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Abstract I consider the problem of deriving couplings of a statistical model from measured
correlations, a task which generalizes the well-known inverse Ising problem. After remind-
ing that such problem can be mapped on the one of expressing the entropy of a system as
a function of its corresponding observables, I show the conditions under which this can be
done without resorting to iterative algorithms. I find that inverse problems are local (the
inverse Fisher information is sparse) whenever the corresponding models have a factorized
form, and the entropy can be split in a sum of small cluster contributions. I illustrate these
ideas through two examples (the Ising model on a tree and the one-dimensional periodic
chain with arbitrary order interaction) and support the results with numerical simulations.
The extension of these methods to more general scenarios is finally discussed.

Keywords Statistical learning · Inverse Ising problem · Maximum entropy models ·
Complex systems

1 Introduction

The estimation of the direct interactions among the microscopic constituents of an extended
system is a problem that has recently received considerable interest from the literature of
several communities (biology [28, 33], genetics [4, 5], neuroscience [6, 25, 27], economy
[15, 16, 20]). This is mainly due to the availability of large datasets across various fields,
which have introduced the possibility to directly fit from data the interaction structure (e.g.,
the wiring pattern of neurons, the regulatory network of genes, the cross-influence of traders)
of a system which is operating according to an unknown, or a partially known, mechanism.
Despite this abundance of data, the problem of estimating the most appropriate model in
order to describe a system is far from being solved: even if the maximum entropy principle
(MEP) is invoked in order deal with the issue of model selection [12, 13], one is typically
left with a difficult inference problem. In particular fitting a model under the MEP requires
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matching a set of observables estimated from data with the ones predicted by the model (the
so-called inverse problem), a task which is known to be generically hard [31]. While the
Boltzmann learning algorithm can be used to obtain accurate solutions for the inverse prob-
lem only by investing a large amount of computational power [1], mean-field techniques [14,
22–24, 26, 29], message-passing methods [3, 11, 17, 19] and pseudo-likelihood approxima-
tions [2, 32] have proved to be very effective in order to fit approximately the interactions
of the system in a short amount of time.

In this work I show that for a specific class of models the inverse problem can be solved
exactly and efficiently. In particular, if the probability distribution of the system has a factor-
ized form, the entropy of the system can be written as a sum of cluster contributions which
are easy to manipulate analytically. This is consistent with the results of [7, 8], who show
that efficient, fast inference procedures can be constructed if the entropy of the system can
be approximated by the sum of a suitable set of small cluster contributions. For these sys-
tems one can see that the robustness of the inverse problem is linked with the factorization
property of the probability distribution (equivalently, the additivity of the entropy). This cor-
roborates the general belief that inverse problems are more stable with respect to the direct
ones, as the response of couplings due to a change in the observables is expected to be much
more localized than the response of the observables due to a shift of the couplings. This
property has been observed in the context of the inverse Ising problem [8], but it is not clear
to which classes of problems it might be generalized to [30]. Additionally, finite sampling
effects can in principle spoil this feature, hence it is relevant to understand how the structure
of the Fisher information matrix behaves when sampling noise is added (see for example
formulas (18) and (27)). In the following section I introduce a very generic setup for the
inverse problem, in order to stress the generality of the results. In Sect. 2 its exact solution
is presented for two specific cases. In Sect. 3 the results are scrutinized against numerical
simulations involving synthetic data, and in Sect. 4 the method introduced is extended to
more general cases. In Sect. 5 some conclusions are drawn.

I consider the problem of estimating a set of M couplings g = (g1, . . . , gM) describing a
probability density for a set of N binary spins s = (s1, . . . , sN) ∈ {−1,1}N of the form

p(s) = 1

Z(g)
exp

(
M∑

μ=1

gμφμ(s)

)
, (1)

where φ = (φ1, . . . , φM) is a set of known functions of s (usually referred as potentials,
or sufficient statistics), and the partition function Z(g) enforces the normalization of p(s).
In the following discussion we will assume all of the φμ(s) to be monomials, i.e., to be
functions of the form

