
Eigenvalue Spectra of Modular Networks

Tiago P. Peixoto*

Institut für Theoretische Physik, Universität Bremen, Hochschulring 18, D-28359 Bremen, Germany
(Received 11 June 2013; published 26 August 2013)

A large variety of dynamical processes that take place on networks can be expressed in terms of the

spectral properties of some linear operator which reflects how the dynamical rules depend on the network

topology. Often, such spectral features are theoretically obtained by considering only local node

properties, such as degree distributions. Many networks, however, possess large-scale modular structures

that can drastically influence their spectral characteristics and which are neglected in such simplified

descriptions. Here, we obtain in a unified fashion the spectrum of a large family of operators, including the

adjacency, Laplacian, and normalized Laplacian matrices, for networks with generic modular structure, in

the limit of large degrees. We focus on the conditions necessary for the merging of the isolated eigenvalues

with the continuous band of the spectrum, after which the planted modular structure can no longer be

easily detected by spectral methods. This is a crucial transition point which determines when a modular

structure is strong enough to affect a given dynamical process. We show that this transition happens in

general at different points for the different matrices, and hence the detectability threshold can vary

significantly, depending on the operator chosen. Equivalently, the sensitivity to the modular structure of

the different dynamical processes associated with each matrix will be different, given the same large-scale

structure present in the network. Furthermore, we show that, with the exception of the Laplacian matrix,

the different transitions coalesce into the same point for the special case where the modules are

homogeneous but separate otherwise.
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Networks form the substrate of a dominating class of
interacting complex systems, on which various dynamical
processes take place. Many of the most important types of
dynamics, such as random walks [1,2], diffusion, synchro-
nization [3–5], and epidemic spreading [6–8], have central
properties which are directly expressed via the spectral
features of matrices associated with the network topology
[9–11], such as the mixing time of randomwalks, epidemic
thresholds, and the synchronization speed of oscillators, to
name a few. Virtually all of these processes will be affected
by large-scale modular structures present in the network
[12], which is reflected in its spectral properties [13–16].
Since such large-scale modularity is a ubiquitous property
in real networks [12], describing the spectral features
resulting from this is a crucial step in understanding how
these systems function. Additionally, the information
encoded in the eigenvectors of these matrices are central
to the nontrivial task of detecting large-scale features in
empirical networks [16–20], and from it, it is possible
to derive general bounds on the detectability of existing
community structure [16].

In this work, we formulate a unified framework to obtain
the eigenvalue spectrum associated with arbitrary modular
structures, parametrized as stochastic block models
[21–24]. The framework allows the straightforward calcu-
lation of a large class of matrices which include the adja-
cency, Laplacian, and normalized Laplacianmatrices, and is
exact in the limit of large degrees. It contrasts with previous
work [14], which is exact in the limit of small degrees, but

depends on the solution of a number of self-consistency
equations which are solved stochastically. Here, we show
that if the block structure is sufficiently well pronounced,
it will trigger the appearance of isolated eigenvalues,
with associated eigenvectors strongly correlated with the
block partition. If the block structure becomes too weak
(but nonvanishing), the isolated eigenvalues merge with the
continuous band, and the eigenvectors are no longer corre-
lated with the block partition. This has important conse-
quences to the detectability of modular structure in
networks [16] but also to a large class of dynamical pro-
cesses, since after this transition takes place, one should not
expect the modular structure to play a significant role. We
show that in general the different matrices have different
sensitivities to the imposed block structure and exhibit these
transitions for different modularity strengths.
Unified framework.—Any given undirected network can

be encoded via its adjacency matrix A, which has entries
Aij ¼ 1 if node i is adjacent to i, or Aij ¼ 0 otherwise. The

Laplacian matrix is defined as L ¼ D�A, where D is a
diagonal matrix containing the vertex degrees Dij ¼ �ijki.

Finally, the normalized Laplacian is defined as L ¼ I�
D�1=2AD�1=2. Here, we use a general parametrization
which contains these matrices as special cases, via the
matrixW ¼ CþM, whereC is a random diagonal matrix,
andM is a random symmetric matrix. Simply by choosing

fC ¼ 0;M ¼ Ag, fC ¼ D;M ¼ �Ag, and fC ¼ I;M ¼
�D�1=2AD�1=2g, we recover A, L, and L, respectively.
We may writeW ¼ CþMþ hMi ¼ X þ hMi, such that

