l{xi) 92{X2 I Xl)---gn{Xn I Xl:n-l) ,

where Χχ:ί = (χχ,... ,xt) for all t, with x = x i : n . Each Xi is possibly multi-
dimensional and sampling from gt{xt | x i : t - i) is assumed to be easy. Each element
in the set {xi : t} is referred to as a particle. Let / i , J 2 , · · ■ , / n be a sequence
of auxiliary pdfs that are easily evaluated and such that each ft(xi:t) is a good
approximation to / (x i : t) , with / „ (x) = / (x) · Then, the likelihood ratio / (x) / (/ (x)
can be written as

fl(xi) /2(X1:2) /3(X1:3) /n(xi:n)

9l(xi) fl{xi)92(x2\xi) /2(Χΐ:2)33(^3|Χΐ:2) fn-1 (Xl:n-l) 9n(xn | Xl:n-l) '

and can be computed recursively via w t = ut w*-i, t = 1 , . . . , n, with WQ — 1 and

/t(xl:t) p, \ ,
ut = ~t—-, T—-,—i r , /o(xi:o) = 1 ·

Λ-ΐ(Χΐ:ί-ΐ)οΗΖί|Χΐ:ί-ΐ)

To sample (approximately) from / (x) we can use the following algorithm.

Algor i thm 14.1 (Sequen t i a l M o n t e Car lo)

1. Initialization. Sample Xj,... ,Χ^ ~ gi{xi) and set t = 1.

2. Importance Sampling. For each j = 1 , . . . , N, sample Yt
J ~ 9t{Vt \ Xj - t _i) ,

and compute the importance weights

ut,j fA)
ft-iÇX.l.t-1)9t{Yt

1\Xl.t-1)

where Z\.t = (X{. t_ 1 ; Yt
3). Renormalize the weights so that Σ ι = ι ut,j = 1·

3. Select ion. Given the population of particles Z j . t , . . . , Zjft, generate the new
population 'X.\.t,..., X]Yt by sampling independently N times from the mixture
pdf

Σ^ίχ ΐ^Ζί:«} ·

4- Stopping condit ion. / / 1 = n, exit and output the population of particles
X j : t , . . . , X ^ ; otherwise, increment t = t + 1 and repeat from Step 2.

The selection Step 3 above corrects for the sampling bias introduced by sampling
" ^ 362 from the density g rather than / — similar to the likelihood ratio in importance

sampling. Note that removing the selection step from the algorithm above results
"3F 370 in the simpler SIS Algorithm 9.9.

SEQUENTIAL MONTE CARLO 4 8 3

The selection Step 3 is known under various names: boots trap filter, boot -
strap resampling, and sample importance resampling (see [16, 30]). Note
that this step is equivalent to sampling with replacement from a multinomial dis-
tribution. To reduce the variability due to using a bootstrap filter, it is common
to use stratification. The following algorithm is one of many possible ways to use
stratified sampling within the bootstrap filter [22, 24]. "3° 356

Algori thm 14.2 (Stratified Resampl ing) To sample N times with replacement
from the population 1,2, . . . ,n according to the probabilities ρι,ρ?, ■ ■ ■ ,pn, execute
the following steps.

1. Create Cj = _NPj\ copies of each element j in 1, 2 , . . . , n. Let

n

3 = 1

and store the copies within the first N — Nr elements of a vector of length N
as follows:

s = (l , . . . , l , 2 , . . . , 2 , - - - , n , . . . , n , 0 , . . . , 0) .

Note that the vector is padded with Nr zeros to ensure that its length is N. If
Nr = 0, go to Step 3; otherwise, proceed.

2. Sample NT times uniformly and without replacement from the set of numbers
1,2,. ..,n. Denote the resulting random population by Ζι,... ,Zpjr. Set

s = (1,... ,1,2,... ,2, ■ ■ -,n,... ,n, Zu ..., ZNr) .

N-Nr

3. Randomly permute the elements of s (using, for example, Algorithm 3.31) and "3* 79
output s.

Note that there is no loss of generality by resampling the population Ι,.,.,η, be-
cause the elements in 1 , . . . , n can be viewed as the indices of a more general pop-
ulation Χ χ , . . . , X„ .

The following MATLAB function implements the stratification algorithm.

function s=stratified_resample(p,N)
% input: [n,l] vector of resampling probabilities prob=[pl;..
7» where p(i) corresponds to the probability
% of resampling the i-th particle;
'/. scalar ’N’ denoting the number of required samples;
% output: [N,l] vector ’s’ which gives the
’/, indices (ranging from 1 to n) of the
7, particles forming the new sample;
p=p(:);n=size(p,l);
7.normalize any weights so that they are proper probabilities
p=p/sum(p);
c=floor(N*p);

� ;pn]

484 PARTICLE METHODS

s=zeros(N, 1) ; °/,preallocate memory
% deterministic resampling (step 1)
cum=0; % cumulative sum of deterministic copies
for i=l:n

det_copy=c(i);
s(cum+1:cum+det_copy)=i*ones(det_copy,1);
cum=cum+det_copy;

end
N_r=N-sum(c); % residual number
7, start step 2
if N_r~=0 °/0 perform residual sampling if needed

s(N-N_r+l:N)=resample(n,N_r);
end
°/0 d e s t r o y t h e s t r u c t u r e induced by t h e c o n s t r u c t i o n of s
% by randomly r e a l l o c a t i n g t h e i n d i c e s of s ;
s=s(randperm(N)) ; %step 3

The function resample .m below implements random uniform sampling from the
population Ι,.,.,η without replacement. The function samples k times, where
k < n. The function is most efficient when k -C n. For k close to n, a more efficient

■®° 79 approach for sampling without replacement is given in Example 3.22.

function x=resample(n
% Samples the numbers
’/, without replacement
x = zeros(l,n); S = 0
while S < k

x(ceil(n * rand(l
S = sum(x);

end
x = find(x > 0);

k)
1,
k

k-

... ,n
times

S))) .

% destroy sorted structure
x = x(randperm(k));

uniformly
where

= i;

k<n;

Figure 14.1 illustrates resampling the population 1 , . . . , 10 one hundred times
(N = 100) according to the probabilities

Pfc = , k = 1 , . . . , 10 .
yk 100

The left (right) panel shows the result of resampling without (with) stratification.
The resampling probabilities are indicated as circles and the random sample is
represented as dots stacked on top of each other. Note that in the left panel, point
1 is not present in the random sample, and although pio > pg, point 10 is sampled
fewer times than point 9. In contrast, in the right panel point 1 is sampled once
(in agreement with its expected value of Npi = 1) and the outcome is consistent
with the ordering pi < p? < ■ ■ ■ < pio. In summary, the outcome in the right panel
is consistent with lower sampling variability.

PARTICLE SPLITTING 4 8 5

Sequential Monte Carlo methods were initially designed for state-space models
such as target tracking, but have gradually found applications in areas such as
computer vision, pattern recognition, and Bayesian inference; see [10, 11].

Figure 14.1 The left panel shows a result of resampling of 1 , . . . , 10 without any
stratification, and the right panel shows the result of resampling of 1 , . . . , 10 with
stratification. The resampling probabilities, pk = 2fc/100, k = 1 , . . . , 10, are indicated
with circles, and the outcome of the resampling as dots stacked on top of each other.

14.2 PARTICLE SPLITTING

The remainder of this chapter deals with the generalized spl i tt ing (GS) algo-
rithm [1, 2, 7], which can be viewed as a special case of the Holmes-Diaconis-Ross
algorithm described in Example 6.7, and which extends the applicability of the BS" 247
classical fixed effort splitting method [14] to both static (that is, time-independent)
and non-Markovian models; see Section 10.6. "3° 409

In addition to its links with the classical splitting of Kahn and Harris [21],
the GS algorithm is also a special case of an improved sequential Monte Carlo
algorithm [20, 27] with the following important difference. In sequential Monte
Carlo we use bootstrap sampling (possibly stratified) to replicate the same particle
in a population numerous times. This typically decreases the diversity of the Monte
Carlo population. In contrast, there is no resampling step in the GS algorithm. As
a result the diversity in the Monte Carlo population is improved. In addition, the
unbiasedness property of the GS estimator is not a direct consequence of similar
results for other sequential Monte Carlo estimators [26, 27].

The GS method involves the following general framework (see also (9.16) and i®° 362
(13.1)). Let £ be the expected performance of a stochastic system of the form i®° 464

/ H , X C = EH(X)= /ff(x)/(x)dx, X ~ / , (14.1)

where i ï is a real-valued function. When X is discrete the integral is replaced with
a sum. We call / the nominal pdf. A special case of (14.1) is obtained when

486 PARTICLE METHODS

H(x) = I{s(x)^7} ; where S is a given function — called the importance function
— and 7 is a threshold or level parameter such that

£d=i(7)=El{s[x)>l}=F(S(X)>1), X~/ , (14.2)

"S" 381 is a rare-event probability. Another special case of (14.1) is obtained when i f (x) =
e - s (x) /7) which arises frequently in statistical mechanics in the estimation of the

*& 263 partition function [29].
Using the GS algorithm, we construct unbiased estimators for rare-event prob-

abilities of the form (14.2) and, in general, multidimensional integrals of the form
(14.1). The GS method tackles these static non-Markovian problems by artificially
constructing a Markov chain using, for example, Gibbs or hit-and-run moves, and
then applying the splitting idea to the Markov process induced by these moves.

14.3 SPLITTING FOR STATIC RARE-EVENT PROBABILITY
ESTIMATION

We first explain how one can obtain unbiased estimates of the rare-event probability
(14.2). Choose the importance function S and partition the interval (—00,7] by
using intermediate levels —00 = 70 ^ 7i ^ · · · ^ 7 τ - ι ^ 7τ = 7· Note that , unlike
in classical splitting, 70 = —00. We assume that the sequence of levels is chosen such
that the conditional probabilities P(S(X) ^ jt I S(X) ^ 7 t - i) = c t, t = 1 , . . . , T,
are not rare-event probabilities, and that we have estimates {gt} of {c t} available.
These estimates cannot usually be determined online, but in Section 14.4 we explain
how we can construct the sequence {(74, Qt)}T=i using the ADAM algorithm (see
also [2]). Without loss of generality, we assume that generating random variables
from the nominal pdf / is easy.

Algor i thm 14.3 (GS Algor i thm for Est imat ing £ = P (S (X) ^ 7)) Given a
sequence {{jt, Qt)Yt=\ o,nd a sample size N, execute the following steps.

1. Initialization. Set t = 1 and No = Q\ — (which ensures that iVo/f>i is an

integer). Generate

X „ iid „

l j ■ · · ι Λ Λ Γ ο Μ ~ /

and denote XQ = { X i , . . . , X jy 0 / e i } . Let X\ be the largest subset of elements
X in XQ for which S(X) ^ 71, and let N\ be the size of X\. If Νχ = 0, go to
Step 4.

2. Markov chain sampling. For each Xj in Xt = {Xi , · · ■,Xjvt}, sample
independently:

Yi,j ~ « t (y | Y » , j - i) , Yi,o = X», 3 = l,...,Su , (14.3)

where Sti is the splitting factor

Su
1

.Qt+i
^Berf l 1

Qt+i
i = h...,Nt

Here Kt(y | Yij-i) is a Markov transition density with stationary pdf

, , s def / (y) I{S(y)^7 t>

SPLITTING FOR STATIC RARE-EVENT PROBABILITY ESTIMATION 4 8 7

Reset

%t = { Y l , l Ύ ΐ , 2 i · · ·) Y l , 5 t i > i YiVt.l > YjVt,2 , · · · |YjV,,ÄfN, j >

where Xt contains \Xt\ = Σί=ι^ί elements and K[\Xt\ I Nt} = —*-.

3. Updat ing . Let Xt+\ = {Xi , · ■ ·, Xiv t + i} be the largest subset of elements in
Xt for which 5 (X) ^ Jt+i ■ Here, Nt+i is the size of Xt+\ ■ Increase the level
counter: t = t + 1.

4- Stopping condit ion. If t = T go to Step 5. If Nt = 0, set Nt+i = Nt+2 =
• · · = NT = 0 and go to Step 5; otherwise, repeat from Step 2.

5. Final est imator . Deliver the unbiased estimate of the rare-event probability,

^ NT J-r
/ = Α £ Π * . (14·4)

u t = l

and the unbiased estimate of the variance of the estimator I:

_ . π Τ 2 No/Qi , s 2

^ - s f c > s (ft-&*■)· <i46)

where Oi denotes the number of points in XT that share a common history
with the i-th point from the initial population XQ and have their S value on
or above level y at the final iteration.

Ideally, we would like to draw from the conditional density / t (y) at each stage
t of the algorithm. However, this is typically impossible. Instead, in Step 2 of
Algorithm 14.3 we use MCMC to approximately sample from / t (y) . In particular,
a move from X to Y (using the transition density K t(y | x)) can, for example, consist
of drawing Y from the conditional pdf

Yi ~ ft{yi\Yi,---,Yi-i,Xi+i,---,Xn), i = 1, ■■·,«- ,

as in the Gibbs sampling method (Section 6.2). The transition density is then "S3 233

n

« t (y | x) = Y[ft(yi\yi,---yi-i,Xi+i,---,xn) · (14.6)
i = l

Alternatively, a move from X to Y may consist of a hit-and-run move (Sec-
tion 6.3.1): 'S? 240

1. Generate a uniformly distributed point on the surface of the n-dimensional
hypersphere:

my-m)· Z · Ζ » Κ Ν < ° · 1 > -

488 PARTICLE METHODS

2. Given the current state X, generate Λ from the density

/ (X + Ad)
5 (A | X , d)

f^m + u^du
3. The new state of the chain is

X + Ad if 5 (X + Ad) > 7 t ,

X otherwise.

We illustrate Algorithm 14.3 on a typical problem of the form (14.2) with three
levels (Γ = 3). Figure 14.2 depicts the GS recipe as applied to a particular two-
dimensional rare-event simulation problem.

Figure 14.2 Typical evolution of the GS algorithm in a two-dimensional state space.

The three level sets {x : S(x) = 7t} , t = 1,2,3 are plotted as nested curves and
the entrance s tates for stages 1 and 2 are encircled. We assume that the {74} are
given and that Qt = 1/10 for all i; that is, the splitting factors are: St = Q^1 = 10
for all t. Initially, at stage t = 1, we generate NQ/QI = 10 independent points from
the density / (x) . We denote the points X i , . . . , Xio- Two of these points, namely
X i and X2, are such that both >S(Xi) and 5(X2) are above the 71 threshold. Points
X i and X2 are thus the entrance states for the next stage of the algorithm, and

SPLITTING FOR STATIC RARE-EVENT PROBABILITY ESTIMATION 4 8 9

Ni = 5^7=11{^(-^i) ^ 7i} = 2· In stage t = 2 we start independent Markov chains
from each of the entrance states Χχ and X2. The only requirement is that each
Markov chain has a stationary distribution equal to the conditional distribution of
X given that S(X) ̂ 71, where X ~ / . The length (the number of steps) of both
chains is equal to s2 = 10. Thus, the simulation effort for t = 2 is ΛΊ x s2 = 20. In
other words, in stage t = 2 we generate

X i j ~ κ ι (χ | Χ ^ _ ι) , j = 1 , . . . , 10, i = l , 2 ,

where X^o = Xi , and κ\(- | ·) is a Markov transition density with stationary pdf f\
given by (t = 1)

Λ (Χ) = / (X) ^ f " } - (14.7)

Figure 14.2 depicts the Markov chains as branches sprouting from points X i and
X2. Note that these branches are drawn thicker than branches generated at stage
t = 3 to distinguish the stages from each other. None of the points on the X2 branch
have a value S above 72. Points Χχ^, X I . 6 J X I , 7 from the X i branch (encircled)
make it above the 72 threshold. These three points will be the entrance states for
stage t = 3 of the algorithm. Thus,

-^2 = > . I/SfXi Λ>~ι-,\ + I Σ({S(Xi,j)>72> + i { S (X 2 , j) > 7 2 } ,

In the final stage we start three independent Markov chains with stationary density
/2 from each of the entrance states Χ ι ^ , Χ ι , β , and X i j . The length of each chain
is S3 = 10. Thus, the simulation effort for stage t = 3 is 3 x 10 = 30, and we
generate

Xi,i,fc ~ κ2(χ I Xi,j,/fc_i), k = 1 , . . . , 10, j = 2 ,6,7 ,

where Xij ,o = X i j j a n d /i2(- | ·) is a Markov transition density with stationary
density f2 defined in (14.7). Figure 14.2 shows that the points that up-cross level
73 are Xi,2,fc> fc = 3 , . . . , 10 and 'Χ.χβ^, k = 7,8,10. Thus, in the last stage T = 3
we have Νχ = 11. Finally, an estimator of ^(73) is

and this gives the estimate 11 x 10~3. Proposition 14.3.1 on Page 492 shows that
such an estimator is unbiased.

Note that if ρ^1 is an integer, then the length of each Markov chain started from
an entrance state at stage t is deterministic, and if ρ^1 is not an integer, then, as
in the classical splitting method, the length of each Markov chain is taken to be a
random integer-valued splitting factor with expected value ρ^1. Even though all
entrance states at stage t are assigned a random splitting factor, these factors are
independent and have the same expected value. In Algorithm 14.3 such random
splitting factors are conveniently constructed by generating independent Bernoulli
random variables with a common success probability ρ^1 — [ft^J a n d then adding
[QÏ~1\ t ° the Bernoulli variables.

490 PARTICLE METHODS

Although Algorithm 14.3 has strong similarities with the classical splitting
409 method (in particular, fixed splitting) in Section 10.6, there are some important

differences. First, as seen from Figure 14.2, during the initialization of the GS al-
gorithm we do not run Markov chains, but generate iid vectors from the density /
in (14.2). In contrast, in the classical fixed splitting algorithm one always initial-
izes with a population of independent Markov chains. Second, in Algorithm 14.3
the first level is always 70 = —00, while in the classical splitting algorithm 70 is
usually finite. Finally, while in the classical fixed splitting we run the same Markov
process throughout all stages of the algorithm, in the GS algorithm the stationary
distribution of the Markov chains changes across the stages. More precisely, in the
GS algorithm, the stationary distribution at stage t is ft-i- As a result of this,
no Markov chain paths can go below level *yt-i in stage t of the GS algorithm. In
contrast, the paths in classical fixed splitting can down-cross thresholds and even
down-cross level 70.

■ EXAMPLE 14.1 (SAT Count ing Problem)

694 We wish to apply the GS method to a SAT counting problem. There are many
different mathematical formulations of the SAT problem [17]. Here we use a for-
mulation that is convenient for the problems from the SATLIB project [19] with
website www.sa t l ib .org . Let x = (x i , . . . , i n) T , x G {0 ,1} η denote a t ruth as-
s ignment and let A = (Aij) denote a n r a x n c lause m a t r i x ; that is, all elements
of A belong to the set {—1,0,1}. Define b = (b\,..., bm)T as the vector with entries
bi = 1 —]C™=11{Ai■=-].}■ I n the standard SAT problem one is interested in finding
a t ruth assignment x for which Ax > b. In the SAT count ing problem, one is in-
terested in finding the total number of t ruth assignments x for which Ax. ^ b . The
SAT counting problem is considered more complex than the SAT problem [34, 36],
and in fact the SAT counting problem is known to be a #P-complete problem.
Using this formulation the SAT counting problem reduces to estimating the size of
the set

.T* = j x e { 0 , l } n : ^ l j ^ ^ A >bX 2 m]

To estimate \$?*\ we consider the problem of estimating the probability

m s n >.

£ = P (S(X) > m), {X3} ~ Ber(l /2), S(x) = £ Ü ^ AtjXj > &Λ , (14.8)

via Algorithm 14.3. Thus, each row of A represents a clause and S'(x) is the number
of clauses that are satisfied. The size of the set is then estimated from the relation
\2£*\ = £ 2 n . As a numerical example, consider the uf 75-01 problem from the
SATLIB website, with m = 325, n = 75. We apply Algorithm 14.3 with N = 104

and the splitting factors and levels given in Table 14.1, giving a total simulation
effort of about 2.8 x 106 samples

The Markov transition density nt in Step 2 of Algorithm 14.3 is given by (14.6),
and the stationary pdf is

/ t (x) = 2 ^ H ^ è ^ ^ } > 7 i } ' xe{o'i}n-

SPLITTING FOR STATIC RARE-EVENT PROBABILITY ESTIMATION 4 9 1

In other words, a move from x to y using the transition density Kt (y | x) consists
of the following Gibbs sampling procedure.

1. Given a state x such that 5(x) > j t , generate Υχ ~ ft(yi I %2, ■ ■ ■, Xn)·

2. For each k = 2 , . . . ,n - 1, generate Yk ~ ft(yk \ ΥΊ , . . . , Yk-i,Xk+i, ■ ■ ■ ,xn)-

3. Finally, generate Yn ~ ft(yn | ΥΊ , . . . , Υ"„_ι).

Note that one can write the conditional density of Yk as

Pk, yk = i

where

ft{yk\Yi,---,Yk-i,Xk+i,---,xn) , ,

Pfc
I R > 7*}

with s7/ = S{Yi,... ,Yfc_i ,0,x f c + i , . . . ,xn), s^ = S(Yi,... ,Yfc_i, l,Xk+i, ■ ■ ■ ,xn)·

With the setup above, we obtain a typical estimate of |^"*| = 2.31 x 103 with an
estimated relative error of 5.8%. Total enumeration of all possible t ruth assignments
for which Ax ^ b would require the equivalent of a simulation effort of size 27 5 «
3.7 x 1022 and is hence impracticable. To achieve the same relative error using
crude Monte Carlo would require a sample size of approximately N = 4.8 x 1021.
Thus, we see that with a minimal amount of additional work the GS algorithm has
reduced the simulation effort over CMC by a factor of approximately 1015. Note
that a better choice for the importance function S may allow for all conditional
probabilities ct = P(S(X) ^ 7 t | 5 (X) > 7 t - i) to be approximately equal, thus
giving an estimator with a smaller relative error. However the optimal choice of
the importance function in splitting is still an unresolved problem [13, 25].

T a b l e 14.1 The sequence
SAT problem uf 75-01.

t
1
2
3
4
5
6
7
8
9
10

It
285
289
292
294
296
298
300
302
303
304

Qt

0.4750
0.4996
0.4429
0.4912
0.4369
0.3829
0.3277
0.2676
0.4982
0.4505

of levels and splitting factors used in

t
11
12
13
14
15
16
17
18
19
20

It
305
306
307
308
309
310
311
312
313
314

Qt

0.4359
0.4239
0.3990
0.3669
0.3658
0.3166
0.3072
0.3104
0.2722
0.2253

t
21
22
23
24
25
26
27
28
29
30
31

L Algorithm 14.3

7*
315
316
317
318
319
320
321
322
323
324
325

Qt

0.2235
0.2071
0.1892
0.1722
0.1363
0.1413
0.1237
0.0953
0.0742
0.0415
0.0115

One additional benefit of our simulation is that we can put a deterministic lower
bound on \3C*\. This can be done as follows. The population Χχ at the final
iteration of Algorithm 14.3 is approximately uniformly distributed over the set
?£* and as a result can be used to find some of the distinct solutions of the SAT
problem. We ran Algorithm 14.3 ten times with N = 104 and were able to find

492 PARTICLE METHODS

Table 14.2 SAT counting problem results with problems taken from [19].

Instance

uf75-01
uf75-02
uf250-01
RTI_k3_nlOO_m429_0
RTI_k3_nlOO_m429_l
RTLk3-nl00-m429-2
RTI_k3-nlOO_m429_3
RTI.k3.nl00.m429_4
RTLk3_nlOO_m429_5
RTI_k3_nlOO_m429_6
RTI_k3_nlOO_m429_7
RTI_k3_nlOO-m429-8

\3C*\

2258.28
4590.02

3.38 x 1011

20943.79
24541.70
3.9989
376.016
4286.28
7621.11
2210.20
1869.64
1832.29

relative error

0.03%
0.07%

4.4%
0.01%
0.02%
0.01%
0.01%

0.3%
0.7%

0.01%
0.3%

0.01%

2258 distinct solutions among the ten final populations generated at iteration T.
Thus, we conclude that |JT*| ^ 2258.

Remark 14.3.1 (GS a n d Importance Sampling) We note that significant
variance reduction can be achieved when the GS algorithm is used in conjunc-
tion with importance sampling [2, 3]. The idea is as follows. Consider applying

"S* 404 the CE Algorithm 10.8 with the following ingredients: (1) in Step 1 we use the
final population of the GS algorithm, Χτ, as an approximate sample from g*\ (2) in
Step 2 we select the multivariate Bernoulli mixture as the importance sampling pdf:

K n

/(χ;ν) = 5>*Πρ*ί(1 -Ρ'«) 1~ χ ' '
fc=l j=l

where K is the number of mixture components, w = (wi,... ,WK), with X) fe=1 Wfc =
1 and Wk ^ 0, are the weights associated with each component, each ρ& =
(pfci, · ■ ■ ,Pkn) is a vector of probabilities, and v = (w , p i , . . . ,ρκ) collects all the
unknown parameters (we assume that K is known). The maximum likelihood prob-

■®° 711 lern in Step 2 of Algorithm 10.8 is solved using the EM algorithm, see Section D.7.
Table 14.2 shows the importance sampling estimates with their respective relative
error obtained using Algorithm 10.8 with the setup described above. The SAT
instances are from [19]. Note that in Example 14.1 we used Algorithm 14.3 to find
2258 distinct solutions for the uf75-01 instance.

Propos i t ion 14.3.1 (U n b i a s e d n e s s of t h e G S e s t i m a t o r) The estimator in

(14.4) is an unbiased estimator of t, and (14.5) is an unbiased estimator ofVax(£).

Proof: Using the notation of Figure 14.2, we can write

T

p i= l

ADAPTIVE SPLITTING ALGORITHM 4 9 3

where p = (p i , . . . ,ρτ), and pi ranges over 1 , . . . , ΛΌ/βι and pt, t ^ 2, ranges over
1 , . . . ,iS t_i)Pt !■ In addition, X P l ~ / , independently for all p i , and for t ^ 2 we
have Xp l j . . . iP t ~ /ΐ*-ι(· I Χρ!,...,ρι-ι) with 'X.Pl,...,Pt_1,o = Χρ^.,.,ρ,.,·

Since the splitting factors {<St,Pt} are independent of { X P l , X P l i P 2 , . . . , X P } , we
can write

T

nNT\{SttPt}] ^ Ε Π 1 ^ „)»7.1 ·
p t= l

The expectation under the multiple summation is

/ • • 7 / (Χ ρ ι Η ΐ ^ χ , , ^ τ ι Η YlY[Kt-l(xPi,...,pt-1,l\Xp1,...,Pt-1,l-l)
J J M=2i= l

x I{S(xP1,...,J)t)>7t} J dxP l---dxP l , . . . ,P t ,

which, by integrating in the order defined by dxP l · · -dxp l ! . . . iP t and each time ap-
plying the invariance property

/ ■ / (x) I { s (x) > 7 t } K i (y | x) d x = / (y) I { S (y) ^ 7 i } for all t , (14.9)

yields £ = £{ητ) = J / (x) I{s(x)>7T} dx. Therefore,

ENT = E E[NT | {St,Pt}} = I E^2 1 = " N°
nf=i ft

and the estimator (14.4) is unbiased. To derive the variance of (14.4), observe that
by definition

T

0P1 = I{s (x P 1)> 7 i} z J I I 1 ! ^ ^ ! . ,vt)>it} ■
P2,...,pTt=2

Since the { X P l } are independent and Νχ = Σρ 0Pl, we have Var(JVr) =

^ V a r (O p J , from which (14.5) follows.

Regardless of the mixing speed of the Markov chains, the estimator £ is unbiased.
However, that does not mean that the mixing of the chain is irrelevant. In the
extreme case of no mixing at all, that is, when the chain does not move in the
sample space, the estimator £ reduces to the unbiased crude Monte Carlo estimator
of the rare-event probability £.

14.4 ADAPTIVE SPLITTING ALGORITHM

We now describe the algorithm which we use as a pilot run to estimate the splitting
factors {gt} and the levels {7*}. It is the earliest version of the GS algorithm [2], and
we will refer to it as the A D A M algorithm, which stands for ADAptive Multilevel
splitting algorithm. For example, Table 14.1 was created using Algorithm 16.9 with
N = 1000, Q = 0.5, and the Markov transition density in Example 14.1.

494 PARTICLE METHODS

Algori thm 14.4 (A D A M Algori thm) Given the sample size N and the param-
eters ρ € (0,1) and η, execute the following steps.

1. Initialization. Set the counter t = 1.

(a) Generate X i , . . . , Xjv ~ / and denote XQ = { X i , . . . , X J V } ·

(b) Denote Si = S(X») for all X* G Xt-i, and let

f 1 N 1
7t = argmin \ — Υ " ΐ { 5 ^ 7 } ^ Q \ ■ (14.10)

That is, 7 t is the smallest value from among S ' (X i) , . . . , Ä (X J V) SMC/Î that
W Σ ί = ι H'S'iXi) ^ It} ^ g· 5ei 7 t = min{7 ,7 t } . Let Xt be the subset of
all elements in Xt-i for which S(X) ^ 74. Let Nt = \Xt\- Then, gt = jf-
is an approximation of the probability ct = P/(S'(X) ^ 7 t | SÇK.) ^ 7 t - i) ,
setting 70 = —00.

2. Markov chain sampling. Identical to Step 2 of Algorithm H-S, except that
in (14.3) the splitting factors are generated in a different way, namely,

Su
N_

N
+ BU i = l,...,Nt

Here, the random variables S i , . . . , Sjvt are Ber(l/2) random variables condi-
tional on Σί=ι Βί = (N mod Nt). More precisely, (S i , . . . , S jvJ is a binary
vector with joint pdf

(AT. — r)\r\

¥(B1 = bu...,BNt= bNt) =
 l l

NJ- · i{6 l+...+bwt=r}, h e {0 ,1} ,

where r = (N mod Nt). As a consequence of the generation of the splitting
factors, after resetting

Xt = { Y l , l Ύ ΐ , 2 ! · · · i Yl .S t i > , ΥΛΓί,Ι , Υ Ν , , 2 , ■ · · , ~^Nt,StNt) '

the set Xt contains exactly N elements.

3. Updat ing and Est imat ion. Update the counter t = t + 1 and proceed as in
part (b) of Step 1.

4- Stopping condit ion. / / 74 = 7, set T = t and go to Step 5; otherwise,
repeat from Step 2.

5. Final es t imates . Deliver the estimated levels 7 1 , . . . , 7 τ , the splitting factors
Qii ■ ■ ■ 1 QT-, and the estimate of the rare-event probability:

?ΑΒΑΜ = Π ^ = ί % ^ · (1 4 · η)
i = l

The main differences between the ADAM algorithm and the GS algorithm are the
following. First, the difference in Step 2 of the ADAM algorithm is that the splitting

file:///Xt/

ESTIMATION OF MULTIDIMENSIONAL INTEGRALS 4 9 5

factors are generated in a way that fixes the simulation effort at each stage to be N
(see [14]). Second, as seen from (14.10), the levels {7t} are determined online using
the random populations {Xt}- As a consequence of these differences, the estimator
^ADAM is not unbiased and the algorithm does not provide a simple estimate for
the variance of ^ADAM ·

The ADAM algorithm can be used as a stand-alone algorithm in the sense that
it can provide an estimate of I without the need for any preliminary simulation.
For example, in the SAT counting problem of Example 14.1 for the cost of 3.1 x 106

samples (TV = 105, ρ = 0.5) Algorithm 14.4 gives an estimate of \3£*\ = 2.26 x 103

with estimated relative error of 3%. This estimate is close to the one obtained using
GS with importance sampling, see Table 14.2.

14.5 ESTIMATION OF MULTIDIMENSIONAL INTEGRALS

In the previous section we show how one can estimate rare-event probabilities of the
form (14.2) using either ADAM or GS. In this section we extend the applicability
of these algorithms to the more general problem of estimating integrals of the form
(14.1). To this end we rewrite (14.1) using the following notation:

Z = EH(Z) = ip(z)H(z)dz, Z ~ p , (14.12)

so that now the aim is to estimate Z. We show that the GS algorithm provides
an unbiased estimate of Z and note that it can be easily extended to deal with
estimation of sensitivities [3]. First, note that

EH(Z) = 2E[if (Z) I { H (Z) > 0 }] - E |H(Z) | ,

so that without loss of generality we can consider estimating (14.12) for H(z) ^ 0.
Second, let p(z) be a proposal density from which it is easy to sample and which
dominates p{z)H(z) in the sense that

p{z)H{z)^ea'y+bp{z), for all z 6 R™, (14.13)

for some 7 ^ (InZ — b)/a, where a > 0 and b € M are fixed but otherwise arbitrary
constants. Note that the constant e a 7 + 6 is an upper bound on Z. Typically we
have e a 7 + 6 > Z or 7 > (InZ - b)/a, and in many cases it is natural to choose
p(z) = p (z) .

Algori thm 14.5 (Est imation of Z) Suppose we are given a proposal density
p(z), parameters 7, a, b such that (14.13) holds, and algorithm A, where A denotes
either the GS or the ADAM algorithm. Then, execute the following steps.

1. Est imat ion of I. Use algorithm A to compute an estimate ί(η) of

%) = E I { S (x)> 7 } = I / (x) I { S (x)^} dx , (14.14)

where the vector x = (z , u) T € Kn x (0,1) augments z with the variable
u € (0,1), the value S(x) is given by

a \ up(z)) a

4 9 6 PARTICLE METHODS

and the density / (x) by

/ (x) = p (z) I { 0 < „ < 1 } , X É I " + 1 .

2. Est imat ion of Z. Estimate Z in (14.12) by

Z = ea"l+bî(j) .

The following proposition shows that the estimate Z is unbiased if A is the GS
algorithm.

Proposition 14.5.1 (Relation Between i and Z) The pdf

^ψ^ (14.15)

is the marginal density of / T (X) = H1 \ / (X) ^{S(X)^JT} (reca^ that ητ = l), and

Z = ea~t+b£{-y).

Proof: Note that u is an auxiliary variable similar to the one used in the
59 acceptance-rejection method for random variable generation. From (14.13) it fol-

lows that (with x = (z, u)T so that xn+i = u):

/ fT (x) άχη+1 = / '-—— \\ - In M*^ S7>d«
u p(z) J a

*{Ί) JO I e ^ + 6 p(z) J £(7) e-r+b '

because ^ l " ^ ^ 1 for all z by (14.13). Since Z is the normalizing constant of

p(z)H(z), we conclude that Z = ea"<+b£{j) .

To illustrate the efficiency of Algorithm 14.5 in estimating (14.12), we consider
three examples.

■ EXAMPLE 14.2 (Two H u m p s Function)

The following toy example is adapted from [34]. Consider the problem of estimating
without bias the normalizing constant Z = Z(X) of the pdf proportional to

fr(z;A)=exp ± Δ- x——^ , Ζ Ε Γ ,

for some parameter λ £ ΐ , say λ = 12. The density h(z; 12)/Z(12) is plotted in
Figure 14.3.

ESTIMATION OF MULTIDIMENSIONAL INTEGRALS 4 9 7

Figure 14.3 The surface of the two humps density h(z; 12)/Z(12).

This is a problem of the form (14.12) with

p(z) = — e x p l — ~ 2) a n d H(z) = 2 7 r e x P (—^

We apply Algorithm 14.5 with p(z) = p(z), a = | , and i> = 4j- + ln(27r). Then,
(14.14) can be written as

£(7) = P(5(X) > 7) = P (- (^ 1 ^ 2 - λ) 2 - 2 In U > Ί) ,

where the vector x = (z, u)T is augmented such that

/ (χ) = ^ e x P (̂ —) 1{0<«<i} ·

We take the level 7 = 0, so that (14.13) holds. To apply the GS algorithm for
the estimation of (14.14), we need to specify the transition pdf nt with stationary
density

f , s _ / (x) l{S{x)>-yt} / (x) I {-(ziz2 - A)2 - 2 h m ^ 7 t }
/ i W " Kit) ~ Kit)

A move from X to X* using the transition density Kt(X* | X) consists of the fol-
lowing (systematic) Gibbs sampling procedure.

498 PARTICLE METHODS

Algor i thm 14.6 (Transition Dens i ty K t(X* | X))

1. Given a state X = {Z\,Z2,U)T for which S(X.) ^ jt, generate Z{ ~
ft{zi | Z2, U); that is, draw Z{ from a truncated standard normal density on
the interval (Λ , /2) ; where Ιχ = m i n { - ^ , -^}, li = m a x { - ^ , " z ^ L and
μ = V - 7 t - 2 1 n t / .

2. Generate Z% ~ ftizZ \Zi,U); that is, draw ZX from a truncated standard

Λ-μ λ+J

Ζ,* ' Ζ,*

normal density on the interval (Ι^,Ι^), where 1^ = m i n { ^ # , -£{*■}, 1%

m a x { - ^ , -γ^}, and μ = V - 7 t — 21n£/.

3. Generate U* ~ ft(u* \ Z£, Z£); that is, a uniform random variable U* on the
interval (0,//*), where

μ = m i n | l , exp I ^ — ^)) ·

Output X* = {Z{, Z2*, U*)T.

To estimate I = ί(0) we apply the GS algorithm with N = 2000, λ = 12, and
the levels and splitting factors in Table 14.3.

Table 14.3 Levels and splitting factors used to compute the normalizing constant
of h{z).

t
It
Qt

1
-117.91

0.1

2
-77.03

0.1

3
-44.78

0.1

4
-20.18

0.1

5
-4.40

0.1

6
0

0.2853

We obtain a typical estimate of £ = 2.92 x 10 6 with an estimated relative error
of 5%. Hence, in Step 2 of Algorithm 14.5 we obtain Z = Î ea~<+b = £2irex^2 =
3.41 x 1026 with an estimated relative error of 5%. Note that Table 14.3 is computed
using the ADAM algorithm with ρ = 0.1, N = 2000, and using the same transition
density Kt- The combined simulation effort of the GS algorithm and the ADAM
algorithm is about 1.2 x 105 samples. In contrast, crude Monte Carlo estimation
of Z via the estimator jfY^i=1H(Zi), {Zj} ~üdp(z) , M = 1.2 x 105 gives an
estimate of 1.6 x 1026 with an estimated relative error of 60%.

For this two-dimensional example we can verify the simulation results using de-
terministic quadrature. An approximate value .2(12) « 3.5390 x 1026 was obtained
using the deterministic recursive Simpson's rule [12]. The constant Z in the next
two examples, however, cannot be easily computed using an alternative method
due to the high-dimensionality of the problem.

■ EXAMPLE 14.3 (Bayesian Marginal Likelihood)

231 In Example 6.2 we consider Bayesian inference on the model parameters ß
(/3i , . . . , ßk)T of the logistic model. The model is summarized as follows:

• Prior: f(ß) oc exp {-£ΐ\\β - /301|2), ß e Mfc, with β0 and σ given.

ESTIMATION OF MULTIDIMENSIONAL INTEGRALS 4 9 9

• Likelihood: f(y\ß) = ΠΓ=ι23Γ(1 " Pi)1'*', V~X = 1 + exp(-xT/3) , where
Xi = (xii,%i2, ■ ■ ■ ,%ik)T are the explanatory variables for the i-th response
and yi,..., yn are the binary response data.

The objective is to generate random vectors from the posterior pdf f(ß | y) oc
/ (/ 3) / (y I ß) and to estimate the marginal likelihood "3° 673

f(y) = Jf(ß)f(y\ß)dß.

Estimation of the marginal likelihood is of significant interest in Bayesian model
selection [8, 9, 18, 28]. Here we apply the framework of Algorithm 14.5 as follows.

• In (14.12) we take z = ß, p(z) = f(ß), and H{z) ΞΞ / (y | / 3) , so that Z =

/(y)·

• In (14.13) we let p(z) = f(ß) and choose 7 (with a = 1,6 = 0) to be a
conservative estimate of the maximum of the logarithm of the likelihood:

7 > max I n / (y 1/3) .

Then, the function S(x) in Algorithm 14.5 becomes (recall z = ß and x = (z,w)T):

n
S(ß, u) = - Σ & In (l + e - * " ") + (1 - »0 (xjß + In (l + e"*·7")) - In u ,

i= l

and the marginal likelihood estimate is / (y) = e7 £(y), where ί(η) is given in
(14.14).

As a numerical example we consider the same data used in Example 6.2, that
is, σ = 10 and β0 = 0, and use the ADAM Algorithm 14.4 as a subroutine in
Algorithm 14.5 with N = 103, Q = 0.1, and 7 chosen to be a conservative estimate
of the maximum log-likelihood value (estimated via Newton-Raphson); here we " ^ 688
take the Newton-Raphson estimate plus 5. We choose «t(X* | X) as the transition
pdf of the following hybrid of the hit-and-run and Gibbs sampler. I®' 242

Algor i thm 14.7 (Gibbs and Hi t -and-Run Hybrid for /c t(X* | X))

1. Given a state X = (Z , [/) T for which 5 (X) ^ 7t, generate from the condi-
tional pdf

ft{x I U) OC p(z) I{0<U<1} I{S(x)>7«}

using the hit-and-run algorithm. In other words, generate a vector d uni-
formly distributed over the surface the n-dimensional unit hypersphere. Then,
generate A ~ N (- x T d , 102). If S(Z + Ad, U) ^ 74, set Z* = Z + Ad; other-
wise, set Z* = Z.

2. Generate U* ~ / t (x | Z *) ; that is, a uniform random variable U* on the
interval (Ο,μ*), where

μ* = min {1, exp (- 7 t + S(Z*, U) + In U)} .

SetX = (Z*,U*)T.

3. Repeat Steps 1 and 2 above 10 times and output X* = (Z*,c7*)T .

500 PARTICLE METHODS

Running the MATLAB script Bayes i an_sp l i t .m below we obtain the point esti-
mate l n / (y) = 7 + In £(7) = —2828.90 with an estimated 95% confidence interval
(-2829.24, -2828.55). The script runs ADAM ten independent times and uses the
output to construct a confidence interval.

We now comment on the MATLAB programs below that generate the output. The
script Bayesian_spl . i t .m runs the function adam.m ten times. The function adam.m
implements the ADAM algorithm, and is written in a generic form using a number
of subroutines. Applying ADAM to a different problem necessitates changes only
to some of its subroutines. These subroutines are as follows.

1. nominal _pdf .m — implements sampling from the nominal pdf / (x) .

2. mcmc.m — implements sampling from the transition pdf K t(y | x) . For this
particular problem it implements the hit-and-run and Gibbs hybrid described
above.

3. S. m — implements the problem-specific importance function.

4. s t r a t i f i e d _ s p l i t . m — generates the splitting factors required in Step 2 of
the ADAM algorithm, and is the same for all problems.

5. t h r e sho ld .m — implements the computation of the level 7 t (see (14.10) in
Step 1 of ADAM), and is the same for all problems.

% Bayes i an_sp l i t .m
c l e a r a l l . c l c
g l o b a l Y X
n=5000; % number of data points (y_l,...,y_n)
k=3; % number of explanatory variables
°/0 generate artificial dataset
randn(’state’, 12345); rand(’state’, 67890);
truebeta = [1 -5.5 1] ’;
X = [ones(n,l) randn(n,k-l)*0.1]; ’/, design matrix
Y = binornd(l,l./(l+exp(-X*truebeta)));
bo=zeros(k, 1) ; °/, we use Vo=100*eye(k) ;

’/, determine the Maximum Likelihood using Newton Raphson
err=inf ; b=bo; °/0 initial guess
while nonn(err)>10~(-3)

p=l./(l+exp(-X*b));
g=X’*(Y-p);
H=-X’*diag(p.~2.*(l./p - 1))*X;
err=H\g; % compute Newton-Raphson c o r r e c t i o n
b = b - e r r ; % update Newton guess fo r MLE

end

l o g _ H _ b = S ([b ' , _]) ; "/.logarithm of MLE
N=10~3; r h o = 0 . 1 ; Gamma=log_H_b+5; "/(Conservative upper bound
% GS a lgor i thm s t a r t s he re

http://Bayesian_spl.it

ESTIMATION OF MULTIDIMENSIONAL INTEGRALS 5 0 1

for k= l :10
[el ,gam,beta]=adam(N,Gamma,rho); e l l (k) = e l ;

end
R E = s t d (e l l) / m e a n (e l l) / s q r t (1 0)
log_Z=Gamma+log(mean(ell))
7o95°/, confidence i n t e r v a l
[log_Z-l.96*RE,log_Z+l.96*RE]

Next is the function implementing ADAM.

function [ell,gam,X]=adam(N,Gamma,rho)
’/.ADAM algorithm
’/.output: estimated ’ell’;
’/. a vector of estimated levels ’gam’;
7, final population X with approximate distribution f_T
for k=l:N

[Xp, Sp] =nominal_pdf ; ’/.sample from the nominal
X(k,:)=Xp; Score(k)=Sp;

end
% determine gamma as per step 1 of ADAM
gam(l)=threshold(Score,rho,Gamma);
I=Score>=gam(l);
Nt=sum(I); c(l)=Nt/N; X=X(I,:); Score=Score(I);
S_best=inf; G=nan(l,15);

for t=2:10~3
SPLITS=stratified_split(N,Nt); ’/.generate splitt
for i=l:Nt

Xp=X(i,:);
for chain_length=l: SPLITS(i)

7. apply markov transition pdf Step 2 of
Xp=mcmc(Xp,gam(t-l));
X(end+1,:)=Xp; Score(end+l)=S(Xp);

end
X(l, :) = []; Score(1) = [];

end
% compute new level/threshold
gam(t)=threshold(Score,rho,Gamma);
I=Score>=gam(t);Nt=sum(I);
c(t)=Nt/length(Score); X=X(I,:); Score=Score(I)

[c(t) ,gam(t)] ’/. monitor output

if gam(t)==Gamma break, end
end
ell=prod(c);

pdf

ing

f(x)

factors

ADAM

»

502 PARTICLE METHODS

Next is the function implementing the nominal pdf / .

function [x,Score]=nominal_
°/0 generate
x=[randn(l
Score=S(x)

from the nominal
3)*10,rand];

pdf
pdf f(x)

Next is the function that takes 10 steps according to the hybrid Gibbs and hit-
and-run sampler.

function x=mcmc(x,gam)

k=length(x)-l;
for iter=l:10

d=randn(l,k); d=d/norm(d); % sample
lam=-x(l:k)*d’+randn*10;
y=x(l:k)+lam*d; '/, make proposal

if S([y,x(k+l)])>=gam
x(l:k)=y;

end
end
x(k+l)=rand*min(exp(-gam+(S(x)+log(3i .(k+

direction

1)))) ,D;

Next is the function implementing the importance function S.

function out=S(x)
global Y X
k=length(x)-l;
b=x(l:k)>;
u=x(k+l);
out=-Y’*log(l+exp(--X*b))--(1--Y) *(X*b+log(l+exp(--X*b))) -log(u);

Next is the function that generates the splitting factors via the conditional
Bernoulli random variables in Step 2 of the ADAM algorithm.

function out=stratified.
r=mod(N,Nt);
if abs(r)<0.01

r=0;
end
B=zeros(Nt,l);
B(randsample(Nt,r))=1 ;
out=B+floor(N/Nt);

.split(N.Nt)

ESTIMATION OF MULTIDIMENSIONAL INTEGRALS 5 0 3

Next is the function implementing the computation of each threshold 7 t .

f unc t ion gam=th.reshold(S,rho,Gamma)
'/, de termine t h r e s h o l d
S = s o r t (S) ;
fo r i = l : l e n g t h (S)

i f mean(S>=S(i))<=rho, break ,end
end
gam=min(S(i).Gamma);

■ EXAMPLE 14.4 (Rosenbrock Function)

The following example is adapted from [34]. Consider computing the normalizing
constant of the pdf proportional to

where

h(z; \) = e-XRM, Zie[-2,2],i = l,.

R(z) = Σ (100(^+1 - zf)2 + {zi - l) 2)

is the Rosenbrock function in R n , see Appendix C.4.1.3. Again, the problem is " ^ 696
of the form (14.12), with p(z) = 1/4™, z e [-2,2]™, and H(z) = 4™/ι(ζ;λ). Let
p(z) = p(z), a = X, and b = In4™. Then, (14.14) can be written as

where

/ (x)

1{”)

nr=1i

lnt/
R(Z) > 7

^ I { 0 < U < 1 } , X = (Z, U)
4n

We take the level 7 = 0, such that (14.13) is a tight bound. To estimate t we apply
the ADAM Algorithm 14.4 using a transition density κ*(χ* | x) with stationary pdf

Λ(χ) =
/ (χ) ΐ{ -

l im
λ R{*) > 7t}

tint)

A move from X = (Z,L7)T to X* = (Z* , t /*) T uses Gibbs sampling as follows.
Given a state X = (Z, U)T such that £>(X) ^ 7t, we generate U* ~ ft(u | Z). Then,
for each j = l , . . . , n - l we generate Zj ~ / ί (^- | U*, Z(,..., Zj_1, Zj+i,..., Z n) .
The distribution of each Z* is uniform on the set {[r\, r2] U [r3, r^} Π [—2,2], where
r i < Γ2, Γ3 < Γ4 are the real roots of a certain quartic equation [3]. Depending
on the coefficients, the quartic equation has either 4 or 2 real roots (in which case
r 3 = r i and r4 = r 2) . Finally, we generate Z* ~ / t(.zn | U*,Z{,..., Z*_ x) . The
random variable Zj^ has uniform distribution on the set [ΓΙ,Γ2] Π [—2,2], where
r i < Γ2 are the roots of a certain quadratic equation.

As a numerical example, consider the case where λ = 104 and n = 10. We run
the ADAM algorithm 400 independent times with ρ = 0.5 and N = 1000, and

504 PARTICLE METHODS

obtain a typical estimate of £ = 9.7 x 10 36 with an estimated relative error (using
the data from the 400 runs) of 7%. Therefore, Z = iea'l+b = ÎAw « 1.0 x 10~2 9

with an estimated relative error of 7%. Each run of the ADAM algorithm takes
about 117 iterations (T = 117), giving a total simulation effort of 4 0 0 N T =
46.8 x 106 samples. For the same simulation effort the crude Monte Carlo estimator
Ή ΣΪίι exp(-AÄ(Z)) with M = 46.8 x 106 and Z j , . . . , Z M ~iid U (- 2 , 2) 1 0 , gives
an estimated relative error of 99.9%. To achieve a relative error of 7% using crude
Monte Carlo estimation would require a simulation effort of approximately 2 x 1037

samples.

Numerical minimization of the Rosenbrock function R(z) is commonly used as
a test case for a wide range of numerical optimization routines [33]. The function
R(z) has a global minimum of 0 at z = (1 , . . . , 1) T . One way in which R(z) could be
minimized is to sample approximately from the Boltzmann density e~XR^ /Z, z €
[—2,2]™ for a large value of λ. In Example 14.4, as a consequence of estimating
the constant Z using Algorithm 14.5, we also obtain an estimate for the global
minimizer of R(z). In particular, the population Χχ = {Xi , ■ ■ ·, Xj\rT} at the final
iteration of the ADAM algorithm is approximately distributed according to the
stationary density / T (X) · Hence, Z, in Xj = (Zj, Ui)T is approximately distributed
according to the marginal (Boltzmann density) p(z)H(z)/Z = e~XR*-z> /Z, and
we can use any Z* for which i î (Z |) = min,- R{Zj) as an estimate for the global
minimizer of R(z). For the numerical example considered above we obtain

Z* = (1.00, 0.99, 0.99, 0.99, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00)T,

with RÇZ*) « 5 x 10~5. The result is close to the true minimizer (1 , . . . , 1) T . We
obtain similar results for n = 100. Thus, Example 14.4 illustrates how one can use
Algorithm 14.5 (with A set to ADAM) as an optimization algorithm. This is similar

■®° 449 to the simulated annealing algorithm, in which the Metropolis-Hastings sampler
is used to approximately sample from the Boltzmann density and minimize the
function R(z). In the next section we show how to use splitting to solve difficult
combinatorial optimization problems.

14.6 COMBINATORIAL OPTIMIZATION VIA SPLITTING

In this section we show how we can use the ADAM algorithm (Algorithm 14.4)
as an optimization heuristic. Suppose the problem is to maximize a real-valued
function /S(x) on some finite set x € SC. To every problem of this kind we can
associate the problem of estimating the probability

%) = P(S(X) > 7), X ~ / ,

where / (x) is typically the uniform pdf on the set 3£ and 7 is large enough to
make £(7) a rare-event probability. An important difference between the estimation
and the optimization setting is that here we are not interested in obtaining an
unbiased estimate for the probability £(j) itself. Rather, we only wish to sample
(approximately) from the sequence of pdfs

, I λ / (Χ) !{.S(x)>yt}
M x) = 1) Y -, 7i < 72 < 73 < · · · ,

COMBINATORIAL OPTIMIZATION VIA SPLITTING 5 0 5

for as large a value of t as possible. Given this objective, we set 7 = 00 and run the
ADAM algorithm to compute an ever-increasing sequence of levels 71 < 72 < · · · ·
For an appropriate stopping condition we modify Steps 4 and 5 in Algorithm 14.4
to obtain the following optimization algorithm.

Algor i thm 14.8 (A D A M for Maximizat ion) Steps 1, 2, and 3 are the same
as in Algorithm 14-4-

4- Stopping Condit ion. If there is no progress in increasing 7 t over a number
of iterations; that is, ifjt = 7 t - i = · · · = ^t-d for some user-specified positive
integer d, set T = t and go to Step 5; otherwise, repeat from Step 2.

5. Final es t imates . Deliver the vector X* from the set

XT = {Xi , · · · ,Χτν}

for which S(Xj) is maximal as an estimate for the global maximizer of
(14.16).

Next, we consider a number of combinatorial optimization problems from Ap-
pendix C.3. «3" 694

14.6.1 Knapsack Problem

A well-known difficult combinatorial optimization problem is the binary knapsack
problem, specified as:

max Y^PjXj, x = (xi,...,xn) e {0, l } n ,

j~n (14-16)

subject to: 2_, wij xj ^ cii i = I,... ,m .
J = l

Here {p{\ and { t%} are positive weights and {c;} are positive cost parameters. To
make (14.16) easier to handle as an estimation problem, we note that (14.16) is
equivalent to max Shi), where x is a binary vector and

x G { 0 , l } n

5(x) = 5(x) + Y^pj Xj
 d= aΣΐ{Σ?=ι «,„*,·><*} + Έ,Ρ' '

d e f ^ _ i_

i = i 1=1 ~ j=i

with a = ~Y™=iPj- Note that the constant a is such that if x satisfies all the

constraints in (14.16), then She) = 0 and Shi) = X]?= 1Pj Xj ^ 0. Alternatively, if

x does not satisfy all of the constraints in (14.16), then Shi) ^ — S ? = i P j ' x j anc^

Shi) ^ 0. In other words, S is a penalty function. To this optimization problem «S* 685
we can associate the problem of estimating the rare-event probability

n

£(7)=P(S(X)>7), 7 Ε (0 , Σ 4
 X ~ /

3=1

506 PARTICLE METHODS

where / (x) = —; for all x e {0,1}™; that is, X is a vector of independent Bernoulli
random variables with success probability 1/2. The transition density K t(y | x) in
Algorithm 14.8 is defined through the following Gibbs sampling procedure:

1. Given a state x such that 5(x) ^ j t , generate Y\ ~ ft(yi \ xi-, · · ·, Xn)-

2. For each k = 2 , . . . , n - 1, generate Yk ~ ft(Vk \Yi,-··, Yk-i,Xk+i, ■ · · , xn)-

3. Finally, generate Yn ~ ft(yn | Y i , . . . , Yn-i).

Here, the conditional density is given by

ft(Vk I y-fc) « ll S(y) +PkVk^lt~ Σρί Vi \ '

where y_fc denotes the vector y with the fc-th element removed. Sampling a random
variable Yfc from such a conditional pdf can be accomplished as follows. Draw
B ~ Ber(l /2). If 5 (y i , . . . , yk-ι,Β, yk+i,- ■ ■, yn) > It, then set Yk = B; otherwise,
set Yk = l - B .

As a particular example, consider the knapsack problem with data, {pj,Wij, c»},
defined in the appendix of [35]. The data is also available at: h t t p : / / p e o p l e .
b r u n e l . a c . u k / ~ m a s t j j b / j e b / o r l i b / f i l e s / m k n a p 2 . t x t as S e n t o l . d a t . The
problem has 30 constraints and 60 variables. For Algorithm 14.8 we select Q = 0.01
and N = 104, and the algorithm is stopped after no progress is observed (d = 1).
We run Algorithm 14.8 ten independent times. The algorithm always finds the
optimal solution. A typical evolution of the algorithm is given in Table 14.4. The
total sample size is 105, which is about a factor of 10~13 of the total effort needed
for the complete enumeration of the 26 0 possible binary vectors.

Table 14.4 A typical evolution of Algorithm 14.4 as an optimization routine for
the Sentol .dat knapsack problem. The maximum value for this problem is 6704.

t
It

1
-34758

2
-6428

3
3484

4
4705

5
5520.5

6
6043

7
6538

8
6704

14.6.2 Traveling Salesman Problem

"S" 695 The objective of the TSP on n nodes is to minimize the cost function

n - l

i= l

where x = (x i , . . . , xn) is a permutation of (1 , . . . , n) , Xi is the ί-th node to be
visited in a tour represented by x, and C(i,j) is the cost from node i to node j .
We now discuss how to apply the ADAM algorithm to find the optimal tour. The
sequence of distributions from which we wish to sample approximately is

/t(x) = / (x) I y w } , x e * \ * = i,2

where / (x) is the uniform density over the set 3C of all possible tours (that is, the
set of all possible permutations of (1 , . . . , n)), and {-yt} is an increasing sequence of
levels.

http://people
http://brunel.ac.uk/~mastjjb/jeb/orlib/files/mknap2.txt

COMBINATORIAL OPTIMIZATION VIA SPLITTING 5 0 7

Table 14.5 Case studies for the symmetric TSP.

file

burmal4

ulysseslö
ulysses22

bayg29

bays29

dantzig42

eil51
berlin52

st70

eil76
pr76

a280

chl30

eillOl

grl20

grl37

kroAlOO

kroBlOO

kroClOO

kroDlOO
kroElOO

linl05

prl07

prl24
prl36

prl44

prl52

rat99

rdlOO

sil75
st70

swiss42

ul59

S(x*)
3323

6859

7013

1610

2020

699
426
7542

675

538

108159

2579

6110
629

6942

69853
21282

22141

20749
21294

22068

14379

44303

59030
96772

58537
73682

1211

7910

21407

675

1273

42080

min

3323

6859

7013

1610

2020

699
426
7542

675

538

108159

2581

6110
643

6956

69853
21282

22141

20749
21294

22068

14379

44303

59030
97102

58537
73682

1211

7910

21013

676

1273

42080

mean

3323

6859

7013

1610

2020

699
427.6
7542

675.8

543.9

108216
2594.4

6125.9
647.6
6969.2

69911.8
21311.2

22201
20774.4

21295.5

22123.1
14385.6

44305.3

59048.4
97278.2

58640.9
73833
1213.2

7910.8
21027.2

677.6

1273

42383

max

3323

6859

7013

1610

2020
699

430
7542

680

547
108304

2633

6172
654

6991

70121

21379

22330

20880

21309

22160
14401

44326
59076

97477
59364

74035

1218

7916

21051

681

1273

42509

f
45.8
53.2

79.7
113

110.7

188.2

249.1

232.5

370.6

428.6
372.3

2026.7

742.8
620.4

668.4

781
527.2

526.7

528.8

529
526.5

561.2

569.3

691.5

760

827.6
886.6

561.5

534.7

1066.3

369.3

180
934.4

We apply Algorithm 14.8 with the transition pdf nt(y | x) defined via the following
conditional sampling procedure.

1. Draw a pair of indices I and J uniformly distributed over the integers 1 , . . . , n,

conditional on I < J. These can be generated, for example, by sampling

U\,Ü2 ~üd DU(l ,n) until U\ φ U2, and then assigning I = min{{7i, C2} a n d

J = max{i7i, ί/2}· Let (7, J) = (i,j) be the outcome.

2. Given a tour x such that £>(x) > 74, update x to y with probability

I{_S(y)j>7t}, where the tour y is identical to the tour x with the tour seg-
ment between the Xi-th and Xj-th. cities reversed. For example, if n = 10,

x = (1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10) , and (i,j) = (4,9), then we update the tour x
to the tour y = (1 ,2 ,3 ,9 ,8 , 7,6,5,4,10) if — 5(y) ^ 74; otherwise, we do not

update x.

3. Repeat Steps 1 and 2 above b times.

508 PARTICLE METHODS

The conditional sampling is similar to the 2-opt heuristic commonly employed in
conjunction with simulated annealing; see [34, Page 189].

In the course of the conditional sampling, the performance function is updated
as follows (j > i):

S(y) = S(x) -C{xi-UXi) -C(xj,xj+i) +C(xi-i,Xj) + C(xi,xj+i) .

We now present a number of numerical experiments which demonstrate the per-
formance of the algorithm. Table 14.5 summarizes the results from a number of
benchmark problems from the TSP library: h t t p ://www. i w r . u n i - h e i d e l b e r g .
de /groups /comopt / sof tware/TSPLIB95/ tsp/ . The experiments are repeated ten
times and the average, minimum, and maximum of S(x) are recorded. The pa-
rameters of Algorithm 14.8 are ρ = 0.5, N = 102, d = 14, and the 2-opt updating
is repeated b = 50 n times, where n is the size of the problem. T is the average
number of iterations it takes for ADAM to reach the final iteration. The second
column shows the length of the optimal path: S(x*).

For the first eleven test problems the algorithm finds the optimal solution in all
cases out of ten trials. In some cases, the algorithm finds the optimal solution ten
out of ten times. The number of iterations required to solve a problem increases
with the size of the problem and is roughly equal to loge(n!), which is approximately
i logÉ , (27rn)+nlog e(n/e) .

14.6.3 Quadratic Assignment Problem

The objective of the quadratic assignment problem (see Section C.3.5 in the Ap-
"S* 695 pendix) is to minimize the cost function

n n

i = l 3 = 1

where x = (xi,... ,xn) is a permutation of (1 , . . . , n) , and F and D are n x n
symmetric matrices.

We apply Algorithm 14.8 with the transition density K 4 (y |x) specified via the
following conditional sampling procedure.

1. Draw a pair of indices / and J uniformly distributed over the integers 1 , . . . , n,
conditional on / φ J. Let (J, J) = (i,j) be the outcome.

2. Given a permutation x = {x\,..., xn) such that 5(x) ^ 7t, update x to y with
probability I{-s(y)>7 t} ; where the vector y is identical to the vector x with the
i-th and j - t h elements swapped. For example, if x = (1,2,3,4, 5,6, 7,8,9,10)
and (i,j) = (3,7), then y = (1 ,2 ,7 ,4 ,5 ,6 ,3 ,8 ,9 ,10) .

3. Repeat Steps 1 and 2 above b times.

In the course of the conditional sampling, the performance function is updated
via:

S(y) = S(x)+2 J2 {Fkj - Fki){D(xk,xt) - D(xk,Xj)) .

MARKOV CHAIN MONTE CARLO WITH SPLITTING 5 0 9

Table 14.6 Case studies for the symmetric quadratic assignment problem.

file

chrl2a.

chrl2b.

chrl2c.

chrl5a,

chrl5b,

chrl5c.

chrl8a.
chrl8b,

chr20a,

chr20b.

chr20c.

chr22a

chr22b

chr25a

,dat

,dat

,dat

.dat

,dat

.dat

.dat

.dat

.dat

.dat

.dat

.dat

.dat

.dat

Six")
9552

9742

11156

9896

7990
9504

11098
1534

2192

2298
14142

6156

6194

3796

min
9552

9742

11156

9896

7990
9504

11098
1534

2192

2352

14142

6156

6194

3796

mean

9552

9742

11159

9942.8

8100
10039

11102.4

1534

2344

2457.8

14476.8
6208.6

6290.4

4095.6

max
9552

9742

11186
10070

8210
10954

60
1534

2406

2496
14812

6298

6362

4286

f
45.2

45.4

42.5
53

53.4

53.4
64

57.3

66.9

64.5
77.7

81.4

75.3

90.1

Table 14.6 summarizes the results from a number of symmetric benchmark prob-
lems from the quadratic assignment problem library: h t tp : / /www. s e a s , upenn.
e d u / q a p l i b / i n s t . h t m l . The experiments are repeated ten times and the average,
minimum, and maximum of S(x) are recorded. The parameters of the ADAM al-
gorithm are ρ = 0.5 and N = 103. For the conditional sampling we take b = n,
where n is the size of the problem. Again, T is the average number of iterations it
takes for ADAM to reach the final iteration. The second column shows the value
at the optimal solution.

We see that the algorithm finds the optimal solution in all cases except
ch r20b .da t .

14.7 MARKOV CHAIN MONTE CARLO WITH SPLITTING

In this section we consider using the GS Algorithm 14.3 as an alternative to standard
MCMC sampling from multidimensional pdfs of the form

Λ (Χ) = / (X) I / / (f 7 t } ■ (14.17)

Note that since (14.15) can be viewed as a marginal density of (14.17) for t = T,
sampling from (14.15) can be achieved by sampling from (14.17). We show that
the population Χχ in the final stage of the GS algorithm can be treated as a
sample from the multidimensional pdf (14.17) even in cases where standard Markov
chain Monte Carlo algorithms are impractical due to poor mixing. In addition, we
provide a convergence diagnostic which tests the hypothesis that the population
XT is drawn from the target pdf (14.17). Deciding when a Markov chain has
converged is an important problem in applications of MCMC. Many methods for "3" 273
diagnosing convergence have been proposed, ranging from simple graphical methods
to computationally intensive hypothesis tests [5, 6].

For clarity of presentation we explain how to sample from (14.17) in a separate
algorithm, in which the transition density is reversible.

5 1 0 PARTICLE METHODS

Algor i thm 14.9 (Spl i t t ing Sampler) Given a sequence {("ft, Qt)}T=i, s e* St =
\°t+i\ for all t <T and execute the following steps.

1. Initialize. Set the level counter t = 1. Until 5 (X) ^ 71, keep generating
X ~ / . Let X 1 = X be the output. Note that X 1 has density

/ l (x) = / (x) I { S (x) ^ 7 l } / c i .

2. Markov chain sampling. Generate

Y / ^ K t f r l X *) , j = l,...,st, (14.18)

where «^(ylX*) is a reversible Markov transition density with stationary
pdfMy). Let

St

Nt+1 = Xl I{S(YJ)>7t+i} ·

If Nt+i = 0, repeat from Step 1; otherwise, continue with Step 3.

3. Updat ing . Let X t + 1 be a uniformly sampled point from the set of points
{ Y i , . . . , Y S J for which 5 (Χ ί + 1) ^ -yt+i- The Pdf ο / χ ί + 1 is thus given by
the conditional density

Ct+l(X')

where ct+i(y) = / I{ s (x)> 7 t + 1 } «t(x |y) dx is the probability that a move of
the Markov chain starting in state y has a performance above 7t+i- Note that
an unbiased estimate o/ct+i(X*) is

ct+l(X') = ^ ± i ,
st

so that E [c i + i (X ') | X'] = c i + i (X ') . Sei the counter t = t + l.

4. Final Output . If t = T, output { c t + ^ X ') } ^ 1 and (X 1 , . . . , X T) ; other-
wise, repeat from Step 2.

A diagnostic test is based on the following result.

Propos i t ion 14.7.1 (Convergence Diagnost ic) If for any possible outcome
(x 1 , . . . , x T) of Algorithm 14-9 the sum $2t=i l n c t + i (χ ί) *s constant, then the final
state X T from Step 4 of Algorithm 14-9 has the pdf

f ^ !{s(x);?7} / (x)
/T(X) = —m— ·

In other words, if Σί=ι l n c i+ i (x *) does not depend on (x 1 , . . . , x T) , then the
Markov chain of Algorithm 14-9 is in stationarity.

Proof: First, the joint pdf of (X 1 , . . . , X T) is:

Jr(,x , · · · , x j = I I i—r, ■
ci f-Ji ct+i(x*)

MARKOV CHAIN MONTE CARLO WITH SPLITTING 5 1 1

Using the reversibility of the transition densities {nt}, we can write the joint pdf
as

/ T (X \ .
^T\ - / (X) I { S (X T) > 7 T }

> - * ■) —

T-X

Π
« « (χ Ί χ ΐ + 1)

ct+i(x*)
(14.20)

Ideally, we would like the joint pdf in (14.20) to be identical to the target:

/ τ (χ \ ·
/ (χ Τ) Ι { 5 (χ ^) > 7 τ }

ί{Ί) Π κ*(χί Λ+Χ\ (14.21)

because then x T has the desired marginal density / T (X) - We can measure how
close the sampling density / rC* 1 , ■ · · ; x T) is from the target density / r i x 1 , · · · , χ Τ)
using any distance measure from Csisâr's ^-divergence family of measures [4, 34].
A convenient member of Csisâr's family of measures is the χ2 goodness of fit
divergence defined as

T>. :M = \J (p (x) - q (x)) 2

p(x)
dX: 1 I V 92(X)

'2 + 2 ^ ρ 2 (Χ)

for any given pair of pdfs p and q. Thus, we can measure the closeness between the
sampling pdf (14.20) and the target pdf (14.21) via

1 1 ^
1- - E ?

2 2 Λ

τ-1 „2 π c?+ 1(X ()

H+X
Φ 2 (/ Γ , / Τ) =

Hence, after rearranging, we have

2 ^ Μ Φ2(/Τ) /τ) = E jj Ci+l(xi) - ? ψ = var/r (f[*+1(Χ*)) ,
Cl t=X ! V t=X J

where we have used the fact that E r Π ί ^ ι c t+i (X 4) = ^(l)/cx- It follows that the

distance between (14.20) and (14.21) is 0 if and only if V a r ^ (f l L Y <3ί+ι(Χ*)) = 0.

In other words, if Πί=Γι c t + i (X ') (o r Σ*= ι hact+i iX')) is a constant, then the
pdfs (14.20) and (14.21) are identical and X T has the desired marginal pdf. This
completes the proof.

The following algorithm is an adaptation of the Gelman-Rubin test (see Remark

6.4) for testing whether the sum J2t=x 1η ε ί+ι(Χ*) is a constant.

Algor i thm 14.10 (Particle Splitt ing and Gelman—Rubin Diagnost ic)

1. Let (X 1 ; . . . , X i) , . . . , (Xjvi> · · · I ^ M) / ^ (x 1 , . . . , x T) be a population from
the sampling density (14.20) obtained via Algorithm H-9, and let C be the
following (T — 1) x M matrix of estimates

C

1ης 2 (χ ΐ) lnc3(X?)
lnc2(X£) l nc 3 (X |)
lnc 2 (X 3) lnc 3 (Xl)

^ M)

l n c r i X f " 1)

In CTÇ^Ï'1)

l n c T Î X j - 1)

1ηο 2 (Χ^) lnc 3 (X

where the i-th row depends on (X], X ? , . . . , XT_1)

IncriXlf1)

273

5 1 2 PARTICLE METHODS

2. Compute the following statistics:

1 T _ 1

row means: Ci, = ——- 2_, Qj >
~ j=i

1 M

column means: C,j = — \ J Cy ,
i=l

T-l
I

overall mean: C ■

M

effect sum of squares: SS = / . (^ i · — (?) ,

T - l M

(Μ-ΐ)(τ-ΐ)2'ΣΣν within row variance: V = τ ν τ — , , — τ τ ^ T J / ^ (C j j — C»j

5. Under the hypothesis that 5Zt="i lnc i + i (X*) is a constant, and assuming an
approximately normal distribution for each of the row and column means
{Ci,, C,j}, the test statistic T = SS/V has an approximately χ2

Μ_ι distribu-
tion.

If the chain in Algorithm 14.9 samples according to the target, then the sums
across each row of matrix C should be roughly the same. The two-way analysis-
of-variance test in Algorithm 14.10 simply tests for row effects in matrix C. Each
column of C represents a different level, while each row of C represents a given
factor.

Finally, we caution that most diagnostics frequently successfully detect undesir-
able Markov chain behavior (slow mixing or lack of stationarity), but they can never
be used to demonstrate in any meaningful way that the Markov chain accurately
samples from the target pdf.

■ EXAMPLE 14.5 (Comparison W i t h Gibbs Sampling)

To illustrate the performance of the splitting sampler, we consider the problem of
sampling from the pdf in Example 14.2; that is, h(z;l2)/Z(12). We run Algo-
rithm 14.5 with exactly the same setup as in Example 14.2, except that the three
steps in Algorithm 14.6 are executed in a random order, resulting in random Gibbs
sampling, as opposed to systematic Gibbs sampling. The random Gibbs sampling
ensures that the transition density Kt(X* | X) is reversible. Figure 14.4 shows the
empirical distribution of Z at levels (70,71,73,70) = (—00, —117.91, —44.78,0). The
70 = — 00 case shows the sample from the standard Gaussian proposal p(z), and the
76 case shows 2030 points approximately distributed from the target density given
in Figure 14.3. Notice how the two distinct modes emerge gradually. The p-value
from Step 3 of Algorithm 14.10 is 0.1, thus failing to detect transient behavior and
supporting the hypothesis that the chain samples according to the target. In ad-
dition, the proportion of points in each mode at the final stage is roughly equal to
1/2, namely, 1009 points belong to the upper-right mode and 1021 points belong
to the lower-left mode.

MARKOV CHAIN MONTE CARLO WITH SPLITTING 5 1 3

Figure 14.4 The empirical distribution of Z conditional on 5(X) ^ "/t for t = 0,1, 3, 6,
respectively.

Note that the standard Gibbs sampler applied to /i(z; 12)/Z(12) fails to sample
from both modes. In particular, starting from (0,0) we iterate the following steps
109 times.

• Given (Zi .Za) , generate Z{ ~ N (^ , ^) .

• Given (Ζί , Z2) , generate Z2* ~ N (τ ^ ^ , (^ + τ) ·

• Update (Zi,Z2) = (Ζ^,Ζ^).

The right panel of Figure 14.5 shows that the standard Gibbs sampler results in a
chain which is trapped in one of the two modes and fails to mix satisfactorily in 109

steps. For plotting purposes the chain of length 109 is thinned to 103 points, where
we keep the 106-th, 2 x 106-th, 3 x 106-th, . . . points from the original Markov chain
sequence. Our numerical experience suggests that the performance of the Gibbs
sampler is affected by the starting value of the chain. In contrast, the problem of
selecting starting values for the chains is either mitigated or does not exist for the
splitting sampler. Overall, the splitting sampler explores the support of the target
density better than the standard Gibbs sampler.

For a comparison with other samplers such as the equi-energy sampler [23], we
refer to [3]. The sampling problem in the last example can be resolved by means
other than MCMC or splitting. For example, the acceptance-rejection method is "S" 59
still feasible in two dimensions. The next example, however, considers a problem
for which there is no simple alternative to Markov chain sampling.

514 PARTICLE METHODS

Figure 14.5 Left panel: contour plot of the two-humps density. Right panel: empirical
distribution of the output of the standard Gibbs sampler.