φμ(s) =
∏
i∈Γμ

si, (2)

where Γμ is a given subset (cluster) of the vertex set V = {1, . . . ,N} associated with the
operator μ. Within this general formulation, the Ising (or graphical) model can for example
be constructed by using single-body clusters {i}N

i=1 and two-body clusters {i, j}N
i<j=1, to-

gether with their associated couplings usually denoted with {hi}N
i=1 and {Jij }N

i<j=1. Figure 1
shows factor graph associated with the probability density (1) in a generic case. In order to
estimate such model, a set of T i.i.d. observations ŝ = {s(t)}T

t=1of the system is provided, so
that the log-likelihood function for the model can be written as

logL(ŝ|g) = T

(
− logZ(g) +

M∑
μ=1

gμφ̄μ

)
(3)
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Fig. 1 Example of a typical
factor graph associated with the
probability density (1)

and depends on the data through the empirical averages φ̄μ = 1
T

∑T

t=1 φμ(s(t)). Maximizing
such function in order to find the coupling set g� best describing the data ŝ in absence of
prior leads to the set of M conditions

〈φμ〉g = φ̄μ, (4)

where the quantities 〈φμ〉g = ∂ logZ(g)/∂gμ describe the averages of the functions φμ(s)

under the model parametrized by g. Thus, in order to find the best model in order to describe
data ŝ one has to match empirical averages φ̄μ with ensemble averages 〈φμ〉g� . An equivalent
characterization of the problem of finding the optimal g� is provided by computing the
Legendre transform

−S(φ̄) = max
g

(
M∑

μ=1

gμφ̄μ − logZ(g)

)
, (5)

which can be identified as the Shannon entropy of the optimal model expressed as a function
of the empirical averages φ̄. Such quantity is the cumulant generating function for the max-
imum likelihood estimator of the couplings g� = g�(φ̄). From this perspective, the entropy
S(φ̄) plays a role similar to the one of the free-energy F(g) = − logZ(g) in a statistical
mechanics problem (i.e., estimating the ensemble averages 〈φμ〉g given the couplings g). In
fact, F(g) satisfies the relations

〈φμ〉g = −∂F (g)

∂gμ

, (6)

χμ,ν(g) = −∂2F(g)

∂gμ∂gν

(7)

being χμ,ν(g) the covariance matrix 〈φμφν〉g −〈φμ〉g〈φν〉g . Such matrix χμ,ν is a central ob-
ject in the field of information theory, where it is customarily referred as Fisher information
[9, 18]. For S(φ̄) it holds

g�
μ(φ̄) = −∂S(φ̄)

∂φ̄μ

, (8)

χ−1
μ,ν(φ̄) = − ∂2S(φ̄)

∂φ̄μ∂φ̄ν

. (9)
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Just as the quantity χμ,ν(g) can be used to express how fast in T the empirical averages φ̄

converge to the ensemble values 〈φ〉, its matrix inverse expresses the rate of convergence of
the inferred couplings g�(φ̄) to the asymptotic values g�(〈φ〉). In particular the covariance
matrix for the estimator g�(φ̄) is given by

χ−1
μ,ν

T
= 〈(

g�
μ(φ̄) − g�

μ

(〈φ〉))(g�
ν(φ̄) − g�

ν

(〈φ〉))〉
T

− 〈
g�

μ(φ̄) − g�
μ

(〈φ〉)〉
T

〈
g�

ν(φ̄) − g�
ν

(〈φ〉)〉
T
, (10)

where 〈·〉T = ∑
ŝ

∏T

t=1 p(s(t)). Hence the matrix χ−1(φ̄) expresses the stability of the in-
ferred couplings with respect to the statistical error due to finite sampling.

I will show in the following section how Eqs. (8) and (9) can be used to determine an-
alytically g�(φ̄). In particular, if it is possible to compactly express the entropy of a model
as a function of the empirical averages φ̄, the maximum likelihood estimator g�(φ̄) can be
found easily.

2 Two Factorizable Models

In this section I present two models for which the inverse problem can be exactly solved.
The solution strategy can be straightforwardly extended to more general cases.