PRL 111, 098701 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

30 AUGUST 2013

0031-9007=13=111(9)=098701(5) 098701-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.111.098701


the matrix X ¼ CþM, with M ¼ M� hMi, has off-
diagonal entries with zero mean. The spectrum ofX can be
obtained via its average resolvent hðzI�X Þ�1i, using the
Stieltjes transform �ðzÞ ¼ �ð1=N�Þ ImTrhðzI�X Þ�1i,
with z approaching the real line from above. Given an
arbitrary random matrix X with zero-mean off-diagonal
entries, if the variance of the entries is sufficiently large, we
can use the approximation [25]

h½X�1�iii ’
X

Xii

PiðXiiÞ
Xii �P

jh½X�1�jjiha2j i
; (1)

and h½X�1�iji ¼ 0 for i � j, where a is the ith column ofX,

with the diagonal element removed, and it is assumed that
the diagonal elements Xii can only take discrete values,
distributed according to PiðXiiÞ. We use Eq. (1) to compute
the average resolvent of the matrixX . We consider random
graphs parametrized as stochastic block models [21–23]
where N nodes are divided into B distinct blocks, where
each block r has nr nodes, and the matrix entry ers specifies
the number of edges between blocks r and s, which are
otherwise randomly placed. Hence, in the considered cases,
the expected value of M is simply a function of the block
memberships, i.e., hCiii ¼ ½CB�bi;bi ¼ cbi and hMiji ¼
½MB�bi;bj , with CB and MB being matrices of size B� B,

and the vector b of size N and entries in the range [1, B]
specify the block memberships. When applying this to
Eq. (1) withX ¼ zI�X , we may use the fact the averages
on both sides of Eq. (1) can only depend on the block
membership of the respective nodes. Thus, using the short-
hand trðzÞ � h½ðzI�X Þ�1�iii for i 2 r, we obtain

trðzÞ ¼
X

c

pr
c

z� c�P
s �

2
rsnstsðzÞ

; (2)

where pr
c is the probability distribution of the diagonal

elements c for block r, and �2
rs is the variance of the

elements of M, labeled according to block membership,
which is identical to the variance of M. The spectrum
of X may be finally obtained via

�ðzÞ ¼ � 1

N�

X

r

nrImtrðzÞ: (3)

In order to obtain the spectrum of W, we employ an
argument developed in Ref. [26] and note that in order for
z to be an eigenvalue of W ¼ X þM, we must have
det½zI� ðX þ hMiÞ� ¼ 0, which can be rewritten as
detðzI�X Þ det½I� ðzI�X Þ�1hMi� ¼ 0. Thus, if the
second determinant is zero for a given z, it will be an
eigenvalue ofW but not ofX . These additional eigenvalues
may be obtained via the ensemble average det½I� hðzI�
X Þ�1ihMi� ¼ 0, which will hold if the matrix hðzI�
X Þ�1ihMi has an eigenvalue equal to one. Since this matrix
has a maximum rank equal to B, its nonzero eigenvalues
will be identical to theB� BmatrixTðzÞMBN, whereTðzÞ
andN are diagonalB� Bmatrices containing the values of

trðzÞ and nr, respectively. Hence, the existence of additional
eigenvalues of W may obtained by solving

det½IB � TðzÞMBN� ¼ 0; (4)

simultaneously with �ðzÞ ¼ 0. Equations (2)–(4) provide a
complete recipe for obtaining the desired spectrum, pro-
vided we know the B� B matrices �2

rs and MB as well as
the diagonal entry distribution pr

c. For the three matrices of
interest, they are easily computed as fpr

c ¼ �0;c;�
2
rs ¼

½MB�rs ¼ ers=nrnsg forA and fpr
c¼Pðc;er=nrÞ; ½MB�rs¼

�ers=nrns; �
2
rs¼ers=nrnsg for L, with Pðc; �Þ being a

Poisson distribution on c with average � and fpr
c ¼

�1;c; ½MB�rs ¼ �ers=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nrernses

p
; �2

rs ’ ers=eresg for L.
We emphasize that, since the approximation in Eq. (1)
was used, the obtained spectrum should be correct only in
the limit of sufficiently large degrees. If this holds, the
theory reproduces in very good detail the spectrum of
empirical networks, as can be seen in Fig. 1. The spectrum
is composed of a continuous band, as well as a number of
isolated eigenvalues, which correspond very well to the
solutions of Eqs. (3) and (4), respectively. The same is
true for the spectrum of the matrices L and L (Fig. 2).
The spectrum of L is special, since it contains an elaborate
fine structure, with many fringes, and an interleaving of the
continuous band [Eq. (3)] with the isolated eigenvalues

FIG. 1 (color online). Top: Continuous band of thematrixA for
the block structure in the inset (right, ers matrix and block sizes
nr; left, graphical representation). The solid line corresponds to
Eq. (3), and the gray histogram is averaged over 25 network
realizations with N ¼ 2� 104 and hki ¼ 300. Bottom: The
same, but with the isolated eigenvalues added. The gray vertical
lines are average empirical values, whereas the solid (orange)
curve corresponds to the determinant of Eq. (4). The vertical
(green) line segments mark the eigenvalues of the matrix
CB þMBN.
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[Eq. (4)]. The continuous band has no well-defined edge,
with fringes which extend through the whole spectrum, but
with decaying amplitudes.Despite such a detailed structure,
the theory captures these features very well, as can be seen
in Fig. 2 (see also the Supplemental Material [27]).

