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With increasing amounts of information available, modeling and
predicting user preferences—for books or articles, for example—
are becoming more important. We present a collaborative filtering
model, with an associated scalable algorithm, that makes accu-
rate predictions of users’ ratings. Like previous approaches, we
assume that there are groups of users and of items and that
the rating a user gives an item is determined by their respective
group memberships. However, we allow each user and each item
to belong simultaneously to mixtures of different groups and,
unlike many popular approaches such as matrix factorization, we
do not assume that users in each group prefer a single group of
items. In particular, we do not assume that ratings depend lin-
early on a measure of similarity, but allow probability distribu-
tions of ratings to depend freely on the user’s and item’s groups.
The resulting overlapping groups and predicted ratings can be
inferred with an expectation-maximization algorithm whose run-
ning time scales linearly with the number of observed ratings. Our
approach enables us to predict user preferences in large datasets
and is considerably more accurate than the current algorithms for
such large datasets.

recommender systems | stochastic block model | collaborative filtering |
social recommendation | scalable algorithm

The goal of recommender systems is to predict what movies
we are going to like, what books we are going to purchase,

or even who we might be interested in dating. The rapidly
growing amount of data on item reviews, ratings, and pur-
chases from a growing number of online platforms holds the
promise to facilitate the development of more informed mod-
els for recommendation. At the same time, however, it poses the
challenge of developing algorithms that can handle such large
amounts of data accurately and efficiently.

A plausible expectation when developing recommendation
algorithms is that similar users relate to similar items in simi-
lar ways; e.g., they purchase similar items and give the same item
similar ratings. This means that we can use the rating history of
a set of users to make recommendations, even without know-
ing anything about the characteristics of users or items. This is
the basic underlying assumption of collaborative filtering, one
of the most common approaches in recommender systems (1).
However, most research in recommender systems has focused
on the development of scalable algorithms, often at the price of
implicitly using models that are overly simplistic or unrealistic.
For example, matrix factorization and latent feature approaches
assume that users and items live in an abstract low-dimensional
space, but whether such a space is expressive enough to accom-
modate the rich variety of user behaviors is rarely discussed. As
a result, many current approaches have significantly lower accu-
racies than inference approaches based on models of user pref-
erences that are socially more realistic (2). On the other hand,
these more realistic approaches do not scale well with dataset
size, which makes them unpractical for large datasets.

Here, we develop a model and algorithm for predicting user
ratings based on explicit probabilistic hypotheses about user

behavior. As in some previous approaches, we assume that there
are groups of users and of items and that the rating a user
assigns to an item is determined probabilistically by their group
memberships. However, we do not assign users and items to
a single group; instead, we allow each user and each item to
belong to mixtures of different groups (3, 4). In addition, unlike
standard matrix factorization, we do not assume that ratings
depend linearly on a measure of similarity between users and
items; instead, we allow each pair of groups to have any prob-
ability distribution of ratings. We combine these elements to
form a generative model, which assigns a precise probability to
each possible rating. Fortunately, the inference problem for this
model can be solved very efficiently: We give an expectation-
maximization algorithm whose running time, per iteration, scales
linearly with the number of observed ratings and converges
rapidly.

We show that our approach consistently outperforms state-of-
the-art recommendation algorithms, often by a large margin. In
addition, our probabilistic predictions are better calibrated to
real data in the frequentist sense (5), generating distributions
of ratings that are statistically similar to real data. Moreover,
because our model has a clear probabilistic interpretation, it
can deal naturally with some situations that are challenging
for other approaches, such as the cold start problem. We
argue that our approach may also be suitable for other areas
where matrix factorization is increasingly used such as image
reconstruction, textual data mining, cluster analysis, or pattern
discovery (6–10).