■ EXAMPLE 14.6 (Network Simulation Us ing A D A M)

In Examples 16.4 and 16.5 on Pages 567 and 571 we consider estimating the prob-
ability that nodes 1 and 20 of the dodecahedron network in Figure 16.5 are not
connected, given that all of the edges that connect the nodes fail with probabil-
ity q = 10~3 . Here we are interested in simulating the repair-time configuration

"3" 552 X = (Xi,...,Xm)T conditional on the dodecahedron network being failed (that is,
there is no path of operating edges between nodes 1 and 20). In other words, we
wish to simulate from the conditional density

/ (x)I{s(*)>i} _ , , ^ τ
p j x — v^l) · ' · ' ■Em))

where S(x) is given by (16.1), £ is given by (16.2), and

/ (x) = (2 π σ 2) - ^ 2 6 - χ Τ χ / (2 σ 2)

with σ = —1/Φ~1(ς). Such simulation gives us insight into which edges are most
likely to cause the failure of the network so that these weak edges can be strength-
ened to increase the reliability of the network. We consider the hit-and-run sampler

*& 240 as a standard MCMC approach.

Algor i thm 14.11 (Hi t -and-Run for Reliabil ity Network Simulation)
Given a configuration x t of repair times such that S(xt) > 1, execute the following
steps.

1. Generate a random direction vector d uniformly distributed on the unit m-
dimensional sphere. Given d, generate A ~ N(—xjd, σ2).

2. If S(x.t + Ad) > 1, reset x t = x t + Ad; otherwise leave x t unchanged.

3. Repeat Steps 1 and 2 above 100 times and output Xt+i = xt as the next state
of the Markov chain.

"^ 569 The above procedure is equivalent to Algorithm 16.8 for the case where all edges
of the network fail with the same probability.

The sampler may require an inordinately large number of iterations to visit
all the modes of the target density, which is needed to provide a good empirical

MARKOV CHAIN MONTE CARLO WITH SPLITTING 5 1 5

0.62

0.6

0.58

S
j^O.56

0.54

0.52

0.5

2000 4000 6000
M

0.4

0.2

O O O O O O O G O O O O O O O O O O O O O O Q O O O O

10 15 20 25 30
Edge e

Figure 14.6 Hit-and-run sampler for the dodecahedron network started from xi =
(1.01, . . . , 1.01). The left panel shows the convergence of the empirical mean WM to the
incorrect value of 0.5. The right panel shows the mean time of repair for each edge conditional
on the network being nonoperational.

approximation to the whole surface of the target density. The difficulty in exploring
all the modes of the target density (also known as poor mixing behavior of the chain)
translates into slow convergence of the empirical average

WM

1 M

-] r V (X t) - * E W (X) , as M - + 0 0 M

for an arbitrary function W. To assess the convergence of the hit-and-run sampler
we monitor the empirical average W M with

W{x) = \^J exp | -

In this case we have

/ σ \ 3 / χ\ + x\ + x\ / l 1 \ \ - 1

09263)

EW(X) = 7 P (S (X) > 1) , X ~ / ,

where Χγ, X2, X3 ~üd N(0, σ2) and X4,..., Xm ~ i i d N(0, σ2) . It follows that i =
P(5(X) > 1) is the probability that the network is nonoperational given that edges
1, 2, 3 have unreliabilities 0.09263 and all the others 10" 3 . We can use any of
the methods in Chapter 16 to estimate the probabilities I « 2.00 x 1 0 - 9 , £ «
1.50 x 10~9, correct to two significant figures. Thus, we expect that as M —► 00,

WM -► EW(X) « 0.75 .

The left panel in Figure 14.6 shows the behavior of the empirical average W M as
a function of M. We can see that the empirical average fails to converge to the
correct value of 0.75 after 104 iterations. Although not displayed on the graph, we
continued to run the hit-and-run sampler until M = 106, giving a final empirical

516 PARTICLE METHODS

Figure 14.7 ADAM as a sampler for the dodecahedron network. The left panel shows
the convergence of the empirical mean to the correct value of 0.75. The right panel shows
the mean repair time for each edge conditional on the network being nonoperational.

average of approximately 0.50. Thus, even for large M the ergodic average fails to
converge to the correct value. The right panel of Figure 14.6 shows the empirical
average:

i M

t = l

for each of the edges e = 1 , . . . , m. From the graph we can deduce that the most
likely reason for the network to be nonoperational is the simultaneous failure of
edges {1,2 ,3}. Note that restarting the hit-and-run sampler from different initial
conditions does not improve the performance. In addition, alternative samplers
such as the Gibbs algorithm perform similarly.

As alternatives to standard MCMC methods, we can use either the splitting
■S" 570 sampler (Algorithm 14.9) or the output of ADAM Algorithm 16.9. Figure 14.7

shows the performance of the ADAM Algorithm 16.9 with N = 104 and ρ =
0.5, using the hit-and-run Algorithm 14.11 to sample from the transition density
K É (x |y) . The left panel shows the empirical average WM as M varies from 1 to
Νχ, where X i , . . . , X J V T is the population from the last iteration of ADAM. The
empirical average appears to settle around the value of 0.75, which suggests that
ADAM is performing well as a sampler. In addition, the right panel shows that
both modes of the target density are visited and that the most likely reason for the
network to be nonoperational is that either edges {1,2,3} or edges {28,29,30} fail.
In contrast, Figure 14.6 shows that the hit-and-run sampler gets stuck in one of
the modes and fails to explore the other mode even after a large number of Markov
chain iterations. The overall conclusion is that the output of ADAM provides a
better approximation of the target density than the output of the hit-and-run and
Gibbs samplers.

REFERENCES 517

Further Reading

Given the large number of possibilities and variations in designing Monte Carlo
algorithms that use a population of Markov chains or instrumental densities in an
iterative way, it is difficult to describe a single generic algorithm that will apply in
every setting [11]. Despite this, the main ingredients behind all such algorithms are
summarized in [27] and studied in-depth in [26]. Details on the generalized splitting
and ADAM methods can be found in [3]. For early references on splitting with a
fixed number of particles, see [13, 14].

For additional work on using the particle splitting method to generate points
uniformly within a volume, we refer to [15]. For a number of heuristics that aim
to improve the performance of the particle splitting method see [31, 32]. Note,
however, that these heuristics make the estimator biased and the estimation of the
corresponding relative error more difficult.

REFERENCES

1. Z. I. Botev. Three examples of a practical exact Markov chain sampling. Technical
report, School of Mathematics and Physics, The University of Queensland, h t t p :
//espace.library.uq.edu.au/view/UQ: 130865, 2007.

2. Z. I. Botev. An algorithm for rare-event probability estimation using the product
rule of probability theory. Technical report, School of Mathematics and Physics,
The University of Queensland, h t tp : / /espace. l ibrary .uq. edu. au/view/UQ : 151299,
2008.

3. Z. I. Botev. Splitting methods for efficient combinatorial counting and rare-event prob-
ability estimation. Technical report, School of Mathematics and Physics, The Uni-
versity of Queensland, http://espace.library.uq.edu.aU/view/UQ:178513, 2009.

4. Z. I. Botev and D. P. Kroese. The generalized cross-entropy method, with applications
to probability density estimation. Methodology and Computing in Applied Probability,
DOI:10.1007/sll009-009-9133-7, 2009.

5. S. P. Brooks, P. Dellaportas, and G. O. Roberts. An approach to diagnosing total
variation convergence of MCMC algorithms. Journal of Computational and Graphical
Statistics, 6(3):251-265, 1997.

6. S. P. Brooks and G. O. Roberts. Convergence assessment techniques for Markov chain
Monte Carlo. Statistics and Computing, 8(4):319-335, 1998.

7. F. Cérou, P. Del Moral, T. Furon, and A. Guyader. Rare-event simulation for a static
distribution. Technical report, INRIA-00350762, 2009.

8. S. Chib. Marginal likelihood from the Gibbs output. Journal of the American Statis-
tical Association, 90(432):1313-1321, 1995.

9. S. Chib and I. Jeliazkov. Marginal likelihood from the Metropolis-Hastings output.
Journal of the American Statistical Association, 96(453):270-281, 2001.

10. N. Chopin. A sequential particle filter for static models. Biometrika, 89(3):539-551,
2002.

11. A. Doucet, N. de Preitas, and N. Gordon. Sequential Monte Carlo Methods in Practice.
Springer-Verlag, New York, 2001.

12. W. Gander and W. Gautschi. Adaptive quadrature - revisited. BIT Numerical Math-
ematics, 40(1):84-101, 2000.

http://uq.edu
http://espace.library.uq.edu.aU/view/UQ:178513

518 PARTICLE METHODS

13. M. J. J. Garvels. The Splitting Method in Rare Event Simulation. P h D thesis, Uni-
versity of Twente, 2000.

14. M. J. J. Garvels and D. P. Kroese. A comparison of RESTART implementations. In
Proceedings of the 1998 Winter Simulation Conference, pages 601-609, Washington,
DC, 1998.

15. P. Glynn, A. Dolgin, R. Y. Rubinstein, and R. Vaisman. How to generate uniform
samples on discrete sets using the splitting method. Probability in Engineering and
Information Sciences, DOL10.1017/S0269964810000057, 2009.

16. N. Gordon, J. Salmond, and A. Smith. A novel approach to non-linear/non-
Gaussian Bayesian s ta te estimation. IEEE Proceedings on Radar and Signal Pro-
cessing, 140(2):107-113, 1993.

17. J. Gu, P. W. Purdom, J. Franco, and B. W. Wah. Algorithms for the satisfiability
(SAT) problem: A survey. In Satisfiability Problem: Theory and Applications, pages
19-152. American Mathematical Society, Providence, RI, 1997.

18. C. Han and B. P. Carlin. Markov chain Monte Carlo methods for computing Bayes
factors: A comparative review. Journal of the American Statistical Association,
96(455):1122-1132, 2001.

19. H. H. Hoos and T. Stützte. SATLIB: An online resource for research on SAT. In: SAT
2000, I. P. Gent, H. v. Maaren, T. Walsh, editors, pages 283-292. www.sa t l ib .o rg ,
IOS Press, 2000.

20. A. M. Johansen, P. Del Moral, and A. Doucet. Sequential Monte Carlo samplers
for rare events. In Proceedings of the 6th International Workshop on Rare Event
Simulation, Bamberg, Germany, 2006.

21. H. Kahn and T. E. Harris. Estimation of Particle Transmission by Random Sampling.
National Bureau of Standards Applied Mathematics Series, 1951.

22. G. Kitagawa. Monte Carlo filter and smoother for non-Gaussian non-linear s ta te space
models. Journal of Computational and Graphical Statistics, 5 (l) : l - 2 5 , 1996.

23. S. C. Kou, Q. Zhou, and W. H. Wong. Equi-energy sampler with applications in
statistical inference and statistical mechanics. The Annals of Statistics, 34(4):1581-
1619, 2006.

24. P. L'Ecuyer, V. Demeres, and B. Tuffm. Splitting for rare-event simulation. Proceed-
ings of the 2006 Winter Simulation Conference, pages 137-148, 2006.

25. P. L'Ecuyer, V. Demers, and B. Tuffin. Rare events, splitting, and quasi-Monte Carlo.
ACM Transactions on Modeling and Computer Simulation, 17(2): l-44, 2007.

26. P. Del Moral. Feynman-Kac Formulae: Genealogical and Interacting Particle Systems
with Applications. Springer-Verlag, New York, 2004.

27. P. Del Moral, A. Doucet, and A. Jasra. Sequential Monte Carlo Samplers. Journal
of the Royal Statistical Society, Series B, 68(3):411-436, 2006.

28. P. Del Moral, A. Doucet, and A. Jasra. Sequential Monte Carlo for Bayesian com-
putation. In Proceedings of the Eighth Valencia International Meeting on Bayesian
Statistics, pages 1-34, Valencia, Spain, 2007.

29. C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer-Verlag, New
York, second edition, 2004.

30. D. Rubin. Multiple Imputation for Nonresponse in Surveys. John Wiley & Sons, New
York, 1987.

31. R. Y. Rubinstein. The Gibbs cloner for combinatorial optimization, counting and
sampling. Methodology and Computing in Applied Probability, l l (2) :491-549, 2009.

REFERENCES 519

32. R. Y. Rubinstein. Why the classic randomized algorithms do not work and how to
make them work. Methodology and Computing in Applied Probability, 12(l) : l -50 ,
2010.

33. R. Y. Rubinstein and D. P. Kroese. The Cross-Entropy Method: A Unified Approach
to Combinatorial Optimization, Monte-Carlo Optimization, and Machine Learning.
Springer-Verlag, New York, 2004.

34. R. Y. Rubinstein and D. P. Kroese. Simulation and the Monte Carlo Method. John
Wiley & Sons, New York, second edition, 2007.

35. S. Senju and Y. Toyoda. An approach to linear programming with 0-1 variables.
Management Science, 15(4):B196-B207, 1968.

36. D. J. A. Welsh. Complexity: Knots, Coloring and Counting. Cambridge University
Press, Cambridge, 1993.

This page intentionally left blank

CHAPTER 15

APPLICATIONS TO FINANCE

Monte Carlo methods are frequently encountered in financial engineering. In this
chapter we highlight some of the main Monte Carlo techniques used in option
pricing:

1. The control variable method for pricing Asian call options; " ^ 351

2. The conditional Monte Carlo method for pricing European call options with " ^ 354
stochastic volatility, or with a barrier;

3. The importance sampling method for pricing barrier options; "3° 362

4. Infinitesimal perturbation analysis for estimating the sensitivities of European Κ3° 426
call options;

5. The score function method, combined with importance sampling, for estimât- <®° 428
ing the Greeks of barrier options.

We refer to Sections A. 13 and 5.6 for details on stochastic differential equations ·®° 643
and the generation of diffusion processes, respectively. " ^ 183

15.1 STANDARD MODEL

A standard modeling framework for mathematical finance is the following, based
on five ingredients. We assume that a probability space (Ω, T, P) is given with a
filtration {Tt, t > 0}.

Handbook of Monte Carlo Methods. By D. P. Kroese, T. Taimre, Z. I. Botev 521
Copyright © 2011 John Wiley & Sons, Inc.

5 2 2 APPLICATIONS TO FINANCE

1. Stock price model (risky assets) . Let St,i, ■ ■ ■, St}m be the prices of m risky
financial assets at time t — typically stocks in an equity market. The basket of
assets described by the stochastic process {S t = (St,i, · · · , St,m)T,t ^ 0} is assumed
to evolve in time according to the multidimensional SDE

dS t = Mtdi + at d W t , S 0 = (s i , . . . , s m) T ,

where {WÉ} is an n-dimensional Wiener process under measure P and filtration
{Tt,t ^ 0}, and

(A*t,i \ / &t,n ■ ■ ■ at,in

, a

Ht,™) \ <?t,ml ' ' ' &t,mn

are deterministic functions of S t and t. The process {S t , t ̂ 0} is thus an m-

■®° 643

 dimensional diffusion process as described in Section A. 13. In addition to this we

assume:
• The stocks do not pay dividends.
• There are no transaction costs.

• All securities are perfectly divisible; that is, it is possible to buy any fraction
of a share.

• There are no restrictions on short selling; that is, it is possible to hold a
negative number of units of a given share.

2. Bonds (risk-free assets) . Suppose the market has at least one risk-free asset,
which is modeled by the deterministic differential equation

B't = rtBu B0 = l ,

where rj is the instantaneous interest rate at time t. Obviously, Bt = exp (J0 rs ds) .
Such risk-free assets can be government bonds or interest bearing money market
accounts.

3. Self-financing assumption. Under the assumptions of points 1. and 2. above,
the value Vt of a portfolio containing tpt units of bonds and <j>t = (0 t , i , . . . , 4>t,m)T

units of various stocks at a given time t is given by

m

Vt = Btipt + Y^4>t,iSt,i = Btrl>t + 0 t
T S t . (15.1)

t = l

The particular value of the portfolio at time t typically depends on the units of
assets (ψι, </>t) held just before time t. The stochastic process {(V't, </>t),t ^ 0} can
thus be interpreted as a trading strategy. More precisely, we call the process a
trading strategy if it is adapted to the filtration {Tt,t ^ 0 } . By the product rule

■®° 642 for Itô processes (A.65), an infinitesimal change in the value of the portfolio is given
by

âVt = [Bt ctyt + S t
Td0 t) + Vt àBt + φΐdSÉ .

STANDARD MODEL 523

The portfolio is called self-financing if

Bt ctyt + Sjd<j>t = 0 ,

in which case

VT = V0+ [iptàBt+ ί φ]'dSt.
Jo Jo

In other words, for a given trading strategy {(V't, 4>t)}i changes in the value of the
portfolio are solely due to changes in the value of assets that are held at any given
time.

4. Arbitrage-free market. A market model is said to have arbitrage opportu-
nities if it is possible to create positive wealth from zero or negative initial wealth
without incurring any risk. A market model is called arbitrage-free on [0, T] if,
in essence, for every self-financing trading strategy {(ipt, 4>t), 0 ^ t ^ T } ,

V0 = 0 =>· ¥(VT > 0) = 0 .

An important result in financial engineering is that a market is arbitrage-free if
there exists a probability^ measure Q such that the discounted asset price process
{S t ,0 ^ t < T } , with S t = B^St, is an (^7

i,Q)-martingale [16, 26]. For the
standard model this arbitrage-free condition is satisfied if the system of equations

at u t = μι - rt St (15.2)

has a solution u i ; t € [0,T] for which E e x p (| fQ u ^ U t d i l < oo (Novikov's con-

dition) holds. To see this, observe that , by the product rule for Itô processes, we " ^ 642

have

dSi = Β-\μ± - rt S t) at + B^at d W t

= Br1at{utdt + dWt)

= Br1atàZt,

where dZ t = u t di + d W t defines an Itô process. Let

Mt
exp (/ u j d W s - - / u j u s ds

Then, by Girsanov's theorem (see Page 642), {Mt,t ^ 0} is an (^7
i,P)-martingale,

and under the new measure Q(A) = E [M T I A] for all A e Ττ, the process {Z t , 0 <
t ^ T} is a Wiener process. It follows that under Q the process {St,0 ^ t ^ T} is
a martingale with respect to {Tt, 0 ^ t ^ T}, which had to be shown. Q is called
the risk-neutral measure. Note that the existence of a solution to (15.2) implies
the existence of the risk-neutral measure Q and vice-versa.

The j ' - th component of the vector ut is called the market price of risk asso-
ciated with the j-th component of W t . In the scalar case u t = ut is simply called
the market price of risk. This interpretation comes from the following observation.
Suppose that /xt = ßSt and at = crSt, so that {St} is a geometric Brownian motion
process. Then, from

μ = η + out

5 2 4 APPLICATIONS TO FINANCE

we can see that the excess return ß — rt generated by a risky asset St is proportional
to σ with constant of proportionality ut. In this sense ut measures the excess return
(above the risk-free return) that investors demand per unit risk σ.

Let Vt = B^Vt = ipt + 4>t B^~1St
 = V't + 4>t St be the discounted value of the

portfolio of stocks and bonds. Under the arbitrage-free and self-financing assump-
tions we can write _

aVt = ct>JdSt = B t -Vt T <r tdZ t .

It follows that under Q the process { V t , 0 ^ t ^ T } i s a martingale with respect to
{-Ft,0 ζ ί ^ T } . As a consequence,

Vt = Bt EQIB^VT I H, ί < T . (15.3)

The last equation gives us a formula for valuing the portfolio at time t ίί Τ, given
that we know the stochastic behavior of the portfolio under Q.

5. Comple te market assumption. A market is comple te if the value of every
financial instrument contingent on the market assets can be replicated using the self-
financing trading strategy {(ipt,(pt)} described above. It can be shown [5, 11, 18]
that the market is complete if and only if the solution of (15.2) is unique.

Using the five assumptions above, we describe the mechanism for pricing a Eu-
ropean call opt ion (European put option) , which is a contract granting the
holder the right, but not the obligation, to buy (sell) an amount of stock St at a
fixed price K at some future time T. The price K is called the strike price. T
is called the maturi ty or expirat ion t ime. The value of the call (put) option
at maturity is referred to as the option payoff. The payoff at maturity for a call
option is {ST — K)+ = max{SV — K, 0} and for a put option is (K — ST)+- Suppose
for concreteness that we are dealing with a call option and denote its value at time
t ^ T by Ct = C{St, K,rt,T-t), where T - 1 is the time until maturity. Then, the
price of the option, Ct, is given by the value Vt of the portfolio (15.1), under the
condition that the portfolio replicates the payoff of the option. In other words, the
price is derived from (15.3):

Ct = Vt = Bt EQ[B^CT \Tt], t ^ T , (15.4)

where

CT = VT = V0+ [i)tdBt + [4>JaSt .
Jo Jo

■ EXAMPLE 15.1 (Black-Scholes Model)

" ^ 196 Suppose the stock price process satisfies the geometric Brownian motion SDE

dSt = ßStdt + aStdWt,

where {Wi,i ^ 0} is a Wiener process under P. The parameters μ and σ are
called the drift and volatil ity, respectively. We assume that the risk-free asset
(for example, government bond) yields Bt = Bo ert = ert units after time t, where
r is the risk-free annual interest rate. Then, since

(aSt)ut = (pSt) - rSt

STANDARD MODEL 525

has a unique solution, the market is complete and the market price of risk is ut =
(μ — r)/a. Hence, we can price any contingent claim via a self-financing trading
strategy using the underlying securities. The risk-neutral (arbitrage-free) price of
a European call option Ct is then derived from (15.4):

Ct = EQ[e-r^T-^CT | Tt] = Έφ-^-ν^τ - K)+ \ St]

{x-e-r{T-^K)p{x)âx I e~r(T-t)K

where p(x) is the pdf of ST = e~rTSx conditioned on St under the risk-neutral
measure Q. Under Q the discounted process {St} satisfies the SDE aSt = σ St dZt,
where {Zt} is a Wiener process. This has strong solution St = S'oecr'Zt_2<T *, t ^ 0.
It follows that

(ST I St) ~ LogN (ln(St) - \σ\Τ - t) , o\T - tfj ,

and the value of Ct can be computed analytically. The analytical expression for
the price is called the Black—Scholes formula:

BS{St,K,r,T-t,a)d= 3ιΦ{αι)-Κβ-Γ{τ-ί)Φ{α2), Ο ^ ί ^ Τ , (15.5)

where (αχ > 02)

l n (S , / i f) + (r ± s i) (T - ()

"« = ^ΤΤΓ · «
It can be shown via a simple arbitrage argument [17, 18] that the value Pt =
P(St,K,rt,T — t) of the European put option is related to the value Ct of the
European call option via the put—call parity:

Pt = Ct-St+ Ke~r(-T-V .

Hence, for a European put option the Black-Scholes formula gives

Pt = Κ&-^τ-^Φ{-α2) - SM-a{) .

The details of the option contract can vary. For example, the option may be
written over a different underlying asset (stock, commodity, interest rate, or stock
market index). Table 15.1 lists a variety of option contracts. The most common
type of options are the European- and American-style options. The first can be ex-
ercised only at maturity and the second can be exercised on or before the expiration
date. American options are more difficult to price since the possibility of exercise
at any time prior to maturity requires solving an optimal stopping and stochastic
optimization problem [10, 14]. Table 15.2 lists some variants of the vanilla call
option (Example 15.1) and their respective payoffs.

5 2 6 APPLICATIONS TO FINANCE

■ EXAMPLE 15.2 (A C o m p o u n d Call Option)

Consider an option expiring at T\ with strike price K\ to buy a call option expiring
at T2 > T\ with strike price K2 · If we denote the price of the option expiring at T\
(T2) by C M (C t ,2), then

C o ^ e - ^ E Q K C T ^ - t f i H S o] ,

where
CTl,2 = e~r^-T^ EQ[(ST2 - K2)+ I 5T l] -

15.2 PRICING VIA MONTE CARLO SIMULATION

For most of the options in Table 15.2 there is no explicit formula such as (15.5)
for the price of the option at time t. In such cases the price given by (15.4) is
approximated via Monte Carlo methods. A quite general procedure for pricing
European style options using Monte Carlo methods is as follows.

1. Assume we are given an SDE under probability measure Q, which models the
risk-neutral behavior of the underlying asset (s) from which the option derives
its value. If the SDE is given under measure P, then use Girsanov's theorem
or otherwise to derive the evolution equation of the asset prices under the
risk-neutral probability measure Q.

2. Simulate N sample paths of the asset prices under Q over the relevant time
horizon, say, [0,T]. This step usually requires a numerical scheme to approx-
imate the solution of the SDE.

3. Evaluate the discounted payoff of each asset on each sample path, as deter-
mined by the specifics of the asset.

4. Compute a Monte Carlo estimate of the theoretical option value in (15.4)
using the N discounted cash flows over the sample paths.

Note that there are two possible sources of error in approximating (15.4). The
first one is associated with a discretization of the SDE via the numerical scheme
in Step 2. The second source of error is the variance of the Monte Carlo estima-
tor in Step 4. Typically, the Monte Carlo variance is much larger than the error
introduced by the numerical SDE scheme. Thus, Step 4 more often than not calls
for a variance reduction technique. Very often the event that the payoff of a given
option is positive is a rare event. In such settings rare-event simulation techniques
are invaluable.

As an illustration of this recipe, we give the following example of pricing an
Asian call option.

■ EXAMPLE 15.3 (Asian Call Option)

Suppose we wish to price a European style Asian call option with maturity T and
strike price K. The payoff of such an option at maturity is

CT = {AT - K)

PRICING VIA MONTE CARLO SIMULATION 527

Table 15.1 Different types of option.

Option name Description

European

American

Bermudan

Barrier

Compound

Cross/Composite

Exchange

Lookback

Asian/Average

Basket

Rainbow

Digital/Binary/All-or-nothing

May only be exercised on expiration.

May be exercised on any trading day on or before
expiration.

May be exercised only on specified dates on or before
expiration.

The underlying security's price must pass a given
barrier before it can be exercised.

An option on another option, which presents the
holder with two separate exercise dates and deci-

An option on some underlying asset in one currency
with a strike price denominated in another currency.

Gives the holder the right to exchange one asset for
another at maturity.

Dependent on the whole price path; the owner has
the right to buy (sell) the underlying instrument at
its lowest (highest) price over some preceding period.

The payoff is determined by the average underlying
price over some predetermined period of time.

An option on the weighted average of several under-
lying assets.

A basket option where the asset weightings depend
on the final performances of the components in
the basket; for example, an option on the worst-
performing of several stocks.

The payoff at maturity is either some amount (units)
of cash (assets) fixed in advance or nothing at all.

where At is the average price of the stock over the interval [0,i]:

1 /"'
At = - Sudu, te[0,T}.

t Jo

Assume that the stock price is driven by the SDE model

dSt=ßStdt + aStdWt,

where {Wt} is a Wiener process under P. We denote the risk-free annual interest
rate by r. The price of the Asian call option at time t is given by the risk-neutral

5 2 8 APPLICATIONS TO FINANCE

Table 15.2 A list of some common (vanilla) and not so common (exotic) call
options with their payoff — all written on the underlying asset St ■

Name Payoff Notes

Vanilla European (ST — K)+

Cash-or-nothing I{Sr > K}

Down-and-out (ST ~ K)+ll min ST ^ ß\

Discretely monitored (ST — Ä")+Is min Sti > ß \
down-and-out

Discretely monitored (ST — K'Y'Yk min Sti ^ ß >
down-and-in

Lookback

Hindsight

Asian/Average

ST — min St

I maxo t max Sf — Kj

(AT - K)+

Discretely sampled (AT — K)+

Asian

Discretely monitored I { S T > K} M min Sti ^ ß \
digital down-and-in ^*^n

K is the strike price

ß is a fixed barrier

St at

i n

formula

Ct = e-^T-^EQ[(AT - K)+ | Tt], t e [0,T] .

We describe each of the four steps of the Monte Carlo procedure for this case.

Step 1. We must first establish the behavior of the stock price process under the
risk-neutral measure Q. As observed in Example 15.1, the discounted stock price
process under Q satisfies

aSt = aStàZt,

where {Zt} is a Wiener process. It follows that the evolution of the undiscounted
stock price under Q satisfies the SDE

dSt = rStdt + aSt àZt . (15.7)

196

Thus, under the risk-neutral measure the drift is given by r — the risk-free rate of
return.

Step 2. For this model there is no need to solve the SDE (15.7) numerically, since
the solution is available analytically:

S t = S0e< r-< , 2 /2> i + < , z«.

PRICING VIA MONTE CARLO SIMULATION 5 2 9

For large n the average stock price AT can be approximated well via

1 " , if
ST = —rT^5«*' *i = — , i = 0,...,n,

n + 1 ^-^ n
1 = 0

where

Su = So exp ((r - σ2/2) U + oZu) .

Typically n is chosen to be the number of trading days in the period [0, T].

Step 3 . The discounted payoff X of the Asian option at time t = 0 is

X = e-
rT{ST - K)+ .

Step 4. If Xi,..., Xff are .ZV independent realizations of the discounted payoff,
then the crude Monte Carlo estimator of the price of the Asian option is

1 N

fe=l

The following MATLAB code implements this estimator for the set of parameters:
(r, σ, K, So, T) = (0.07,0.2,35,40,4/12), and n = 88.

%asian_option_CMC.m
r=.07; ’/, annual interest
sig=0.2; */. volatility
K=35; % stike price
S_0=40; '/„ initial stock price
T=4/12; ’/�maturity in 4 months, which is 4/12
n= 88; % there are approx. 88 trading days
dt=T/n; % time step

of
in A

°/0 simulate N sample paths of the stock process
N=10~4; X=nan(N,l); % number of sample path
for i=l:N

path=(r-sig~2/2)*dt+sig*sqrt(dt)*randn(l
path=cumprod([S_0,exp(path)]);
X(i)=exp(-r*T)*max(mean(path)-K,0);

end
c_0=mean(X), Rel_error=std(X)/c_0/sqrt(N)
width=std(X)*norminv(0.975)/sqrt(N)
CI=[c_0-width,c_0+width]

the year
months

simulât

,n);

Lons

With N = 104, we obtain a typical estimate of Co = 5.38 with an estimated
relative error of 0.48% and a 95% confidence interval of [5.33, 5.43]. There is still
about $0.10 uncertainty in the price, and any mispricing on this scale could result
in an arbitrage opportunity.

5 3 0 APPLICATIONS TO FINANCE

Figure 15.1 Relative error of the crude Monte Carlo estimator and the quasi Monte
Carlo estimator for increasing values of the dimensionality n.

M EXAMPLE 15.4 (Quasi M o n t e Carlo)

We investigate the accuracy in pricing the Asian option from Example 15.3 for
" ^ 25 various values of T (maturity time) using crude Monte Carlo and quasi Monte

Carlo integration. We set T = n/365, where n is the number of trading days. Note
that n is also the dimensionality of the integration problem.

For quasi Monte Carlo we use the random shift procedure described in Algu-
es* 376 rithm 9.11 as follows. Let VN be the Faure quasirandom point set constructed in

Algorithm 2.2 on Page 32. The number of replications M is chosen to be 40 and
N = 250. For the crude Monte Carlo estimator we use 104 points so that both
crude and quasi Monte Carlo use the same number of points. Using the script be-
low we obtained Figure 15.1, which shows the estimated percentage relative error of
the crude and quasi Monte Carlo estimator. From the figure we can conclude that
quasi Monte Carlo outperforms crude Monte Carlo for n < 100. In other words,
quasi Monte Carlo is more effective for lower-dimensional integration problems, but
is eventually outperformed by crude Monte Carlo. In addition, as seen from the
numerous dips and peaks in the error, the quasi Monte Carlo relative error can vary
quite unpredictably.

We use two functions:

• H.m implements the estimator Ü, = jj]P e-pW M u) m Step 4 of Algorithm

9.11;

• asian_option_QMC.m implements the crude and quasi Monte Carlo estimator
similar to bridgeQMC.m in Example 9.13.

%QMC_ruii_script .m
c l e a r a l l , c l c , t r a d i n g _ d a y s = 2 : 3 5 0 ; e r r = [] ;
fo r n=t rad ing_days

e r r= [e r r ; a s i an_op t ion_QMC(n)] ;
n

PRICING VIA MONTE CARLO SIMULATION 5 3 1

end
plot(trading_days,err(:,1)), hold on
plot(trading_days,err(:,2),’r’)

function out=asian_option_QMC(n)
70 ’ç’ is the number of trading days;
°/o output of function is the relative error
7. of CMC and QMC for a given ’ç’;

'/, option details; make T a function of
T=n/365; 7«maturity in n days, which is
r=.07; 7o annual interest
sig=0.2; 7. volatility
K=35; 7• stike price
S_0=40; 7» initial stock price
dt=T/n; '/, time step
7o set up the quasi-random numbers
M = 40;
N = 10’4/M;
F = faure(n,n,N-l);
'/, QMC estimation
for i=l:M

U = mod(F + repmat(rand(l,n),˝,É),
y(i) = h(U,N,n,T>r>sig,K,S_0,dt);

end
ell = mean(y) ; 7»estimate

n
n/365 of the year

i);

QMC.RE = std(y)/sqrt(M)/ell; '/. rel. error
7o CMC estimation with N*M points
X=nan(N*M,1); '/, number of sample path
for i=l:N*M

X(i)=h(rand(l,n),l,n,T,r,sig,K,S_0
end
c_0=mean(X);
CMC_RE=std(X)/c_0/sqrt(N*M);
out=[CMC_RE, QMC_RE]*100;

3imulations

,dt);

function c_0=h(U,N,n,T,r,sig,K,S_0,dt)
X=nan(N,l); '/, number of sample path simulations
for i=l:N

path=(r-sig~2/2)*dt+sig*sqrt(dt)*norminv(U(i,
path=cumprod([S_0,exp(path)]);
X(i)=exp(-r*T)*max(mean(path)-K,0);

end
c_0=mean(X);

:));

5 3 2 APPLICATIONS TO FINANCE

For a more detailed comparison of quasi and crude Monte Carlo see [7, 14].
To improve the performance of the quasi Monte Carlo method, it is common to
generate the sample paths of the option using a Brownian bridge [14]. An efficient
quasi Monte Carlo algorithm for pricing Asian, lookback, and barrier (that is, path-
dependent) options under the more complicated variance gamma model is presented
in [2].

■ EXAMPLE 15.5 (Asian Call Pricing W i t h a Control Variable)

While quasi Monte Carlo can be effective in reducing the variance by a factor of 4
or 5, we can obtain a significantly more accurate estimate of the price of the Asian

" ^ 352 option (Example 15.3) using a control variable variance reduction technique.
Let GT be the geometric average of the stock price:

GT = e x p [/ l n S t d i

For large n, GT can be approximated via the geometric mean

, n s 1/(71+1) , σ2

Gt = (Π Su J , where Su = S0 exp ([r - — J U + aZt

^ ί=ο ' ^

with negligible error (see, for example, [8]). Since GT is expected to be closely
correlated to §τ, and since the expectation of GT can be computed (see below),
the following control variable is suggested:

X = e~rT(GT - K)+ .

The expected value EQ(GT — K)+ is computed as follows. First, using the property
that Cov(Zs, Zt) = min{s , i} , it can be shown that

/ T1 2 2 n n

InG T ~ N ln(50) + - (r - "-), y - ^ — , £] T m i n { i , , t3}

Since

„ ^ (ί ^ Σ Σ ™ ^ ^ } ^ / / mm{u,v}dudv=-,
ν I i=0 j=0 Jü JO

by considering the limiting distribution of GT as n —> oo, we arrive at

l n G ^ N (l n (Ä o) + | (, - ^) , ^) .

Hence, straightforward integral manipulations similar to the ones used to derive
(15.5) lead to

e - r T E Q (G T - K)+ = β-ίΕΣά^1!:80Φ(α1) - Κβ-
τΤΦ{α2) ,

where (αχ > a2)

\n{S0/K) + \(r-^±^)T
β 1 , 2 = 7Ξ=Ρ ■

PRICING VIA MONTE CARLO SIMULATION 5 3 3

The following MATLAB code implements the control variable approach using X.

°/0 a s i a n _ o p t i o n _ C o n t r o l _ v a r i a b l e .m
r = . 0 7 ; '/, annual i n t e r e s t
s i g = 0 . 2 ; °/, v o l a t i l i t y
K=35; 7, s t i k e p r i c e
S_0=40; % initial stock price
T=4/12; °/0 maturity in 4 months, which is 4/12 of the year
n= 88; °/0 there are approx. 88 trading days in 4 months
dt=T/n; % time step
% Simulate N sample paths of the stock process
N=10~4; X=nan(N,l); tX=X; % number of sample path simulations
for i=l:N

path=(r-sig~2/2)*dt+sig*sqrt(dt)*randn(l,n);
path=cumprod([S_0,exp(path)]);
X(i)=exp(-r*T)*max(mean(path)-K,0);
tX(i)=exp(-r*T)*max(prod(path)~(l/(n+l))-K,0);

end
c_0=mean(X)
width=std(X)*norminv(0.975)/sqrt(N);
CI=[c_0-width, c_0+width]

% compute expectation of control variable
al=(log(S_0/K)+(r-sig~2/6+sig~2/3)*T/2)/sig/sqrt(T/3);
a2=(log(S_0/K)+(r-sig~2/6-sig~2/3)*T/2)/sig/sqrt(T/3);
geo_call=exp(-(6*r+sig~2)*T/12)*S_0*normcdf(al)-...

K*exp(-r*T)*normcdf(a2);

Cov=cov([X,tX]);
alpha=Cov(l,2)/Cov(l,l); % optimal linear control

e l l_c=c_0-a lpha*mean(tX-geo_ca l l)
w i d t h = 1 . 9 6 * s q r t ((l - C o v (l , 2) - 2 / C o v (l , l) / C o v (2 , 2)) / N * C o v (l , l)) ;
C I = [e l l _ c - w i d t h , e l l _ c + w i d t h]

For the same simulation effort as in Example 15.3 (N = 104) we obtain a typical
estimate of CO = 5.356 with 95% confidence interval [5.355,5.357]. Thus, if prices
on the stock exchange are quoted to within $0.01, then the control variable method
provides a satisfactory estimate in this case. The variance reduction over the crude
Monte Carlo estimator is roughly a factor of 103. Note that since the Asian option
uses the whole stock price history, it is less sensitive to price manipulation than the
vanilla European call option in Example 15.1, whose payoff depends only on the
final stock price ST-

Early references on the control variable approach for pricing Asian options in-
clude [6] and [23]. The analytical pricing using the geometric average can be used
to provide bounds on the price of the arithmetic Asian option, see [27, 29]. For
a discussion of the simulation and discretization error in pricing continuous arith-

5 3 4 APPLICATIONS TO FINANCE

metic Asian options, see [1]. For pricing of discretely monitored Asian options when
the underlying asset evolves according to a Levy process, see [13].

■ EXAMPLE 15.6 (Condit ional Est imator I)

Consider pricing a European call option with stochastic volatility. Suppose that
the underlying stock price under the risk-neutral probability measure Q evolves
according to

dSt = rStdt + VtStdWt,i,

where the volatility is not deterministic (Vt φ σ) but is a mean-revert ing process,
given by the SDE

dVt = α(σ - Vt) dt + σ0 Vt dWt}2 ■

Here σ is the long-term mean volatility, and a is the rate at which reversion to the
long-term mean occurs. Note that {W^i} and {Wt^} are assumed to be indepen-
dent processes.

The price of the option thus depends both on the stochastic behavior of the stock
price and the volatility. There is no simple closed-form formula for the price of this
option. However, conditional on a realization {Vt,0 < t ^ T}, the evolution of the
stock price is available analytically:

ST = S0 exp (rT - i f V2 ds + ί Vs dW. Λ .

Therefore, if ST = e _ r T S T is the discounted stock price at maturity, we have
conditional on {Vi}

ST ~ LogN f ln(S0) - ±σ2Τ, σ2τ\ ,

where σ2 = ψ J0 V2 as is the average squared volatility. Thus, using the derivation
in Example 15.1 we can compute the conditional expectation

e - r T E Q [(S T - K)+ | So, Vt, 0 < t < T] = BS (5 0 , K, r, T, σ),

where BS(So,K,r,T,a) is the option price given by the Black-Scholes formula
(15.5) with initial price So, strike price K, interest rate r, maturity T, and volatility
σ. The code below implements the conditional estimator

X = BS (So,K,r,T,cr) .

t^ 185 We use the Euler scheme to approximate the solution of the mean-reverting process.
The code requires the function BS.m, which implements (15.5). We obtain a typical
95% confidence interval of [0.219, 0.221]. For the same simulation effort of N = 103

we obtained the much wider interval [0.209, 0.246] using crude Monte Carlo. An
early reference using this conditioning idea is [17].

PRICING VIA MONTE CARLO SIMULATION 5 3 5

°/» EU_Call_conditional_est .m
r=0.05; sig_0=l; % volatility
alpha=10; sig=l; % long term volatility
K=0.85; % strike price
S_0=1; V_0=0; '/, initial stock and volatility
T=90/365; 7, maturity in 90 days
n= 90; '/, use 90 trading days
dt=T/n; '/, time step

% now we simulate N sample paths of the stock process
N=10~3; X=nan(N,l);
for k=l:N

V=nan(l,n); V(1)=V_0;
for i=l:n-l

V(i+l)=V(i)+dt*alpha*(sig-V(i))+sqrt(dt)*sig_0*V(i)*randn;
end
sigma_bar=sqrt(sum(V.~2)*dt/T);
X(k)=BS(S_0,K,r ,T,sigma_bar) ; "/«conditional e s t i m a t o r

end
c_0=mean(X), R e l _ e r r o r = s t d (X) / c _ 0 / s q r t (N)
wid th=s td(X)*norminv(0 .975) / sqr t (N)
CI=[c_0-width.,c_0+width] 0/Β95°/0 confidence i n t e r v a l

■ E X A M P L E 15.7 (C o n d i t i o n a l E s t i m a t o r I I)

As a further illustration of the conditional Monte Carlo method, consider pricing
a d o w n - a n d - i n call option with a discretely monitored barrier [7]. This option is
also known as a discretely monitored knock-in call; see Table 15.2. The stock price
evolution under the risk-neutral probability measure Q is a geometric Brownian
motion with drift r and volatility σ. The monitoring instants are 0 = to < t\ <
• · · < tn = T and the option price is

e-rTEQ[(ST-K)+I{Tß<T}],

where ß is the barrier and Tß = min^fi : Sti ^ β} is the first monitoring time
at which the barrier is breached. There is no closed formula for the price of the
option, but by conditioning o n H = {St0,St1, ■ ■ ■, STß}, we have

e~rTEQ [(ST - Κ)+1{τβζτ}] = e - r T E Q [EQ [(ST - K)+ 1{τβ<τ} \ Η}}

= e - ^ E q [E Q [(S T - K)+ \ H] I { r ^ T }]

= EQ[BS(ST0,K,r,T-T0,a)l{Tß^T}] ,

where BS(·) refers to the Black-Scholes formula (15.5). Thus, we can simulate N
copies of

X = BS(STß, K,r,T - τβ,σ)1{τβ^τ}

5 3 6 APPLICATIONS TO FINANCE

and take their average as an estimator of the option price. In other words, the
conditional estimator is equivalent to simulating until either the barrier is crossed
or the option expires. If the barrier is breached, then X is the Black-Scholes price
with initial price STß and maturity T — Tß, otherwise X = 0.

With N = 104 we obtain a typical 95% confidence interval of [0.355, 0.358], which
represents an approximately hundredfold variance reduction over crude Monte
Carlo. Note that the value of the down-and-in call option increases when the
volatility σ increases, because large market volatility makes the event of a positive
payoff more likely.

°/ ,down_and_in_Call_conditional_est .m
r = . 0 7 ; % annual i n t e r e s t
s ig=2 ; %stock v o l a t i l i t y
K=l .1 ; % s t r i k e p r i c e
b = . 9 ; °/0 b a r r i e r
S_0=1; ’/, initial stock price
n=180; ’/, number of stock price observations
T=n/365; "/, length of observation period (in years)
dt=T/n; ’/, time step
°/o simulate N sample paths of the stock process
N=10~5; X=zeros(N,l) ; °/, number of sample path simulations
for i=l:N

path=(r-sig~2/2)*dt+sig*sqrt(dt)*randn(l,n);
path=cumprod([S_0,exp(path)]);
’/.index of first breach of barrier
index=f ind(path(1 : end-1)<=b,1,’First’);
if ~isempty(index)

tau=dt*(index-1); S_tau=path(index);
X(i)=BS(S_tau,K,r,T-tau,sig);

end
end
c_0=mean(X), R e l _ e r r o r = s t d (X) / c _ 0 / s q r t (N)
wid th=s td(X)*norminv(0 .975) / sqr t (N)
CI=[c_0-width,c_0+width]

For this problem it is possible to design a better but more complicated conditional
estimator called the filtered Monte Carlo estimator, see [7].

■ E X A M P L E 15.8 (I m p o r t a n c e S a m p l i n g)

Consider again the down-and-in call option with a discretely monitored barrier in
Example 15.7. The payoff at maturity can be written as

H(Z) = (5 t„ - K)+l\ min Sti < /?) ,

PRICING VIA MONTE CARLO SIMULATION 5 3 7

where (under the risk-neutral measure

/ 2 ^ \
S t f c = S 0 e x p N r - y } f c J + a V j ^ Z i J , (15.8)

where Z = (Z1,...,Zn)
T ~ N(0,J) , δ = Τ/η, and ifc = /e<5 for fc = 1,2, . . . ,n. Note

that the event of a positive payoff can easily be rare and hence the computation
of the option price is amenable to rare-event probability estimation methods such
as importance sampling. To select a good importance sampling density, we use
the cross-entropy (CE) method. First, we can write erTCo = KQH(Z). Thus, the
minimum variance pdf for the estimation of EQH(Z) is

m EQH(Z)

where φ(ζ) denotes the pdf of the standard normal random vector Z. If we look
for an optimal change of measure in the family Ν(μ, I), μ e R n , then we obtain
the CE optimal parameters

Mi
E Q g (Z) Zj

EQH{Z)
= EfZi, i = 1,

To estimate μ we simulate approximately from / using MCMC, in particular using
the hit-and-run Algorithm 6.5. This problem is solved in Example 6.6, where the
estimated μ is depicted on Figure 6.6.

In the following code we use the same parameters for the option as in Example
6.6, and assume that the estimated parameter μ obtained from the execution of
the code in Example 6.6 is loaded into the workspace.

We obtain a typical estimate of 1.07 x 10~7 with an estimated relative error of
6%. Thus, an option over a million units of shares is worth approximately $ 0.1. For
this example using the conditional Monte Carlo estimator in Example 15.7 gives a
comparable relative error.

°/»down_and_in_Call_Importance_Sampling. m
N=10~5; X=zeros(N,1) ; W=X; %prea l loca te memory
fo r i= l :N

z=mu+randn(l ,n) ; % importance sampling
[H , p a t h] = d o w n _ i n _ c a l l (z , d t , r , s i g , S _ 0 , K , b) ;
W(i)=exp(- . 5 * (z*z ' - sum((z-mu) .~2))) ; % l i k e l i h o o d r a t i o

X(i)=W(i)*exp(-r*T)*H;
end

mean(X)
s td (X) /mean(X) / sqr t (N)

362
463

242

Importance sampling where the drift and/or the volatility of the underlying
SDE model is changed using methods other than the CE method are investigated
in [14, 15].

5 3 8 APPLICATIONS TO FINANCE

15.3 SENSITIVITIES

Suppose a financial institution or bank sells a call option Ct = C(St,K,rt,T — t)
to one of its customers. The bank is exposed to the risk that the underlying stock
price ST will be significantly above the strike price K and will have to pay the
customer the amount ST — K. Ideally, the bank would like to offset or minimize
its exposure to the unpredictable price fluctuations of the stock price process {St},
and profit from a secure stream of fees and commissions generated from providing
call options as a financial product to the market participants. The minimization of
this risk exposure is called hedging.

Recall from the standard model that there exists a trading strategy {(^t, </>t), t ^
0} so that a portfolio containing %\)t units of bonds and <j)t units of risky assets will
replicate the payoff of an option contract with price Ct- Loosely speaking, to hedge
against its potential call option liabilities, the bank can use part of the revenue from
selling the option to create and hold a portfolio worth Vt that will (approximately)
match the value of Ct at any time. In other words, the bank's net liability will
be Vt — Ct ~ 0. The reason that exact matching is impossible is that the price
process {St} is changing (almost) continuously, but the bank is not able to trade
continuously (using {(t/>t, </>(),i ^ 0}) in order to adjust the replicating portfolio.
Instead, the bank readjusts the portfolio at small time steps using a discrete time
trading strategy {(%j}t , <f>t.), j = 0 , 1 , 2 , . . . } , and avoids large discrepancies between
the portfolio and the option by using local approximations for the behavior of Ct-

710 A possible local approximation is based on Taylor's theorem. For example, suppose

the bank can trade at time instants {..., t — δ, t, t + δ,...}, and wishes to set up
a portfolio worth Vt = I/H + < ί̂>ί that (approximately) matches the value Ct of
the option at the next trading instant t + δ (effectively hedging against its option
liability in the small time interval [t,t + δ}). Then, matching the values Vt = Ct

and the derivatives 1^- = | ^ - , and solving for (ipt,<f>t) creates the portfolio with

4>t = ^ r 1 units of the underlying stock and xjjt = Ct — §§*- St units of bonds.
Depending on the quality of the Taylor approximation, such a portfolio may closely
replicate the value of Ct+s ■

■ EXAMPLE 15.9 (Hedging W i t h the Black Scholes Formula)

Suppose the price of the call option Ct is given by the Black-Scholes formula (15.5).
Let a\ and 0,2 be defined in (15.6), and ψ and Φ be the pdf and cdf of the stan-
dard normal distribution, respectively. Then, by the chain and product rules for
differentiation we have

g = Φ(Β1) + St*'(«i)ff - i^e-^-^' (a 2) | | = Φ(β1),

where the last equality follows from:

φ(αχ)

StaJT^t
<P(«l)

StaVT^l

(st - KeaiaVT=J~cr2:l^i~r(T~tA

φ{αι) (s t - t f e K *)) ^ .

SENSITIVITIES 539

Thus, the bank will have to hold
option liabilities.

Φ(αι) units of stock to hedge against its

In general, the price of an option depends not only on the initial underlying
asset price, but also the volatility, the remaining time until expiry, and the interest
rate. For various hedging strategies it is of interest to compute the sensitivity of the
option price to each of these parameters. Table 15.3 describes the nomenclature
used for the various partial derivatives and a short financial interpretation of the
mathematical formula. These sensitivities are named after Greek letters and are
collectively referred to as Greeks. The Greeks for the Black-Scholes model in
Example 15.1 can be calculated analytically and are given in Table 15.4.

421

Table 15.3 The Greeks of a call option.

Name Formula Description

Delta

Gamma

Theta

Vega

Rho

Δ4 = dCt

dSt

Θ,

Vt =

Qt

d2ct
9S,2

dCt
dt

drt

Measures the sensitivity of the option's
price to the underlying stock price.

Measures the sensitivity of the option's
Delta to the underlying stock price.

Measures the sensitivity of the option's
price to the time remaining until expiry.

Measures the sensitivity of the option's
price to the volatility.

Measures the sensitivity of the option's
price to the interest rate.

Table 15.4 The Greeks for a call and put option under the Black-Scholes model in
Example 15.1.

Name Call Put

Delta

Gamma

Theta

Vega

Rho

Φ(αι)

St ψ{αλ

Φ (α ι) - 1

Same as Gamma of call

— § = + r i f e - (T - ^ (a 2) s t ¥ , (a i) _ ^ = - τΚ&-^τ-^Φ(-α2)

Stip(ai)VT^t

(Τ - ί) Κ β - Γ (Γ - ί) φ (α 2)

Same as Vega of call

-(T-t)Ke-r^-t^(-a2)

For models other than the Black-Scholes model, accurate computation of the
sensitivities presents a challenge, which is addressed (to some extent) by Monte

5 4 0 APPLICATIONS TO FINANCE

Carlo techniques. Next, we describe two of the most common techniques. For a
detailed discussion see [14].

15.3.1 Pathwise Derivative Estimation

"3° 426 In the financial engineering literature the infinitesimal perturbation analysis (IPA)
discussed in Section 11.3 is usually referred to as p a t h w i s e de r iva t i ve e s t i m a -
t ion . Suppose we wish to estimate £'(θ) = g | (Θ), where

£(e) = EfH{X;9)= ί ff(X; 0) / (x) dx , Θ 6 θ , (15.9)

for some open set Θ. In a financial setting H could be the payoff of an option
and / (x) a multivariate Gaussian pdf that is used to approximate the underlying
Wiener process. Here the parameter Θ is a structural sensitivity parameter (Section

"3° 421 11-1), and therefore we can consider the pathwise derivative estimator

1 N

? W = ^ E t f (X ^) ' Xi , . . . ,Xiv~/ ,
fe=l

where it is assumed that for a random X the derivative

tf'(X;0) = ^ f f (X ; 0)

exists almost surely for all Θ 6 Θ. The multidimensional version of this estimator is
given in (11.8). If the payoff of the option is smooth enough so that the expectation
operator and the derivative operator can be interchanged (see (11.7)), that is,

Α Ε / Η (Χ ; β) = Ε / ^ Η (Χ ; β))

then the pathwise gradient estimator is consistent and unbiased. A sufficient con-
•®" 422 dition for this is given in Theorem 11.1.1, which essentially requires the uniform

integrability of (-ff(X; Θ + ε) — H(X.; θ))/ε, ε > 0. Alternative sufficient conditions
are given in [14, Page 393] and [7]. For most practical situations a simple rule of
thumb that guarantees the consistency and unbiasedness of the estimator is that
the option payoff is continuous in the parameter of interest. Such smoothness con-
ditions are frequently quite restrictive. For example, the payoff of an all-or-nothing
call option (see Table 15.2) is not continuous. Thus, the pathwise derivative esti-
mates are not broadly applicable. However, whenever they are, these estimates are
generally the most accurate among possible alternatives. An alternative method
that applies more broadly is given in the next section.

■ E X A M P L E 15.10 (P a t h w i s e Der iva t ive E s t i m a t i o n)

Consider estimating the Delta of the Asian call option in Example 15.3 with payoff
(ST — K)+. The pathwise derivative of the payoff is

ÙCT _ à * a S T S T

SENSITIVITIES 541

where we have used the fact that -^- = StJSo. Similarly, the pathwise derivative
for estimating the Vega is

k=0 v i= l '

where Stk is defined in (15.8). For convenience of implementation in the code that
follows, we use the identity

-^ + ^ E ^ - l n (^ / 5 o) ' (r + (7 2 / 2) f f c -
ί=1

With a simulation effort of TV = 106 and using the same parameters as in Example
15.3 we obtain typical 95% confidence intervals of [0.9758,0.9763] and [0.38,0.43]
for the Delta and Vega, respectively. Note that the confidence interval for the Vega
is much wider than the confidence interval for the Delta. Intuitively this is due
to the fact that only the distribution of St1 depends directly on So, and, given
Sti, subsequent values of the stock price are independent of So- However, every
Stk, k ^ 1 depends on σ. Thus, the estimator for Vega is much more variable. For
a survey article which compares many methods for evaluating sensitivities of Asian
options see [8].

7, sens i t iv i t i es_pa thwise_Crude_Monte_Car lo .m
r = . 0 7 ; 7. annual i n t e r e s t
s i g = 0 . 2 ; 7» v o l a t i l i t y
K=35; 7o s t r i k e p r i c e
S_0=40; 7o i n i t i a l s tock p r i c e
T=4/12; 7 tmaturity in 4 months, which i s 4/12 of t h e year
n= 88; '/, t h e r e a re approx. 88 t r a d i n g days in 4 months
dt=T/n; '/, t ime s t e p
7« Simulate N sample paths of the stock process
N=10"6; Delta=nan(N,l);Vega=Delta;
for i=l:N

path=(r-sig~2/2)*dt+sig*sqrt(dt)*randn(l,n);
path=cumprod([S_0,exp(path)]);
A=mean(path); % average path/stock price
Delta(i)=exp(-r*T)*(A>=K)*A/S_0;
Vega(i)=exp(-r*T)*(A>=K)*...
sum(path.*(log(path/S_0)-(r+.5*sig~2)*[0:dt:T]))/(n+l)/sig;

end

D=mean(Delta); Rel_err=std(Delta)/sqrt(N)
width=std(Delta)*norminv(0.975)/sqrt(N);
CI_D=[D-width, D+width]
V=mean(Vega); Rel_err=std(Vega)/sqrt(N)
width=std(Vega)*norminv(0.975)/sqrt(N);
CI_V=[V-width, V+width]

5 4 2 APPLICATIONS TO FINANCE

15.3.2 Score Function Method

423 As pointed out in Remark 11.1.1, it is often possible to switch from a structural
interpretation of the parameter Θ to a distributional interpretation, and vice versa.
In other words, we can frequently rewrite (15.9) as

= y*ff(x)/(x;< I d x .

and therefore if the interchange of the differential and expectation operators in
(11.10) is justified, then

^(0) = y / (x ; e) / r (x) ^ ^ d x = E e H (X) S (o ; X) .

Sufficient conditions on the pdf / that ensure the validity of the interchange are
given by Theorem 11.1.1. In contrast to the pathwise derivative estimation setting,
where restrictions on the payoff function H are imposed, here the payoff function
is free from any restrictions, and all smoothness requirements are imposed on the
pdf / . Thus, the score function method is much more broadly applicable than
the pathwise derivative estimation approach. For cases where the score function
method is not applicable, see [14, Page 407]. Assuming that the interchange in
(11.10) is justified, we can then use the crude Monte Carlo estimator

1 N

fc=l

However, this estimator is usually not efficient. For example, for barrier options the
payoff H could be 0 almost always. In Example 15.11 we therefore use importance
sampling to improve the efficiency. For a general discussion of the score function

"3° 431 method combined with importance sampling, see Section 11.4.1 and Algorithm 11.4.
In summary, the advantages of the score function method are:

• It is more broadly applicable than the pathwise approach, because it does not
impose any smoothness conditions on the payoff.

• Once the score S(£>;Xfc) is computed, the specific form of the payoff H is
irrelevant and we could use the same score to compute the same sensitivity
for options with different payoffs.

Disadvantages of the score function method include:

• It requires explicit knowledge of the pdf of the stock price path.

• It typically gives estimators with larger variance than the variance of the
pathwise derivative estimators. More importantly, the variance of the score
function estimator may be infinite.

SENSITIVITIES 543

■ EXAMPLE 15.11 (Score Function M e t h o d W i t h Importance Sampling)

Consider pricing the call option with discretely monitored barrier in Example 15.8
using importance sampling. Abbreviating 5Εί to Si for notational convenience, we
can write the value of the option as

e-rTEfH(Z) = e-rTEp[(Sn - K)+ I{minist&}] ,

where the joint density of the stock price path (S i , . . . , Sn) can be factorized as

p (s i , . . . , s „) =p(si \s0)p(s2\si)---p(sn\sn-i) .

Here

p (s i | s i _ i) = 1=φ[-= , i = l,...,n,
SiaVo \ σνο /

where ψ is the pdf of the standard normal distribution. In other words, p(si | s,_i)
is the pdf of the

L o g l \ l (l n (S i _ i) + (r - y) < 5 , δσΛ

distribution and Z = {Z\,..., Zn) is related to (S i , . . . , Sn) via (15.8). Then, the
score for computing the Delta of the option is

έ lnp(S1 ' · · · 'Sn) = g έlnp{Si ' Si~l] = 7^71 '
and the score for computing the Vega of the option is

d n d n 2? - 1
— In p{s1,...,sn) = ^] — l n p (s i | s i _ i) = J ^ - ^ ZiVô .

i = l i = l

If we abbreviate the score for the desired sensitivity (Delta, Vega, or other sensi-
tivities) to S(z), then the crude Monte Carlo estimator of the desired sensitivity
is

-rT N

i=l

which is not an efficient estimator for the payoff of barrier options. Therefore, simi-
lar to Example 15.8 we use the hit-and-run Algorithm 6.5 to estimate the parameter
μ of the optimal importance sampling density in the family of multivariate normal
distributions Ν(μ, I). In other words, we estimate the mean μ of the pdf

/ (z) a e - z T * / 2 / f (z) | S (z) | ,

by μ and then use Ν(μ , /) as the (near) optimal importance sampling density. The
code below implements this importance sampling scheme for a given set of option
parameters. The hit-and-run sampler is run for 105 iterations and the importance
sampling estimator is based on an iid sample of size 106. We obtain a typical
estimate of the Delta of —4.20 x 10~6 with an estimated relative error of 6.5%.

5 4 4 APPLICATIONS TO FINANCE

The code can be modified to obtain an estimate of the Vega. A typical estimate is
1.28 x 10 - 5 with an estimated relative error of 4%.

7« sensitivities_IS_with_CE.m
r=.07; °/0 annual interest
sig=.2; ’/.stock volatility
K=1.2; '/, strike price
b=.8; 7« barrier
S_0=1; % initial stock price
n=180; % number of stock price observations
T=n/365; 7« length of observation period (in years)
dt=T/n; '/, time step
N=10~5; ’/, length of chain
x=[-ones(1,60),ones(l,n-60)]*0.4; 7« initial starting point
[HS, path] =payof f _times_score (x, dt, r, sig, S_0, K, b) ; ’/.evaluate H (x) *S (x)

'/, now we simulate N sample paths of the stock process
% and compute averages
mu=0;paths=0;
for i=l:N

7. apply hit-and-run
d=randn(1,n); d=d/norm(d);
lam=-d*x’+randn;
y=x+lam*d; 7» make proposal
7. evaluate H(y)
[HS_new,path_new]=payoff_times_score(y,dt,r,sig,S_0,K,b);
7o accept or reject the proposal
if rand<min(abs(HS_new/HS),1)

x=y; % update
HS=HS_new;
path=path_new;

end
mu=mu+x/N; "/, compute an estimate of E[X]
paths=paths+path/N; 7. compute average stock price trajectory
if mod(i,2*10~4)==0 % plot every 10~3-th step of the chain

plot(0 :dt:T,path,0 :dt:T,0*path+b,0 :dt:T,0*path+K)
axis([0,T,b-0.1,K+.2]),hold all
pause(.1)

end
end
plot(0:dt:T,paths,’r’,’LineWidth’,3) %plot average price trajectory
figure(2)

plot(mu,’k.’), hold on
% smooth the trajectory of E[X] using a spline
pp = csaps(dt:dt:T,mu,l/(l+(dt*10)~3));
mu_t = f nval (pp, [dt : dt : T]) ;
plot(mu_t,’r’) %plot the smoothed trajectory

SENSITIVITIES 545

% the importance sampling

N=10"6; X=zeros(N,l); W=X;

for i=l:N
z=mu+randn(1,n);

[HS,path]=payoff_times

estimator

°/o number

_score(z,

W(i)=exp(-.5*(z*z’-sum((z-mu).

X(i)=W(i)*exp(-r*T)*HS
end
mean(X)

std(X)/mean(X)/sqrt(N)

J

starts here

of

it,r

-2)

sample

,sig,S.

)); 1

path simulations

_0,K,b);
likelihood ratio

The hit-and-run implementation uses the following function.

funct ion [HS ,S_t]=payoff_t imes_score(z ,dt ,r ,s ig ,S_0 ,K ,b)
% implements H(x)*S(x)
y=(r - s ig"2 /2)*dt+s ig*sqr t (d t) *z;
S_t=exp(cumsum([log(S_0),y]));
° / 0 sens i t iv i ty_ fac tor=z (l) / (S_0*s ig*sqr t (d t)) ; '/, for Vega
sensitivity_factor=sum((z.~2-l)/sig-z*sqrt(dt)); % for Delta
HS=max(S_t(end)-K,0)*sensitivity_factor*any(S_t<=b);

■ EXAMPLE 15.12 (Est imat ion of G a m m a)

For estimating higher-order derivatives it is possible to construct estimators that
combine both the likelihood ratio and pathwise approaches. For example, to esti-
mate the Gamma of a European call option with discounted payoff e _ r r (5 r — K)+

under the Black-Scholes stock price model, we may first construct the likelihood
ratio estimator

X = e~rT{ST_K)+_?l^

Socry/δ

and then take the pathwise derivative (recall that ^β?- = ST/So):

dX

d~S~o

-rT Zi

Sfiay/S I{ST>K} K ■

Then, the crude Monte Carlo estimator is the average of TV realizations of ^ - .
Such mixed estimators are typically much more accurate than pure likelihood ratio
estimators [14].

Finally, we mention that the finite difference method described in Section 11.3
is also sometimes used in the estimation of the sensitivities of options, and it is
the easiest method to implement. However, under similar conditions that make
the pathwise derivative method inapplicable, the finite difference method yields
estimators with high mean square error. Thus, using the finite difference method
does not circumvent the smoothness problems of the payoff function. In general,

426

5 4 6 APPLICATIONS TO FINANCE

while easy to implement, the finite difference method gives estimators that are
biased and inefficient. We recommend its use under the rare circumstances when
the payoff fails to be almost surely continuous in the parameter of interest and
the relevant densities driving the asset prices are not explicitly known (so that the
score function method is not applicable). For a detailed discussion of sensitivity
estimation we refer to [8] and the references therein.

Further Reading

American style options are significantly more difficult to price than their European
counterparts. For the computational challenges associated with American options
we refer to [10, 14]. An undergraduate level presentation of deterministic and Monte
Carlo methods in option pricing that requires minimal knowledge in stochastic cal-
culus is [4]. Graduate level texts with practical numerical examples are [3] and [28].
These authors cover deterministic PDE methods such as finite difference and finite
element methods for pricing financial derivatives. Texts that focus more on the the-
oretical aspects of financial mathematics with rigorous coverage of continuous-time
stochastic calculus include [12] and [18]. A classic research monograph on pricing
exotic options in complete and incomplete markets is [22]. Texts with an emphasis
on Monte Carlo methods include [14, 19], and the handbook of mathematical fi-
nance [21]. In addition, McLeish [25] provides simple examples with MATLAB code.
Financial models based on nonhomogeneous Levy jump processes with pricing and
hedging theory in incomplete markets are covered in [9, 20]. For the application of
quasi Monte Carlo methods in finance, see, for example, [24].

REFERENCES

1. K. Abramowicz and O. Seleznjev. On the error of the Monte Carlo pricing method
for Asian option. Journal of Numerical and Applied Mathematics, 96(1):1-10, 2008.

2. A. N. Avramidis and P. L'Ecuyer. Efficient Monte Carlo and quasi-Monte Carlo option
pricing under the variance gamma model. Management Science, 52(12):1930-1944,
2006.

3. K. Back. A Course in Derivative Securities: Introduction to Theory and Computation.
Springer-Verlag, Berlin, 2005.

4. F. E. Benth. Option Theory With Stochastic Analysis: An Introduction to Mathemat-
ical Finance. Springer-Verlag, Berlin, 2004.

5. N. H. Bingham and R. Kiesel. Risk-Neutral Valuation. Springer-Verlag, London,
second edition, 2004.

6. P. Boyle. Options: A Monte Carlo approach. Journal of Financial Economics,
4(3):323-338, 1977.

7. P. Boyle, M. Broadie, and P. Glasserman. Monte Carlo methods for security pricing.
Journal of Economic Dynamics and Control, 21(8 & 9):1267-1321, 1997.

8. P. Boyle and A. Potapchik. Prices and sensitivities of Asian options: A survey.
Insurance: Mathematics and Economics, 42(1):189 - 211, 2008.

9. R. Cont and P. Tankov. Financial Modelling With Jump Processes. Chapman & Hall,
Boca Raton, FL, 2004.

REFERENCES 547

10. J. Detemple. American-style Derivatives: Valuation and Computation. Chapman &
Hall/CRC Financial Mathematics Series. CRC Press, Boca Raton, FL, 2006.

11. D. Duffie. Dynamic Asset Pricing Theory. Princeton University Press, Princeton,
third edition, 2001.

12. R. J. Elliot and P. E. Kopp. Mathematics of Financial Markets. Springer-Verlag,
New York, second edition, 2005.

13. G. Fusai and A. Meucci. Pricing discretely monitored Asian options under Levy
processes. Journal of Banking & Finance, 32(10):2076-2088, 2008.

14. P. Glasserman. Monte Carlo Methods in Financial Engineering. Springer-Verlag,
New York, 2004.

15. P. Glasserman, P. Heidelberger, and P. Shahabuddin. Asymptotically optimal impor-
tance sampling and stratification for path-dependent options. Mathematical Finance,
9(2):117- 152, 1999.

16. J. M. Harrison and D. Kreps. Martingales and arbitrage in multiperiod securities
markets. Journal of Economic Theory, 20(3):381-408, 1979.

17. J. C. Hull. Options, Futures, and Other Derivatives. Pearson/Prentice Hall, London,
seventh edition, 2008.

18. P. J. Hunt and J. E. Kennedy. Financial Derivatives in Theory and Practice. John
Wiley & Sons, Chichester, second edition. 2004.

19. P. Jäckel. Monte Carlo Methods in Finance. John Wiley & Sons, New York, 2002.

20. M. S. Joshi. The Concepts and Practice and Mathematical Finance. Cambridge
University Press, Cambridge, 2003.

21. E. Jouini, J. Cvitanic, and M. Musiela. Option Pricing, Interest Rates and Risk
Management. Cambridge University Press, Cambridge, 2001.

22. I. Karatzas and S. E. Shreve. Methods of Mathematical Finance. Springer-Verlag,
New York, 1998.

23. A. G. Z. Kemna and A. C. F. Vorst. A pricing method for options based on average
asset values. Journal of Banking & Finance, 14(1):113-129, 1990.

24. P. L'Ecuyer. Quasi-Monte Carlo methods with applications in finance. Finance and
Stochastics, 13(3):307-349, 2009.

25. D. L. McLeish. Monte Carlo Simulation and Finance. John Wiley & Sons, New York,
2005.

26. M. Musiela and M. Rutkowski. Martingale Methods in Financial Modelling. Springer-
Verlag, New York, second edition, 2005.

27. J. A. Nielsen and K. Sandmann. A pricing method for options based on average asset
values. Journal of Financial and Quantitative Analysis, 38(2):449-473, 2003.

28. R. U. Seydel. Took for Computational Finance. Springer-Verlag, Berlin, fourth edi-
tion, 2009.

29. M. Vanmaele, G. Deelstra, J. Liinev, J. Dhaene, and M. J. Goovaerts. Bounds for
the price of discrete arithmetic Asian options. Journal of Computational and Applied
Mathematics, 185(1):51-90, 2006.

This page intentionally left blank

CHAPTER 16

APPLICATIONS TO NETWORK
RELIABILITY

Network reliability problems arise in many areas of engineering and computer sci-
ence, such as telecommunications, transportation, energy supply systems, and com-
puter networking. In this chapter we survey some of the most widely used algo-
rithms, with emphasis on those that are easy to implement:

1. The permutation Monte Carlo method — a conditional Monte Carlo approach *& 354
for estimating network unreliabilities, in cases where the edges of the network
fail independently;

2. The importance sampling method, combined with MCMC sampling; is* 362

3. The generalized splitting method for estimating network unreliabilities in cases " ^ 485
where the edge failures are dependent.

16.1 NETWORK RELIABILITY

Let G(V, E, K) be an undirected graph (network) with V being the set of n nodes
(or vertices), E being the set of edges (or links), and K Ç V being a set of terminal
nodes such that \K\ ^ 2.

Associated with each edge e £ E is a Bernoulli random variable Be such that
{Be = 1} corresponds to the event that the edge is operational (on) and {Be = 0}
corresponds to the event that the edge has failed (off). Then, labeling the edges

Handbook of Monte Carlo Methods. By D. P. Kroese, T. Taimre, Z. I. Botev 549
Copyright © 2011 John Wiley L· Sons, Inc.

5 5 0 APPLICATIONS TO NETWORK RELIABILITY

Figure 16.1 A reliability network. The network works if the two terminal nodes (filled
circles) are connected by functioning links. Failed links are indicated by dashed lines.

from 1 to TO, the vector B = (Bi,..., Bm) describes one of the 2m possible config-
urations of such a reliability network. Figure 16.1 shows a reliability network
with two terminal nodes and m = 12 edges. The configuration in Figure 16.1 is
(0 ,1 ,0 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,0 ,0) . Denote the set of all possible configurations by £$. Let
/ ß (b) = P (B = b) be the discrete pdf of the binary vector B . We assume that
each Be is a Bernoulli variable with

P(J5e = 1) =pe = l-qe, e = l,...,m.

The reliability I of the network is defined as the probability that the nodes in K
are connected by operational edges. Therefore, we can write

£ = EH{B) =] T / B (b) F (b) ,
hem

where H(h) = 1 if the nodes in K are connected and H(b) — 0, otherwise. The
function H (b) is usually referred to as the s tructure function of the network (see,
for example, [4]), and £ = 1 — £ is called the unreliability of the network, which is
typically a rare-event probability. Two special cases of interest include:

1. Two-terminal network reliability: Here \K\ = 2 and the two nodes of interest
are called the source and sink.

2. All-terminal network reliability: Here K = V; that is, we wish to estimate
the probability that all nodes in the corresponding graph are connected.

Since £ is typically very small, the crude Monte Carlo estimator

1 N

£=l--^H(Be), Bu...,BN^fB(h),
e=l

which has a relative error of ^ (1 — £)/(N£), is impractical. The next section con-
siders an alternative formulation of the problem, in which the static simulation
model above is reformulated as a dynamic simulation model.

EVOLUTION MODEL FOR A STATIC NETWORK 5 5 1

16.2 EVOLUTION MODEL FOR A STATIC NETWORK

A different formulation of the network reliability estimation problem views the
static network as a snapshot of a dynamic one at a particular point in time. This
approach is adopted in the evolut ion mode l pioneered by Elperin et al. [14, 15]
and Lomonosov [29]. The dynamic reformulation of the static model leads to a
conditional Monte Carlo estimator for small unreliabilities that uses theory from
Markov processes. Here we present an extended version of the idea showing that the
evolution approach can be viewed as a data augmentation technique. This exten-
sion is useful when implementing the variance reduction techniques in subsequent
sections.

Let X = (X L , . . . ,Xm) be a vector of continuous latent variables with joint
density / (x) on X Ç Mm such that each component Be in B can be expressed in
terms of these latent variables via

■B e =I{x e <i} , e = l , . . . , m .

Hence, we have

P(X e > 1) = ¥{Be = 0) = 1-Pe = qe, e = 1 , . . . , TO ,

and
I = 1 - EfBH(B) = 1 - EfH(B(X)) ,

where B(·) is a function from 2£ to 3ê. If the {Be} are independent, then / (x) =
Yi7=i fe(xe) for some pdfs {/e} satisfying f™ fe(x) dx = qe, e = 1 , . . . , m.

It is useful to interpret each continuous variable Xe as a random t ime of repair
of the e-th edge, so that at some time io in the past (possibly —oo or 0) the e-th
edge is in a failed state and becomes operational at time Xe. Thus, {Xe > 1}
is interpreted as the event that the time of repair of the e-th edge exceeds 1 and
becomes operational at a time later than 1.

