
Uncovering space-independent communities
in spatial networks
Paul Experta,b, Tim S. Evansb, Vincent D. Blondelc,d, and Renaud Lambiottea,e,1

aComplexity and Networks Group, Imperial College London, London SW7 2AZ, United Kingdom; bBlackett Laboratory, Prince Consort Road, Imperial
College London, London SW7 2AZ, United Kingdom; cMassachusetts Institute of Technology, Laboratory for Information and Decision Systems, 77
Massachusetts Avenue, Cambridge, MA 02139; dInstitute of Information and Communication Technologies, Electronics and Applied Mathematics,
Université catholique de Louvain, Avenue Georges Lemaitre 4, B-1348 Louvain-la-Neuve, Belgium; and eNaxys, Facultés Universitaires Notre-Dame de la
Paix, B-5000 Namur, Belgium

Edited by Kenneth Wachter, University of California, Berkeley, CA, and approved March 22, 2011 (received for review December 20, 2010)

Many complex systems are organized in the form of a network
embedded in space. Important examples include the physical
Internet infrastucture, road networks, flight connections, brain
functional networks, and social networks. The effect of space on
network topology has recently come under the spotlight because
of the emergence of pervasive technologies based on geolocaliza-
tion, which constantly fill databases with people’s movements and
thus reveal their trajectories and spatial behavior. Extracting pat-
terns and regularities from the resulting massive amount of human
mobility data requires the development of appropriate tools for
uncovering information in spatially embedded networks. In con-
trast with most works that tend to apply standard network metrics
to any type of network, we argue in this paper for a careful treat-
ment of the constraints imposed by space on network topology. In
particular, we focus on the problem of community detection and
propose a modularity function adapted to spatial networks. We
show that it is possible to factor out the effect of space in order
to reveal more clearly hidden structural similarities between the
nodes. Methods are tested on a large mobile phone network
and computer-generated benchmarks where the effect of space
has been incorporated.

complex networks ∣ social systems

Understanding the principles driving the organization of com-
plex networks is crucial for a broad range of fields including

information and social sciences, economics, biology, and neu-
roscience (1). In networks where nodes occupy positions in an
Euclidian space, spatial constraints may have a strong effect
on their connectivity patterns (2). Edges may either be spatially
embedded, such as in roads or railway lines in transportation net-
works or cables in a power grid, or abstract entities, such as
friendship relations in online and offline social networks or func-
tional connectivity in brain networks. In either case, space plays a
crucial role by affecting, directly or indirectly, network connectiv-
ity and making its architecture radically different from that of
random networks (3). A crucial difference stems from the cost
associated to long-distance links (4–12), which restricts the exis-
tence of hubs (i.e., high-degree nodes), and thus the observation
of fat-tailed degree distributions in spatial networks.

From a modeling viewpoint, gravity models (13–15) have long
been used to model flows in spatial networks. These models focus
on the intensity of interaction between locations i and j separated
by a certain physical distance dij. It has been shown for systems as
diverse as the International Trade Market (16), human migration
(17), traffic flows (18), or mobile communication between cities
(19, 20) that the volume of interaction between distant locations
is successfully modeled by

Tij ¼ NiNjf ðdijÞ; [1]

where Ni measures the importance of location i, e.g., its popula-
tion, and the deterrence function f describes the influence of
space. Eq. 1 emphasizes that the number of interactions between

two locations is proportional to the number of possible contacts
NiNj and that it varies with geographic distance, because of finan-
cial or temporal cost. In many socioeconomic systems, f is well
fitted by a power law ∼d−αij reminiscent of Newton’s law of gravity,
with population playing the role of a mass.

Whereas a broad range of models have been specifically devel-
oped for spatial networks (21–25), dedicated tools for uncovering
useful information from their topology are poorly developed.
When analyzing spatial networks, authors tend to use network
metrics where the spatial arrangement of the nodes is ignored,
thus disregarding that useful measures for nonspatial networks
might yield irrelevant or trivial results for spatial ones. Important
examples are the clustering coefficient, because spatial networks
are often spatially clustered by nature, and degree distribution,
where high-degree nodes are suppressed by long-distance costs.
This observation underlines the need for appropriate metrics for
the analysis and modeling of networks where spatial constraints
play an important role (26–28).