In order to discuss this approach to the inverse problem, it is nevertheless necessary to
introduce some extra notation. In particular, we will call cluster any subset Γ ⊆ V , and
denote the set of spins contained in Γ with sΓ = (si)i∈Γ . Given a cluster Γ , its associated
marginal pΓ is then defined as the probability distribution on sΓ

pΓ (sΓ ) =
∑

si |i /∈Γ

p(s). (11)

Finally, the cluster entropy SΓ is defined as

SΓ (pΓ ) = −
∑
sΓ

pΓ (sΓ ) logpΓ (sΓ ). (12)

It is easy to prove that marginals and cluster entropies can be exactly expressed as functions
of the averages of all the possible monomials contained in the cluster Γ . More precisely,
given the set of 2|Γ | monomials {φ̂Γ ′ }Γ ′⊆Γ associated with the clusters Γ ′ ⊆ Γ , it is easy to
show that

pΓ (sΓ ) = 1

2|Γ |
∑
Γ ′⊆Γ

φ̂Γ ′(sΓ ′)〈φ̂Γ ′ 〉g. (13)

This formula characterizes the marginals pΓ (sΓ ) as local objects, as they are uniquely de-
termined by the averages of potentials contained inside Γ .

2.1 Tree-Like Graphs

Consider a model of the form

p(s) = 1

Z(h,J )
exp

(∑
i∈V

hisi +
∑

(i,j)∈E

Jij sisj

)
, (14)
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where E = {(i, j) ∈ V × V | i < j} is a given set of edges. Suppose additionally that the
graph associated with the edge set E is acyclic, so that the model (14) corresponds to an
Ising model on a tree (more precisely, a forest). In that case, it can be shown by induction
(see [18, 31]) that the total probability density p(s) can be factorized according to

p(s) =
∏

(i,j)∈E

p{i,j }(si, sj )
∏
i∈V

[
p{i}(si)

]1−|∂i|
, (15)

where ∂i = {(j, k) ∈ E | i ∈ (j, k)}. Then, the entropy of the model is additive and can be
written as

S(p) =
∑

(i,j)∈E

S{i,j }(mi,mj , cij ) +
∑
i∈V

(
1 − |∂i|)S{i}(mi), (16)

where one has defined the magnetizations mi = 1
T

∑T

t=1 s
(t)
i and the correlations cij =

1
T

∑T

t=1 s
(t)
i s

(t)
j . After the use of formula (13), one finds by differentiation that the solution

of the inverse Ising model on an acyclic graph is given by

h�
i = 1

4

∑
j∈∂i

∑
si ,sj

si log

[
1

4
(1 + misi + mjsj + cij sisj )

]

+ 1

2

(
1 − |∂i|)∑

si

si log

[
1

2
(1 + misi)

]
,

J �
ij = 1

4

∑
si ,sj

sisj log

[
1

4
(1 + misi + mjsj + cij sisj )

]
,

(17)

and the stability of the solution is determined by

χ−1
{i,j },{k,l} = 1

16

∑
si ,sj

δi,kδj,l + δi,lδj,k

p̄{i,j }(si, sj )
,

χ−1
{i,j },{k} = 1

16

∑
si ,sj

δi,ksj + δj,ksi

p̄{i,j }(si, sj )
,

χ−1
{i},{j } = 1

16

∑
k∈∂i

∑
si sk

δi,j + siskδk,j

p̄{i,k}(si, sk)
+ 1

4

(
1 − |∂i|)∑

si

δi,j

p̄{i}(si)
.

(18)

The quantities

p̄{i}(si) = 1

2
(1 + misi), (19)

p̄{i,j }(si, sj ) = 1

4
(1 + misi + mjsj + cij sisj ) (20)

appearing in the previous expression describe the empirical frequencies associated with the
clusters {i} and {i, j}.

Notice that the problem of finding any of the mean magnetizations 〈si〉(h,J ) or a correla-
tions 〈sisj 〉(h,J ) usually requires the use of iterative algorithms such as belief propagation,
which converge in a number of steps linear with the number of vertices |V | [18]. For the
inverse problem no iterative algorithm is required, as the solution can be found by simply
evaluating formula (17). This is a consequence of the fact that—as observed in [7, 8]—
inverse problems tend to be more local than their direct counterparts. Equivalently, due to
sparsity of χ−1, by shifting an empirical average (either mi or Jij ) just neighboring cou-
plings are changed, whereas for the direct problem the change of a coupling (say, hi ), has an
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effect on a finite number of vertices (being the size of the perturbation roughly determined
by the correlation length of the system). These results are consistent with the ones of [21,
22, 34], where the solution of the inverse Ising problem under the Bethe approximation is
derived. In particular, Eq. (17) can be recovered by specializing the results in [21, 22, 34] to
the case of a tree, for which the Bethe approximation is exact.