Significance

Recommendation systems are designed to predict users’ pref-
erences and provide them with recommendations for items
such as books or movies that suit their needs. Recent devel-
opments show that some probabilistic models for user prefer-
ences yield better predictions than latent feature models such
as matrix factorization. However, it has not been possible to
use them in real-world datasets because they are not compu-
tationally efficient. We have developed a rigorous probabilis-
tic model that outperforms leading approaches for recommen-
dation and whose parameters can be fitted efficiently with an
algorithm whose running time scales linearly with the size of
the dataset. This model and inference algorithm open the door
to more approaches to recommendation and to other prob-
lems where matrix factorization is currently used.
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A Mixed-Membership Block Model with Metadata
Our approach begins with the mixed-membership stochastic
block model (MMSBM), which has been used to model net-
works. As in the original MMSBM (3) and related models (11),
we assume that each node in the bipartite graph of users and
items belongs to a mixture of groups. However, unlike refs. 3
and 11, we do not assume that these group memberships affect
the presence or absence of a link. Instead, we take the set of
links as given and attempt to predict the ratings. We do this with
an MMSBM-like model where the rating a user gives an item
is drawn from a probability distribution that depends on their
group memberships.

First we set down some notation. We have N users and M
items and a bipartite graph R = {(u, i)} of links, where the link
(u, i) indicates that item i was given a rating (observed or unob-
served) by user u . For each (u, i) ∈ R, the rating rui belongs
to some finite set S such as {1, 2, 3, 4, 5}. Given a set RO of
observed ratings, our goal is to classify the users and the items
and to predict the rating rui of a link (u, i) ∈ R for which the
rating is not yet known.

Our generative model for the ratings is as follows. There are
K groups of users and L groups of items. For each pair of groups
k , `, there is a probability distribution pk`(r) over S of the rating
r that u gives i , assuming that u belongs entirely to group k and
i belongs entirely to group `.

To model mixed group memberships, each user u has a vec-
tor θu ∈ RK , where θuk denotes the extent to which user u
belongs to group k . Similarly, each item i has a vector ηi ∈
RL. These vectors are normalized; i.e.,

∑
kθuk =

∑
`ηi` = 1.

The probability distribution of the rating rui is then a convex
combination,

Pr [rui = r ] =
∑
k,`

θukηi`pk`(r). [1]

Abbreviating all these parameters as θ, η, p, the likelihood of
the observed ratings is then

P(RO |θ, η, p) =
∏

(u,i)∈RO

∑
k,`

θukηi`pk`(rui). [2]

As we discuss below, we infer the values of the parameters
θ̂, η̂, p̂ that maximize this likelihood using an efficient expectation-
maximization algorithm. We can then use the inferred model to
predict unobserved ratings rui for pairs (u, i) /∈ RO .

Our work differs from previous work on collaborative filter-
ing in several ways. First, unlike matrix factorization approaches
such as ref. 12 or their probabilistic counterparts (13–15), we do
not think of the ratings rui ∈ {1, 2, 3, 4, 5} as integers or real val-
ues. As has been established in the literature (16), giving a movie
a rating of 5 instead of 1 does not mean the user likes it five
times as much. Our results suggest that it is better to think of dif-
ferent ratings simply as different labels that appear on the links
of the network. Moreover, our method yields a distribution over
the possible ratings directly, rather than a distribution over inte-
gers or real numbers that must be somehow mapped to the space
of possible ratings (13–15). From this point of view, our model
is a bipartite MMSBM with metadata (or labels) on the edges; a
similar model based on the stochastic block model (SBM), where
each user and item belong to only one group, is given in ref. 2.
An alternative approach would be to consider a multilayer rep-
resentation of the data as in ref. 4.

Second, we do not assume that the matrices p have any partic-
ular structure. In particular, we do not assume homophily, where
groups of users correspond to groups of items, and users prefer
items that belong to their own group: That is, we do not assume
that p(r) is larger on the diagonal for higher ratings r . Thus, our

model can have arbitrary couplings between groups of users and
items that are independent for each possible rating.

