The Annals of Statistics
- Ann. Statist.
- Volume 40, Number 3 (2012), 1346-1375.
High-dimensional structure estimation in Ising models: Local separation criterion
Animashree Anandkumar, Vincent Y. F. Tan, Furong Huang, and Alan S. Willsky
Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text
Abstract
We consider the problem of high-dimensional Ising (graphical) model selection. We propose a simple algorithm for structure estimation based on the thresholding of the empirical conditional variation distances. We introduce a novel criterion for tractable graph families, where this method is efficient, based on the presence of sparse local separators between node pairs in the underlying graph. For such graphs, the proposed algorithm has a sample complexity of
Article information
Source
Ann. Statist. Volume 40, Number 3 (2012), 1346-1375.
Dates
First available in Project Euclid: 10 August 2012
Permanent link to this document
http://projecteuclid.org/euclid.aos/1344610586
Digital Object Identifier
doi:10.1214/12-AOS1009
Zentralblatt MATH identifier
06114714
Mathematical Reviews number (MathSciNet)
MR3015028
Subjects
Primary: 62H12: Estimation
Secondary: 05C80: Random graphs [See also 60B20]
Keywords
Ising models graphical model selection local-separation property
Citation
Anandkumar, Animashree; Tan, Vincent Y. F.; Huang, Furong; Willsky, Alan S. High-dimensional structure estimation in Ising models: Local separation criterion. Ann. Statist. 40 (2012), no. 3, 1346--1375. doi:10.1214/12-AOS1009. http://projecteuclid.org/euclid.aos/1344610586.
References
- [1] Abbeel, P., Koller, D. and Ng, A. Y. (2006). Learning factor graphs in polynomial time and sample complexity. J. Mach. Learn. Res. 7 1743–1788.
- [2] Albert, R. and Barabási, A.-L. (2002). Statistical mechanics of complex networks. Rev. Modern Phys. 74 47–97.Mathematical Reviews (MathSciNet): MR1895096
Zentralblatt MATH: 1205.82086
Digital Object Identifier: doi: 10.1103/RevModPhys.74.47 - [3] Anandkumar, A., Tan, V. Y. F., Huang, F. and Willsky, A. S. (2011). High-dimensional Gaussian graphical model selection: Tractable graph families. Preprint. Available at arXiv:1107.1270.Mathematical Reviews (MathSciNet): MR2813149
- [4] Anandkumar, A., Tan, V. Y. F., Huang, F. and Willsky, A. S. (2012). Supplement to “High-dimensional structure learning of Ising models: Local separation criterion.” DOI:10.1214/12-AOS1009SUPP.
- [5] Bayati, M., Montanari, A. and Saberi, A. (2009). Generating random graphs with large girth. In Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms 566–575. SIAM, Philadelphia, PA.Mathematical Reviews (MathSciNet): MR2809261
- [6] Bento, J. and Montanari, A. (2009). Which graphical models are difficult to learn? In Proc. of Neural Information Processing Systems (NIPS).
- [7] Bogdanov, A., Mossel, E. and Vadhan, S. (2008). The complexity of distinguishing Markov random fields. In Approximation, Randomization and Combinatorial Optimization. Lecture Notes in Comput. Sci. 5171 331–342. Springer, Berlin.Mathematical Reviews (MathSciNet): MR2538798
Zentralblatt MATH: 1159.68042
Digital Object Identifier: doi: 10.1007/978-3-540-85363-3_27 - [8] Bollobás, B. (1985). Random Graphs. Academic Press, London.Mathematical Reviews (MathSciNet): MR809996
- [9] Brémaud, P. (1999). Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues. Texts in Applied Mathematics 31. Springer, New York.Mathematical Reviews (MathSciNet): MR1689633
- [10] Bresler, G., Mossel, E. and Sly, A. (2008). Reconstruction of Markov random fields from samples: Some observations and algorithms. In Approximation, Randomization and Combinatorial Optimization. Lecture Notes in Computer Science 5171 343–356. Springer, Berlin.Mathematical Reviews (MathSciNet): MR2538799
Zentralblatt MATH: 1159.68636
Digital Object Identifier: doi: 10.1007/978-3-540-85363-3_28 - [11] Chandrasekaran, V., Parrilo, P. A. and Willsky, A. S. (2010). Latent variable graphical model selection via convex optimization. Ann. Statist. To appear. Preprint. Available on ArXiv.