This solution requires indeed the knowledge of the full topology specified by E, so that
this approach cannot be used to determine the graph structure from data. Rather, it allows to
exactly recover the coupling strength given an acyclic set of edges E.

2.2 One-Dimensional Models

Within this approach it is also possible to find the exact solution of the inverse problem
for a one-dimensional periodic chain with interactions of arbitrary order. Even if a heuristic
solution for this model was first proposed in [10], its detailed derivation is provided in the
following. The model is defined by a probability distribution p(s) on a set of binary spins
s ∈ {−1,1}N specified by a family of potentials acting on the first R spins φ(s1, . . . , sR) =
(φ1(s1, . . . , sR), . . . , φM(s1, . . . , sR)) subject to the periodic boundary conditions si = si+N .
These potentials are meant to model spin-spin interactions of range up to R. A periodicity
parameter ρ ≤ R is also introduced, in order to enforce the invariance of the system under
translations by multiples of ρ. This is formally achieved by using translation operators
T = {Tn}N/ρ−1

n=0 , defined through their action on the φ

Tnφμ(s1, . . . , sR) = φμ(s1+nρ, . . . , sR+nρ). (21)

Finally one can define a one-dimensional periodic chain as the probability distribution

p(s) = 1

Z(g)
exp

(
M∑

μ=1

gμ

N/ρ−1∑
n=0

Tnφμ(s)

)
. (22)

Suppose that the family φ = (φ1, . . . , φM) contains all and only the 2R(1 − 2−ρ) monomials
describing the unit cell (i.e., any potential of range smaller than R along the chain can be
uniquely obtained by translating one of the φμ by mean of a Tn operator). Then one can
exploit the factorization

p(s) =
∏
n

pΓn(sΓn)

pγn(sγn)
, (23)

where one has defined the sets Γn = {nρ + 1, . . . , nρ + R} and γn = {(n + 1)ρ + 1, . . . ,

nρ + R}. This leads to the additivity formula for the entropy

S(p) =
∑

n

[
SΓn(pΓn) − Sγn(pγn)

]
(24)

proved in the Appendix. Translational symmetry and formula (13) lead finally to

S(T φ̄) = N

ρ

{∑
sΓ0

[
1

2R

∑
Γ ′⊆Γ0

M∑
μ=1

cμ,Γ ′ φ̄μ φ̂Γ ′(sΓ ′)

]

× log

[
1

2R

∑
Γ ′⊆Γ0

M∑
μ=1

cμ,Γ ′ φ̄μ φ̂Γ ′(sΓ ′)

]
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−
∑
sγ0

[
1

2R−ρ

∑
γ ′⊆γ0

M∑
μ=1

cμ,γ ′ φ̄μ φ̂γ ′(sγ ′)

]

× log

[
1

2R−ρ

∑
γ ′⊆γ0

M∑
μ=1

cμ,γ ′ φ̄μ φ̂γ ′(sγ ′)

]}
, (25)

where the φ̂Γ (sΓ ) are monomials used to expand the marginals as in (13), while cμ,Γ = 1 if
it exists an n such that Tnφμ = φ̂Γ and cμ,Γ = 0 otherwise. The couplings are given by

g�
μ =

∑
sΓ0

[
1

2R

∑
Γ ′⊆Γ0

cμ,Γ ′ φ̂Γ ′(sΓ ′)

]
log

[
1

2R

∑
Γ ′⊆Γ0

M∑
ν=1

cν,Γ ′ φ̄ν φ̂Γ ′(sΓ ′)

]

−
∑
sγ0

[
1

2R−ρ

∑
γ ′⊆γ0

cμ,γ ′ φ̂γ ′(sγ ′)

]
log

[
1

2R−ρ

∑
γ ′⊆γ0

M∑
ν=1

cν,γ ′ φ̄ν φ̂γ ′(sγ ′)