Third, unlike some approaches that use inference methods
similar to ours (17), as stated above, our goal is not to predict
the existence of links. In particular, we do not assume that users
see only movies (say) that they like, and we do not treat missing
links as zeros or low ratings. To put this differently, we are not
trying to complete R to a full matrix of ratings, but only to pre-
dict the unobserved ratings in R r RO . Thus, the only terms in
the likelihood of our model correspond to observed ratings.

As we describe below, our model also has the advantage
of being mathematically tractable. It yields a highly efficient
expectation-maximization algorithm for fitting the parameters:
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Fig. 1. Algorithm comparison. The performance of different approaches for
predicting user–item ratings. From Top to Bottom, the datasets are Movie-
Lens 100K, Movielens 10M, Yahoo! Songs, males rating females (M-F) in the
LibimSeTi dataset, females rating males (F-M) in the LibimSeTi dataset, and
Amazon Books. Left column displays the accuracy of the algorithms in each
dataset, i.e., the fraction of ratings that are exactly predicted by each algo-
rithm. Right column displays the MAE in the predicted vs. actual rating,
treated as an integer or half-integer. In all cases, the bars are the average
of a fivefold cross-validation and the error bars correspond to the SE of the
mean. The SBM algorithm does not scale to the larger datasets, but achieves
similar accuracy to the MMSBM on the datasets it can handle. The MMSBM
achieves the best (highest) accuracy in five of six datasets and the best (low-
est) MAE in four of six datasets.
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The time each iteration takes is linear on the number of users,
items, and observed links. As a result, we are able to handle
large datasets and achieve a higher accuracy than standard meth-
ods. We also show that the probabilistic predictions made by our
model are well calibrated in the frequentist sense (5), producing
distributions of ratings statistically similar to real data.

Scalable Inference of Model Parameters
In most practical situations, marginalizing exactly over the group
membership vectors θ and η and the probability matrices p (sim-
ilar to ref. 2) is too computationally expensive. As an alter-
native we propose to obtain the model parameters that maxi-
mize the likelihood (2), using an expectation-maximization (EM)
algorithm.

In particular, we use a classic variational approach (Materials
and Methods) to obtain the following equations for the model
parameters that maximize the likelihood:

θuk =

∑
i∈∂u

∑
lωui(k , `)

du
, [3]

ηi` =

∑
u∈∂i

∑
kωui(k , `)

di
, [4]

pk`(r) =

∑
(u,i)∈RO |rui=r ωui(k , `)∑

(u,i)∈RO ωui(k , `)
. [5]

Here ∂u = {i |(u, i)∈RO} and ∂i = {u|(u, i)∈RO} denote
the neighborhoods of u and i , respectively; du = |∂u| and
di = |∂i | are the node degrees, i.e., the number of observed rat-
ings for user u and item i , respectively; and

ωui(k , `) =
θukηi`pk`(rui)∑

k′,`′ θuk′ηi`′pk′`′(rui)
[6]

is the variational method’s estimate of the probability that the rat-
ing rui is due to u and i belonging to groups k and `, respectively.

These equations can be solved with an EM algorithm. Starting
with an estimate of θ, η, and p, we repeat the following steps until
the parameters converge to a fixed point: (i) (expectation step)
use Eq. 6 to compute ωui(k , `) for (u, i) ∈ RO ; (ii) (maximiza-
tion step) use Eqs. 3–5 to compute θ, η, and p.

The number of parameters and terms in the sums in Eqs. 3–6
is NK + ML + |RO |KL. Assuming that K and L are constant,
each EM step is O(N + M + |RO |) and hence linear in the size
of the dataset (Fig. S1A). As the set of observed ratings RO is
typically very sparse because only a small fraction of all possible
user–item pairs have observed ratings, our algorithm is feasible
even for very large datasets.