- [12] Chechetka, A. and Guestrin, C. (2007). Efficient principled learning of thin junction trees. In Advances in Neural Information Processing Systems (NIPS).
- [13] Cheng, J., Greiner, R., Kelly, J., Bell, D. and Liu, W. (2002). Learning Bayesian networks from data: An information-theory based approach. Artificial Intelligence 137 43–90.Mathematical Reviews (MathSciNet): MR1906473
Zentralblatt MATH: 0995.68114
Digital Object Identifier: doi: 10.1016/S0004-3702(02)00191-1 - [14] Choi, M. J., Lim, J. J., Torralba, A. and Willsky, A. S. (2010). Exploiting hierarchical context on a large database of object categories. In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).
- [15] Choi, M. J., Tan, V. Y. F., Anandkumar, A. and Willsky, A. S. (2011). Learning latent tree graphical models. J. Mach. Learn. Res. 12 1771–1812.Mathematical Reviews (MathSciNet): MR2813153
- [16] Chow, C. and Liu, C. (1968). Approximating Discrete Probability Distributions with Dependence Trees. IEEE Tran. on Information Theory 14 462–467.
- [17] Chung, F. R. K. (1997). Spectral Graph Theory. CBMS Regional Conference Series in Mathematics 92. Published for the Conference Board of the Mathematical Sciences, Washington, DC.
- [18] Chung, F. R. K. and Lu, L. (2006). Complex Graphs and Network. Amer. Math. Soc., Providence, RI.
- [19] Cover, T. M. and Thomas, J. A. (2006). Elements of Information Theory, 2nd ed. Wiley, Hoboken, NJ.Mathematical Reviews (MathSciNet): MR2239987
- [20] Dommers, S., Giardinà, C. and van der Hofstad, R. (2010). Ising models on power-law random graphs. J. Stat. Phys. 141 1–23.Mathematical Reviews (MathSciNet): MR2733399
Zentralblatt MATH: 1214.82116
Digital Object Identifier: doi: 10.1007/s10955-010-0067-9 - [21] Durbin, R., Eddy, S. R., Krogh, A. and Mitchison, G. (1999). Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge Univ. Press, Cambridge.
- [22] Eppstein, D. (2000). Diameter and treewidth in minor-closed graph families. Algorithmica 27 275–291.
- [23] Galam, S. (1997). Rational group decision making: A random field Ising model at
\mathrmT=0 . Physica A: Statistical and Theoretical Physics 238 66–80. - [24] Gamburd, A., Hoory, S., Shahshahani, M., Shalev, A. and Virág, B. (2009). On the girth of random Cayley graphs. Random Structures Algorithms 35 100–117.Mathematical Reviews (MathSciNet): MR2532876
- [25] Grabowski, A. and Kosinski, R. (2006). Ising-based model of opinion formation in a complex network of interpersonal interactions. Physica A: Statistical Mechanics and Its Applications 361 651–664.
- [26] Kalisch, M. and Bühlmann, P. (2007). Estimating high-dimensional directed acyclic graphs with the PC-algorithm. J. Mach. Learn. Res. 8 613–636.
- [27] Karger, D. and Srebro, N. (2001). Learning Markov networks: Maximum bounded tree-width graphs. In Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms (Washington, DC, 2001) 392–401. SIAM, Philadelphia, PA.
- [28] Kearns, M. J. and Vazirani, U. V. (1994). An Introduction to Computational Learning Theory. MIT Press, Cambridge, MA.Mathematical Reviews (MathSciNet): MR1331838
- [29] Kloks, T. (1994). Only few graphs have bounded treewidth. Springer Lecture Notes in Computer Science 842 51–60.