This need is particularly apparent in the context of community
detection. The detection of communities (modules or clusters) is
a difficult task that is important to many fields, and it has at-
tracted much attention in the last few years (29–35). In a nutshell,
modules are defined as subnetworks that are locally dense even
though the network as a whole is sparse. Community detection is
a central tool of network theory because revealing intermediate
scales of network organization provides the means to draw read-
able maps of the network and to uncover hidden functional
relations between nodes (32). In the case of spatial networks,
important practical applications include (i) the design of efficient
national, economical, or administrative borders based on human
mobility or economical interactions, instead of historical or ad
hoc reasons (36–39); (ii) the modeling of historical or prehisto-
rical interactions based on limited archaeological evidence
(40, 41); iii) the identification of functionally related brain regions
and of principles leading to global integration and functional seg-
regation (42, 43).

In practice, the current state-of-the-art for finding modules in
spatial networks (44, 45) is to optimize the standard Newman–
Girvan modularity, which, as we argue below, overlooks the spa-
tial nature of the system. In most cases, this scheme produces
communities which are strongly determined by geographical fac-
tors and provide poor information about the underlying forces
shaping the network. For instance, social and transportation net-
works are typically dominated by low-cost short-ranged interac-
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tions leading to modules which are compact in physical space. As
a result, modularity optimization is blind to spatial anomalies and
fails to uncover modules determined by factors other than mere
physical proximity. This point brings us to the central question of
our work: In spatial networks, how can one detect patterns that
are not due to space? In other words, are observed patterns only
due to the effect of spatial distance, because of gravity-like forces,
or do other forces come into play? If that is the case, can one go
beyond a standard network methodology in order to uncover
significant information from spatial networks?

Social Networks and Space
In order to illustrate these concepts and to clarify the goal of this
paper, let us elaborate on social networks, where the dichotomy
between network and space has been studied for decades. On the
one hand, research has attempted to explain the organization of
social networks purely in terms of the structural position of the
nodes. Structural mechanisms underpinning the existence of
social interactions include triadic closure (46) and link reciprocity
(47). On the other hand, research has identified ordering prin-
ciples that explain edge creation in terms of nonstructural
attributes, mainly homophily (48) and focus constraint (49).
Homophily states that similarity, e.g., in terms of status or inter-
ests, fosters connection (48), because similar people tend to select
each other, communicate more frequently, and develop stronger
social interactions (50). The second ordering principle is focus
constraint (49), which refers to the idea that social relations
depend on opportunities for social contact. A dominant factor
for focus constraint is geographic proximity, which offers oppor-
tunities for face-to-face interaction and encounters between
individuals (51). Focus constraint thus depends indirectly on dis-
tance through its dependence on transportation networks, which
themselves typically exhibit a gravity law.

Although homophily and focus constraint are different me-
chanisms, they are often interrelated, because frequent contacts
drive groups toward uniformity, through social influence, and
that alike individuals tend to live in the same neighborhoods
(52). Moreover, both aspects can be seen as originating from
proximity in a high-dimensional social space, which summarizes
people’s interests and characteristics—i.e., nodes have a tendency
to connect with neighboring nodes in social space (53). When
uncovering modules of strongly connected nodes in complex
networks, one deals with an extremely intricate situation where
structural and nonstructural effects, including homophily and
focus constraint, are mingled. Modules uncovered by community
detection are thus underpinned by an uncontrolled mixture of
possibly antagonistic forces, from which few conclusions can
be drawn (54). Our aim is the following: When the spatial posi-
tions of the nodes are known, as more and more often is the case,
is it possible to take out the effect of space in order to identify
more clearly homophilious effects and thus hidden structural or
cultural similarities.