]
(26)

while the inverse susceptibilities can be written as

χ−1
μ,ν = ρ

N

{∑
sΓ0

[ 1
2R

∑
Γ ′⊆Γ0

cμ,Γ ′ φ̂Γ ′(sΓ ′)][ 1
2R

∑
Γ ′⊆Γ0

cν,Γ ′ φ̂Γ ′(sΓ ′)]
p̄Γ0(T φ̄)

−
∑
sγ0

[ 1
2R

∑
γ ′⊆γ0

cμ,γ ′ φ̂γ ′(sγ ′)][ 1
2R

∑
γ ′⊆γ0

cν,γ ′ φ̂γ ′(sγ ′)]
p̄γ0(T φ̄)

}
. (27)

The structure of this solution is analogous to the one of (17), in the sense that once that the
S(p) is written as a sum of cluster entropies SΓn(pΓn) and Sγn(pγn), the expression for the
couplings is obtained by summing their separate contributions to the estimator g�

μ(T φ). The
main difference in this case is that one can exploit translational symmetry in order to equate
the cluster contributions due to different unit cells. Thus, the number of sampled unit cells
is

√
T N/ρ, rather that

√
T . This rules the convergence of the couplings to their asymptotic

values: if the system is large translational symmetry allows to obtain reliable estimations of
the couplings even with a small number of observations.

3 Applications

In order to validate the results shown above, some examples involving synthetic datasets
are discussed. In the case of a tree-like model, a set of T = 106 configurations of a systems
of size N = 50 has been simulated. The configurations have been obtained by Monte Carlo
sampling from a distribution p(s) specified by a tree-like graph E, while the couplings J and
h have been uniformly drawn from the interval [0,1]. The node degrees have been extracted
from a distribution of fixed mean 〈ki〉 = 〈|∂i|〉 = 2(N − 1)/N . The variances of the inferred
couplings for specific instances of the problem have been shown in Fig. 2, where they are
compared against their expected scaling. The plot indicates that formula (17) correctly pre-
dicts the value of the inferred couplings and of their fluctuations. I have also considered the
problem in which every coupling is multiplied by an inverse temperature parameter β , in
order to control the overall intensity of the fluctuations. The presence of strong noise cor-
responds to the regime of large β , while the one in which noise is suppressed is associated
with the small β region. In this example the couplings J and h have been uniformly drawn
in [0,1] and multiplied by a β parameter in the range [0.01,10]. Subsequently, T = 105
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Fig. 2 Variance of the inferred
couplings h (red line) and J

(blue line) against the number of
samples T for a pairwise tree.
The dashed lines indicate the
values of the error calculated by
using formula (18) (Color figure
online)

Fig. 3 Variance of the inferred couplings h� (red line) and J � (blue line) against the inverse temperature β

for a pairwise tree, obtained by using T = 105 Monte Carlo samples. Both the variances of h� and J � (left
panel) and the ones of the products h�β and J �β (right panel) are plotted. The dashed lines indicate the
estimations of the error obtained by using expression (18) (Color figure online)

samples have been extracted via Monte Carlo. In Fig. 3 the variance of the inferred cou-
plings is plotted against the inverse temperature β . One can notice from the plots that, as
the inverse problem depends just upon the products βJ and βh, it is not possible to distin-
guish between an overall strength of the fluctuations a the temperature parameter β . Hence,
while the lowest inference error for the products βJ and βh is obtained for hi = Jij = 0,
the lowest error for the values J and h (given a fixed, known value for β) is obtained by
finding a compromise between maximum signal (favoring high couplings) and minimum
noise (favoring high temperature, or equivalently low β). One also finds that the quality of
the reconstruction degrades progressively in the large β regime by increasing the inverse
temperature, until eventually some of the two-state marginals are not sufficiently sampled,
in which case the inferred couplings diverge. The same type of study has been carried on
for the model (22). As an example, I show the results obtained for a system of size N = 50,
characterized by interactions of range R = 4 and periodicity parameter ρ = 2. A number
of configurations T = 106 have been simulated via Monte Carlo for a system with random
interactions (gμ uniformly extracted in [0,0.01]). The results are shown in Fig. 4, where the
variance of the inferred couplings is plotted against the expected scaling. Also for the one
dimensional case I analyzed the effect of an inverse temperature parameter β ∈ [0.01,1]
modulating an interaction strength gμ randomly drawn from the interval [0,1]. Figure 5
shows the errors in the reconstructed couplings as a function of the β parameter. Notice that
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Fig. 4 Variance of the inferred
coupling vector g� (solid line)
plotted against the number of
sampled unit cells NT/ρ,
obtained by Monte Carlo
sampling of a model describing a
complete one-dimensional
periodic chain of size N = 50,
range R = 4 and periodicity
ρ = 2. The dashed line shows the
error predicted by Eq. (27)