Fig. 2. Probability matrices in MMSBM. We show the inferred values for the probability matrices p from the MovieLens 100K dataset. Left to Right, the
five matrices correspond to the ratings r = 1, 2, 3, 4, 5. For each one of them, the rows and columns correspond to the user’s and item’s groups; here
K = L = 10. Each element, shown as a heat map, gives the probability pk`(r) that a user in group k gives a rating r to an item in group `. The matrices are
normalized such that

∑
r∈S

pk`(r) = 1, ∀ k, `. Note that there is no ordering of the probability matrices that would make them diagonal.

Results
The MMSBM Predicts Ratings Accurately. We test the performance
of our algorithm in six datasets: the MovieLens 100K and 10M
datasets, respectively; Yahoo! Songs; Amazon books (18, 19); and
the LibimSeTi.cz dating agency (20), which (because it is primarily
heterosexual) we split into two datasets, consisting of males rating
females and vice versa. These datasets are diverse in the types of
items, the sizes |S |of the sets of possible ratings, and the density of
observed ratings (Table S1). For each dataset we perform a five-
fold cross-validation.

We compare our algorithm to four benchmark algorithms (see
Supporting Information, Benchmark Algorithms): a baseline naive
algorithm that assigns to each test rating rui the average of
the observed ratings for item i ; the item–item algorithm (21),
which predicts rui based on the observed ratings of user u for
items that are the most similar to i ; “classical” matrix factoriza-
tion (12); and mixed-membership matrix factorization (MMMF)
(22). For all these benchmark algorithms except MMMF we
use the implementation in the LensKit package (16), which is
fast, highly optimized, and makes our results easily reproducible.
For MMMF, we use the Matlab implementation provided by
the authors (https://code.google.com/archive/p/m3f/). Addition-
ally, for the smallest datasets, we also use the (unmixed) stochas-
tic block model of ref. 2; however, that algorithm does not scale
well to larger datasets (Fig. S1B).

For our algorithm, we set K = L = 10; i.e., we assume that
there are 10 groups of users and 10 groups of items (recall that
we do not assume any correspondence between these groups).
We considered some other choices of K and L, but we found
no differences in performance for K ,L ≥ 10 (Fig. S2). Because
iterating the EM algorithm of Eqs. 3–6 can lead to different fixed
points depending on its initial conditions, we perform 500 inde-
pendent runs. We average the predicted probability distribution
of ratings over the resulting fixed points, because we find they
typically have comparable likelihood values (Fig. S3).

We can translate the resulting probability distribution of rat-
ings into a single predicted rating by choosing an estimator;
which one is optimal depends on the loss function or equivalently
the measure of accuracy. We focus on two measures. For each
algorithm, we define the accuracy as the fraction of ratings that
are predicted exactly, and we also measure the mean absolute
error (MAE). For these two, the optimal estimator is the mode
and the median, respectively.

We find that in most datasets our approach outperforms the
item–item algorithm, matrix factorization (MF), and MMMF
(Fig. 1). Indeed, the accuracy, i.e., the fraction of exactly correct
predictions, of the MMSBM is significantly higher than that of
MF and MMMF for all of the datasets we tested and higher than
the item–item algorithm in five of six datasets, the only exception
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Fig. 3. Calibrating probabilistic predictions. Left column: Probabilistic cali-
bration. For each p ∈ (0, 1), we consider the set of held-out pairs for which
each rating was predicted with probability p and show the fraction Fobs(p) of
those pairs for which this rating is correct. Points on the diagonal Fobs(p) = p
indicate that the algorithm captures the stochasticity in the ratings. Right
column: Marginal calibration. For each possible rating r, we show the dif-
ference between the average probability Ppred(r) that r is predicted and the
actual fraction of held-out pairs with rating r. Points on the line Ppred(r)−

being Amazon Books. The MAE of the MMSBM is the best
(lowest) in four of the six datasets; item–item produces smaller
MAE in Amazon Books; and item–item, MF, and MMMF pro-
duce smaller MAE in MovieLens 10M.