- [30] Laciana, C. E. and Rovere, S. L. (2010). Ising-like agent-based technology diffusion model: Adoption patterns vs. seeding strategies. Physica A: Statistical Mechanics and Its Applications 390 1139–1149.
- [31] Lauritzen, S. L. (1996). Graphical Models. Oxford Statistical Science Series 17. Oxford Univ. Press, New York.Mathematical Reviews (MathSciNet): MR1419991
- [32] Levin, D. A., Peres, Y. and Wilmer, E. L. (2008). Markov Chains and Mixing Times. Amer. Math. Soc., Providence, RI.
- [33] Liu, H., Xu, M., Gu, H., Gupta, A., Lafferty, J. and Wasserman, L. (2011). Forest density estimation. J. Mach. Learn. Res. 12 907–951.Mathematical Reviews (MathSciNet): MR2786914
- [34] Liu, S., Ying, L. and Shakkottai, S. (2010). Influence maximization in social networks: An ising-model-based approach. In Proc. 48th Annual Allerton Conference on Communication, Control, and Computing.
- [35] Lovász, L., Neumann Lara, V. and Plummer, M. (1978). Mengerian theorems for paths of bounded length. Period. Math. Hungar. 9 269–276.
- [36] McKay, B. D., Wormald, N. C. and Wysocka, B. (2004). Short cycles in random regular graphs. Electron. J. Combin. 11 Research Paper 66, 12 pp. (electronic).
- [37] Meinshausen, N. and Bühlmann, P. (2006). High-dimensional graphs and variable selection with the lasso. Ann. Statist. 34 1436–1462.Mathematical Reviews (MathSciNet): MR2278363
Zentralblatt MATH: 1113.62082
Digital Object Identifier: doi: 10.1214/009053606000000281
Project Euclid: euclid.aos/1152540754 - [38] Mitliagkas, I. and Vishwanath, S. (2010). Strong information-theoretic limits for source/model recovery. In Proc. 48th Annual Allerton Conference on Communication, Control and Computing.
- [39] Netrapalli, P., Banerjee, S., Sanghavi, S. and Shakkottai, S. (2010). Greedy learning of Markov network structure. In Proc. 48th Annual Allerton Conference on Communication, Control and Computing.
- [40] Newman, M. E. J., Watts, D. J. and Strogatz, S. H. (2002). Random graph models of social networks. Proc. Natl. Acad. Sci. USA 99 2566–2572.
- [41] Ravikumar, P., Wainwright, M. J. and Lafferty, J. (2010). High-dimensional Ising model selection using
ℓ1 -regularized logistic regression. Ann. Statist. 38 1287–1319.Mathematical Reviews (MathSciNet): MR2662343
Zentralblatt MATH: 1189.62115
Digital Object Identifier: doi: 10.1214/09-AOS691
Project Euclid: euclid.aos/1268056617 - [42] Ravikumar, P., Wainwright, M. J., Raskutti, G. and Yu, B. (2011). High-dimensional covariance estimation by minimizing
ℓ1 -penalized log-determinant divergence. Electron. J. Stat. 5 935–980.Mathematical Reviews (MathSciNet): MR2836766
Digital Object Identifier: doi: 10.1214/11-EJS631
Project Euclid: euclid.ejs/1316092865 - [43] Santhanam, N. P. and Wainwright, M. J. (2008). Information-theoretic limits of high-dimensional model selection. In International Symposium on Information Theory.
- [44] Spirtes, P. and Meek, C. (1995). Learning Bayesian networks with discrete variables from data. In Proc. of Intl. Conf. on Knowledge Discovery and Data Mining 294–299.