Modularity and Space
Let us now introduce the notations and formalize the problem of
community detection. In the following, we focus on weighted,
undirected networks characterized by their adjacency matrix A.
By definition, A is symmetric and Aij is the weight of the link
between i and j. The strength of node i is defined as ki ¼ ∑jAij;
m ¼ ∑i;jAij∕2 is the total weight in the network. The distance
between nodes i and j is denoted by dij. From now on, by distance,
we mean Euclidian distance between nodes when measured on
the embedding space, and not network distance, which is the
number of edges traversed along the shortest path from one
vertex to another. As discussed above, the nature of space and
its associated distance may be abstract (i.e., affinity in a social
network) or physical (i.e., geographical distance between cities).

The fundamental idea behind most community detection
methods is to partition the nodes of the network into modules.
Contrary to standard graph partitioning algorithms, the detection
of communities is performed without a priori specifying the num-
ber of modules nor their size and aims at uncovering in an auto-
mated way the mesoscale organization of the network (31).
Behind most community detection methods, there is a mathema-
tical definition measuring the quality of a partition. The widely
used modularity (55) of a partition P measures if links are more
abundant within communities than would be expected on the
basis of chance, namely,

Q ¼ ðfraction of links within communitiesÞ
− ðexpected fraction of such linksÞ: [2]

In a mathematical expression, modularity reads

Q ¼ 1

2m ∑
C∈P

∑
i;j∈C

½Aij − Pij�; [3]

where i, j ∈ C is a summation over pairs of nodes i and j belonging
to the same community C of P and therefore counts links
between nodes within the same community.

What is meant by chance (i.e., the null hypothesis) is an extra
ingredient in the definition (56) and is embodied by the matrix
Pij. Pij is the expected weight of a link between nodes i and j over
an ensemble of random networks with certain constraints. These
constraints correspond to known information about the network
organization (i.e., its total number of links and nodes), which has
to be taken into account when assessing the relevance of an
observed topological feature. In general, if Aij is symmetric,
Pij is also chosen to be symmetric and one also imposes that the
total weight is conserved* (i.e., ∑ijAij ¼ ∑ijPij ¼ 2m). Beyond
these basic considerations, different null models can be
constructed depending on the network under consideration
(57–59). The most popular choice, proposed by Newman and
Girvan (NG) (55) is

PNG
ij ¼ kikj∕2m; then Q ¼ QNG; [4]

where randomized networks preserve the strength of each node.
Constraining the node strengths goes along the view that the
network is well mixed, in the sense that any node can be con-
nected to any node and that only connectivity matters. In that
case, node strength is a good proxy for the probability of a link
to arrive on a certain node. Different types of heuristics can be
developed in order to approximate the optimal value of the cor-
responding NG modularity (56, 60–62). These methods have
been shown to produce useful and relevant partitions in a broad
class of systems (31), even if modularity suffers from limitations
such as resolution limit (63) and a possible high degeneracy of
its landscape (64, 65).

The NG null model only uses the basic structural information
encoded in the adjacency matrix. Therefore, it is appropriate
when no additional information on the nodes is available but
not when additional constraints are known. In networks where
distance strongly affects the probability for two nodes to be con-
nected, a natural choice for the null model is inspired by the
aforementioned gravity models

*This constraint can be relaxed in order to change the characteristic size of the
network and thus to tune the resolution at which communities are uncovered
(66). A discussion can be found in SI Text
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PSpa
ij ¼ NiNjf ðdijÞ [5]

where Ni is, as in Eq. 1, a notion of importance of node i and
where the deterrence function

f ðdÞ ¼
∑

i;jjdij¼d

Aij

∑
i;jjdij¼d

NiNj
; [6]

is the weighted average of the probability Aij∕ðNiNjÞ for a link to
exist at distance d. It is thus directly measured from the data† and
not fitted by a determined functional dependence, as is often the
case (15). By construction, the total weight of the network is
conserved as required. Depending on the system under scrutiny,
Ni may be the number of inhabitants in a city or the degree of a
node when it corresponds to a single person in a social network.
It is worth mentioning that in the latter case and if the embedding
in space does not play a role—i.e., where f ðdÞ is flat—the stan-
dard NG model is exactly recovered (SI Text).