Interestingly, our approach produces results that are almost
identical to those of the unmixed, fully marginalized SBM (2) for
the two examples for which inference with the SBM is feasible.
In particular, we achieve the same accuracy with K = L = 10 in
the mixed-membership model as with 50 groups in the unmixed
SBM. This result suggests that many of the groups observed in
ref. 2 are in fact mixtures of a smaller number of groups and
that the additional expressiveness of the MMSBM allows us to
succeed with a lower-dimensional model. Moreover, the fact that
the maximum-likelihood estimator of the MMSBM gives results
that are as accurate as those obtained by sampling over SBMs
suggests that the mixing of memberships is an appropriate sub-
stitute for sampling over partitions of users and items.

The MMSBM Generalizes Matrix Factorization. MF is one of the
most successful and popular approaches to collaborative filter-
ing, both in its classical (12) and its probabilistic form (13–17).
However, as discussed, our MMSBM gives more accurate rat-
ings, often by a large margin. Here, we propose an explanation
for this improvement.

We start by giving an interpretation of MF as a special case of
the MMSBM. In its simplest form, MF assumes that the expected
rating that user u gives item i is r̄ui = θ̃u · η̃i , where θ̃u and η̃i
are K -dimensional vectors representing the user and the item,
respectively. [One can apply a variety of noise models or loss func-
tions, as well as regularization terms for the model parameters
(12), but this does not significantly alter our discussion.] This can
be interpreted as a mixed-membership model as follows: Assume
that there are K = L groups of users and items, that θuk is the
probability that user u belongs to group k , and that ηik is the prob-
ability that item i belongs to group k . Finally, assume that users in
group k like only items in group k ; in particular, users in k assign a
baseline rating of 1 to items in group k and a rating of 0 to items
in all other groups. Finally, let su ≥ 0 and si ≥ 0 be user and
item “intensities” that correct for the fact that some users rate
on average higher than others and that some items are generally
more popular than others. Then the expected ratings are given by

r̄ui =
∑
k

suθuk siηik . [7]

If we set θ̃uk = suθuk and η̃ik = siθik , this becomes the MF
model r̄ui = θ̃u · η̃i . Thus, MF corresponds to a model where
there is a one-to-one correspondence between groups of users
and groups of items, and users in a given group like only items
in the corresponding group. If these assumptions do not hold, in
general MF will not be able to properly model user–item ratings.

Our MMSBM relaxes these assumptions by allowing the dis-
tribution of ratings to be given by arbitrary matrices p. MF is
roughly equivalent to assuming that pk` is diagonal, at least
for high ratings. We suggest that the improved performance of
the MMSBM over MF is due to this greater expressive power.
Indeed, Fig. 2 shows that the matrices p inferred by our model
are far from diagonal (see also Fig. S4).

Moreover, the generality of the MMSBM allows it to account
for many of the features of real ratings. For instance, different
groups of users have different distributions of ratings: Users in

Fobs(r) = 0 indicate that the algorithm matches the empirical distribu-
tion of ratings. All cases use fivefold cross-validation. The MMSBM and (on
small datasets) the SBM are significantly better calibrated than other algo-
rithms, producing rating distributions statistically similar to real data. (See
Supporting Information for the probabilistic definition of MF and MMMF.)
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group k = 1 rate most movies with r = 5, whereas those in
k = 7 often give ratings r = 1. Similarly, movies in group ` = 3
are consistently rated r = 5 by most users, whereas movies in
` = 9 are rated r = 1 quite often. Interestingly, some groups of
users agree on some movies but disagree on others: For example,
users in groups k = 9, 10 agree that most movies in group ` = 3
should be rated r = 5, but they disagree on movies in ` = 9,
rating them r = 1 and r = 3, respectively.

One can also compare our MMSBM to MMMF, because both
attempt to take the mixed-membership nature of users and items
into account. However, the analogy is not perfect: MMMF mod-
els ratings as the sum of a MF term and a correction that uses
mixed group memberships that are unrelated to the feature vec-
tors (22). Although this is an improvement over MF, it does not
fundamentally remove the assumption that each group of users
has a corresponding group of items that it prefers. Indeed, our
numerical results show that the performance of MMMF is fairly
close to that of MF in the datasets we considered.