Let 5 (X) denote the random time at which the network becomes operational,
given the vector of times of repair X. In the two-terminal case the network be-
comes operational if there is an (edge-)path between the source and sink; that is,
a sequence of nonidentical edges (i>o,fi), (*>i, v%),..., (i>fc-i, Ufc) where VQ denotes
the source and Vk the sink. For example, in Figure 16.1 two possible paths are
ΤΊ = (1,2,7,4,5,10,11) and P 2 = (5,10,11). Here we use a labeling of the edges
rather than identifying the edges via vertex pairs. A path is said to be a minimal
path if it does not contain another (shorter) path. For example, V2 is a minimal
path, but V\ is not. A cut in a graph is a set of edges such that , if deleted from
the graph, the terminal nodes become disconnected. For example, the set {1,4,5}
of edges on Figure 16.1 is a cut. Its removal disconnects the terminal nodes. A
minimal cut is a cut that does not contain another (smaller) cut. Using these
concepts we can formally write the time of repair of the system, 5 (X) , as

S(X) = min m a x i » = maxminX e , (16.1)

where

• 2? = {Pj} is the set of all minimal paths between the source and sink; each
Vj, j = 1 , . . . , 1^1, represents a sequence of edges connecting the source and
the sink;

• ^ = {Cj} is the set of all minimal cuts in the graph; each Cj, j = 1 , . . . , \Ψ\,
is a set of nodes describing a minimal cut on the graph.

5 5 2 APPLICATIONS TO NETWORK RELIABILITY

Figure 16.2 Network with ladder topology. The source and sink are filled circles.

In the case of all terminal reliability, paths are replaced by spanning trees [31, 32].
In terms of the vector X of times of repair, the unreliability of the system can

be written as
i = P(S(X)>l), X~/(x). (16.2)

In other words, if we imagine a dynamic network whose state changes over time
because its edges are being repaired, then the state of the static network is a
snapshot of the dynamic one at time 1.

The number of possible minimal paths or minimal cuts can grow exponentially
with the size of the graph [32]. For example, for the ladder topology in Figure 16.2
with m edges we have 2 ' m + 1) ' 3 possible paths connecting the source and the sink.
Note that there are (m + l) 2 / 9 minimal cuts. For a complete graph with n nodes,
the number of spanning trees connecting all nodes is nn~2 and there are 2 n _ 1 — 1
minimal cuts. This large number of cuts and paths makes the direct evaluation of
5 (X) via (16.1) impractical. Instead, the value S(X) can be computed using the
following simple algorithm, which uses a depth first search [25].

Algor i thm 16.1 (Computat ion of S(X.)) Given a vector X = (Xi,..., Xm) of
times of repair and the network Q(V,E,K), set b = 1 and execute the following
steps.

1. Let π = (π ι , . . . , 7rm) be the permutation of the edges 1 , . . . , m such that

Χ-π-ί < Χτ2 < ' " ' < X-Km ■

2. Consider the network Q in which the edges π ι , . . . , itt, are working and the
rest, 7Tft_|_i,..., 7rm, are failed.

3. Use depth first search to check if the network is operational. If the network is
operational stop and go to Step 4; otherwise, increment b = b + 1 and repeat
from Step 2.

4- Output 5 (X) = XVb as the time at which the network becomes operational.

We call the b for which S(X) = XVb the critical number for vector X. Note
that 6 is a function of the permutation 7Γ. If we implement the depth first search
using an adjacency matrix, see [25], and update the adjacency matrix every time a
new link is added, the complexity is 0 (n 2 + m). The MATLAB function that follows
implements the algorithm for the case where the network is operational if node 1
is connected to node n. The topology of the graph is passed to the function via
the global variable GRAPH, which is a structure array with field names describing

EVOLUTION MODEL FOR A STATIC NETWORK 5 5 3

all relevant information about a graph object. In particular, the structure field
name E is accessed via the command E=GRAPH. E and contains an m x 2 matrix E
that indicates which edges of the graph are operational. For example, the graph in
Figure 16.3 on Page 558 is described by the 18 x 2 matrix

/ 1 1 1 2 2 3 4 5 6 7 7 7 8 9 10 11 12 13 \ T , »
V 2 3 4 5 6 7 7 8 8 9 10 11 9 13 14 12 14 14 J ' ^ >

function [Sx,b,perm]=S(X)
% Computes the (possibly random) time at which, a network becomes
'/, operational given the (random) times of repair X
% Inputs: X - a configuration of times of repair
’/, GRAPH - structure containing the edges of the graph;
% defined as global variable
% Outputs: Sx - the time at which the network becomes operational
°/0 b - the critical number for configuration X;
% perm - the permutation induced by sorting X;

global GRAPH
E=GRAPH.E;
n=max(E(:)); ’/�number of nodes
A=zeros(n); ’/�incidence matrix
[x_sorted,perm]=sort(X) ; 7, find permutation pi
b=0; ’/, critical number

for i=perm(:)’
b=b+l;
e=E(i,:); % which edge is up
A(e,e)=l; % indicate that the nodes of ’e’ are connected
% find with which other nodes e(l) and e(2) are connected
y=A(e(l),:) I A(e(2),:);
A(y,y)=l; % indicate the complete connectivity of the nodes
struc_func=A(l,n) ; ’/0 if nodes 1 and n are connected, set H(X)=1
% struc_func=all(A(l,:)); use this for all-terminal rlbty
% if structure function is one, exit
if struc_func, break, end

end
Sx=x_sorted(b);

The following script illustrates the use of the function S.m above.

% using_Sx.m
c l e a r a l l . c l c
g l o b a l GRAPH '/„ c r e a t e g l o b a l ob jec t GRAPH

E= [1 , 1 , 1 , 2 , 2 , 3 , 4 , 5 , 6 , 7 , 7 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 ;
2 , 3 , 4 , 5 , 6 , 7 , 7 , 8 , 8 , 9 , 1 0 , 1 1 , 9 , 1 3 , 1 4 , 1 2 , 1 4 , 1 4] ' ;

5 5 4 APPLICATIONS TO NETWORK RELIABILITY

GRAPH.E=E; °/0 c r e a t e s t r u c t u r e f i e l d name Έ ' t o s t o r e m a t r i x E
x=rand (l , 18) ; '/. g e n e r a t e some random t imes
Sx=S(x) % c a l l f unc t i on S(x)

An alternative to Algorithm 16.1 for the two-terminal network reliability case
is to use Dijkstra's well-known shortest path algorithm [12]. Dijkstra's algorithm
computes the shortest path connecting nodes 1 and n; that is, min-pege Σεβν ^e-

Since

(X« + ... + *£)*/« ~ m a x{x1 ; . . . , Xk}
for a large enough, we can use Dijkstra's algorithm to approximate

5(χ)*(^Σχ.α)1/β·

We found the approximation to be satisfactory for a = 100. The advantage of using
Dijkstra's algorithm is that the complexity of computing S'(X) becomes G(mlnn) ,
which can give significant speed-up for large graphs. For graphs with nodes of ap-
proximately n = 100, our experience is that Algorithm 16.1 runs faster in MATLAB.

16.3 CONDITIONAL MONTE CARLO

In this section we consider a popular method for the efficient estimation of the net-
work unreliability for the case where the edges of the network fail independently.

"3" 354 The permutat ion M o n t e Carlo method [14] is a conditional Monte Carlo ap-
proach specially designed for this setting. The idea is as follows. Consider the
network Q(V,E,K) in which each edge e has an exponential repair time Xe with
repair rate λ(ε) = — ln(l —pe). Thus, here we have

/ (χ) = β - Σ ^ λ (ε ^ Y[\(e), x E l f , (16.4)
e£E

and
P p i e > 1) = e - ^ e) = 1-Pe = qe.

At time io = 0 all edges are failed. Recall that the state of edge e is expressed as
Be = l{xe^i}. Let us extend this definition by defining

Be(t) = I{x e^ t} ,

which corresponds to the state of the edge at time t. Then, the vector B(i) =
(Bi(t),... ,Bm(t)), defines the configuration of the network at time t. Since the

" ^ 635 repair times are exponentially distributed, {B(t),t ^ 0} is a Markov jump process
with state space {0, l } m , starting at state (0 , 0 , . . . ,0). This process is called the
construct ion process of the network. The state of the static network is a snapshot
of the state of the stochastic process {H(B(t)),t > 0} at time t = 1.

Let Π = (Π ι , . . . , I l m) denote the permutation of 1 , . . . , m defined by the sorted
repair times:

Xni < Xn2 < ■ ■ < ATnm ·

CONDITIONAL MONTE CARLO 5 5 5

Thus, Π denotes the order in which the edges become operational. Let Αχ, Αχ +
Ä2, . . · , Ai H \~Am denote the times at which those edges are constructed. Thus,
the {Aj,} are the sojourn times of the Markov jump process {B(i)}. The random
vector Π takes values in the space of permutations of E. For a given permutation
π = (πχ, π 2 , . . . , 7rm) define:

Ει=Ε,

Ei = Ei-i \ {wi-χ}, 2 < i < m ,

λ(^) = Σ X(e) ,

and let
&(π) = argmin{i : H(Ei+1) = 1} (16.6)

i

be the critical number for 7r; that is, the smallest number of edges required to make
the system operational in the order defined by π . Here H(Ei) is defined as H(B),
with Be = 0 for all e £ Ei and Be = 1 for all e ^ Ei. The critical number fc(7r) can
also be defined via the latent continuous random variables (times of repair X) :

Χά{π) = S(X.) .

From the path properties of Markov jump processes and the properties of the " ^ 635
exponential distribution (see Sections A.11 and 4.2.3), it follows that " ^ 108

η Π = *) = Π | | . (16.7)

Moreover, conditional on {Π = π } , the sojourn times Ai,..., Am are independent,
and each At is exponentially distributed with parameter X(Ei), i = 1 , . . . ,m. By
conditioning on Π we have

£ =] T P(I1 = TT) P(S(X) > 1 | Π = π) . (16.8)
7Γ

Using the definitions of Ai and b(ir), we can write the last probability in terms of
convolutions of exponential distribution functions. Namely, for any t ^ 0 we have

P(5(X) > 11Π = π) = Ρ(Λι + · · · + ΑΗπ) > 11Π = ττ) . (16.9)

Let
G * t (7 r) = P (S , (X) > i | n = 7r) , (16.10)

as given in (16.9). Equation (16.8) can then be rewritten as

e = EG1(U). (16.11)

This suggests the following estimator. Let Π ι , . . . , UN be iid random permutations,
each distributed according to (16.7). Then,

1 N

i=l

5 5 6 APPLICATIONS TO NETWORK RELIABILITY

is an unbiased estimator for I. For this estimator to be of practical use, we need to
be able to compute the conditional probability in (16.9) exactly. More generally,
we wish to compute a probability of the form

r{A1 + ... + Ab>t),

where Ai ~ Exp(^), i = 1 , . . . , b, independently, all {i/j} are distinct, and without
loss of generality {yi} are ordered in descending order: v\ > vi > ■ ■ ■ > vb. This

" ^ 127 probability is related to the generalized Erlang distribution and under the above
conditions it can be expressed as a linear combination of exponential functions:

k

P(A;,-fc+i ~\ \-Ab>t) = J^u;fe , jexp(- i /6_j + i t) , k = l,...,b,

where Σί=ι UJkj = 1· The coefficients {wi,j} can be stored in a b x b matrix and
can be computed using the algorithm below in 0(b2) time, see [1, 14].

Algor i thm 16.2 (Exact Computat ion of F(A1 -\ \- Ab > t))

1. Set ωι,ι = 1. For k = 1 , . . . , b — 1 and j = 1 , . . . , k, sequentially compute:

k
_ H-k _ Λ V ^

<^k+l,j — <^k,j 1 Wfc+l,fc+l ~ L ~ / ,ulk+l,j ■
Vb-k — "b-j+1 ~[

2. Output
b

Ύ] u>b,j e x p (- f b _ i + i i)
J = l

as the exact value of V(Ai + ■ ■ ■ + Af, > t), with Ai ~ Exp(^), i = 1 , . . . , b,
independently, and v\> V2> ■■■ > vj,.

The MATLAB code below implements the algorithm. For alternative methods for
evaluating the convolution, see [17].

function ell=convolution(t,nu)
% computes P(A_1+...+A_b>t) exactly,
% where A_i ~ Exp(nu(i)) independently;
% nu has to be decreasing (sorted) sequence
b=length(nu); % parameters of the waiting times
w=zeros(b,b); % b is critical number

w(l,l)=l;
for k=l:b-l

for j=l:k
w(k+l,j)=w(k,j)*nu(b-k)/(nu(b-k)-nu(b-j+l));
w(k+l,k+l)=l-sum(w(k+l,1 :k));
end

end
ell=w(b,:)*exp(-nu(end:-l: 1)’*t); % probability

CONDITIONAL MONTE CARLO 557

We are now ready to state the permutation Monte Carlo algorithm.

Algor i thm 16.3 (Permutat ion M o n t e Carlo)

1. Draw independent repair times:

Xe ~ Exp(A(e)), e = l , . . . , m ,

where A(e) = — hiqe, and let the permutation Π = (I l i , . . . , n m) be defined
by the indices of the sorted repair times:

-^Πι < Xn2 < ■ ■ < Xnm ■

2. Compute the random time 5 (X) at which the network becomes operational
using Algorithm 16.1.

3. Determine the critical number b = b(Tl); that is, find the index b for which

5(X) = Xnb ■

4- Compute the rates λ(Εχ) > λ(Ε2) > ■·· > X(Eb) via (16.5).

5. Compute the probability

σ1(π) = ρ(Αι + ··· + Λ > ΐ) ,

where Ai ~ Εχρ(λ(£^)), i = 1 , . . . ,b, independently, using Algorithm 16.2.

6. Repeat Steps 1-5 independently N times and deliver (16.12) as the estimator
fort.

Elperin et al. [14] show that the relative error of the estimator (16.12) is uniformly
bounded for all values of the edge reliabilities. However, for each generated config-
uration the computation of the conditional probability (16.10) for t = 1 is of the
order G(n2) using the currently best implementation, see [14, 33].

■ EXAMPLE 16.1 (Two-Terminal Reliabil ity)

Consider the network in Figure 16.3 with all edges failing independently with the
same probability q. We are interested in estimating the probability that nodes
1 and 14 fail to be connected. Table 16.1 shows the estimated unreliabilities for
various values of q.

5 5 8 APPLICATIONS TO NETWORK RELIABILITY

Figure 16.3 A reliability network with two terminal nodes (bold circles). Both the edges
and the vertices are labeled. The network works if the terminal nodes can be connected via
operating edges. The network unreliability is £ = 24g3 + o(q3) when all edges have the same
unreliability q.

Table 16.1 Network unreliability for various edge unreliabilities q.

q

H T 1

lO" 2

io-3

io-4

1er5

£

1.88 x IO"2

1.96 x IO"5

1.97 x IO"8

2.04 x IO"1 1

1.96 x IO"1 4

R E %

0.78
1.79
1.98
1.96
2.01

1

10^6

IO"7

IO"8

io-9

IO"10

I

1.98 x IO"1 7

1.99 x IO"2 0

2.02 x IO" 2 3

2.00 x IO- 2 6

1.95 x IO" 2 9

R E %

2.00
1.99
1.98
1.99
2.01

The table is obtained using the MATLAB code below with N = 105. Note that
the matrix E given in (16.3) is assumed to be loaded into the workspace. The last
column of the table provides the estimated relative error. Note that the relative
error does not deteriorate as the unreliability decreases. This is in line with the
results of Elperin et al. [14].

% hetero_PMC.m
global GRAPH
GRAPH.E=E;
tab= [] ;
for i t e r = l : 1 0

m=size(E, 1) ; 7, number of edges
n=max(E(:)); % number of nodes
p=ones(m,l)*(l-0.l’iter);

lam=-log(l-p’); % repair time rates
L=sum(lam);
N=10~5; ell=nan(N,l);
for i=l:N

x=-log(rand(l,m))./lam; % sample repair times
[Sx,crit,permJ=S(x); % compute S(X)

CONDITIONAL MONTE CARLO 559

°/, compute r a t e s for convo lu t ion
LAM_perm=L-cumsum([0,1am(perm(1:cri t- l))]) ;
7» compute probability given configuration
ell(i)=convolut ion(1,LAM_perm);

end
tab=[tab;mean(ell), std(ell)/mean(ell)/sqrt(length(ell))]

end

Figure 16.4 The empirical distribution of the conditional probabilities {Gi(IIi)} used
to compute the estimator (16.12). The main contribution to the estimator comes from the
relatively few configurations in the right tail, indicated by arrows.

Figure 16.4 shows a histogram of the empirical distribution of the conditional
probabilities {Gi(II j)} on a logarithmic scale for the case q = 1 0 - 6 . Since I is
of the order 10~17 , the main contribution to the estimator (16.12) comes from
the relatively few configurations corresponding to the right tail of the distribution
(indicated by arrows). In other words, most of the randomly generated repair time
vectors correspond to a conditional probability Gi (I I) close to zero. Thus, a major
part of the effort to compute the probability Gi (I I) in Step 5 of Algorithm 16.3
is wasted, because it does not contribute much to the final estimator. In the next
section we will describe a possible remedy for this problem.

In general, the total computational effort of running Algorithm 16.3 consists of
the effort of evaluating 5(x) and the effort of computing the conditional probability
Gi(-7r) for the corresponding permutation 7r. In the special case where all edges
have the same reliability, the function G\ depends only on the critical number &(·7τ)
and not on the particular permutation π. As a consequence, G\ takes values in
a set of size at most m, see Figure 16.4. We can precompute all the m possible

5 6 0 APPLICATIONS TO NETWORK RELIABILITY

values of G\ and store them in a table, indexed by the value of 6, to reduce the
computational overhead. For every random configuration we only compute the
critical number and find the corresponding probability G\ from the table. Further

■®° 463 variance reduction is possible if one uses the CE method to improve the estimator
(16.12). For details on the combined CE-PMC estimator, see [22, 27].

Next, we describe a modification of the permutation Monte Carlo algorithm that
reduces the average cost of computing the conditional probabilities {Gi(7Tj)}.

16.3.1 Leap-Evolve Algorithm

Recall from Figure 16.4 and Example 16.1 that a large fraction of the conditional
probabilities {Gi(II;)} are close to zero and may not contribute much to the esti-
mator (16.12). This observation is valid even if the edges fail with different prob-
abilities. To alleviate this problem, Lomonosov [29] suggested a modification of
permutation Monte Carlo called the leap—evolve algorithm, which can be de-
scribed as follows. Let 7 G [0,1]. The configuration of the network at time 7 can
be described by

„X = (Χ π ι , ^ π 2 ι · · · i f t j ,

where

XUl < ■ ■ ■ < Χτιν-Χ <Χτιρ<Ί< *np+1 <■■■< Xnm ■

Thus, *X is the vector of repair times of the edges that are operational by time 7.
Denote the repair times of the failed edges at time 7 by

X« = {Xnp+1 ,·■■, Xnm) ■

By conditioning on *X and the permutation Π* = (Π ρ + ι , . . . , I I m) (the ordering
of the future repair times), we find that

t = P(5(X) > 1) = P(S(X) > 1, S(X) > 7)

= EI{s(x)>i}I{S(X)>7}

= EE[I { S (X) > 1 } I{s(x)>7} I »X, Π*]

= E I{s(x)>7}E[I{s(X)>i} I * x , n *]

= E I{s (x)>7}G' i - 7 (n ! ,) .

Here,
G i _ 7 (n „) = Ψ(Αρ+1 + Av+2 + ■■■ + Ab(v) > 1 - 7) ,

where Ap+i, Ap+2,..., Α^π^ are independent exponential random variables with
corresponding rates

m m m

i=p+l i=p+2 i=b(n)

Note that if 7 = 0, then E I r S (x) > 7 i G i r(II») reduces to (16.11). The idea
of the leap-evolve scheme is to reduce the number of evaluations of the function
G i _ 7 (n „) using a judicious choice of 7 so that I{s(X)>7} is an indicator of the
importance of the repair time vector X.

CONDITIONAL MONTE CARLO 5 6 1

Algorithm 16.4 (Leap—Evolve Estimator) For a given 7, execute the steps.

1. Generate the repair-time vector X ~ / (x) , where f is given by (16.4). Let
Π = 7Γ be the permutation corresponding to X.

2. Compute SÇX.) using Algorithm 16.1 or otherwise.

3. Compute the critical number b = 6(π) such that S(X.) = XVb.

4- If <S(X) < 7, set Zi = 0; otherwise, compute π» = (π ρ + ι , . . . , 7rm), where
7 < Χπ +ι < ■ ■ ■ < X-Krn and use Algorithm 16.2 to compute Zi = Gi_7(7r*).

5. Repeat Steps 1-4 N times and deliver the unbiased estimator i\eav =

The improvement of the leap-evolve scheme over the simpler permutation Monte
Carlo method depends very much on the choice of 7 and the ability to generate
repair time configurations X conditional on {S'(X) > 7}. There is no known optimal
way to select 7.

■ EXAMPLE 16.2 (Leap-Evolve)

Consider the network in Figure 16.3 with the same unreliability for all edges: q =
10~6. We arbitrarily set 7 = 0.1 and use the MATLAB code below to estimate the
probability that nodes 1 and 14 are not connected. The matrix given by (16.3)
is assumed to be loaded into the workspace. Using N = 2 x 105 we obtained an
estimated relative error of 2.4%. This is comparable to the original permutation
Monte Carlo implementation, but in the leap-evolve version Gi_7 was evaluated
only 66000 times reducing the total CPU time by a factor of 0.6.

% leap_evolve.m
global GRAPH
GRAPH.E=E;
m=size(E, 1) ; ’/. number of edges
n=max(E(:)); % number of nodes
p=ones(m,l)*(l-0.1"6);

lam=-log(l-p’) ; '/, repair time rates
N=2*10~5;
ell=nan(N,l);
gamma=0.1 ;
for i=l:N

x=-log(rand(l,m)) ./lam; ’/, sample repair times
[Sx,erit,perm]=S(x); % compute S(X)
if Sx<gamma

ell(i)=0;
else

idx=find(sort(x)>=gamma, 1, ' f i r s t ') ; "/«compute p
L=sum(lam(perm(idx:end))) ; °/0 compute ra tes for conv.
LAM_perm=L-cumsum([0,lam(perm(idx:crit-1))]);
ell(i)=convolution(l-gamma,LAM_perm);

5 6 2 APPLICATIONS TO NETWORK RELIABILITY

end
end
mean(e l l) , s t d (e l l) / m e a n (e l l) / s q r t (l e n g t h (e l l))

In addition to the leap-evolve scheme, other extensions of the permutation Monte
Carlo algorithm include the merge process [14] and the tree cut and merge al-
gorithm [21], both of which perform much better than standard permutation Monte
Carlo. A MATLAB implementation of the merge process is given in merge_process .m
and merge.m on the Handbook website.

16.4 IMPORTANCE SAMPLING FOR NETWORK RELIABILITY

In this section we consider two importance sampling methods for network reliability
estimation.

16.4.1 Importance Sampling Using Bounds

The importance sampling approach in this section requires some prior knowledge of
the network in the form of bounds on 5(x) for its efficient implementation. The cuts
and paths of a graph provide a convenient method for constructing such bounds.

Let "îf * Ç <if and ^ * Ç & be a collection of minimal cuts and minimal paths of
the graph Q, respectively. Then, we can use the cut and path sets to provide the
following lower and upper bounds on 5 (X) (see [8, 18, 33]):

SL(X) d= max m i n X e ^ SCX.) «Ξ min m a x X e =f SVy(X) . (16.13)

Typically, it is assumed that the paths and cuts are edge-disjoint; that is, a
given edge can belong to no more than one path or cut in ^ * and &*. Such subsets
can be constructed in polynomial time [18, 31].

The method proposed by Cancela et al. [8] and inspired by Fishman's approach
[18] uses a set of disjoint paths to construct an importance sampling density for
a homogeneous network. The approach has been shown to be quite efficient in
combination with quasi Monte Carlo, see [8].

Let IP* be an edge-disjoint set of paths and define

lu = P(Sfr(X) > 1) = p f m m a x X e > 1J = J] (l - \[ρλ.
V e / -pe&" ^ eev '

Here iu is readily computable. Now suppose we can sample from the importance
sampling density

, , , /(x)I{gc ,(x)>i>
M x) = -f ·

Notice that fy is the conditional density of X given that at least one edge in every
path in 2P* is not operational at time 1. We can use the following importance
sampling estimator to estimate I :

V t h = T7 Σ f „ i v . \ :{S(Xi)>i} = "Ar Σ :{S(Xi)>i} > (1 6 · 1 4)
i=l

where X i , . . . ,ΧΛΓ ~üd fu- To sample from fu we use the following subroutine
from [8].

IMPORTANCE SAMPLING FOR NETWORK RELIABILITY 5 6 3

Algori thm 16.5 (Sampling From fu)

1. Take a path V = (e i , . . . , et) in 3?*, and compute

CLl — £ , 2 1 , . . . , K .

2. Select an index I E { 1 , . . . , k} with probability P(J = i) = ai.

3. For each i = Ι,.,.,Ι— 1, generate an exponential random variable Yi with
parameter A(e,) = — ln(l —pei), conditional on Yi ^ 1.

4- Generate Yj from Exp(A(e/)), conditional on Yi > I; that is, set Yj = 1 + Z,
where Z ~ Exp(A(e/)).

5. For each i = I + 1 , . . . , k, generate Yi ~ Exp(A(ej)) independently.

6. Assign Xe. =Yj, j = 1, ■ ■ ■, k. Remove path V from the set of paths 2?*. If
£?* has no more paths, continue with Step 7; otherwise, return to Step 1.

7. The repair time of any edge e that does not belong to any of the paths in 2?*
is sampled independently from the corresponding marginal of / (x) ; that is,
Xe ~ Exp(A(e)).

8. Output X = (Xi,..., Xm) os a sample from / (/ (x) .

The following MATLAB code implements the algorithm.

function Y=path_sampling(p_bar)

°/0samples the repair times that
k=length(p_bar);

°/0 step 2
P=cumprod(p_bar);
p_star=(l-p_bar).*[1,P(1 :end-1)]

p_star=p_star/(l-P(end));
°/. step 3
[dummy,idx]=histc(rand,[O.cumsun
’/� step 4
lam=-log(l-p_bar) ; ’/.exponential

for i=l:idx-l
Y(i)=expt(lam(i),0,1);

end
’/, step 5
Y(idx)=l-log(rand)/lam(idx);
% step 6
for i=idx+l:k

Y(i)= -log(rand)/lam(i);
end

belong

I

t(p_stai

rates

to the paths

�)]);

5 6 4 APPLICATIONS TO NETWORK RELIABILITY

function x=f_bar(p,paths)
% implements sampling from f_bar
% p is a vector with the corresponding reliabilities
% ’paths’ is a cell array of edges describing the paths;

VoStep 7 and 8
m=leng th (p) ;x=zeros (1 ,m) ; p = p (:) ' ;
f o r j = l : s i z e (p a t h s , 2)

P=paths{j}; °/0 paths have to be disjoint!
x(P)=path_sampling(p(P));

end
idx=f ind(x==0) ; % f i n d t h e edges t h a t a re not on t h e p a t h s
% sample edges not be long ing t o t h e p a t h s
x (i d x) = - l o g (r a n d (l , l e n g t h (i d x))) . / (- l o g (l - p (i d x))) ;

■ EXAMPLE 16.3 (Dodecahedron Network)

Consider the dodecahedron network in Figure 16.5. Suppose that all the edges have
the same unreliability of q = 0.001. Let £?* = {P\1V21Vz\ consist of the three
paths with edges

- P 1 = (l , 4, 11, 20, 28) ,

V2 = (3, 8, 17, 26, 30) ,

V3 = (2, 6, 14, 23, 29) .

Figure 16.5 A dodecahedron network with 20 nodes and 30 links. Edges 1,2,3 and
28,29,30 are indicated.

IMPORTANCE SAMPLING FOR NETWORK RELIABILITY 5 6 5

The edges belonging to these three paths are depicted in Figure 16.5 with thicker
lines. Note that Pi is a path on the set of nodes 1 —> 2 —> 5 —> 11 —► 17 —» 20,
path T>2 connects the nodes 1 —> 4 —► 9 —> 15 —► 19 —> 20, and path V$ connects
the nodes 1 -> 3 -> 7 -»· 13 -► 18 -> 20.

Using the code below with N = 105 the estimator (16.14) gives a typical es-
timate of 1.95 x 1 0 - 9 with an estimated relative error of 2.5%. Noting that the
corresponding crude Monte Carlo estimator has variance £(1 — £)/N, the variance
reduction factor compared with crude Monte Carlo is approximately 5 x 106.

’/, IS_bounds.m
7, the matrix E is assumed to be loaded into
global GRAPH
GRAPH.E=E;
m=size(E, 1) ; '/, number of edges
p=ones(m,l)*(l-0.1~3);
% list the edges comprising the paths
paths{l>=[l 4 11 20 28];
paths{2>=[3 8 17 26 30];
paths{3}=[2 6 14 23 29];
ell_U=l; '/, compute normalizing constant
for i=l: size(paths,2)

P=paths{i};
ell_U=ell_U*(l-prod(p(P)));

end
% compute IS estimator
N=10~5; ell=nan(N,l);
for 1=1:N

x=f_bar(p,paths);
ell(i)=(S(x)>l)*ell_U;

end
[mean(ell), std(ell)/mean(ell)/sqrt(N)]

the workspace

16.4.2 Importance Sampling With Conditional Monte Carlo

In this section we consider an importance sampling method that can be applied
to quite general rare-event simulation problems. We first present the method in a
general setting and then explain how to apply it to reliability problems.

We wish to estimate the normalizing constant I of the pdf

, ,, def / (x) I{S(x)>l} , xT
*Λχ) = γ-1 L; X={Xl,---,Xm) ,

where / (x) and S'(x) are given functions that can be evaluated. Assume that the
conditional densities

7TyXe | X—ej TTl^e | %\ , ■ · · , %e— 15 ^ e + l 7 · ■ ■ : Xm)j & — -L; · · · i ^ j

are available in closed form, and that one can easily sample from them. Using the
conditional densities {π(α ; ε | χ_ ε)} we can approximate the marginal densities of

5 6 6 APPLICATIONS TO NETWORK RELIABILITY

225 ""(x) as follows. Use a Markov chain Monte Carlo sampler to obtain the approximate
sample:

X (l)) . . . , Χ (Μ) * Ρ Ρ ^ · π (χ) .

Then, an estimator of each marginal pdf π(χε) = J π(χ) d x _ e is

1 M

xJXlJ), e = l m
J l f ^ " r i | " - e "

fc=l

It is clear that sampling from the pdf π(χ 6) is straightforward using the composi-
53 tion method, and that we can evaluate π(χβ) at any point. Define an importance

sampling density of the product form

M

«Μ = Π^) = ΠπΣ^Ιχ-'') M
e = l e = l fc=l

Then, an unbiased estimator of £ is

e~Nf^ M) ' Y i > - - - > Y " ~ s (y) ·

Care must be taken to ensure that g(x) dominates π(χ) (in the sense that g(x) =
0 => TT(X) = 0 for all x) .

To apply this approach to estimating the unreliability I in (16.2) for a homoge-
neous network (that is, each edge has the same unreliability q), we let / (x) be the
pdf of the N(0, σ2 I) distribution with σ — — 1/Φ_1(<?) (where Φ~χ is the inverse
of the cdf of the standard normal distribution), so that each Xe ~ Ν(0,σ2) and
P(X e > 1) = q for all e. The conditional pdfs of π(χ) are (e = 1 , . . . , m):

■n{xe | X _ e) = - L - e - ê f l { S e > 1 } + i z l i ^ l i ι{χ^>1}
2πσ

where {Se > 1} is the event that S(Xi,..., Xe-i, 0, Xe+i, ■ ■ ■, Xm) > 1· Therefore,
the estimated marginal densities become

π{χε) = f— e ~ ^ (w e H ~ I { x e > i } l , (16.15)
ν 2 π σ \ q I

where
M

Vf Σ Λ ^ Μ } ' W e M
fc=l

and {S**0 > 1} is the event that S{x[k),..., Χ^,Ο, X^%, ■■■, X{À]) > 1. In fact,
we can write the exact marginal pdf of edge e as (16.15) with we replaced by we,
where we is the probability that the network is not operational for any time of
repair Xe. In other words, the marginal density of each time of repair Xe is a
mixture density of two Gaussian densities — one of which is truncated. Random

51 variable generation from a truncated Gaussian density is explained in Example 3.7.

SPLITTING METHOD 567

It follows that the likelihood ratio is given by

/ (y) _ T T ^ ■ ! - ^
^ \ < s e + ~^ll{y'>1}) g(y) e = 1

This motivates the following algorithm.

Algor i thm 16.6 (Importance Sampling Us ing Condit ional Densi t ies)

1. Use an MCMC algorithm or otherwise to generate

2. Use the sample from Step 1 to construct the importance sampling pdf g(x)
rCLi it(xe), where n(xe) is defined in (16.15).

3. Generate Y i , . . . , YJV ~ g(y) and deliver the estimator

y E W i » ! } n (i î e + _ r ! £ W i } ' (16·16)
3 = 1 e = l

where Yje is the e-th component ofYj.

■ EXAMPLE 16.4 (Dodecahedron Network Revis i ted)

As a numerical example, consider the dodecahedron network in Figure 16.5 with
all edges having unreliability q — 0.001. Example 14.6 on Page 514 explains how
we can generate an approximate sample from π(χ) using MCMC and the splitting
method. Using the sample generated with the ADAM method we obtain we = 0.412 " ^ 493
for e = 1,2,3, we = 0.59 for e = 28, 29,30, and we = 1 for all other edges. With an
iid sample of size iV = 106 from g(y) the estimator (16.16) gives a typical estimate

of t = 2.01 x 1 0 - 9 with an estimated relative error of 0.76%. MATLAB code for this
example can be found on the Handbook website as re lb ty_margina ls .m.

16.5 SPLITTING METHOD

In this section we show how to apply the generalized splitting (GS) algorithm of
Section 14.2 to estimate the reliabilities of a given network. The method has the "S° 485
advantage that it easily handles cases of dependent edge failures. While the methods
described in Sections 16.4.1 and 16.3 are typically more efficient, they are applicable
only when the edges fail independently.

Before describing the GS algorithm for reliability estimation, we introduce the
following latent variable structure for the estimation of the network unreliability
I in (16.2). Let X = (Xu.. .,Xm)T ~ / (x) , where / is the pdf of the N(0, Σ)
distribution. Here the diagonal elements of Σ are

E e e = a2
e = Var(Xe) = / $ _ w ^ 2 ' e = l , . . . , m ,

5 6 8 APPLICATIONS TO NETWORK RELIABILITY

where Φ 1 is the inverse of the cdf of the standard normal distribution. It follows
that P(X e >l)=qe.

A frequently made assumption in network reliability models is that the edges
fail independently of each other [33]; that is, the off-diagonal elements of Σ are all
zero and so X\,..., Xm are independent. A simple model that incorporates failure
dependencies is to assume a full covariance matrix Σ. Then, for a given Σ, the
Bernoulli variables Be = I{x e ^ i} , e = 1 , . . . ,m have covariance structure

Var(ß e) = p e (l - p e) , e = l , . . . , m ,

CoviBi, Bj) = Φ2 (-, —; ̂ -) - P i P j , i±j,
\ σ, Gj ai aj)

where Φ2(χ, y, o) is the cdf of the bivariate normal density evaluated at (x, y) with
zero mean, unit variance in both components, and correlation coefficient ρ. Thus,

68 the distribution of the latent variables X represents a Gaussian copula model for
the Bernoulli vector B . Conversely, if the covariance structure of the Bernoulli
variables B is given, then, under suitable conditions [2, 24], one can determine the
corresponding matrix Σ.

Having defined the latent variable structure of the evolution model, we now
explain how to apply the GS method. Using a pilot run, suppose that we obtain
the levels

- o o = 7o < 7i < · · ■ < 7T-1 < 7 τ = 1 ,

and the estimates {gt} of the conditional probabilities

Qt « P / (S (X) *s 7t I 5 (X) > 7 t - i) , t = l,...,T.

Thus {g^1} are splitting factors. Algorithm 16.9 is used to construct the sequence
493 {{lt> Qt)}f=i using a pilot run of the algorithm below (see also Algorithm 14.4).

The GS algorithm for network reliability estimation then reads as follows.

Algor i thm 16.7 (Network Reliabil i ty Est imation) Given a sequence of lev-
els and splitting factors {{lu Qt)}J=i o,nd a sample size N, set the counter t = 1
and execute the following steps.

1. Initialization. Let No = ρι — . Generate independent time of repair

vectors
Χ ι , . . . , Χ % / β 1 ^ Ν (0 , Σ) .

Denote XQ — { X i , . . . , Xjv0 / e i}· Let Xi = { X i , . . . , XJVX} be the largest subset
of vectors in XQ for which S(X.) ^ 71 (use Algorithm 16.1 to evaluate S).
Thus, N\ is the number of vectors for which the network is nonoperational at
time 71.

2. Markov chain sampling. For each Xj in X± = {Xi , · · · , Xjv t} sample new
vectors

Yi^KtfrlYij·.!), Yift = Xi, j = l,...,Su, (16.17)

where Su is a random splitting factor

1
^Berf l

Qt+ij \Qt+i Qt+i
i = l,...,Nt

SPLITTING METHOD 569

and Kt(y | Y ^ - i) is a Markov transition density with initial state Y i , j - i and
stationary pdf

/ < (y) o t I { s (y) > 7 1) e 4 y T r l y ·

Reset

Xt = | γ ι . ι ' γ ι , 2 >· · ■ i Y i , s t l , , ΥΛΓ,,Ι , Yjvt)2 , · · · , Yjv t ,s t N t I ·

3. Updat ing . Let Xt+i = {Xi> ■ ■ ·, Xiv t + 1} be the largest subset of vectors in Xt

for which the network is nonoperational at time jt+i> that is, S'(X) ^ 7t+i·
Here, Nt+i is the random size of Xt+i- Set the counter t = t + 1.

4- Stopping condit ion. If t = T go to Step 5. If Nt = 0, set Nt+i = Nt+2 =
■ ■ ■ = NT = 0 and go to Step 5; otherwise, repeat from Step 2.

5. Final est imator. Deliver the unbiased estimate of the unreliability

u t= i

and the unbiased estimate of the variance

- τ-\Τ 2 Wo/ei / \ 2

where Ot denotes the number of points in XT that share a common history
with the i-th point from the initial population XQ and have their S value above
the level 7^ = 1 <rf the final stage.

To completely specify Algorithm 16.7, we need to define the transition density
nt. The following algorithm defines a transition density with stationary pdf ft via
the hit-and-run sampler. "^ 240

Algori thm 16.8 (Transition Dens i ty <tt(y | x)) Given a vector x of times of
repair such that <S(x) ^ 74, execute the following steps.

1. Generate a random direction vector d uniformly distributed on the unit m-
dimensional sphere:

Z\ Zm

iïzï""'ÏÏzï

2. Generate a random scale factor

. .. , χ τ Σ M 1
Λ ~ N

N(0,J)

dTS-!d' ατΣ-Μ

3. If 5 (x + Ad) ^ "ft, set x = x + Ad; otherwise, leave x unchanged.

4- Repeat Steps 1, 2, and 3 above, say, 100 times and output Y = x as the next
state of the Markov chain.

5 7 0 APPLICATIONS TO NETWORK RELIABILITY

706 To speed up Step 2 above, the Cholesky factor of Σ can be precomputed and
stored in memory to facilitate the computation of E _ 1 d via backward and forward
substitution. For a diagonal covariance matrix Σ = σ2Ι, Step 2 reduces to Λ ~

514 N (- x T d , a 2) ; see also Algorithm 14.11.
The pilot algorithm used to compute the levels {74} and splitting factors {ρ^1}

is given as follows.

Algor i thm 16.9 (A D A M for Network Reliabil ity) Given the sample size N
and the rarity parameter ρ G (0,1), execute the following steps.

1. Initialization. Set the counter t = 1.

(a) Generate independent time of repair vectors X i , . . . , XJV ~ N(0, Σ) and
denote X® = {Xi , · · · , X J V } ·

(b) Denote Si = 5(X») for all Xj G Xt-i, o.nd let

argmin \ — Υ " ΐ { 5 (χ ,) > 7 } ίξ ρ \ ■ (16.19)
7e{Si,-,Sjv} Viy ~{)

That is, 7t is the smallest value from among S ' (X i) , . . . , S(X.N) such that

w S i I i I { s (x i) > 7 t } ^ Q- Set1t = min{ l ,7 t} . Let Xt = { X i , . . . ,Xjv t}
be the vectors in Xt-\ for which the network is nonoperational at time
7t (that is, 5 (X) > jt)- Then, gt = jf- is an approximation of the
probability Ct = P / (5 (X) ^ jt I S(X.) ^ 7 t - i) , setting 70 = —oc.

2. Markov chain sampling. Identical to Step 2 of Algorithm 16.7, except that
in (16.17) the splitting factors are generated in a different way, namely,

Sti —
N_

N't
+ BU i = l,...,Nt

Here, each B\,..., B^t are Ber(l/2) random variables with joint pdf

Ψί-R - h R - h Λ (Nt-r)\r\
¥(Βχ -b1,...,tSNt -bNt) - — l{bl+...+bNt=r} ,

where r = (N mod Nt). As a consequence of the generation of the splitting
factors, after resetting

Xt = | Y l , l >Yl,2 , · · · , Yl,5 t i) , ΥΛΓ,,Ι , YjVt,2 , ■ ■ ■) YjVt,StJVf } >

the set Xt contains exactly N elements.

3. Updat ing and est imat ion. Update the counter t = t + 1 and proceed as in
part (b) of Step 1.

4- Stopping condit ion. / / jt = 7 , set T = t and go to Step 5; otherwise,
repeat from Step 2.

5. Final es t imates . Deliver the estimated levels 7 1 , . . . , 7 τ and the splitting
factors ρϊ1,..., ργ1.

SPLITTING METHOD 571

■ EXAMPLE 16.5 (Dodecahedron Network)

Consider again the dodecahedron network in Figure 16.5 with common edge unre-
liability q = 10" 3 . Then, we have

{Χ,}^Ν(0,σ2 σ = -1/φ-\ς),

and Σ = σ2Ι. Using the levels and splitting factors in Table 16.2 with TV = 5 x 103

we obtain a typical estimate of i = 1.97 x 10~9 with an estimated relative error of
4%.

Table 16.2 The sequence {(jt, Qt)} used for the setup of Algorithm 16.7. The
sequence is obtained using Algorithm 16.9 with TV = 103 and ρ = 0.1.

t
et
It

1
0.1

0.20

2
0.1

0.33

3
0.1

0.46

4
0.1

0.58

5
0.1

0.68

6
0.1

0.77

7
0.1

0.86

8
0.1

0.94

9
0.2
1

The most computationally intensive part of Algorithm 16.7 is the evaluation
of 5(x) for a given vector. All other elements of the algorithm take negligible
computational time. Thus, we can measure the simulation effort by counting the
number of times we need to evaluate 5 (x) . In this example, the total simulation
effort is equivalent to approximately 4 x 107 evaluations of the function 5(x) .

Figure 16.6 shows the estimates of EfTXe, e = l , . . . , m obtained using the
empirical mean of the vectors in Χχ, where

/ T (X)
/ (X) I { S (X) > I >

is the conditional density of x given that the network is nonoperational at time 1.

H
O

3

s
H

0.5

0.4

0.3

0.2

0.1

0

-0.1

o e s o o g r S Q-o-cre-Q-^H'j Q O O O Q Q O Q Q O

5 10 15 20 25 30
Edge number e € {1, 2 , . . . , 30}

Figure 16.6 The estimated mean of the vectors E/TX e , e = 1,
variance density / T (x) ex /(x)I{s(x)>i}-

., m under the minimum

Note that the mean times of repair of edges 1, 2, 3 and 28, 29, 30 are much larger
than their values under the nominal N(0, σ 2 /) distribution, while the mean times of

5 7 2 APPLICATIONS TO NETWORK RELIABILITY

repair of all other edges remain close to 0. We call all edges with such "tilted" mean
times of repair the critical edges. Thus, in this case the edges 1, 2, 3, 28, 29, 30
are all critical edges. Figure 16.7 shows the estimated correlation between the edges
in the final population Χτ'-

n (v v \ Cov{Xi,Xj)
CoTr(Xi ,Xd)=

 J = , X ~ j T (X) .
y 'VariAjjVartXj)

Figure 16.7 Correlation matrix estimated from the vectors at the final stage of the
algorithm. All such vectors satisfy 5(x) > 1.

Edges {1,2,3} are strongly positively correlated (similarly for {28,29,30}) and
the two sets of edges {1,2,3} and {28,29,30} are strongly negatively correlated.
In other words, failures of the network occur primarily because either edge sets
{1,2,3} or {28,29,30} fail, but not both.

■ EXAMPLE 16.6 (Edge Dependency)

Suppose the unreliability of each edge in the dodecahedron network in Figure 16.5
is q = 1 0 - 6 . Assume that the edge failures are dependent in such a way_that all
times of repair are positively correlated with covariance matrix Σ = σ 2 Σ, where
σ = —1/Φ~1(ς) and Σ is a matrix with Is along the diagonal and all other entries
equal to 0.5.

Using the levels and splitting factors in Table 16.3 with N = 15000 we obtain a
typical estimate of I = 6.74 x 10~10 with an estimated relative error of 2.8%. The
total simulation effort is equivalent to approximately 1.3 x 108 evaluations of the
function S(x) . If the edges were to fail independently (that is Σ = 7"), then the
unreliability would be of the order 10~18 .

SPLITTING METHOD 573

Table 16.3 The sequence {(7t, É?t)} used for Algorithm 16.7. The sequence is
obtained using Algorithm 16.9 with N = 103 and ρ = 0.1.

t

Qt

It

1
0.1

0.22

2
0.1

0.40

3
0.1

0.51

4
0.1

0.61

5
0.1
0.70

6
0.1

0.78

7
0.1

0.86

8
0.1

0.92

9
0.1

0.99

10
0.8
1

16.5.1 Acceleration Using Bounds

Typically, the main cost in using Algorithm 16.7 lies in the evaluation of the per-
formance 5 (X) . It is possible to avoid evaluating 5 (X) most of the time using
bounds. Note that in Steps 1 and 3 of Algorithm 16.7 we are not interested in the
exact value of S'(X) per se, but rather in the value of the binary random variable
B = I{s(x)>7 t}, that is, in testing the condition 5 (X) > "ft- The same is true for
Step 3 in Algorithm 16.8. The computation of the indicator B can be substantially
accelerated using the bounds on S given in (16.13).

This idea is similar to the squeezing technique used to accelerate the acceptance-
rejection method in Section 3.1.5 and is summarized in the following subroutine of "S* 59
Algorithm 16.7.

Algor i thm 16.10 (Evaluating I { s (x) > 7 t } v ia Squeezing)

1- If SL(K.) > 7t, output B = 1 and exit; otherwise, go to Step 2.

2. If S'y (X) ^ 7 t , output B = 0 and exit; otherwise, go to Step 3.

3. Evaluate S(X) using Algorithm 16.1 and output B = I{s(x)>7 t}·

Depending on the choice of bounds, application of Algorithm 16.10 can result in a
substantial reduction in the number of evaluations of S. In addition, if SL and Su
can be computed easily there will be a substantial speed-up of Algorithm 16.7.

A good heuristic for constructing suitable sets Ί?* and J21* is to require that
the cuts (paths) in ^ * (^ *) contain the critical edges identified using the pilot
Algorithm 16.9. For example, from Figure 16.6 we can deduce that the cut and
path sets should contain edges 1, 2, 3, 28, 29, 30. We need not assume that the
paths and cuts are edge-disjoint, as is usually assumed in the literature [18]. In
other words, a given edge can belong to more than one path or cut.

■ EXAMPLE 16.7 (Dodecahedron Network Us ing Bounds)

We repeat the simulation in Example 16.5 using Algorithm 16.10 as a subroutine
whenever evaluation of the indicator I{s(x)>7 t} is needed. The total number of
evaluations of {5(X) > jt} is still 4 x 107, but the total number of evaluations
of the function £>(x) is 4 x 106, which is 10% of the original number of samples
(4 x 107). The rest of the evaluations of the indicator are helped by the upper
(36%) and lower (46%) bounds.

Repeating the simulation in Example 16.6 using Algorithm 16.10 results in 7x 107

evaluations of 5 (X) , which is about 50% of the simulation effort required without
squeezing.

5 7 4 APPLICATIONS TO NETWORK RELIABILITY

Further Reading

Exact calculation of network reliability is a difficult #P-complete problem [3, 10].
Although approximation [6] and bounding [4, 5, 11, 16, 23] techniques are available,
their accuracy and scope are very much dependent on the properties of the network
(such as size and topology). Currently, for large networks simulation techniques ap-
pear to be the only viable approach to approximating the unreliability. However, in
highly reliable networks, such as modern communication networks, the probability
of network failure is a rare-event probability in a static simulation setting. Thus,
methods such as crude Monte Carlo are not practical. Various variance reduction
techniques have been developed to produce better estimates: dagger sampling [28],
control variables [18], sequential sampling [13], conditional Monte Carlo [14], con-
ditional Monte Carlo using combinatorial analysis [19, 30], importance sampling
[8, 27], conditional Monte Carlo combined with approximate zero-variance impor-
tance sampling [9], and (one of the most efficient and specialized approaches) recur-
sive variance reduction [7], see also [26] for a similar proposal. While the recursive
variance reduction method appears to be the most efficient method, it is currently
applicable only when the edges fail independently. For a comprehensive survey of
algorithms and historical developments, see [33]. For a monograph dedicated to
novel evolution models for network reliability estimation, we refer to [20].

REFERENCES

1. S. V. Amari. Closed-form expressions for distribution of sum of exponential random
variables. IEEE Transactions on Reliability, 46(4):519-522, 1997.

2. A. N. Avramidis, N. Channouf, and P. L'Ecuyer. Efficient correlation matching for
fitting discrete multivariate distributions with arbitrary marginals and normal-copula
dependence. INFORMS Journal on Computing, 21(1):88-106, 2009.

3. M. O. Ball and J. S. Provan. Bounds on the reliability polynomial for shellable
independence systems. SIAM Journal on Algebraic and Discrete Methods, 3(2):166-
181, 1982.

4. R. Barlow and F. Proschan. Statistical Theory of Reliability and Life Testing. Holt,
Rinehart & Wilson, New York, 1975.

5. R. E. Barlow and A. W. Marshall. Bounds for distribution with monotone hazard
rate, I and II. Annals of Mathematical Statistics, 35(3):1234-1274, 1964.

6. Y. Burtin and B. Pittel. Asymptotic estimates of the reliability of a complex system.
Engineering Cybernetics, 10(3):445-451, 1972.

7. H. Cancela and M. El Khadiri. The recursive variance-reduction simulation algorithm
for network reliability evaluation. IEEE Transactions on Reliability, 52(2):207-212,
2003.

8. H. Cancela, P. L'Ecuyer, M. Lee, G. Rubino, and B. Tuffin. Analysis and improve-
ments of path-based methods for Monte Carlo reliability evaluation of static models.
In J. Faulin, A. A. Juan, S. S. Martorell Alsina, and J. E. Ramirez-Marquez, editors,
Simulation Methods for Reliability and Availability of Complex Systems. Springer-
Verlag, New York, 2009.

9. H. Cancela, P. L'Ecuyer, G. Rubino, and B. Tuffin. Combination of conditional Monte
Carlo and approximate zero-variance importance sampling for network reliability es-

REFERENCES 575

t imation. In B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan,
editors, Proceedings of the 2010 Winter Simulation Conference, 2010.

10. C. J. Colbourn. The Combinatorics of Network Reliability. Oxford University Press,
Oxford, 1987.

11. C. J. Colbourn, L. D. Nel, T. B. BofFey, and D. F . Yates. Network reliability and the
probabilistic estimation of damage from fire spread. Annals of Operations Research,
50(1):173-185, 1994.

12. E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269-271, 1959.

13. M. Easton and C. Wong. Sequential destruction method for Monte Carlo evaluation
of system reliability. IEEE Transactions on Reliability, 29(l) :27-32, 1980.

14. T. Elperin, I. B. Gertsbakh, and M. Lomonosov. Estimation of network reliability
using graph evolution models. IEEE Transactions on Reliability, 40(5):572-581, 1991.

15. T. Elperin, I. B. Gertsbakh, and M. Lomonosov. An evolution model for Monte Carlo
estimation of equilibrium network renewal parameters. Probability in the Engineering
and Informational Sciences, 6(4):457-469, 1992.

16. J. D. Esary, F . Proschan, and D. W. Walkup. Association of random variables, with
applications. Annals of Mathematical Statistics, 38(5):1466-1473, 1967.

17. S. Favaro and S. G. Walker. On the distribution of sums of independent exponential
random variables via Wilks' integral representation. Ada Applicandae Mathematicae,
109(3):1035-1042, 2010.

18. G. Fishman. A Monte Carlo sampling plan for estimating network reliability. Opera-
tions Research, 34(4):581-594, 1980.

19. I. Gertsbakh and Y. Shpungin. Network reliability importance measures: Combina-
torics and Monte Carlo based computations. WSEAS Transactions on Computers,
7(4):216-227, 2008.

20. I. B. Gertsbakh and Y. Shpungin. Models of Network Reliability: Analysis, Combi-
natorics and Monte Carlo. Taylor & Francis Group, Boca Raton, FL, 2010.

21. K.-P. Hui, N. Bean, M. Kraetzl, and D. P. Kroese. The tree cut and merge algorithm
for estimation of network reliability. Probability in the Engineering and Informational
Sciences, 17(l):24-45, 2003.

22. K.-P. Hui, N. Bean, M. Kraetzl, and D. P. Kroese. The cross-entropy method for
network reliability estimation. Annals of Operations Research, 134(1):101-118, 2005.

23. C.-C. Jane and Y. W. Liah. A dynamic bounding algorithm for approximating multi-
s tate two-terminal reliability. European Journal of Operational Research, 205(3):625-
637, 2010.

24. H. Joe. Multivariate Models and Dependence Concepts. Chapman & Hall, London,
1997.

25. D. E. Knuth. The Art of Computer Programming Volume 1. Addison-Wesley, Boston,
third edition, 1997.

26. A. Konak. Combining network reductions and simulation to estimate network re-
liability. In S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and
R. R. Barton, editors, Proceedings of the 2007 Winter Simulation Conference, pages
2301-2305, 2007.

27. D. P. Kroese and K.-P. Hui. Applications of the cross-entropy method in reliability. In
G. Levitin, editor, Computational Intelligence in Reliability Engineering, volume 40,
pages 37-82. Springer-Ver lag, Berlin, 2007.

5 7 6 APPLICATIONS TO NETWORK RELIABILITY

28. H. Kumamoto, K. Tanaka, K. Inoue, and E. J. Henley. Dagger sampling Monte Carlo
for system unavailability evaluation. IEEE Transactions on Reliability, 29(2):376-380,
1980.

29. M. Lomonosov. On Monte Carlo estimates in network reliability. Probability in the
Engineering and Informational Sciences, 8(2):245-265, 1994.

30. M. Lomonosov and Y. Shpungin. Combinatorics and reliability Monte Carlo. Random
Structures and Algorithms, 14(4):329-343, 1999.

31. E. Manzi, M. Labbe, G. Latouche, and F. Maffioli. Fishman's sampling plan for
computing network reliability. IEEE Transactions on Reliability, 50(l):41-46, 2001.

32. G. Rubino. Network reliability evaluation. In J. Walrand, K. Bagchi, and G. W. Zo-
brist, editors, Network Performance Modeling and Simulation, chapter 11. Blackwell
Scientific Publications, Amsterdam, 1998.

33. G. Rubino and B. Tuffin (editors). Rare Event Simulation. John Wiley & Sons, New
York, 2009.

CHAPTER 17

APPLICATIONS TO DIFFERENTIAL
EQUATIONS

The first Monte Carlo algorithm designed for a computer by John von Neumann in
1947 involved solving a Boltzmann differential equation via simulation of an asso-
ciated stochastic process. In this chapter we highlight various connections between
Monte Carlo simulation and differential equations. In particular, in Section 17.1
we explore the relation between stochastic and partial differential equations. In
Section 17.2 we look at simulating transport processes and their connections to cer-
tain partial differential equations. Finally, in Section 17.3 we examine the scaling
of Markov jump processes, giving a functional law of large numbers that relates
the process to the solution of a system of ordinary differential equations. In addi-
tion, a functional central limit theorem approximation is given in the form of an
approximating diffusion process.

We refer to Chapter 5 for stochastic process generation and to Sections A.9-A.13 "3° 153
for background on Markov processes, including diffusion processes. "3° 626

17.1 CONNECTIONS BETWEEN STOCHASTIC AND PARTIAL
DIFFERENTIAL EQUATIONS

A fundamental link between differential equations and stochastic processes is found
in the theory of Markov processes through the Kolmogorov backward equations
(giving rise to Feynman-Kac type formulas) and Kolmogorov forward equations.
Feynman-Kac type formulas enable one to write the solution of linear second-order
partial differential equations of parabolic (including elliptic) type as an expectation

Handbook of Monte Carlo Methods. By D. P. Kroese, T. Taimre, Z. I. Botev 577
Copyright © 2011 John Wiley & Sons, Inc.

5 7 8 APPLICATIONS TO DIFFERENTIAL EQUATIONS

of a function of a Markov process. This representation lends itself directly to Monte
Carlo techniques. The links forged this way then enable us to:

• Evaluate expected values of functionals of SDE solutions by solving an asso-
ciated partial differential equation.

• Solve certain partial differential equations by computing expectations of func-
tionals of an associated SDE.

The Monte Carlo viewpoint becomes increasingly attractive as the problem dimen-
sion increases, if the solution is only required at a small number of points, or if the
differential operator is degenerate [21].

We consider partial differential equations associated with the diffusion processes
645 described by the multidimensional SDE

d X t = a (X t) i) d t + B (X t , t) d W t , (17.1)

with dx 1 drift vector a(x , t) and dxm dispersion matrix B(x , i) , so that C(x, t) =
B(x,t)B(x,t)T is the diffusion matrix.

Let P x , t denote the probability measure under which the diffusion process {X s }
starts from state x at time t; that is, Px '*(X t = x) = 1. The corresponding
expectation is denoted by E x , i . When the initial time is 0, we write P x = Px ' ° and
E x = jgx.O^

For each i e [0,T], let

^Σ^<4ΣΣ^,^ (17.2)

709 be the associated differential operator acting on functions it(x, t) 6 G2 x G1. This
operator is extended by the infinitesimal generator of the Markov process described
by the SDE (17.1), defined as

Ex-«M(X t + s) - U(x)
Atu{x) = hm ,

s|0 S

acting on functions u for which the limit above exists.
If the coefficients a and B do not depend on t, the corresponding SDE (and

diffusion process) is time-homogeneous:

(17.3) dX t =

and the differential operator is

d

L = ^ a ; (x)

a(X t)di + £(X t)

d
dxi

.. d d

i=l 3 = 1

dW t ,

d2

1 dxi dxj
(17.4)

Throughout the rest of this section, we make the following assumptions.

CONNECTIONS BETWEEN STOCHASTIC AND PARTIAL DIFFERENTIAL EQUATIONS 5 7 9

Assumpt ions 17.1.1 (Continuity and Growth)

1. The diffusion matrix C is uniformly ell iptic; that is, there exists a constant
δ > 0 such that

ξτθζ > s u\\2

holds for all ξ e M.d and every point x or (x, t) for which the matrix C is
defined. Note that, of necessity, C is positive semidefinite.

2. The SDE (17.1) has a unique strong solution — see Theorem A. 13.2. BS° 646

3. Functions k and g appear as problem data in what follows. We assume that
they are uniformly Holder continuous for some exponent a. More pre-
cisely, given a Euclidean space i T C R 1 ' and a function f : X —> M, / is said
to be uniformly Holder continuous in 3£ with exponent a € [0,1], if there is
some constant M so that

sup ψ^ψϊ^Μ.
x ,yef lly - χ | |α

If a = 1, uniform Holder continuity is referred to as uniform Lipschitz
continuity in X'. Ifa = 0, uniform Holder continuity is simply boundedness
of the function f in 3£'.

4- The SDE coefficient functions {ai} and {Bij} are uniformly Lipschitz contin-
uous in their arguments. More precisely, if the coefficient functions are time
dependent and defined in SC x [0,T] ; then they are uniformly Lipschitz con-
tinuous in 2£ x [0,T]. Similarly, if the coefficient functions are independent
of time and defined in 3£, then they are uniformly Lipschitz continuous in
X.

17.1.1 Boundary Value Problems

Suppose that X is a bounded domain (that is, a connected open subset) of Rd with
boundary set dX. Let X denote the closure of SC. A PDE problem involving the
differential operator L in (17.4) is said to be a boundary value problem or a
Dirichlet problem if the objective is to find a function a o n J that solves

(L - f c (x)) « (x) = -fl(x) i n J T ,

ω(χ) = / (x) on dX ,

for given functions k : X —> [0, oo), g : S£ —» IR, and / : d3£ —> M.
A unique solution u to the Dirichlet problem exists that is of class G2 in X

and C1 on 33C if, in addition to Assumptions 17.1.1, the following smoothness
conditions for the boundary are satisfied.

Assumpt ions 17.1.2 (Boundary Smoothness)

1. Continuous boundary function: The function f is continuous on d3£.

2. Exterior sphere property: For every point y G dX, there exists a ball
3§(y) such that W(y) Π X = 0 and W(y) Π d JT = {y}.

5 8 0 APPLICATIONS TO DIFFERENTIAL EQUATIONS

Under Assumptions 17.1.1 and 17.1.2, the solution u is given by the stochastic
representation contained in the following theorem.

Theorem 17.1.1 (Stochast ic Representat ion for the Dirichlet Problem)
Let T = inf t^o{Xt & <^"} be the first time that the process {Xt,t ^ 0} in (17.3)
(with associated operator L in (ΠΛ)) exits 9£. Under Assumptions 17.1.1 and
17.1.2, E x r < oo for all x e 3C. Moreover, there exists a unique function
u : S£ —» R that is C2 in X and C1 on d% that satisfies the Dirichlet problem
(17.5) admitting the stochastic representation

u(x) = E x

where

f(XT)K(r) + / g(Xt)K(t)dt
Jo

- I k(Xs
Jo

x S l , (17.6)

K(t) = exp - / fc(Xs) ds

A sketch of the proof is as follows [13, Pages 253, 276, 365, and 393]. Denote
by {X-t} the process that solves (17.3). Assume there exists a solution u to (17.5).

" ^ 642 Apply Itô's formula (A.64) to the function u(Xs) K(s), yielding

u{Xs)K(s) = u{X0) + [K{r){L-k(Xr))u(Xr)dr
Jo

d m s „ (17.7)

+ Σ Σ / Bik(Xr,r)^(u(Xr) K(r))dW^ .
i=l fc=l J° °Xi

Let SC\ Ç 3£i Ç . . . be an increasing sequence of open sets satisfying 3£n C 3C and
U ^ - ! ^ ^ = SC. Associate first exit times with each set, defined by r n = inf{i > 0 :
Xt & 3Cn\· This sequence of stopping times satisfies limn^oo r n = r .

For each n ^ 1 and ί G [0, min{rn , s}], equation (17.5) is satisfied, meaning

(L — k(Xt))u(Xt) = —g(Xt), and so each process Y^ = {Ys } defined by

/•min{rn ,s}

ye<
B> = w(Xm i n { T n ; S }) X(min{r„, s}) + / g(Xr) K{r) àr, 0 < s < oo ,

Jo

is a P x martingale for x £ j ,
Under Assumptions 17.1.1 and 17.1.2 each of these processes is bounded and

E x r < oo. Hence, the process Y = l i m n y (n) , with

/-min{r,s}

Ys=u(Xmin{T,s})K(mm{r,s})+ g(Xr)K(r)dr, 0 ^ s < oo ,
Jo

is a uniformly integrable P x martingale. Taking expectations of (17.7) and using
the fact that y is a martingale, so that EYQ = EY r , we see that

w(x) = Ex f(XT)K(r)+ Γ g(Xr)K(r)dr
Jo

181 The canonical Dirichlet problem is that for Laplace's heat equation, namely

^ Δ Μ (Χ) = 0 in 3C , ,

2 K ' ' (17.8)
u(x) = / (x) on d!% ,

CONNECTIONS BETWEEN STOCHASTIC AND PARTIAL DIFFERENTIAL EQUATIONS 5 8 1

where Δ is the Laplace operator Δ =]Γ) ί=1 Σ , ·=ι s^dx ■ Physically; the solution
u to this problem describes the equilibrium temperature obtained by keeping the
temperature on the boundary of a homogeneous material set to / and allowing heat
flow until a steady-state temperature distribution is reached.

The associated SDE has no drift, and is simply given by

dX t = d W t ,

and the solution u has the simple stochastic representation

u(x) = E X / (X T) .

■ EXAMPLE 17.1 (Solving a Dirichlet Prob lem via Simulation)

Suppose our Dirichlet problem is specified as follows.

• The region S£ is defined by 3C = {(x, y) : x2 + y2 < 52 , cc4 + y4 > 2.54}.

• We have functions f(x,y) = 0, k(x,y) = 0, g(x,y) = sin(x)cos(j/), and

Φ, y) = f 1)
 a n d C = ((

Ί \ , ^ Π .04 0.6
0.6 4.04

Thus the Dirichlet problem we wish to solve is given by

0.52 ^ É . + 0.6 d-^y± + 2.02 ^ É .
axz oxoy ay1

+ ^) + ^) = _ .mX

ax ay

u(x,y) = 0 on dS£ .

The condition of uniform ellipticity is equivalent here to requiring that there
exists some δ > 0 such that the matrix

_ / 1 . 0 4 - 5 0.6
δ ~ ' 0.6 4.04 - δ

is positive semidefinite. This is the case when, for example, δ = 0.04. The functions
Cik, ai, and k are all constant, and so are trivially Holder continuous in JT. The
function g is bounded in 3£ (and indeed M2), so is also Holder continuous. The
function / is constant, satisfying the continuous boundary condition. Finally, we
can find a ball of constant diameter to roll along any portion of the boundary
without it "getting stuck" (that is, touching more than one point on dSC), so the
boundary 9JT satisfies the exterior sphere property.

Thus there exists a unique solution u(x, y) to this Dirichlet problem, and it
admits the stochastic representation

:v) Γ
Jo

u(x,y)=E^'yU sm{Xt) cos(Yt) d i , (x,y) e $T , (17.9)

5 8 2 APPLICATIONS TO DIFFERENTIAL EQUATIONS

where Z t = (Xt, Yt)
T is a diffusion process evolving according to

dZ*=0)dÎ+(o!2 °Î)d W t ·
The dispersion matrix is chosen to be a matrix square root of the diffusion matrix
C. For any point (x, y) E iiT, we can obtain an approximate estimate of u(x, y) via

n{x,y) = ^ £ f > S i n (X «) c o s (> f) ,
i = l j=l

where each { (X · ^ , Y ^)T>.7 = 1,2, . . .} is a realization of the multidimensional
Euler approximation for stochastic differential equations with constant step size h

Vs" 183 (see Section 5.6), each τ^> is taken to be the first time that the i-th such realization
leaves 3C, and each «M = argmax^ {(j — 1)/ι < r ^ } is the number of steps that
realization i takes to leave 3£ for the first time. The integral (17.9) is approximated
by a step function, with jumps occurring at the time discretization, and values
straightforwardly obtained as the integrand evaluated at the Euler approximation.

Figure 17.1 depicts an estimated solution on a 100 x 100 regular mesh over
[—5,5]2, with the solution at each point of the mesh estimated as the average of
N = 1000 realizations of the Euler approximation using a constant step size of
h = 10~3.

Figure 17.1 Estimated solution u(x, y) to a Dirichlet problem.

CONNECTIONS BETWEEN STOCHASTIC AND PARTIAL DIFFERENTIAL EQUATIONS 5 8 3

The MATLAB code is given below.

7. d i r ichlet_ex_scr ipt .m
7o A Dir ichlet example in 2D.
'/, Assumes k=0.

h=10. ~ (-3) ; '/. Timestep
nx=100; ny=100; ne=10~3;
xs=linspace(-5,5,nx);
ys=linspace(-5,5,ny);

u=zeros(nx,ny);

b = [l ; l] ; s i g = [l , . 2 ; . 2 , 2] ;
bh=b.*h; s igh=sqrt(h) .*sig;

for i=l:nx % For each x grid-point
for j=l:ny 7, For each y grid-point

xO=[xs(i) ;ys(j)] ;
if ((x0(l)~2+x0(2)"2)>=5~2)I I(x0(l)~4+x0(2)~4<=2.5"4)

u(i,j)=NaN;
else
for k=l:ne 7, For each realization of the process

notstopped=true;
t=0; X=xO; intg=0;
while (notstopped)
t=t+h;

X=X+bh+sigh*randn(2,l); ’/. Euler Approx.

'/. Check the Boundary condition
if ((X(l)~2+X(2)~2)>=5-2)|I(X(l)~4+X(2)~4<=2.5~4)
notstopped=false;

end

intg=intg+h*sin(X(l))*cos(X(2)); % Riemann approx.
end
u(i,j)=u(i,j)+intg;

end
u(i,j)=u(i,j)/ne;

end
end

end

f igure,surf(xs,ys,u’)

5 8 4 APPLICATIONS TO DIFFERENTIAL EQUATIONS

Remark 17.1.1 (Errors Arising in Pract ice) In Example 17.1, we approxi-
mately estimated u by

• replacing the expectation by a Monte Carlo estimate of N realizations of the
SDE process;

• approximately simulating the SDE process via Euler's method;

• evaluating the stochastic integral approximately via a step function.

Each of these steps produces approximation or estimation error. The Monte
Carlo error can be reduced by applying variance reduction techniques to the original
process [21, 28, 29] and [15, Chapter 16]. The approximation error due to using
Euler's method can be mitigated by using a smaller step size or an approximation
scheme of a higher convergence order [15]. Finally, we can use more sophisticated
ways to approximate the stochastic integral, see [15, Pages 529-539] for details.

17.1.2 Terminal Value Problems

A PDE problem involving the differential operator Lt in (17.2) is said to be a
terminal value problem or a Cauchy problem if it is of the form

Î L t + ^ - f c (x , t)) U i (x) = -<7(x,i) i n R d x [0 , T) ,

ut(x) = / (x) o n R d x { T } ,

where T > 0 is a fixed terminal time, and k : Rd x [0, T] -> [0, oo), g : Rd x [0, T] ->
K, and / : Kd —» R are continuous functions.

A unique solution ut to the Cauchy problem exists if, in addition to Assump-
tions 17.1.1, the following conditions are satisfied [13, Page 268]:

Assumpt ions 17.1.3 (Boundedness and Growth)

1. Boundedness : The functions Qfc(x, t), dj(x, t), and fc(x, t) are bounded in
Rd x [0,T],

2. Polynomial growth: The functions f'(x) and g(x.,t) satisfy | / (x) | ^ M (l +
| |χ | |2 λ) for allxe Rd and | s (x , i) | < M (l + | |χ | |2 λ) for all (χ , ί) € Rd x [0,T]
for some constants M > 0 and λ ^ 1.

Moreover, ut is given by the stochastic representation contained in the following
theorem.

T h e o r e m 17.1.2 (Feynman—Kac Representat ion for the Cauchy Problem)
Under Assumptions 17.1.1 and 17.1.3, there is a unique function «t(x) : Rd x [0, T]
—> K. that has continuous first partial derivatives in t, continuous second partial
derivatives in x, and satisfies the Cauchy problem (17.10). Moreover, ut(x) admits
the stochastic representation

ut(x) = E X , t f(XT)K(t,T) + j g(Xs,s)K(t,s)ds

CONNECTIONS BETWEEN STOCHASTIC AND PARTIAL DIFFERENTIAL EQUATIONS 5 8 5

inRd x [0,T], where

K(t,s)=exp(- I fc(Xr,r)dr] .

There are alternative sufficient conditions for which a solution to the Cauchy prob-
lem exists, is unique, and has the above stochastic representation — see [13] and
the references therein.

A sketch proof is as follows [13]. Denote by {Xt} the process that solves (17.1).
Assume there exists a solution ut to (17.10). For fixed t, identify Y s = Xt+s,
and apply Itô's formula to the function i t t + s (Y s) exp (—J0 fct+r(Yr,i + r)dr) =
u i + s (X t + s) K(t, t + s), s ^ 0, yielding

Ut+sÇX-t+s) K(t, t + s) = ut(X,

T.. . 4-

dt

' dxi

+ I K(t, t + r) I Lt+r + — - kt+rÇX.t+r)) wÉ+r(Xi+r) dr

d m „s „

+ Σ Σ / ßifc(X*+r,i + r) — (w t + r (X t + r) J i (i , i + r)) d W t
(^ .

i=lk=lJ°
(17.11)

For each s G [Ο,Γ — t], equation (17.10) is satisfied, and so each process

ut+s(Xt+s)K(t,t + s)+ [g(Xt+r,t + r)K(t,t + r)dr, 0^s<T-t

is a PX'É martingale under Assumptions 17.1.1 and 17.1.3. Taking expectations of
(17.11) together with the terminal condition, we see that

«ί(χ) = Εχ>* f(XT)K(t,T) + J g(Xr,r)K(t,r)dr

Remark 17.1.2 (Initial Value Problem) For fixed T > 0, a solution t>t(x)
Rd x (0, T) -► R to the initial value problem

9 , , .Λ „d
Lt - — - * (x , i) J ü t(x) = - s (x , i) i n R d x (0 ,T] ,

« t(x) = / (x) o n E d x { 0 } ,

is obtained simply by setting vt(x) = « r _ t (x) , where us is as given in Theo-
rem 17.1.2. The only difference is that the process {Xt} is the solution of the SDE
with time-reversed coefficients given by

dXÉ = a (X t , T - t) at + B(Xt, T - t) d W f , 0 < t < T,

rather than of the SDE given in (17.1).

17.1.3 Terminal-Boundary Problems

We now consider problems with both terminal and boundary conditions. As in
Section 17.1.1, suppose that we have a bounded domain SC of M.d with boundary
set dSC. Let T > 0 be an arbitrary fixed terminal time.

5 8 6 APPLICATIONS TO DIFFERENTIAL EQUATIONS

A PDE problem involving the differential operator Lt in (17.2) is said to be a
terminal—boundary value problem if it is of the form

\Lt + j t - fc(x, t)j «ί(χ) = -g(x, t) i n J x [0, T),

«t(x) = / (x) o n f x j T } , (1 7 · 1 2)

w t(x) = /i(x, t) on dX x [0, T) ,

with functions k : X x [0, T) -> [0,oo), g : ^Γ x [Ο,Τ) -» R, / : 5£ -»■ R, and
h:d% x [0, T) -► M.

A unique solution u t exists if, in addition to Assumptions 17.1.1, the following
conditions are satisfied:

Assumpt ions 17.1.4 (Smoothness and Continuity)

1. S m o o t h boundary: The boundary d3£ is C2.

2. Continuous and consistent data: The function f is continuous on X',
the function h is continuous on d3C x [0, T), and h(x,T) = / (x) on d3C.

Theorem 17.1.3 (Representat ion for Terminal—Boundary Value Problem)
Under Assumptions 17.1.1 and 17.1.4, there is a unique solution «t(x) :
S£ x [0, T) —» R satisfying the terminal-boundary value problem (17.12) and
admitting the stochastic representation

«t(x) = Ex·*

where

(/i(XT , r) I { T < T } + / (X T) I { T = r }) A-(t, T) + f g(Xs, s) K(t, s) as

K(t, s) = exp I — / fc(Xr, r) dr

and T = inf {r G [t, T) : X r 0 &} ί/ ζί exists, and τ = T otherwise.

The proof is a combination of those for the Dirichlet and the Cauchy problems.