From now on, let us denote by QSpa the version of modularity
(3) whose null model PSpa

ij is given by Eq. 5. QSpa incorporates
nonstructural information about the nodes (i.e., their position
in physical space). By definition, QSpa favors communities made
of nodes i and j such that Aij − PSpa

ij is large—i.e., pairs of nodes
which are more connected than expected for that distance. Com-
pared to QNG, QSpa tends to give larger contributions to distant
nodes and its optimization is expected to uncover modules driven
by nonspatial factors.

Numerical Validation
Belgian Mobile Phone Data. To compare the partitions obtained by
optimizing QNG and QSpa, let us first focus on a Belgian mobile
phone network made of 571 communes (the 19 communes form-
ing Brussels are merged into one) and of the symmetrized num-
ber of calls fAijg571i;j¼1 between them during a time period of 6 mo
(see ref. 38 for a more detailed description of the data). This net-
work is aggregated from the anonymized customer–customer
communication network of a large mobile phone provider by
using the billing commune associated to each customer. The
number of customers in each commune i is given by Ni. This net-
work provides an ideal test for our method because of the impor-
tance of nonspatial factors driving mobile phone communication,
namely, the existence of two linguistic communities in Belgium:‡ a
Flemish community and a French community mainly concen-
trated in the north and the south of the country, respectively.
As reported in ref. 38, when the weights between communes
are given by the average duration of communication between
people, a standard NG modularity optimization recovers a bipar-
tition that closely follows the linguistic border.

Both versions of modularity are optimized using the spectral
method described in ref. 62. Visualization of the results are shown
in Fig. 1. The NG modularity uncovers 18 spatially compact
modules, similar to those observed in other spatially extended
networks and mainly determined by short-range interactions
between communes. Although boundaries of this partition coin-
cide with the linguistic separation of the country (38), the una-
ware would not discover the existence of two linguistic
communities only from Fig. 1. The spatial modularity uncovers

a strikingly different type of structure: an almost perfect biparti-
tion of the country where the two largest communities account for
about 75% of all communes (see SI Text for more details) and
nicely reproduce the linguistic separation of the country. More-
over, Brussels is assigned to the French community, in agreement
with the fact that approximately 80% of its population is French
speaking and despite the fact that it is spatially located in
Flanders. The remaining smaller communities (not bigger than
10 communes each) originate from the constraints imposed by
a hard partitioning, which is blind to overlapping communities
and might thus misclassify Flemish communes strongly interact-
ing with Brussels and communes that have mixed language popu-
lations. A similar bipartition is found by considering only the signs
of the dominant eigenvector of the modularity matrix (see
SI Text).

Statistical Tests. The values for the optimal modularities can be
found in Table 1. It is important to stress that a direct comparison
of QNG and QSpa is meaningless because modularity is a way to
compare different partitions of the same graph and so its absolute
value is inconsequential. Moreover, the value of modularity is
expected to be lower when its null model is closer to the real

Fig. 1. Decomposition of a Belgianmobile phone network into communities
(see main text). Each node represents a commune and its size is proportional
to its number of clients Ni . (Upper) Partition into 18 communities found by
optimizing NG modularity. (Lower) Partition into 31 communities found
by optimizing Spa modularity.

†In practice, when analyzing empirical data, the distance between two cities is binned
such as to smoothen f ðdÞ. The dependence of our results on bin size is explored
in SI Text.

‡There also exists a German-speaking community made of 0.73% of the national
population
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structure of the data, as it is the case for QSpa. In order to assess
the significance of the uncovered partitions, one needs instead to
resort to statistical tests by comparing modularity with that of an
ensemble of random networks (60).