- [45] Tan, V. Y. F., Anandkumar, A., Tong, L. and Willsky, A. S. (2011). A large-deviation analysis of the maximum-likelihood learning of Markov tree structures. IEEE Trans. Inform. Theory 57 1714–1735.Mathematical Reviews (MathSciNet): MR2815845
Digital Object Identifier: doi: 10.1109/TIT.2011.2104513 - [46] Tan, V. Y. F., Anandkumar, A. and Willsky, A. S. (2010). Learning Gaussian tree models: Analysis of error exponents and extremal structures. IEEE Trans. Signal Process. 58 2701–2714.Mathematical Reviews (MathSciNet): MR2789417
Digital Object Identifier: doi: 10.1109/TSP.2010.2042478 - [47] Tan, V. Y. F., Anandkumar, A. and Willsky, A. S. (2011). Learning high-dimensional Markov forest distributions: Analysis of error rates. J. Mach. Learn. Res. 12 1617–1653.Mathematical Reviews (MathSciNet): MR2813149
- [48] Vega-Redondo, F. (2007). Complex Social Networks. Econometric Society Monographs 44. Cambridge Univ. Press, Cambridge.
- [49] Wainwright, M. J. and Jordan, M. I. (2008). Graphical models, exponential families, and variational inference. Foundations and Trends in Machine Learning 1 1–305.
- [50] Wang, W., Wainwright, M. J. and Ramchandran, K. (2010). Information-theoretic bounds on model selection for Gaussian Markov random fields. In IEEE International Symposium on Information Theory Proceedings (ISIT).
- [51] Watts, D. J. and Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature 393 440–442.
- [52] Graphical Model of Senate Voting. http://www.eecs.berkeley.edu/~elghaoui/StatNews/ex_senate.html.
Supplemental materials
- Supplementary material: Supplement to “High-dimensional structure estimation in Ising models: Local separation criterion”. Detailed analysis and proofs.Digital Object Identifier: doi: 10.1214/12-AOS1009SUPPSupplemental files available for subscribers.

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Learning loopy graphical models with latent variables: Efficient methods and guarantees
Anandkumar, Animashree and Valluvan, Ragupathyraj, The Annals of Statistics, 2013 - $\ell_{0}$-penalized maximum likelihood for sparse directed acyclic graphs
van de Geer, Sara and Bühlmann, Peter, The Annals of Statistics, 2013 - High-dimensional Ising model selection using ℓ1-regularized logistic regression
Ravikumar, Pradeep, Wainwright, Martin J., and Lafferty, John D., The Annals of Statistics, 2010
- Learning loopy graphical models with latent variables: Efficient methods and guarantees
Anandkumar, Animashree and Valluvan, Ragupathyraj, The Annals of Statistics, 2013 - $\ell_{0}$-penalized maximum likelihood for sparse directed acyclic graphs
van de Geer, Sara and Bühlmann, Peter, The Annals of Statistics, 2013 - High-dimensional Ising model selection using ℓ1-regularized logistic regression
Ravikumar, Pradeep, Wainwright, Martin J., and Lafferty, John D., The Annals of Statistics, 2010 - Nonconcave penalized composite conditional likelihood estimation of sparse Ising models
Xue, Lingzhou, Zou, Hui, and Cai, Tianxi, The Annals of Statistics, 2012 - High-dimensional graphs and variable selection with the Lasso
Meinshausen, Nicolai and Bühlmann, Peter, The Annals of Statistics, 2006 - Posterior convergence rates for estimating large precision matrices using graphical models
Banerjee, Sayantan and Ghosal, Subhashis, Electronic Journal of Statistics, 2014 - Learning loosely connected Markov random fields
Wu, Rui, Srikant, R., and Ni, Jian, Stochastic Systems, 2013 - Inferring sparse Gaussian graphical models with latent structure
Ambroise, Christophe, Chiquet, Julien, and Matias, Catherine, Electronic Journal of Statistics, 2009 - On the Wulff crystal in the Ising model
Cerf, Raphaël and Pisztora, Ágoston, The Annals of Probability, 2000 - Latent variable graphical model selection via convex optimization
Chandrasekaran, Venkat, Parrilo, Pablo A., and Willsky, Alan S., The Annals of Statistics, 2012