For isolated eigenvalues which are sufficiently detached
from the spectral band, Eq. (2) may be approximated by
tr � 1=ðz� crÞ, in which case Eq. (4) amounts to
det½zIB � ðCB þMBNÞ� ¼ 0, where CB is a diagonal
matrix with the cr values. If this holds, the detached
eigenvalues will correspond to the spectrum of the matrix
CB þMBN.

At the edges of the continuous band, the purely real
solution to Eq. (2) becomes unstable, and the largest
eigenvalue of the Jacobian JrsðzÞ�@t̂r=@ts¼P

cp
r
c�

2
rsns=

½z�c�P
s�

2
rtntttðzÞ�2, where t̂r is the right-hand side of

Eq. (2), becomes equal to one. Hence, one may find the
edges of the continuous band by solving det½IB�JðzÞ�¼0,
simultaneously with �ðzÞ ¼ 0.

Eigenvectors.—The eigenvector equation ðX þMÞv ¼
zv can be rewritten as ðzI�XÞ�1Mv ¼ v. Taking the
ensemble average, we get hðzI�XÞ�1iMhvi ¼ hvi. Since
the average values of v can only depend on the block
memberships and hðzI�XÞ�1i is diagonal, we get

TðzÞMBNvB ¼ vB; (5)

where vB contain the average values of v for each block.
If the block structure is made sufficiently tenuous, all

but the most extremal detached eigenvalues will approach
progressively the continuous band. At some point, before
the graph becomes fully random, they will merge with the
continuous band, and the associated eigenvectors will no
longer convey any information on the existing block struc-
ture. An example is shown in Fig. 3, which shows the full
spectrum of the block structure given by ers ¼ ce0rs þ ð1�
cÞe0re0s=2E, with e0rs being the same block structure shown
in Fig. 1, and e0r ¼ P

se
0
rs. The parameter c interpolates

between a random graph (c ¼ 0) and the original block

structure (c ¼ 1), while preserving the same degree distri-
bution. As show in Fig. 3, for a specific value of c¼c�>0,
all but the most extremal eigenvalues merge with the
continuous band, and for c < c�, the eigenvector values
are no longer discernibly correlated with the planted block
structure. It is important to notice that the transition point
c� is different for the matrices A and L, and thus the
different spectra will have different sensitivities to the
planted block structure. This can be seen in more detail
by considering a simpler two-block system with n1=N ¼
w, n2=N ¼ 1� w, and ers ¼ E½c�rs þ ð1� cÞ=2�, which
is a diagonal block structure with the parameter c control-
ling the block segregation and w the degree asymmetry
[28]. In Fig. 4 is shown the extremal eigenvalues for the
three matrices as a function of c, compared with empirical
values. For the normalized Laplacian matrix L, the
extremal eigenvalue is very insensitive to the parameter
w [29]. The matrixA displays, on the other hand, different
transition points, depending on w, with larger values of c�
for larger degree asymmetries. The spectral band for the
matrix L has no well-defined edge; hence, the transition
point on a finite networkwill depend on the system size. The
observable edge of the band is obtained by computing the
extremal statistics of �ðzÞ (see the Supplemental Material
[27]) and matches well the observed values, as can be seen
in Fig. 4. A comparison of the transition points can be
seen in the lower right of Fig. 4, where it is also included
the values for the modularity matrix B ¼ A� kkT=2E,
where k is a vector with node degrees, often used for

FIG. 2 (color online). Eigenvalue spectrum of the normalized
Laplacian matrix L (top) and Laplacian matrix L (bottom) for
the block structure of Fig. 1.

FIG. 3 (color online). Left: Extremal eigenvalues of A (top)
and L (bottom), for the block structure of Fig. 1, as a function
of the parameter c defined in the text. The solid lines are
solutions of Eq. (4), and the data points are empirical values
for N ¼ 2� 104. The dotted vertical line marks the detachment
transition. Right, top (bottom): Eigenvector values for the second
and third largest (smallest) eigenvalues of A (L), for different
values of c. The circles (stars) correspond to the empirical
(theoretical) average values for each block.
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community detection [18], which can also be calculated
with the presented method in an entirely analogous fash-
ion. Since for this specific block structure it has system-
atically the lowest threshold c� among the others, this
seems to corroborate the hypothesis in Refs. [16,30] that
B may posses optimal characteristics in some scenarios.
On the other hand, the comparatively worst behavior of
the Laplacian L raises issues with its use for this purpose
(as in, e.g., Ref. [31]).