■ EXAMPLE 17.2 (Solving a Terminal -Boundary Value Problem)

Extending Example 17.1, suppose that we wish to prescribe a terminal condi-
tion and augment the boundary condition with time, by setting f(x, y) = 0 and
h{x,y,t) = sin((T — t)xy), leaving k(x,y,t) = 0, but augmenting g(x,y,t) =
e T _ t sin(a:) cos(y). This gives a terminal-boundary problem written out as

dut(x,y) „rnd
2ut(x,y) nnd

2ut(x,y) d2ut(x,y) KJy! + 0.52 | V ^ + 0.6 ' V + 2.02 | y ^
at oxz oxay ayz

dut(x,y) dut(x,y) T_t . . . , . . r .
H ■? 1 = —e sm(a;)cos(w) va. X x 0, T),

ox ay

ut{x,y) = 0 o n J T x { T } ,

ut(x, y) = sin((T - t)xy) on dSC x [0, T).

TRANSPORT PROCESSES AND EQUATIONS 5 8 7

We can employ the same approximation ideas as in Example 17.1 to obtain solutions
to this equation. Figure 17.2 depicts the estimated solution at four time instants,
t = 0 ,1 /3 , 2 /3 ,1 , with terminal time T = 1.

Figure 17.2 Estimated solution ut(x,y) to a terminal-boundary type problem at times
t = 0, t = 1/3, t = 2/3, and t = T = 1.

The MATLAB code for this example is a simple extension of that given in Exam-
ple 17.1. The corresponding program termbound_ex_script .m can be found on the
Handbook website.

17.2 TRANSPORT PROCESSES AND EQUATIONS

Transport processes are Markov processes that model the position and velocity
of objects that undergo collisions. The position component has continuous sam-
ple paths with no diffusion component, but the velocity component experiences
"shocks". Between shocks, the process evolves according to a system of ordinary
differential equations, and when a shock occurs, it possibly changes the direction of
the process in an abrupt way, but maintains its spatial continuity. Figure 17.3 il-
lustrates this generic behavior, showing the position portion of a possible transport
process on the plane.

More formally, a transport process is a Markov process {Zt,t ^ 0} of the form
Z s = (X s , V s) (interpreted as a column vector), with position component X s e Rd

and velocity component V a € Rfc, that can be constructed as follows [19]:

5 8 8 APPLICATIONS TO DIFFERENTIAL EQUATIONS

Figure 17.3 The position portion of a transport process on the plane remains continuous
while experiencing shocks.

Between shocks, the process satisfies an ordinary differential equation

a (Z t) .
d ^

di

• The times of shocks ΤΊ ,Τ2, . . . occur according to a homogeneous Poisson
" ^ 170 process with rate λ = sup z λ(ζ) , where λ(ζ) ^ 0 is a given rate function.

• At the time of a shock T, the process jumps from state z = (x, v) to state
Z ' = (x, V) with probability λ (ζ) /λ , where V ~ π (ν ' | z), and π is a time-
homogeneous transition density for the velocities.

This construction ensures that {Zj} is a time-homogeneous Markov process with
infinitesimal generator L acting on bounded C1 functions u : Rd+fc —> M via

Lu(z) = a(z)TV zM(z) + / λ(ζ)(ω(ζ') - w(z)) π (ν ' | z) d v ' ,
s v ' J
pure drift part

where z' = (x, v ') .
Consider the initial value problem

pure shock part

d_

dt
fc(z) ut(z) = -g(z) in x (0, oo)

ut
(z) = / (z) on Rd+k x {0} .

(17.13)

where k, f, and g are bounded S1 functions from Rd+k to M.
The following theorem gives a stochastic representation for the solution u.

Theorem 17.2.1 (Feynman—Kac for the General Transport Process) If X
and π(- | z) are bounded G1 functions, then the unique C1 function that solves (17.13)
has the following stochastic representation:

ut(z) = E

where

f(Zt)K(t)+ f g(Zs)K(s)ds
Jo

K{t) = e x p i - / fc(Zr)dr] .

TRANSPORT PROCESSES AND EQUATIONS 5 8 9

The adjoint operator of L, which we will denote by L*, acts on u via

L*u{z) = V z · (a(z)u(z)) + Λ λ (ζ > (ζ ') - λ(ζ)«(ζ)) π (ν | ζ') d v ' ,

where z' = (x, ν ') , and the notation V z · / means Σί §£~-
Let ut(z) be the solution of the initial value problem

(L*-^~ fc(z)) ut(z) = -g(z, t) in Rd+k x (0, oo),

ut(z) = f(z) o n R d + f e x { 0 } .

where k, f ^ 0, and g ^ 0 are bounded C1 functions, such that / and g can
be normalized to be pdfs at each time t. Denote the normalizing constants by
/ / (z) d z = a < oo, and fg(z,t)dz = ß(t) < oo for t > 0. Define normalized
versions as / (z) = f(z)/a and ~g(z,t) = g(z,i)/ß(t), so that / and g~ are both pdfs
for each instant of time. Then there is a generalization of the Kolmogorov forward
(or Fokker-Planck) equation for this process, given in the following theorem.

Theorem 17.2.2 (Fokker—Planck for the General Transport Process)
For all bounded C1 functions φ : M.d+k —> R; we have

J ut(z) ψ(ζ) dz = α Ε ^ [0(ZÉ) K(0, t)] + | ß(s) E| (. j S) [«/»(Zt) K (S , i)] ds ,

where the notation Es
h [■] is shorthand for E[· | Zs] with Zs ~ h, and

K(s,t) = exp(- k(Zr)dr

17.2.1 Application to Transport Equations

An important application of the Feynman-Kac and Fokker-Planck representations
for the general transport process is to solving transport equations and the more
general Vlasov's equation. These are equations that describe how the population
density of physical particles evolves when that population is behaving according to
a transport process. If we denote the population density of physical particles by
Ut{z) : M.2d x [0, oo) —> [0, oo), we do not necessarily have that ut{z) is a pdf for
each t. This is due to the possible creation and annihilation of particles.

More precisely, the transport equations can be written as the initial value
problem

Q - v T V x - — - fc(z) J ut (z) = - g (z , t) in R2d x (0, oo)

ut(z) = / (z) o n R M x { 0 } ,

where z = (x, v) with x, v e Rd, f ^ 0 is a bounded function corresponding to
an initial "distribution" of particles, g(-,t) ^ 0 is a bounded G1 function for each t
corresponding to a "source" of particles, k > 0 is a bounded function that "removes"
particles, and Q is an integral operator with respect to the velocity component v

5 9 0 APPLICATIONS TO DIFFERENTIAL EQUATIONS

that describes how the velocity of a particle changes after experiencing a "shock".
The operator Q depends on the position component x and acts on functions u via

Qu(z) = [g(v' | z) w(z') d v ' .

where z' = (x, v ') and q > 0 is a bounded transition density for the velocities v.
More generally, Vlasov's equat ion applies when particles can also undergo

acceleration:

(Q - v T V x - V v a a (z) - | - fc(z) j ut(z) = -g(z, t) in R2d x (0, oo)

« t (z) = / (z) o n M 2 d x { 0 } ,
(17.15)

where a2 corresponds to an acceleration term that acts on the velocity component.
In the next two sections, we give the Feynman-Kac and Fokker-Planck repre-

sentations for Vlasov's equation, which can be seen as special cases of the represen-
tations for general transport processes. The first, based on the backward equation,
suggests the preferred Monte Carlo algorithm for evaluating the solution at one (or
a small number of) point (s). The second, based on the forward equation, suggests
the preferred Monte Carlo algorithm for evaluating the solution over a larger region.

17.2.1.1 Backward Equation Representation We can write Vlasov's equation in the
same form as (17.13), that is, in the form

L--^-k(z))ut(z) = -g(x,t) inR 2 d x(0 ,oo)

« t (z) = / (z) o n R 2 < i x { 0 } .

This is done by relating the terms that appear in (17.15) to those in (17.16) as

a(z) = . . .
1 -a2(z)

A(z) = J g (v ' | z) d v ' ,

and _
fc(z) = fc(z) - λ(ζ) + V v · a 2 (z) .

This results in an operator L acting on functions u via

Lu(z) = - v T V x i t (z) - aJVvu(z) + / λ(ζ)(ω(ζ') - M(Z)) π (ν ' | z) d v ' ,

where z' = (x, v ') .
This also implies that between shocks the associated transport process {Z t} =

{(Xt, Vt)} satisfies the system of ordinary differential equations

^ = - V t

& . r z i (m 7)

^ = - a 2 (Z t) .

TRANSPORT PROCESSES AND EQUATIONS 591

Further, by Theorem 17.2.1, the solution ut of (17.16) has the stochastic repre-
sentation

f(Zt)K(t) + [g(Zs,s)K(s)ds\,
Jo

u t (z) = E z

with

K(t) = exp (- / fc(Zr)dr J . (17.18)

We can approximate Mi(z) for a fixed tuple (ζ , ί) as follows. First, simulate N
independent copies of {Z t} via the following algorithm.

Algor i thm 17.1 (Backward Equation Viewpoint)

1. SetZ0 = (x ,v) .

2. Given some λ = sup z λ(ζ) , simulate a Poisson process with intensity X, de-
noting times of shocks as T\, T2,....

3. Between shocks, Zt solves the system of ordinary differential equations
(17.17).

4- At the time of a shock T, the process moves from state z = (x, v) to state
Z' = (x, V) with probability λ (ζ) /λ , where V ~ π (ν ' | z) .

5. K(t) in (17.18) is solved from the ordinary differential equation

dw(t)

at
= -k(Zt)w(t)..

with initial condition w(0) = 1/N, where w(t) = K{t)/N gives the relation

between w and K.

Next, approximate ut{z) via

2 i(z) = ^ / (z f)) W
(f c) (i) + / g(s,Z^)w^\s)ds.

fc=l ^ 0

17.2.1.2 Forward Equation Representation We can also write Vlasov's equation
as a Kolmogorov forward (or Fokker-Planck) type equation, of the same form as
(17.14), that is,

(V - ^ - f c (z)) u t (z) = - f l (z , i) i n M 2 d x (0 , o o)

ut(z) = / (z) o n R 2 d x { 0 } .

This is done by relating the terms that appear in (17.15) with those in (17.19) as

a(z) = (, s.

A(z) = y g (v | z ') d v ' :

„Ur I , ' \ g (V i Z)

5 9 2 APPLICATIONS TO DIFFERENTIAL EQUATIONS

and __
fc(z) = fc(z) - λ (ζ) ,

where z' = (x, v ') . This results in an operator L* acting on functions u via

L*ut(z) = - v " V x u t (z) - V v (a 2 (z) u t (z)) + y (λ (ζ ') ut(z')-X(z) ut(z)) ττ(ν | ζ') d v ' .

This also implies that between jumps the associated transport process {Z t} =
{(X t , V t) } satisfies the system of ordinary differential equations

d v f (17-2°)
^ = a 2 (Z t) .

Note that the signs in (17.17) and (17.20) differ.
We will now assume that g = 0. However, the cases g ^ 0 and g ψ 0 are possible

too (see [19, Pages 58-59] for details). Further, we will assume that / is a positive
function. Denote the normalized function as / = f/a, where a = j / (z) dz. In this
regime, from Theorem 17.2.2, for every continuous bounded function
we have

' u t (z) 0 (z) d z = a E £ U (Z t) £ (i) l
/ '

where E^[·] is shorthand for E[· | Zs] with Z s ~ h, and

K(t) = exp (- f fc(Zr)dr J . (17.21)

We can approximate ut(z) via a discrete approximation on N points. First,
generate Λ̂ realizations of the associated transport process {Z t} over the time
interval [0, t] via the following algorithm.

Algor i thm 17.2 (Forward Equation Viewpoint)

1. Generate an initial state Zo ~ / .

2. Given some λ = supz λ(ζ) , simulate a Poisson process with intensity X, de-
noting times of shocks as ΧΊ, T 2 ,

3. Between shocks, Zs solves the system of ordinary differential equations
(17.20).

4- At the time of a shock T, the process moves from state z = (x, v) to state
Z' = (x, V) with probability λ (ζ) /λ , where V ~ π (ν | x, v ') .

5. K(t) in (17.21) is solved from the ordinary differential equation

dw{t)

di
-k(Zt)w(t),

with initial condition w(0) = 1/N, where w(t) = K{t)/N gives the relation

between w and K.

TRANSPORT PROCESSES AND EQUATIONS 593

Next, given a set of N realizations of {Z(}, approximate us(z) for any s G [Ο,ί]
and z via

N

MS(Z) = a ^ w w (s) I { z w = z } .

In particular, this means that we approximate, for any function H,

JH(z)ut(2 (z) dz (17.22)

by

aJ2w^(t)H(Z^).

17.2.2 Boltzmann Equation

Boltzmann-type equations describe the evolution of a population of particles that
travel in straight line segments between collisions, and undergo pairwise collisions.
They form a particular type of transport equation, where the actual shocks are
interpreted as collisions between particles.

Following [19, Chapter 4], we will consider only one type of particle (without
internal energy). Denote the population (concentration) at time t ^ 0 with position
x e R3 and velocity v € R3 by ut{z), where z = (x, v). The Boltzmann equation
can be written as

' < 2 - v T V x - J ^) u E (z) = 0,

where Q is an operator describing the behavior of collisions. It acts only on the
velocity component, and has the form (suppressing x)

Q« t (v)= / [q fv - v 1 ; £
T j V ~ Υ ι)Λ (ut(v')ut(v[) - tttCvKtvO) d£d V l ,

J-seJs™ V l l v - v i l l /

where S"2 = {£ e R3 : ||ξ|| = 1} is the surface of the unit ball in R3, and the new
velocities of the particles, v' and v'j, have the following properties:

1. Conservation of momentum: v' + v^ = v + vi.

2. Conservation of kinetic energy: ||v'||2 + ||vi||2 = ||v||2 + Hv^l2.

The new, postcollision velocities can be written in terms of the original, precollision
velocities v and vi, together with the collision direction (represented by) ξ as:

ν ' = - (ν + νι) + - ί | | ν - ν 1 | | ,

ν'ι = 2 (ν + ν ι) - 2 ^ ν ~ ν ι Ι Ι ·

Further, ç(w,/x) is a function on R3 x [—1,1] that depends only on the relative
velocity between the two particles undergoing collision ||w|| = ||v — vi||, and the
cosine of the angle between the relative pre and postcollision velocities μ = cos(0) =

fc-vjiii^rJMi· Typical cases are:

5 9 4 APPLICATIONS TO DIFFERENTIAL EQUATIONS

• Hard spheres: q(w,ß) = C | |w | | for some constant C.

• Variable hard spheres: g(w, μ) = C ||w||Q for some constants C and a > 0.

The function ι/(\ν,μ) = çi(w, μ)/||χν|| is known as the microscopic cross-section.
In the spatially homogeneous framework, that is, when V x «i (z) = 0, we can

ignore the spatial component, and simply write ut(v). The Boltzmann equation
then becomes

(Q - |) « t (v) = o.

Suppose we have an initial condition i*o(v) ^ 0 that is normalized to 1 so that it
is a pdf over v G E Ç R3 , and that ç(w,/z) does not depend on μ. We wish to
determine ut(y) over the interval [0,T] for some fixed T > 0. We can proceed by
considering a related process and equation that will allow us to approximate the
solution to the original problem.

For fixed integer N > 0, define a Markov process VN(t) = (V f (i) , . . . , V#(f)) ,
known as the Bird collision process, as follows.

1. Fix the state space as E^N\ the iV-th symmetr ic power of the velocity
space E, so that two elements in E ^ are equivalent if one can be obtained
from the other by simply permuting the component indices.

2. Set the initial distribution such that each component Vj^(0) is distributed
according to «o(v) for k = 1 , . . . , N.

3. The times between collisions are exponential, with parameter

i = l j=l

where we have suppressed the time parameter.

4. Given that a collision has occurred, a pair of particles (i, j) is chosen to collide
with probability

g(vf-vf)
Ef=1Ef=19(vf-vf)'

where we have suppressed the time parameter.

5. Once a pair has been chosen to collide, the process moves from state
(v i , . . . , VJV) to state (v i , . . . , v £ , . . . , v ^ · , . . . , VJV), where the two new veloci-
ties for particles i and j are given by

v - ^ V i + V j O + ^ S l l v i - V j H ,

v i = 2~(Vi + V J) ~ 2 Ξ "Vi ~ Vi" '

where Ξ is drawn uniformly from y2, the surface of the unit ball in K3. See
" ^ 74 Section 3.3.3 for algorithms to generate Ξ.

TRANSPORT PROCESSES AND EQUATIONS 595

The density /ijv(·, t) : E ^ —> M for this process satisfies the Kolmogorov forward
PDE

„ „ N N
a ■hN(v,t) = — ΣΣ / l{^i-^j)(hNKj,t)-hN(v,t)) άξ,

N i= i >#i ^ 2

ftjv(v,0) = JJwo(vfc),
fc=l

where x'- = (v i , . . . , v £ , . . . , ν ' , . . . , vjy) is a vector that matches v in all but com-
ponents i and j , which are related to v, and Vj exactly as described in Step 5 for
the process.

It turns out [19, Page 98] that , for all t, the marginal density

PN (ν , ί) = / · · · / / i j v (v , v 2 , . . . , v j v , i) d v 2 . . . d v w - > u t (v) asN -xx,

where ut is the solution to the original (spatially homogeneous) Boltzmann problem.
Furthermore, we can approximate the density ut(v) via Monte Carlo by construct-
ing a realization of {VN{t)} at time t and determining an empirical approximation:

N

ΰ*(ν) = ΐν ;ΣΙ{ν,Ν(*)=ν}·
fc=l

By the law of large numbers, we have Ut(v) —► Mt(v) as N —> oo [19, Page 98]. In
particular, this means that we can approximate, for any function H,

f H{-v)ut(y)dv

by the crude Monte Carlo estimator

lf>(vf(i)).
fc=l

■ EXAMPLE 17.3 (Bo l tzmann Equation)

For concreteness, suppose that the initial distribution is

w0(v) = exp(-(t>i +v2 + v3)) , vi,v2,v3 > 0 ,

meaning that each of the three velocity components can be drawn independently
from the Exp(l) distribution. Suppose further that we adopt the hard sphere col-
lision model, so that <?(w) = C||w||, where we will set C — 1 for simplicity. Fig-
ure 17.4 depicts an estimated curve H(v) = vf + v% + ν% over the time interval [0,1]
on the basis of N = 1000 realizations of the associated Bird collision process.

5 9 6 APPLICATIONS TO DIFFERENTIAL EQUATIONS

20 r

19-

- . - 1 8 -

13 17-

w

-fe16-

1 5 -

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t

Figure 17.4 Estimated Η(γ) = vf + vl + v% for t 6 [0,1].

The following MATLAB code was used.

function Boltzmann_ex
°/o Simple Boltzmann equation example
"/, Spatially homogeneous regime
N=10~3; d=3;°/, Number of particles; Dimension
T=10"0; % Final time
v=-log(rand(N,d));
rho=l;
w=rho.*ones(N,l)./N;
C=l; alpha=l; "/, Collision constants
pairs=nchoosek((l:1:N),2);
t=0;
hh=mean(sum(v.-3,2));
tt=t;
while t<=T
qij=C.*((sum((v(pairs(:,1),:)-v(pairs(:,2),:))."2,2))."(alpha/2));
sumqij=sum(qij);
lambda=rho*sumqij/N;
tau=-log(rand(l))/lambda;
t=t+tau % Time of the new collision
if t>T
t=T; break;

end
p=[0;cumsum(qij . / sumqij)] ;
r=rand(l) ;
pidx=find(p>=r,l)-l; */, Index of the colliding pair
°/, Uniformly distributed on the Unit sphere in \R~3
sigma=randn(l,3); sigma=sigma./sqrt(sum(sigma."2));
a=(v(pairs(pidx,l),:)+v(pairs(pidx,2),:))./2;
b=(sum((v(pairs(pidx.l),:)-v(pairs(pidx,2),:)).~2)~(0.5))/2;

CONNECTIONS TO ODES THROUGH SCALING 5 9 7

vprime=a+sigma.*b;
vlprime=a-sigma.*b;
v(pairs(pidx,1),:)=vprime;
v(pairs(pidx,2),:)=vlprime;
tt=[tt,t];
hh=[hh,inean(suin(v.~3,2))] ;

end
f i g u r e , p l o t (t t , h h , ' k - ')

17.3 CONNECTIONS TO ODES THROUGH SCALING

A further link between stochastic processes and deterministic differential equations
arises through the scaling of certain Markov processes in space or time. On one
scale, the scaled process can lose all stochasticity, and instead satisfy a system of
ODEs. This is similar to the standard law of large numbers, and is a first-order
approximation. If scaled deviations of the stochastic process from its first-order
approximation are considered, a second-order result analogous to the central limit
theorem can be obtained. In this section, we consider Markov jump processes,
whose transition rates are of a form that is amenable to such scaling.

Suppose that we have a family {JN{·)} of Markov jump process models (see
Section 5.3) indexed by N > 0, where Jjv(·) takes values in W^ Ç Z d , and has " ^ 166
transition rate matrix QN = (<7JV(U, V) , u, v G &N)·

The process Jjv could for example describe:

1. The number of each type of molecule present in a chemical reaction.

2. The number of individuals in a population that are in each phase of the
spread of a disease. For example, an individual may be infective, susceptible,
or immune.

3. The number of customers present at each queue in a Markovian queuing
network.

The index N may be thought of as describing the size of the process. For
example, N could be associated with the volume of the solvent in which a chemical
reaction is taking place, or the total number of individuals present in a population.

The transition rate matrix QM and the state space W^ form the model descrip-
tion — characterizing the rates at which molecules react in a chemical reaction
process, for example.

If the family of processes is such that all of the transition rates depend on the
current state u only through its "density" u/N, at least in an asymptotic sense,
then under certain conditions we may describe the large N behavior of the "den-
sity process" {Xjy(i)} = {JN(t)/N,t > 0} through a set of ordinary differential
equations.

More precisely, suppose that there is a subset S of Rd and a family {/ΛΓ, N > 0}
of continuous functions, with fpf : S x Zd —> R, such that

ÇJV(U,U + V) = NfN (- r r , v) , V ^ O .

5 9 8 APPLICATIONS TO DIFFERENTIAL EQUATIONS

If there exists a function F : S —> M.d such that { F J V } , given by Fjy(x) =
X] v v/ jv(x , v) , x 6 S, converges pointwise to F on £*, then the family of Markov
jump processes is said to be asymptot ical ly density dependent . If /JV (and
hence FJV) is the same for all N, then the family is called densi ty dependent .

The following functional law of large numbers establishes convergence of the
family of scaled densi ty processes {Xjv(·)} to the unique deterministic trajectory
that corresponds to the solution of an appropriate system of ordinary differential
equations. For a proof, see [6, Chapter 11] and [16, 24].

T h e o r e m 17.3.1 (Functional Law of Large Numbers) Suppose that /jv(·, v)
is bounded for each v and N, that F is Lipschitz continuous on <§ and that {FJV}
converges uniformly to F on §. Then, if limjv^oo XJV(O) = xo, the density pro-
cess X J V (') converges uniformly in probability on [0,i] to the unique deterministic
trajectory x(·) satisfying x(0) = XQ and

ds
x(s) = F(x(s)) , x(s) G l , s e [0, t]. (17.23)

This enables us to associate the microscopic behavior of our stochastic system
with its macroscopic behavior in a precise way. We illustrate this with an example
of a chemical reaction.

■ EXAMPLE 17.4 (Chemical React ion)

Suppose we have the following chemical reaction occurring inside a volume V [10]:

C i

2Jf 4 Z , W + X ^ 2X ,
C6

where c i , . . . ,ce are volume independent reaction rates (see, for example, [27]).
This stochastic chemical reaction can be viewed as a four-dimensional Markov
jump process with system state at time t represented by the vector Jv{t) =
(wv(t),xv{t),yv(t),zv(t))T. Following [18], the transition rates are:

qv{{w,x,y,z

qv({w,x,y,z

qv((w,x,y,z

qv((w,x,y,z

qv((w,x,y,z

qv{(w,x,y,z

(w,x-l,y + 1, z)) — ci x

(w,x + l,y-l,z)) = c2y

(w,x-2,y,z + l)) = c3x(x - 1)/(2K)

(w, x + 2, y, z - 1)) = c4 z

(w — 1, x + 1, y, z)) = C5 w x/V

{w + l,x-l,y,z)) = c6 x(x - 1) / (2V) .

The process is asymptotically density dependent, with

/

F(x)

C6"2 -C5X!X2

C2X3 + 2C4X4 + C5XiX2 - C1X2

C\X-i - C2X3

\ C 3 ^ - - C4X4

C3X2 c6-

/

If the density process {X-v(t)} = {Jv(t)/V,t ^ 0} has initial value satisfying
limy^oo Xv(0) = Xo, then the deterministic limit on [0, t] is the solution to the
corresponding system of ODEs in (17.23), with initial condition x(0) = XQ.

CONNECTIONS TO ODES THROUGH SCALING 5 9 9

The Markov jump process {JV(t)} is straightforward to simulate (see Sec-
tion 5.3), and the system of ordinary differential equations can be solved using " ^ 166
standard numerical techniques. Figure 17.5 shows the convergence of the first com-
ponent of the process wy(t) to the deterministic limit described here, where we have
chosen rates c\ = C2 = C3 = C4 = C5 = 1 and c§ — 10, and initial concentrations of
wv(0) = xv (0) = yv(0) = zv{0) = lOfjy.

Figure 17.5 Realizations of the first component of the process JV, together with its
deterministic limit over the time interval [0,0.25]. This illustrates convergence of the scaled
process to a deterministic limit as the volume V increases.

We also observe the Markov jump process reaching steady-state behavior over
time, in correspondence with the deterministic system. This is illustrated in Fig-
ure 17.6.

Figure 17.6 Realizations of all the components of the process, together with their
deterministic limits, over the time interval [0,10], with volume V = 10°.

6 0 0 APPLICATIONS TO DIFFERENTIAL EQUATIONS

The MATLAB code used is given below. The ODE function g i l l e sp i e_ode .m is
a direct transcription of the given system.

% chemical_ex.m
c = [1,1,1,1,1,10]; Vs=[10-0,10"l,10-2];
wO = 100; x0=100; y0=100; z0=100;
% Deterministic Limit
t0=0; t1=0.25;
options = odesetORelTol’ ,le-4) ;
[T,Y] = ode45(@(t,y) gillespie_ode(t,y,C;

[w0,x0,y0,z0].options);
for k=l:nV

nV=length(Vs);

, [to ti], ...

V=Vs(k); % Volume (scaling) parameter

w=w0*V; x=x0*V; y=y0*V; z=z0*V;
ww= [] ; xx= [] ; yy= [] ; zz= [] ; tt= [] ;
t = 0;
while t<tl

ww=[ww,w]; xx=[xx,x]; yy=[yy,y]; zz=[zz,z]; tt=[tt,t];
v = [x, y, x*(x-l)/(2*V), z, w*x/V, x*(x-l)/(2*V)];
a = c.*v;
lam = sum(a);
p = a/sum(a);
t = t -log(rand)/lam;
r = min(find(cumsum(p)>=rand));
switch r

case 1
x = x-1; y = y+1;

case 2
x = x+1; y = y-1;

case 3
x = x-2; z = z+1;

case 4
x = x+2; z = z-1;

case 5
x = x+1; w = w-1;

case 6
x = x-1; w = w+1;

end
end

end

function dx = gillespie_ode(t,x,c)
dx=zeros(4,1);
dx(l) = c(6)*(x(2)~2)/2 - c(5)*x(l)*x(2);
dx(2) = c(2)*x(3) + 2*c(4)*x(4) + c(5)*x(l)*x(2) -...

c(l)*x(2) - c(3)*(x(2)~2)-c(6)*(x(2)-2)/2;
dx(3) = c(l)*x(2) - c(2)*x(3);
dx(4) = c(3)*(x(2)~2)/2 - c(4)*x(4);

CONNECTIONS TO ODES THROUGH SCALING 6 0 1

Assuming that additional second-order conditions are satisfied, there is a func-
tional central limit theorem that also applies. Loosely speaking, it states that
for large iV the scaled process around the deterministic trajectory behaves like a
Gaussian diffusion process (see Section 5.1). For a proof, see [6, Chapter 11] and "3° 154
[17, 24].

Theorem 17.3.2 (Functional Central Limit Theorem) Suppose that /JV(-, v)
is bounded for each v and N, that F is Lipschitz continuous and has uniformly
continuous first partial derivatives on S, and that

lim supV7V r | | F J V (x) -F (x) | | = 0 .

Suppose also that the sequence {G^}, where GN is a d x d matrix with entries

GN{i,j) = ^2viVjfN{x,v), x € < ? ,
V

converges uniformly to G, where G is uniformly continuous on S'. Let xo G S and
let x(·) be the unique trajectory satisfying x(0) = xo and (17.23). Then, if

lim \ / J V (X i i (0) - x 0) = z ,
N—»oo

the family of processes {ZN(-)}, defined by

Ziv(s) = v/ÏV(Xiv(s)-x(s)) , O^s^t,

converges in distribution on [0,t] to a Gaussian diffusion Z(·) with initial value
Z(0) = z and with mean vector μ3 = EZ(s) = Msz, where Ms = exp(/Q

s Budu) and
Bs = Jp(x(s)) . Here, Jp is the Jacobi matrix o / F . The covariance matrix ofZ(-)
is

Es = Ms (jT M-1G(x(u))(M-1)Td«) Mj .

If the initial point is an equilibrium point (that is, xo = x*, where x* satisfies
F(x*) = 0), then, under the conditions of Theorem 17.3.2, we have that the process
Zjv(·) converges to an Ornstein-Uhlenbeck process. A precise statement follows
[24, 25].

Theorem 17.3.3 (Central Limit Theorem at an Equil ibrium Point) / / x*
satisfies F(x*) = 0 then, under the conditions of Theorem 17.3.2, the family
{ZJV(-)}> defined by

ZN{s) = \/N{XN(s)-x*), O^s^t,

converges in distribution on [0,i] to an Ornstein-Uhlenbeck process Z(·) with initial
value Z(0) = z, local drift matrix B = J F (x*) , and local covariance matrix G =
G(x*). In particular, Z(s) is normally distributed with mean vector μ3 = exp(Bs)z
and covariance matrix

Σ8= exp(Bu) G exp(BTu) du = Σ - exp(Bs) Σ exp(B T s) ,
Jo

where the stationary covariance matrix Σ satisfies ΒΣ + ΣΒΤ + G = 0.

6 0 2 APPLICATIONS TO DIFFERENTIAL EQUATIONS

Further Reading

When discussing connections between stochastic and partial differential equa-
tions in Section 17.1, we relied mainly on [13, 22], with additional reference to
[7, 8, 9, 14]. There are stochastic representations for other problems, such as those
with Neumann-type boundary conditions, see for example, [7] for details. For vari-
ance reduction techniques, see [20], and [15, Chapter 16] for an overview (see also
[21, 28, 29]). For the general transport and Boltzmann equations of Section 17.2,
see [19, 23]. Booth [5] discusses the different viewpoint that transport equation
practitioners have toward variance reduction (contrasted to the standard practice
in the simulation literature). The diffusion approximation of Markov jump pro-
cesses in Section 17.3 follows [24, 25, 26], which summarize, extend, and apply the
work in [1, 2, 3, 4, 16, 17, 18]. The chemical example is based on [10]. Finally, [11]
and [12] provide historical information on some of the earliest applications of the
Monte Carlo method to neutron transport.

REFERENCES

1. A. D. Barbour. On a functional central limit theorem for Markov population processes.
Advances in Applied Probability, 6(l):21-39, 1974.

2. A. D. Barbour. Quasi-stationary distributions in Markov population processes. Ad-
vances in Applied Probability, 8(2):296-314, 1976.

3. A. D. Barbour. Density-dependent Markov population processes. In W. Jäger,
H. Rost, and P. Tautu, editors, Biological Growth and Spread, volume 38 of Lecture
Notes in Biomathematics, pages 36-49. Springer-Verlag, Berlin, 1980.

4. A. D. Barbour. Equilibrium distributions Markov population processes. Advances in
Applied Probability, 12(3):591-614, 1980.

5. T. Booth. Particle transport applications. In G. Rubino and B. Tuffin, editors, Rare
Event Simulation Using Monte Carlo Methods, pages 215-242. John Wiley & Sons,
Chichester, 2009.

6. S. N. Ethier and T. G. Kurtz. Markov Processes: Characterization and Convergence.
John Wiley & Sons, New York, 1986.

7. M. I. Freidlin. Functional Integration and Partial Differential Equations. Princeton
University Press, Princeton, New Jersey, 1985.

8. A. Friedman. Stochastic Differential Equations and Applications: Volume 1. Aca-
demic Press, New York, 1975.

9. A. Friedman. Stochastic Differential Equations and Applications: Volume 2. Aca-
demic Press, New York, 1976.

10. D. T. Gillespie. A general method for numerically simulating the stochastic time
evolution of coupled chemical reactions. Journal of Computational Physics, 22(4):403-
434, 1976.

11. J. S. Hendricks. A Monte Carlo code for particle transport. Los Alamos Science,
22:30-43, 1994.

12. C. C. Hurd. A note on early Monte Carlo computations and scientific meetings.
Annals of the History of Computing, 7(2):141-155, 1985.

13. I. Karatzas and S. E. Shreve. Brownian Motion and Stochastic Calculus. Springer-
Verlag, New York, second edition, 1991.

REFERENCES 603

14. F. C. Klebaner. Introduction to Stochastic Calculus with Applications. Imperial Col-
lege Press, London, second edition, 2005.

15. P. E. Kloeden and E. Platen. Numerical Solution of Stochastic Differential Equations.
Springer-Verlag, Berlin, 1999. Corrected third printing.

16. T. G. Kurtz. Solutions of ordinary differential equations as limits of pure jump Markov
processes. Journal of Applied Probability, 7(l):49-58, 1970.

17. T. G. Kurtz. Limit theorems for sequences of jump Markov processes approximating
ordinary differential processes. Journal of Applied Probability, 8(2):344-356, 1971.

18. T. G. Kurtz. The relationship between stochastic and deterministic models in chem-
ical reactions. The Journal of Chemical Physics, 57(7):2976-2978, 1972.

19. B. Lapeyre, E. Pardoux, and R. Sentis. Introduction to Monte-Carlo Methods for
Transport and Diffusion Equations. Oxford University Press, Oxford, 2003.

20. G. N. Milstein. Numerical Integration of Stochastic Differential Equations. Kluwer
Academic Publishers, Dordrecht, 1995.

21. N. J. Newton. Variance reduction for simulated diffusions. SIAM Journal on Applied
Mathematics, 54(6):1780-1805, 1994.

22. B. 0ksendal. Stochastic Differential Equations: An Introduction with Applications.
Springer-Verlag, Berlin, fifth edition, 1998.

23. M. A. Pinsky. Lectures on Random Evolution. World Scientific, Singapore, 1991.

24. P. K. Pollett. On a model for interference between searching insect parasites. Journal
of the Australian Mathematical Society, Series B, 32(2):133-150, 1990.

25. P. K. Pollett. Diffusion approximations for a circuit switching network with random
alternative routing. Australian Telecommunication Research, 25(2):45-51, 1991.

26. P. K. Pollett. Diffusion approximations for ecological models. In F. Ghassemi, editor,
Proceedings of the International Congress on Modelling and Simulation, volume 2,
pages 843-848, Canberra, Australia, 2001. Modelling and Simulation Society of Aus-
tralia and New Zealand.

27. P. K. Pollett and A. Vassallo. Diffusion approximations for some simple chemical
reaction schemes. Advances in Applied Probability, 24(4):875-893, 1992.

28. W. Wagner. Monte Carlo evaluation of functionals of solutions of stochastic differen-
tial equations. Variance reduction and numerical examples. Stochastic Analysis and
Applications, 6(4) :447-468, 1988.

29. W. Wagner. Unbiased Monte Carlo estimators for functionals of weak solutions of
stochastic differential equations. Stochastics and Stochastic Reports, 28(l):l-20, 1989.

This page intentionally left blank

APPENDIX A

PROBABILITY AND STOCHASTIC

PROCESSES

The purpose of this chapter is to review some fundamental concepts in probability
and stochastic processes, and to familiarize the reader with the notation in this
book.

A.l RANDOM EXPERIMENTS AND PROBABILITY SPACES

The basic notion in probability theory is that of a random experiment: an
experiment whose outcome cannot be determined in advance. Mathematically, a
random experiment is modeled via a probability space (Ω,Ή,Ρ), where:

• Ω is the set of all possible outcomes of the experiment, called the sample
space.

• Ti is the collection of all subsets of Ω to which a probability can be assigned;
such subsets are called events . The collection Ti is assumed to contain Ω
itself, be closed under complements (A G Ti =>· Ac G Ti), and be closed under
countable unions (Ai, A2,... G H =Φ Ui-Aj G Ti). Such a collection is called a
er-algebra.

• P is a probability measure, which assigns to each event A a number P(^4)
between 0 and 1, indicating the likelihood that the outcome of the random
experiment lies in A.

Handbook of Monte Carlo Methods. By D. P. Kroese, T. Taimre, Z. I. Botev 605
Copyright © 2011 John Wiley & Sons, Inc.

6 0 6 PROBABILITY AND STOCHASTIC PROCESSES

Any probability measure P must satisfy the following Kolmogorov axioms:

1. P(A) > 0 for all A € H.

2. Ρ(Ω) = 1.

3. For any sequence A\,Ä2,... of disjoint (that is, nonoverlapping) events,

i i

The axioms ensure that the probability of any event lies between 0 and 1. An
event that happens with probability 1 is called an a lmost sure (a.s.) event. The
requirement (A.l) is often referred to as the s u m rule of probability. It simply
states that if an event can happen in a number of different but not simultaneous
ways, the probability of that event is the sum of the probabilities of the comprising
events.

■ EXAMPLE A. l (Discrete Sample Space)

In many applications the sample space is countable, that is, Ω = {αχ,α,2,...}.
In this case the easiest way to specify a probability measure P is to first assign a
probability pi to each e lementary event {ai}, with Σί Ρί = ^-> a n d then to define

ψ(Α) = J2 Pi for a11 Açn.
i-.aiEA

Here the collection of events Ή can be taken to be equal to the collection of all
subsets of Ω. The triple (Ω, H, P) is called a discrete probabil ity space.

This idea is graphically represented in Figure A. l . Each element a;, represented
by a black dot, is assigned a probability weight pi, indicated by the size of the dot.
The probability of the event A is simply the sum of the weights of all the outcomes
in A.

Figure A. l A discrete sample space.

Remark A.1 .1 (Equilikely Principle) A special case of a discrete probability
space occurs when a random experiment has finitely many and equally likely out-
comes. In this case the probability measure is given by

ΠΑ) = !£} , (Α.2)

RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS 6 0 7

where \A\ denotes the number of outcomes in A and |Ω| the total number of out-
comes. Thus, the calculation of probabilities reduces to counting. This is called
the equilikely principle.

A.1.1 Properties of a Probability Measure

The following properties of a probability measure follow directly from the Kol-
mogorov axioms. Proofs can be found, for example, in [5, 25].

1. Complement: F(AC) = 1 - F(A).

2. Monotonicity: AÇB => F (A) ^ F(B).

3. Sum rule: {Ai} disjoint =*- F(U,Ai) = Σί^(Αί)·

4. Inclusion-exclusion:

r (UiAi) = Ç p{Ai) - Σ v(Ai n Aj) + Σ p(Ai n A, n Afc) - ■ ■ · .
i i<j i<j<k

In particular, F(A U B) = F (A) + F(B) - F(A Π B).

5. Continuity from below: Let Αχ,Α2,... be an increasing sequence of events,
that is, Ai Ç A2 Ç · · · C A, with A = υηΑη . Then, the sequence
P(^i),P(A2), ■ · · increases monotonely to F(A).

6. Continuity from above: Let Ai,A2,... be a decreasing sequence of events,
that is, A\ D A2 2 · · · 2 A, with A = Πητ4„. Then, the sequence
F(Ai),F(A2),... decreases monotonely to F (A).

7. Boole's inequality: F (UiAi) ^ ΣίΡ(Αί)-

8. Borel-Cantelli: Let Ai,Ä2,... be a sequence of events, and let lim sup An =
n m Un^m An denote the event that infinitely many An occur. Then,

^F(An)<oo => P(limsupAn) = 0 .
n

Under the additional assumption that the {A{\ are pairwise independent, "3" 616

Σ¥(Αη) = oo =Φ· P(limsupAn) = 1 .

A.2 RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

It is often convenient to describe a random experiment via random variables,
representing numerical measurements of the experiment. Random variables are
usually denoted by capital letters from the last part of the alphabet. A vector
X = (Xi, ■ ■ ■ ,Xn) of random variables is called a random vector. A collection
of random variables {Xt,t G &}, where & is any index set, is called a stochastic
process. The set of possible values for Xt (assuming this is independent of t)

6 0 8 PROBABILITY AND STOCHASTIC PROCESSES

is called the s tate space of the process. Stochastic processes are discussed in
" ^ 153 Sections A.9-A.13. Chapter 5 is devoted to random process generation.

From a mathematical point of view, a random variable X taking values in some
set E is a function X : Ω —> E such that

{X G B} d= {weft: Χ{ω) G B} G H for ail B G S ,

where £ is a σ-algebra on E. The pair (E, S) is called a measurable space. If
not otherwise specified we assume that X is a numerical random variable; that is,
E = R. It is sometimes useful to have E as the extended real line R = R U {±oo}.
In either case, £ is the corresponding Borel σ-algebra. The Borel er-algebra is the
smallest σ-algebra on R or R that contains all intervals (or, equivalently, all open
sets). Elements of this σ-algebra are called Borel sets — for example, a countable
union of intervals is a Borel set. The Lebesgue measure m is the unique measure
on the Borel σ-algebra such that m([a, b]) = b — a. Similar definitions hold for
n-dimensional Euclidean spaces, replacing intervals by rectangles, etc.

Define
Ρ χ (β) = Ρ (ΐ € 5) , Be€.

Then, Ρχ is a probability measure on (E,e). It is called the distribution of X.
The probability distribution Ρχ of a numerical random variable X is completely
determined by its cumulat ive distribution function (cdf), defined by

F(x) =Px([-oo,x}) =F(X s i x) , X G R .

The following properties of a cdf F are a direct consequence of the Kolmogorov
axioms. For proofs see, for example, [25].

1. Right-continuous: limjjj.o F(x + h) = F(x).

2. Increasing: x ΐξ y =>■ F (x) ΐξ F (y).

3. Bounded: 0 ^ F(x) s$ 1.

Conversely, to each function F satisfying the above properties corresponds exactly
one distribution Ρχ; see, for example, [5, Theorem 2.2.2]. Figure A.2 shows a
generic cdf.

F(x)
A

Figure A.2 A cumulative distribution function (cdf).

RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS 6 0 9

A cdf Fd is called discrete if there exist numbers Xi,X2,- ■ ■ and probabilities
0 < f(xi) ^ 1 summing up to 1, such that for all x

Fd{x) = Σ f ^ ■ (A · 3)
Xi^X

Such a cdf is piecewise constant and has jumps of sizes f(xi), fixv), · · · at points
χι,χ-2,..., respectively.

A cdf Fc is called absolutely continuous if there exists a positive function /
such that for all x

Fc(x) = Γ / («) du . (A.4)
J —oo

Note that such an Fc is differentiable (and hence continuous) with derivative / .
However, in general the derivative F'c of a continuous cdf Fc does not necessarily
satisfy (A.4). A typical example of a continuous cdf whose derivative is 0 almost
everywhere — and hence violates (A.4) — is the Cantor function, depicted in
Figure A.3. Such continuous cdfs are said to be singular. Most distributions used
in practice are either discrete or absolutely continuous, or a mixture thereof.

■ EXAMPLE A.2 (Cantor Function)

The Cantor function is constructed in the following way. Let F(l) = 1. Divide the
|) , [| , f) , and [§ , !) . Define F{x) = \ interval [0,1) into three equal parts: [0, h), [|, |) , and [|, 1). Define F(x) = | for

x G [§;f) · Next, divide [0, |) into three subintervals [0, |) , [g, §), and [|, |) and
divide [|, 1) into [|, |) , [|, |) , and [|, 1). Let F have the value \ on [|, |) and | on
[|, |) . Now divide each of the four remaining subintervals again into three parts.
Assign the values § , § , § , and | to the middle intervals, and continue this process
indefinitely. This cdf is continuous, but its derivative is 0 almost everywhere.

Figure A.3 The Cantor function is a continuous singular cdf.

It can be shown (see, for example, [5, Chapter 1]) that every cdf F can be
written as the unique convex combination, or mixture , of a discrete, an absolutely

6 1 0 PROBABILITY AND STOCHASTIC PROCESSES

continuous, and a continuous singular cdf:

F(x) = aiFd{x) + a2Fc(x) + a3Fs(x), where ot\ + a2 + a3 = 1,

and ak ^ 0 for fc = 1,2,3.

A.2.1 Probability Density

A probability distribution on some measurable space (E, £) is often of the form

PX{B)= [f(x)dm(x), Be£,
JB

where m is some measure on {E, £) . We say that Ρχ has a probabil ity densi ty
function (pdf), or simply density, / with respect to m.

■ EXAMPLE A.3 (Discrete Distr ibut ion)

Suppose a random variable X has a discrete cdf, as in (A.3). Thus, X takes values in
some finite or countable set of points E = {χχ, x2, ■ ■ ·}, with P(X = Xi) = f(xi) > 0,
i = l , 2 , Define f(x) = 0 for all x £ E. Let S denote the collection of all subsets
of E and let m be the count ing measure on (Ε,ε), that is, m(B) is the number
of points in E that lie in the set B. Then, we see that the distribution Ρχ of X
satisfies

PX(B) = ¥{X 6 B) = Σ f(Xi) = I f(x) dm(x) for all B Ç E . (A.5)

In other words, X has a density / with respect to the counting measure m. Such a
random variable is called discrete and Ρχ is called a discrete distribution. Such
a distribution is thus completely specified by its (discrete) pdf, and probabilities
can be evaluated via summation, as in (A.5). This is illustrated in Figure A.4.

" ^ 85 Many specific discrete distributions are given in Chapter 4.

Figure A.4 Discrete probability density function (pdf). The shaded area corresponds to
the probability Ψ{Χ e B).

RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS 6 1 1

■ EXAMPLE A.4 (Absolute ly Continuous Distr ibut ion)

Suppose a random variable X has an absolutely continuous cdf, as in (A.4). Then,
the distribution Ρχ of X satisfies

Px(B) = F(XeB) = [f{x)dx= [f(x)dm(i) (A.6)
J B JB

for all Borel sets B, where m is the Lebesgue measure. The distribution Ρχ is
said to be absolutely continuous with respect to the Lebesgue measure, and
/ is the corresponding pdf. As a consequence, such a distribution is completely
specified by its pdf, and probabilities can be evaluated via integration. This is
illustrated in Figure A.5. Many specific absolutely continuous distributions are
given in Chapter 4. "3° 85

Figure A.5 Absolutely continuous probability density function (pdf). The shaded area
corresponds to the probability Ψ(Χ 6 B).

We can view f(x) as the probability "density" at X = x, in the sense that , for
small h,

px+h
[X : ' ^X ^x + h)= / f(u)dutthf(x) .

J x

Remark A.2 .1 (Probabil i ty Dens i ty and Probabil i ty Mass) It is important
to note that we deliberately use the same name, "pdf", and symbol, / , in both
the discrete and the absolutely continuous case, rather than distinguish between a
probability mass function (pmf) and probability density function (pdf). The reason
is that from a measure-theoretic point of view the pdf plays exactly the same role
in the discrete and absolutely continuous cases. The only difference is the measure
m. We use the notation X ~ Dist, X ~ / , and X ~ F to indicate that X has
distribution Dist, pdf / , and cdf F.

A.2.2 Joint Distributions

Distributions for random vectors and stochastic processes can be specified in much
the same way as for random variables. In particular, the distribution of a random
vector X = (Χχ,..., Xn) is completely determined by specifying the joint cdf F,
defined by

F(xi,.. . , £ „) = P(Xi < xi,...,Xn ^ xn), Xi e K, i = 1,... ,n .

6 1 2 PROBABILITY AND STOCHASTIC PROCESSES

Similarly, the distribution of a stochastic process {Xt,t G &}, with ^ ç K,
is completely determined by its finite-dimensional distributions; that is, the
distributions of the random vectors (X t l , . . . , Xtn) for any choice of n and ti,...,tn.

By analogy to the one-dimensional random vector X taking values in W1

is said to have a pdf / with respect to some measure m, if

P (X e ß) = / / (x) d m (x) , (A.7)
JB

for all n-dimensional Borel sets B. The important cases are when m is either the
counting measure or the Lebesgue measure.

The marginal pdfs can be recovered from the joint pdf by "integrating out the
other variables". For example, for a random vector (X, Y) with pdf / with respect
to the Lebesgue measure on R2, the pdf fx of X is given by

xW = / f{x,y)dy f.

Remark A.2.2 (Multivariate Singular Distributions) Continuous singular
distributions are much more likely to be encountered in the multidimensional set-
ting. For example, if a numerical random vector takes values exclusively in a lower
dimensional subset, then the distribution has a derivative of 0 almost everywhere
with respect to the Lebesgue measure and so is singular.

A.3 EXPECTATION AND VARIANCE

It is often useful to consider various numerical characteristics of a random variable
or its distribution. For example, two such quantities are the expectation and vari-
ance. The first measures the mean value of the distribution; the second measures
the spread or dispersion of the distribution. The intuitive definition of the expecta-
tion of a discrete random variable X is that it is the average of the possible values
that X can take, weighted by the corresponding probabilities; that is,

EX = ΣχΡ(Χ = χ) ■

Similarly, for an absolutely continuous random variable X the expectation is given
by

EX = [x f(x) dx / * / (a

Both definitions are part of a more general framework, in which the expectation
of X is defined as the abstract integral

EX = ί XdP, (A.8)

which is defined in four steps (see, for example, [5, Chapter 3] and [12]):

EXPECTATION AND VARIANCE 6 1 3

1. If X is an indicator function of some event A, that is,

X = I A ^ l · { ί ω £ Α (Α.9)
10 otherwise ,

then
E X d= F(A) . (A.10)

2. If X is positive and s imple, tha t is, X = Σ™=1 <Xi IA* for some positive
(possibly infinite) numbers o i , . . . , an and events A\,..., An, then

Ε Χ ^ ^ Γ α , Ρ ^) , (A. l l) def

i= l

with oo x 0 and 0 x oo defined to be 0.

3. If X is a positive random variable, then

E X = f lim EXn , (A. 12)
n—»oo

where Xi,X2j. ■. is any sequence of simple random variables that increases
almost surely to X. We write ^ 623

a.s.
Xn / X.

It can be shown [12] that such a sequence exists, and that the limit in (A.12)
exists (possibly infinity) and does not depend on the increasing sequence of
simple random variables.

4. Finally, for a general (not necessarily positive) random variable X, write
X = X+ - X~, where X+ = max{J£,0} and X~ = m a x { - X , 0 } are the
positive and negative parts of X (note that both are ^ 0), and define

E X d= E X + - E X " ,

provided that at least one of the right-hand-side terms is finite (oo — oo is not
well-defined).

Random variables X for which E |X | < oo (and hence the expectation is finite)
are called integrable. It is not difficult to show [3, Page 216] that a random
variable X is integrable if and only if

l i m E | X | I { p f | > c } = 0 .

A random variable X is said to be square integrable if E X 2 < oo. A sequence
of random variables X\, Χ2,... is said to be integrable if

supE|X r a | < 00 .
n

A sequence of random variables X\, X2,... is said to be uniformly integrable, if

lim s u p E | X n | I { | X n | > c } = 0 .

6 1 4 PROBABILITY AND STOCHASTIC PROCESSES

In particular, X\, X2, ■ ■ ■ must be integrable. Moreover, if for some ε > 0

s u p E | X n | 1 + e < 00 ,
n

then the sequence X i , X 2 , . . . is uniformly integrable. Another sufficient condition
for uniform integrability [2, Page 32] is the existence of an integrable random vari-
able Y such that P (| X n | ^ x) ^ P(|Y| > x) for all x and n. For continuous-time
stochastic processes {Xt,t ^ 0}, integrability and uniform integrability are defined
in the same way, replacing the discrete n with a continuous t.

For the purpose of calculating expectations, the following theorem is indispens-
able.

Theorem A.3 .1 (Expected Value) Let X be a random variable with distribu-
tion Ρχ and cdf F, and let g be a numerical function, then (provided that the
integral exists)

E g(X)= fg{X)dP= f g(x)aPx(x)d^ Γ g(x)aF(x). (A.13)

The last integral in (A.13) is called a Lebesgue—Stieltjes integral. In most cases
of practical interest this integral can be determined via elementary summation or
Riemann integration, in which it can be viewed as a Riemann-Stieltjes integral [3,
Page 228]. In particular, when X is discrete with pdf / , (A.13) reduces to

Eg(X) = Yfg(x)f(x), (A.14)
X

and in the absolutely continuous case (A.13) becomes

/

oo

g(x)f(x)dx. (A.15)

Theorem A.3.1 can be readily generalized to random vectors. In particular, if
X = (Χχ,..., Xn) is a random vector with (n-dimensional) cdf F, and g a numerical
function on R™, then

E 5 (X) = / fl(x)dF(x). (A.16)

A.3.1 Properties of the Expectation

Below, X , Xi,X21 · · · j and Y are random variables, and X is a random vector. We
623 write ATn—4- X to indicate that the sequence X\, X2, ■ ■ ■ converges almost surely

to X. Note that Properties 1, 2, 4, and 7 below follow directly from the definition
of the expectation. Proofs of the other properties can be found, for example, in [3,
Chapter 3]. See also Section A.8.

1. Positivity: For positive random variables the expectation always exists (pos-
sibly +00).

2. Linearity: E(aX + bY) = αΈΧ + bEY for a,beR.

3. Monotonicity: lîX^Y, then E X ^ EY.

EXPECTATION AND VARIANCE 6 1 5

4. Indicator. If I A is the indicator of the event A, then E 1 ^

5. Jensen's inequality: Let 3C be a convex subset of M" and h : 3£ —> R be a "^" 679
convex measurable function. Let X be a random vector taking values in JT,
such that E X = (E X i , . . . , E X n) is finite. Then, E/i(X) exists and

Ε/ι(Χ) ^ ft(EX) .

6. Fatou's lemma: If X„ ^ 0, then

7. Monotone convergence theorem: Suppose E X n exists for some n, then

Xn /■' X => E X n / E X .

8. Dominated convergence theorem: Suppose \Xn\ ^ Y for all n, where ΈΥ <
oo. Then,

X n - ^ > X => E X „ ^ E X .

A. 3.2 Variance

The variance of a random variable X , denoted by Var(X) (or sometimes σ2) is
defined by

Var(X) = E(X - E X) 2 = E X 2 - (EX) 2 .

The square root of the variance is called the s tandard deviation.
In general, the mean and the variance do not give enough information to com-

pletely specify the distribution of a random variable. However, they may provide
useful bounds. We give three such bounds. A proof of Kolmogorov's inequality
may be found in [5, Page 116].

1. Markov's inequality: For any positive random variable X with expectation μ,

P (X > x) ^ - , x^O. (A.17)
x

2. Chebyshev's inequality: Let X be a random variable with finite expectation
and variance, μ and σ2 , respectively. Then,

2

Ρ (| Χ - μ | ^χ) sS %, x^O. (A.18)
x2

3. Kolmogorov's inequality: Let X i , X 2 , . . . be a sequence of independent ran-
dom variables. Let S\,S2,... be the sequence of partial sums, defined by
Sn = X\ + · ■ ■ + Xn and assumed to have finite expectations and variances,
{μη} and {σ 2 } , respectively. Then,

max. \Si - tn\ 2t x) < - | , x>0- (A.19)

6 1 6 PROBABILITY AND STOCHASTIC PROCESSES

A.4 CONDITIONING AND INDEPENDENCE

Conditional probabilities and conditional distributions are used to model additional
information on a random experiment. Independence is used to model lack of such
information.

A.4.1 Conditional Probability

Suppose some event B Ç Î Î occurs. Given this fact, event A will occur if and only
if A Π B occurs, and the relative chance of A occurring is therefore F(A (Ί B)/F(B),
provided F(B) > 0. This leads to the definition of the condit ional probability
of A given B:

V(A | B) = n£™] , if TO > 0 . (A.20)

The above definition breaks down if F(B) = 0. Such conditional probabilities must
be treated with more care [3].

Three important consequences of the definition of conditional probability are:

1. Product rule: For any sequence of events Ai,A2,...,An,

F(A, ■■■An) = Ρ(Λι) Ρ(Λ2 IA1) F(A3 \ ΑλΑ2) ■ ■ ■ F(An \ Ax ■ ■ ■ Λ , - ι) ,
(A.21)

using the abbreviation A1A2 ■ · ■ Ak — Αι Π Α2 Π · · · Π Ak-

2. Law of total probability: If {B{\ forms a partit ion of Ω (that is, Bi Π Bj =
0, i φ j and Ui-Bj = Ω), then for any event A

F(A) = Σ F(A j Bi) F(Bi) . (A.22)

3. Bayes' rule: Let {Bi} form a partition of Ω. Then, for any event A with
F{A) > 0,

FIB \Λ) ■ p (^ l ^) p (g i) (A 23)
nB3\A)-^nMBi)nBi). (A.23)

A.4.2 Independence

Two events A and B are said to be independent if the knowledge that B has
occurred does not change the probability that A occurs. That is, A, B independent
Φ> F(A I B) = P(A). Since F{A | B) F(B) = Ψ(Α Γ)Β), an alternative definition of
independence is

A, B independent <S> F(A Π B) = F(A) F(B) .

This definition covers the case where F(B) = 0 and can be extended to arbitrarily
many events: events A\,Ä2,... are said to be independent if for any k and any
choice of distinct indices ίχ,... ,ik,

F(Ah Π Ai2 ΓΊ · · · Π Ai J = F(Ah) F(Ai2)■■■ F(Aik) .

CONDITIONING AND INDEPENDENCE 6 1 7

The {Ai} are said to be pairwise independent if every two events are indepen-
dent.

The concept of independence can also be formulated for random variables.
Random variables Xi,X2,.-. are said to be independent if the events {Xix G
Βι},..., {Xin G Bn} are independent for all finite choices of n, distinct indices
ii,... ,in, and Borel sets £?i,... ,Bn.

An important characterization of independent random variables is the following
(for a proof, see [25], for example).

Theorem A.4.1 (Product of Marginal Pdfs) Random variables X\,... ,Xn

with marginal pdfs fx1,..., fxn and joint pdf f are independent if and only if

f(xi,...,xn) = fx,(xi) ■ ■ ■ fxn{xn) for allxi,...,xn . (A.24)

Many probabilistic models involve random variables X\, Xi,... that are indepen-
dent and identically distributed, abbreviated as iid. We will use this abbrevi-
ation throughout this book.

A.4.3 Covariance

The covariance of two random variables X and Y with expectations μχ and μγ,
respectively, is defined as

Cov(X, Y) = E[(X - μχ){Υ - μγ)} .

This is a measure for the amount of linear dependency between the variables. Let
σχ = Var(X) and σ\ = Var(y). A scaled version of the covariance is given by the
correlation coefficient,

σχσγ

Below we use the notation μχ = EX and σχ = Var(X). The following properties
follow directly from the definitions of variance and covariance.

1. Var(X) =EX2 - μ2
χ.

2. Var(aX + b) = a2a2
x.

3. Cov(X,Y) = E[XY) - μχ μγ.

4. Cov(x,y) = Cov(y,x).

5. — σχσγ ^ Cov(X,Y) ^ σχσγ.

6. Cov(aX + bY, Z) = a Cov(X, Z) + b Cov(Y, Z).

7. Cov{X,X)=ax.

8. Var(X + Y) = σ2
χ + σγ + 2Cov(X,Y).

9. If X and Y are independent, then Cov(X, Y) = 0.

6 1 8 PROBABILITY AND STOCHASTIC PROCESSES

As a consequence of Properties 2 and 8 we have that for any sequence of inde-
pendent random variables X\, . . . , Xn with variances σ\,..., σ^,

\Άχ{αγΧχ + a2X2 H h anXn) =α{σ\ + α\σ\Λ h a?n σ^ , (A.25)

for any choice of constants α,ι,... ,an.
For random vectors, such as X = (Xi,...,Xn), it is convenient to write the

expectations and covariances in vector notation. It will usually be clear from the
context whether we interpret X as a row or a column vector. In some cases, for
example, with matrix multiplication, we make the distinction explicit. For a random
(column) vector X we define its expecta t ion vector as the vector of expectations

μ = (μ ι , . . . ,μη)
Ύ = (EXU ... ,EXn)

T .

The covariance matr ix Σ is defined as the matrix whose (i,j)-ih element is

Cov(X,, X0) = E[(Xt - μί)(Χ3 - μ3)} .

If we define the expectation of a vector (matrix) to be the vector (matrix) of
expectations, then we can compactly write

μ = Ε Χ

and
Σ = Ε [(Χ - μ) (Χ - μ) τ] .

A.4.4 Conditional Density and Expectation

Suppose X and Y are both discrete or both absolutely continuous, with joint pdf
/ , and suppose fx(x) > 0. Then, the conditional pdf of Y given X = x is given
by

f(x,y)

In the discrete case the formula is a direct translation of (A.20), with fy\x{y \ x) =
P(V = y\X = x). In the absolutely continuous case a similar interpretation, in
terms of densities, can be used (see, for example, [25, Page 221]). The corresponding
distribution is called the condit ional distribution of Y given X = x, and the
corresponding condit ional expectat ion is

I 5"!. V fvi x (v I x) discrete case,
E[Y\X = x] =)^yyjY|xyyl ' (A.27)

[/ V ÎY\X (y I x) dy absolutely continuous case.

Note that E[Y \ X = x] is a function of x. The corresponding random variable
is written as E[Y \X]. A similar formalism can be used when conditioning on a
sequence of random variables X±,... ,Xn or on a σ-algebra; see, for example, [5,
Chapter 9]. The conditional expectation has similar properties to the ordinary
expectation in Section A.3.1. Other useful properties (see, for example, [28]) are:

1. Tower property: If EY exists, then

E E[Y | X] = EY . (A.28)

fY\x(y\x) =-ΤΊΖΪ for a l l y . (A.26)

LP SPACE 619

2. Taking out what is known: If EV exists, then

E [XY | X] = XEY .

3. Orthogonal projection: If Y is square integrable, then E[Y|X] is the function
h(X) that minimizes E(Y - h{X))2.

A.5 Lp SPACE

Let (Ω, Τί, P) be a probability space and X a numerical random variable. For
p G [Ι,οο) define

\\χ\\ρ = {Ε\χ\ηλ>

and let
| |X| |0 0 = in f{a : :P (|A- |<x) = l } .

For each p € [1, oo] we denote by L p the collection of all numerical random variables
X for which | |X| |P < oo. In particular L 1 is comprised of all integrable random
variables and L2 is comprised of all square integrable random variables.

The following properties of IP spaces can be found, for example, in [26, Chapter
3].

1. Positivity: \\X\\P ̂ 0, and | |X| |P = 0 O X = 0 (a.s.)·

2. Multiplication with a constant: | | cX| | p = \c\ \\X\\P-

3. Minkowski's (triangle) inequality: \\X + Y\\P ^ | | X | | P + | |^ | |Ρ ·

4. Holder's inequality: For p,q,r G [Ι,οο] with - + - = \,

\\XY\\r ^ \\X\\P \\Y\\q . (A.29)

The particular case with p = q = 2 and r = 1 is called Schwarz's inequality.

5. Monotonicity: If 1 ^ p < q < oo, then | |X| |P ^ | |^ | |g·

The space Lp is a linear space. The first three properties above identify || ■ ||p as
a norm on this space, provided that random variables that are almost surely equal
are identified as one and the same. Of particular importance is L2, which is in fact
a Hubert space, with inner product

{X, Y)=E [XY] .

We denote the L2 norm simply by || · ||, suppressing the subscript.
For random variables in L2 the concepts of variance and covariance have a geo-

metric interpretation. Namely, if X and Y are zero-mean random variables (their
expectation is 0), then

Varpf) = | |X| |2 and Cov(X, Y) = (X,Y) .

Another important use of L2 spaces is in conditioning. Let X and Y be random
variables. Define K, to be the space of functions of X that are square integrable.

6 2 0 PROBABILITY AND STOCHASTIC PROCESSES

There exists a unique (up to equivalence) element in K, that solves the minimization
program

min | |y - ATII .
Ketc

This is the orthogonal project ion of Y onto AC, and it coincides (up to equiva-
lence) with the conditional expectation E[Y | X}; see, for example, [28, Chapter 9].

A.6 FUNCTIONS OF RANDOM VARIABLES

A.6.1 Linear Transformations

Let x = (x i , . . . ,xn)
T be a column vector in Kra and A an m x n matrix. The

mapping x i—► z, with z = Ax, is called a linear transformation. Now consider a
random vector X = (X\,..., Χη)

Ύ, and let

Z = AX.

Then Z is a random vector in Km . If X has an expectation vector μ χ and covariance
matrix Σ χ , then the expectation vector of Z is

μζ = Αμχ

and the covariance matrix of Z is

Σζ=ΑΣχΑι .

(A.30)

(A.31)

If, moreover, A is an invertible n x n matrix and X has a pdf / χ , then the pdf
of Z is given by

/ z (z) = { * (f ' Z) , z £ M " , (A.32)
\det(A)\ '

where | det(^4)| denotes the absolute value of the determinant of A.

710

A.6.2 General Transformations

For a generalization of the linear transformation rule (A.32), consider an arbitrary
mapping X H J (X) , written out:

fxi\ (gi(x)\

i — »

\xn) \9n{-x))

For a fixed x, let z = g(x). Suppose that the inverse mapping g _ 1 of g exists;
hence, x = g~1(z). Let X be a random vector with pdf / χ , and let Z = g(X).
Then, Z has pdf

/ z (z) = f^(x) z £ R " , (A.33)
|det (Jg(x)) |

where J g (x) is the Jacobi matrix at x of the transformation g.

GENERATING FUNCTION AND INTEGRAL TRANSFORMS 6 2 1

Remark A.6 .1 (Coordinate Transformation) Typically, in coordinate trans-
formations it is g~x that is given — that is, an expression for x as a function of z,
rather than g. Note that | d e t (J g - i (z)) | = 1/ | de t (J g (x)) | .

A.7 GENERATING FUNCTION AND INTEGRAL TRANSFORMS

Many calculations and manipulations involving probability distributions are facili-
tated by the use of transform techniques. All such transforms share two important
properties:

1. Uniqueness: Two distributions are the same if and only if their respective
transforms are the same.

2. Independence: If X and Y are independent with transform Τχ and Τγ, re-
spectively, then the transform Τχ+γ of X + Y is given by the product

Tx+Y(t)=Tx(t)TY(t).

In this section the fc-th derivative of a function g is denoted by gW.

A.7.1 Probability Generating Function

Let X be a random variable taking values in some subset of the positive integers,
N = { 0 , 1 , 2 , . . . }, with discrete pdf / . The probabil ity generat ing function of
X is the function G defined by

oo

G(z)=Ezx = Y^zx f(x).
x=0

The power series that defines G converges for all \z\ ^ r, for some r ^ 1. Two
useful properties are (see, for example, [9, Chapter XI]):

G(X)(O)
1. Inversion: f(x) = ; — , x eN.

2. Moment property: E[X(X - 1) · · · (X - k + 1)] = l im2 Î 1 G^k\z), A; = 1,2,

A.7.2 Moment Generating Function and Laplace Transform

The moment generating function of a random variable X with cdf F is the
function M : M ^ [0 , o o] , given by

/

oo
etx dF(x) .

-oo

Note that the expectation always exists, but can be +oo. For a positive random
variable X its Laplace transform is the function L : R + —> M+ , defined by
L(t) = M(—t), t ^ 0. When X has an absolutely continuous distribution with
pdf / , the Laplace transform coincides with the classical Laplace transform of the
function / .

6 2 2 PROBABILITY AND STOCHASTIC PROCESSES

If the moment generating function is finite in an open interval containing 0,
then the integer moments {EJi fc} exist, are finite, and uniquely determine the
distribution of X. Moreover, in that case the following properties hold (see, for
example, [5]):

1. Moment ■property: EXk = M W (0) , k ^ 1.

2. Taylor's theorem:

k=0

Remark A.7 .1 (Infinite M o m e n t Generat ing Function) If the moment gen-
erating function is not finite in any open interval containing 0, then the sequence of
integer moments, even if they are all finite, is not sufficient to uniquely characterize
the distribution of a random variable; see, for example, [13].

A.7.3 Characteristic Function

The most general transform concept is tha t of the characteristic function. Every
random variable has a characteristic function. It is closely related to the classical
Fourier transform of a function and has superior analytical properties to the moment
generating function.

The characteristic function of a random variable X with cdf F, is the function
φ : R -> C, defined by

/

OO

eitxdF{x), i e R ,
-OO

or, equivalently,

φ{ί) = Ecos(iX) + iEs in (iX) , i e R .

Note that 0(0) = 1 and \4>(t)\ ^ 1. Some other properties are (for proofs see [5],
for example):

1. Moment property: If E | X | n < oo, then, for k = 1, 2 , . . . , η, φ^ is finite and
continuous on R, with

0(f c) (i)= i f c E[X f c e i t ; s :] , i G R ,

and so, in particular, EXk = (-i)fe0(fc)(O)·

2. Taylor's theorem: If E|X|™ < oo, then, in a neighborhood of 0,

n F Xk

^) = E-fcT (i i) / c+o(in) ·
fc=0

3. Continuity: Let F i , F2,... be a sequence of cdfs, with characteristic functions
φι, 02; · · · · If 0n(i) ~* 0(*)> pointwise, and 0(t) is continuous at i = 0, then
there exists a cdf F such that Fn converges weakly (see Page 623) to F, and
φ is its characteristic function.

LIMIT THEOREMS 623

4. 0(ί) is uniformly continuous on R.

5. 0(_x)(i) = 4>x(t), t e l , from which it follows that a random variable is
symmetric around 0 (that is, X and —X are identically distributed) if and
only if its characteristic function is real-valued.

A.8 LIMIT THEOREMS

Let (Ω,Ή,Ρ) be a probability space, and let X\,X2,...,X be random variables
taking values in a metric space E with distance ρ and equipped with a σ-algebra £.
A typical example is E = R n with ρ the Euclidean distance ρ(χ ,y) = ||x — y||; see
also [2]. Recall that for numerical random variables E = M. and ρ(χ, y) = \x — y\.

A.8.1 Modes of Convergence

We have the following definitions of the different modes of convergence of random
variables.

1. Almost sure convergence: The sequence of numerical random variables
ΧΙ,ΧΪ,... is said to converge a lmost surely to a numerical random variable
X, denoted Χη—^> X, if

P f lim Xn = x) =1 .
\n—>oc /

2. Convergence in Lp-norm: The sequence of numerical random variables

Χι,Χζ,... is said to converge in £ p - n o r m to a numerical random variable

X, denoted Xn —> X, if

lim E\Xn - X\p = 0 ,
n—>oo

or, equivalently, if linin^oo \\Xn — X\\p = 0, where || ■ ||p denotes the Lp norm.
Convergence in L2-norm is often called mean square convergence. "S" 619

3. Convergence in probability: The sequence X1,X2,.-- is said to converge in

probability to X, denoted Xn —> X, if

lim Ρ(ρ{Χη, X) < ε) = 1 for all ε > 0 .
n—>oo

4. Convergence in distribution: Let Ρχη be the distribution of Xn and Ρχ the
distribution of X. The sequence Χι, Χ2, ■ ■ ■ is said to converge in distribu-
t ion to X, denoted Xn —► X, if the distribution Ρχη converges weakly
to Ρχ, that is,

lim PXn(A) = Ρχ(Α)
n—»00

for all sets A G S such that Ρχ{8Α) = 0, where dA G £ is the boundary of
A. An equivalent definition is that

lim Eh(Xn) = Eh(X)

6 2 4 PROBABILITY AND STOCHASTIC PROCESSES

for all bounded continuous functions h : E ■

5. Complete convergence: A sequence of random variables Χχ,Χ^,... is said to
cpl. converge complete ly to X, denoted Xn —* X, if

ΣΡ{ρ(Χη,Χ) > ε) < oo for all ε > 0 .

The most general relationships among the various modes of convergence for nu-
merical random variables are shown on the following diagram. Proofs can be found
in [2] and [3]. See also [14].

Xn
cpl.

X

Xn
L"

X V>S

Xn
a.s.

X

ψ
Xn

r
X

f

Xn
L"

X

Xn X

A.8.2 Converse Results on Modes of Convergence

1. Convergence in distribution to a constant [2, Page 24]: Let c be a constant
element of E. Then,

X-n Xn

2. Convergence in probability combined with uniform integrability [28, Page 131]:
613 Suppose the numerical random variables {Xn} are uniformly integrable.

Then, f o r p ^ 1,

Xn ► X
Lp

Xn > X

This includes the case where \Xn\ ^ Y for all n with ΈΥ < oo (dominated
convergence).

3. Continuity theorem, [2, Page 30]: Let h : E —» E' be a measurable function,
with (£", E') a measurable space and E' equipped with metric ρ'. Let D^ G S
be the set of discontinuities of h. If ¥(X € Dh) = 0 (in particular, when h is
continuous), then

Xn - % X => h{Xn) - ^ h{X) .

A special case is Slutsky's theorem: if E = R2 and E' = R,

(Xn,Yn) —> (X, c), where c G K is a constant, implies h(Xn,Yr

for all continuous functions h : K2 —> R..

then we have

4. Finite expectation of infinite series: Let Xn ^ 0. If the infinite series Ση -^«

has finite expectation, then Xn 0.

5. Skorohod representation [11, Page 271]: If Xn —> X with corresponding

distributions Ρχ and Ρχ, then there exist random variables X\, Xi,..., X

LIMIT THEOREMS 625

in {Ε,ε) with distributions Ρχη for each n and Ρχ, respectively, such that

X n ^ > X.

6. Monotone convergence: Suppose E X n exists for some n. Then, for any p ^ 1,

a.s. Lp

Xn / X => Xn/X.

A.8.3 Law of Large Numbers and Central Limit Theorem

We briefly discuss two of the main results in probability: the law of large num-
bers and the central limit theorem. Both are associated with sums of independent
random variables. For details, see, for example, [3, Pages 85, 357, and 385].

Let X\,Xi,... be iid random variables with expectation μ. The law of large
numbers states that the sample average (Χχ H l· Xn)/n is close to μ for large n.

Theorem A.8 .1 (Strong Law of Large Numbers) Let Xi,... ,X„ be iid with
expectation μ. Then,

X\ + · · ■ + Xn a.s.
> μ as n —> co .

n

The central limit theorem describes the limiting distribution of the sum on —
X\ + ■ ■ ■ + Xn. Loosely, it states that the random sum Sn has a distribution that
is approximately normal (Gaussian) when n is large. The more precise statement
is given next.

Theorem A.8 .2 (Central Limit Theorem) Let X\,... ,X„ be iid with expec-
tation μ and variance σ2 < oo. Then,

7= > Y ~ N(0,1) os n —> oo .
σ^/η

In other words, for large n the random sum Sn has a distribution that is approxi-
mately normal with expectation ημ and variance no2. Under the extra condition
that E |X — μ\3 < oo, precise error bounds can be found on the standardized cdf of
Sn. Below, Φ is the cdf of Y ~ N(0,1).