Fig. 5 Variance of the inferred couplings g� (solid line) against the inverse temperature β for a one di-
mensional periodic chain. T = 105 configurations have been sampled via Monte Carlo so to construct the
empirical averages φ̄. Both the results for the inferred couplings g� (left panel), and the one for the products
βg� (right panel) are shown. The dashed line indicates the error obtained by using Eq. (27)

the error on βg� is minimum for a flat distribution (β = 0), while the one on g� is minimized
by an intermediate value of β . The quality of the reconstruction is determined by how uni-
formly is the R-spin marginal sampled. If local fluctuations are not sampled well-enough,
the error on the inferred couplings is large as predicted by Eq. (27). As observed above, it
is not necessary to probe global fluctuations of the system in order to accurately reconstruct
the couplings.

4 General Structure of Exact Solutions

What has been shown for models (14) and (22) can be easily extended to more general
scenarios. In particular any factorization property for the probability distribution p(s) anal-
ogous to (15) and (23) breaks the entropy in a set of cluster contributions of the form

S(p) =
∑
Γ ∈G

cΓ SΓ (pΓ ), (28)

where G is a suitably chosen collection of clusters associated with a set of {cΓ }Γ ∈G co-
efficients. Equation (13) implies that cluster entropies SΓ (pΓ ) are local in the empirical
observables associated with Γ . Hence, if the model is large enough (i.e., if φ includes all
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the monomials located within the clusters Γ ∈ G ), the cluster entropies can be expressed as
functions of the observables φ̄ conjugated to the couplings g. In this case the following facts
hold:

– Due to linearity of the derivative any inferred coupling g�
μ(φ̄) receives contributions just

by clusters containing its conjugated potential φμ(s).
– The matrix χ−1 is sparse, so that by shifting any of the empirical observables φ̄μ the only

clusters which are affected are the ones including variables contained inside the monomial
φμ(s).

The expressions (18) and (27) for the stability matrix χ−1 have then a clear interpretation in
term of cluster contributions. Specifically, the calculation of the Fisher information requires
a summation over all the possible micro-states sΓ for a set of relevant clusters Γ (a cluster
is relevant to the term χ−1

μ,ν if SΓ (pΓ ) depends both on φ̄μ and φ̄ν ). Each of the terms in the
sum is weighted according to the inverse empirical marginal p̄Γ (φ̄Γ ) estimated from data.
If the clusters necessary to describe p(s) are uniformly sampled (i.e., the empirical frequen-
cies p̄Γ are approximately flat), the error on the inferred couplings is small. Conversely, as
soon as one ore more configurations sΓ are not sampled, the asymptotic error diverges. This
is consistent with the observation that if a pΓ (sΓ ) assigns zero mass to some configurations,
infinite couplings are required to describe the marginals (in that case either some regulariza-
tion can be used to enforce finiteness of the solution, or infinite solutions may be accepted
as describing a hard constraint on the set of accessible configurations). As a further com-
ment, notice that a reliable estimation of the couplings g doesn’t require sampling global
fluctuations in the configuration space: it is simply necessary to sample fluctuations which
are local with respect to clusters in G in order to accurately estimate the couplings g.

These ideas can be useful even in the case in which the entropy doesn’t strictly break in
the sum of small cluster terms. In particular it has been observed in [7, 8] that for several
models it is possible to account for a large fraction of the entropy S(p) by using just a few
local terms (corresponding to the remark that in many cases the matrix χ−1 is approximately
sparse). In this case fast, although approximate, inference schemes could be obtained by
using these techniques.

Notice that the price to pay in order to analytically solve this inverse problem is the
introduction of a potentially high number of parameters: a coefficient has to be fitted for
each of the monomials included in any of the clusters Γ ∈ G . In particular, the number of
parameters to be considered is bound by M ≤ |G| × 2maxΓ ∈G |Γ |. Thus, even if a number of
clusters polynomial in N is usually sufficient to properly describe the entropy of a system,
their size enters exponentially in the number of fitted parameters.