Two types of random networks are constructed: (i) networks
where weights are randomized. Starting from the empirical
f ðdÞ, we generated weights between two communes i and j accord-
ing to a binomial of mean ρNiNjf ðdijÞ. In the following, we chose
ρ ¼ 1, thus conserving (up to some fluctuations) the total number
of calls in the system and the spatial dependence between nodes.
Let us keep in mind that ρ allows to tune the importance of finite-
size fluctuations and that Aij∕ρ ¼ NiNjf ðdijÞ in the limit ρ → ∞;
and (ii) networks where the geographical position of the nodes is
randomized while leaving the weights unchanged. This second
ensemble of random networks is radically different from the first
one because it keeps the topology of the network unaffected and
only randomizes node attributes. Because NG does not make use
of geographical information, it is unaffected by this reshuffling.
By construction, the effect on Spa is to make space less important
by changing the function f ðdÞ, thus leading to an expression closer
to NG (see SI Text). For each type of randomization, we produce
N ¼ 100 networks and optimize their modularitiesQNG andQSpa.

The significance of the partitions found in the original data is
first evaluated by comparing their modularity with that of the
randomized data through a z score (60), defined as

z ¼ Q − hQirandom
σ

; [7]

where σ is the standard deviation across the 100 realizations. Re-
sults are summarized in Table 1 and clearly show that the original
data are significantly more modular than networks where the
weights are randomized. The z score is an order of magnitude
larger for the spatial modularity. For the spatial randomization,
in contrast, the z score is negative, which reflects the fact that
useful information is lost by randomizing node positions and that
the resulting randomized null model is further away from reality
than the original.

As a next step, we focus on the variability across the uncovered
partitions. This step is done by using normalized variation of in-
formation (VI) (67), which is a measure of the distance between
partitions. VI is equal to zero only when two partitions are iden-
tical and is between 0 and 1 otherwise. Results are summarized in
Table 2 where we observe that partitions obtained from NG and
Spa are genuinely different. In the case of weight randomization,
the important point is that VI between partitions uncovered in
random networks is much smaller for NG (0.09) than for Spa
(0.58), thus indicating that very similar partitions are found by
NG across random networks (i.e., only due to spatial interactions
between communes). Another interesting point is the high simi-
larity between partitions found by NG in the original data and
by Spa in the spatially randomized networks, as their VI is found
to be equal to 0.16, in agreement with the fact that Spa becomes
similar to NG when space is irrelevant.§ This observation is
confirmed by the similar values of VI between the partitions

found by NG and Spa in the original data, as shown in Fig. 1
(i.e., 0.38), and between partitions found by Spa in the original
data and in the spatially randomized data (0.35 in Table 2).

Gravity Model Benchmark. To test the validity of our method in a
controlled setting, let us now focus on computer-generated
benchmarks for spatial, modular networks. The underlying idea
is to build spatially embedded random networks where the prob-
ability for two nodes to be connected depends on their distance,
as observed in real-world examples, and on the community to
which they are assigned. We implement benchmarks in the sim-
plest way by throwing 100 nodes at random in a two-dimensional
square of dimension 100 × 100 and by randomly assigning
them into two communities of 50 nodes. Contrary to the previous
example, where nodes (communes) could have different sizes, we

Table 1. Statistical comparison of the modularity measured on the
original dataset with the modularity values measured on the
randomized data

Qnorm
obs hQnorm

rand i z score

Weights spatial 0.0881 0.0049 803
NG 0.7961 0.7059 55

Positions spatial 0.0881 0.2383 −90

Table 2. Average VI measured between the partition found on
the original dataset and the randomized ones (Orig–Rand) and
the average VI among the randomized dataset (Rand–Rand)
for both null models and randomization procedures

Orig–Rand Rand–Rand

Weights spatial 0.54 ± 0.02 0.58 ± 0.02
NG 0.23 ± 0.02 0.09 ± 0.05

Positions spatial 0.35 ± 0.02 0.07 ± 0.04

Fig. 2. Variation of information over the (λdifferent, ρ) parameter space for
Spa (Upper) and NG (Lower) when tested on the spatial benchmark. Spa is
able to recover the correct communities over a wide range of parameters’
values, whereas NG fails to find the correct communities almost as soon
as the interaction λdifferent is turned on.