Theorem A.8 .3 (Berry—Esséen) Let X±,... ,Xn be iid with expectation μ and
variance σ2 < oo. Then, for all n,

sup σφι
^ x 1 - Φ(χ) ^Κ

Ε\Χλ - μ

y/ϊϊσ3

3

for some constant K > 0 that does not depend on n or the distribution of X\.

For a proof, see, for example, [5, Page 224]. The smallest constant K found to date
is K = 0.7056, see [27].

Theorem A.8 .4 (Multivariate Central Limit Theorem) Let X i , . . . , X r a be
iid random vectors with expectation vector μ and finite covariance matrix Σ . Define
S„ = Χ ι + · · · + Χ „ . Then,

S " ~ n M -U Y ~ N(0, Σ) as n-^oo.

6 2 6 PROBABILITY AND STOCHASTIC PROCESSES

A.9 STOCHASTIC PROCESSES

A s tochast ic process or random process is a collection of random variables
{Xt,t € ^} on a probability space (Ω,7ί,Ρ), where Sf is any index set. The
set E of possible values for Xt (assuming this is independent of i) is called the
s tate space of the process. The index set £? is often taken to be a countable or
continuous subset of M, and so a stochastic process is often thought of as a random
variable evolving through time, with Xt representing the state of the process at
time t.

The distribution of a stochastic process X = {Xt,t € <i^}, with & C M, is com-
pletely determined by its finite-dimensional distributions; that is, the distributions
of the random vectors (Xtl,... ,Xtn) for any choice of n and t\,...,tn. How-
ever, the finite-dimensional distributions do not completely determine the sample
path behavior of a stochastic process; see, for example, [3, Page 308]. Hence, ques-
tions of continuity and differentiability cannot be answered by examining the finite-
dimensional distributions alone. Processes that share the same finite-dimensional
distributions are called versions of each other. If, in addition, the processes share
the same probability space, then they are called modifications of each other.
For a consistent system of finite-dimensional distributions it is always possible to
choose a version of the stochastic process that (almost surely) has separable paths
[3, Pages 526-527]. A path {xt,t G 3?} is said to be separable if there exists a
countable dense subset S1 of £?, such that for each t € 3F there exists a sequence
ί ι , Ϊ2, · ■ · £ ® with tn —> t and xtn —> xt. The sample path behavior of a separa-
ble process is determined by its finite-dimensional distributions. We will assume
henceforth that we are dealing with the separable versions of stochastic processes.

■ EXAMPLE A.5 (Bernoull i Process)

A basic example of a stochastic process is any collection {X\, Χ2,...} of iid random
variables. When Xt ~;;d Ber(p) for t = 1 ,2, . . . the process is called a Bernoull i
process. Here the state space is E = {0.1} and the index set is & = {1, 2 , . . . }.
The process models the random experiment where a biased coin is tossed indefi-
nitely. The beginning of a typical sample path of the process for p = 0.5 is given
in Figure A.6.

1 · · · · · · · · · · · · · · ·

5 10 15 20 25 30
t

Figure A.6 A typical sample path for a Bernoulli process with p = 0.5.

The description and study of real-valued stochastic processes that evolve over
time are facilitated by the following notions. In all cases & is assumed to be one
of N , Z , K + , or R.

A collection {Tit} = {Tit, t € £?} of σ-algebras of events, with the property that
Tit Q Tit+S for any s ^ 0 and t E 3~, is called a filtration or history. A filtration

def
is called r ight-continuous if Tit = Tit+ = C\s>tTis for all t. A filtration can be

STOCHASTIC PROCESSES 627

thought of as an increasing flow of information about some random phenomenon.
A stochastic process {Xt,t G &} is called adapted to a filtration {Tit} if Xt is
{?i t}-measurable, for every t G &; that is, Xt € Ht for all t. Intuitively, Tis,s ^ t
contains the complete history of the process up to time t. A random variable r e J
is said to be a s topping t ime with respect to {Tit} if for each t G & the event
{r ^ t} lies in Tit- Intuitively, τ is a stopping time if one can decide if it has
occurred by time t on the basis of the information (contained in Tit) up until time
t.

■ EXAMPLE A.6 (Bernoull i Process Continued)

A rich variety of stochastic processes can be derived from a Bernoulli process
{Xt,t = 1 ,2 , . . . } . For example, define SQ = 0 and St = S t - i + Xt, t = 1,2, —
Process {St} is an example of a random walk process. Let Tit be the history
of the Bernoulli process up until time t. Note that {St} is adapted to the fil-
tration {Tit}, because all information regarding Si,..., St can be obtained from
Xi,..., Xt and vice versa. Let r n be the first time that {St} crosses level n, that is,
τη = inf{i : St ^ n}. Then, r n is a stopping time with respect to {Tit}, because the
occurrence of {rn ^ t} can be decided upon using information about Χι,... ,Xt

only.

A.9.1 Gaussian Property

A real-valued stochastic process {Xt,t G <*?} is said to be Gauss ian if all
its finite-dimensional distributions are Gaussian (normal); that is, if the vector
(Xt1, ■ ■., Xtn) is multidimensional Gaussian for any choice of n and ti,... ,tn G &,
or equivalently, if any linear combination 5Z™=1 hXu has a Gaussian distribution.
Gaussian processes can thus be thought of as generalizations of Gaussian random " ^ 143
vectors.

The probability distribution of a Gaussian process is determined completely by
its expectat ion function

ßt = Ext, t G sr

and covariance function

aS!t = Cov{Xs,Xt), s , t e ^ .

A zero-mean Gaussian process is one for which /xt = 0 for all t. The generation of
Gaussian processes is discussed in Section 5.1. " ^ 154

■ EXAMPLE A.7 (Wiener Process)

The Wiener process {Wt,t ^ 0} can be defined as a zero-mean Gaussian process
with covariance function

as,t = min{s,£} , s,t > 0 .

It forms the basis of a great variety of other stochastic processes; see Chapter 5
and Sections A.12-A.13. The Wiener process has many interesting properties and
characterizations, which are further discussed in Section 5.5. ^ 177

6 2 8 PROBABILITY AND STOCHASTIC PROCESSES

A.9.2 Markov Property

A stochastic process {Xt,t € ^ } on (Ω,Ή,Ρ), with index set & ç R and state
space E (equipped with a σ-algebra €), is said to be a Markov process if for
every s ^ 0, t G J , and A G S it satisfies the Markov property:

P (X t + s eA\Ht)= P (X t + s e A| Xt), (Α.34)

where 7it is the history of the process up until time t. The Markov process is
said to be t ime-homogeneous if the conditional probability Ps(x,A) = P (X t + s G
A | Xt = x) does not depend on t for any fixed s. The function Ps is called the
(s-step) transit ion kernel of the Markov process. When (A.34) holds for any
stopping time τ instead of a fixed t, then {Xt} is said to have the s trong Markov
property.

The Markov property can be expressed as

(Xt+s\Xu,u^t) ~ (Xt+s\Xt), (A.35)

which emphasizes that the conditional future distributions of the sample path given
the entire sample path history are the same as those given only the present state.
In other words, for a Markov process the conditional distribution of the "future"
variable Xt+S given the entire past of the process {Xu,u ^ t} is the same as the
conditional distribution of Xt+a given only the "present" Xt-

We assume from now on that the Markov process is time-homogeneous, unless
otherwise specified. Markov processes come in many different varieties, depending
on the choice of index set ^ and state space E. In most cases of practical interest
5" = N o r R+ and ECU71. In addition, in many cases Pt is of the form

Pt{x,A)= pt(x,y)ay or Pt(x, A) = Y^pt(x,y) , (Α.36)
Jy£A yeA

in the continuous and discrete case, respectively. Here, pt(x,y) is the transit ion
kernel density. In this case the finite-dimensional distributions of the Markov pro-
cess (and hence the distribution of the entire process) are determined by the family
of transition kernels {Pt, t ^ 0} and the distribution of XQ — the initial distribu-
t ion of the Markov process. Namely, by the product rule (A.21) and the Markov
property the joint probability density / of any random vector (Xo,Xtl,... ,Xtn)
satisfies

/{χο,χι,- ..,x„) = fXo (x0) ptl (XQ, X\) Pti-ti (xi, xi) ■ ■ ·Ρ*„-ί„-ι (x„-i,xn) ,

where fx0 is the density of XQ. The kernel Pt can be viewed as a linear operator
/ i—> Ptf acting on suitable functions / , such that

PJ(x) d^ E*f(Xt) = JPt(x,dy)f(y) .

Here E x denotes the expectation operator under which the process starts in x at
time 0. An important property of {Pt,t ^ 0} is the semigroup property:

Ps+t = Pa Pt for all s, t > 0 . (A.37)

These are the Chapman—Kolmogorov equations.
Sections A. 10 and A. 11 discuss discrete-time Markov processes, often called

Markov chains, and continuous-time Markov processes in greater detail.

STOCHASTIC PROCESSES 629

A.9.3 Martingale Property

A martingale is a real-valued stochastic process X = {Xt,t € &}, with J ç i ,
such that:

1. X is adapted to a filtration {Ht}-

2. E\Xt\ < oofor a l i i € &.

3. For any s ^ t € <?",
E [X i i 7 i s] = X s , a.s. (A.38)

The state Xt of the process can be interpreted as the fortune at time t of a gambler
playing a game. In this context a martingale can be thought of as a "fair game", in
the sense that the gambler's fortune in the future is expected to be the same as the
gambler's current fortune, given all the past and present information on the game.
In some cases it is important to stress the filtration {Ht} and probability measure
P under which the above martingale conditions hold.

A process X is called a submartingale if (A.38) holds with "=" replaced by
"^" . An .Lp-(sub)martingale is a (sub)martingale for which E | ^ t | p < oo for all t.
One usually distinguishes between d iscrete- t ime (J ' = N or Z) and continuous-
t ime (& = R + or R) martingales. The properties of continuous-time martingales
are similar to those of the discrete-time equivalents, but often additional regularity
conditions are required. We list a number of properties of martingales. For proofs,
see [7].

1. Sample path regularity: Let X = {Xt,t ^ 0} be a submartingale such that
11—> ~EXt is continuous. Then, X has a modification that has right-continuous
and left-limited paths (this is automatically so if X is a martingale).

2. Maximum bound: Let {Xt> t — 0 ,1 ,2 , . . . } be an Lp-martingale for some p > 1.
Then,

p f max \Xt\>x) ^ E^Xn^, x ^ 0 .
VO^t^n / χΡ

3. Convergence: Let the process X = {Xt, t = 0 ,1 , 2 , . . . } be a (sub)martingale.
If s u p n E X + < oo, where x+ = max{£,0}, then X converges almost surely
to an integrable random variable X^,.

4. Optional sampling: Let X = {Xt,t ^ 0} be a (sub)martingale and τ\,Τ2,...
be a sequence of stopping times such that r» ^ Ki for some deterministic
sequence K\,K<i,... < oo. Then, {XTi,i = 1,2, . . .} is a (sub)martingale
with respect to filtration {ΉΤί}·

5. Optional stopping: Let the process X = {Xt, t ^ 0} be a martingale and r a
finite stopping time. If X is uniformly integrable, then XT = Ε[.ΧΌο | Τίτ] and
EXT = EX0.

6. Criterion for martingale: Let {Xt,t ^ 0} be a process such that E | X r | < oo
and EXT = Έ,Χο for every bounded stopping time r ^ K < oo. Then, X is a
martingale.

7. Submartingale implying martingale: Let X = {Xt,t ^ 0} be a submartingale
on t e [0, T\. If EXT = EX0, then X is a martingale on t 6 [0, T].

6 3 0 PROBABILITY AND STOCHASTIC PROCESSES

8. Martingale representation: Let {Xt-ß < ί ^ T} be a square-integrable mar-
tingale. Then there exists a unique process {</>*} adapted to {fit} such that:

(a) E / 0
T ^ d i < o o ;

(b) Xt = X0 + J* φ8 dWs, t £ [0,T], where {Wt,t > 0} is a Wiener process
adapted to {Ht}-

A.9.4 Regenerative Property

A real-valued stochastic process X = {Xt,t ^ 0} is said to be regenerative if
there exist times T0 < 7\ < T2 < T3 < . . . of the form Tn = Αχ + ■ ■ ■ + An,
n = 1,2,. . . , where the {Ai} are iid, such that conditional on Xs,s ^ Tn the
process {Xy n + t , t ^ 0} has the same distribution as {Xxa+t, t ^ 0}. In other words,
a regenerative process "regenerates" itself at times Το,ΧΊ, That is, given the
history of the process up to time T n , the process after Tn behaves probabilistically
as if it has started afresh. The {Tn} are called regeneration t imes . When To = 0,
the process is called pure; otherwise, it is called delayed.

■ EXAMPLE A.8 (M / M / l Queue)

The M/M/l queueing sys t em describes a service facility where customers arrive
at certain random times and are served by a single server. Arriving customers who
find the server busy wait in the queue. Customers are served in the order in which
they arrive. The interarrivai times are iid exponential random variables with rates
λ, and the service times of customers are iid exponential random variables with rates
μ. Finally, the service times are independent of the interarrivai times. Assume that
at To = 0 the system is empty and that mean service time is smaller than the
mean interarrivai time. Let Xt be the number of customers in the system at time
t. Then {Xt,t ^ 0} is a regenerative process. Namely, let T\ be the first time the
system becomes empty again after a service completion. The probabilistic behavior
of the process {Xt} from T\ onwards is exactly the same as from t = 0 onwards,
even if we knew the complete history up to time T\. Let T2 be the next time the
system becomes empty after a service completion, and so on. Figure A.7 shows a
realization of this process.

Xt "

1 - . . - . — -

To = 0 Ti T2 t

Figure A . 7 The number of customers in an M/M/l queue as a function of time.

STOCHASTIC PROCESSES 631

The process {Tn} of renewal times forms a so-called renewal process; the
corresponding {An} are called cycle lengths. The following main property of
regenerative processes is derived from the properties of renewal processes; see, for
example, [4, Chapter 9]. A random variable A is said to have a latt ice distribution
if A takes values in the lattice {a + bn, n € Z} for some values of a and b (6 / 0) ;
b is called the period.

Theorem A.9 .1 (Regenerat ion Theorem) Let {Xt} be a continuous-time re-
generative process with right-continuous paths and nonlattice distribution of the
cycle length with expectation μ = Έ,Α\ < oo. Then, Xt converges in distribution to
a random variable X, such that for all f

E / (X) = - E / lf(Xs)às, (A.39)
M JTO

provided that the expectation exists.
Let {Xt} be a discrete-time regenerative process with cycle length distribution of

period 6 = 1 and expectation μ = ΈΑχ < oo. Then, Xn converges in distribution to
a random variable X, such that for all f

E / (X) = -E £ f(Xk) , (Α.40)
μ k=T0

provided that the expectation exists.

In other words, if Gt denotes the cdf of Xt (Gt(x) = P(Xt ^ %)), then under the mild
conditions above, there exists a continuous cdf G such that limt-«» Gt(x) = G(x)
for all x.

Often Gt is difficult to calculate, but G is usually much easier to find, via equa-
tion (A.39) or (A.40). Moreover, with the existence of G guaranteed, we can now
give a precise meaning to the behavior of the stochastic process "in the stationary
situation" or "in equilibrium".

■ EXAMPLE A.9 (M / M / l Queue Continued)

As in Example A.8, let Xt denote the number of customers in an M/M/l queueing
system at time t. When the arrival rate is smaller than the service rate, {Xt} is a
regenerative process, and hence Xt converges in distribution to a random variable X
that can be interpreted as the number of customers in the system "in equilibrium"
or far into the future. Similarly, the expected steady-state number of customers in
the stationary situation simply refers to the expectation of X.

A.9.5 Stationarity and Reversibility

A stochastic process {Xt,t G £7} is said to be s trongly stat ionary if the distri-
butions of the random vectors (Xtl,..., Xtn) and (Xtl+a,..., Xtn+S) are the same
for any choice of n and s, t\,..., tn G &.

A stochastic process {Xt,t £ ^} is said to be weakly stat ionary if both the
expectation function {EX t } and covariance function {Cov(Xt,Xt+S)} do not de-
pend on t. The function R(s) = Cov(X t , Xt+s) is then called the autocovariance
function.

6 3 2 PROBABILITY AND STOCHASTIC PROCESSES

In other words, the distribution of a strongly stationary process is invariant under
time shifts (or space shifts in cases where SÏ is a spatial index set). For weakly sta-
tionary processes the covariance function is invariant under time shifts. A strongly
stationary process is weakly stationary whenever its mean and covariance function
exist. In particular, this is the case when EX? < oo, t G 2Ï. However, a weakly sta-
tionary process is not necessarily strongly stationary. A notable exception to this
are Gaussian processes (see Section A.9.1), as their finite-dimensional distributions
depend only on the corresponding means and covariances.

A strongly stationary stochastic process {Xt} with index set Z or 1 is said
to be r eve r s ib le if, for any positive integer n and for all ti,...,tn, the vector
(X t l , . · . , Xtn) has the same distribution as (X-^, · · · , X-t„)· One way to visualize
reversible processes is to imagine that we have taken a video of the stochastic process
which we may run in forward and reverse time. If we cannot detect whether the
video is running forward or backward, the process is reversible.

A.10 MARKOV CHAINS

A Markov process (see Section A.9.2) with a countable index set & is called a
Markov chain. Below, we assume that the index set is either N or Z and that the
chain is time-homogeneous. Generating realizations of a Markov chain is discussed

"3= 162 in Section 5.2.
Recall from Section A.9.2 that the transition kernel Pt(x,A) of a general time-

homogeneous Markov process gives the probability that starting from x the chain
ends up in set A after t discrete time steps. Of particular importance for Markov
chains is the one-step transition kernel Ρχ. If the state space E is countable, say
E = N, we can write its (discrete) density as

p(x,y) = P1(x,{y})=V{Xt+1=y\Xt = x), x,y e E, i e N . (A.41)

We can arrange these one-step transition probabilities in a one-step transit ion
matrix P with (x, y)-th entry given by p(x, y). Similarly, Pt is represented by the
ί-step transition matrix with (a;, y)-th element pt{x, y) = Pt(x, {?/})· Note that the
elements of Pt in every row are nonnegative and sum up to unity. Such a matrix is
called a s tochast ic matrix. If additionally every column sums to unity, then the
matrix is called doubly stochastic .

By the Chapman-Kolmogorov equations (A.37), the t-step transition matrix is
in fact equal to the ί-th power of P; that is, Pt = P*. It follows that if 7rt =
(P(-Xt = k), k G E) is the row vector representing the probability distribution of
Xt, then

nt = π ο pl for all ί = 0 , 1 , . . . , (Α.42)

where P° is the identity matrix.
When E is nondenumerable, for example E = R, and Pt has a density pt as in

(A.36), the one-step transition matrix is replaced by the one-step transition density
p(x, y) = pi (a;, y). The Chapman-Kolmogorov equations for the transition densities
become

Pt+S(x,y)= / Ps{x,z)pt(z,y)dz, s,teN, x,y£E. (A.43)
JE

A convenient way to describe a discrete-state Markov chain X is through its
transit ion graph. States are indicated by the nodes of the graph (without the

MARKOV CHAINS 633

weight labels), and a strictly positive (> 0) transition probability p(x7 y) from state
x to y is indicated by an arrow from x to y with weight p(x, y). An example of a
transition graph is given in Figure A.8.

Figure A.8 A transition graph of a discrete-state Markov chain.

A.10.1 Classification of States

Let X = {Xt, t = 0 , 1 , . . . } be a time-homogeneous Markov chain with state space
E. Let x and y be arbitrary states in E. Let T denote the time that the chain first
visits state y, or first returns to y if it started there; and let Ny denote the total
number of visits to y from time 0 onwards. We write ¥y(A) for W(A | XQ = y) for
any event A. We denote the corresponding expectation operator by E y . The states
of a Markov chain are typically classified as follows.

1. A state y is called a recurrent state if Wy(T < oo) = 1; otherwise, it is called
transient. A recurrent state y is called posi t ive recurrent if EyT < oo;
otherwise, it is called null-recurrent.

2. A state y is said to be periodic w i t h period δ, if δ ^ 2 is the largest integer
for which FV(T = ηδ, for some ra > 1) = 1. If<5 = l, the state is said to be
aperiodic.

3. If Pt{x, y) > 0 for some t ^ 0, then x is said to lead to y — written as x —► y.
If x —» y and y —> x, then x and y are said to communicate — written as
x <-> y. A set of states C Ç E is called a communicat ing class if, for any
pair ι , ι / Ε ΰ , ΐ Η)) , and further that for every x G C there is no y G E \ C
such that x <-> y. If E is the only communicating class, the Markov chain is
said to be irreducible.

4. A set of states 4 Ç E such that Y^ye^p(x,y) — 1 for all x G A is called a
closed set. A state x is called an absorbing state if {x} is closed.

Recurrence and transience are class properties; that is, the elements in each
communicating class are either all recurrent or all transient. Figure A.8 shows the
transition graph of a Markov chain with three communicating classes.

A.10.2 Limiting Behavior

The limiting or steady-state behavior of Markov chains as t —> oo is of considerable
interest and importance, and is often simpler to describe and analyze than the
transient behavior of the chain for fixed t.

6 3 4 PROBABILITY AND STOCHASTIC PROCESSES

For simplicity, assume that the state space E is countable. Then, a Markov chain
{Xt} is a discrete-time regenerative process, where possible renewal times are the
times when the process returns to a specific state. Irreducibihty and aperiodicity
ensure, via Theorem A.9.1, that

limPt{x,y) = n(y) , (Α.44)
t—>oo

for some 7r(y) € [0,1]. Moreover, π(ί/) > 0 if y is positive recurrent and 7r(y) = 0
otherwise. The intuitive reason behind this result is that the process "forgets"
where it was initially if it goes on long enough. Thus, provided that 7r(y) ^ 0 and
Σ « π(-2/) = 1> the numbers {Tr{y),y G E} form the l imiting distribution of the
Markov chain. Note that these conditions are not always satisfied. For example,
they are clearly not satisfied if the Markov chain is transient, and they may not be
satisfied even if the chain is recurrent (namely when the states are null-recurrent).
When E = { 0 , 1 , 2 , . . . } , then the limiting distribution is usually identified with the
row vector 7r = (πο, π ι , . . .) . The following is proved, for example, in [4].

Theorem A.10.1 (Limiting Distr ibution) For an irreducible aperiodic Markov
chain with transition matrix P, if the limiting distribution π exists, then π is
uniquely determined by the solution of the constrained system of equations

7Γ = πΡ, ^ 7Γ„ = 1, TXy ^ 0 for all y G E . (A.45)

In fact, the solution of (A.45) will automatically be strictly positive (iry > 0).
Conversely, if there exists a row vector π satisfying (A.45), then π is the limiting
distribution of the Markov chain. In addition, πυ > 0 for all y, and all states are
positive recurrent.

Let X be a Markov chain with limiting distribution 7r. Suppose TCQ = it. Then,
combining (A.42) and (A.45), we have 7rt = π . Thus, if the initial distribution
of the Markov chain is equal to the limiting distribution, then the distribution of
Xt is the same for all t and is given by this limiting distribution. For any Markov
chain, any π which satisfies (A.45) is called a s tat ionary distribution, because
using π as an initial distribution renders the Markov chain a stationary process.

Noting that Y2vPix^v) = l i w e c a n rewrite (A.45) as the system of equations

'Y^-K{x)p{x,y) = ^2,Tr{y)p{y,x) for all x e E . (A.46)
y y

These are called the global balance equations. We can interpret (A.45) as the
statement that the "probability flux" out of x is balanced with the probability flux
into x. An important generalization, which follows directly from (A.46), states that
the same balancing of probability fluxes holds for an arbitrary set A. That is, for
every set A C E of states we have

Σ Σ π(χ) p(x>y)= Σ Σ π (^ p(y>χ) · (Α.47)
xeAy^A xeAygA

MARKOV JUMP PROCESSES 6 3 5

A.10.3 Reversibility

A good way to think of the global balance equations (A.46) is that they balance
the probability flux out of each state x with the probability flux into state x.
For reversible (see Section A.9.5) Markov chains a much stronger form of balance
equations holds, where the probability flux from state x to state y is balanced with
that from state y to state x. The following theorem is proved in [17, 20].

Theorem A.10.2 (Reversible Markov Chain) A stationary Markov chain is
reversible if and only if there exists a collection of positive numbers {7r(;r), x € E},
summing to unity that satisfy the detai led (or local) balance equations

π(χ)p(x,y) = 7r(y)p(y,x) , x,y £ E . (A.48)

Whenever there exists such a collection {π(χ)}, it is the stationary distribution of
the process.

The following gives a simple criterion for reversibility based on the transition
probabilities. A proof can be found in [17, Page 21].

Theorem A.10 .3 (Kolmogorov's Criterion) A stationary Markov chain is re-
versible if and only if its transition probabilities satisfy

P(X1,X2)P{X2,X3) ■■■p{Xn~l,Xn)p{Xn,Xl) = P{x\ , Xn) P{Xn, Xn-l) •■■p(x2,X\)
(A.49)

for all finite loops of states x\,..., xn, xi.

The idea is quite intuitive: if the process in forward time is more likely to
traverse a certain closed loop in one direction than in the opposite direction, then
in backward time it will exhibit the opposite behavior, and hence we have a criterion
for detecting the direction of time. If such "looping" behavior does not occur, the
process must be reversible.

A . l l MARKOV JUMP PROCESSES

A Markov j u m p process is a Markov process (see Section A.9.2) with a con-
tinuous index set and a discrete (that is, countable) state space E. Generating
realizations of a Markov jump process is discussed in Section 5.3. For simplicity "3° 166
we assume that the Markov jump process is time-homogeneous and that the index
set is either R or R + . Let pt(x,y) = Pt{x, {y}) = P(-Xt = y\Xo = x) denote the
transit ion probability from x to y in t ^ 0 time units. Similar to a Markov
chain with a discrete state space, we can arrange the transition probabilities into a
matrix (pt(x, y))- With a slight abuse of notation we will also write this matrix as
Pt. We will call the family {Pt, t > 0}, or Pt viewed as a function t, a transit ion
function. It is said to be s tandard if lim t JO Pt = I (the identity matrix) and
honest if Ptl = 1 for all t, where 1 is a column vector of ones. We will consider
only standard transition functions.

The analogue of the one-step transition matrix for Markov chains is the Q-
matrix defined as

Q = PL = lim ^ — - . (A.50)

6 3 6 PROBABILITY AND STOCHASTIC PROCESSES

The (x, y)-th entry (x φ y) of Q, denoted q(x,y), is called the transit ion rate
from x to y. The a>th diagonal entry, q(x,x), is written as — qx. It can be shown
[1] that

(a) 0 ^ q(x,y) < oo, x^y,

(b) Συφχ<ΐ{χιν) ^Ίχ-

A state x is said to be s table if qx < oo; and instantaneous if qx = oo. If qx = 0
the state x is called absorbing.

A Markov jump process is usually defined by specifying a matrix Q that satisfies
the properties (a) and (b) above. Such a matrix is again called a Q-matrix. It is
said to be s table if all the states are stable, uniformly bounded if sup^. qx < oo,
and conservative if Ql = 0. Finally, Q is called r e g u l a r if it is conservative and

Qz = λζ, — 1 ^ Zi ^ 1 for alH ,

has the unique trivial solution z = 0 for all λ > 0. The following theorem is proved
in [1].

Theorem A.11.1 (Sample P a t h Behavior) For each stable and conservative
Q-matrix there exists a Markov jump process X whose paths are right-continuous
step functions up to a certain random time Tx. Moreover, the sample path behavior
up to Too can be described as follows:

1. Given its past, the probability that X jumps from its current state x to state
y is K(x,y) =q(x,y)/qx.

2. The amount of time that X spends in state y has an Exp(qy) distribution,
independent of the past history.

A typical sample path of X is sketched in Figure A.9. The process jumps at times
Τχ ,Τ2 , . . . to states ΥΊ, Υ2,..., staying an exponentially distributed length of time
in each state.

Xt
i

^ 3

v2

Ti T2 T3

Figure A.9 A sample path of a Markov jump process {Xt, t ^ 0}.

The first statement of Theorem A.11.1 implies that the process {Yn,n G N} is
in fact a time-homogeneous Markov chain, with one-step transition matrix K =
(K(x,y)). This Markov chain is called the embedded Markov chain or the
j u m p chain.

MARKOV JUMP PROCESSES 637

A convenient way to describe a Markov jump process is through its transit ion
rate graph (see, for example, Figure A. 10). This is similar to a transition graph
for Markov chains. The states are represented by the nodes of the graph, and a
transition rate from state x to y is indicated by an arrow from x to y with weight

q.{x,y)·
Classification concepts such as irreducibility, communication, recurrence, and

transience are defined in the same way as for a Markov chain; see Section A.10.1.
Note, however, that there is no concept of periodicity for Markov jump processes.

■ EXAMPLE A. 10 (Birth and D e a t h Process)

A birth and death process is a Markov jump process with a transition rate graph
of the form given in Figure A. 10. Imagine that Xt represents the total number of
individuals in a population at time t. Jumps to the right correspond to "births",
and jumps to the left to "deaths". The birth rates {6,} and the dea th rates
{di} may differ from state to state. Many applications of Markov chains involve
processes of this kind.

Figure A.10 The transition rate graph of a birth and death process.

Note that the process jumps from one state to the next according to a Markov
chain with transition probabilities -Κο,ι = 1; - ^ M + I = h/ih + di) and -fQi_i =
di/(h + di), i = 1,2, Moreover, it spends an Exp(6o) amount of time in state 0
and an Exp(fej + di) amount of time in state i φ 0.

Theorem A.11.2 (Kolmogorov Equations) Any transition function Pt with
conservative Q-matrix Q satisfies the Kolmogorov backward equations:

P[= QPt, t ^ 0 . (A.51)

This is easy to see when Pt and Q are finite-dimensional, as, by the Chapman-
Kolmogorov equations (A.37), limhi0(Pt+h - Pt)/h = limhl0(Ph ~ I)/hPt = Q Pt-
In a similar way, finite-dimensional transition functions satisfy the Kolmogorov
forward equations:

Pl = PtQ, t ^ 0 . (A.52)

The proof for infinite-dimensional transition functions is not as straightforward
and requires certain regularity conditions on Q — for example, Q being conser-
vative, as in Theorem A. 11.2. Indeed, for some transition functions the forward
equations may not hold at all. However, a converse result to the above theorem is
as follows [1, Page 70].

6 3 8 PROBABILITY AND STOCHASTIC PROCESSES

Theorem A.11 .3 (Minimal Transition Function) For any stable Q-matrix Q
there exists a transition function P t

M that is the solution to both the backward and
forward equations and is minimal in the sense that P t

M ^ Pt for any other solution
Pt of either the backward or forward equation. If P t

M is honest, it is the unique
solution to the backward and forward equations.

The Markov jump process with P (
M as its transition function is called the minimal

Q-process and corresponds to the Markov jump process X in Theorem A.11.1.
For a Markov jump process we usually only have knowledge of the Q-matrix Q,

and so directly verifying whether or not PÉ
M is honest may not be easy or even

possible. However, it is often possible to determine the honesty of P t
M indirectly

via inspection of Q, as is seen from the following theorem [1].

Theorem A. 11.4 (Regular Q-matrix) IfQis regular then the minimal solution
to the Kolmogorov backward equations is honest, and is therefore the unique solution
to the forward and backward equation. In particular, this is the case when Q is
conservative and uniformly bounded.

In most applications the Markov jump process is defined by a conservative uni-
formly bounded Q-matrix (in particular, when the Q-matrix is of finite dimensions).
The transition matrix (function) is then the unique solution to the Kolmogorov dif-
ferential equations, and can be written in matrix-exponential form as

fc=o K-

A.11.1 Limiting Behavior

The limiting behavior of Markov jump processes is akin to that of the Markov
chains discussed in Section A. 10.2.

Theorem A.11.5 (Limiting Distr ibution) Let {Xt,t ^ 0} be an irreducible
Markov jump process with regular Q-matrix Q. Then, irrespective of x,

lim F{Xt =y\X0 = x) = 7r(y) , (Α.53)
t—»ΌΟ

{or some number tr(y) ^ 0. Moreover, the row vector π = {π(υ)} is the solution to

TTQ = o, Σ ^y) = ! - (A·54)
yeE

provided such a solution exists, in which case all states are positive recurrent. If
such a solution does not exist, then π = 0.

As in the Markov chain case, π defines the l imiting distribution of X. Any
solution π of (A.54) with]P n(y) = 1 is called a s tat ionary distribution, be-
cause taking it as the initial distribution of the Markov jump process renders the
process stationary. Equations (A.54) are, as in the Markov chain case, called the
global balance equations, and can be written as

Σπ(χ)q(x>v) = 5Zπ(ν)q(y>χ) for&MxeE, (A.55)
νφχ υφχ

ITÔ INTEGRAL AND ITÔ PROCESSES 6 3 9

balancing the "probability flux" out of x with that into x. The global balance equa-
tions are readily generalized to (A.47), replacing the transition probabilities with
transition rates. More importantly, if the process is reversible then the stationary
distribution can be found from the detai led balance equations:

n(x)q(x,y) = n{y)q(y,x) , x,y G E . (A.56)

Reversibility can be easily verified by checking that "looping" does not occur, that
is, via Kolmogorov's criterion (A.49), replacing the probabilities p with rates q.
The criterion in this case is thus given by

q(x1,x2) q(x2,X3) ■ ■ ■ q{xn-i,Xn) q{x„,xi) = q{x\,xn) q(xn, xn-i) · ■ ■ q(%2, %i)

for all finite loops of states χχ,..., xn, x\.

■ EXAMPLE A . l l (M/M/l Queue Continued)

Let Xt denote the number of customers in an M / M / l queueing system at time
t > 0; see Examples A.8 and A.9. The process {Xt,t > 0} is an irreducible birth
and death process with birth rates λ and death rates μ. The system of equations
(A.54) has a unique solution

n(y) = (l-Q)e», y = 0 , 1 , 2 , . . . , (Α.57)

where g = λ/μ, if and only if ρ < 1. For λ < μ all the states are therefore positive
recurrent. Note that any birth and death process is reversible. As a consequence
(A.57) can be found directly from the local balance equations

π^)\ = π^ + 1)μ, y = 0,1,... .

Theorem A.9.1 shows that for ρ < 1 the steady-state expected number of customers
in the system is Έ,Χ = ρ/(1 — ρ).

A.12 ITÔ INTEGRAL AND ITÔ PROCESSES

An important class of stochastic processes — that of I tô processes — is con-
structed from the Wiener process via the notion of the Itô integral. The Wiener
process is discussed in more detail in Section 5.5, but here we only consider its ·®° 177
role in Itô integration. The Itô integral provides the mathematical justification of
integrals of the form

/ FtdWt,
Jo

where W = {Wt} is a Wiener process and F = {Ft} is a stochastic process. In its
simplest form the Itô integral is defined for processes F that are predictable [18]
with respect to the history of W and satisfy

E / i f ds < oo . (A.58)
Jo

6 4 0 PROBABILITY AND STOCHASTIC PROCESSES

We will denote this class of integrands by Jtfr- A sufficient condition for pre-
dictability is that the process is left-continuous and adapted — so, Ft may depend
on {Ws, s^t} but not on {Ws, s > t}. Let t ^ T and F £ Jf°T. The I tô integral
of F with respect to W over [0, t] is defined as

/ '
Jo

t
def Fs dWs = lim V Ftk (Wtk+1 -Wt„), 0 = to < · · · < ί„ = ί , (Α.59)

n—KX>

fc=0

where l i n i n - ^ maxfc{ifc+i — tk] = 0, and the convergence is in the mean square
sense (see Section A.8.1).

Remark A.12.1 (Stochastic Integral) The Itô integral is an example of a
stochast ic integral. The general theory of stochastic integration [21, 23] allows
{Wt} to be replaced by semimart ingales — processes that can be decomposed as
the sum of a (local) martingale and a process of finite variation — and the integrand
process {-Ft} by predictable processes that satisfy weaker conditions than (A.58).
In particular, it can be shown that the limit (A.59) still exists, but in probability
rather than in the mean square sense, if (A.58) is replaced by

/ F* as < oo a.s. (A.60)
Jo

An I tô process is any stochastic process {Xt,0 ^ t ^ T} that can be written
in the form

Xt = X0+ ί μ3 as + f as dWs, Q^t^T,
Jo Jo

where {μ<} is adapted, with J0 |/xt|di < oo and {at} 6 Jifj·. The above integral
equation is usually written in the shorthand differential form

dXt=ßtat + atdWt. {AM)

Note that the coefficients ßt and at may depend on the whole path { ΐ ί^ ,β ^ t).
An m-dimensional I tô process {Xt} = {(Xt,i, ■ ■ ■ ,Xt,m)T} driven by an n-
dimensional Wiener process { W t } = {(Wtti, ■ ■ ■ ,Wt,n)

T} can be defined analo-
gously via the differential expression

n

dXt,i = ßt,i dt + Σ <7t,ij àWtj, i = 1, · . . , m ,

written in matrix-vector notation as

d X t = ßt dt + σ (d W (, (Α.62)

where
Mt,i \

μ*

Ct,ll ■ ■ ■ CTt,ln \

and at -

fJ-t,m) \ Ct,ml ' ' ' <?t,mn /

An Itô process is an example of a semimartingale. As a special case of the
general theory of stochastic integration with respect to such processes one may

ITÔ INTEGRAL AND ITÔ PROCESSES 6 4 1

define integration with respect to Itô processes. In particular, (see, for example,
[18]) if X = {Xt} is an Itô process and F = {Ft} G J%r, then the stochastic integral
of F with respect to X is defined as:

[FsàXs ^ / Fs μ3 ds + /
Jo Jo Jo

FsdXs = / Fsßsds+ FsasdWs, O^t^T.
Jo Jo

Let X = {Xt} and Y = {Yt} be two processes adapted to the same filtration.
Then,

n - l

[X,Y]t
 d= lim Χ) (Χ ί Λ + 1 - Xtk)(Ytk+1 - Ytk) ,

fc=0

where 0 = to < ■ ■ ■ < tn = t and Ιπη,,^οο maxfc{ifc+i — tk} = 0, is called the
covariation between the processes X and Y. The special case [X, X]t, denoted
[X]t, is called the quadratic variation of X.

Below we list a number of properties of Itô integrals and Itô processes. Proofs
may be found in [23], for example.

1. Isometry property: If F, G G J^r, then for any 0 ^ t ^ T,

E : / FsdWs [G s d W , = E / FsGsds.
Jo Jo Jo

2. Martingale property: If F G J#r, then the Itô process defined by

Yt= [FsdWs, Q^t^T,
Jo

is a square-integrable martingale.

3. Quadratic variation and covariation: Let dXt = ßt dt + at dWt and dYt =
vt dt+Qt dWt define two Itô processes with respect to the same Wiener process
{Wt}. Then,

t

[X,Y]t= [asgsds.
Jo 10

In shorthand differential form the covariation and the quadratic variation are

d[X, Y]t = ot Qt d£ and d[X]t = σ\ dt, respectively.

4. Covariance for multivariate Itô process: Let {Xt} be an m-dimensional Itô
process. Then using the formal rules (see [18]) (dt)2 = dtdW^i = 0 and
dWt,i dWtj = Sij dt, where i y = 1 if i = j and 0 otherwise, we can write:

n

d[X, i ,X , j] t = dXt,idXt,j = Σ at,ik at jk dt , i,je{l,...,m}.
fc=l

5. Itô's lemma: Let dXt = ßt dt + atdWt define an Itô process and let f(x) :
K —> R be twice continuously differentiable with first and second derivatives
/ ' and / " , respectively. Then,

f(Xt) = f(X0) + I f'(Xs) dXs + \f f"{Xs) σ2 ds (A.63)
Jo l Jo

6 4 2 PROBABILITY AND STOCHASTIC PROCESSES

or, in differential form:

df(Xt) = f'(Xt) dXt + \f"{Xt) σΐ dt .

Compare this with the corresponding chain rule of ordinary calculus:
d / (x(t)) = / '(*(*)) da;(i).

6. Itô's lemma in E m : Let {Xt} be an ra-dimensional Itô process, and / : E m —>
R be twice continuously differentiable in all variables, then

771 1 m m

d/(Xt) = Σdif{Xt) dXtii + g Σ Σ Ο ϋ / (χ *) <*[*■,*> x-,i]t · (A-64)
i=l i=l j=l

A special case is the product rule for Itô processes:

d(XtYt) = Yt dXt + Xt dYt + d[X, Y]t ■ (A.65)

The corresponding integral form is the Itô integration by parts formula.

Another special case is Xt = (Xt, t)T, where t (^ 0) is deterministic and the
process {Xt} is governed by dXt = ßt dt + at dWt- Then,

df(xut) = (%(Xt)+ßS(*t)+4Ά**))dt+^S(Xt)^ dtK"z' ' ^dxK τ> ' 2 dx*y τι ' zdx 't

(A.66)

7. Gaussian process for deterministic integrands: If f(t, s) is a nonrandom func-

tion with JQ f2(t, s) ds < oo for any 0 ^ t ^ T, then the Itô integral

= f/(i,
Jo

Yt= / f(t,s)dWs (A.67)
Jo

defines a Gaussian process {Yt,0 ^ t ^ T} with mean zero and covariance
function

/»min{s,i}

Cav(Y.,Yt)= / / (i , «) / (S , i i) d u .

Note that, unless f{t,s) = / (s) , {Yt} need not be a martingale. If f(t,s) =
f(s), then by the integration by parts formula we also have

Yt = Wtf(t)- [Wsdf(s).
Jo

8. Time-change: Let {Wt} be a Wiener process, and define Zt = Wct, t ^ 0, for
some given deterministic function Ct = L / 2 (s) ds < oo for all t ^ T. Then,
the stochastic process {Zt,0 ^ t ^ T} has the same distribution as the Itô
integral process {Yt} defined in (A.67) with f(t,s) = f(s).

9. Girsanov's theorem: Let d X t = ßtdt + d W (define a multidimensional
Itô process under probability measure P with respect to a filtration T =

DIFFUSION PROCESSES 643

{Tt,t ^ 0}. Assume that {μΕ , ί > 0} satisfies Novikov's condition:
E e x p (| J0 μ]μΒ ds) < oo. For each t ^ 0 define

M t = e x p f / μ]άνν8--Ι μ]μ8ά8

Then {Mt, t ^ 0} is a martingale with respect to T. For a fixed T ^ 0 let P ^

denote the restriction of P to Ττ- Define a new measure Ψχ by

FT(A) =ΈΤΜΤΙΑ, Aefr,

so that
Ρ τ (^) = Ε Τ Ι Λ / Μ Τ .

Then under Ρχ the process {X t , 0 < t ^ T} is a Wiener process.

Remark A.12 .2 (Stratonovich Integral) Let W be a Wiener process and X €
J#^. For any 0 ^ t ^ T let

ί X s o dT^s
 d^f lim V Xtk \Xtk+1 (Wtk+1 -WtJ, 0 = i0 < · · · < t„ = t ,

fc=0

where limn^oo maxfc{ifc+i — t^} = 0 and convergence is in the mean square sense.
This defines the Stratonovich integral of X with respect to W over [0,i]. This
integral does not in general define a martingale, and therefore most of the prop-
erties above do not directly apply. However, the Stratonovich integral has the
advantage that it formally obeys the standard calculus formulas. In particular,
for a three times continuously diiferentiable function / , the Stratonovich integral
formally satisfies the ordinary chain rule

df(Xt) = f(Xt)odXt.

A.13 DIFFUSION PROCESSES

Let {Wt} be a Wiener process, and a(x,t) and b(x,t) be deterministic functions.
A s tochast ic differential equat ion (SDE) for a stochastic process {Xt} is an
expression of the form

dXt = a(Xt,t)dt + b(Xt,t)dWt . (A.68)

The coefficient a is called the drift and b2 (or sometimes b) the diffusion coefficient.
When a and b do not depend on t explicitly (that is, a(x,t) = a(x), and b(x,t) =
b(x)), the SDE is said to be autonomous or homogeneous . When a and b are
linear in x, the SDE is said to be linear.

Intuitively, the process {Xt} is specified by a "noisy ODE", relating its derivative
at t to a function of its present value Xt and an additional noise term. Mathemat-
ically, {Xt} is the solution to the integral equation

Xt = Xo+ [a(Xs, s)ds+ [b{Xs, s) dWs , (Α.69)
Jo Jo

6 4 4 PROBABILITY AND STOCHASTIC PROCESSES

where the last integral is defined in the Itô sense. Note that when b = 0, we obtain
an ordinary differential equation.

Remark A.13 .1 (Diffusion-Type SDE) Although SDEs of the type above are
by far the most common, it should be noted that there exist more general SDEs
[18, 19], where, for example, a and b depend on the whole history of { X s , s ^ t}
rather than only on t and Xt. The special case (A.68) is also referred to as a
diffusion-type SDE.

A stochastic process {Xt} is said to be a s trong solut ion to the SDE (A.68) if
Xt is a function of t and the underlying Wiener process {Ws, s ^ t}, and satisfies
(A.69). It is called a weak solution if (A.69) holds for some Wiener process.

The following theorem gives conditions for existence and uniqueness of strong
solutions on an interval [0,T]. A proof can be found, for example, in [19].

Theorem A.13 .1 (Existence and Uniqueness of Strong Solutions)
Suppose the following conditions are satisfied:

1. Linear growth condit ion: There is a constant C such that for all t G [0, T]

\a{x,t)\ + \b(x,t)\^C(l + \x\) for all x. (A.70)

2. Local Lipschitz continuity in x: For every K > 0 there is a constant DK
such that for all t e [0, T]

\a(x,t)-a(y,t)\ + \b(x,t)- b{y, t)\^DK\x-y\ for all x, ye [-K, K] .
(A.71)

3. XQ is independent of {Wt, 0 ^ t ^ T} and has finite variance.

Then the SDE (A.68) has a unique strong solution on [0, T]. In addition, the
solution has almost surely continuous paths, is a strong Markov process, and
J0

TEXs
2dS<co.

The linear growth condition ensures that each path of the SDE does not "ex-
plode"; that is, the path does not tend to ±oo within a finite interval of time.
Note that a similar condition is required for ordinary differential equations. For
example, the differential equation dx(t) = x2(t) dt, x(0) = a has a "local" solution
x(t) = a / (l — at) on the interval [0,1/a) rather than a "global" solution on R + . Re-
moving Condition 1 still gives a unique strong solution, but only up to a (random)
time of explosion.

Local Lipschitz continuity ensures that solutions of SDEs can be constructed via
an iterative procedure, similar to that for ordinary differential equations (Picard it-
eration [23]). As a measure of smoothness of a function, this condition lies between
continuity and differentiability. In particular, if a and b are continuously differen-
tiable in x, or, more generally, if their derivatives in x are uniformly bounded on
[0,T], then they satisfy (A.71).

Weak solutions to the SDE (A.68) exist under slightly more general conditions;
see for example [23]. In particular, if for each t the functions a and b are bounded
and continuous in x. Such solutions are only defined through their probability
distributions, rather than pathwise via the Wiener process W.

DIFFUSION PROCESSES 645

■ EXAMPLE A.12 (Linear S D E)

For a linear SDE

dXt = (at + ßtXt) dt + (7 i + StXt) dWt ,

the (strong) solution can be given explicitly as the product Xt = UtVt, with

Ut = exp | j (ßs - hA ds + j 5S dWs\ ,

V^Xo+f^p^ds+fjfdW,.
JO Us JO Us

In particular, if St = 0 and ßt = ß (constant), then

Xt = eßt (x0 + j e-3sas ds + ί e~ßs
 7 s dW3

and {Xt} is therefore a Gaussian process, provided that the distribution of Xo is
Gaussian (this includes the case where Xo is a constant). See [19, Pages 110-113]
for more details.

A solution {Xt} to (A.68) or, more precisely to (A.69), is called a diffusion pro-
cess, or, more specifically, an I tô diffusion. From Theorem A. 13.1, Itô diffusions
are Markov processes with continuous paths. Let X = {Xt} be an Itô diffusion with
drift and diffusion coefficients a and b2, respectively. The meaning of these terms
becomes clear when considering the infinitesimal behavior of X. In particular, by
(A.69),

/

t+h pt+h

a(Xs,s)ds+ b(Xs,s)dWs.
Taking the conditional expectation given Xt = x on both sides yields

E[Xt+h -x\Xt = x]= a{x, t)h + o{h) ,

since the expectation of the second integral in the above integral equation is 0,
due to the martingale property of the Itô integral. Similarly, using the isometry
Property 1 on Page 641,

V&ï(Xt+h-x \Xt = x) = E[{Xt+h-x-a(x, t) h)2 \ Xt = x]+o(h) = b2(x, t) h+o{h) .

In other words, given that the process is at position x at time t, the displacement
of X in the next Λ « 1 time units has expectation a(x, t)h and variance b2(x, t)h.

Remark A.13 .2 (Boundary Behavior) We have considered only diffusions on
the whole real line. Diffusions on a half-line or intervals are also possible. For
such processes the behavior at the boundary needs to be specified, in addition to
the behavior in the interior of the domain described by the SDE. See, for example
[8, 16].

The analogue of (A.68) in R m is given by the mult idimensional S D E

dXt = a (X t) t) d i + B (X t , t) d W t , (A.72)

6 4 6 PROBABILITY AND STOCHASTIC PROCESSES

where {W 4 } is an n-dimensional Wiener process, a(x , i) is an m-dimensional vector
(the drift) and B(x, t) an m x n matrix, for each x G R m and t G R. The m x m
matrix C = BBT is called the diffusion matrix.

As with the one-dimensional case, existence and uniqueness of strong solutions
to multidimensional SDEs relies on certain Lipschitz and linear growth conditions.
In particular, we have the following multidimensional version of Theorem A. 13.1
(see [18, Page 173]):

Theorem A.13.2 (Strong Solut ions of Mult idimensional SDEs) Suppose

the following conditions are satisfied, where for a matrix A, \\A\\ = yJtv{AAT):

1. Linear growth condit ion: There is a constant C such that for all t € [0, T]

| |a(x,t)| | + | | B (x , t) | | < C (l + ||x||) for all*. (A.73)

2. Local Lipschitz continuity in x: For every K > 0 there is a constant DK
such that for all t e [0, T]

| | a (x , t) - a (y , t) | | + | | B (x , i) - B (y , t) | | < DK||x-y|| for all ||x||, ||y|| ^ K .
(A.74)

3. X 0 is independent of { W t , 0 ^ t ^ T} and E | |X0 | |2 < oo.

Then the SDE (A.68) has a unique strong solution on [0,T].

A.13.1 Kolmogorov Equations

For autonomous SDEs, that is, those of the form

dXt = a{Xt) di + b(Xt) dWt , (Α.75)

the corresponding diffusion process is a time-homogeneous Markov process. The
corresponding transition kernel Pt can be found from the Kolmogorov backward
(and under more restrictive conditions) from the Kolmogorov forward equations.
To see this, let L be the linear elliptic differential operator

Lf(x) = a(x)f'(x) + \b2{x)f"{x) (A.76)

acting on all twice continuously differentiable functions on compact sets. Then, by
Itô's formula,

Mt
 d^ f(Xt) - f(X0) - [Lf{Xs) as

Jo

defines a martingale on [0, T\. In particular, denoting by W the expectation oper-
ator under which the process starts at x, we have

E : !f(Xt) = f(x) + { E*Lf(Xs) as , (Α.77)
Jo

where the interchange of expectation and integral is allowed by Fubini's theorem.
It follows that

L / (,) . ft. ■ ■ ' < * > - * " ■ (A.78,

DIFFUSION PROCESSES 647

The limit in (A.78) also defines the infinitesimal generator of the Markov pro-
cess. The domain of the infinitesimal generator consists of all bounded measurable
functions for which the limit exists — this includes the domain of L, hence the
infinitesimal generator extends L. Let Pt be the transition kernel of the Markov
process and define the operator Pt by

Ptf(x) = JPt(x,dy)f(y) = Exf(Xt) .

Then, by (A.77), we obtain the Kolmogorov forward equations:

P't! = PtLf . (A.79)

Moreover, by the Chapman-Kolmogorov equations we have Pt+af(x) = PsPtf(x) =
ExPtf(Xs), and therefore

-s {Pt+af(x) - Ptf(x)} = -s {E*Ptf(Xs) - Ptf(x)} .

Letting s J. 0, we obtain the Kolmogorov backward equations:

P'J = LPJ . (A.80)

If Pt has a transition density pt, then we can write the last equation as

^ / Pt(x, y)f{y) dy= LPt(x, y)f(y) dy ,

so that pt(x,y) for fixed y satisfies the Kolmogorov backward equations:

8
dj.Pt(x,y) = Lpt(x,y)

Φ) -g^pt(x^ y) + 2 & 2^ää? Ρ ί ^ ' ^

(A.81)

Similarly, (A.79) can be written as ^ / pt(x, y) f(y) dy = f pt{x,y)Lf(y) dy =
J f(y)L*pt(x,y)dy, where L* (acting here on y) is the adjoint operator of L de-
fined by J g(y)Lh(y) dy = J h(y)L*g(y) dy. Hence, for fixed x the density pt(x,y)
satisfies the Kolmogorov forward equations, also called the Fokker—Planck equa-
tions:

—pt{x,y) = L*pt(x,y)

d 1 9 " (Α · 8 2)

= -Q-(a(y)pt{x,y)) + 2 Qy2 ib2(y)pt(x>y)) ■

Sufficient conditions on a(x) and b(x) such that pt{x,y) exists and is the unique
solution to the forward and backward equations are that a(x) and b(x) have partial
derivatives up to order two, which are bounded and satisfy a Lipschitz condition;
see also [18]. This illustrates the important connection between partial differential
equations of the form u't = Lut and diffusion processes. Indeed, given an elliptic
operator L, the pdf of the corresponding diffusion process gives the fundamental so-
lution (Green's function) of the partial differential equation — see also Chapter 17. "S" 577

6 4 8 PROBABILITY AND STOCHASTIC PROCESSES

Remark A.13.3 (Operators for Multidimensional SDEs) For multidimen-
sional SDEs of the form (A. 72) the infinitesimal generator extends the operator

m r. ~ m m ~2

z= l i = l j = l J

where {a,} are the components of a and {Cy} the components of C = BBT.

A.13.2 Stationary Distribution

Consider again the diffusion governed by the autonomous SDE (A.75). Suppose
that

Ay) = / Pt{x,y)^(x)dx,

where pt is the transition density of the diffusion. Then π(χ) is called a stationary
or invariant density of the diffusion (A.75). If the initial state XQ has density
7T(X), then {Xt,t ^ 0} is a stationary process.

Theorem A.13.3 (Stationary Distribution) If the stationary density of
(A.75) exists and is twice continuously differentiable, then it solves the ODE

L** = O * \£ï{t>2(y)<y))--^Wy)Ay)) = o,

where L* is the adjoint operator in (A.82). The stationary density that solves the
ODE is of the form

c (fx2a(y), A

where XQ is an arbitrary constant and c is a constant such that J n(y)dy = 1.

For a rigorous discussion of the conditions for existence of π, see [22].
Loosely speaking, if the diffusion process is in the stationary regime, its distri-

bution does not change in time. Hence, the transition density pt is independent
of time and the partial derivative with respect to t in (A.82) is zero, giving the
equation L*TT = 0 satisfied by the stationary density.

A.13.3 Feynman—Kac Formula

The Feynman-Kac formula establishes an important relationship between stochas-
tic processes and linear parabolic PDEs. The result can be used to approximate
the solution of a PDE via Monte Carlo methods. Alternatively, conditional expec-

577 tations of a diffusion process can be computed by solving a PDE, see Chapter 17.
For each t ^ 0 let Lt be the linear elliptic differential operator

d I d 2

Ltu(x,t) = a(x,t)—u(x,t) + -b2(x,t)—-^u(x,t)

acting on all twice continuously differentiable functions on compact sets.

DIFFUSION PROCESSES 649

Theorem A.13 .4 (Feynman—Kac Formula) Let k(x,t) and f(x) be bounded
functions and let the process {Xt,0 ^ t ^ T} evolve according to (A.68). Assume
that the solution to the PDE

(L t + — - k(x,t) j u{x,t) = 0, xeR,te[0,T],

with final condition u(x,T) = f(x) exists. Then, the solution is unique and given
by

u{x,t) = E [e - ^ T f c ^ - s) d s / (^ r) | Xt = x], te[0,T\.

We explain why the formula is plausible (for a detailed treatment see [10, 22]).
Define the process {Yt} via Yt = e~ Jo Hxs,s)da_ r j , j l e r l) applying the Itô formula
(A.66) we have

d{Ytu{Xut)) = Yt ((Lt + j t - k{Xt,t))u{Xut)dt + b{Xt,t) ^(Xt,t)dWt

Since u is the solution to the PDE, the drift term is 0. Since Yt is bounded by
assumption, it can be shown [10] that existence and uniqueness of the solution of
the PDE implies that JQ E \Yt u{Xt,t)\ < oo. Therefore, the process

Ytu(Xt,t)=l Ysb(Xs,S)^(Xs,s)dWs dx

is a martingale. Using the Markov property of the SDE (see Theorem A.13.1) and
the final condition we obtain

Yt u(Xut) = E[YTu(XT,T) | X„ 0 < s < ί] = E[YT f(XT) | Xt] ,

which after rearrangement yields the desired result. For multidimensional analogues
of the Feynman-Kac formula see Chapter 17.

A.13.4 Exit Times

Diffusion processes are often studied through their exit times from an interval.
Below we assume that {Xt} is a homogeneous diffusion process defined by the SDE
(A.75) and satisfying the existence and uniqueness conditions of Theorem A. 13.1.

Let [I, r] (with I < r) be an arbitrary interval, and let r/ and Tr be the first times
that the process hits I and r, respectively. Let r = min{r ; , r r } = τ; ΛτΓ be the first
exit t ime from the interval [l,r].

The following results may, for example, be found in [18]. Central in the proof is
the fact that, by Itô's lemma, the process {Mt} defined by

pt/\T

Mt = f(XtAr) — / Lf{Xu) du is a martingale.
Jo

Theorem A.13 .5 (Exit Times) Let the diffusion coefficient b(x) be a strictly
positive and continuous function on [l,r], and let f be any twice continuously dif-
ferentiable function. Then the following holds:

6 5 0 PROBABILITY AND STOCHASTIC PROCESSES

1. The function s given by s(x) = WT satisfies the differential equation

Ls = —1, with s(l) = 0, s(r) = 0 ,

where operator L is given in (A.76).

2. Any nonconstant positive solution of Lh = 0 is of the form

h(x;x0,y0) iexp{-HW)du)dy

for some arbitrary constants XQ, yo- These are called harmonic functions for
L.

3. For any such harmonic function,

h{r) - h{x) c{n < rr) h{r) - h(l)

Further Reading

An easy introduction to probability theory with many examples can be found in
[25]. More detailed textbooks include [11] and [28]. Classical references on probabil-
ity theory are [5] and [9]. A good non-measure-theoretic introduction to stochastic
processes is [24]. A detailed treatment of Markov processes can be found in [7], and
a handy text on Markov processes with countable state spaces is [1]. An accessible
measure-theoretic introduction to probability theory, including stochastic processes,
can be found in [3]. For many examples in probability theory and stochastic pro-
cesses, see Feller's two volumes [8, 9]. Other good references for stochastic processes
are [4, 15, 16], and the classic [6].

REFERENCES

1. W. J. Anderson. Continuous-Time Markov Chains: An Applications-Oriented Ap-
proach. Springer-Verlag, New York, 1991.

2. P. Billingsley. Convergence of Probability Measures. John Wiley & Sons, New York,
1968.

3. P. Billingsley. Probability and Measure. John Wiley & Sons, New York, third edition,
1995.

4. E. Çinlar. Introduction to Stochastic Processes. Prentice Hall, Englewood Cliffs, NJ,
1975.

5. K. L. Chung. A Course in Probability Theory. Academic Press, New York, second
edition, 1974.

6. J. L. Doob. Stochastic Processes. John Wiley & Sons, New York, 1953.

7. S. N. Ethier and T. G. Kurtz. Markov Processes: Characterization and Convergence.
John Wiley & Sons, New York, 1986.

REFERENCES 651

8. W. Feller. An Introduction to Probability Theory and Its Applications, volume II.
John Wiley & Sons, New York, 1966.

9. W. Feller. An Introduction to Probability Theory and Its Applications, volume I. John
Wiley & Sons, New York, second edition, 1970.

10. D. Freedman. Brownian Motion and Diffusion. Springer-Verlag, New York, 1971.

11. G. R. Grimmett and D. R. Stirzaker. Probability and Random Processes. Oxford
University Press, Oxford, third edition, 2001.

12. P. R. Halmos. Measure Theory. Springer-Verlag, New York, second edition, 1978.

13. C. C. Heyde. On a property of the lognormal distribution. Journal of the Royal
Statistical Society, Series B, 25(2):392-393, 1963.

14. P. L. Hsu and H. Robbins. Complete convergence and the law of large numbers.
Proceedings of the National Academy of Sciences, U.S.A., 33(2):25-31, 1947.

15. S. Karlin and H. M. Taylor. A First Course in Stochastic Processes. Academic Press,
New York, second edition, 1975.

16. S. Karlin and H. M. Taylor. A Second Course in Stochastic Processes. Academic
Press, New York, 1981.

17. F . P. Kelly. Reversibility and Stochastic Networks. John Wiley & Sons, New York,
1979.

18. F . C. Klebaner. Introduction to Stochastic Calculus with Applications. Imperial Col-
lege Press, London, second edition, 2005.

19. P. E. Kloeden and E. Platen. Numerical Solution of Stochastic Differential Equations.
Springer-Verlag, Berlin, 1999. Corrected third printing.

20. J. R. Norris. Markov Chains. Cambridge University Press, Cambridge, 1997.

21. B. Oksendal. Stochastic Differential Equations. Springer-Verlag, Berlin, fifth edition,
2003.

22. R. G. Pinsky. Positive Harmonic Functions and Diffusion. Cambridge University
Press, Cambridge, 1995.

23. P. E. Prot ter . Stochastic Integration and Differential Equations. Springer-Verlag,
Heidelberg, second edition, 2005.

24. S. M. Ross. Stochastic Processes. John Wiley & Sons, New York, second edition,
1996.

25. S. M. Ross. A First Course in Probability. Prentice Hall, Englewood Cliffs, NJ,
seventh edition, 2005.

26. W. Rudin. Real and Complex Analysis. McGraw-Hill, New York, third edition, 1987.

27. I. G. Shevtsova. Sharpening of the upper bound of the absolute constant in the
Berry-Esséen inequality. Theory of Probability and Its Applications, 51(3):549-553,
2007.

28. D. Williams. Probability with Martingales. Cambridge University Press, Cambridge,
1991.

This page intentionally left blank

APPENDIX B

ELEMENTS OF MATHEMATICAL

STATISTICS

B.l STATISTICAL INFERENCE

Statistics deals with the gathering, summarization, analysis, and interpretation of
data. The two main branches of statistics are:

1. Classical statistics: Here the data object x is viewed as the outcome of a
random object X described by a probabilistic model — usually the model is
specified up to a (multidimensional) parameter; that is, X ~ / (· ; Θ) for some
Θ. The statistical inference is then purely concerned with the model and in
particular with the parameter Θ. For example, on the basis of the data one
may wish to

(a) estimate the parameter,

(b) perform statistical tests on the parameter, or

(c) validate the model.

2. Bayesian statistics: In this approach the model parameter Θ is itself ran-
dom: θ ~ /(Θ). Bayes' formula /(Θ | x) oc f(x \ θ)/(θ) is used to update the
distribution of the parameter based on the observed data x.

Mathemat ica l stat ist ics uses probability theory and other branches of math-
ematics to study data from a purely mathematical standpoint.

Handbook of Monte Carlo Methods. By D. P. Kroese, T. Taimre, Z. I. Botev 6 5 3
Copyright © 2011 John Wiley & Sons, Inc.

6 5 4 ELEMENTS OF MATHEMATICAL STATISTICS

B. l . l Classical Models

Let x represent the observed data, viewed as the outcome of the random data X.
For example, X could be a random vector {X\,..., Xn)

T ■ A real- or vector-valued
function of the data is called a statistic. For example, if X = {X\,. ■ ■ ,Xn)

T,
then the sample mean T = T(X) = (Xi + ■ ■ ■ + Xn)/n is one such statistic. It is
customary to use the same letter for both the function T and the random variable
T(X) . We write T for statistics taking values in M. and T for statistics taking values
in Kd for some d ^ 2. It is important that a statistic be computable; that is, it
cannot depend on any unknown parameters.

We summarize some classical models for data.

B. 1.1.1 lid Sample The data Χχ,... ,Xn are independent and identically dis-
tributed:

X ! , . . . , X n ^ D i s t ,

according to some known or unknown distribution Dist. Often the sampling dis-
tribution is specified up to an unknown parameter Θ, with Θ 6 Θ. An iid sample
is often called a random sample in the statistics literature. Note that the word
"sample" can refer to both a collection of random variables and to a single random
variable. It should be clear from the context which meaning is being used.

A standard model for data is:

Χ 1 , . . . , Χ „ ί ^ Ν (μ , σ 2) ,

in which case Θ = (μ, σ2) and θ = 1 χ Κ + .

B.1.1.2 Analysis of Variance In a one-way analysis of variance the objective is
to compare the means μχ,..., /ifc of A; independent groups (or levels) of normal
responses, all responses having the same variance σ2 . Specifically, denoting the
i-th response at level j by Xij, i = 1 , . . . , rij, j = 1 , . . . , k, where rij is the sample
size of the j - t h group, the model is

Xij= ßj+e%j, i = l,...,rij, j = l,...,k, {ei:j} ~ Ν(0,σ2) ,

or, equivalently,

Xij ~ N(pj, σ2) , i = 1 , . . . , rij, j = 1 , . . . , k , independently .

B.l.l.3 Regression Regression models are used to describe functional relation-
ships between explanatory variables and response variables. In a linear re-
gression model, the relationship is linear. Defining Yj as the i-th response variable
and Xi as the fixed (that is, deterministic) i-th explanatory variable, a standard
model is

Yi = ßo + ßiXi+ei, i = l,...,n, {£i} ~ Ν(0,σ2) (B.l)

for certain unknown parameters βο, βι, and σ2 . The line

y = ß0+ßlX (B.2)

is called the regression line. By replacing it with a general curve y = g{x; Θ)
one obtains a general regression model. For example, y = ßo + ß\x + βιχ2 gives
a quadratic regression model, and y = x T / 3 , where x is a multidimensional
explanatory variable and ß a parameter vector, gives a mult iple linear regression
model.

STATISTICAL INFERENCE 6 5 5

B.1.1.4 Linear Model A data vector Y = (Y i , . . . , Yn)
T is said to satisfy a linear

model if
Υ = Αβ + ε, ε ~ Ν (0 , σ 2 /) (Β.3)

for some n x k matrix A (the design matrix) , a fc-dimensional vector of param-
eters β = (βι,... ,ßk)T, and a vector ε — (εχ , . . . , ε „) τ of iid N(0,a2)-distributed
error terms. The analysis of variance and regression models are special cases.

For an outcome y, the least squares m e t h o d can be used to fit the model to
the data. In particular, the optimal β is chosen such that the Euclidean distance
between y and Aß is minimal. Equivalently, ß is the solution to

Vß\\y-Aß\\2=AT(y~Aß) = 0.

These linear set of equations are called the normal equations. Therefore, if ATA
is invertible (A can always be chosen such that this is the case), then

ß = (ATAr1ATy .

In practice, we never compute the inverse (ATA)~1
1 but compute ß from the nor-

mal equations using, for example, Gaussian elimination. Geometrically, ß is the
projection of y onto the subspace spanned by the columns of A. Moreover, it is
not difficult to show that ß is precisely the maximum likelihood estimate of ß (see
Section B.2.1).

B.1.2 Sufficient Statistics

A sufficient statistic for a parameter (vector) Θ is a statistic that captures all the
information about Θ contained in the data. This means that we can summarize the
data via a sufficient statistic, sometimes giving a tremendous reduction in data.

If T (X) is a sufficient statistic for Θ, then any inference about Θ depends on
the sample X = (Χχ,... ,Xn)

T only through the value T (X) . More precisely, a
statistic T (X) is called a sufficient statist ic for Θ if the conditional distribution
of X given T (X) does not depend on Θ. The workhorse for establishing sufficiency
is the following theorem. A proof can be found, for example, in [4].

Theorem B.1 .1 (Factorization Theorem) Let / (x ; 0) denote the joint pdf of
the data X = (Χχ,..., Xn)

T. A statistic T (X) is sufficient for Θ if and only if there
exist functions g(t, Θ) and h(x.) such that for all data points x and all parameter
points Θ,

/ (χ ; β) = ί , (Τ (χ) , β) ή (χ) . (Β.4)

■ EXAMPLE B. l (Sufficient Statist ics for Exponential Families)

Sufficiency is particularly easy to establish for exponential families. Suppose that DS' 701
Xi,...,Xn is an iid sample from the exponential family with pdf

fix-θ) = c(6>)e^™i^(e)^W/ l (: r) ,

where {%} are linearly independent. The pdf of X = (X\,..., Xn)
T is therefore

n

/ (x ; Θ) = c(0) n
 β Σ £ α *(») Σϊ=ι u(xk) IT °h(xk) .

9(Τ(χ),θ) ^ L , ■
h(x)

6 5 6 ELEMENTS OF MATHEMATICAL STATISTICS

A direct consequence of the factorization theorem is that

/ n n \

τ(χ)= l^2t1(xk),...,^2tm{Xk))
\k=l fc=l /

is a sufficient statistic for Θ.

■ EXAMPLE B.2 (Sufficient Statist ics for the Normal Distr ibut ion)

As a particular instance of Example B. l , consider the Ν(μ, σ2) case. Thus, Θ =
^ 702 (μ, σ2) , and from Table D.l it follows that a sufficient statistic for Θ is T = (7 \ , T2),

with T\ = Sfc=i ^fc a n o - ^2 = X^fc=i^fe- This means that for the standard data
model, the data can be summarized via only T\ and T2.

Moreover, it is not difficult to see that any 1-to-l function^of a sufficient statistic
again yields a sufficient statistic. Hence, the sample mean T\ = X and the sample
variance

fc=l U = l /

also form a pair of sufficient statistics, because the mapping

f i = — and f2 = —*— (T2 - Tf/n)
n n — 1 v '

is invertible.

B.l.3 Estimation

Suppose the distribution of the data X is completely specified up to an unknown
parameter vector Θ. The aim is to estimate Θ on the basis of the observed data x
only. (An alternative could be to estimate η = g(0) for some vector-valued function
g.) Specifically, the goal is to find an es t imator T = T(X) that is close to the
unknown Θ. The corresponding outcome t = T(x) is the e s t imate of Θ. The bias
of an estimator T of Θ is defined as T — Θ. An estimator T of Θ is said to be
unbiased if Ε Θ Τ = Θ. We often write Θ for both an estimator and estimate of Θ.
The mean square error (MSE) of a real-valued estimator T is defined as

MSE = ΕΘ(Τ - θ)2 .

An estimator T\ is said to be more efficient than an estimator T2 if the MSE of
T\ is smaller than the MSE of T2. The MSE can be written as the sum

MSE = (ΕΘΤ - Θ)2 + Vare(T) .

The first term measures the unbiasedness and the second is the variance of the
estimator. In particular, for an unbiased estimator the MSE of an estimator is
simply equal to its variance.

For simulation purposes it is often important to include the running time of the
estimator in efficiency comparisons. One way to compare two unbiased estimators

"S" 383 T\ and T2 is to compare their relative t ime variance products ,

STATISTICAL INFERENCE 6 5 7

(ETt)2 ' » " M , ^ · 5)

where r\ and T2 are the times required to calculate the estimators T\ and T2,
respectively. In this scheme, T\ is considered more efficient than Γ2 if its relative
time variance product is smaller.

Two systematic approaches for constructing sound estimators are:

• the maximum likelihood method; see Section B.2.1,

• the method of moments, discussed next.

B. 1.3.1 Method of Moments Suppose outcomes from an iid sample
Xi,..., Xn ~üd f(x~, Θ), where Θ = (θ\7..., 9k) is unknown. The moments of the
sampling distribution can be easily estimated. Namely, if X ~ f(x;6), then the
r-th moment of X, that is, μτ(θ) = EeXr (assuming it exists), can be estimated
through the sample r-th moment

1 n

n ±—^

The m e t h o d of moments procedure involves choosing the estimate Θ of Θ such
that each of the first k sample and true moments are matched:

mr = μΓ(0), r = 1, 2 , . . . , k .

In general, this set of equations is nonlinear, and so its solution often has to be
found numerically.

■ EXAMPLE B.3 (Sample M e a n and Sample Variance)

Suppose the data is given by X = {X\, ■ ■ ■ ,Xn)
T, where the {Xi} form an iid

sample from a general distribution with mean μ and variance σ2 < oo. Matching
the first two moments gives the set of equations

n

1

i y j ! _ .,2 , ji

1 n

Σ Χί = μ,

L

\χ1 = μ2 + σΛ

The method of moments estimates for μ and σ2 are therefore the sample mean

1 n

n *—'
i=\

and
1 n Λ

 η

il . 1 Tl .
1=1 1=1

6 5 8 ELEMENTS OF MATHEMATICAL STATISTICS

The corresponding estimator for μ, X, is unbiased. However, the estimator for σ2

is biased: Εσ2 = σ 2 (η — l) / n . An unbiased estimator is the sample variance

i n

n-1 n-1 ^ '

The square root of the sample variance S = y S2 is called the sample standard
deviat ion.

B. 1.3.2 Confidence Interval An essential part in any estimation procedure is to
provide an assessment of the accuracy of the estimate. Indeed, without information
on its accuracy the estimate itself would be meaningless. Confidence intervals
(sometimes called interval est imates) provide a precise way of describing the
uncertainty in the estimate.

Let Χχ,... ,X„ be random variables with a joint distribution depending on a
parameter Θ G Θ. Let T\ < T2 be statistics (thus, Τί = Τ{(Χχ,..., Xn), i = 1,2 are
functions of the data, but not of Θ).

1. The random interval (ΧΊ,Τ2) is called a s tochast ic confidence interval for
Θ with confidence 1 — a if

Ί < Θ < T2) > 1 - a for all Θ e θ . (B.6

2. If ti and t2 are the observed values of T\ and T2, then the interval (ii ,Î2) is
called the (numerical) confidence interval for Θ with confidence 1 — a for
every θ € Θ.

3. If (B.8) only holds approximately, the interval is called an approximate
confidence interval.

4. The probability Ρβ(ΤΊ < Θ < T2) is called the coverage probability. For a
1 — a confidence interval, it must be at least 1 — a.

For multidimensional parameters Θ G Rd the stochastic confidence interval is
replaced with a stochastic confidence region 'rf C Rd such that Vg(9 e'W) > 1 — a
for all Θ.

The systematic construction of (approximate) confidence intervals often involves
likelihood methods, see Section B.2. Another approach is to use the bootstrap

331 method, see Section 8.6. The analogue of a confidence interval in Bayesian analysis
is called a credible interval; see Section B.3.