Homogeneous blocks.—Further analytical progress can
be made by assuming that the blocks are homogeneous,
such that the right-hand side of Eq. (2) is the same for all
blocks. This means that they must all share the same
properties such as size nr and average degree er=nr. The
solution in the case pr

c ¼ �d;cr (i.e., for both A and L)

will then be simply tðzÞ ¼ ½z� d� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd� zÞ2 � 4a
p �=2a

with a ¼ ar ¼ N
P

s�
2
rs=B, which will result in the usual

semicircle distribution �ðzÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a� ðz� dÞ2p

=2a�
for jz� dj< 2

ffiffiffi
a

p
; otherwise, �ðzÞ ¼ 0. The detached

eigenvalues will be given by the solution of det½I�
tðzÞNMB=B� ¼ 0. Hence, there will be a one-to-one
correspondence between the nonzero eigenvalues �i of
MB and the detached eigenvalues zi ¼ dþ ati þ 1=ti,
where ti ¼ B=N�i, as long as jzi � dj> 2

ffiffiffi
a

p
; otherwise,

they will merge with the continuous band. By making
jzi � dj ¼ 2

ffiffiffi
a

p
, one obtains that this transition happens

at �i ¼ � ffiffiffi
a

p
B=N. Both forA and L, one can see that this

transition occurs at the same point: If one writes the
block matrix as ers ¼ Nhkimrs, such that

P
rsmrs ¼ 1,

this transition translates to

�2
m ¼ 1

hkiB2
; (6)

where �m is an eigenvalue of the mrs matrix. The fact that
the detachment transition is identical for both A and L is a
special property of the homogeneous block structure, and
does not hold in general, as we have shown previously [32].
As a concrete example of an homogeneous structure, we

consider a nested version of the usual planted partitionmodel
[33], inspired by similar constructions done in Refs. [34,35].
We define a seed structure with B1 blocks and ½m1�rs¼
�rsc=B1þð1��rsÞð1�cÞ=B1ðB1�1Þ, and construct a nes-
ted matrix of depth l viaml¼ml�1�ml�1 where� denotes
the Kronecker product. The eigenvalues of the matrixml are
given by �i

ml
¼fðcB1�1Þ=½B1ðB1�1Þ�gl�i=Bi

1, for i2½0;l�.
Thus, from Eq. (6), one obtains a series of transitions, where
a deeper level of the nested structure ‘‘fades away,’’ and the
spectrum is indistinguishable from that of a l� 1 structure
(see Fig. 5). The transition of the shallowest level happens at
hki ¼ ½ðB� 1Þ=ðcB� 1Þ�2, which is the same as the regular
planted partition model [16]. This transition marks the point
at which more general inference methods should also fail to
detect the imposed partition [36].
In summary, we presented an unified framework to

obtain the full spectrum of random networks with modular
structure, in the limit of large degrees. We showed that the
detachment transition of the isolated eigenvalues is a gen-
eral feature which determines how strongly the existing
modular structure affects the different spectra. The differ-
ent matrices react differently to the imposed modular
structure and have different transition points. Only when
the blocks are homogeneous do some of these transitions
collapse together. Hence, in general, the detectability
threshold of the imposed block structure may depend
strongly on the actual spectrum which is observed.

FIG. 4 (color online). Top, left (right): Second largest (smallest)
eigenvalue of A (L), for the asymmetric two-block structure
described in the text. The dashed curves are the theoretical values,
and the data points are obtained from network realizations with
N ¼ 2� 104 and hki ¼ 300. Bottom, left: Second smallest
eigenvalue of L. The dashed curves are the expected values for
N ¼ 2� 104 (see the SupplementalMaterial [27]). Bottom, right:
Transition point c� as a function ofw for the matricesA andL and
the modularity matrix B.

r

s

r

s

r

s

r

s

r

s

FIG. 5 (color online). Top: Detachment transitions for the
nested partition model described in the text with B1 ¼ 2 as a
function of the mixing parameter c, and for different nested
depths l, for A and L. The data points correspond to network
realizations with N ¼ 2� 104 and hki ¼ 300, and the solid lines
are theoretical values. Bottom: Example of ers matrices with
B1 ¼ 2 for different values of l.
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