The MMSBM Makes Well-Calibrated Probabilistic Predictions. Finally,
our approach directly yields probabilistic predictions of the rat-
ings, i.e., probability distributions on the discrete set S , and we
can use the technique of frequentist calibration to see whether
these predictions accurately capture the stochasticity of the data.
Following ref. 5, we perform two types of calibration experi-
ments. Probabilistic calibration means that, for each r ∈ S and
p ∈ [0, 1], of the held-out pairs to which our approach assigns
a rating of r with probability p, this is indeed the correct rating
of a fraction p of them. (This differs slightly from ref. 5, where a
probabilistic forecaster predicts the cumulative distribution of a
continuous variable, but it seems to be a reasonable definition for
discrete values.) Marginal calibration means that for each rating
r ∈ S , the average probability we assign to r coincides with its
actual frequency among the held-out pairs.

As we show in Fig. 3, the predictions of the MMSBM are
indeed probabilistically and marginally well calibrated. Thus, in
addition to giving accurate ratings in the sense of the MAE and
the probability the rating is exactly correct, the MMSBM gener-
ates predictions that are statistically similar to real data, indicat-
ing that it captures the stochastic nature of the rating process.

Because MF and MMMF produce Gaussian distributions of
real-valued ratings, to perform analogous calibration experi-
ments we transform their predictions into a discrete proba-
bility distribution by integrating over the real numbers clos-
est to each r ∈ S (Supporting Information). For instance,
if S = {1, 2, 3, 4, 5}, we define the probability that r = 2
as the integral of this continuous distribution over the inter-
val [1.5, 2.5). Fig. 3 shows that the resulting probabilistic pre-
dictions are not well calibrated, neither probabilistically nor
marginally. One stark example of this is the MovieLens 10M
dataset, where users use integer ratings much more often than
half-integer ones. MF and MMMF cannot recognize this pat-
tern and thus systematically underestimate and overestimate the
probability of integer and half-integer ratings respectively. Sim-
ilar, although less obvious, patterns cause MF and MMMF to
be poorly calibrated in other datasets as well. Of course, one
could attempt to infer a nonlinear mapping from continuous
ratings to discrete ones, but this would increase the complexity
of these models considerably. By treating each rating as a differ-
ent label, the MMSBM adapts easily to the empirical distribution
of ratings in each dataset.

The MMSBM Provides a Principled Method to Deal with the Cold Start
Problem. Because the parameters of the MMSBM have a precise
probabilistic interpretation, it can naturally deal with situations
that are challenging for other algorithms. An example of this is
the “cold start” problem, where we need to predict ratings for
users or items for which we do not have training data (14, 23, 24).
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Fig. 4. Algorithm performance for the cold start problem. From Top to Bot-
tom, the MovieLens 100K dataset with 0.17% of cold start cases on average,
Movielens 10M (0.0015%), males rating females (M-F) in LibimSeTi (0.625%),
females rating males (F-M) in LibimSeTi (0.31%), and Amazon Books (6.7%).
We did not encounter any cold start cases in the cross-validation experiments
with Yahoo! Songs; this is to be expected because Yahoo! Songs requires that
users and songs have at least 20 ratings. Left column displays the accuracy for
each dataset and Right column the mean absolute error. The bars show the
average of fivefold cross-validation and the error bars show the SE.

In the MMSBM, the p matrices are the same for all users and
items; in this sense, new users or items pose no particular diffi-
culty. However, we have no information about their group mem-
bership vectors. In the absence of information about a new user
n we can assume, a priori, that he or she belongs to each group to
the same extent that a random existing user does. In practice, this
means that we initially set his or her group membership vector to
the average of the vectors of the observed users, θnk = 1

N

∑
uθuk .

We can treat ηi` similarly for a new item i . This provides a prin-
cipled method to deal with the cold start problem without addi-
tional elements (14).