■ EXAMPLE B.4 (Approximate Confidence Interval for the Mean)

Let X\,X2,..., Xn be an iid sample from a distribution with mean μ and variance
σ2 < oo (both assumed to be unknown). By the central limit theorem and the law
of large numbers,

r = X _ ^ appro,

STATISTICAL INFERENCE 6 5 9

for large n, where S is the sample standard deviation. Rearranging the approximate
equality P(|T | ^ ζι-α/2) ~ 1 — a, where Ζχ^α/2 is the 1 — a / 2 quantile of the
standard normal distribution, yields

S - S
X - £1-0/2-7= ^ μ ^ X + z'i--»/2—rz

so that

S S λ - S
X — z i - a /2^F=ï X + zi-a/2~F= I · abbreviated a s l ± Ζ ι - α / 2 ^ ^ ; (B-9)

V« v n / ' v n

is an approximate stochastic l — a confidence interval for μ.

Since (B.9) is an asymptotic result only, care should be taken when applying
it to cases where the sample size is small or moderate and the sampling distri-
bution is heavily skewed. For one- and two-sample normal (Gaussian) data Ta-
ble B.l provides exact confidence intervals for various parameters. The model for
the two-sample data is X\,... ,Xm ~nd Ν (μ χ , σ ^) and Y\,..., Yn ~üd Ν(μγ,σγ),
where Χχ,..., Xm,Yi,..., Yn are independent. All parameters are assumed to be
unknown.

Table B. l Exact confidence intervals for normal data with unknown mean and
variance.

Parameter Exact 1 — a confidence interval Condition

μχ

„2
σχ

μχ - μγ

σ2
χ/σγ

f(m-l)S% (m-l)Sx\

\^m-l;l-a/2 ^m-l;a/2 J

X — Y ± tm+n-2;l-a/2 $p\ 1
' ' V m n

(F S* F , S*
1 "n— l,m— l;a/2 Q2 ' r n — l,m —1;1 — a/2 Q2

V"**71 (X- ΛΊ 4-Y" 1 (Ύ- Vf

Here S% = ———-—m _2
j=1— is the pooled sample variance, tnn is

the 7 quantile of the t„ distribution, and .FTOjn;7 is the 7 quantile of the F(m, n)
distribution.

For one- and two-sample data from the binomial distribution, described by the
model X ~ Β\η(τη,ρχ) and Y ~ Β\η(η,ργ) independently, approximate (1 — a)
confidence intervals for ρχ and ρχ —ργ are given in Table B.2. We use the notation
px = X/m and ργ = Y/n.

6 6 0 ELEMENTS OF MATHEMATICAL STATISTICS

Table B.2 Approximate confidence intervals for binomial data.

Parameter Approximate 1 — a confidence interval

~ , / P x (l - P x)
PX PX±^1-Q/21

~ , Pxi\-Px) . PY(1-PY)
PX-PY PX-PY ± Z i - a / 2 \ h

Finally, Table B.3 gives exact confidence intervals for various parameters of the
linear regression model (B.l) .

Table B.3 Exact confidence intervals for normal regression data.

Parameter Exact 1 — a confidence interval

~ Σα-ιχ1
βθ βθ ± ίη-2;1-α/2 S\ ^ L

y ΤΙθχχ

ßl Ä ± ίη-2;1-α/2 "Sy "ç—

ßo+ßlX Y±tn-2;1-a/2sJ-+ (X X)

V fl Jxx

(n - 2)5 2 (n - 2)5 2 '
v 2 ' v 2
Λ - η - 2 ; 1 - α / 2 Λ η _ 2 ; α / 2

Here ft = §■*, β0 = Ϋ - ft χ, S2 = ^ Σ Γ = ι (* " Ä) " Λ ^) 2 , Sxx =

ΣΓ=ιΟ* - *)2> and S x y = Σ Γ = ι (ϊ ί - i) W - ?) ·

B. l .4 Hypothesis Testing

Suppose the model for the data X is described by a family of probability distribu-
tions that depend on a parameter θ € Θ. The aim of hypothes is tes t ing is to
decide, on the basis of the observed data x, which of two competing hypotheses,
H0 : Θ G θο (the null hypothesis) and Hi : Θ € θ ι (the a l ternative hypothe-
sis), holds true.

In classical statistics the null hypothesis and alternative hypothesis do not play
equivalent roles. Ho contains the "status quo" statement, and is only rejected if
the observed data are very unlikely to have happened under Ho.

The decision whether to accept or reject Ho is dependent on the outcome of a
test statist ic T = T (X) . For simplicity, we discuss only the one-dimensional case
T = T. Two (related) types of decision rules are generally used:

1. Decis ion rule 1: Reject HQ ifT falls in the critical region.

STATISTICAL INFERENCE 6 6 1

Here the critical region is any appropriately chosen region in R. In practice
a critical region is one of the following:

• left one-sided: (—oo,c],

• right one-sided: [c, oo),

• two-sided: (—oo, c{\ U [c2, oo).

For example, for a right one-sided test, HQ is rejected if the outcome of the
test statistic is too large. The endpoints c, c\, and c% of the critical regions
are called critical values.

2. Decis ion rule 2: Reject Ho if the p-value is smaller than some po-

The p-value is the probability that under Ho the (random) test statistic takes
a value as extreme as or more extreme than the one observed. In particular,
if t is the observed outcome of the test statistic T, then

• left one-sided test: p = Ρ # 0 (Τ ^ ί) ,

• right one-sided: p = ¥H0{T ^ t),

• two-sided: p = min{2P i Î 0 (r ^ i), 2VHo(T ^ t)}.

The smaller the p-value, the greater the strength of the evidence against HQ
provided by the data. As a rule of thumb:

p < 0.10 suggestive evidence,
p < 0.05 reasonable evidence,
p < 0.01 strong evidence.

Whether the first or the second decision rule is used, one can make two types of
errors, as depicted in Table B.4.

Table B.4 Type I and II errors in hypothesis testing.

Decision

Accept Ho

Reject HQ

True statement

HQ is true

Correct

Type I Error

Ηχ is true

Type II Error

Correct

The power of the test at Θ G θ ι is defined as the probability that Ho is rejected
(correctly). That is,

Power(ö) = ΨΘ(Τ e Critical Region) = 1 - P f l(Type II Error) .

The function Θ t—> Power(Ö), with Θ G θ ι is called the power curve.
The choice of the test statistic and the corresponding critical region involves a

multiobjective optimization criterion, whereby both the probabilities of a type I
and type II error should, ideally, be chosen as small as possible. Unfortunately,

6 6 2 ELEMENTS OF MATHEMATICAL STATISTICS

these probabilities compete with each other. For example, if the critical region is
made larger (smaller), the probability of a type II error is reduced (increased), but
at the same time the probability of a type I error is increased (reduced).

Since the type I error is considered more serious, Neyman and Pearson [8] sug-
gested the following approach: choose the critical region such that the probability
of a type II error is as small as possible, while keeping the probability of a type I
error below a predetermined small significance level a.

Remark B . 1.1 (Equivalence of Decis ion Rules) Note that decision rule 1
and 2 are equivalent in the following sense:

Reject HQ if T falls in the critical region, at significance level a.

Reject HQ if the p-value is ^ significance level a.

In other words, the p-value of the test is the smallest level of significance that would
lead to the rejection of HQ.

In general, a statistical test involves the following steps:

1. Formulate an appropriate statistical model for the data.

2. Give the null and alternative hypotheses.

3. Determine the test statistic.

4. Determine the distribution of the test statistic under Ho-

5. Calculate the outcome of the test statistic.

6. Calculate the p-value or calculate the critical region, given a preselected sig-
nificance level a.

7. Accept or reject Ho.

The actual choice of an appropriate test statistic is akin to selecting a good
estimator for the unknown parameter Θ. The test statistic should summarize the
information about Θ and make it possible to distinguish between the alternative hy-
potheses. The likelihood ratio test provides a systematic approach to constructing
powerful test statistics; see Section B.2.3.

We conclude with a number of standard tests involving normal and binomial
data. Below, ζΊ denotes the 7 quantile of the N(0,1) distribution. The 7 quantiles
of the χ 2 , t„, and F(m,n) distributions are denoted by χ^ ;7, ί „ ; 7 , and Fmt„;7,
respectively. Details may be found in [1], for example.

Table B.5 Normal distribution, one sample: testing μ.

Model: Xi,..., Χη ~ Ν(μ, er2)
H0: μ = μο

Test statistic: T = ^ ψ

Null distribution: T
Reject H0 if: T > ί „ - ι ; ι - α Hi : μ > μ0

T < — ί η - ΐ ; ΐ - α Hi : μ < μο
Τ < — ίη-1;1-α/2 ΟΓ Τ > ίη-1;1-α/2 Η\ : β φ μο

STATISTICAL INFERENCE 6 6 3

Table B.6 Normal distribution, one sample:

Model:
HQ:
Test statistic:
Null distribution:
Reject HQ if:

Χ1,...,Χη^Ν(μ,σ2)
σ2 = σΙ
Τ = 3 2 (η - 1) / σ 2

T~xä-i
T ^ Χη-1 ;1-α

Γ ^ Χ ' - 1 ; 1 - α / 2 ° Γ

testing

-1;α/2

σ2.

Hi : σ2 > σ2

ι : σ2 < σ2

ffi : σ2 ^ σ2

Table B.7 Normal distribution, two samples: testing μχ — μγ.

Model:

H0:
Test statistic:

Null distribution:
Reject HQ if:

Χ1,...,Χτη^Ν(μχ,σ
2), Yu...,Yn^

X\,..., Xm, Y\,..., Yn are independent

μχ = μγ
rp X-Y

SP\/m + n

T ~ t n + T O-2
^ ί^ ί-n+m—2;1 —a

Î 1 ^ —tn+m-2;l-a

T ^ — Î n + m - 2 ; l - a / 2 ΟΓ T > Î T i+m-2 ; l - a /2

Η{μγ,σ
2)

Hi

H!
Ηλ

: μχ > μγ
: μχ < μγ

: μχφ μγ

Here S 2 _ Σ" ι (^» -^) 2 +Σ? = ι (> -y·)2

is the pooled sample variance. Note that JP m + r a - 2

in Table B.7 the variances of the two samples are assumed to be equal. If {Xi} and
{Yi} are assumed to have different variances and the sample sizes are large, then
one can use the test statistic

X-Y

£Lx_ _|_ i n

which under HQ approximately has a N(0,1) distribution. An alternative approach
is to use Welch's t-test [9].

Table B.8 Normal distribution, two samples: testing σχ/σγ.

Model:

HQ:

Test statistic:
Null distribution:
Reject HQ if:

iid Xu...,Xm ~ Ν(μχ,σχ), Y i , . . . , y n

X\,..., Xm, Y\,..., y„ are independent

iid
Ν{μγ,σγ)

σχ =σγ
T = SX/SY

T ~ F (m - l , n - l)
-* ^ r-m — l ,n —1;1 — OL

J- ^ΐ -£*m—Ι,η—1;α

T ^ ί Ί η - 1 , η - 1 ; 1 - α / 2 or T ^ Fm-l,n-l;a/2

1

1

H i

: σ | > σγ

:σ2
χ<σγ

:σ2
χφσγ

664 ELEMENTS OF MATHEMATICAL STATISTICS

Table B.9 Binomial distribution, one sample: testing ;

Model:

HQ:
Test statistic:
Null distribution:
Reject HQ if:

X ~ B\n(n,p)

P = Po
T = X

Bin(n,po)
X ^ c, where c is the smallest integer
such that ¥H0 {X ^ c) ^ a Hi : p > po

X ^ c, where c is the largest integer
such that PJJ 0 (X ^ c) ^ a H\ : p < po

X ^ c\ or X ^ C2, where c\ is the largest integer
such that ¥H0(X ^ c\) < a / 2 and C2 is the smallest
integer such that ¥HQ(X ^ C2) ^ a/2 Hi :p φρο

For large n an alternative is to use the test statistic

X -npo
Z =

yJnpo{l-po) '

which under if0 approximately has a N(0,1) distribution. The null hypothesis is
then rejected if Z ^ z\-a for H\ : p > po, Z ^ —z_a for H\ : p < po, and
[Z < -Zi_ Q /2 or Z ^ Zi_Q/2] for Ηχ\ρφ ρ0.

Table B.10 Binomial distribution, two samples: testing ρχ —ργ.

Model:
H0:

Null distribution:
Reject Ho if:

X ~ Bin(m,px) and y ~ Bi

Px =PY A

y _ px-pY

N(0,1) (approx.)

Z < —Zi-a

Z > Zl-Q/2 Or Z ^ -2 1 _ Q /2

Hx:px> PY
Hi:px <PY
Ηχ-.ρχφ PY

Here ρ χ = X/m, ργ = Y/n, and p = (X + Y)/(m + n).

B.2 LIKELIHOOD

The concept of likelihood is central in statistics. It describes in a precise way the
information about model parameters that is contained in the observed data.

Let X = (Xi,... ,Xn)
T be a random vector that is distributed according to a

pdf / (x ; Θ) (discrete or continuous) with parameter vector Θ = (θ\,..., ο^) τ 6 θ .
Let x be an outcome of X. The function £ (0 ; x) = / (x ; 0) , Θ G Θ, is called the
l ikelihood function of Θ, based on x. The (natural) logarithm of the likelihood
function is called the log-likelihood function and is denoted by I. The gradient

LIKELIHOOD 665

of the log-likelihood function I is called the score function, and is denoted by S.
Hence,

/ a i (f l ; *) \
/ aft, \

8(0; x)
di(0;x)

902 V e ln£(0 ;x) ν<?/(χ;0)
/ (χ ; β)

(B.10)

3/(0;x)

\ se«, /

If 0 is one-dimensional, the score function is thus defined as

8(0; x)
d<9

i(0;x)
dé»

1η£(0;χ)
d
do / (χ;0)

/ (χ ; 0)

The random vector 8(0) = 8(0; X) with X ~ /(■;©) is called the efficient score
or simply score. The covariance matrix J(0) of the score 8(0) is called the Fisher
information matrix. Note that £ is a function of 0 for fixed x, whereas / (x ; 0)
is viewed as a function of x for fixed 0. Similarly, I and S and J are functions of 0.
The expectation of the score 8(0) is equal to the zero vector:

E„S(0)
/

v»/(x;Q)
/ (χ ; β)

/ (x;0)dx

' /
V e / (x ; 0) dx = V e / / (x ; 0) dx = V e l = 0 ,

provided the interchange of differentiation and integration is justified. In particular,
this is allowed for natural exponential families; see [6]. We will assume henceforth
that Ε θ8(0) = 0.

Table B . l l displays the score functions Β(θ;χ) calculated from (B.10) for some
commonly used distributions. In this table ψ refers to the digamma function. "3* 716

The concepts of likelihood and score are particularly useful in the case where
Xi,..., Xn form an iid sample from some pdf / ; that is, X\,..., Xn ~üd /(■; 0)- In
that case, the likelihood of 0 given the data x = (xi,..., xn)

T is the product

n

£(0;χ) = Π / (^ ; 0) . (B.ll)

Consequently, the log-likelihood is the sum 1(θ; x) = Σ™=1 In f(xf, 0), and the score
is

n

8(0; X) = Σ S>; Xi) , (B.12)
i=l

where §(θ;χ) is the score function corresponding to f(x;Q). It follows that the
information matrix satisfies

J (0) = n J (0) ,

where 3(0) is the information matrix corresponding to / .

Note that the random vectors {8(0; Xi)} are independent and identically dis-
tributed with mean vector 0 and covariance matrix 3(0). The law of large numbers
and the central limit theorem now lead directly to two important properties of the *&" 625

6 6 6 ELEMENTS OF MATHEMATICAL STATISTICS

Table B . l l Score functions for commonly used distributions.

S(0;x)

X"1 - x

(ΐη(λχ) — φ(α), α λ _ 1 — x)

(σ _ 2 (χ - μ) , -σ'1 +σ~3(χ- μ)2)Τ

(α " 1 + 1η(λχ)[1 - (Χχ)α], f [1 - (λχ)α])~

χ — ηρ

Distribution

Εχρ(λ)

Gamma(a, λ)

Ν(μ,σ2)

Weib(a,A)

Βίη(η,ρ)

Ροί(λ)

Geom(p)

0

X

(α ,λ)

(β,σ)

(α ,λ)

Ρ

X

Ρ

ρ(ΐ
χ

λ
1 -

- ρ)

- 1

pa;

ρ(1-ρ)

score of an iid sample.

1. Law of large numbers: As n —> oo,

1
§ (0 ; Χ) ^ Ε θ δ (0 ; Χ) = Ο , (B.13)

n
since the expected score is the zero vector.

2. Central limit theorem: For large n

S (0 ; X) a p - O X ' N (O , n J (0)) . (Β.14)

■ EXAMPLE B.5 (Bernoull i R a n d o m Sample)

Let Xi,..., Xn ~üd Ber(p). Then, for a given observation x = (x i , . . . , ι „) τ , the
likelihood of p is given by

n

t f e x) ^ ? ^ ! - ?) 1 " 1 · =ρχ(1-ρ)η-χ, 0<ρ<1, (Β.15)
i= l

where x = Xi + · · · + xra. The log-likelihood is l(p) = xlnp + (n — x) ln(l — p).
Through differentiation with respect to p, we find the score function:

B(p;x) = X--^ = - ^ — - - ^ - . (B.16)
p 1 — p p (l — p) 1 — p

The corresponding score S(p) is obtained by replacing x with X ~ Bin(n,p). The
expectation of S(p) is 0 and its variance (the information matrix/number) is

3 (p) - V a r W - "
p 2 (l - p) 2 p (l - p)

LIKELIHOOD 667

Hence, for large n, §(p) approximately has a N(0 ,n / (p(l — p))) distribution.

Other properties of the likelihood and score include (for proofs see, for example,

[1]):

1. Natural exponential family: For an exponential family in canonical form «s* 701

/ (x ; 77) = e ^ W - ^ ^ x) , (B.17)

with A as in (D.3), the log-likelihood function is 1(η;χ.) = TjTt(x) — Α(η) +
1η/ι(χ), so that the score function becomes

§(77; x) = t (x) - VA(ri) = t (x) - E„ t (X) . (B.18)

It follows that the information matrix is the covariance matrix of t (X) :

3(77) = Cov(t(X)) = ν2Α(η) . (B.19)

2. Information matrix: An alternative expression for the information matrix is

3{θ) =-ΕΘΗ(Θ;Χ) , (Β.20)

where Η{θ; X) is the Hessian of 1(9; X) ; that is, the (random) matrix

ma τη - K W (X ; 0 A _ [02ΐ(θ-χ)\ _ /asf(g;X)\
1 ' j V Mid9a) V ddidOj) V dOj) '

where Si denotes the i-th component of the score. This alternative expression
is valid under mild conditions (which are satisfied for exponential families)
that allow the interchange of the order of integration and differentiation [6].

3. Cramér-Rao: Let X ~ / (x ; Θ). The variance of any unbiased estimator
Z = Z(X) of <?(#), where g is a C1 function, is bounded from below by

Var(Z) > (Vg(0))T Τ\θ) Vg{ß) . (B.21)

4. Location-scale families: For location-scale families {/(χ;μ, σ)} the Fisher
information does not depend on μ. In particular, for location families it is
constant.

B.2.1 Likelihood Methods for Estimation

Let x be the observed data from the model X ~ / (x ; 0) , yielding the likelihood
function £ (0 ; x) = / (x ; 0) . The m a x i m u m l ikel ihood e s t i m a t e (MLE) of Θ is
a vector Θ such that £ (0 ; x) ^ £ (0 ; x) for all Θ in the parameter space Θ. The
corresponding random variable (a function of X) , also denoted Θ, is called the
m a x i m u m l ikel ihood e s t i m a t o r (also abbreviated as MLE).

Since the natural logarithm is an increasing function, maximization of £ (0 ; x)
is equivalent to maximization of the log-likelihood Z(0;x). This is often easier,
especially when X is an iid sample from some sampling distribution.

If Z(0;x) is a differentiable function with respect to Θ and the maximum is
attained in the interior of Θ, and there exists a unique maximum, then the MLE

6 6 8 ELEMENTS OF MATHEMATICAL STATISTICS

of 0 can be found by differentiating 2(0; x) with respect to 0 — more precisely, by
solving

VeZ(0;x) = O.

In other words, the MLE is obtained by finding a root of the score; that is, by
solving

S(0;x) = O. (B.22)

Properties of the maximum likelihood estimator include (see, for example, [6,
Page 444]):

1. Consistency: The maximum likelihood estimator 0 is consistent. That is,
with probability tending to 1 as n —► oo the likelihood equation has a solution
0 such that for all ε > 0

P (| | 0 - 0 | | > e) - + 0 .

2. Asymptotic normality: Suppose that 0 i , 0 2 , . . . is a sequence of consistent
maximum likelihood estimators for 0. Then, y/n (0 n — 0) converges in dis-
tribution to a N(O,5_1(0))-distributed random vector as n —> oo. In other
words

^ approx. N (0 ^ _ 1 (É)) / n ^

3. Invariance: Let 0 be the MLE of 0. Then, for any function g the MLE of
g(0) is g(0) .

Note that Property 1 only says that there exists a sequence of MLEs 0 j , 0 2 , . . ·
that converge (in probability) to the true 0. When there are multiple local maxima,
a particular sequence θ\, 0 2 , . . . may in fact converge to a local maximum.

T h e o r e m B.2.1 (Exponential Families) For natural exponential families of
the form (B.17) the MLE is found by solving

t (x) - V A (T j) = t (x) - E n t (X) = 0 . (B.23)

That is, η is chosen such that the observed and expected values o / t (X) are matched.

■ EXAMPLE B.6 (MLE for the G a m m a Distr ibut ion)

We wish to estimate both parameters of a Gamma(o;,À) distribution, based on an
iid sample x = (x i , . . . , xn). The corresponding pdf is

f(x;a,X) = —— , x ^ O ,
Γ(α)

which is of the form (B.17) with t(x) = (a;,hi:r)T , η = (—λ, a — 1) T and A(rj) =
702 —(772 + I) ln(—77ι) + 1ηΓ(τ72 + 1); see also Table D.I. Consequently, the score function

is given by

«ta») - tW-VA(,) . (t a i + *^_ 1)^ +) .

LIKELIHOOD 669

where ψ is the digamma function. The information matrix is ·®° 716

The score function corresponding to the iid sample is therefore

~{ νΣ ί= ι 1 η ^ + «(1η(-^ι)-'ί/,(ί/2 + ΐ))7

and the information matrix is 3(η) = ηΰ(η). Estimates of the parameters are found
by numerically solving §(τ/; x) = 0 (continued in Example B.8).

B.2.1.1 Score Intervals The score function can also be used to construct confi-
dence intervals. We consider only the one-dimensional case; that is, Θ G R. Let
X = (X i , . . . , X„)T be an iid sample from some sampling distribution / . Because
of the normal approximation (B.14), the statistic S(#;X)/y\J(#) is approximately
standard normal, and hence

in §(0;X) 1
< Θ : - Z i - a / 2 < , ^ Z l - a / 2)

{ \/çÚ(Ł) J
is an approximate 1 — a confidence set (not necessarily an interval).

■ EXAMPLE B.7 (Score Interval for a Bernoull i R a n d o m Sample)

Let X be an iid sample from Ber(p). The information matrix is 3(p) = n / (p (l — p))
and the score is S(p; X) = n(X — p) / (p (l — p)); see (B.16). So the confidence set
becomes

n p ^ - p) / p (l - p) „

X-p

P ■ ~Zl-a/2 < , < Zl-oc/2
y/p[l-p)/n

By solving the quadratic equation (X — p) 2 = a2 p (l — p) / n with respect to p, this
confidence set can be written as the interval {7\ ^ p ^ T2} with

_ a2 + 2nX T a ^ a 2 - 4n(X - 1)X
1,2 " 2 (a2 + n) '

where a = zi_Q/2- This score interval has much better coverage behavior than
the confidence interval in Table B.2, over the complete range of p.

B.2.2 Numerical Methods for Likelihood Maximization

It is frequently not possible to find the MLE Θ in an explicit form. In that case
one needs to solve the equation S(0) = S(0;x) = 0 numerically via a root-finding

6 7 0 ELEMENTS OF MATHEMATICAL STATISTICS

procedure. A well-known method is the Newton-Raphson procedure (see also Sec-
tion C.2.2.1). Starting from a guess 0, a "better" guess is obtained by approximat-
ing the score via a linear function. More precisely, suppose that 0 is the initial guess
for the root. If the latter is reasonably close to 0, a first-order Taylor approximation
around 0 gives

S(0) « S(0) + VS(0)(0 - 0) = S(0) + Η(θ)(θ - 0) ,

where Η(θ) = Η(θ; x) is the Hessian of the log-likelihood, that is, the matrix of
second-order partial derivatives of 1. Since §(0) = 0, we have 0 « 0 — Η~1(θ) §(0).
This suggests the following iterative scheme.

Algor i thm B . l (N e w t o n - R a p h s o n Scheme for the MLE)

1. Start with an initial guess 0o- Set t — 0.

2. Set
et+1=et-H-\et)S(et). (B.24)

3. If S(0i+i) < e for some small ε > 0, then return 0t+\ as the MLE; otherwise,
set t = t + 1 and go to Step 2.

To implement the Newton-Raphson scheme, it is often crucial to come up with
a good starting value for the parameter vector. One natural way to obtain a good
guess is to match the sample and theoretical moments via the method of moments;
see Section B.1.3.1.

Notice that H{9) = Η(θ; χ) depends on the parameter 0 and data x, and may
be quite complicated. However, the expectation of Η(θ\ X) under 0 is simply the
negative of the information matrix 3(0), which does not depend on the data. This
suggests the alternative to (B.24):

0 i + 1 = 0 t + 3 - 1 (0 t) S (0 t) , (B.25)

which may be easier to implement if the information matrix is readily available.

■ EXAMPLE B.8 (MLE for the G a m m a Distr ibut ion)

We continue Example B.6 to find MLEs for the parameters of the Gamma(a, λ)
distribution. The initial guess is obtained by matching the expectation and variance
to the sample mean and sample variance, x = Σ™=1Χί/η and s2 = 2 " = 1 (x i —
x)2/(n — 1), respectively. Since for X ~ Gamma(a, λ), E X = a/X and Var(X) =
α/λ 2 , this leads to the initial guess η0 = (—λο,αο — 1) T , where αο = fr and
λο = τ- . The following MATLAB program implements the Newton-Raphson scheme
to find the MLE for a = 3 and λ = 0.05.

%gammMLE.m
n = 100;
alpha = 3; lambda = 0.05;
x = gamrnd(alpha,l/lambda,l,n);
sumlogx = sum(log(x)); sumx = sum(x);
alp = mean(x)~2/var(x) ; lam = mean(x)/var(x) ; 7, initial guess

LIKELIHOOD 671

e t a = [- lam;a lp - 1] ; S = Inf ;
whi le sum(abs(S) > 10" (-5)) > 0

S = [sumx + n * (e t a (2) + l) / e t a (l) ; . . .
sumlogx + n * (l o g (- e t a (l)) - p s i (e t a (2) + 1))] ;

I = n * [(e t a (2) + l) / e t a (l) ~ 2 , - l / e t a (l) ; . . .
- l / e t a (l) , p s i (l , e t a (2) + l)] ;

e t a = e t a + I \ S ;
end
f p r i n t f (' l a m j i a t = %g , a lpha_ha t = °/.g \ n ' , - e t a (l) , l + e t a (2))

B.2.3 Likelihood Methods for Hypothesis Testing

Let X\,..., Xn be an iid sample from a distribution with unknown parameter
0 6 Θ. Write X for the corresponding random vector, and denote the likelihood
by £ (0 ; x) . Suppose θο and θ ι are two nonoverlapping subsets of Θ, such that
θ 0 U θ ι = 0 .

The l ikel ihood r a t i o s t a t i s t i c is defined as

maxee 6>0i:(fl;X) = £ (g 0 ; X)

~ m a x e e e , C (0 ; X) ~ £ (0 ; X) '

where Θ is the maximum likelihood estimator of Θ and 0Q the maximum likelihood
estimator of Θ over θο only.

The likelihood ratio statistic Λ can be used as a test statistic for testing the
hypotheses

H0: 0 e 0 o ,

Hi : θ £ θ ι .

The critical region is (0, λ*]; that is, reject HQ if Λ is smaller than some critical
value λ*. To determine λ* one needs to know the distribution of Λ under HQ. In
general this is a difficult task, but it is sometimes possible to derive the distribution
of a function of Λ under HQ. This is then taken as the test statistic. The critical
region follows by inspection.

■ E X A M P L E B.9 (Likel ihood R a t i o M e t h o d for G a u s s i a n D a t a)

Suppose Xi,..., Χη ~ Ν(μ, σ2) , with μ and σ2 unknown. We wish to test

Ho : β = μο ,

Hi : μ φ μ0 .

The likelihood function is given by

Maximizing L over 0 gives the maximum likelihood estimate (μ, σ2) given in (B.6)

and (B.7). Maximizing £ over 0 Q = {(μο,σ2),σ2 > 0} gives the estimate (μο,σ2) ,

6 7 2 ELEMENTS OF MATHEMATICAL STATISTICS

with
1 n

n. £—'
μο)2

Hence,

A = Ζ{μο,σ*;Χ) = f Σ Γ = 1 (* ~ *? V'* _ Λ , 1 y 2 X ~ " / 2

£ (/ ϊ , σ 2 ; Χ) \ Σ Γ = ι (^ ί - Μ ο) 2

where T = s / ~ ^ and S is the sample standard deviation. Rejecting HQ for small
values of Λ is equivalent to rejecting if0 for large values of \T\. Moreover, under
Ho, T has a t n _ i distribution. Thus, the likelihood ratio method yields the test in
Table B.5.

The asymptotic distribution of the likelihood ratio statistic under Ho can be
derived in several cases, in particular when θο consists of only one point 9Q. Under
HQ the log-likelihood function satisfies

-2\τιΑ = ~2{1(θ0)-1(θ)) .

B®" 711 A second-order Taylor expansion at 9Q around Θ gives

1(θ0) = Ι(θ) + (νΐ(θ))Τ(θ - θ0) + \{θ - θ0)
τν21(θ)(θ - 0ο) + 0(| |θ - θο||3) ·

Because VZ(0) = 0 and V2l(9) « —3(θο), where J is the information matrix, we
have

- 2 1 n A « (Θ - θ0)
τ3(θ0)(θ - θ0) .

By the central limit theorem Θ — θο has approximately a N(0, J _ 1 (0o)) distribution
under Ho. Thus, for a large sample size, we have that —21ηΛ is approximately
distributed as X T J (0 o) X with X ~ Ν(0,3_ 1(θο)) , which has a χ | distribution,
where k is the dimension of Θ. This gives the following theorem; see also [1].

Theorem B.2.2 (Asymptot i c Distr ibut ion of Likelihood Rat io Statist ic)
For a k-dimensional parameter space, if the null hypothesis has only one value
Ho : Θ = θο and the alternative hypothesis is Hi : θ φ θο, then under some mild
regularity conditions (which are satisfied for exponential families):

. approx. 2 c

- 2 In A ~ x% for

B.3 BAYESIAN STATISTICS

Bayesian statistics is a branch of statistics that is centered around Bayes' formula
(A.23). The type of statistical reasoning here is somewhat different from that in
classical statistics. In particular, model parameters are usually treated as random
rather than fixed quantities and Bayesian statistics uses different notational con-
ventions from those in classical statistics. The two main differences in notation

BAYESIAN STATISTICS 673

1. Pdfs and conditional pdfs always use the same letter f (sometimes p is used
instead of /) . That is, instead of writing fx(x) and fx\y(x\y) for the pdf of
X and the conditional pdf of X given Y, one simply writes f{x) and f(x \ y).
If y is a different random variable, its pdf (at y) is thus denoted by f(y).
This particular style of notation is typical in Bayesian analysis and can be
of great descriptive value, despite its apparent ambiguity. We will use this
notation whenever we work in a Bayesian setting.

2. One does not usually indicate random variables by capital letters and their
outcomes by lower case letters. It is assumed that it is clear from the context
whether a variable x or Θ should be interpreted as a number or a random
variable.

In Bayesian statistics the data x is modeled via a conditional pdf / (x | 0), called
the l ikelihood, that depends on a random parameter 0 taking values in some set
Θ. The a priori information about 0 (that is, the knowledge about 0 without using
any information from the data) is summarized by the pdf of 0, which is called the
prior pdf. Additional knowledge about 0 obtained from the observed data x is
given by the conditional pdf f{9 | x) , called the posterior pdf. The posterior and
prior pdfs are related via Bayes' formula (replace the integral with a sum in the
discrete case):

^'^/ /Μ^ χ / (χ | 9) / (9) · (Β-26)

The denominator in (B.26),

/(x) = y/(x|0)/(0)d0,

is often called the marginal l ikelihood and is usually difficult to compute. A
Bayesian model specifies the prior pdf and likelihood. Once the model is given,
all inference is based on the posterior pdf in (B.26). For example, a vector for which
the posterior pdf is maximal yields a point estimate for 0, called the m a x i m u m a
posteriori estimate. Another estimate is obtained by taking the expected value of
0 under the posterior pdf. A Bayesian 1 — a confidence region, or credible region,
is any subset ^ c 6 , such that

= / / (0 | x) d0 > 1 - a . (B.27)

Bayesian models are often constructed in a hierarchical way. For example, a
three-parameter hierarchical mode l could be specified as follows:

a ~ / (α) ,

(b\a)~f(b\a),
i i M ti i u\ (B.28)
(c I a, b) ~ / (c | a, b),

(x | a, b, c) ~ / (x | a, b, c).

In other words, first specify the prior pdf of a, then given a specify the pdf of b,
etc., until finally the likelihood as a function of all the parameters is given. This

6 7 4 ELEMENTS OF MATHEMATICAL STATISTICS

procedure allows for a straightforward evaluation of the joint pdf as the product of
the conditional pdfs:

/ (x , a, b, c) = / (x | a, b, c) / (c | a, b) f(b \ a)f(a) .

To find the posterior f(a, b, c | x) , simply view / (x , o, b, c) as a function of a, b, and
c for fixed x. To find the marginal posterior pdfs, f(a | x) , f(b | x) , and / (α | x) , one
needs to integrate out the other parameters. For example,

f(c\x) = JJf{a,b,c\x)dadb.

■ EXAMPLE B.10 (Coin Flipping and Bayesian Learning)

Consider the random experiment where we toss a biased coin n times. Suppose
that the outcomes are χχ,... ,xn, with Xi = 1 if the i-th toss is heads and xi = 0
otherwise, for i = 1 , . . . , n. A possible Bayesian model for the data is

P ~ U (0 , 1)

{χι,...,χη\ρ) ~ Ber(p) .

The likelihood is therefore

n

f(x\p) = l[p^(l-p)1-^=ps(l-pr-s,
i=l

where s = x\ ^ (- α;„ is the total number of heads. Since f(p) = 1, the posterior
pdf is

/ (p | x) = c p s (l - p r - s , p e [0 , l] ,

which is the pdf of the Beta(s+1, n—s+1) distribution. The normalization constant
is c = [n + 1)(")· The maximum a posteriori estimate of p is s/n, which coincides
with the classical maximum likelihood estimate. The expectation of the posterior
pdf is (s + l) / (n + 2). The graph of the pdf for n = 100 and s — 1 is given in
Figure B.l . For this case a left one-sided 95% credible interval for p is [0,0.0461],
where 0.0461 is the 0.95 quantile of the Beta(2,100) distribution.

Figure B. l Posterior pdf for p, with n = 100 and s = 1.

BAYESIAN STATISTICS 6 7 5

Evaluating or drawing from the marginal posterior distributions may not always
be easy or feasible. When this is the case, one often turns to Markov chain Monte
Carlo techniques; see Chapter 6. For example, in the three-parameter model (B.28) <®" 225
one could use the Gibbs sampler to sample from the posterior pdf:

1. Initialize a,b,c. Then iterate the following steps:

2. Draw a from f(a | b, c, x) .

3. Draw b from f(b \ a, c, x) .

4. Draw c from f(c | a, b, x) .

After we obtain a (dependent) sample {{at,bt,ct)} from f(a,b,c|x), process only
the variables of interest, for example, only the {c t} to obtain a dependent sample
from f(c | x) .

B.3.1 Conjugacy

In Bayesian analysis it is convenient to have the posterior and prior pdfs in the
same family of distributions. This property is called conjugacy. The advantage
of conjugacy is that only the parameters of the distribution need to be updated.

Exponential families provide natural conjugate families. In particular, consider
the m-dimensional exponential family "S" 701

n

/ (x | 6») = c (0) n e£r = 1 " 'W Σ ϊ = 1 M**) γ[h{xk) , (B.29)
i = l

which is the joint pdf of an iid sample from an exponential family — see Exam-
ple B.l . Suppose the prior pdf is chosen of the form

/ (f l)<xc(9)^r=. i .(e)»·,

where the proportionality constant only depends on a = (a\,..., am, b). Then, the
posterior pdf becomes

/ (0 | x) oc / (0) / (x | 0) oc c (e) n + 6 e 5 : ^ i , " (e) (e ' + Sï= i * i (* *)))

where the proportionality constant does not depend on 0. Thus, / (0) and / (0 | x)
are in the same (m + l)-dimensional exponential family.

■ EXAMPLE B . l l (Conjugate Prior for the Poisson Distr ibut ion)

Let xi,...,xn ~üd Ροί(λ), with sample mean x = (xi + ■ ■ ■ + xn)/n. The joint pdf
can be written in the form (B.29) as

n 1

/ (χ | λ) = β - η λ Θ η ί 1 η λ Π — ,
i=iXi-

which suggests a conjugate prior of the form f(X) oc 6 - δ λ
6

α 1 η λ = e~bx\a
y corre-

sponding to the Gamma distribution. In particular, if we take a Gamma(a,/3) prior
for λ, that is,

f(X) oc e - ^ A " " 1 ,

then the posterior pdf is

/ (À | x) o c e - (n + « À À a - 1 + n a ,

which corresponds to the Gamma(a + ηχ,β + n) distribution.

6 7 6 ELEMENTS OF MATHEMATICAL STATISTICS

Further Reading

For an accessible introduction to mathematical statistics with simple applications
see [5]. For more detailed overview of statistical inference, see Casella and Berger
[2]. A standard reference for classical or frequentist statistical inference is [6]. An
applied reference for Bayesian inference is [3]. For a survey of numerical techniques
relevant to computational statistics see [7].

REFERENCES

1. P. J. Bickel and K. A. Doksum. Mathematical Statistics, volume I. Pearson Prentice
Hall, Upper Saddle River, NJ, second edition, 2007.

2. G. Casella and R. L. Berger. Statistical Inference. Duxbury Press, Pacific Grove, CA,
second edition, 2001.

3. A. Gelman. Bayesian Data Analysis. Chapman & Hall, New York, second edition,
2004.

4. R. V. Hogg and T. A. Craig. Introduction to Mathematical Statistics. Prentice Hall,
New York, fifth edition, 1995.

5. R. J. Larsen and M. L. Marx. An Introduction to Mathematical Statistics and Its
Applications. Prentice Hall, New York, third edition, 2001.

6. E. L. Lehmann and G. Casella. Theory of Point Estimation. Springer-Verlag, New
York, second edition, 1998.

7. J. F. Monahan. Numerical Methods of Statistics. Cambridge Series in Statistical and
Probabilistic Mathematics. Cambridge University Press, London, 2010.

8. J. Neyman and E. Pearson. On the problem of the most efficient tests of statistical
hypotheses. Philosophical Transactions of the Royal Society of London, Series A,
231:289-337, 1933. DOI: 10.1098/rsta. 1933.0009.

9. B. L. Welch. The generalization of 'Student's' problem when several different popu-
lation variances are involved. Biometrika, 34(l-2):28-35, 1947.

APPENDIX C

OPTIMIZATION

In this appendix we review various aspects of deterministic optimization. We refer
the reader to Chapter 12 if they have a noisy optimization problem instead. In ·®° 441
Section C.l we introduce the optimization notation, discuss important classes of
optimization problems, and give key theoretical results. Section C.2 deals with the
practical issues that arise in optimization, together with several optimization algo-
rithms. There is a close connection between deterministic gradient decent methods
discussed in this appendix and the stochastic approximation method covered in
Section 12.1. In particular, the latter can be thought of as a generalization of the
same idea to a random setting. Moreover, there are many problems that can be
solved without resorting to Monte Carlo techniques. In particular, it is worthwhile
checking if a deterministic approach applies, as they can be much more efficient.
Finally, in Section C.3, we give a small selection of test problems.

C.l OPTIMIZATION THEORY

Optimization is concerned with finding minimal or maximal solutions of a real-
valued object ive function / in some set S£:

min fix) or max f(x) . (C.l)

Since any maximization problem can easily be converted into a minimization prob-
lem via the equivalence max x / (x) = — minx —/(x), we focus only on minimization

Handbook of Monte Carlo Methods. By D. P. Kroese, T. Taimre, Z. I. Botev 677
Copyright © 2011 John Wiley & Sons, Inc.

678 OPTIMIZATION

problems. We use the following terminology. A local minimizer of / (x) is an
element x* € 3£ such that / (x*) ^ / (x) for all x in some neighborhood of x*.
If / (x*) ^ / (x) for all x G JT, then x* is called a global minimizer or global
solution. The set of global minimizers is denoted by

a rgmin / (x) .
xesr

The function value / (x*) corresponding to a local/global minimizer x* is called a
local /g lobal min imum of / (x) .

Optimization problems may be classified by the set JT and the objective function
/ . If SC is countable, the optimization problem is called discrete or combina-
torial. If instead X is a nondenumerable set such as R" and / takes values in
a nondenumerable set, then the problem is said to be continuous. Optimization
problems that are neither discrete nor continuous are said to be mixed. In func-
tional minimization, optimization occurs over a space of functions. Thus, the
problem is again of the form (C.l) , but now x is a function and / (x) is a functional
of x; for example, the integral of ||x|| over some time interval. Many interesting
problems fall into this framework, such as problems in the calculus of variations,
in opt imal control, and in shape optimization; see, for example, [21].

The search set X is often defined by means of constraints. A standard setting
for constrained optimization (minimization) is the following:

min f(x)

subject to: /ij(x) = 0, i = 1 , . . . , m , (C-2)

c/i(x) ^ 0, i = l , . . . , f c .

Here, / is the objective function, and {g{\ and {hi} are given functions so that
/ii(x) = 0 and ft(x) ^ 0 represent the equality and inequality constraints, re-
spectively. The region i f C ^ where the objective function is defined and where
all the constraints are satisfied is called the feasible region. An optimization
problem without constraints is said to be an unconstrained problem.

For an unconstrained continuous optimization problem, the search space JT is
often taken to be (a subset of) Kn , and / is assumed to be a Cfc function for
sufficiently high k (typically k = 2 or 3 suffices); that is, its fc-th order derivative
is continuous. For a C1 function the standard approach to minimizing / (x) is to
solve the equation

V / (x) = 0 , (C.3)

"3° 710 where V / (x) is the gradient of / at x. The solutions x* to (C.3) are called
stat ionary points. Stationary points can be local/global minimizers, local/global
maximizers, or saddle points (which are neither). If, in addition, the function is
C2, the condition

y T (V 2 / (x *)) y > 0 for a l l y ^ 0 , (C.4)

ensures that the stationary point x* is a local minimizer of / . The condition (C.4)
°3° 711 states that the Hessian matrix of / at x* is posit ive definite. We write H >- 0 to

indicate that a matrix H is positive definite.
In Figure C.l we have a multiextremal objective function on 3£ = IL There are

four stationary points: two are local minimizers, one is a local maximizer, and one
is neither a minimizer nor a maximizer, but a saddle point.

OPTIMIZATION THEORY 679

/(*)

Local Minimum

Global Minimum

Figure C.I A multiextremal problem in one dimension.

An important class of optimization problems is related to the notion of convexity.
A set SC is said to be convex if for all X!, x 2 € S£ it holds that α χ ι + (1 - a) x 2 £ 2£
for all 0 ^ a ^ 1. An optimization program of the form (C.2) is said to be a convex
programming problem if:

1. The objective / is a convex function; that is, for all x j e l and 0 ^ a -ζ

1,

/ (o x + (1 - a) y) < a / (x) + (1 - a) / (y) . (C.5)

2. The inequality constraint functions {gi} are convex.

3. The equality constraint functions {hi} are affine, that is, of the form a^x—6j.
This is equivalent to both hi and —hi being convex for all i.

A function / satisfying (C.5) with strict inequality is said to be strict ly convex.
It is said to be (strictly) concave if — / is (strictly) convex. Assuming that 3£ is
an open set, convexity for / G G1 is equivalent to

/(y) > /(χ) + (y - χ)τV/(x) for all x j e J .

Moreover, for / G C2 strict convexity is equivalent to the Hessian matrix being
positive definite for all x G SC, and convexity is equivalent to the Hessian matrix
being posit ive semidefinite for all x; that is, y T (V 2 / (x)) y ^ 0 for all y and x.
We write H y 0 to indicate that a matrix H is positive semidefinite.

Table C.l summarizes some commonly encountered problems, all of which are
convex, with the exception of the quadratic programs with A >£ 0.

680 OPTIMIZATION

Table C.I Some common classes of optimization problems.

Name

Linear Program (LP)

Inequality Form LP

Quadratic Program

(QP)

Convex QP (CQP)

Convex Quadr. Con-
str. QP (CQCQP)

Quadratically Con-
strained QP (QCQP)

Second-order Cone
Program (SOCP)

Geometric Program
(GP)

Semidefinite Program
(SDP)

Convex Program
(CVX)

/ (x)

c T x

c T x

\xT Ax + b T x

\xTAx + b T x

| x T ^ x + b T x

\xT Ax + b T x

a T x

C T X

/ (x) convex

Constraints

Ax = b and x > 0

Ax^ b

D x < d, £ x = e

D x < d , £ x = e {At 0)

xT^4jX + b ^ x + ^ ^ 0, i = 1 , . . . , m,

Ex = e (Α,Α^.,.^Ο)

χ τ ^ χ + b ^ x + Ci ^ 0, i = 1 , . . . , m,

Ex = e

\\AiX + bi\\^cJx + di, i = l , 2 , . . . , m ,

£ x = e

d^n^isf =1. x > 0

(A0 + J27=i xiAi) ^ °> { ^ } symmetric

{(?i(x)} convex, {/ij(x)} of the form a ^ x — bi

A hierarchy of convex optimization problems is:

LP c CQP c CQCQP c SOCP c SDP c CVX.

Geometric programs, after a suitable transformation [4], fit into the hierarchy as
follows:

LP C GP C CVX.

Recognizing convex optimization problems or those that can be transformed to
convex optimization problems can be challenging. However, once formulated as
convex optimization problems, these can be efficiently solved using subgradient
[19], bundle [10], and cutting-plane methods [11].

OPTIMIZATION THEORY 681

■ EXAMPLE C.l (Fastest Mix ing Markov Chain on a Graph)

Consider a time-homogeneous Markov chain on a graph G = (V, E) with one-step "^ 632
transition matrix P of dimension n, having non-zero (i, j) - th entry only if (i, j) € E.

Suppose we wish to populate the non-zero entries of P in order to find the fastest
mixing Markov chain on Ç — that is the chain whose second-largest eigenvalue
modulus is smallest. This can be formulated as an SDP as follows [3, 5]:

min s
P,s

such that - s i < P 1 1 T ■< si
n

Pl = l

P = PT

Pij^O, i,j,= 1,2, ...,n

This problem can then be solved via standard methods for SDPs, for example,
interior-point methods, in which Newton's method is applied to a sequence of lin-
early constrained problems, where the inequality constraints become part of the
objective function through the use of a barrier function (see [5, Chapter 11] for
details). A subgradient method has also been developed for this problem which is
preferred for large graphs (see [3] for details).

As an illustration, consider the transition graph depicted in Figure C.2.

Figure C.2 Transition graph with self-loops.

In this case, the SDP is solved with a matrix

/1/3 0 0 2/9 2/9 2/9\
0 1/3 0 2/9 2/9 2/9

p* _ 0 0 1/3 2/9 2/9 2/9
2/9 2/9 2/9 1/3 0 0
2/9 2/9 2/9 0 1/3 0

\2/9 2/9 2/9 0 0 1/3/

Note that this matrix is of the form

P_f Pi (1-P)/30\
^-\(l-p)/30 PI J'

682 OPTIMIZATION

where I is the 3 x 3 identity matrix, O is a 3 x 3 matrix of ones, and p £ [0,1].
Indeed, by symmetry considerations, and the fact that P is a stochastic matrix, an
optimal solution must be of the form above.

The optimal matrix, P* = P1/3, has second largest eigenvalue modulus of 1/3.
Figure C.3 plots the second largest eigenvalue modulus for matrices of the form Pp

versus p.

3
-a

.3 0.6

.SP
H 0.4

ce
-a
0
o

0.3 0.4 0.5 0.6
P

Figure C.3 The second largest eigenvalue modulus of Pp for p G [0,1].

In some optimization problems one has many different objective functions, and
one wishes to find a solution that simultaneously results in acceptable solutions over
all functions. One widely used concept is that of Pareto optimality. Informally,
a point is called Pareto optimal if one cannot improve the solution with respect to
one objective function without worsening the solution of another. In a minimization
setting, this can be outlined formally as follows.

A point x is said to • Suppose we have m functions f\, / 2 , . . . , fm : R n —
dominate a point y if

1. for all i, / ; (x) ^ / , (y) ; and

2. for at least one j , fj(x) < fj(y)·

• A point x* € Rn is called Pareto opt imal if it is not dominated by any
other point. Denote the set of Pareto optimal points by X*.

• The Pareto front is the set of the form { (/ i (x) , . . . , / m (x)) : x € X*}, so
that any point on the Pareto front corresponds to a Pareto optimal point.

There are numerous problems that are encapsulated by the term noisy opti-
mization, where the objective function / cannot be evaluated precisely but instead
an estimate / is available. This estimate can be viewed as / corrupted by some
stochastic mechanism. For constrained problems, the constraint functions may

OPTIMIZATION THEORY 683

only be available as estimates. The intuition here is that one may have a level of
uncertainty as to whether or not a given point is feasible.

The s tochast ic approximation approach (also called the s tochast ic coun-
terpart method) of Section 12.2 actually replaces deterministic elements of a "3* 446
given problem by estimates, which results in a simpler optimization problem.

C. l . l Lagrangian Method

The main components of the Lagrangian method are the Lagrange multipliers and
the Lagrange function. The method was developed by Lagrange in 1797 for the
optimization problem (C.2) with only equality constraints. In 1951 Kuhn and
Tucker extended Lagrange's method to inequality constraints. Given an optimiza-
tion problem (C.2) containing only equality constraints /ij(x) = 0, i = 1, . . . , m,
the Lagrange function is defined as

m

£(x,/3) = / (x)+^ft / i i(x) ,
t = l

where the coefficients {ßi} are called the Lagrange multipliers. A necessary
condition for a point x* to be a local minimizer of / (x) subject to the equality
constraints /ij(x) = 0, i = 1 , . . . , m, is

Vx£(x*,r)=0,

for some value fi*. The above conditions are also sufficient if £(x,/3*) is a convex
function of x.

Given the original optimization problem (C.2), containing both the equality and
inequality constraints, the generalized Lagrange function, or Lagrangian, is
defined as

k m

£(x, α, 0) = /(χ) + £ <*&(*) + Σ Α ^ Χ) ·
i = l i = l

Theorem C . l . l (Karush—Kuhn—Tucker Condit ions) A necessary condition
for a point x* to be a local minimizer of / (x) in the optimization problem (C.2) is
the existence of an a* and ß* such that

ν χ £ (χ * , α * , / Τ) = 0 ,

Vß£(x*,a*,ß*)=0,

ffi(x*)sS0, i = l,...,k,

a* ^ 0, i = 1 , . . . , k ,
a * 5 i (x *) = °> i = l,-..,k.

For convex programs we have the following important results [5, 8]:

1. Every local solution x* to a convex programming problem is a global solution
and the set of global solutions is convex. If, in addition, the objective function
is strictly convex, then any global solution is unique.

684 OPTIMIZATION

2. For a strictly convex programming problem with C1 objective and constraint
functions, the KKT conditions are necessary and sufficient for a unique global
solution.

C.1.2 Duality

The aim of duality is to provide an alternative formulation of an optimization
problem which is often more computationally efficient or has some theoretical sig-
nificance (see [8, Page 219]). The original problem (C.2) is referred to as the
primal problem whereas the reformulated problem, based on Lagrange multipli-
ers, is referred to as the dual problem. Duality theory is most relevant to convex
optimization problems. It is well known that if the primal optimization problem
is (strictly) convex then the dual problem is (strictly) concave and has a (unique)
solution from which the (unique) optimal primal solution can be deduced.

The Lagrange dual program (also called the Wolfe dual) of the primal
program (C.2), is:

max £.*(α,β)

subject to: a ^ 0 ,

where C* is the Lagrange dual function:

C*(a,ß) = inf £ (χ , α , / 3) . (C.6)
x€5s

It is not difficult to see that if /* is the minimal value of the primal problem, then
C*(ct,ß) < /* for any a. ^ 0 and any ß. This property is called weak duality.
The Lagrangian dual program thus determines the best lower bound on /* . If d*
is the optimal value for the dual problem then d* ^ /* . The difference / * — d* is
called the duality gap.

The duality gap is extremely useful for providing lower bounds for the solutions
of primal problems that may be impossible to solve directly. It is important to note
that for linearly constrained problems, if the primal is infeasible (does not have a
solution satisfying the constraints), then the dual is either infeasible or unbounded.
Conversely, if the dual is infeasible then the primal has no solution. Of crucial
importance is the s trong duality theorem, which states that for convex programs
(C.2) with linear constrained functions hi and gi the duality gap is zero, and any
x* and (a*,/3*) satisfying the KKT conditions are (global) solutions to the primal
and dual programs, respectively. In particular, this holds for linear and convex
quadratic programs (note that not all quadratic programs are convex).

For a convex primal program with G1 objective and constraint functions, the
Lagrangian dual function (C.6) can be obtained by simply setting the gradient
(with respect to x) of the Lagrangian £ (x , a, ß) to zero. One can further simplify
the dual program by substituting into the Lagrangian the relations between the
variables thus obtained.

Further, for a convex primal problem, if there is a strict ly feasible point x (that
is, a feasible point satisfying all of the inequality constraints with strict inequality),
then the duality gap is zero, and strong duality holds. This is known as Slater's
condit ion [5, Page 226].

TECHNIQUES FOR OPTIMIZATION 6 8 5

The Lagrange dual problem is an important example of a saddle-point prob-
lem or min imax problem. In such problems the aim is to locate a point (x*, y*) €
JT x & that satisfies

sup inf / (x , y) = inf / (x , y *) ==/(x*,y*) = s u p / (x * , y) = inf sup / (x , y) .
v ç f xEx x£.x y€^ x£3c y £ ^

The equation
sup inf / (x , y) = inf s u p / (x , y)
yggrxGÄT xEa ygy

is known as the minimax equality. Other problems that fall into this framework
are zero-sum games in game theory; see also [6] for a number of combinatorial
optimization problems that can be viewed as minimax problems.

C.2 TECHNIQUES FOR OPTIMIZATION

C.2.1 Transformation of Constrained Problems

A constrained optimization problem can sometimes be reformulated as a simpler
unconstrained problem — for example, by preprocessing or transforming the vari-
ables. We discuss a number of techniques pertaining to minimization problems of
the form (C.2).

C.2.1.1 Penalty Functions The overarching idea of penalty functions is to trans-
form a constrained problem into an unconstrained problem by adding weighted
constraint-violation terms to the original objective function, with the premise that
the new problem has a solution that is identical or close to the original one and is
easier to solve.

As an extreme example, one could replace a constrained problem with an un-
constrained one with objective function

r , N I f (χ) if x is feasible, / (x) = Jjy '
I oo otherwise.

These types of transformations can change the nature of the problem — in the
extreme example just given, / is not a differentiable function, regardless of the
form of / . If / (x) is well-defined outside the feasible region, then a simple constant-
penalty function is

~ J / (x) if x is feasible,

1 / (x) + C otherwise,

where C is some large constant. If there are only equality constraints, then

m

/(χ) = /(χ) + Σ α , { Μ χ) } 2

for some constants α ι χ . . . , am > 0 is an exact penal ty function, in the sense that
the minimizer x* of / is equal to the minimizer x* of / subject to the m equality

686 OPTIMIZATION

constraints hi,..., hm. With the addition of inequality constraints, one could use

m k

/ (x) = /(x) + Σ at{hi(x)}2 +Σ^ maxfe(x), 0} '
i = l j = l

for some constants αχ , . . . , am, bi,..., bk > 0.
Sequential penal ty functions are penalty functions for which one obtains x*

as the limiting solution of a sequence of penalized problems. Barrier functions are
an important example of such penalty functions. Suppose we have an inequality-
only constrained problem. Then the inverse barrier function is of the form

7(x) = / (x) - a g ^ , a > 0 ,

and the logarithmic barrier function has the form

fc

/ (x) = / (x) - « 5 > (- 5 j (x)) .
i = i

These have the property that solutions x* to the barrier problem tend to solutions
x* of the original problem as a J. 0.

Another penalty function of interest is

m k

/ (x) = i//(x) + Σ |/n(x)| + Σ max{ffi(x), 0} ,
i=l j = l

where v > 0. This penalty function has the property that for appropriately chosen
v, local minimizers of / are local solutions to the constrained problem "to a large
extent" [8].

C.2.1.2 Change of Variables Suppose in problem (C.2) the unconstrained set ty
can be transformed to the feasible region 3C of the constrained problem via a
function φ : R n -+ I " such that JT = φ{&). Then, (C.2) is equivalent to the
minimization problem

m m / (0 (y)) ,
yew

in the sense that a solution x* of the original problem is obtained from a trans-
formed solution y* via x* = φ(γ*)- Table C.2 lists some examples of possible
transformations.

Table C.2 Some transformations to eliminate constraints.

Constrained Unconstrained

x > 0 exP(?/)
x^Q y2

a < x < 6 a + (6 — a) sin2 (y)

TECHNIQUES FOR OPTIMIZATION 6 8 7

C.2.1.3 Transforming the Objective and Constraint Functions Instead of transform-
ing the variable x in (C.2), one can try to transform the objective function: / (x) =
a (/ (x)) for some real-valued function a. The same can be done for the constraint
functions. In particular, if

1. a : R -> K is a monotone increasing function,

2. 6 i , , . . , 6 m : R - » R are functions that satisfy h(u) = 0 ·$=£· u = 0, and

3. c\,..., Ck ■ M. —> K satisfy Cj(u) ^ 0 ·<=> u ^ 0,

then (C.2) is equivalent to the constrained problem of the same form with objective
function / (x) = a (/ (x)) and constraint functions /ij(x) = 6j(/ij(x)) and gj(x) =
C J (5 J (X)) , in the sense that any solution to the transformed problem is a solution
to the original problem.

C.2.1.4 Slack Variables The inequality constraints in (C.2) can be modified by
the introduction of k independent slack variables yi,... ,yk, replacing each of the
k inequality constraints <?i(x) ^ 0 by pairs

-y% < o ,

3i(x) + J/i = 0 .

This gives a problem of dimension n + k, with m + k equality constraints, and k
simple inequality constraints. The resulting problem is equivalent to the original
one, in the sense that any solution (x*, y*) to the transformed problem is such that
x* is also a solution to the original problem.

C.2.1.5 Eliminating Equality Constraints Suppose that <& = K" in (C.2) and that
there is a function φ : Κ' —> Kn such that for any x satisfying

h1(x) = ■■■ = hm(x) = 0 ,

we have some y such that x = </>(y)· This situation arises, in particular, if one
can explicitly solve the m equality constraints in terms of I of the variables {xi, i =
1 , . . . , n} . Then, we can consider a transformed problem (C.2) with / (y) = /(</>(y))
and <?fc(y) = <7fc(</>(y))· Any solution y* to this problem can be transformed into a
solution of the original problem by taking x* = φ(γ*).

It is also possible to replace each equality constraint hj(x) = 0 by a pair of
inequality constraints hj{x) ^ 0 and —hj(x) ^ 0. This idea is mainly of theoretical
interest as it can lead to poor practical performance.

C.2.2 Numerical Methods for Optimization and Root Finding

In order to minimize a C1 function / : R n —> R one may solve

V / (x) = 0 ,

which gives a stationary point of / . As a consequence, any technique for root-finding
can be transformed into an unconstrained optimization method by attempting to
locate roots of the gradient. However, as noted in Section C.l, not all stationary

688 OPTIMIZATION

points are minima, and so additional information (such as is contained in the Hes-
sian, if / is G2) needs to be considered in order to establish the type of stationary
point.

Alternatively, a root of a continuous function g : M™ —> R n can be found, for ex-
ample, by minimizing the Lp norm of g, that is minx / (x) , where / (x) = | |g(x)| |p .
Hence any (un) constrained optimization method can be transformed into a tech-
nique for locating the roots of a function.

There are two broad categories of optimization algorithms for C1 functions:

• Those of l ine search type, where on each iteration first a direction is given
and then a step size is determined.

• Those of trust region type, where a step size is given and a direction is
determined.

In the next sections, several well-known root-finding and optimization algorithms
are described.

C.2.2.1 Newton-Like Methods Suppose we wish to find roots of a function f :
M™ —* M.n. If f is in C1, we can approximate f around a point x t as

f (x) « f (x t) + J f (x t) (x - x t) ,

" ^ 710 where Jf is the Jacobi matrix — the matrix of partial derivatives of f; see (D. l l) .

When Jf (x t) is invertible, this linear approximation has root

x* = x t - J f 1 (x t) f (x t) .

This gives an iterative updating formula for finding roots of f, namely

x t+i = xt - Jf
-1(x«) f(x«) = xt - y*, (C.7)

where y t is solved from
Jf(x-t)yt = f(xt) ·

This is known as N e w t o n ' s m e t h o d (or the Newton—Raphson method) for
root-finding.

To get a robust method, damping may be required, in which we update via

x*+i = xt - a* yt, cet e (o, l] .

The damping factor at is chosen so that

| | f(x t-atyt)| |< (1-9^)11^)11,

where q G (0,1) is a constant. The performance of such methods depends crucially
on the quality of the initial point xo-

We can adapt a root-finding Newton-like method to one for optimization by
simply trying to locate a zero of the gradient. When / : E n —► K is a C2 function,
we have V / : K n - » R ™ , and so finding a root of V / leads to the updating formula

x t + i = x t - H-1 V / (x t) ,

TECHNIQUES FOR OPTIMIZATION 6 8 9

where Ht is the Hessian matrix at x t (because the Jacobi matrix of the gradient
is the Hessian). As with the root-finding case, in practice the updating formulas
often include a damping parameter, giving

x t + 1 = x t - a t J f f t - 1 V / (x t) · (C8)

The best step size at in the direction

d t = -Hf1 V / (x t) ,

is the minimizer of h(a,t) = / (x t +atdt), at > 0, which can be found, for example,
by line search methods (see Section C.2.2.5).

C.2.2.2 Gradient Descent and Conjugate Gradient Methods If the identity matrix
is used in place of the Hessian in (C.8), one obtains s t e e p e s t de scen t or g r a d i e n t
descen t methods, which use updates of the form

xt+i = x t -at V / (x 4) ,

where at > 0 is a (typically small) step size. For large-dimensional problems, con-
j u g a t e g r a d i e n t methods tend to be used instead [9]. These form step directions
d 0 = - V / (x 0) and

d t = - V / (x t) + / 3 t - i d t - i

for suitably chosen numbers βο,βι,---- The direction d t is the component of
—V/(xt) that is conjugate (that is, perpendicular) to d o , d i , . . . , d t _ i ; hence the
name. The Fletcher—Reeves conjugate gradient method takes

(V / (x t)) T V / (x t)
Pt- (V / (x t - 1)) T V / (x t _ 1) '

and the Polak—Ribiére conjugate gradient method takes

(V / (x t) - V / (x t _ i)) T V / (x t)
ßt-x = (V / (x t _ 1)) T V / (x t _ 1)

In practice, d t is sometimes reset to — V/ (x j) periodically, say every n iterations.
Another common heuristic is to take ßt-ι = max{0, ßt-i}, with ßt-i as above.
The step size at is resolved by exact line search methods (see Section C.2.2.5).

C.2.2.3 Quasi Newton Methods The idea behind quasi Newton methods, in a
root-finding context, is to replace the inverse of the Jacobi matrix in (C.7) by an
approximative n x n matrix Ct satisfying the secan t cond i t i on

Ct (f (x t) - f (x t - i)) = (x t - x t - i) . (C.9)

This gives the iterative updating formula

x t + i =xt-Ct f (x t) ·

Condition (C.9) is, for example, satisfied by taking

r _r , (x t -x« - i) -Ct - i (f (x t) - f (x t - i)) i i T

ut
T (f(xt) - f (x t - i))

690 OPTIMIZATION

for any ut φ 0. Broyden's method takes u t = Ct~!i(xt — x*-i). Similar to
Newton's method, one usually takes a partial step size at at each iteration, giving

x t + i = x t - at Ct f (x t) ,

where at is resolved via a line search technique (see Section C.2.2.5).
In an optimization context, we simply replace f by V/ , giving the iterative

updating formula
X t+l = Xt - Qt C t V / (x t) .

In order to have a fast optimization method it is important that the matrix Ct is
calculated quickly at each iteration t. Below, we list the most common formulas
for Ct, which express Ct as a low-rank update to the previous matrix, Ct-\- We
use the notation yt = x t - x t_i and gt = V/(x t) - V/(x t_1) .

1. The Broyden—Fletcher—Goldfarb—Shanno formula updates Ct as

C =C i (l i g * T c i t - l g A y t y < f fytëj Ct-i+Ct-igtyJ
V yt

Tgt JyJst V yjst

If Ct-i is symmetric then so is Ct, since the (rank 2) update matrix is sym-
metric.

2. The (symmetric) rank one formula is given by

(yt - Ct-i gt)(y* - Ct-i gt)T

Ct = Ct-! +
(y t - C t - i g t) T g t

This applies a rank 1 update to Ct-i, and if Ct-\ is symmetric, then so
is Ct- However, even if Ct-\ is positive definite, Ct may not be. Further,
the denominator (yt — Ct-igt)T gt may become small (introducing numerical
difficulties) or vanish entirely.

3. The Davidon—Fletcher—Powell formula is given by

n n , ytyj Ct-igtgJCt-i
y t gt gt Ct-i gt

This applies a rank 2 update to Ct-i to obtain Ct- If Ct-i is positive definite
then so is Ct, whenever y^gt > 0 (a curvature condition). Symmetry is also
preserved.

In practice, the initial matrix Co is often set to the identity matrix i".

C.2.2.4 Projected Subgradient Method Consider the problem of minimizing a con-
vex function / over a convex set 3C Ç Rn, where at each point x a subgradient
of / , denoted g(x), is available. A subgradient g(x) is a vector that satisfies
/ (y) - /(x) ^ g(x)T(y - x) for all y G ST.

Starting with a feasible Xi £ JT, the projected subgradient method produces
a sequence of iterates via

x t + 1 = n ^ (x É - / 3 t g (x t)) , (C.10)

TECHNIQUES FOR OPTIMIZATION 6 9 1

where {ßt} is a sequence of strictly positive step sizes and Π^τ is a project ion
operator from Mn to 3C. Common choices for the step sizes are:

1. If the optimal objective function value /* is known, then Polyak's s tep size
(or a dynamic s tep size) is often used:

/ (x t) - / *
Pt llg(xt)ll2 '

If / * is not known, then it is sometimes estimated on step t by /t* = —St +
m i n ^ t / (x s) , where 6t > 0.

2. Constant s tep size: ßt = ß.

3. Constant s tep length: ßt = a / | | g (x t) | | 2 . The constant step length can
be viewed as a dynamically scaled constant step size, with scaling factor
It = l / l |g (x t) l | 2 · Another popular scaling choice is ~ft = l /max{c , | |g(x t) | |} ,
for some constant c > 0.

4. Slowly decreasing s tep sizes: Here l im^oo ßt = 0 but at a slow enough
rate such that 53t^i ßt = oo.

5. Slowly decreasing s tep lengths: Here ßt = a t / | | g (x t) | | 2 , where at ^ 0,
limt^oo at = 0, and J2tLi at = ° ° .

If / G C1, that is, / is differentiable, then the only subgradient is the (usual)
gradient, and g(y) = V / (y) . In this situation we recover the steepest descent
method. When only a stochastic estimate of a subgradient gt is available, we may
use the stochastic approximation methods in Section 12.1. "S" 441

C.2.2.5 Line Search Techniques A l ine search problem is a one-dimensional
optimization problem of the following form. Given a function / : R n —> R, a
direction d G R™, and an initial point x £ l " , solve

min/i(a) == m i n / (x + a d) .

For many practical implementations of algorithms such as Newton's method or
quasi Newton methods, an exact or approximate solution to a line search problem
is desired.

A line search problem may be solved using, for example, Newton's method or
bisection applied to the gradient of h. A simple scheme that does not use deriva-
tives is golden sect ion search: given a bracket of points (a i , 02,03) satisfying
h{d2) ^ min{/i(ai) , h(az)}, ct\ < a-z < 0:3. and the ratio condition

Q3 — 0-2 I + N/5 2
= — or T= ,

«2 - " l 2 1 + V 5
a new point «4 is chosen so that potential brackets (α ι , α ^ α ^) and (0:2,04,0:3)
maintain the ratio condition. Whichever interval is smaller and still brackets a
minimum is chosen as the next bracket of points.

When a line search problem is a subproblem of a larger optimization algorithm,
for example when determining adaptive step sizes, then speed is paramount. For a

692 OPTIMIZATION

step size at in direction dt, for example dÉ = —Hf V / (x t) in Newton's method,
at need not always be solved exactly. Instead, it is often enough to find the step
size approximately. A common criterion for a step size is that it satisfies the Wolfe
or Wolfe—Powell conditions. These consist of the sufficient decrease condition
(also called the Armijo condition)

/ (x t + a d t) < / (x t) + a ß d t
T V / (x t) , ρ £ (0,1) ,

and the curvature condit ion

d t
T V/(x t + a d t) 2 <7d (

TV/(x t) , σ G (ρ, 1) .

If d t is a descent direction (that is, dJVf(x.t) < 0), and if / is a C1 function that
is bounded from below on the ray {x t + a d t : a > 0}, then there always exist step
lengths a satisfying these conditions.

In practice, for the Broyden-Fletcher-Goldfarb-Shanno quasi Newton method a
very loose line search is recommended with g = 10~4 and σ = 0.9, say. Often the
stronger curvature condition

| d t
T V / (x t + a d i) | ^ a | d t

T V / (x t) |

is used, and this new pair of conditions is often referred to as the s trong Wolfe
conditions.

C.2.2.6 Trust Region Methods Let / : Rn —> K be a C2 function. For each point
y, its trust region of radius Δ is the set

&(y) = { x E R " : ||y - x|| < Δ } ,

where the norm || · || and the radius Δ may depend on y. For example, if || · || is
the Euclidean norm, the trust region is simply an n-dimensional ball of radius Δ
centered at y. Within each trust region, one builds a local model for / . A trust
region algorithm builds a sequence of points Χο,Χι , . . . with corresponding trust
regions 3§o,3ë\,... that gradually shrink toward a minimizer of / . A basic trust
region algorithm is as follows.

Algori thm C. l (Trust Region Algori thm)

1. Initialize xo, Δο, 0 < ηι ^ 772 < 1> and 0 < 71 ^ 72 < 1· Compute / (xo) .
Set t = 0.

2. Choose a norm \\ ■ \\t and define a model mt : Kn —> K for f in the trust region

Set-

3. Compute a step s t that "sufficiently reduces" the model mt and so thatxt+St £
Sêt (that is, does not leave the trust region). Set the trial point x t + i = x t + s t .

4- Compute / (x t + i) and set

f(xt) - / (x l + 1)

m t (x t) - m t (x t + i) '

If Qt ^ iji, then set xt+i = Xt+i,' otherwise, set Xt+i = Xj.

TECHNIQUES FOR OPTIMIZATION 6 9 3

5. Update the trust region radius as follows:

• (Unsuccessful iteration) if gt ^ 772, set Δ ί + ι e [A t ,oo);

• (Successful iteration) if Qt £ [»71, »72)? set Δ ί + ι G [72A i ; A t] ;

• (Very successful iteration) if Qt < f}\, set Δ ί + ι G [7iA t ,72AÉ].

5ei ί = ί + 1 and repeat from Step 2.

Typically a quadratic model of the form

mt{xt + Y) = /(x*) + V / (x t) T y + \yTHt y

is used inside the trust region, where Ht is (an approximation to) the Hessian at
x t . For many problems, || · ||t is taken to be the Euclidean norm || · || on every
iteration, though different choices make sense for different problems — see [7] for
more details.

C.2.2.7 Bisection The bisection method is a simple procedure for finding a root x*
of a continuous function g(x) on an interval [a, b], where g(a) and g{b) have opposite
signs. In an optimization context, if / is a G1 function, take g(x) = ^ / (x) ·

Algori thm C.2 (Bisection)

1. Define a^ = a and bo = b. Set n = 0.

2. Let cn = (an + bn)/2 and set

[«n+l; ^„4

) g(cn) < 0

[cn,Cn\, g(an)g(cn) = o

] , g(an)g(cn) > 0

3. If bn+i — αη+ι < ε for some ε > 0 stop and return (6n+i + an+i)/2 as an
approximation to x*; otherwise, set n = n + 1 and return to Step 2.

Notice that x* £ [an, bn] for each n, and that bn — an ^ 2~n(b — a).

C.2.2.8 Ellipsoid Method The ellipsoid m e t h o d can be seen as a multidimen-
sional generalization of the bisection method as applied to minimization problems.
The method originates with Shor [18] and Yudin and Nemirovsky [22]. Khachiyan
[13, 14] proves that linear programming problems can be solved in polynomial time
with an ellipsoid algorithm, elevating their importance.

Suppose we have a G1 function / : Rra —> R. Then the ellipsoid algorithm is as
follows.

Algori thm C.3 (Ellipsoid Algori thm)

1. Initialize an ellipsoid EQ = {x G R n : (x —xo)Tß^" (x —xo) ^ 1} containing
a minimum x*, by specifying an initial center xo and generator Bo- Set t = 0.

2. Evaluate the gradient at the current ellipsoid center, g t = V / (x t) .

694 OPTIMIZATION

3. Compute a new center and generator via

1 BtSt
x*+i = x t

■ + 1 VsjBtgt '

and
Βι+1 = ^ ^ (Β >

 2 (Btgt)(Btgt)
T

n2 - 1 V n + 1 g t
TStgt

defining a new ellipsoid

Et+1 = { x G l " : (x - x t + i) T £ t - + i (x - χ ί + 1) ^ 1} .

4- If a convergence criterion is met, stop; otherwise, set t = t + 1 and repeat
from Step 2.

C.3 SELECTED OPTIMIZATION PROBLEMS

In this section we list a number of potentially challenging discrete problems, to-
gether with a suite of commonly encountered (constrained and unconstrained) con-
tinuous test problems.

C.3.1 Satisfiability Problem

The (Boolean) satisfiability (SAT) problem plays a central role in combinatorial op-
timization and complexity theory. Any NP-complete problem, such as the max-cut
problem, the graph-coloring problem, and the TSP can be translated in polynomial
time into a SAT problem. We consider only the problem in conjunctive normal
form.