5 Conclusions

The task of determining a probability distribution whose associated momenta match a given
set of values is a known hard problem, with relevant implications in the field of high-
dimensional inference. In this work I have shown that its exact solution can be found when-
ever the probability density for the system has a factorized structure. The sparsity of the
Fisher information matrix χ−1(φ̄) and the additivity of the entropy can be shown to rely
upon this independence property. These result is completely general (in particular, it is inde-
pendent of the interaction structure of the system). In order to provide illustrative examples,
these ideas have been used to solve two specific inverse problems: the inverse Ising model
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Fig. 6 Two dimensional
auxiliary model pλ(s) associated
with the original distribution
p(s) describing a
one-dimensional periodic chain

on a tree and the one-dimensional periodic chain with arbitrary order interactions. The inter-
actions of both systems can be accurately reconstructed if the clusters describing the system
are uniformly sampled, while the inferred couplings diverge as soon as some relevant micro
states are unobserved. These findings have been confirmed by numerical simulations, which
show an excellent agreement with the analytical predictions. Techniques for the approxi-
mate solution of generic inverse problems could in principle be derived by developing the
methods presented in this work.

Acknowledgements I acknowledge M. Marsili, G. Gori and S. Cocco for very useful discussions.

Appendix: Factorization Property for the One-Dimensional Chain

I show in the following that for a one-dimensional periodic chain defined as in (22), the
factorization property

p(s) =
N/ρ−1∏

n=0

pΓn(sΓn)

pγn(sγn)
(29)

holds, where Γn = {nρ +1, . . . , nρ +R} and γn = {(n+1)ρ +1, . . . , nρ +R}. To obtain this
result, one can consider the auxiliary two-dimensional model defined by the log-probability

logpλ(s, t) = − logZ(g) +
N/ρ−1∑

n=0

M∑
μ=1

gμφμ

(
sn

1+nρ, . . . , s
n
R+nρ

)

+ λ

N/ρ−1∑
n=0

nρ+R∑
i=(n+1)ρ+1

[(
tni − sn

i

)2 + (
tni − sn+1

i

)2]
, (30)

in which the configuration space contains the original degrees of freedom are sn
i ∈ {−1,1}

(with n = 0, . . . ,N/ρ − 1 and i = 1 + nρ, . . . ,R + nρ) and the auxiliary ones tni ∈ {−1,1}
(with n = 0, . . . ,N/ρ −1 and i = 1+ (n+1)ρ, . . . ,R +nρ). The relation between the orig-
inal model and the auxiliary one is sketched in Fig. 6. In particular the coupling λ controls
the strength of the bond in the auxiliary dimension (labeled by n), so that the limit λ → ∞
describes the original chain with the obvious identification sn

i → si and tni → si . By defin-
ing the row variables sn = {sn

i }i=R+nρ

i=1+nρ and tn = {tni }i=R+nρ

i=1+(n+1)ρ , the log-probability for the two
dimensional model can be written as

logpλ(s, t) = − logZλ(g) −
N/ρ−1∑

n=0

[
Hλ

n

(
sn

) + Hλ
n,n

(
sn, tn

) + Hλ
n,n+1

(
tn, sn+1

)]
. (31)
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Hence the distribution over the degrees of freedom sn and tn defines a tree, because only
successive row of variables interact.1 The marginals associated with the clusters Γn and γn

can be used in order to express the probability pλ(s, t) as

pλ(s, t) =
∏

n pλ
Γn∪γn

(sn, tn)pλ
γn∪Γn+1

(tn, sn+1)∏
n pλ

Γn
(sn)pλ

γn
(tn)

, (32)

where for the two-dimensional model Γn and γn are analogously defined. By taking the
λ → ∞ limit, the identification

pλ
Γn∪γn

(
sn, tn

) → pΓn(snρ+1, . . . , snρ+R), (33)

pλ
Γn

(
sn

) → pΓn(snρ+1, . . . , snρ+R), (34)

pλ
γn

(
tn

) → pγn(s(n+1)ρ+1, . . . , snρ+R) (35)

allows to recover the factorization property (23).
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