In Fig. 4 we show that, in cold start situations, the MMSBM
outperforms the other algorithms in most cases. MMSBM is
always more accurate than MF and MMMF (although in one
case the difference is not significant). In all but one case, the
MMSBM is also more accurate than an algorithm that assigns
the most common rating to an item. In terms of mean absolute
error, our approach is more accurate than MF and MMMF in
four of five datasets (in one, not significantly) and more accurate
than using the most common rating in four of five cases.

Note that none of these approaches takes metadata on users or
items into account, which is a standard approach to the cold start
problem. For instance, one could assume that a new user will
behave similarly to others of the same age, gender, etc. (Fig. S5),
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and compute the average membership vector over these users.
We performed experiments restricting the average to users with
same gender and/or age, but we found it did not significantly
improve the performance (Fig. S6).

Discussion
We have shown that the MMSBM with its associated expectation-
maximization algorithm is an accurate and scalable method to
predict user–item ratings in a variety of contexts. It significantly
outperforms other algorithms, including MF and MMMF, in
most of the datasets we considered, both maximizing the prob-
ability that the predicted rating is exactly correct and minimizing
the mean absolute error.

Additionally, because the model and its parameters are readily
interpretable, it can be extended to (and performs well in) situ-
ations that are challenging for other approaches, such as a cold
start where no prior information is available about a new user or
item; one could also consider extensions of the model that take
into account metadata for users (e.g., age and gender) and/or
items (e.g., genre), analogous to unmixed stochastic block models
with node metadata (25).

Finally, because the MMSBM assigns a probability to each
possible rating, it is amenable to frequentist calibration, and we
found that its predictions are in fact statistically similar to real
data as measured by probabilistic and marginal calibration (5).
We believe that this performance is due to the fact that the
MMSBM is a more expressive generalization of matrix factor-
ization, allowing each pair of user and item groups to have an
arbitrary probability distribution of ratings. Matrix factorization
is a widely used tool with many applications beyond recommen-
dation; given our findings, it may make sense to use the MMSBM
in those other applications as well.

Materials and Methods
We maximize the likelihood 2 as a function of θ, η, p, using an EM algo-
rithm. We start with a standard variational trick that changes the log of a
sum into a sum of logs, writing

log P(RO|θ, η, p) =
∑

(u,i)∈RO

log
∑

k`

θukηi`pk`(rui)

=
∑

(u,i)∈RO

log
∑

k`

ωui(k, `)
θukηi`pk`(rui)

ωui(k, `)

≥
∑

(u,i)∈RO

∑
k`

ωui(k, `) log
θukηi`pk`(rui)

ωui(k, `)
. [8]

Here ωui(k, `) is the estimated probability that a given ranking rui is due
to u and i belonging to groups k and `, respectively, and the lower bound
in the third line is Jensen’s inequality log x̄ ≥ log x. This lower bound holds
with equality when

ωui(k, `) =
θukηi`pk`(rui)∑

k′`′ θuk′η`′ ipk′`′ (rui)
, [9]

giving us the update Eq. 6 for the expectation step.
For the maximization step, we derive update equations for the param-

eters θ, η, p by taking derivatives of the log-likelihood Eq. 8. Including
Lagrange multipliers for the normalization constraints, we obtain

θuk =

∑
i∈∂u

∑
lωui(k, `)∑

i∈∂u

∑
k`ωui(k, `)

=

∑
i∈∂u

∑
lωui(k, `)

du
, [10]

ηi` =

∑
u∈∂i

∑
kωui(k, `)∑

u∈∂i

∑
k`ωui(k, `)

=

∑
u∈∂i

∑
kωui(k, `)

di
, [11]

where du and di are the degrees of the user u and item i, respectively.
Finally, including a Lagrange multiplier for the normalization constraints,
we have

pk`(r) =

∑
(u,i)∈RO|rui=r ωui(k, `)∑

(u,i)∈RO ωui(k, `)
. [12]
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