In this case, the particular problem of interest is to find a binary vector x =
(Χ\,ΧΪ, . . . , xn) G {0 ,1} η which, given a set of m true-false clauses, satisfies all of
them, or else declare that the problem has no solution. Typically, the elements of
x are interpreted as "true" or "false" according to whether they are 1 or 0. If we
associate clause functions C\,..., c m with the m clauses, with the property that
Cj(x) = 1 when x satisfies clause j and c,(x) = 0 otherwise, then a SAT problem
is of the form

nax TTcfc(x),
{0,1}" "

max
x6 fc=l

or equivalently

max > et (>
fc=l

490 For another formulation of the SAT problem using matrices, see Example 14.1.

C.3.2 Knapsack Problem

The basic problem is
max p x ,
xear

SELECTED OPTIMIZATION PROBLEMS 6 9 5

subject to the constraint
w T x ζ c,

where both p and w are vectors of nonnegative numbers, and 2£ is typically the
set {0,1}™, in which case this problem is called the binary knapsack problem.

The interpretation is that we have a collection of n items, with each item k
having associated usefulness measured by pk, and weight by Wk- The goal is to
maximize the usefulness of items packed in the knapsack, subject to the condition
that the total weight does not exceed c.

C.3.3 Max-Cut Problem

The max-cut problem can be formulated as follows. Given a weighted graph Q =
iy,E) with node set V = { l , 2 , . . . , n } and edge set E, partition the nodes of
the graph into two subsets V\ and V2 such that the sum of the weights (costs) of
the edges between the two subsets are maximized. We assume that the costs are
nonnegative (possibly 0), and are stored in a cost matrix C with each entry C(i,j)
as the cost (weight) of link (i,j).

More precisely, the problem is to solve

max Σ (C{i,j) + C(j,i)) .
(i,j)ev1xv2

C.3.4 Traveling Salesman Problem

The traveling salesman problem (TSP) can be formulated as follows. Consider a
weighted graph G with n nodes, labeled 1 ,2 , . . . , n. The nodes represent cities and
the edges represent the roads between the cities. Each edge from i to j has weight or
cost C(i,j), representing the length of the road. The problem is to find the shortest
tour that visits all the cities exactly once with the exception of the starting city,
which is also the terminating city. The problem is determined by the cost matrix
C, where C(i,j) = C(j,i) (possibly infinity).

More precisely, we wish to solve

7 1 - 1

m i n C (x „ , x i) + S^ C(xi,xi+i),
i=l

where Π is the set of all permutations of 1, 2 , . . . , n.

C.3.5 Quadratic Assignment Problem

The quadratic assignment problem has various applications such as computer chip
design, optimal resource allocation, and scheduling. In the context of optimal
allocation, the objective is to find an assignment of a set of n facilities to a set of n
locations such that the total cost of the assignment is minimized. More precisely,
the problem is to minimize the cost function

n n

χΕΠ *— é *■—'
i=l j~ l

696 OPTIMIZATION

where Π is the set of all permutations of 1, 2 , . . . , n and F is an n x n matrix such
that Fij represents the flow of materials from facility i to facility j . The matrix
D is such that D(i,j) represents the distance between location i and location
j . In the symmetric quadratic assignment problem both F and D are symmetric
matrices.

C.3.6 Clustering Problem

The clustering problem reads as follows: given a dataset of points in a d-dimensional
Euclidean space, partition the data into K clusters such that some empirical loss
function is minimized. A typical loss function is the sum of the squared Euclidean
distances between the points and their respective cluster centers. Let us denote
the points as yi , . . . ,y jv , the clusters as C i , . . . ,CK, and the corresponding cluster
centroids as C\,...,CK, determined from the nonempty clusters as

1 \C.A l ^ y · IG y€Ci

Then the problem is

min. Σ Σ lly-cfcl' C i , . . . , C K ;

C.4 CONTINUOUS PROBLEMS

C.4.1 Unconstrained Problems

C.4.1.1 Paviani's Function

f(^) = ^Un\xi-2) + ln\lO-xi))~if[xi\ . (C. l l)

C.4.1.2 Rastrigin's Function
n

f{x.) = lOn + ^ t â - lOcos^TTZi)) . (C.12)

This has minimal value of / (x) = 0 at x = (0 , . . . , 0).

C.4.1.3 Rosenbrock Function, Second de Jong's Function

n-l

/(x) = £ (100 (xl+1 - xl)2 + {xi - l)2) . (C.13)

This has minimal value of / (x) = 0 at x = (1 , . . . , 1).

C.4.1.4 Sphere Model, First de Jong's Function

/(x) = f > 2 . (C.14)

This has minimal value of /(x) = 0 at x = (0 , . . . , 0).

CONTINUOUS PROBLEMS 6 9 7

C.4.1.5 Third de Jong's Function

n

/(x) = Σ [Xi\ . (C.15)
i=l

This has minimal value of /(x) = 0 at x = (0 , . . . , 0).

C.4.1.6 Trigonometric Function
n

/(x) = 1 + ̂ β β ΐ η 2 ^ - x*f) + 6sin2(2r7(xi - x*)2) + μ(χτ - x*)2 . (C.16)

This has minimal value of /(x) = 1 at x = x*.

C.4.2 Constrained Problems

C.4.2.1 Ackley's Function

7 1 - 1

f (x \ _ V^ ^20 + e - 20e~0'2V/0-5(a:?+i+:l:^ - e0.5(cos(27rai+i)+cos(27rXi)A ^ (C.17)

i=l

with —30 < Xj ^ 30. This has minimal value of /(x) = 0 at x = (0 , . . . , 0).

C.4.2.2 Ackley's Stretch V Sine Wave Function

/ (*) = Σ > 2 + ι + x2)a25(sin2(50(x2
+1 + x2)0·1) + 1) , -10 < Xi < 10 . (C.18)

i=l

This has minimal value of /(x) = 0 at x = (0 , . . . , 0).

C.4.2.3 Egg Holder

n- l

i=l

512 ^ Xi sC 512

/(x) = J] - (x i + i + 47) sin (Λ/|Χ*+Ι + ̂ + 471 j - xl sin (y/\Xi - (x i + 1 + 47) |)

(C.19)

C.4.2.4 Griewangk's Function

n / \ n 2

/ (x) = _ J] c o s f ^ J + X ; ^ 5 + l , -600 < a* < 600 . (C.20)
i = l ^ ' î = l

This has minimal value of /(x) = 0 at x = (0 , . . . , 0).

C.4.2.5 Keanes Function

ΣΓ=ιcos4 (χύ -2 FHUcos2 (χί)
/ (χ)

with constraints: ΠΓ=ι x* ^ 0.75, Σ"-ι Xi ^ 7.5 n, and 0 ^ Xj ^ 10.

(C.21)

698 OPTIMIZATION

CA.2.6 Master's Cosine Wave Function

n-l II—1 / \

/ (x) = - ^ e - * (* ï + i + o - 5 ^ + i + - î) c o s U^x*+1+0.5xzxl+1+xA , (C.22)

with —5 ^ Xi ^ 5.

C.4.2.7 Michalewicz's Function

/(x) = 2 (8ίη(ζΐ+1) sin20 f ^ A + sin(^) sin20 (^ 1)) , 0 < χ^ π .

(C.23)

C.4.2.8 Pathological Test Function

- 1 / sin2
 (Λ /Χ 2

+ 1 + lOOx2) - 0.5 N
/ (x = y ^ -Av / + 0 5 _ 1 0 0 ^ x <j 1 0 0

ί=ί V0-001(x 2
+ 1 -2x i + 1 x i +x 2) 2 + 1.0 / '

(C.24)

C.4.2.9 Rana's Function

n - l

/ (x) = ^ ((x i+i + 1) cos (J\xi+i -X j + l|J sin (\/ |zi+i + Xi + l|J
i = l

+Xj cos (Vl^i+i +Xi + ^\) sin (v/|a;i+i -a;» + 1|J j , -500 ^ Xi ^ 500 .

(C.25)

C.4.2.10 Schwefel's Function

n

/(x) = γ^ -Xi sin(vlxïi) , -512 iC Xi ^ 512 . (C.26)
i = l

Within the constraints, this has minimal value of /(x) « —418.9829 η at x «
(420.9687,..., 420.9687).

C.4.2.11 Sine Envelope Sine Wave Function

™-i /sin2 f ,/rr2 + x\ - Ο.δ) \

/(*> — E((o.ooi(^+1 + ^) + i) 2 + 0 - 5 j ' - 1 0 0 ^ ^ 1 0 0 · (c·27)

Further Reading

An introductory volume to the basic ideas and algorithms in optimization is [17].
A good general overview can be found in [1] and [12], with Fletcher as a classic
reference [8]. For trust region algorithms, we refer to [7]. For convex optimization,
as well as for practical optimization considerations, we refer to the comprehensive

REFERENCES 699

book of Boyd and Vandenberghe [5]. For an introduction on semidefinite program-
ming, see [20], and see [4] for a tutorial on geometric programming. Finally, there
are many techniques that we have not discussed. Among them are simplex methods
(see, for example, [1, Chapter 11], or [2] for an analysis of the algorithm); interior
point methods (see, for example, [1, Chapter 12]); the Nelder-Mead simplex method
(see, for example, [16] for a clear description); and branch-and-bound algorithms
[15].

REFERENCES

1. A. Antoniou and W.-S. Lu. Practical Optimization: Algorithms and Engineering
Applications. Springer-Verlag, New York, 2007.

2. K. H. Borgwardt. The Simplex Method: A Probabilistic Analysis. Springer-Verlag,
Berlin, 1987.

3. S. Boyd, P. Diaconis, and L. Xiao. Fastest mixing Markov chain on a graph. SIAM
Review, 46(4):667-689, 2004.

4. S. Boyd, S.-J. Kim, L. Vandenberghe, and A. Hassibi. A tutorial on geometric pro-
gramming. Optimization and Engineering, 8(1):67-127, 2007.

5. S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
Cambridge, 2004.

6. F. Cao, D.-Z. Du, B. Gao, P.-J. Wan, and P. M. Pardalos. Minimax problems in
combinatorial optimization. In D.-Z. Du and P. M. Pardalos, editors, Minimax and
Applications, pages 269-292. Kluwer, Dordrecht, 1995.

7. A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust-Region Methods. SIAM, Philadel-
phia, 2000.

8. R. Fletcher. Practical Methods of Optimization. John Wiley & Sons, New York, 1987.

9. G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University
Press, Baltimore, third edition, 1996.

10. J.-B. Hiriart-Urruty and C. Lemarèchal. Fundamentals of Convex Analysis. Springer-
Verlag, New York, 2001.

11. J. E. Kelley, Jr. The cutting-plane method for solving convex programs. Journal of
the Society for Industrial and Applied Mathematics, 8(4):703-712, 1960.

12. H. Th. Jongen, K. Meer, and E. Triesch. Optimization Theory. Kluwer, Boston, 2004.

13. L. G. Khachiyan. A polynomial algorithm in linear programming. Soviet Mathematics
Doklady, 20:191-194, 1979.

14. L. G. Khachiyan. Polynomial algorithms in linear programming. USSR Computa-
tional Mathematics and Mathematical Physics, 20:53-72, 1980.

15. E. L. Lawler and D. E. Wood. Branch-and-bound methods: A survey. Operations
Research, 14(4):699-719, 1966.

16. K. I. M. McKinnon. Convergence of the Nelder-Mead simplex method to a nonsta-
tionary point. SIAM Journal on Optimization, 9(1): 148-158, 1998.

17. A. Neumaier. Introduction to Numerical Analysis. Cambridge University Press, Cam-
bridge, 2001.

18. N. Z. Shor. Cut-off method with space extension in convex programming problems.
Cybernetics, 13:94-96, 1977.

700 OPTIMIZATION

19. N. Z. Shor. Minimization Methods for Non-differentiable Functions. Springer-Verlag,
Berlin, 1985.

20. L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review, 38(1):49-
95, 1996.

21. Y. M. Wan. Introduction to the Calculus of Variations and Its Applications. Chapman
& Hall, New York, 1995.

22. D. B. Yudin and A. S. Nemirovsky. Informational complexity and efficient methods
for solving complex extremal problems. Matekon, 13:25-45, 1977.

APPENDIX D

MISCELLANY

D.l EXPONENTIAL FAMILIES

Let X = (Xi,. · · , Xn)
T be an n-dimensional random vector with pdf / (· ; Θ), where

Θ = (ö i , . . . ,9d)T is a d-dimensional parameter vector. X is said to belong to an
m-dimensional exponent ia l family if there exist Rm-valued functions

t (x) = (t 1 (x) , . . . , t r o (x)) T , η{θ) = (η1(θ),...,ηη{θ))τ, Λ (χ) > 0 ,

with m ^ d, and a normalizing function c(0) > 0, such that

/ (x ; Θ) = c(0) e " (e) T t (x) ή(χ) . (D.l)

The representation of an exponential family is not unique in general. It is often
convenient to reparameterize exponential families via the {ηί}\ that is, to take the
latter as the parameters rather than the {#*}. The reparameterized pdf is then

η^η)=Έ(η)β^^Ηχ), (D.2)

where c(rj) is the normalization constant. Such an exponential family is said to be
in canonical form [2, Page 52] or is said to be a natural exponent ia l family.
The parameter space for the natural parameter vector η is then usually chosen
as large as possible; the natural parameter space consists of all η satisfying

Handbook of Monte Carlo Methods. By D. P. Kroese, T. Taimre, Z. I. Botev 701
Copyright © 2011 John Wiley & Sons, Inc.

702 MISCELLANY

where the integral is replaced by a sum in the discrete case. It can be shown that
the corresponding parameter space, E say, is convex. That is, if ■η1 and rj2 are in
E, then so is αηλ + (1 — α)η2, for any 0 ^ a ^ 1.

Table D.l displays the functions c(6), ηί{θ), U(x), and h(x) for several commonly
used univariate distributions. A dash means that the corresponding value is not
used. We use x rather than x in the notation, because the variable x here is a
scalar, not a vector. Below, B denotes the beta function; see Section D.9.1.

Table D. l Various univariate exponential families.

Distr. Θ h{x), t2{x) c(6>) 771(e), 772(6») h{x)

Beta(a,/3)

Bin(n,p)

Gamma(a, λ)

Geom(p)

Ν(μ,σ2)

NegBin(r,p)

Ροί(λ)

Wald(/j,A)

(a,/?)

V

(α,λ)

V

(μ,σ2)

V

λ

(λ,μ)

Ιηι , 1η(1 — χ)

χ, -

χ, \ηχ

χ — 1, —

χ, -

χ, —

χ, 1/χ

1/Β(α,β)

(Ι - Ρ Γ

Γ(α)

V

e -M 2 / (2„ 2)
σ-ν/2π

f

e - A

e^VÄ

a, β-1

'°fe)< -
—λ, a — 1

l n (l - p) , -

μ 1
σ 2 ' 2σ2

1η(1-ρ) , -

1η λ, -

-λ / (2μ 2) , - λ / 2

1

0
1

1

1

Γ(τ+χ)
Γ(Γ)Χ!

1
χ\

Ι / ν ^ π ζ 3

Weib(a,À) (α,λ) 1η χ, -χα

Examples of multivariate exponential families include:

1. Dirichlet distribution: The n-dimensional Dirichlet(a) distribution, with a =
(c t i , . . . , a n + i) T forms an (n + l)-dimensional exponential family: set Θ = a
and 77(0) = Θ — 1; put ί»(χ) = lnaij for i = 1 , . . . , n and i r a + i (x) = ln(l —
ΣΓ=ι ^ ί) ; finally, let /i(x) = 1 and

2. Multinomial distribution: The Mnom(n,p) distribution, with parameter vec-
tor p = (p i , . . . ,Pfc)T forms a (/c — l)-dimensional exponential family, with
0 = (Pi>--->Pfc-i)T

5 *i(x) = £*, and7?i(0) =ln(pi /p f c) , i = l , . . . , f c - l , where
Pk = 1 - Σ ί ^ ι Pi· I n addition, c(0) = p% and /i(x) = n\/(Y[i=lxJ), where
x = (x i , . . . , x f c _ i) T .

3. Multivariate normal distribution: For the n-dimensional multivariate normal
case, put θ = (μ, Σ) . Define m = n(n + 3)/2 functions as follows: iij(x) =

PROPERTIES OF DISTRIBUTIONS 7 0 3

XiXj for i ^ j and i/c(x) = Xk, i,j,k = l,...,n. The corresponding parameter
functions are η^(θ) = — Σ ^ 1 for i < j , ηα(θ) = — | Σ ^ \ and

3<k

Finally, we have h(x) = 1, and

c(0)
e x p (- ± t r ^ " V M T))

ν
/(2π)™ det(E)

where t r (M) denotes the trace of a matrix M, and det(M) the determinant
of M.

For an exponential family in canonical form (D.2) the random vector t (X) is
a sufficient statistic for η, capturing all the information about η contained in the "3° 655
sample X. Moreover, defining

Α(η) = - In c(rj) = In / e " T t (x) h{x) dx , (D.3)

the function A provides convenient moment properties of t (X) , as listed in Ta-
ble D.2; see, for example, [2, Page 59].

Table D.2 Moment properties of exponential families. E is the natural parameter
space.

Property Condition

Expectation vector E t (X) VA(TJ) η e interior of E

Covariance matrix Cov(t(X)) V 2 A (T 7) η G interior of E

Moment generating function E e s *(χ) e
A(v+s)-Mv) η a n (j η _|_ s g interior of E

D.2 PROPERTIES OF DISTRIBUTIONS

In this section, we list definitions of common and useful properties of random vari-
ables. The main reference is [9].

D.2.1 Tail Properties

A random variable X with cdf F is said to have a (right) l ight-tailed distribution
if its moment generation function is finite for some t > 0. That is,

E e t x ^ c < o o . (D.4)

Otherwise, that is, when ~Eetx = oc for all t > 0, X is said to have a heavy-tai led
distribution.

704 MISCELLANY

Note that we consider only the right tail of the distribution, as the left tail is
treated analogously.

Since, for every x, Eetx ^ Eetx 1{χ>χ] ^ etx¥(X > x), it follows that for any
t > 0 and c satisfying (D.4):

F(X >x)^c e~tx .

In other words, if X has a light tail, then F(x) = 1 — F(x) decays at an exponential
rate or faster. Similarly, heavy-tailedness is equivalent to limx^oo etxF(x) = oo for
all t > 0.

Any distribution with bounded support is light-tailed. Examples of light-tailed
distributions with unbounded support are:

Εχρ(λ) Geom(p) Gamma(a,A) Gumbel(^, σ)
Laplace^, σ) Logistic^, σ) Ν(μ,σ2) ΡΗ(α,Α)
Ροΐ(λ) Wa\d{ß,a) W e i b (a , A) , a ^ 1

Each of the following properties imply heavy-tailedness, in the following order
of generality:

Regularly varying =>■ Subexponential =>· Long-tailed => Heavy-tailed

1. A distribution is said to be long- ta i led if

lim ^ Λ ^ = 1 for all t .
z->oo F(X)

2. A distribution on the interval (0, oo) is said to be s u b e x p o n e n t i a l if, with
Χι,.,.,Χ. n - n d J- ;

,. P(Xl + · · · + Xn > x) , „
hm — —— = n for all n

x^oc ψ(Χχ > χ)

or equivalently

lim
Ρ(ΑΊ + ··· + Χη>χ)

χ^°ο P(max{Xi , . ..,Χη}>χ)

3. A distribution is called r e g u l a r l y v a r y i n g if

1 .

(D.5)

for some a > 0 and some function L that satisfies L{tx)/L{x) —> 1 as x —> oo,
for all t > 0.

Examples of regularly varying distributions are:

Cauchy(/x, σ) F(m,n) Frechet(a;, μ, σ) Pareto(a,À)
ί „ (μ ,σ 2)

See [8] for additional properties of this class of distributions. Two families of
distributions that are subexponential but not regularly varying are LoglM^, σ2) and
Weib(a,A),a < 1.

PROPERTIES OF DISTRIBUTIONS 7 0 5

D.2.2 Stability Properties

A distribution S is called sum-stable , or (weakly) stable if the distribution of the
sum of X\, X2 ~üd S is again S, up to a location and scale parameter — specifically,
if for some a > 0 and b G K,

Xi+X2~b c

a

If b = 0, then S is said to be strict ly stable. The family of all continuous sum-
stable distributions is Stable(a, β, μ, σ). An example of a discrete stable distribution
is the Poi(A) distribution. Each of the following properties are implied by sum-
stability, in the following order of generality:

Sum-stable =>· Infinitely Divisible =4> n-Divisible =4> n-Decomposable

1. A random variable X is said to be n -decomposable if there exist n inde-
pendent random variables Y\,..., Yn such that X ~ Y^=i Yk-

2. A random variable X is said to be n-divisible if there exist n iid random
variables Υχ,..., Yn such that X ~ 5Zk=i Yk-

3. If X is n-divisible for every n, then X is called infinitely divisible.

Examples of infinitely divisible distributions are:

Cauchy^,<7)
Geom(p)
ί ο δ Ν (μ , σ 2)
Ροί(λ)
Weib(a,A) , a < 1

Εχρ(λ)
Gumbel(^,f f)
NegBin(r,p)
Stable(a,/3, μ, σ)

F (m , n)
Laplace^, σ)
Ν(μ ,σ 2)
^ (Μ , σ 2)

Gamma(a, λ)
Logistic(/i, σ)
Pareto(a, λ)
Wald(M,A)

Theorem D.2 .1 (Levy—Khinchin) A random variable X has an infinitely divis-
ible distribution on R if and only if its characteristic function, E e l s X , s E M , is of
the form e^^, with

a2s2 f
ip(s) = ^ - + i 7 s + / (e l s a : - l - i s a ; I { | x K i }) ^ (d a ;) , s G R ,

for some σ ^ 0, 7 G R, and measure u(dx) on R such that J min{l, x2} ν(άχ) < oo.

A distribution S is called max-stable if the distribution of the maximum of
Xi, X2 ~üd S is again S, up to a location and scale parameter — specifically, if for
some a > 0 and b G R,

ma,x{X1,X2} - b
~ b .

a

If b = 0, then S is said to be strictly max-stable . The cdf G of a max-stable
random variable satisfies the stabil ity postulate: for each t > 0, there exist at > 0
and bt G R such that [11, Page 276]

G(x) = [G(atx + h)}'.

706 MISCELLANY

A random variable X with cdf F is said to belong to the domain of at tract ion
of (or is attracted to) a max-stable law with cdf G if there exist an > 0 and bn € R
such that

lim \F{anx + &„)]" = G(x).
n—>oo

Note that the cdf in the limit is the cdf of the variable (Mn — bn)/an, where Mn =
m a x { X i , . . . , Xn} for n € N.

There are only three families of continuous max-stable distributions:

1. Gumbel(/x,a): Examples of distributions that are attracted to a Gumbel law

Εχρ(λ) Gamma(a, A) Gumbel^, σ) Logistic(//, ó) Ν(μ, σ2

2. Fréchet(a ,^ ,a) : Any regularly varying distribution with index a is attracted
to a Fréchet law with the same parameter a.

3. —Weib(o;,p,CT) distributions (reversed Weibull): Examples of distributions
that are attracted to a reversed Weibull law are the U[a, b] and the Beta(α, β)
distributions.

Note that not all distributions are attracted to one of these three laws. For
example, the Poi(A) distribution is attracted to none of these.

A distribution S is called min-stable if, for some a > 0 and b G K

mm{X1,X2}-b i id
~ b , Λ ι , Λ 2 ~ 3 .

a

If b = 0, then S is said to be strict ly min-stable.
Again, there are only three families of continuous min-stable distributions, being

the distributions of (—X), where X is max-stable [7].

D.3 CHOLESKY FACTORIZATION

Any n x n covariance matrix Σ = (σ^) can be factorized as Σ = CCT, where
C = (cjj) is a lower triangular n x n matrix that is recursively defined as

ai= °ij ^ = i C ^ f c , 5 > f c C j f c
d â f 0 , l < j < i ^ n . (D.6)

D.4 DISCRETE FOURIER TRANSFORM, FFT, AND CIRCULANT
MATRICES

The discrete Fourier transform of a vector x = (XQ, ... ,a ; jv- i)T of complex
numbers is the vector x = (XQ, . . . , X J V - I) T defined as

J V - l N-l

Xt=Yje~2&stXs=YJu
stxs, t = 0,...,N-l, (D.7)

s=0 s=0

DISCRETE FOURIER TRANSFORM, FFT, AND CIRCULANT MATRICES 7 0 7

where ω = exp(—2m/N). In other words, x is obtained from x via the linear
transformation

x = F x ,

where
/ I

1 ø
, ,2

\ 1 ω N-l ω 2(ΛΓ-1)

1 \
ωΝ~ι

,ΜΝ-Ι)

ø^-^J
Note that F/yN is a unitary matrix, and hence the inverse of F/\/N is simply its
complex conjugate F/y/N. It follows that F_1 = F/N and thus

N-l

Xt
N ^

t = 0, ...,N-1 (D.S

The fast Fourier transform (FFT) is a numerical algorithm for the fast evalu-
ation of (D.7) and (D.8). By using a divide-and-conquer strategy, the algorithm
reduces the computational complexity from Ό(Ν2) (for naive evaluation of the lin-
ear transform) to O(iVlnTV) [10].

One area where F F T techniques are useful is in computations involving circulant
matrices. Let c = (CQ, C\, ..., C J V - I) T be a complex-valued vector. The circulant
matrix corresponding to c is the matrix C = (cij, i,j G {0, ...,N — 1}) with
elements c^· = C(i_J) mocj ^. That is,

C

(Co

C l

CjV-2

\CJV-1

CJV-I

CO

Cl

CiV-2

CJV-I

CO

C2

Cl

Cl \

C2

CJV-I

Co /

(D.9)

where the columns are obtained from the vector c = (co ,c i , . . . , c /v - i) T by circu-
larly permuting the indices.

Let ft be the ί-th column of the discrete Fourier matrix F, t = 0 , 1 , . . . , N — 1.
The fundamental relation between the discrete Fourier transform and a circulant
matrix C is that the eigenvalues of C are

Ät = cTf t, ί = 0 , 1 , . . . , JV - 1 ,

with corresponding eigenvectors ft. Namely, the s-th element of Cit is

J V - l

Σ
fc=0

C(s-fc) mod ΛΓ U
tk

N-l

Σ c-,,ω
y=o

N-l

t(s-y) Σ^ω" ty

-th element of ft V=°

As a consequence, if we define λ = (λο, ■ · ·, A J V - I) T = Pc as the vector of eigen-

values, and D = F v
/diag(A/iV), then DDT = Fdiag(X)P/N = C. Hence, D is a

complex square root matrix of C.

file:///CJV-1

708 MISCELLANY

If, moreover, C is the covariance matrix of a zero-mean Gaussian vector then
realizations of this vector can be obtained in the following way. Let D = D\ +
1-D2, where D\ and D2 are real-valued matrices. By definition, C = DD =
(£>i + iD2)(Dj - LDj) = {DxDj + D2Dj) + \{D2Dj - D^J). In particular,
D\Dj + D2Dj = C. Let Z = Zi + 1Z2, where Ζχ and Z2 are independent n-
dimensional standard Gaussian vectors, and define X = ΌΖ = X i + 1X2, where

X i = R{DZ) = Ό1Ζ1 - D2Z2 ,

X 2 = Ö(DZ) = D 2 Z 1 + L » 1 Z 2 .

Then, X i and X 2 are dependent zero-mean Gaussian vectors, with covariance ma-
trix C. By using the F F T one can calculate both λ = Fc and X = Fy/diag(\/N)Z
with 0 (TV In TV) complexity.

D.5 DISCRETE COSINE TRANSFORM

The discrete cosine transform is important in signal processing due to its property
of compressing highly correlated data very well [10, Pages 151-153].

Let XQ, . . . , XN-I be a sequence of real numbers. The one-dimensional discrete
cosine transform is defined as the sequence

ΐ ^ 1 / π (2 η + 1)ΑΛ „ , s r „
Vk=ak2_j χη c o s I Kjä) > 0 ^ fc < TV - 1 ,

n=0 ^ '

where ao = 1 and ct^ = 2, k ^ 1. The inverse discrete cosine transform gives
back the original sequence:

1 ^ / π (2 η + 1)λΛ
x" = i v E ^ C 0 S 2N)' O ^ » ^ " 1 ·

fc=o ^ '
Note that the discrete cosine transform is not the real part of the discrete Fourier
transform. Nevertheless, the F F T can be used to compute the discrete cosine
transform in Ό(Ν\ηΝ) operations as follows. For simplicity, assume that N is an
even integer. For fastest performance one has to use N — 2TO for some integer m.

Algor i thm D . l (Fast Cosine Transform) To compute the discrete cosine
transform of the sequence XQ, ..., XN-I execute the following steps.

1. Define the reordered sequence XQ, ..., xyv-i·'

(X0, Χ2,Χ4:..., ΧΝ-6,ΧΝ-4„ ΧΝ-2,ΧΝ-χ,ΧΝ-Ζ, ΧΝ-5, ■ ■ ■ , ^ 5 , ̂ 3 , ^ l) ,

so that

Xn — %2n Î

XN-n-1 = %2n+l ,

where n is such that 0 ^ n C ^- — 1.

DIFFERENTIATION 709

2. Compute the discrete Fourier transform (recall that ω = exp(—2πϊ/Ν)):

N-l

n=0

of the sequence XQ, ..., XN-I using the FFT.

3. Output the real part of the sequence {ak zk e~1 7 r f c /(2 i V)};

yk = » [a* zk e--
fe/(2JV)] , O^k^N-1

as the discrete cosine transform of Xg,..., #/ν_ι.

The discrete cosine transform algorithm above is implemented in the function
dctld.m on Page 324. The inverse discrete cosine transform is computed using
the following algorithm.

Algor i thm D.2 (Fast Inverse Cosine Transform) To compute the inverse
discrete cosine transform of the sequence yo,..., J/ΛΓ-Ι execute the following steps.

1. Compute the inverse discrete Fourier transform

fc=0

of the sequence {yke
mk^2N^} using the inverse FFT.

2. Output the reordered sequence χχ,..., xjv-i of real numbers:

x2n = $t[zn],

X2n+1 = Κ[ζ2(ΛΓ-η-1)]ΐ

where Ο ^ η ^ γ — 1, as the inverse discrete cosine transform of the sequence

yi,---,VN-i-

The inverse discrete cosine transform algorithm above is implemented in the func-
tion idct ld.m on Page 324.

D.6 DIFFERENTIATION

Let se and Se be sets of real numbers. The derivative of a function / : s? —» âë
at a is defined as the limit

ft \ d tt \ u™ / 0 E) - / (α) / (a) = -τ - / (α) = u m , da; χ->α x — a

provided the limit exists — independent of the direction from which x approaches
a. If the derivative of / exists for all x in si', then / is said to be differentiable
on sf, with derivative function (or simply derivative) / ' . The second-order
derivative / " , or f^2\ is the derivative of the derivative / ' . Higher-order deriva-
tives / (3) , / (4 \ . . . are defined similarly. A function is said to be continuously

710 MISCELLANY

difFerentiable if its derivative is a continuous function. The collection of such
functions is denoted by C1. Similarly, Gk is the collection of functions whose fc-th
derivative is continuous. Some standard rules for differentiation are:

1. Sum rule: (f + g)' = f + g1'.

2. Product rule: (fg)' = f'g + fg'.

3. Quotient rule: I ^ J = * 9 V g , (g φ- 0).

4. Chain rule: (g(f(x)))' = g'(f(x)) f'(x).

5. Monomial rule: 4-xn

ax
■ nx

One of the most useful concepts in calculus is that of the Taylor expansion of a
function, which states, loosely, that each differentiable function can be described
locally as a polynomial function.

Theorem D.6 .1 (Taylor Expansion) Let f have a continuous (n+l)-st deriva-
tive on the open interval J1 = (a — r,a + r), and let a € «/". Then, for every x G J?,

m = Σ
fc=0

/ (f c) (g) (x - g) f c

+ Ό((χ - a)n+1) (D.10)

By dropping the remainder term in the right-hand side of (D.10), one obtains the
n-th order Taylor approximation to the function / around o.

Differentiation for multivariate functions can be defined similarly to the univari-
ate case. In a function f{x\,... ,xn) of several variables, the partial derivative
with respect to Xi, denoted -τφ or simply <%/, is the derivative taken with respect to
Xi while all other variables are held constant. Partial derivatives of partial deriva-
tives are denoted using a similar notation. For example, the partial derivative of

ri2 f

dif with respect to Xj is denoted dx.gx. or simply dijf.
The derivative of a multivariate function is defined in a similar way. In particular,

let f be a function from Rn -> Mm defined by

(χΛ //!(X)\

X2 / 2 (x)
h->

\Xn) \ / m (x) /

The derivative of f at x is defined as the matrix of partial derivatives:

Μ / ι (χ) · · · a „ / i (x) \

- / f (x)= ; . . . ; , (D. i i)

\ ö i / m (x) · · · 9 „ / m (x) /

and is called the Jacobi matr ix of f at x. It is denoted by Jf (x) or also 5£(x)·
For a real-valued multivariate function, that is, / : R™ —> R, the gradient of /

is the transpose of the Jacobian matrix, that is, the column vector

V / (x)

M/(x)\

W(x)/
(D.12)

EXPECTATION-MAXIMIZATION (EM) ALGORITHM 7 1 1

The derivative of the function x i—> V / (x) is called the Hess ian matr ix of / ,
denoted i ï / (x) or V 2 / (x) . In other words, the Hessian is the matrix of second
derivatives:

/ö n / (x) ··· <W(x)\
V 2 / (x) = ! . . . · (D.13)

\<9„i/(x) · · · 9 n n / (x) /

If the partial derivatives are continuous in a region around x, then<9y/(x) = djif(x)
and, hence, the Hessian matrix i f / (x) is symmetric.

The chain rule in the multidimensional case is as follows. If f : R n —► R m and
g : R m —* M.k, then the Jacobian matrix of the compos i t ion g o f — which maps
x to g(f (x)) — is given by the matrix product of the Jacobian matrices of g and f :

Jgof(x) = J g (f (x)) Jf(x) .

Gradients and Hessian matrices feature prominently in multidimensional Taylor
expansions.

Theorem D.6 .2 (Mult idimensional Taylor Expansions) Let X be an open
subset ofM.n and let a e 3£. If f : X —> R is a Q2 function with gradient V / (x)
and Hessian matrix Hf{x), then for every x G X', we have

/ (x) = / (a) + [V / (a)] T (x - a) + 0(| |x - a||2) as ||x - a|| -+ 0 ,

and

/ (x) = / (a) + [V / (a)] T (x - a) + i (x - a) T Hf{*) (x - a) + 0(| |x - a||3) .

By dropping the 0 remainder terms, one obtains the corresponding Taylor ap-
proximations.

D.7 EXPECTATION-MAXIMIZATION (EM) ALGORITHM

The e x p e c t a t i o n - m a x i m i z a t i o n algorithm (EM) is a general algorithm for max-
imization of multimodal likelihood functions, or equivalently for finding the mode
of complex posterior densities. For a review of the theoretical and practical aspects
of the EM algorithm we refer to McLachlan and Krishnan [13], who also describe
the historical origins of the algorithm before and since Dempster et al. [6].

Suppose that , given the data x = (χχ,... ,ΧΝ), we have the following Bayesian
posterior: "3° 672

/ (0lx)= / (x W W / I Ö | X J / / (χ | θ) / (β) ά β '

where f(0) is a given prior on the model parameters and / (x | Θ) is the likelihood.
We wish to compute the mode of the posterior density: Θ* = argmax e f(0 \ x) .

For simplicity, we will assume that /(Θ) cc 1 and consider the more general case
later. Under this assumption, finding the mode of the posterior is the same as
maximizing the likelihood function:

Θ* = a r g m a x / (x | 0) . (D.14)
θ

712 MISCELLANY

The key element of the EM algorithm is the augmentation of the data x with a
suitable vector of latent variables z such that

/ (x | 0) = y " / (x , z | 0) d z .

The function / (x , ζ \ θ) is usually referred to as the comple te -data l ikelihood
function. The choice of the latent variables is guided by the desire to make the
maximization of the complete-data likelihood: argmax e / (x , z | Θ) much easier than
(D.14).

Let the density of the latent variables be <?(z), then we can write:

l n / (x | e) = y f f (z) l n / (x | 0) d z

dz
/ (z | x , 0) / 5 (z) /

= I g(z) In (/ (^ j g)) dz + D(5 , /(■ I x, Θ)) , (D.15)

366 where T>{g, / (· | x, Θ)) is the Kullback-Leibler distance from the density g to
/(■ | x, Θ). Since Ί) > 0 with equality only when <?(z) = / (z | x, 0), it follows that

1 η / (χ | β) > £(<,,0) ^ / 5 (ζ) 1 η (^ ^ p 1) dz

for all Θ and any density 5. In other words, C(g, Θ) is a lower bound on the likelihood
that involves the complete-data likelihood. The EM algorithm then aims to increase
this lower bound as much as possible as follows.

Algor i thm D . 3 (EM Algori thm) Suppose we have an initial guess for the max-
imizer, say 9Q. The EM algorithm consists of iterating the following steps for
* = 1,2,. . . .

1. Expecta t ion Step (E-Step) : Given the current guess 0t-i maximize
C(g,9t-i) as a function of g. In other words, determine g from the func-
tional optimization program maxg£(g,et-i). From the identity (D.15), the
exact solution is:

fft(z)d^f/(z|x,0t-i).

Compute the expectation

Qt(e)d^fEgt\nf(x,Z\e). (D.16)

2. Maximizat ion Step (M-Step) : Given the current gt, maximize C(gt,9)
as a function of Θ. To perform this step note that, since C(gt,0) = Qt(6) —
E9 t lng! t(Z), the maximization of C(gt,0) with respect to Θ is equivalent to
finding

0t — a rgmaxQ t (0) .

EXPECTATION-MAXIMIZATION (EM) ALGORITHM 7 1 3

3. Stopping Condit ion: //, for example,

l n / f r l g Q - l n / f r l O t - !)
l n / (x | 0 t)

for some small tolerance ε, terminate the algorithm.

Note that the M-step consists of the maximization of the expected value of the
logarithm of the complete-data likelihood: Qt{0). If / (χ , z | 0) belongs to an expo-
nential family, then this typically leads to a straightforward optimization problem
with a unique solution.

The identity (D.15) can be used to show that the likelihood does not decrease
with each iteration of the algorithm. This property is one of the strengths of the
algorithm. For example, it can be used to debug computer implementations of the
EM algorithm: if the likelihood is observed to decrease at any iteration, then one
has detected a bug in the program.

The convergence of the sequence {9t} to a local maximum can be guaranteed
under certain continuity conditions [4, 18]. The convergence of the algorithm to
a global maximum depends strongly on the starting values and in many cases an
appropriate choice of starting values may not be clear. Typically, practitioners
run the algorithm from different random starting points to ascertain empirically a
global optimum is achieved.

The EM algorithm is closely related to the Gibbs sampler [5, 15, 16]. Both *& 233
algorithms exploit the idea of conditioning or artificially creating hidden or latent
variables [17]. Moreover, the EM algorithm and the Gibbs sampler complement
each other in the sense that , while the Gibbs sampler is frequently used to sample
from a given complex posterior density, the EM algorithm is used to find the mode
of the posterior density.

In cases where the prior is not proportional to 1, the EM algorithm can be easily
modified so that: C(g,0) = jV(z) m (/ (x , z | 0) /g(z))dz + l n / (0) and Q t(0) =
E9 t In / (x , Z | 0) -l-ln / (0) . The E-step remains the same, because it does not involve
0, and the M-step is only modified through the introduction of the term l n / (0) .

The EM algorithm is particularly suited for fitting mixture models as shown in
the next example.

■ EXAMPLE D . l (Fi t t ing a Gaussian Mixture Model)

Suppose we have Χχ,..., XJV, where each Xi is an independent outcome from the
following Gaussian mixture model:

f^i °r \ 0-r)

Here, φ is the pdf of the N(0,1) distribution, and 0 = (//, <r, w) with μ = (μ ι , . . . ,
μ0), σ = (σ ι , . . . , ac), and w = (t u j , . . . , wc). The likelihood is thus

i=\r=l v '

Direct maximization of the likelihood can be quite costly, see, for example, [3]. To
simplify the likelihood, introduce the discrete latent variables z = (z\,... ,ZN) £

714 MISCELLANY

{1,2,... ,c}N such that the complete-data likelihood can be written as

N / \

The variable Zi can be interpreted as an indicator of the component of the mixture
model from which Xi is drawn. The density of z given the data is g(z) = / (z | x, Θ) =
r i i l i S i (^) , where

9i(r) = — φ[— I / 2 ^ — <P[—Z (D · 1 7)

for i = 1 , . . . , N and r = 1 , . . . , c. The expected complete-data likelihood in the
E-step is then

Ε 3 I n / (x , Z | Θ) = Y ^ Y^g i (r) I Inw r — InσΓ ^— J + constant .
i=ir=i ^ 2<Jr)

Therefore, in the M-step, maximization of E 9 In / (x , Z | Θ) with respect to w (under
the constraint ^ r wr = 1, Wi ^ 0 for all i), the means μ, and the variances er,
gives the following (for r = 1 , . . . , c):

^ = iEftW
i = l

Mr
Σ ί = ι g»(r)s» ^ (D.18)

σ;
2 _ Z£Llffi(r)(^-/V)

Thus, given a starting guess Θ = (μ, er, w) , the EM algorithm consists of iterating
the following steps until convergence:

E-Step. Given the parameters (μ,er,w), compute (D.17).

M-Step . Given g(z) = Πΐ&ί·2») from the E-step, update the values for (μ, er,w)
using equations (D.18).

The statistics toolbox in MATLAB include the function g m d i s t r i b u t i o n . f i t , which
implements the EM algorithm for fitting Gaussian mixture models. For a compre-
hensive treatment of mixture models see the monographs [12, 14].

D.8 POISSON SUMMATION FORMULA

Let f(x) be a continuous function on R such that J_ | / (x) |dx < oo, and let

f{u>) = J_ f(x) β~ι2πωχάχ be the Fourier transform of / . The Poisson sum-
mat ion formula [19] states that

oc oo

Σ f(k + x) e-i™(2*+«) = Σ f(k + s) ei7ra(2fc+s) ,
k=—oo k=—oo

SPECIAL FUNCTIONS 7 1 5

provided that E i t l - o c f(k + x) converges uniformly on every finite interval and

EfcL-oo |/(fc)| < ce- Special cases of the Poisson summation formula include the

identities E^L-oo f(k) = Σ ^ - ο ο Kk) a n d

OO 1 OO

Σ f(k)coS(nkx)cos(nky) = - £ f(k + ^) + f(k + ^) , x, y G R .
k= — oo k=~oo

The last identity can be used to derive the t h e t a function identity: «s* 322

d e f 1 ^ - ^ (x+y-2 fc) 2 (x - y - 2 f c) 2

ô (i , y ; i) = - = = > e + e
\ Ζτϊτ , —

k= — oo

OO

= ^ e-k
2n2t/2 cos^nx^ cos(kny), t > 0 .

fc= — OO

D.9 SPECIAL FUNCTIONS

Here we list some special functions that make an appearance in this book (see [1]
for more details).

D.9.1 Beta Function B(ct,ß)

B(a,ß)= / 1 t ° - 1 (l - ^ - 1 d t = y . a ™ , a,ß>0.
Jo 1 (a + ß)

Note that B(a,ß) = B(ß,a). In MATLAB this function is implemented in beta .m.

D.9.2 Incomplete Beta Function É÷ (Æ,â)

ΙΛα,β) = ΈΓ*-^ / V - ' i l - i V ' - M t , α,/?>0, χ€[0,ί}. Β(α,β) J0

Some useful identities include:

1. Reflection property: Ιχ(α,β) = 1 — Ι\-Χ{β, a).

2. Hypergeometric function: Ix(a,β) = aΒ(α,β) zFi(a> 1 - /3; <* + 1; a) .

In MATLAB this function is implemented in be ta inc .m.

D.9.3 Error Function e r f (x)

erf(x) = —= e"*2di, I É I .
VT Jo

Some useful relations to other special functions include:

1. Confluent hypergeometric function: erf(a;) = ^= ι ί ι (| ; | ; — x2).

2. Incomplete gamma function: erf(a;) = sgn(a;) P (| , x 2) .

In MATLAB this function is implemented in er f . m.

716 MISCELLANY

D.9.4 Digamma function φ(χ)

^) = Α 1 η Γ (χ) = ΕΜ, x > 0 .

The digamma function has the following integral representation:

f°° / P - i e-tx \

In MATLAB this function is implemented in p s i .m.

D.9.5 Gamma Function T(ot)

/•OO

T(a) = / e - x x a _ 1 da; , a > 0 .
Jo

Some useful properties of the Γ function are:

1. Functional equation: T(a + 1) = α Γ (ο) .

2. Factorial function: T(n) = (n — 1)1 for n = 1, 2,

3. Gouss multiplication formula: Y{nx) = (2π)(-1-η^2ηηχ-^ UkZor(x + %)■

4. Euler reflection formula: Γ(1 - α;)Γ(1 + α;) = siZ*x-,, χ £ (0,1).

5. Special values: Γ(1/2) = y/ïr.

In MATLAB this function is implemented in gamma. m.

D.9.6 Incomplete Gamma Function P(cx, x)

1 fx

p(a,x) = ——l e~Ha-lat, Q > 0 , a; > 0 .
r (a) Jo

For positive integer values of a = n, we have:
n— 1 £.

P(n,x) = l - e - ^ | i .
fc=0

In MATLAB this function is implemented in gammainc.m.

D.9.7 Hypergeometric Function 2Ft(a, b; c; z)

T(c) ^ T(a + n) T(b + n) zn

2F1(a,b;c;z)= Σ
Γ (α) Γ (ο) ^ 0 r (c + n) n! '

which converges for all \z\ < 1 provided that c is not a negative integer. Note that
the series converges for all \z\ ^ 1 provided that c is not a negative integer and
3?[c — a — 6] > 0. Some special cases are:

. 2F1(l,l;2;z) = -z-1ln(l-z).

- z? f„ k „ i\ r(c)r(c-o-6)
• 2 f i (a , & ; c ; l) = r(c-a)r(e-t) ·

• 2 Fi(a ,6 ;6 ;z) = (l - «) - « .

In MATLAB this function is implemented in hypergeom. m.

REFERENCES 717

D.9.8 Confluent Hypergeometric Function i_F\(o:; "ª’, ÷)

1F1{a;r,x) = r , ,w7) r / f-Hl-ty-^e^dt, Ί>α>0.
Γ (α) Γ (7 - a) J0

A n a l t e rna t ive n o t a t i o n for iFi(a;~/;x) is Μ{α,η,χ). I n series form, t h e funct ion

\F\ is given by

„ . „ ax a(a+l)x2
 m

lFl(a;r,x) = i + -- + : ^ T ^ - + ..., xeR.

In M A T L A B th i s funct ion is i m p l e m e n t e d in h y p e r g e o m . m.

D.9.9 Modified Bessel Function of the Second Kind Ku(x)

Kv[x) = / e - x c o e h W cosh(i / i) at, x > 0 .
Jo

In M A T L A B th i s funct ion is i m p l e m e n t e d in b e s s e l k . m .

REFERENCES

1. M. Abramowitz and I. A. Stegun, editors. Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables. Number 55 in National Bureau of Stan-
dards Applied Mathematics Series. United States Government Print ing Office, Wash-
ington, DC, tenth edition, 1964.

2. P. J. Bickel and K. A. Doksum. Mathematical Statistics, volume I. Pearson Prentice
Hall, Upper Saddle River, NJ, second edition, 2007.

3. Z. I. Botev and D. P. Kroese. Global likelihood optimization via the cross-entropy
method, with an application to mixture models. Proceedings of the Winter Simulation
Conference, Washington, DC, pages 529-535, 2004.

4. R. A. Boyles. On the convergence of the EM algorithm. Journal of the Royal Statis-
tical Society, Series B, 45(l) :47-50, 1983.

5. G. Casella and R. L. Berger. Est imation with selected binomial information or do you
really believe tha t Dave Winfield is bat t ing .471? Journal of the American Statistical
Association, 89(427):1080-1090, 1994.

6. A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete
da ta via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39(1) : 1 -
38, 1977.

7. P. Embrechts, C. Klüppelberg, and T. Mikosch. Modelling Extremal Events for In-
surance and Finance. Springer-Verlag, New York, 1997.

8. P. Embrechts and N. Veraverbeke. Estimates for the probability of ruin with special
emphasis on the possibility of large claims. Insurance Mathematics and Economics,
l (l) :55-72 , 1982.

9. S. Foss, D. Korshunov, and S. Zachary. An Introduction to Heavy-tailed and Subex-
ponential Distributions, volume 13. Oberwolfach Preprints, ISSN 1864-7596, 2009.
h t t p : / /www.mfo.de/publicat ions/owp/2009/0WP2009_13.pdf.

10. A. K. Jain. Fundamentals of Digital Image Processing. Prentice Hall, Englewood
Cliffs, NJ, 1989.

718 MISCELLANY

11. N. L. Johnson and S. Kotz. Distributions in Statistics: Continuous Univariate Dis-
tributions, Volume 1. Houghton Mifflin Company, New York, 1970.

12. G. J. McLachlan and K. E. Basford. Mixture Models: Inference and Applications to
Clustering. Marcel Dekker, New York, 1988.

13. G. J. McLachlan and T. Krishnan. The EM Algorithm and Extensions. John Wiley
& Sons, Hoboken, NJ, second edition, 2008.

14. G. J. McLachlan and D. Peel. Finite Mixture Models. John Wiley & Sons, New York,
2000.

15. X.-L. Meng and D. van Dyk. The EM algorithm - an old folk-song sung to a fast new
tune (with discussion). Journal of the Royal Statistical Society, Series B, 59(3):511-
567, 1997.

16. C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer-Verlag, New
York, 2004.

17. R. H. Swendson and J.-S. Wang. Nonuniversal critical dynamics in Monte Carlo
simulations. Physical Review Letters, 58(2):86-88, 1987.

18. C. F. J. Wu. On the convergence properties of the EM algorithm. The Annals of
Statistics, 11(1):95-103, 1983.

19. A. Zygmund. Trigonometric Series. Cambridge University Press, Cambridge, third
edition, 2003.

ACRONYMS AND ABBREVIATIONS

a.s.

ADAM

cdf

CE

CMC

Corr

Cov

CRV

EM

FFT

GS

iid

IPA

ISE

LCG

LSCV

LSFR

KKT

max-cut

MCMC

MLE

Almost surely

ADAptive Multilevel

Cumulative distribution function

Cross-entropy

Crude Monte Carlo

Correlation

Covariance

Common random variables

Expectation-maximization

Fast Fourier transform

Generalized splitting

Independent identically distributed

Infinitesimal perturbation analysis

Integrated squared error

Linear congruential generator

Least squares cross validation

Linear feedback shift register

Karush-Kuhn-Tucker

Maximal cut

Markov chain Monte Carlo

Maximum likelihood estimate (or estimator)

719

7 2 0 ACRONYMS AND ABBREVIATIONS

MISE

MSE

MRG

ODE

PDE

pdf

SAT

SDE

SIS

TSP

Var

VM

Mean integrated square error

Mean square error

Multiple-recursive generator

Ordinary differential equation

Partial differential equation

Probability density function

Satisfiability (problem)

Stochastic differential equation

Sequential importance sampling

Traveling salesman problem

Variance

Variance minimization

LIST OF SYMBOLS

def

iid

S> much greater than

« is approximately

oc is proportional to

Θ XOR (binary addition operator)

is defined as

is equivalent to

is distributed as

üd are independent and identically distributed as

~ ' is approximately distributed as

—^ converges almost surely to

—> converges in distribution to
a.s.

y increases almost surely to

—► converges in Lp-norm to

converges in probability to

converges completely to

|| · || Euclidean norm

V / gradient of /

p

cpl.

721

722 SYMBOLS

V 2 / Hessian of /

|~x~| smallest integer larger than x

[x\ largest integer smaller than x

x+ x+ = max{a;, 0}

x_i vector x with i-th element removed

AT, x T transpose of matrix A or vector x

^ 4 ^ 0 matrix A is positive definite

A y 0 matrix A is positive semidefinite

diag(a) diagonal matrix with diagonal entries defined by a

ti(A) trace of matrix A

dim(x) dimension of vector x

det(yl) determinant of matrix A

B Borel σ-algebra on M.

Bn Borel σ-algebra on Rn

C set of complex numbers

d differential symbol

E expectation

e the number 2.71828.. .

i the root of —1

?r imaginary part

1^,1(^4} indicator function of event A

£ performance measure

In (natural) logarithm

N set of natural numbers {0 .1 , . . . }

ψ pdf of the standard normal distribution

Φ cdf of the standard normal distribution

P probability measure

Ö big-0 order symbol: f(x) = Q(g(x)) if | /(a;) | ^ ag(x) for some
constant a as x ^ a

o little-o order symbol: f(x) = o(g(x)) if f(x)/g(x) - t O a s i - t a

R the real line = one-dimensional Euclidean space

R+ positive real line: [0, oo)

Rn n-dimensional Euclidean space

5R real part

5(i) i-th order statistic

Θ estimate / estimator

SYMBOLS 723

Θ* optimal parameter

x , y vectors

X, Y random vectors

Z set of integers {..., —1, 0 ,1 , . . . }

Qk space of functions with continuous k-th derivatives

S score function

3 Fisher information matrix

T> Kullback-Leibler divergence (cross-entropy distance)

ΐ>2 χ2 divergence

LIST OF DISTRIBUTIONS

Arcsine arcsine distribution 103

Ber Bernoulli distribution 85

Beta beta distribution 102

Bin binomial distribution 86

Cauchy Cauchy distribution 106

PH continuous phase-type distribution 126

DSM double-sided Maxwell distribution 433

Dirichlet Dirichlet distribution 139

DPH discrete phase-type distribution 96

DU discrete uniform distribution 101

Erl Erlang distribution 112

Exp exponential distribution 108

F F distribution 109

Fréchet Fréchet distribution I l l

Gamma gamma distribution 112

Geom geometric distribution 91

Gumbel Gumbel distribution 116

Hyp hypergeometric distribution 93

724

DISTRIBUTIONS 725

InvGamma inverse gamma distribution 49

Laplace Laplace or double exponential distribution 118

Levy Levy distribution 130

Logistic logistic distribution 119

LogN log-normal distribution 120

Mnom multinomial distribution 141

NegBin negative binomial distribution 94

N normal or Gaussian distribution 122

Pareto Pareto distribution 125

Poi Poisson distribution 98

Rayleigh Rayleigh distribution 137

RBM reflected Brownian motion 200

Stable stable distribution 129

t Student's t distribution 131

U uniform distribution 134

Wald Wald or inverse Gaussian distribution 135

Weib Weibull distribution 137

Wishart Wishart distribution 148

This page intentionally left blank

INDEX

A
absolutely continuous distribution, 102, 138,

609, 611
absorbing state, 633
acceptance probability, 226
acceptance-rejection method, 59—66, 67,

74, 77, 100, 114, 115, 124, 134,
169, 173, 190, 226, 227, 368, 401,
451, 473, 513

efficiency, 59, 67, 74, 77
Ackley's function, 697
ADAM algorithm, 493-495, 505
adapted process, 627
affine

combination, 123, 129, 145
transformation, 47, 48, 73, 143, 146,

147, 679
alias method, 56-58
all-terminal network reliability, 550, 552
almost sure

convergence, 613, 614, 623, 629
event, 606, 619

alternative hypothesis, 660
analysis of variance, 654
Anderson-Darling test, 15, 339-340
annealing schedule, 449, 450
ANOVA, see analysis of variance
antithetic

estimator, 349
normal — random variables, 351

pair, 349
random variable, 257, 349, 424

aperiodic state, 633
arbitrage-free market, 523
arcsine distribution, see beta distribution
ARIMA time series, 222
ARMA time series, 221
Armijo condition, 692
Asian call option, 244, 526-534, 540
asymmetric double claw density, 328
asymptotic density dependence, 597
asymptotic variance, 309, 310, 314, 332
autocovariance, 219, 273, 309, 631
autonomous SDE, see time-homogeneous

SDE
autoregressive time series, 219, 220
auxiliary variable methods, 259—268, 406,

496, 551, 555, 567, 568, 712
axioms of Kolmogorov, 606-608

B
balance equations

detailed, 226, 234, 241, 635, 639
global, 234, 634, 638

ball walk sampler, 241
band-Cholesky factorization, 220
bandwidth, 319, 320-322, 325, 326, 329,

330
barrier function, 686
f>-ary expansion, 27

Handbook of Monte Carlo Methods. By D. P. Kroese, T. Taimre, Z. I. Botev 727
Copyright © 2011 John Wiley & Sons, Inc.

728 INDEX

batch means method, 311-313, 388
Bayes' rule, 235, 616, 653, 672
Bayesian statistics, 54, 231, 498, 653, 672,

673-675, 711
Bernoulli

conditional distribution, 80-82
distribution, 85-86, 87, 88, 469, 550,

666, 669
process, 86, 91, 94, 95, 312, 626
trial, 85

Berry-Esséen theorem, 384, 625
beta distribution, 54, 90, 102-106, 110,

113, 115, 133, 139-141, 367, 674,
675, 702, 706

beta function, 102, 715
incomplete, 87, 95, 104, 110, 132, 715

beta-prime distribution, 103
bias of an estimator, 656
binary crossover, 454
binary rank test, 15, 20
binomial distribution, 86-91, 93, 99, 100,

142, 143, 317, 434, 659, 664, 666,
702

binomial test, 664
Bird collision process, 594, 595
birth and death process, 71, 637, 639
birthday spacings test, 20
bisection method, 693
Black-Scholes model, 196, 524-525, 534,

535, 538, 539, 545
Blum-Blum-Shub generator, 11
Boltzmann distribution, 206, 263, 449, 504
Boltzmann equation, 593, 595
Boole's inequality, 607
bootstrap method, 56, 331, 331, 482, 483,

485, 658
Borel set, 608
Borel σ-algebra, 608
Borel-Cantelli, 607
boundary value problem, 579
bounded normal approximation, 383
bounded relative error, 382, 384, 385, 387,

394, 397, 403
bounded relative moment of order k, 383
box constraints, 443
Box-Muller method, 54, 123
branching particle filter, 481
bridge network, 238, 249, 348, 350, 352,

353, 355, 359, 361, 363, 365, 367,
368, 374, 377, 405, 425, 426, 429,
431, 434

Brownian bridge, 193-196, 317, 337, 339
Brownian motion, 175, 177, 181, 195, 209,

211, 213, 215, 218, 630
exit probabilities, 182
fractional, see fractional Brownian mo-

tion
geometric, see geometric Brownian

motion

hitting time distribution, 135, 182
maximum of, 182
reflected, see reflected Brownian mo-

tion
standard, 181

Brownian sheet, 206
Broyden's stepsize, 690
Broyden-Fletcher-Goldfarb-Shanno updat-

ing, 690
burn-in period, 273, 309, 311, 313, 314
Burr distribution, 114

c
Cantor function, 202, 609
Cauchy distribution, 46, 48, 64, 106-107,

123, 130, 132, 147, 209, 214, 385,
447, 704, 705

wrapped, 52
Cauchy problem, see terminal value prob-

lem
Cauchy process, 214
central difference estimator, 424—426, 427,

444
central limit theorem, 87, 89, 120, 122, 123,

306, 308, 310, 317, 336, 601, 625,
658, 665, 666, 672

functional, 601
multivariate, 625

central moment, sample-, 304
centroid, 696
Chapman-Kolmogorov, 628
characteristic function, 622
characteristic triplet, 210
Chebyshev inequality, 615
chemical reaction model, 598
chi-square distribution, see χ2 distribution
chi-square test, see χ2 test
X2 distribution, 15, 16, 110, 112, 113, 116,

123, 132, 136, 146, 148, 149, 307,
339, 341-343, 512, 659, 662, 663,
672

X2 test, 15-20, 340, 341, 342, 511
Chib's method, 237, 238
Cholesky factorization, 75, 145, 148-150,

154, 155, 159, 220, 260, 570, 706
band-, 220

circulant matrix, 160, 161, 706, 707
classical statistics, 653
clustering problem, 696
collision test, 19
combinatorial optimization, 469, 504-506,

678, 694
combined generator, 8-10
combined multiple-recursive generator, 4, 8,

9, 14
common random variables, 188, 275, 424,

427, 434, 444
communicating class, 633
complement, 605, 607

INDEX 729

complete market, 524
complete-data likelihood, 712
composition method, 53, 54, 259, 356, 566
compound call option, 526
compound Poisson process, 174—176, 209,

215, 217
compound sum, 394

Poisson, 391-393
concave function, 254, 679, 684
conditional

distribution, 50, 53, 68, 146, 155, 356,
618, 628

Bernoulli, 80
expectation, 355, 618, 620
Monte Carlo, 354, 355, 356, 393, 395,

534, 535, 551, 554, 565
estimator, 355

pdf, 59, 68, 233, 618, 673
probability, 616

confidence interval, 306, 310, 314, 362, 658,
659, 660, 669

Bayesian, 236, 658, 673
bootstrap, 331

confidence region, 307, 308, 658
confidence set, 669
conjugate gradient method, 689
conjugate prior, 139, 142, 149, 675
consistent estimator, 314, 668
constrained optimization, 473, 678, 687, 697
construction process, 554
contingency table, 343
continuity correction, 88
continuity from above/below, 607
continuous optimization, 251, 471, 678

test problems, 696—698
continuously differentiable, 710
control variable, 351, 352, 354, 394, 532

estimator, 352
multiple, 354

convergence
almost sure, 623
complete, 624
in distribution, 309, 623
in Lp-norm, 623
in mean, see convergence in Lp-norm
in probability, 623
of random variables, 623
of SDEs, 192
weak, see convergence in distribution
with probability 1, see convergence, al-

most sure
convergence diagnostic for MCMC, 273, 509,

512, 514
convex

combination, 609
function, 615, 679
hull, 171
program, 679, 680, 683, 684
set, 679, 702

convolution, 555
cooling factor in simulated annealing, 449
copula, 68-70

Gaussian, 69, 406
Student's t, 69, 397, 406

correlation coefficient, 617
multiple, 354
sample-, 304

countable sample space, 606
counting measure, 610, 612
coupling from the past, 276
coupon collector's test, 18
covariance, 617, 619

auto— function, 309, 631
function, 154, 627
matrix, 47, 144, 145, 354, 618, 620,

665, 667, 703, 706
method, 309-311
properties, 617
sample-, 304, 307

covariation of Itô processes, 641
coverage probability, 658
Coxian distribution, 128—129
Cramér-Lundberg approximation, 387
Cramér-Rao lower bound, 667
credible interval, 236, 658, 673
credit risk, 406
critical

region, 660, 661, 671
value, 661

critical edges in network reliability, 572
critical number, 555
critical number in network reliability, 552
cross-entropy

distance, 366, 464
method, 366-368, 404, 405, 407, 447,

457, 458, 463-477, 492, 537, 560
multilevel approach, 404
program, 366, 404, 447

cross-validation estimator, 321
crossover factor in differential evolution, 455
crude Monte Carlo, 306, 348, 376, 382, 384,

426, 491, 529, 530, 533, 542, 543,
545

Csisâr's φ-divergence, 511
cumulant function, 386
cumulative distribution function (cdf), 45,

46, 53, 55, 318, 331, 334, 336,
339, 608, 609

empirical, 17, 302, 316
joint, 612

curvature condition, 692
cut in a graph, 551

D
damping factor, 688
data augmentation, see auxiliary variable

methods
Davidon-Fletcher-Powell updating, 690

730 INDEX

de Jong's function, 697
decomposable distribution, 705
default boundary, 406
delta method, 308-309, 332, 369
Delta of Asian call option, 540
density, see probability density function

(pdf)
density dependence, 597
density plot, 302
density process, 598
depth first search, 552
derivatives, 709

estimation of, 421-435, 437, 438, 442,
540

multidimensional, 710
partial, 710
weak, 433-434

design matrix, 655
detailed balance equations, see balance

equations
Diehard, 17
differential equations, 577-602
differential evolution algorithm, 454
diffusion

coefficient of an SDE, 643
coefficient of Brownian motion, 181
matrix, 184, 578, 646
process, 183-193, 200, 209, 230, 330,

522, 578, 601, 643-650
jump-, 215

digamma function, 665, 669, 716
digital sequence, 27, 29, 33
digital shift, 39
Dijkstra's algorithm, 554
dimension matching, 269
direction number, 33
Dirichlet distribution, 70, 73, 103, 113,

139-141, 142, 473, 702
Dirichlet problem, see boundary value prob-

lem
discrepancy, 14, 26
discrete

cosine transform, 708
distribution, 46, 56, 85, 609, 610
event simulation, 281-300
Fourier transform, 706
optimization, 678
phase-type distribution, 96—98
probability space, 606
sample space, 606
uniform distribution, 101—102

dispersion matrix, 578
distribution

absolutely continuous, 609, 611
a-stable, see stable distribution
arcsine, see beta distribution
Bernoulli, 80, 85-86, 87, 88
beta, 54, 90, 102-106, 110, 113, 115,

133, 139-141, 367, 674, 675, 702,
706

beta-prime, 103
binomial, 86-91 , 93, 99, 100, 142, 143,

317, 434, 659, 664, 666, 702
Boltzmann, 206, 263, 449, 504
Burr, 114
Cauchy, 46, 48, 64, 106-107, 123, 130,

132, 147, 209, 214, 385, 447, 704,
705

wrapped, 52
chi-square, see χ2 distribution
X2, 110, 112, 113, 116, 123, 132, 136,

146, 148, 149, 307, 339, 341-343,
512, 659, 662, 663, 672

continuous phase-type, 126—129
Coxian, 128-129
decomposable, 705
Dirichlet, 70, 73, 103, 113, 139-141,

142, 473, 702
discrete, 46, 56, 85, 609, 610

phase-type, 96—98
uniform, 101-102

divisible, 705
double-exponential, see Laplace distri-

bution
double-sided Maxwell, 433
empirical, 17, 56, 302, 316-318, 322,

331, 334-343
Erlang, 112, 127, 556

generalized, 127
exponential, 46, 48, 88, 92, 100, 108 -

109, 110, 116, 118, 120, 126, 127,
138, 666, 704-706

exponential family, 63, 367, 385, 465,
667, 668, 701

extreme value
type I, see Gumbel distribution
type II, see Fréchet distribution
type III, see Weibull distribution

F, 64, 109-110, 113, 133, 662, 704,
705

Fisher-Snedecor, see F distribution
Fisher-Tippett, see Gumbel distribu-

tion
Fréchet, 48, 64, 111-112, 704, 706
gamma, 48, 96, 100, 104, 108, 1 1 2 -

116, 123, 126, 132, 133, 140, 146,
148, 209, 302, 304, 335, 339, 434,
662, 666, 668, 670, 675, 702, 704-
706

Gaussian, see normal distribution
generalized Erlang, 127
geometric, 88, 91-92, 95, 97, 109, 434,

666, 702, 704, 705
Gibbs, 206
Gompertz, see Gumbel distribution
Gumbel, 48, 116-117, 138, 335, 704-

706
heavy-tailed, 393, 703
hyperexponential, 127

INDEX 731

hypergeometric, 93—94
infinitely divisible, 705
inverse —, 49

gamma, 49, 136, 180
Gaussian, see Wald distribution
normal, see Wald distribution
Wishart, 50

inverted beta, see beta-prime distribu-
tion

joint, 611
Kolmogorov, 194, 317
Levy, 130, 131
Laplace, 48, 118-119, 704, 705
lattice, 631
light-tailed, 385, 703
log-normal, 120-121, 123, 394, 395,

398, 705
log-Weibull, see Gumbel distribution
logistic, 46, 48, 119-120, 704-706
Lomax, see Pareto distribution
long-tailed, 704
Lorentz, see Cauchy distribution
max-stable, 705
mixture, 53, 96, 97, 126-128, 132, 320,

609, 713
multinomial, 99, 139, 141-143, 340,

341, 702
multinormal, see multivariate normal

distribution
multivariate Gaussian, see multivari-

ate normal distribution
multivariate normal, 143-146, 148,

149, 154, 702, 708
multivariate Student's i, 147—148
negative binomial, 94-96, 97, 702, 705
negative exponential, see exponential

distribution
nominal, 485
normal, 48, 49, 60, 63, 66, 88, 99, 107,

122-124, 130, 132, 138, 143-
146, 434, 662, 666, 702, 704-706

wrapped, 52
Pareto, 48, 64, 125-126, 394, 704, 705
Pascal, see negative binomial distribu-

tion
Poisson, 88, 96, 98-101, 109, 434, 666,

675, 702, 704, 705
positive normal, 60, 66, 124, 180
probability, 608, 610-612
Rayleigh, 137, 138
reciprocal, 49, 107, 110, 121
regularly varying, 394, 395, 397, 704,

706
reversed Weibull, 706
singular, 139, 144, 609, 612
stable, 64, 129-131, 180, 209, 214,

704, 705
standard normal, 122—124

Student's t, 64, 69, 104, 107, 131-134,
147-148, 232, 662, 704, 705

subexponential, 393, 704
t, see Student's t distribution
truncated —, 50

exponential, 50
gamma, 262
multivariate normal, 242
normal, 51

uniform, 46, 48, 70, 104, 120, 1 3 4 -
135, 140, 434, 706

Wald, 135-137, 182, 218, 702, 704,
705

Weibull, 46, 48, 137-138, 335, 391,
394, 395, 434, 666, 702, 704, 705

Weibull-like, 394
Wishart, 50, 148-150

distributional parameter, 422, 423, 428
divisible distribution, 705
dodecahedron network, 514, 564, 567, 571-

573
domain of attraction

of the max-stable law, 706
dominated convergence theorem, 422, 615,

624
dominating density, 362, 365, 373, 374, 447
Donsker's invariance principle, 178
double-exponential distribution, see Laplace

distribution
double-sided Maxwell distribution, 433
doubly linked list, 286
doubly stochastic matrix, 632
down-and-in call option, 244, 535, 536, 543
drafting, 80
drawing, see resampling
drift, 524

of a Brownian motion, 181
of an SDE, 643
vector, 578

dual lattice, 12
duality, 684
dynamic

importance sampling, 369—373
simulation, 306, 550

E
efficiency

of acceptance-rejection method, 59,
67, 74, 77

of estimators, 382-385, 656
of Siegmund's algorithm, 387

egg holder function, 697
elementary

event, 606
rectangle, 32

elite sample set in cross-entropy, 457, 465
ellipsoid method, 693
embedded Markov chain, 636
empirical

732 INDEX

cdf, 17, 316
cdf, reduced, 317
distribution, 17, 56, 302, 316-318,

322, 331, 334-343
test, 14

entrance probability estimation, 398
entrance state, 410, 488
equidistribution test, 17, 341
equilikely principle, 606
ergodic estimator, 227
Erlang distribution, 112, 127, 556

generalized, 127
error function, 122, 715
error of the first and second kind, 661
estimation of distribution algorithm, 456
estimator, 656

antithetic, 349
bias, 656
central difference, 424-426, 427
conditional Monte Carlo, 355
consistent, 314, 668
control variable, 352
efficiency, 382-385, 656
ergodic, 257
forward difference, 424
importance sampling, 362, 404, 464
kernel density, 319
maximum a posteriori, 673
maximum likelihood, 465, 473, 667
ratio, 308, 314, 332
score function, 428, 430
stratified sampling, 357
strongly consistent, 314
unbiased, 656
weighted sample, 368, 370

Euler's method, 185, 231, 534, 582
convergence, 192
implicit, 188
multidimensional, 186

European call option, 524, 525, 534-535,
545

event, 605
almost sure, 606
elementary, 606
graph, 286
independent, 607, 616
list, 283
rare, 382
simulation, 283
time, 283
type, 283

event-oriented simulation, 284, 285
evolution model

in network reliability, 551
evolutionary algorithm, 452-457
exact generation for SDEs, 189
exit time, 649
expectation, 612, 614

conditional, 618

function, 154, 627
maximization algorithm, 259, 492, 711
properties, 614, 618
vector, 618, 620

expected L1 error, 319
expiration time of an option, 524
explanatory variable, 654
explosion in splitting, 412
exponential distribution, 46, 48, 88, 92, 100,

108-109, 110, 116, 118, 120,
126, 127, 138, 666, 704-706

exponential family, 63, 367, 385, 422, 465,
665, 667, 668, 701

conjugate prior, 675
natural, 701
sufficient statistic, 655

exponential twist, 386, 389, 391, 409
extensible lattice rule, 37
exterior sphere property, 579
extreme value

type I distribution, see Gumbel distri-
bution

type II distribution, see Fréchet distri-
bution

type III distribution, see Weibull dis-
tribution

F
F distribution, 64, 109-110, 113, 133, 662,

704, 705
factorization

Cholesky, see Cholesky factorization
theorem, 655

fast cosine transform, 323, 327, 708
fast Fourier transform (FFT), 160, 323, 327,

339, 706
Fatou's lemma, 615
Faure sequence, 31—33, 34
feasible region, 678
Feynman-Kac formula, 577, 584, 588, 648
Feynman-Kac particle models, 481
filtration, 626
finite activity Levy process, 210, 215
finite difference method, 231, 423-426, 442,

444, 545
finite-dimensional distributions, 154, 612,

626-628, 632
Fisher-Snedecor distribution, see F distri-

bution
Fisher-Tippett distribution, see Gumbel

distribution
fixed effort splitting, 412
fixed splitting, 412
Fletcher-Reeves conjugate gradient method,

689
floating point number, 44
Fokker-Planck equations, see Kolmogorov

forward equations
forward difference estimator, 424

INDEX 733

Fourier transform, 129, 622, 714
discrete, 706

Freenet distribution, 48, 64, 111-112, 704,
706

fractional Brownian motion, 203—206
fractional Gaussian noise, 204
frequency test, 17, 341
function, Qk, 678, 710
functional optimization, 678
functions of random variables, 620—621

G
gambler's ruin, 371
gamma distribution, 48, 96, 100, 104, 108,

112-116, 123, 126, 132, 133,
140, 146, 148, 209, 302, 304, 335,
339, 434, 662, 666, 668, 670, 675,
702, 704-706

gamma function, 716
incomplete, 99, 113, 716

Gamma of European call option, 545
gamma process, 212
gamma—Poisson mixture, 96
gap test, 18
Gaussian copula model, 68, 69, 568
Gaussian distribution, see normal distribu-

tion
Gaussian kernel density estimation, 319-330
Gaussian process, 154, 193, 627, 645

Markovian, 159
stationary, 160
zero mean, 154

Gaussian random field, 206
Markovian, 155

Gaussian rule of thumb, 320
Gaussian white noise, 219
Gelman-Rubin test, 273, 511
genealogical tree model, 481
generalized Erlang distribution, 127
generalized feedback shift register generator,

7
genetic algorithm, 452
geometric Brownian motion, 188, 196—197,

523, 524, 535
geometric cooling in simulated annealing,

449
geometric distribution, 88, 91-92, 95, 97,

109, 434, 666, 702, 704, 705
Gibbs distribution, 206
Gibbs random field, 206, 207
Gibbs sampler, 225, 233-239, 405, 487,

491, 499, 503, 506, 513, 675, 713
grouped, 236, 260
random sweep, 234
reversible, 234
systematic, 234, 498