§It is important to stress that the spatial randomization does not entirely remove the effect
of space on network connectivity because self-loops (i.e., intracommune links) are
preserved.
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assume that all nodes have the same size. The probability that a
link exists between nodes i and j has the form

pij ¼
λðci;cjÞ
Zdij

; [8]

where ci is the community of node i. The function λðci;cjÞ deter-
mines the community linkage. By definition, it is equal to 1 if
ci ¼ cj and λdifferent otherwise. When λdifferent ¼ 0, only nodes in
the same community are connected, although no distinct commu-
nities are present when λdifferent ¼ 1. A normalization constant,
Z, ensures that ∑i>jpij ¼ 1. These networks, directly inspired
by gravity models, are built by placing L ¼ ρNðN − 1Þ∕2 links
with probability pij, where ρ ≥ 0 determines the density of links
in the network. Multiple links are allowed and interpreted as
weights. The parameter ρ controls finite-size fluctuations around
the expected number of edges Lpij.

In order to compare the efficiency of QSpa and QNG, we gen-
erated one realization of the random model for different values
of λdifferent ∈ ½0;1� and ρ ∈ ½0.01;100�, and optimized their modu-
larity. As a measure of the quality of the uncovered partitions, we
compared them with the known bipartition of the network by
using normalized VI. Our simulations show that QSpa outper-
forms QNG and that the improvement becomes larger and larger
as the density of links is increased (see Fig. 2). In the limit ρ → ∞,
where fluctuations become negligible, our simulations show that
Spa perfectly identifies the correct communities for any
λdifferent < 1, whereas NG fails even for small values of λdifferent.
It is also interesting to note that results presented in Fig. 2 are
obtained for single realizations of the random networks (i.e.,
because when dealing with empirical datasets one does not ana-
lyze an ensemble of networks), and yet the precision of Spa is
significantly better than that of NG (results smoothed by aver-
aging over several realizations are presented in SI Text).

Discussion
Despite the increasing availability of affordable long-distance
travel and new communication media, the “death of distance”
(68) has been greatly exaggerated (11, 69). Furthermore, the
emergence of new technologies entangling physical and virtual
worlds has stimulated new research and produced new applica-
tions for social and human mobility networks embedded in space

(70). This importance of space is not limited to social networks—
a broad range of economical and biological networks are also spa-
tially embedded, with strong consequences on their topological
organization. The main purpose of this paper has been to find
an alternative way to uncover significant patterns in spatial net-
works. To do so, we have taken advantage of the flexibility of a
quantity called modularity defined for community detection.
Modularity incorporates a null model, which represents what
is expected by chance, namely, the expected probability that two
nodes are connected. Unlike the standard null model, we incor-
porate nonstructural attributes into our null model and use this as
a comparison with empirical data. By doing so, we construct null
models which portray more closely the network under scrutiny
and provide the means to exploit known attributes (e.g., spatial
location) in order to uncover unknown ones (e.g., homophilious
relations).

We believe that our general framework is suitable for a wide
range of networks and that it opens avenues of quantitative
exploration of spatially distributed systems. Interesting lines of
research include the development of more general null models,
for instance by interlacing structural and nonstructural informa-
tion, and the detection of hierarchies in spatial networks either by
tuning the resolution of modularity (66) or by looking for local
maxima of the modularity landscape (64) (see SI Text for more
details). Moreover, our methodology is not limited to situations
where distance is measured in physical space as it may be applied
whenever one can use node attributes to define a separation
between nodes. For instance, in many social networks, age may
be a dominant factor, yet by building a null model on the age
difference between actors, other types of relationships may be
revealed for little extra computational effort. A further advantage
is that, by incorporating relevant information, a partitioning
approach can be applied even if modules are pervasively
overlapping (71, 72).
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