GI/G/1 queueing system, 287, 387, 436
Girsanov's theorem, 523, 526, 642
Glivenko-Cantelli, 317

global balance equations, see balance equa-
tions

golden search method, 691
Gompertz distribution, see Gumbel distri-

bution
goodness of fit test, 333, 511
gradient, 678, 710

descent, 689
estimation, 421

Greeks, 539-546
Green's function, 647
Griewangk's function, 697
grouped Gibbs sampler, 236, 260
Gumbel distribution, 48, 116-117, 138,

335, 704-706

H
Haar functions, 178
Halton points, 29
Halton sequence, 29-32
Hammersley points, 29
Hammersley-Clifford theorem, 207, 233
hard spheres, 594
harmonic function, 650
heat equation, 181
heavy-tailed distribution, 393, 703
hedging, 538
Hessian matrix, 667, 678, 679, 711
hierarchical model, 235, 673
Hubert space, 619
histogram, 302
hit-and-run sampler, 240-251, 407, 487,

499, 500, 514, 537, 543, 569
Holder continuous, 579
Holder's inequality, 619
holding rate, 166
Holmes-Diaconis-Ross method, 247, 485
Hurst parameter, 203
hyperball, 74
hyperellipsoid, 75
hyperexponential distribution, 127
hypergeometric distribution, 93—94
hypergeometric function, 93, 205, 716
hypersphere, 74
hypothesis testing, 660-664

likelihood methods, 671-672

I
iid, 617, 626

sample, 301, 654
sequence, 2

implicit Euler method, 188
importance function, 409, 486
importance sampling, 362-376, 385-393,

430, 464, 482, 492, 536, 537, 543,
562-567

density, 362
optimal, 363, 364, 464

estimator, 362, 404, 464

734 INDEX

screening, 408
sequential, 369-373
state-dependent, 398-403

inclusion-exclusion, 607
increasing Levy process, see Levy subordi-

nator
increment

—s independent, 177, 207, 208
—s stationary, 203, 204, 208
—s stationary, Gaussian, 207
of an LCG, 4

incremental weight, 370
independence

of event, 616
of events, 607
of random variables, 617, 621

independence sampler, 227—230
independent increments, 177, 207, 208
independent nonidentically distributed, 396
indicator, 465, 613, 615
infinite activity Levy process, 210, 217
infinitely divisible distribution, 208, 705
infinitesimal generator, 126, 211, 578, 588,

647, 648
infinitesimal perturbation analysis, 426,

442, 540
information matrix, 232, 665, 667, 670
initial value problem, 585, 588
instrumental density, see proposal density
insurer default risk, 392
integrable

random variable, 613, 619
sequence, 613
square, 613, 619, 620, 630
uniformly, 613, 624

integrated squared error, 321
integration

Monte Carlo, 25, 38, 307
multidimensional, 25-27
quasi Monte Carlo, 26, 38, 377

intensity function, 171
interactive particle filter, 481
interquartile range, 320
interval estimate, see confidence interval
invariant distribution, see stationary distri-

bution
inventory system, see (s, S) inventory policy
inverse — distribution, 49

gamma, 49, 136, 180
Gaussian, see Wald distribution
normal, see Wald distribution
Wishart, 50

inverse congruential generator, 11
inverse-transform method, 45—47, 67, 251,

351
for gradient estimation, 423

inverted beta distribution, see beta-prime
distribution

irreducible Markov chain, 234, 274, 633, 634

Ising model, 264
Itô diffusion, see diffusion process, 645
Itô integral, 184, 639-643
Itô process, 640

covariation, 641
integration by parts, 642
integration with respect to, 641
multidimensional, 640
properties, 641
quadratic variation, 641

Itô's lemma, 641
iterative averaging, 444

J
Jacobi matrix, 50, 308, 620, 688, 710
Jensen's inequality, 366, 615
joint distribution, 55, 68, 611-614
jump chain, 636
jump diffusion process, 215
jump measure, 209

K
Karhunen-Loève expansion, 179, 181
Karush-Kuhn-Tucker conditions (KKT),

683, 684
Keane's function, 697
kernel density estimation, 69, 147, 319-330
Kiefer-Wolfowitz algorithm, 444
KISS99 generator, 10
knapsack problem, 505, 694
knock-in call option, see down-and-in call

option
Koksma-Hlawka inequality, 26
Kolmogorov

axioms, 606, 608
backward equations, 184, 577, 590,

637, 647
criterion, 635, 639
distribution, 194, 317
equations for autonomous SDEs, 646
forward equations, 184, 577, 589, 591,

595, 637, 647
inequality, 615
statistic, 317

Kolmogorov-Smirnov test, 15, 17, 26, 193,
336-338

Korobov lattice method, 36
Kullback-Leibler distance, 366, 464, 712

L
L1 error, 319
lagged Fibonacci generator, 11
Lagrange

dual program, 684
function, 683
method, 683-684
multiplier, 683

Lamperti transform, 190
Langevin

INDEX 735

diffusion, 230
Metropolis-Hastings sampler, 231
SDE, 200

Laplace distribution, 48, 118-119, 704, 705
Laplace operator, 581
Laplace transform, 621
Laplacian, see Laplace operator
latent variable methods, see auxiliary vari-

able methods
latin hypercube sampling, 360-361
LatMRG, 14
lattice, 12, 26

dual, 12
method, 36-38
rule, 37

lattice distribution, 631
law of large numbers, 306, 625, 658, 665

functional — , 598
law of total probability, 616
leap—evolve algorithm, 560
least squares cross validation (LSCV), 321-

325
least squares method, 655
Lebesgue decomposition theorem, 610
Lebesgue measure, 608, 611, 612
Lebesgue-Stieltjes integral, 614
level in splitting, 409
Levy

distribution, 130, 131
measure, 175, 208
process, 129, 174, 175, 208-218, 534

finite activity, 210, 215
infinite activity, 210, 217

subordinator, 211-213
Levy—Itô decomposition, 209, 215
Lévy-Khinchin representation, 209, 705
light-tailed distribution, 385, 703
likelihood, 664-672

Bayesian, 673
complete-data, 712
marginal, 233, 239, 498, 673
optimization, 259, 404, 465, 655, 667,

669, 711
ratio, 362, 386, 430, 469, 671

method, see score function method
statistic, 671-672

limiting distribution, 225, 273, 309, 313,
625, 634, 638

of Markov chain, 634
of Markov jump process, 638

Lindley recursion, 387, 436
line sampler, 240
line search, 689, 691
linear congruential generator, 4-5, 11, 37
linear factor model, 406
linear feedback shift register, 7
linear model, 655
linear program, 680
linear SDE, 184, 643

linear transformation, 47, 620
Lipschitz continuous, 579
local balance equations, see balance equa-

tions
local minimizer, 678
location family, 48
location-scale family, 47—49, 334, 667
log-concave density, 63, 263
log-likelihood, 664
log-normal distribution, 120-121, 123, 394,

395, 398, 705
log-Weibull distribution, see Gumbel distri-

bution
logarithmic efficiency, 382, 384, 394
logarithmically efficient of order k, 383
logistic distribution, 46, 48, 119-120, 704-

706
logit model, 231
Lomax distribution, see Pareto distribution
long-range dependence, 204
long-tailed distribution, 704
Lorentz distribution, see Cauchy distribu-

tion
low-discrepancy sequence, 27, 29
Lp space, 619

M
marginal distribution, 612
marginal likelihood, 233, 239, 498, 673
market price of risk, 523
Markov chain, 96, 225, 233, 275, 398, 485,

486, 568, 632-635
as a regenerative process, 634
classification of states, 633
embedded, 636
fast mixing of, 681
generation, 162-166
limiting behavior, 309, 312, 633
thinned, 229

Markov chain Monte Carlo, 225-276, 404,
449, 486, 509, 566

Markov inequality, 615
Markov jump process, 126, 127, 172, 554,

597, 602, 635-639
generation, 166-170
limiting behavior, 638
nonhomogeneous, 168

Markov process, 159, 184, 200, 211, 409,
577, 587, 628, 645

initial distribution, 628
time-homogeneous, 588, 628, 646
transition kernel, 628

density, 628
semigroup property, 628

Markov property, 162, 166, 179, 211, 628
strong, 628

Markov random field, 155, 206, 207
martingale, 178, 523, 629-630, 641, 643

sub—, 629

736 INDEX

Master's cosine wave function, 698
mathematical statistics, 653
MATLAB, 2

matrix congruential generator, 6
matrix multiplicative recursive generator, 6,

10
maturity of an option, 524
max-cut problem, 695
max-stable distribution, 705
maximum a posteriori estimator, 673
maximum likelihood estimator, 457, 465,

473, 667
maximum-of-d test, 19
mean, see sample mean
mean field particle model, 481
mean integrated square error, 319
mean measure, 170
mean square

convergence, 623
error, 331, 656

mean-reverting process, 534
measurable space, 608
median, see sample median
memoryless property, 92, 108
merge process, 562
Mersenne twister, 4, 7
method of moments, 657
Metropolis-Gibbs hybrid sampler, 256
Metropolis-Hastings algorithm, 225, 226—

233, 234, 240, 256, 257
M/G/l queueing system, 395
Michalewicz's function, 698
microscopic cross-section, 594
Milstein's method, 187-188

convergence, 192
minimal Q-process, 638
minimal cut, 551
minimal path, 551
minimax problem, 685
minimizer, 678
minimum

global, 678
local, 678

Minkowski's inequality, 619
mixing speed, 273, 493
mixture distribution, 53, 96, 97, 126-128,

132, 320, 609, 713
of normals, 53

mixture model, 713-714
mixture, scale, 55
M / M / l queueing system, 287, 388, 436,

630, 631, 639
model, simulation, 281-283
modification

of a stochastic process, 626
modular random variables, see wrapped

random variables
modulo 2 linear generator, 6—8, 14
modulus

of a matrix congruential generator, 6
of an LOG, 4
of an MRG, 5

moment, 104, 123, 141, 148, 622
sample-, 304, 657

moment generating function, 386, 621, 703
monotone convergence theorem, 615, 625
Monte Carlo

crude, 306, 348, 376, 382, 384, 426,
491, 529, 530, 533, 542, 543, 545

integration, 25, 38, 307
moving average time series, 220
MRG32k3a random number generator, 4, 9
MT19937 Mersenne twister, 4, 7, 8
multidimensional integration, 25—27, 486,

495
multinomial distribution, 99, 139, 141—143,

340, 341, 702
multinormal distribution, see multivariate

normal distribution
multiple control variable, 354
multiple-recursive generator, 5

combined, 4, 8, 9, 14
multiple-try Metropolis-Hastings, 257-258
multiplicative congruential generator, 4, 8

matrix, 6
minimal standard, 5

multiplier
Lagrange, 683
of an LOG, 4
of an MRG, 5

multiply with carry generator, 10
multivariate central limit theorem, 625
multivariate Gaussian distribution, see mul-

tivariate normal distribution
multivariate normal distribution, 143—146,

148, 149, 154, 702, 708
multivariate Student's t distribution, 147—

148

N
natural exponential family, 422, 665, 667,

668, 701
nearest pair test, 17
nearly linear density, 61
negative binomial distribution, 94—96, 97,

702, 705
negative exponential distribution, see expo-

nential distribution
nested permutation scrambling, 39
network reliability, 397, 514, 549-574

all-terminal, 550, 552
two-terminal, 550, 551, 557

Newton's method, 231, 670, 688
root-finding, 499, 688

Neyman-Pearson
approach, 662
test, 389

noisy optimization, 442, 458, 476-477, 682

INDEX 737

nominal distribution, 362, 485
nominal parameter, 364
normal antithetic random variables, 351
normal copula model, see Gaussian copula

model, 406
normal distribution, 48, 49, 60, 63, 66, 88,

99, 107, 122-124, 130, 132, 138,
143-146, 434, 662, 666, 702, 704-
706

mixture, 53
positive, 60, 66, 124, 180
sufficient statistic, 656
wrapped, 52

normal equations, 655
normal inverse Gaussian process, 218
normal scale mixture, 55
normal updating

in cross-entropy, 458, 471
normed space, 619
Novikov's condition, 523, 643
null hypothesis, 660
numerical precision, 44
numerical random variable, 608

o
objective function, 441, 677, 678, 683, 685,

687
optimal importance sampling density, 363
optimization, 677—699

combinatorial, 469, 504-509, 678, 694
constrained, 473, 678, 687, 697
continuous, 251, 471, 678
continuous, test problems, 696-698
functional, 678
noisy, 442, 458, 476-477, 682
randomized, 251, 254, 441-460, 468
unconstrained, 678

option
Asian call, 244, 526-534, 540
compound call, 526
down-and-in call, 535, 536
European call, 524, 525, 534-535, 545
expiration, 524
maturity, 524
payoff, 524
strike price, 524
types of, 527, 528

optional stopping theorem, 629
order of an MRG, 5
order statistics, 54-55, 70-71, 87, 104, 141,

317
ordinary differential equation, 597
ordinary discrepancy, 26
Ornstein-Uhlenbeck process, 198-200, 413,

601
orthonogal projection

conditional expectation as, 620
overflow probability, 388-391, 399, 401, 402

P
p-p plot, 334
p-value, 20, 341, 342, 661
Pareto distribution, 48, 64, 125-126, 394,

704, 705
Pareto optimality, 682
partial derivative, 710
partial differential equation, 577
particle methods, 481-516
particle splitting, 481
particle swarm optimization, 460
partition, 616
partition function, 206, 263, 486
partition test, 18
Pascal distribution, see negative binomial

distribution
Pascal matrix, 31
pathological test function, 698
pathwise derivative estimation, 540-541,

545
Paviani's function, 696
payoff of an option, 524
penalty function, 473, 685-686

exact, 685
percentile, 304
perfect sampling, 274-276
performance

function, 306
measure, 296, 305-309, 421
measure, long-run average, 314
measure, steady-state, 309-316, 436

period
length, of a random number generator,

2
of a Markov chain state, 633
of a random variable, 631

periodic state, 633
permutation Monte Carlo, 554-562
permutation test, 19
phase-type distribution

continuous, 126-129, 704
discrete, 96-98

Picard iteration, 644
plug-in bandwidth selection, 321, 326—330
Poisson

zero inflated — model, 235
Poisson distribution, 88, 96, 98-101, 109,

434, 666, 675, 702, 704, 705
Poisson process, 99, 170-176, 209, 317, 588

compound, 174-176, 209, 215, 217
nonhomogeneous, 172

Poisson random measure, 170
Poisson summation formula, 52, 714
poker test, 18
Polak—Ribiére conjugate gradient method,

689
polar method, 54, 105, 123, 133
Pollaczek—Khinchin formula, 395
Polyak

738 INDEX

—'s step size, 691
averaging, 444

polynomial lattice, 37
polynomial number, 34
population Monte Carlo, 481
positive definite matrix, 50, 144, 678

band-Cholesky factorization of, 220
positive normal distribution, 60, 66, 124,

180
positive semidefinite matrix, 144, 679
positivity condition, 233
posterior distribution, 673
Potts model, 263-268
power curve, 661
precision matrix, 144, 146, 155, 208
precision, numerical, 44
predicatble process, 639
prior distribution, 673
probability

density function (pdf), 610, 611
density function (pdf), joint, 612
distribution, 608, 610-612
generating function, 621
mass function, 611
measure, 605, 607
plot, 334
space, 605, 606

probit model, 259
process

Bernoulli, 626
Bird collision, 594, 595
compound Poisson, 174-176, 209,

215, 217
construction, 554
finite activity Levy, 210, 215
gamma, 212
Gaussian, 154, 193, 627, 645

Markovian, 159
stationary, 160
zero mean, 154

increasing Levy, see Levy subordinator
infinite activity Levy, 210, 217
Levy, 174, 175, 208-218, 534
Markov, 159, 184, 200, 211, 409, 577,

587, 628
Markov chain, 96, 225, 233, 275, 398,

568, 632-635
generation, 162—166
reversible, 635
thinned, 229

Markov jump, 127, 172, 554, 597, 602,
635-639

generation, 166-170
nonhomogeneous, 168

normal inverse Gaussian, 218
Ornstein-Uhlenbeck, 198-200, 413,

601
Poisson, 99, 170-176, 209, 317, 588

regenerative, 287, 289, 309, 313, 387,
630

renewal, 287, 289, 630
reversible, 198, 230, 509, 632
self-similar, 203, 206
sensitivity analysis, 435-438
stable, 214
stationary, 198, 309, 631
transport, 587
weakly stationary, 631
white noise, 219
Wiener, 177-183, 215, 217, 522, 523,

627, 630, 639, 643
multidimensional, 182
reflected, 202
time-change, 642

process-oriented simulation, 284
product rule, 68, 237, 369, 410, 616

for Itô processes, 522, 523, 642
projected subgradient method, 442, 690
projection operator, 691
proposal density, 59, 226, 450
pseudorandom number, see random number
push-out method, 423
put-call parity, 525

Q
Q-matrix, 166, 635
q-q plot, 334-336
quadratic assignment problem, 508, 695—

696
quadratic program, 251, 680
quadratic variation

of a Wiener process, 178
of an Itô process, 641

quantile, 306, 334
sample-, 304, 331, 334

quasi Monte Carlo, 26, 376-378, 530-532
in network reliability, 562
in optimization, 460
in splitting, 416
integration, 38, 377

quasi Newton method, 689
queueing system, 282

R
radical inverse, 27
radix, 27
Rana's function, 698
random

counting measure, 170
directions algorithm, 444
experiment, 301, 605
field, 206-208

Gaussian, 206
Gaussian, Markovian, 155
Gibbs, 206, 207
Markov, 155

number, 2

INDEX 739

generation, 1-11
quasi — generation, 25-40
tests for —s, 11-20

permutation, 79
process, 607, 626-632

generation, 153-222
sample

see iid sample, 654
shifting, 38, 376, 530
sum, see compound sum
sweep Gibbs sampler, 234
variable, 607-612

absolutely continuous, 611
discrete, 610
indicator, 613
limit theorems, 623
modes of convergence, 623
numerical, 608

vector, 607, 611, 620
covariance of, 618
expection of, 618
generation, 67-70

walk, 164, 177, 208, 214, 312, 315,
371-373, 387-388, 401-403, 627

on an n-cube, 165
sampler, 230-233, 310-311, 449

randomized optimization, 251, 254, 441—

460, 468
RANDU generator, 14
range, 54

sample-, 304
rank one updating, 690
Rao-Blackwellization, 354
rare event, 382
rare-event

probability, 247, 367, 371, 486-495,
504, 505, 550

simulation, 381-416, 486-495, 526, 536
efficiency, 382-385
via conditional Monte Carlo, 393-

398, 554-562
via cross-entropy, 404-409, 465
via importance sampling, 385-393,

398-403, 565-567
via splitting, 409-415, 486-495

Rastrigin's function, 696
rate function, 171
ratio estimator, 308, 314, 332, 368
ratio of uniforms method, 66-67, 107, 124,

133
Rayleigh distribution, 137, 138
reciprocal distribution, 49, 107, 110, 121
recurrent state, 633
reduced empirical cdf, 317
reference parameter, 364, 366, 465
reflected

Brownian motion, 200—203
random walk, 388
Wiener process, 202

regeneration theorem, 631
regeneration time, 630
regenerative process, 287, 289, 309, 313,

387, 630
delayed, 630
Markov chain as a —, 634
pure, 630
sensitivity analysis, 435-438

regenerative simulation, 313, 435
regression, 654

model selection, 270
regularly varying distribution, 394, 395, 397,

704, 706
relative error, 306, 382

bounded, 382, 384, 385, 387, 394, 397,
403

estimated, 306, 382
vanishing, 382, 383
work normalized squared, 383

relative time variance product, 383, 656
reliability, 137, 167-168, 284, 550

network, 550
variance reduction, 549—574

renewal counting process, 630
renewal process, 287, 289, 630, 631

cycle, 631
repair time, 551
repairman problem, 167-168, 296-299
replication-deletion method, 313
resampling, 56, 257, 331

without replacement, 79, 484
residual probability, 397
response surface estimation, 373-376, 431-

433, 460
response variable, 654
reversed Weibull distribution, 137, 706
reversible

Gibbs sampler, 234
jump sampler, 269-273
Markov chain, 234, 635
process, 198, 230, 632

reversible process, 509
risk-neutral measure, 523
Robbins-Monro algorithm, 444
root finding, 422, 669, 687, 688, 689
Rosenbrock function, 455, 503, 696
run test, 19
runs above/below the mean, 18

S
saddle point, 678

problem, 685
sample

average approximation, see stochastic
counterpart method

central moment, 304
characteristics, 303
correlation coefficient, 304
covariance, 304, 307

740 INDEX

importance resample, 483
mean, 131, 303, 305, 654, 657, 658
median, 303
moment, 304
path, 626
performance function, 464
quantile, 304, 331, 334
range, 54, 304
space, 276, 356, 411, 605

countable, 606
discrete, 606

standard deviation, 304, 658
variance, 131, 304, 305, 306, 657, 658

pooled, 659
sampling, see resampling
satisfiability problem (SAT), 453-454, 469-

471, 490-492, 694
scale family, 48, 109, 114, 126
scale mixture, 55
scaling factor in differential evolution, 455
scatter plot, 302
Schwarz's inequality, 619
Schwefel's function, 698
score confidence interval, 669
score function, 428, 665, 666

estimator, 428, 430
method, 373, 428-433, 442, 542-546
r-th order, 429

score interval, see score confidence interval
scrambling, 39
screening, 408
secant condition, 689
seed of a random number generator, 1
self-financing, 523
self-similar process, 203, 206
semidefinite program, 680, 681
semimartingale, 640
sensitivity analysis, 421-438, 495

in finance, 538-546
separable path, 626
sequential importance sampling, 369—373
sequential Monte Carlo, 273, 381, 481, 4 8 2 -

485
serial test, 17
shake-and-bake sampler, 251-256
Sheather-Jones bandwidth selection, 326
Siegmund's algorithm, 386, 388, 403

efficiency, 387
σ-algebra, 605, 618, 626

Borel, 608
significance level, 662
simplex, 71

unit, 72
SIMULA, 285
simulated annealing, 225, 449—452, 504

temperature, 449
simulation

clock, 283
dynamic, 306

effort, 410
event-oriented, 284, 285
languages, 285
model, 281-283
process-oriented, 284
regenerative, 314
static, 306
steady-state, 309

simulation experiment, 301
sine envelop sine wave function, 698
sine series expansion

of Wiener process, 178
singular distribution, 139, 144, 609, 612
singular matrix, 144
slack variable, 687
Slater's condition, 684
slice sampler, 261-263
smoothing parameter, 469
Sobol' sequence, 33—36
source/sink node in network reliability, 550
sparse matrix, 6, 155, 208
spectral

gap, 12, 13
test, 12

sphere model function, 696
splitting

explosion, 412
factor, 410, 568
fixed, 412
fixed effort, 412
generalized, 485-516, 567-573

unbiasedness of, 492
method, 409-415

square integrability, 613, 619
squeeze function, 60—62, 63, 124, 573
(s, S) inventory policy, 289, 458
stable distribution, 64, 129-131, 180, 209,

214, 704, 705
stable process, 214
standard Brownian motion, 181
standard deviation, 615

sample-, 304, 658
standard error, 26, 306

estimated, 306
standard model in finance, 521
standard normal distribution, 122—124
star discrepancy, 26
state space, 608, 626
state-dependent importance sampling, 398-

403
static simulation, 306, 550
stationary distribution

of autonomous diffusion, 648
of Markov chain, 634
of Markov jump process, 638
of Ornstein-Uhlenbeck process, 198

stationary increments, 203, 204, 208
Gaussian, 207

stationary point, 678

INDEX 741

stationary process, 198, 219, 309, 631
statistic, 15, 331, 654, 660

sufficient, 655-656, 703
statistical test

for random number generators, 11-20
one-sided - , 661
two-sided - , 661

statistics
Bayesian, 653
classical, 653
mathematical, 653

steady-state simulation, 309
steepest descent, 689, 691
Stirling number of the second kind, 18
stochastic approximation, 441—446, 691
stochastic approximation approach, see

stochastic counterpart method
stochastic counterpart method, 364, 366,

446-448, 465
stochastic differential equation, 183—192,

643-650
diffusion-type, 644
exact generation for, 189
explosion, 644
for Brownian bridge, 193
for Brownian motion, 181
for geometric Brownian motion, 196
for Ornstein-Uhlenbeck process, 198
generation via Euler, 185
generation via implicit Euler, 188
generation via Milstein, 187
linear, 184, 643, 645
links with partial differential equa-

tions, 577-587
multidimensional, 184, 645

strong solution, 646
of Langevin type, 230
stock price model, 522, 524, 525, 527,

528, 534
strong and weak solution, 644
strong convergence of approximations,

192
time-homogeneous, 184, 190, 643
weak convergence of approximations,

192
stochastic exponential, 196
stochastic integral, 640
stochastic matrix, 632
stochastic optimization, see noisy optimiza-

tion
stochastic process, 607, 611, 626-632

adapted, 627
Gaussian, 627
generation, 153-222
Markovian, 628
martingale, 629
modification, 626
predictable, 639
regenerative, 287, 289, 313, 387, 630

sensitivity analysis, 435—438
separability of paths, 626
stationary, 631
version, 626

stochastic shortest path, 238, 249, 348, 350,
352, 363, 367, 425

stopping time, 370, 386, 399, 627
stratified sampling, 356-360, 483

estimator, 357
of Brownian motion, 195
proportional, 358

Stratonovich integral, 643
stretch V sine wave function, 697
strict feasibility, 684
strike price, 524
strongly consistent estimator, 314
structural parameter, 422, 423, 426, 540
structure function, 550
Student's t distribution, 64, 69, 104, 107,

131-134, 147-148, 232, 662,
704, 705

subexponential distribution, 393, 704
subgradient method, 442, 690
submartingale, 629
subordination of a Levy process, 212, 217
sufficient statistic, 655-656, 703

exponential family, 655
normal distribution, 656

sum rule, 606, 607
Swendsen-Wang algorithm, 237, 265
symmetric power, 594
system

discrete event, 281-285
state, 283

systematic Gibbs sampler, 234, 498
systematic sampling, 358-360

T
t distribution, see Student's t distribution
i-test

one-sample, 663
two-sample, 663

table lookup method, 55-56, 102
tabu search, 460
tandem queueing system, 293-295
Tausworthe generator, 7
Taylor

approximation, 538, 670, 710
expansion, 308, 672, 710
expansion, multidimensional, 711

Taylor's theorem, 710
for characteristic functions, 622
for moment generating functions, 622
multidimensional, 711

temperature in simulated annealing, 449
terminal node, 549
terminal value problem, 584
terminal—boundary value problem, 586
test

742 INDEX

binary rank, 15
birthday spacings, 20
X2, 17, 341
collision, 19
coupon collector's, 18
empirical, 14
equidistribution, 17, 341
frequency, 17, 341
gap, 18
Gelman-Rubin, 273, 511
goodness of fit, 333
Kolmogorov-Smirnov, 17
maximum-of-d, 19
nearest pair, 17
partition, 18
permutation, 19
poker, 18
power of a —, 661
rank, binary, 20
run, 19
serial, 17
spectral, 12
t

one-sample, 663
two-sample, 663

test statistic, 660
TestUOl, 5, 8-11, 17
theorem

Berry-Esséen, 625
central limit, 625
continuity, 624
dominated convergence, 615, 624
factorization, 655
functional central limit, 601
Girsanov, 642
Hammersley-Clifford, 207, 233
monotone convergence, 615, 625
regeneration, 631
Skorohod representation, 624
Slutsky's, 624
Taylor, 710
Taylor, multidimensional, 711

theta function, 322, 715
thinned Markov chain, 229
threshold in splitting, 409
tilting vector, 364
time of repair, 551
time series, 219-222

ARIMA, 222
ARMA, 221
autoregressive, 219, 220
moving average, 220

time-homogeneous
Markov process, 588, 628, 646
SDE, 184, 190, 643

(i,m,d)-net, 32, 34
Toeplitz matrix, 160, 337
total variation distance, 230
tower property of expectation, 618

trading strategy, 522
transformation

methods for generation, 47
of random variables, 620—621
rule, 620

transformed acceptance-rejection method,
62-66

transient state, 633
transition

graph, 632
matrix, 96, 128, 163, 166, 632
rate, 166, 636
rate graph, 637

transition function, 635
transition kernel

density, 628
of a Markov process, 628
semigroup property, 628

transport equations, 589
transport process, 587
traveling salesman problem, 506, 695
tree cut and merge, 562
triangle inequality, 619
trigonometric function, 450, 697
truncated

distribution, 50
exponential distribution, 50
gamma distribution, 262
multivariate normal distribution, 242
normal distribution, 51

trust region method, 374, 692-693
2-opt for TSP, 508
two-terminal network reliability, 550, 551,

557
type I and type II errors, 661

u
unbiased estimator, 656
unconstrained optimization, 678
uniform distribution, 46, 48, 70, 104, 120,

134-135, 140, 434, 706
discrete, 101-102
for permutations, 79
in a hyperellipsoid, 75, 228
in a hypersphere, 74
in a simplex, 71
on a curve, 75
on a surface, 76

uniform ellipticity, 579
uniform integrability, 613, 624
uniform random number

generation, 1—11
uniqueness property

of transforms, 621
unit simplex, 72
unreliability, 550

V
value-at-risk, 398

van der Corput sequence, 27-29
vanishing relative centered moment of order

fc, 383
vanishing relative error, 383, 394, 395
variable hard spheres, 594
variance, 612, 615, 618, 619

asymptotic, 309, 310, 314, 332
properties, 617
reduction, 347-379
sample-, 131, 304, 306, 657, 658

variance gamma process, 213, 218
variance minimization method, 364—366
Vega of Asian call option, 540
version

of a stochastic process, 626
Vlasov's equation, 590
volatility, 524

w
waiting time, 387, 395, 436
Wald distribution, 135-137, 182, 218, 391,

702, 704, 705
weak derivative, 433-434, 442
weak duality, 684
weakly stationary process, 631
Weibull distribution, 46, 48, 137-138, 335,

391, 394, 395, 434, 666, 702, 704,
705

reversed, 137
Weibull-like distribution, 394
weighted sample, 368

estimator, 368, 370
WELL generator, 8
white noise, 219

Gaussian, 196, 219
whitening, 145
Wichman-Hill generator, 8
Wiener process, 177-183, 215, 217, 522,

523, 627, 630, 639, 643
multidimensional, 182
reflected, 202
time-change, 642

Wiener sheet, 206
Wishart distribution, 50, 148-150
Wolfe

condition, 692
dual program, 684

work normalized squared relative error, 383
wrapped

Cauchy distribution, 52
normal distribution, 52
random variables, 52

X
XOR, 7, 34

shift generator, 10

Y
Yule-Walker equations, 219

z
zero inflated Poisson model, 235
zero-variance importance sampling distribu-

tion, 367, 368, 384, 400, 402, 404

WILEY SERIES IN PROBABILITY AND STATISTICS
ESTABLISHED BY WALTER A. SHEWHART AND SAMUEL S. WlLKS

Editors: David J. Balding, Noel A. C. Cressie, Garrett M. Fitzmaurice,
Iain M. Johnstone, Geert Molenberghs, David W. Scott, Adrian F. M. Smith,
Ruey S. Tsay, Sanford Weisberg
Editors Emeriti: Vic Barnett, J. Stuart Hunter, Joseph B. Kadane,
JozefL. Teugels

The Wiley Series in Probability and Statistics is well established and authoritative. It covers
many topics of current research interest in both pure and applied statistics and probability
theory. Written by leading statisticians and institutions, the titles span both state-of-the-art
developments in the field and classical methods.

Reflecting the wide range of current research in statistics, the series encompasses applied,
methodological and theoretical statistics, ranging from applications and new techniques
made possible by advances in computerized practice to rigorous treatment of theoretical
approaches.

This series provides essential and invaluable reading for all statisticians, whether in aca-
demia, industry, government, or research.

t ABRAHAM and LEDOLTER · Statistical Methods for Forecasting
AGRESTI ■ Analysis of Ordinal Categorical Data, Second Edition
AGRESTI · An Introduction to Categorical Data Analysis, Second Edition
AGRESTI · Categorical Data Analysis, Second Edition
ALTMAN, GILL, and McDONALD · Numerical Issues in Statistical Computing for the

Social Scientist
AMARATUNGA and CABRERA · Exploration and Analysis of DNA Microarray and

Protein Array Data
ANDEL ■ Mathematics of Chance
ANDERSON · An Introduction to Multivariate Statistical Analysis, Third Edition

* ANDERSON · The Statistical Analysis of Time Series
ANDERSON, AUQUIER, HAUCK, OAKES, VANDAELE, and WEISBERG ■

Statistical Methods for Comparative Studies
ANDERSON and LOYNES · The Teaching of Practical Statistics
ARMITAGE and DAVID (editors) · Advances in Biometry
ARNOLD, BALAKRISHNAN, and NAGARAJA · Records

* ARTHANARI and DODGE · Mathematical Programming in Statistics
* BAILEY · The Elements of Stochastic Processes with Applications to the Natural

Sciences
BALAKRISHNAN and KOUTRAS · Runs and Scans with Applications
BALAKRISHNAN and NG · Precedence-Type Tests and Applications
BARNETT · Comparative Statistical Inference, Third Edition
BARNETT · Environmental Statistics
BARNETT and LEWIS · Outliers in Statistical Data, Third Edition
BARTOSZYNSKI and NIEWIADOMSKA-BUGAJ · Probability and Statistical Inference
BASILEVSKY · Statistical Factor Analysis and Related Methods: Theory and

Applications
BASU and RIGDON · Statistical Methods for the Reliability of Repairable Systems
BATES and WATTS · Nonlinear Regression Analysis and Its Applications

*Now available in a lower priced paperback edition in the Wiley Classics Library.
I Now available in a lower priced paperback edition in the Wiley-Interscience Paperback Series.

BECHHOFER, SANTNER, and GOLDSMAN · Design and Analysis of Experiments for
Statistical Selection, Screening, and Multiple Comparisons

BELSLEY · Conditioning Diagnostics: Collinearity and Weak Data in Regression
t BELSLEY, KUH, and WELSCH · Regression Diagnostics: Identifying Influential

Data and Sources of Collinearity
BENDAT and PIERSOL · Random Data: Analysis and Measurement Procedures,

Fourth Edition
BERRY, CHALONER, and GEWEKE · Bayesian Analysis in Statistics and

Econometrics: Essays in Honor of Arnold Zellner
BERNARDO and SMITH · Bayesian Theory
BHAT and MILLER ■ Elements of Applied Stochastic Processes, Third Edition
BHATTACHARYA and WAYMIRE · Stochastic Processes with Applications
BILLINGSLEY · Convergence of Probability Measures, Second Edition
BILLINGSLEY · Probability and Measure, Third Edition
BIRKES and DODGE ■ Alternative Methods of Regression
BISGAARD and KULAHCI · Time Series Analysis and Forecasting by Example
BISWAS, DATTA, FINE, and SEGAL ■ Statistical Advances in the Biomédical Sciences:

Clinical Trials, Epidemiology, Survival Analysis, and Bioinformatics
BLISCHKE AND MURTHY (editors) · Case Studies in Reliability and Maintenance
BLISCHKE AND MURTHY · Reliability: Modeling, Prediction, and Optimization
BLOOMFIELD · Fourier Analysis of Time Series: An Introduction, Second Edition
BOLLEN · Structural Equations with Latent Variables
BOLLEN and CURRAN · Latent Curve Models: A Structural Equation Perspective
BOROVKOV · Ergodicity and Stability of Stochastic Processes
BOULEAU · Numerical Methods for Stochastic Processes
BOX · Bayesian Inference in Statistical Analysis
BOX · R. A. Fisher, the Life of a Scientist
BOX and DRAPER · Response Surfaces, Mixtures, and Ridge Analyses, Second Edition

* BOX and DRAPER · Evolutionary Operation: A Statistical Method for Process
Improvement

BOX and FRIENDS · Improving Almost Anything, Revised Edition
BOX, HUNTER, and HUNTER · Statistics for Experimenters: Design, Innovation,

and Discovery, Second Editon
BOX, JENKINS, and REINSEL ■ Time Series Analysis: Forcasting and Control, Fourth

Edition
BOX, LUCENO, and PANIAGUA-QUINONES · Statistical Control by Monitoring

and Adjustment, Second Edition
BRANDIMARTE · Numerical Methods in Finance: A MATLAB-Based Introduction

t BROWN and HOLLANDER · Statistics: A Biomédical Introduction
BRUNNER, DOMHOF, and LANGER · Nonparametric Analysis of Longitudinal Data in

Factorial Experiments
BUCKLEW · Large Deviation Techniques in Decision, Simulation, and Estimation
CAIROLI and DALANG · Sequential Stochastic Optimization
CASTILLO, HADI, BALAKRISHNAN, and SARABIA · Extreme Value and Related

Models with Applications in Engineering and Science
CHAN · Time Series: Applications to Finance with R and S-Plus®, Second Edition
CHARALAMBIDES · Combinatorial Methods in Discrete Distributions
CHATTERJEE and HADI · Regression Analysis by Example, Fourth Edition
CHATTERJEE and HADI ■ Sensitivity Analysis in Linear Regression
CHERNICK · Bootstrap Methods: A Guide for Practitioners and Researchers,

Second Edition
CHERNICK and FRIIS · Introductory Biostatistics for the Health Sciences
CHILES and DELFINER · Geostatistics: Modeling Spatial Uncertainty

*Now available in a lower priced paperback edition in the Wiley Classics Library.
'Now available in a lower priced paperback edition in the Wiley-Interscience Paperback Series.

CHOW and LIU · Design and Analysis of Clinical Trials: Concepts and Methodologies,
Second Edition

CLARKE · Linear Models: The Theory and Application of Analysis of Variance
CLARKE and DISNEY · Probability and Random Processes: A First Course with

Applications, Second Edition
* COCHRAN and COX · Experimental Designs, Second Edition

COLLINS and LANZA · Latent Class and Latent Transition Analysis: With Applications
in the Social, Behavioral, and Health Sciences

CONGDON · Applied Bayesian Modelling
CONGDON · Bayesian Models for Categorical Data
CONGDON ■ Bayesian Statistical Modelling
CONOVER · Practical Nonparametric Statistics, Third Edition
COOK · Regression Graphics
COOK and WEISBERG · Applied Regression Including Computing and Graphics
COOK and WEISBERG · An Introduction to Regression Graphics
CORNELL · Experiments with Mixtures, Designs, Models, and the Analysis of Mixture

Data, Third Edition
COVER and THOMAS · Elements of Information Theory
COX · A Handbook of Introductory Statistical Methods

* COX · Planning of Experiments
CRESSIE · Statistics for Spatial Data, Revised Edition
CSÖRGÖ and HORVÂTH · Limit Theorems in Change Point Analysis
DANIEL · Applications of Statistics to Industrial Experimentation
DANIEL · Biostatistics: A Foundation for Analysis in the Health Sciences, Eighth Edition

* DANIEL · Fitting Equations to Data: Computer Analysis of Multifactor Data,
Second Edition

DASU and JOHNSON · Exploratory Data Mining and Data Cleaning
DAVID and NAGARAJA ■ Order Statistics, Third Edition

* DEGROOT, FIENBERG, and KADANE · Statistics and the Law
DEL CASTILLO · Statistical Process Adjustment for Quality Control
D E M A R I S · Regression with Social Data: Modeling Continuous and Limited Response

Variables
DEMIDENKO · Mixed Models: Theory and Applications
DENISON, HOLMES, MALLICK and SMITH · Bayesian Methods for Nonlinear

Classification and Regression
DETTE and STUDDEN · The Theory of Canonical Moments with Applications in

Statistics, Probability, and Analysis
DEY and MUKERJEE · Fractional Factorial Plans
DILLON and GOLDSTEIN · Multivariate Analysis: Methods and Applications
DODGE · Alternative Methods of Regression

* DODGE and ROMIG · Sampling Inspection Tables, Second Edition
* DOOB · Stochastic Processes

DOWDY, WEARDEN, and CHILKO · Statistics for Research, Third Edition
DRAPER and SMITH · Applied Regression Analysis, Third Edition
DRYDEN and MARDIA · Statistical Shape Analysis
DUDEWICZ and MISHRA · Modern Mathematical Statistics
DUNN and CLARK · Basic Statistics: A Primer for the Biomédical Sciences,

Third Edition
DUPUIS and ELLIS ■ A Weak Convergence Approach to the Theory of Large Deviations
EDLER and KITSOS · Recent Advances in Quantitative Methods in Cancer and Human

Health Risk Assessment
* ELANDT-JOHNSON and JOHNSON ■ Survival Models and Data Analysis

ENDERS · Applied Econometric Time Series

*Now available in a lower priced paperback edition in the Wiley Classics Library.
'Now available in a lower priced paperback edition in the Wiley-Interscience Paperback Series.

* ETHIER and KURTZ · Markov Processes: Characterization and Convergence
EVANS, HASTINGS, and PEACOCK · Statistical Distributions, Third Edition
FELLER · An Introduction to Probability Theory and Its Applications, Volume I,

Third Edition, Revised; Volume II, Second Edition
FISHER and VAN BELLE · Biostatistics: A Methodology for the Health Sciences
FITZMAURICE, LAIRD, and WARE · Applied Longitudinal Analysis

* FLEISS · The Design and Analysis of Clinical Experiments
FLEISS · Statistical Methods for Rates and Proportions, Third Edition

* FLEMING and HARRINGTON · Counting Processes and Survival Analysis
FUJIKOSHI, ULYANOV, and SHIMIZU · Multivariate Statistics: High-Dimensional and

Large-Sample Approximations
FULLER · Introduction to Statistical Time Series, Second Edition

I FULLER · Measurement Error Models
GALLANT · Nonlinear Statistical Models
GEISSER · Modes of Parametric Statistical Inference
GELMAN and MENG · Applied Bayesian Modeling and Causal Inference from

Incomplete-Data Perspectives
GEWEKE · Contemporary Bayesian Econometrics and Statistics
GHOSH, MUKHOPADHYAY, and SEN · Sequential Estimation
GIESBRECHT and GUMPERTZ · Planning, Construction, and Statistical Analysis of

Comparative Experiments
GIFI · Nonlinear Multivariate Analysis
GIVENS and HOETING · Computational Statistics
GLASSERMAN and YAO ■ Monotone Structure in Discrete-Event Systems
GNANADESIKAN · Methods for Statistical Data Analysis of Multivariate Observations,

Second Edition
GOLDSTEIN and LEWIS · Assessment: Problems, Development, and Statistical Issues
GREENWOOD and NIKULIN · A Guide to Chi-Squared Testing
GROSS, SHORTLE, THOMPSON, and HARRIS · Fundamentals of Queueing Theory,

Fourth Edition
GROSS, SHORTLE, THOMPSON, and HARRIS · Solutions Manual to Accompany

Fundamentals of Queueing Theory, Fourth Edition
* HAHN and SHAPIRO · Statistical Models in Engineering

HAHN and MEEKER · Statistical Intervals: A Guide for Practitioners
HALD · A History of Probability and Statistics and their Applications Before 1750
HALD · A History of Mathematical Statistics from 1750 to 1930

i HAMPEL ■ Robust Statistics: The Approach Based on Influence Functions
HANNAN and DEISTLER · The Statistical Theory of Linear Systems
HÄRTUNG, KNAPP, and SINHA · Statistical Meta-Analysis with Applications
HEIBERGER · Computation for the Analysis of Designed Experiments
HEDAYAT and SINHA · Design and Inference in Finite Population Sampling
HEDEKER and GIBBONS · Longitudinal Data Analysis
HELLER · MACSYMA for Statisticians
HINKELMANN and KEMPTHORNE ■ Design and Analysis of Experiments, Volume 1 :

Introduction to Experimental Design, Second Edition
HINKELMANN and KEMPTHORNE · Design and Analysis of Experiments, Volume 2:

Advanced Experimental Design
HOAGLIN, MOSTELLER, and TUKEY · Fundamentals of Exploratory Analysis

of Variance
* HOAGLIN, MOSTELLER, and TUKEY · Exploring Data Tables, Trends and Shapes
* HOAGLIN, MOSTELLER, and TUKEY · Understanding Robust and Exploratory

Data Analysis
HOCHBERG and TAMHANE · Multiple Comparison Procedures

*Now available in a lower priced paperback edition in the Wiley Classics Library.
'Now available in a lower priced paperback edition in the Wiley-Interscience Paperback Series.

HOCKING · Methods and Applications of Linear Models: Regression and the Analysis
of Variance, Second Edition

HOEL · Introduction to Mathematical Statistics, Fifth Edition
HOGG and KLUGMAN ■ Loss Distributions
HOLLANDER and WOLFE · Nonparametric Statistical Methods, Second Edition
HOSMER and LEMESHOW · Applied Logistic Regression, Second Edition
HOSMER, LEMESHOW, and MAY · Applied Survival Analysis: Regression Modeling

of Time-to-Event Data, Second Edition
t HUBER and RONCHETTI · Robust Statistics, Second Edition

HUBERTY ■ Applied Discriminant Analysis
HUBERTY and OLEJNIK · Applied MANOVA and Discriminant Analysis,

Second Edition
HUNT and KENNEDY · Financial Derivatives in Theory and Practice, Revised Edition
HURD and MIAMEE · Periodically Correlated Random Sequences: Spectral Theory

and Practice
HUSKOVA, BERAN, and DUPAC · Collected Works of Jaroslav Hajek—

with Commentary
HUZURBAZAR ■ Flowgraph Models for Multistate Time-to-Event Data
IMAN and CONOVER · A Modern Approach to Statistics

i JACKSON · A User's Guide to Principle Components
JOHN · Statistical Methods in Engineering and Quality Assurance
JOHNSON ■ Multivariate Statistical Simulation
JOHNSON and BALAKRISHNAN · Advances in the Theory and Practice of Statistics: A

Volume in Honor of Samuel Kotz
JOHNSON and BHATTACHARYYA · Statistics: Principles and Methods, Fifth Edition
JOHNSON and KOTZ ■ Distributions in Statistics
JOHNSON and KOTZ (editors) · Leading Personalities in Statistical Sciences: From the

Seventeenth Century to the Present
JOHNSON, KOTZ, and BALAKRISHNAN · Continuous Univariate Distributions,

Volume 1, Second Edition
JOHNSON, KOTZ, and BALAKRISHNAN · Continuous Univariate Distributions,

Volume 2, Second Edition
JOHNSON, KOTZ, and BALAKRISHNAN · Discrete Multivariate Distributions
JOHNSON, KEMP, and KOTZ · Univariate Discrete Distributions, Third Edition
JUDGE, GRIFFITHS, HILL, LÜTKEPOHL, and LEE · The Theory and Practice of

Econometrics, Second Edition
JURECKOVÂ and SEN · Robust Statistical Procedures: Aymptotics and Interrelations
JUREK and MASON · Operator-Limit Distributions in Probability Theory
KADANE · Bayesian Methods and Ethics in a Clinical Trial Design
KADANE AND SCHUM · A Probabilistic Analysis of the Sacco and Vanzetti Evidence
KALBFLEISCH and PRENTICE · The Statistical Analysis of Failure Time Data, Second

Edition
KARIYA and KURATA · Generalized Least Squares
KASS and VOS ■ Geometrical Foundations of Asymptotic Inference

t KAUFMAN and ROUSSEEUW ■ Finding Groups in Data: An Introduction to Cluster
Analysis

KEDEM and FOKIANOS · Regression Models for Time Series Analysis
KENDALL, BARDEN, CARNE, and LE · Shape and Shape Theory
KHURI · Advanced Calculus with Applications in Statistics, Second Edition
KHURI, MATHEW, and SINHA · Statistical Tests for Mixed Linear Models
KLEIBER and KOTZ · Statistical Size Distributions in Economics and Actuarial Sciences
KLEMELÄ · Smoothing of Multivariate Data: Density Estimation and Visualization
KLUGMAN, PANJER, and WILLMOT · Loss Models: From Data to Decisions,

Third Edition

*Now available in a lower priced paperback edition in the Wiley Classics Library.
'Now available in a lower priced paperback edition in the Wiley-Interscience Paperback Series.

KLUGMAN, PANJER, and WILLMOT · Solutions Manual to Accompany Loss Models:
From Data to Decisions, Third Edition

KOTZ, BALAKRISHNAN, and JOHNSON · Continuous Multivariate Distributions,
Volume 1, Second Edition

KOVALENKO, KUZNETZOV, and PEGG · Mathematical Theory of Reliability of
Time-Dependent Systems with Practical Applications

KOWALSKI and TU · Modern Applied U-Statistics
KRISHNAMOORTHY and MATHEW · Statistical Tolerance Regions: Theory,

Applications, and Computation
KROESE, TAIMRE, and BOTEV · Handbook of Monte Carlo Methods
KROONENBERG · Applied Multiway Data Analysis
KVAM and VIDAKOVIC · Nonparametric Statistics with Applications to Science

and Engineering
LACHIN · Biostatistical Methods: The Assessment of Relative Risks, Second Edition
LAD · Operational Subjective Statistical Methods: A Mathematical, Philosophical, and

Historical Introduction
LAMPERTI · Probability: A Survey of the Mathematical Theory, Second Edition
LANGE, RYAN, BILLARD, BRILLINGER, CONQUEST, and GREENHOUSE ·

Case Studies in Biometry
LARSON · Introduction to Probability Theory and Statistical Inference, Third Edition
LAWLESS · Statistical Models and Methods for Lifetime Data, Second Edition
LAWSON · Statistical Methods in Spatial Epidemiology
LE · Applied Categorical Data Analysis
LE · Applied Survival Analysis
LEE and WANG · Statistical Methods for Survival Data Analysis, Third Edition
LEPAGE and BILLARD · Exploring the Limits of Bootstrap
LEYLAND and GOLDSTEIN (editors) · Multilevel Modelling of Health Statistics
LIAO · Statistical Group Comparison
LINDVALL · Lectures on the Coupling Method
LIN · Introductory Stochastic Analysis for Finance and Insurance
LINHART and ZUCCHINI · Model Selection
LITTLE and RUBIN · Statistical Analysis with Missing Data, Second Edition
LLOYD ■ The Statistical Analysis of Categorical Data
LOWEN and TEICH · Fractal-Based Point Processes
MAGNUS and NEUDECKER · Matrix Differential Calculus with Applications in

Statistics and Econometrics, Revised Edition
MALLER and ZHOU · Survival Analysis with Long Term Survivors
MALLOWS · Design, Data, and Analysis by Some Friends of Cuthbert Daniel
MANN, SCHÄFER, and SINGPURWALLA ■ Methods for Statistical Analysis of

Reliability and Life Data
MANTON, WOODBURY, and TOLLEY · Statistical Applications Using Fuzzy Sets
MARCHETTE · Random Graphs for Statistical Pattern Recognition
MARDIA and JUPP · Directional Statistics
MASON, GUNST, and HESS · Statistical Design and Analysis of Experiments with

Applications to Engineering and Science, Second Edition
McCULLOCH, SEARLE, and NEUHAUS · Generalized, Linear, and Mixed Models,

Second Edition
McFADDEN · Management of Data in Clinical Trials, Second Edition

* McLACHLAN · Discriminant Analysis and Statistical Pattern Recognition
McLACHLAN, DO, and AMBROISE · Analyzing Microarray Gene Expression Data
McLACHLAN and KRISHNAN · The EM Algorithm and Extensions, Second Edition
McLACHLAN and PEEL · Finite Mixture Models
McNEIL · Epidemiological Research Methods

*Now available in a lower priced paperback edition in the Wiley Classics Library.
I Now available in a lower priced paperback edition in the Wiley-Interscience Paperback Series.

MEEKER and ESCOBAR · Statistical Methods for Reliability Data
MEERSCHAERT and SCHEFFLER ■ Limit Distributions for Sums of Independent

Random Vectors: Heavy Tails in Theory and Practice
MICKEY, DUNN, and CLARK · Applied Statistics: Analysis of Variance and

Regression, Third Edition
* MILLER · Survival Analysis, Second Edition

MONTGOMERY, JENNINGS, and KULAHCI · Introduction to Time Series Analysis
and Forecasting

MONTGOMERY, PECK, and VINING · Introduction to Linear Regression Analysis,
Fourth Edition

MORGENTHALER and TUKEY · Configurai Polysampling: A Route to Practical
Robustness

MUIRHEAD · Aspects of Multivariate Statistical Theory
MÜLLER and STOYAN · Comparison Methods for Stochastic Models and Risks
MURRAY · X-STAT 2.0 Statistical Experimentation, Design Data Analysis, and

Nonlinear Optimization
MURTHY, XIE, and JIANG · Weibull Models
MYERS, MONTGOMERY, and ANDERSON-COOK · Response Surface Methodology:

Process and Product Optimization Using Designed Experiments, Third Edition
MYERS, MONTGOMERY, VINING, and ROBINSON ■ Generalized Linear Models.

With Applications in Engineering and the Sciences, Second Edition
I NELSON · Accelerated Testing, Statistical Models, Test Plans, and Data Analyses
t NELSON ■ Applied Life Data Analysis

NEWMAN ■ Biostatistical Methods in Epidemiology
OCHI · Applied Probability and Stochastic Processes in Engineering and Physical

Sciences
OKABE, BOOTS, SUGIHARA, and CHIU · Spatial Tesselations: Concepts and

Applications of Voronoi Diagrams, Second Edition
OLIVER and SMITH · Influence Diagrams, Belief Nets and Decision Analysis
PALTA · Quantitative Methods in Population Health: Extensions of Ordinary Regressions
PANJER · Operational Risk: Modeling and Analytics
PANKRATZ ■ Forecasting with Dynamic Regression Models
PANKRATZ · Forecasting with Univariate Box-Jenkins Models: Concepts and Cases

* PARZEN · Modern Probability Theory and Its Applications
PENA, TIAO, and TSAY · A Course in Time Series Analysis
PIANTADOSI · Clinical Trials: A Methodologie Perspective
PORT · Theoretical Probability for Applications
POURAHMADI · Foundations of Time Series Analysis and Prediction Theory
POWELL · Approximate Dynamic Programming: Solving the Curses of Dimensionality
PRESS · Bayesian Statistics: Principles, Models, and Applications
PRESS ■ Subjective and Objective Bayesian Statistics, Second Edition
PRESS and TANUR · The Subjectivity of Scientists and the Bayesian Approach
PUKELSHEIM ■ Optimal Experimental Design
PURI, VILAPLANA, and WERTZ · New Perspectives in Theoretical and Applied

Statistics
T PUTERMAN · Markov Decision Processes: Discrete Stochastic Dynamic Programming

QIU · Image Processing and Jump Regression Analysis
* RAO · Linear Statistical Inference and Its Applications, Second Edition

RAUSAND and H0YLAND · System Reliability Theory: Models, Statistical Methods,
and Applications, Second Edition

RENCHER · Linear Models in Statistics
RENCHER · Methods of Multivariate Analysis, Second Edition
RENCHER · Multivariate Statistical Inference with Applications

*Now available in a lower priced paperback edition in the Wiley Classics Library.
'Now available in a lower priced paperback edition in the Wiley-Interscience Paperback Series.

* RIPLEY · Spatial Statistics
* RIPLEY · Stochastic Simulation

ROBINSON · Practical Strategies for Experimenting
ROHATGI and SALEH · An Introduction to Probability and Statistics, Second Edition
ROLSKI, SCHMIDLI, SCHMIDT, and TEUGELS ■ Stochastic Processes for Insurance

and Finance
ROSENBERGER and LACHIN ■ Randomization in Clinical Trials: Theory and Practice
ROSS · Introduction to Probability and Statistics for Engineers and Scientists
ROSSI, ALLENBY, and McCULLOCH · Bayesian Statistics and Marketing

t ROUSSEEUW and LEROY · Robust Regression and Outlier Detection
* RUBIN · Multiple Imputation for Nonresponse in Surveys

RUBINSTEIN and KROESE · Simulation and the Monte Carlo Method, Second Edition
RUBINSTEIN and MELAMED · Modern Simulation and Modeling
RYAN · Modern Engineering Statistics
RYAN · Modern Experimental Design
RYAN · Modem Regression Methods, Second Edition
RYAN · Statistical Methods for Quality Improvement, Second Edition
SALEH · Theory of Preliminary Test and Stein-Type Estimation with Applications

* SCHEFFE · The Analysis of Variance
SCHIMEK ■ Smoothing and Regression: Approaches, Computation, and Application
SCHOTT · Matrix Analysis for Statistics, Second Edition
SCHOUTENS · Levy Processes in Finance: Pricing Financial Derivatives
SCHUSS · Theory and Applications of Stochastic Differential Equations
SCOTT ■ Multivariate Density Estimation: Theory, Practice, and Visualization

* SEARLE · Linear Models for Unbalanced Data
* SEARLE · Matrix Algebra Useful for Statistics
t SEARLE, CASELLA, and McCULLOCH · Variance Components

SEARLE and WILLETT · Matrix Algebra for Applied Economics
SEBER · A Matrix Handbook For Statisticians

* SEBER · Multivariate Observations
SEBER and LEE · Linear Regression Analysis, Second Edition

* SEBER and WILD · Nonlinear Regression
SENNOTT · Stochastic Dynamic Programming and the Control of Queueing Systems

* SERFLING · Approximation Theorems of Mathematical Statistics
SHAFER and VOVK · Probability and Finance: It's Only a Game!
SILVAPULLE and SEN · Constrained Statistical Inference: Inequality, Order, and Shape

Restrictions
SMALL and McLEISH · Hubert Space Methods in Probability and Statistical Inference
SRI VAST A VA · Methods of Multivariate Statistics
STAPLETON · Linear Statistical Models, Second Edition
STAPLETON · Models for Probability and Statistical Inference: Theory and Applications
STAUDTE and SHEATHER · Robust Estimation and Testing
STOYAN, KENDALL, and MECKE · Stochastic Geometry and Its Applications, Second

Edition
STOYAN and STOYAN · Fractals, Random Shapes and Point Fields: Methods of

Geometrical Statistics
STREET and BURGESS · The Construction of Optimal Stated Choice Experiments:

Theory and Methods
STY AN · The Collected Papers of T. W. Anderson: 1943-1985
SUTTON, ABRAMS, JONES, SHELDON, and SONG · Methods for Meta-Analysis in

Medical Research
TAKEZAWA ■ Introduction to Nonparametric Regression
TAMHANE · Statistical Analysis of Designed Experiments: Theory and Applications
TANAKA · Time Series Analysis: Nonstationary and Noninvertible Distribution Theory

*Now available in a lower priced paperback edition in the Wiley Classics Library.
I Now available in a lower priced paperback edition in the Wiley-Interscience Paperback Series.

THOMPSON · Empirical Model Building
THOMPSON · Sampling, Second Edition
THOMPSON · Simulation: A Modeler's Approach
THOMPSON and SEBER · Adaptive Sampling
THOMPSON, WILLIAMS, and FINDLAY · Models for Investors in Real World Markets
TIAO, BISGAARD, HILL, PENA, and STIGLER (editors) · Box on Quality and

Discovery: with Design, Control, and Robustness
TIERNEY · LISP-STAT: An Object-Oriented Environment for Statistical Computing

and Dynamic Graphics
TSAY ■ Analysis of Financial Time Series, Third Edition
UPTON and FINGLETON · Spatial Data Analysis by Example, Volume II:

Categorical and Directional Data
* VAN BELLE · Statistical Rules of Thumb, Second Edition

VAN BELLE, FISHER, HEAGERTY, and LUMLEY · Biostatistics: A Methodology for
the Health Sciences, Second Edition

VESTRUP · The Theory of Measures and Integration
VIDAKOVIC · Statistical Modeling by Wavelets
VINOD and REAGLE · Preparing for the Worst: Incorporating Downside Risk in Stock

Market Investments
WALLER and GOTWAY · Applied Spatial Statistics for Public Health Data
WEERAHANDI · Generalized Inference in Repeated Measures: Exact Methods in

MANOVA and Mixed Models
WEISBERG · Applied Linear Regression, Third Edition
WEISBERG · Bias and Causation: Models and Judgment for Valid Comparisons
WELSH · Aspects of Statistical Inference
WESTFALL and YOUNG · Resampling-Based Multiple Testing: Examples and

Methods for p-Value Adjustment
WHITTAKER · Graphical Models in Applied Multivariate Statistics
WINKER · Optimization Heuristics in Economics: Applications of Threshold Accepting
WONNACOTT and WONNACOTT · Econometrics, Second Edition
WOODING · Planning Pharmaceutical Clinical Trials: Basic Statistical Principles
WOODWORTH · Biostatistics: A Bayesian Introduction
WOOLSON and CLARKE ■ Statistical Methods for the Analysis of Biomédical Data,

Second Edition
WU and HAMADA · Experiments: Planning, Analysis, and Parameter Design

Optimization, Second Edition
WU and ZHANG ■ Nonparametric Regression Methods for Longitudinal Data Analysis
YANG · The Construction Theory of Denumerable Markov Processes
YOUNG, VALERO-MORA, and FRIENDLY · Visual Statistics: Seeing Data with

Dynamic Interactive Graphics
ZACKS ■ Stage-Wise Adaptive Designs
ZELTERMAN ■ Discrete Distributions—Applications in the Health Sciences

* ZELLNER · An Introduction to Bayesian Inference in Econometrics
ZHOU, McCLISH, and OBUCHOWSKI · Statistical Methods in Diagnostic Medicine,

Second Edition

*Now available in a lower priced paperback edition in the Wiley Classics Library.
'Now available in a lower priced paperback edition in the Wiley-Interscience Paperback Series.

	Cover
	Title Page
	Copyright Page
	Dedication
	Contents
	Preface
	Acknowledgments
	1 Uniform Random Number Generation
	1.1 Random Numbers
	1.1.1 Properties of a Good Random Number Generator
	1.1.2 Choosing a Good Random Number Generator

	1.2 Generators Based on Linear Recurrences
	1.2.1 Linear Congruential Generators
	1.2.2 Multiple-Recursive Generators
	1.2.3 Matrix Congruential Generators
	1.2.4 Modulo 2 Linear Generators

	1.3 Combined Generators
	1.4 Other Generators
	1.5 Tests for Random Number Generators
	1.5.1 Spectral Test
	1.5.2 Empirical Tests

	References

	2 Quasirandom Number Generation
	2.1 Multidimensional Integration
	2.2 Van der Corput and Digital Sequences
	2.3 Halton Sequences
	2.4 Faure Sequences
	2.5 Sobol' Sequences
	2.6 Lattice Methods
	2.7 Randomization and Scrambling
	References

	3 Random Variable Generation
	3.1 Generic Algorithms Based on Common Transformations
	3.1.1 Inverse-Transform Method
	3.1.2 Other Transformation Methods
	3.1.3 Table Lookup Method
	3.1.4 Alias Method
	3.1.5 Acceptance-Rejection Method
	3.1.6 Ratio of Uniforms Method

	3.2 Generation Methods for Multivariate Random Variables
	3.2.1 Copulas

	3.3 Generation Methods for Various Random Objects
	3.3.1 Generating Order Statistics
	3.3.2 Generating Uniform Random Vectors in a Simplex
	3.3.3 Generating Random Vectors Uniformly Distributed in a Unit Hyperball and Hypersphere
	3.3.4 Generating Random Vectors Uniformly Distributed in a Hyperellipsoid
	3.3.5 Uniform Sampling on a Curve
	3.3.6 Uniform Sampling on a Surface
	3.3.7 Generating Random Permutations
	3.3.8 Exact Sampling From a Conditional Bernoulli Distribution

	References

	4 Probability Distributions
	4.1 Discrete Distributions
	4.1.1 Bernoulli Distribution
	4.1.2 Binomial Distribution
	4.1.3 Geometric Distribution
	4.1.4 Hypergeometric Distribution
	4.1.5 Negative Binomial Distribution
	4.1.6 Phase-Type Distribution (Discrete Case)
	4.1.7 Poisson Distribution
	4.1.8 Uniform Distribution (Discrete Case)

	4.2 Continuous Distributions
	4.2.1 Beta Distribution
	4.2.2 Cauchy Distribution
	4.2.3 Exponential Distribution
	4.2.4 F Distribution
	4.2.5 Fréchet Distribution
	4.2.6 Gamma Distribution
	4.2.7 Gumbel Distribution
	4.2.8 Laplace Distribution
	4.2.9 Logistic Distribution
	4.2.10 Log-Normal Distribution
	4.2.11 Normal Distribution
	4.2.12 Pareto Distribution
	4.2.13 Phase-Type Distribution (Continuous Case)
	4.2.14 Stable Distribution
	4.2.15 Student's t Distribution
	4.2.16 Uniform Distribution (Continuous Case)
	4.2.17 Wald Distribution
	4.2.18 Weibull Distribution

	4.3 Multivariate Distributions
	4.3.1 Dirichlet Distribution
	4.3.2 Multinomial Distribution
	4.3.3 Multivariate Normal Distribution
	4.3.4 Multivariate Student's t Distribution
	4.3.5 Wishart Distribution
	References

	5 Random Process Generation
	5.1 Gaussian Processes
	5.1.1 Markovian Gaussian Processes
	5.1.2 Stationary Gaussian Processes and the FFT

	5.2 Markov Chains
	5.3 Markov Jump Processes
	5.4 Poisson Processes
	5.4.1 Compound Poisson Process

	5.5 Wiener Process and Brownian Motion
	5.6 Stochastic Differential Equations and Diffusion Processes
	5.6.1 Euler's Method
	5.6.2 Milstein's Method
	5.6.3 Implicit Euler
	5.6.4 Exact Methods
	5.6.5 Error and Accuracy

	5.7 Brownian Bridge
	5.8 Geometric Brownian Motion
	5.9 Ornstein-Uhlenbeck Process
	5.10 Reflected Brownian Motion
	5.11 Fractional Brownian Motion
	5.12 Random Fields
	5.13 Lévy Processes
	5.13.1 Increasing Lévy Processes
	5.13.2 Generating Lévy Processes

	5.14 Time Series
	References

	6 Markov Chain Monte Carlo
	6.1 Metropolis-Hastings Algorithm
	6.1.1 Independence Sampler
	6.1.2 Random Walk Sampler

	6.2 Gibbs Sampler
	6.3 Specialized Samplers
	6.3.1 Hit-and-Run Sampler
	6.3.2 Shake-and-Bake Sampler
	6.3.3 Metropolis-Gibbs Hybrids
	6.3.4 Multiple-Try Metropolis-Hastings
	6.3.5 Auxiliary Variable Methods
	6.3.6 Reversible Jump Sampler

	6.4 Implementation Issues
	6.5 Perfect Sampling
	References

	7 Discrete Event Simulation
	7.1 Simulation Models
	7.2 Discrete Event Systems
	7.3 Event-Oriented Approach
	7.4 More Examples of Discrete Event Simulation
	7.4.1 Inventory System
	7.4.2 Tandem Queue
	7.4.3 Repairman Problem

	References

	8 Statistical Analysis of Simulation Data
	8.1 Simulation Data
	8.1.1 Data Visualization
	8.1.2 Data Summarization

	8.2 Estimation of Performance Measures for Independent Data
	8.2.1 Delta Method

	8.3 Estimation of Steady-State Performance Measures
	8.3.1 Covariance Method
	8.3.2 Batch Means Method
	8.3.3 Regenerative Method

	8.4 Empirical Cdf
	8.5 Kernel Density Estimation
	8.5.1 Least Squares Cross Validation
	8.5.2 Plug-in Bandwidth Selection

	8.6 Resampling and the Bootstrap Method
	8.7 Goodness of Fit
	8.7.1 Graphical Procedures
	8.7.2 Kolmogorov-Smirnov Test
	8.7.3 Anderson-Darling Test
	8.7.4 X2 Tests

	References

	9 Variance Reduction
	9.1 Variance Reduction Example
	9.2 Antithetic Random Variables
	9.3 Control Variables
	9.4 Conditional Monte Carlo
	9.5 Stratified Sampling
	9.6 Latin Hypercube Sampling
	9.7 Importance Sampling
	9.7.1 Minimum-Variance Density
	9.7.2 Variance Minimization Method
	9.7.3 Cross-Entropy Method
	9.7.4 Weighted Importance Sampling
	9.7.5 Sequential Importance Sampling
	9.7.6 Response Surface Estimation via Importance Sampling

	9.8 Quasi Monte Carlo
	References

	10 Rare-Event Simulation
	10.1 Efficiency of Estimators
	10.2 Importance Sampling Methods for Light Tails
	10.2.1 Estimation of Stopping Time Probabilities
	10.2.2 Estimation of Overflow Probabilities
	10.2.3 Estimation For Compound Poisson Sums

	10.3 Conditioning Methods for Heavy Tails
	10.3.1 Estimation for Compound Sums
	10.3.2 Sum of Nonidentically Distributed Random Variables

	10.4 State-Dependent Importance Sampling
	10.5 Cross-Entropy Method for Rare-Event Simulation
	10.6 Splitting Method
	References

	11 Estimation of Derivatives
	11.1 Gradient Estimation
	11.2 Finite Difference Method
	11.3 Infinitesimal Perturbation Analysis
	11.4 Score Function Method
	11.4.1 Score Function Method With Importance Sampling

	11.5 Weak Derivatives
	11.6 Sensitivity Analysis for Regenerative Processes
	References

	12 Randomized Optimization
	12.1 Stochastic Approximation
	12.2 Stochastic Counterpart Method
	12.3 Simulated Annealing
	12.4 Evolutionary Algorithms
	12.4.1 Genetic Algorithms
	12.4.2 Differential Evolution
	12.4.3 Estimation of Distribution Algorithms
	12.5 Cross-Entropy Method for Optimization
	12.6 Other Randomized Optimization Techniques
	References

	13 Cross-Entropy Method
	13.1 Cross-Entropy Method
	13.2 Cross-Entropy Method for Estimation
	13.3 Cross-Entropy Method for Optimization
	13.3.1 Combinatorial Optimization
	13.3.2 Continuous Optimization
	13.3.3 Constrained Optimization
	13.3.4 Noisy Optimization

	References

	14 Particle Methods
	14.1 Sequential Monte Carlo
	14.2 Particle Splitting
	14.3 Splitting for Static Rare-Event Probability Estimation
	14.4 Adaptive Splitting Algorithm
	14.5 Estimation of Multidimensional Integrals
	14.6 Combinatorial Optimization via Splitting
	14.6.1 Knapsack Problem
	14.6.2 Traveling Salesman Problem
	14.6.3 Quadratic Assignment Problem

	14.7 Markov Chain Monte Carlo With Splitting
	References

	15 Applications to Finance
	15.1 Standard Model
	15.2 Pricing via Monte Carlo Simulation
	15.3 Sensitivities
	15.3.1 Pathwise Derivative Estimation
	15.3.2 Score Function Method

	References

	16 Applications to Network Reliability
	16.1 Network Reliability
	16.2 Evolution Model for a Static Network
	16.3 Conditional Monte Carlo
	16.3.1 Leap-Evolve Algorithm

	16.4 Importance Sampling for Network Reliability
	16.4.1 Importance Sampling Using Bounds
	16.4.2 Importance Sampling With Conditional Monte Carlo

	16.5 Splitting Method
	16.5.1 Acceleration Using Bounds

	References

	17 Applications to Differential Equations
	17.1 Connections Between Stochastic and Partial Differential Equations
	17.1.1 Boundary Value Problems
	17.1.2 Terminal Value Problems
	17.1.3 Terminal-Boundary Problems

	17.2 Transport Processes and Equations
	17.2.1 Application to Transport Equations
	17.2.2 Boltzmann Equation

	17.3 Connections to ODEs Through Scaling
	References

	Appendix A: Probability and Stochastic Processes
	A.1 Random Experiments and Probability Spaces
	A.1.1 Properties of a Probability Measure

	A.2 Random Variables and Probability Distributions
	A.2.1 Probability Density
	A.2.2 Joint Distributions

	A.3 Expectation and Variance
	A.3.1 Properties of the Expectation
	A.3.2 Variance

	A.4 Conditioning and Independence
	A.4.1 Conditional Probability
	A.4.2 Independence
	A.4.3 Covariance
	A.4.4 Conditional Density and Expectation

	A.5 Lp Space
	A.6 Functions of Random Variables
	A.6.1 Linear Transformations
	A.6.2 General Transformations

	A.7 Generating Function and Integral Transforms
	A.7.1 Probability Generating Function
	A.7.2 Moment Generating Function and Laplace Transform
	A.7.3 Characteristic Function

	A.8 Limit Theorems
	A.8.1 Modes of Convergence
	A.8.2 Converse Results on Modes of Convergence
	A.8.3 Law of Large Numbers and Central Limit Theorem

	A.9 Stochastic Processes
	A.9.1 Gaussian Property
	A.9.2 Markov Property
	A.9.3 Martingale Property
	A.9.4 Regenerative Property
	A.9.5 Stationarity and Reversibility

	A. 10 Markov Chains
	A.10.1 Classification of States
	A.10.2 Limiting Behavior
	A. 10.3 Reversibility

	A.11 Markov Jump Processes
	A.11.1 Limiting Behavior

	A.12 Itô Integral and Itô Processes
	A.13 Diffusion Processes
	A.13.1 Kolmogorov Equations
	A.13.2 Stationary Distribution
	A.13.3 Feynman-Kac Formula
	A.13.4 Exit Times

	References

	Appendix B: Elements of Mathematical Statistics
	B.1 Statistical Inference
	B.1.1 Classical Models
	B.1.2 Sufficient Statistics
	B.1.3 Estimation
	B.1.4 Hypothesis Testing

	B.2 Likelihood
	B.2.1 Likelihood Methods for Estimation
	B.2.2 Numerical Methods for Likelihood Maximization
	B.2.3 Likelihood Methods for Hypothesis Testing

	B.3 Bayesian Statistics
	B.3.1 Conjugacy

	References

	Appendix C: Optimization
	C.1 Optimization Theory
	C.1.1 Lagrangian Method
	C.1.2 Duality

	C.2 Techniques for Optimization
	C.2.1 Transformation of Constrained Problems
	C.2.2 Numerical Methods for Optimization and Root Finding

	C.3 Selected Optimization Problems
	C.3.1 Satisfiability Problem
	C.3.2 Knapsack Problem
	C.3.3 Max-Cut Problem
	C.3.4 Traveling Salesman Problem
	C.3.5 Quadratic Assignment Problem
	C.3.6 Clustering Problem

	C.4 Continuous Problems
	C.4.1 Unconstrained Problems
	C.4.2 Constrained Problems

	References

	Appendix D: Miscellany
	D.l Exponential Families
	D.2 Properties of Distributions
	D.2.1 Tail Properties
	D.2.2 Stability Properties

	D.3 Cholesky Factorization
	D.4 Discrete Fourier Transform, FFT, and Circulant Matrices
	D.5 Discrete Cosine Transform
	D.6 Differentiation
	D.7 Expectation-Maximization (EM) Algorithm
	D.8 Poisson Summation Formula
	D.9 Special Functions
	D.9.1 Beta Function B(α, β)
	D.9.2 Incomplete Beta Function Ix(α, β)
	D.9.3 Error Function erf (x)
	D.9.4 Digamma function ψ{x)
	D.9.5 Gamma Function Γ(α)
	D.9.6 Incomplete Gamma Function P(α, x)
	D.9.7 Hypergeometric Function 2F1(a, b;c;z)
	D.9.8 Confluent Hypergeometric Function 1F1(α; γ; x)
	D.9.9 Modified Bessel Function of the Second Kind Kv{x)

	References

	Acronyms and Abbreviations
	List of Symbols
	List of Distributions
	Index

