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Subgraph fluctuations in random graphs
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The pattern of over- and under-representations of three-node subgraphs has become a standard method of
characterizing complex networks and evaluating how this intermediate level of organization contributes to
network function. Understanding statistical properties of subgraph counts in random graphs, their fluctuations,
and their interdependences with other topological attributes is an important prerequisite for such investigations.
Here we introduce a formalism for predicting subgraph fluctuations induced by perturbations of unidirectional
and bidirectional edge densities. On this basis we predict the over- and under-representation of subgraphs arising
from a density mismatch between a network and the corresponding pool of randomized graphs serving as a null
model. Such mismatches occur, for example, in modular and hierarchical graphs.
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I. INTRODUCTION

Network science, i.e., the discipline studying and inter-
preting a broad range of complex systems from a network
perspective, has an enormous impact on how we perceive
(and analytically approach) social, biological, and technical
systems. One of the most fascinating theoretical challenges of
network science is the interdependence of network properties
observed at different scales: clustering depends on modularity,
heavy-tailed degree sequences can induce degree-degree cor-
relations [1,2], a modular structure influences our expectations
of betweenness centralities, and other edge- or node-based
properties. The severest impact of these interdependences
probably occurs when attempting to interpret the composition
of a network in terms of few-node subgraphs. On this level, we
can expect a very strong influence of global network properties
unless we adjust our null model (i.e., the set of random
expectations) to match these global properties. It is therefore
essential to understand this interplay from first principles. Here
we discuss two types of correlations between network proper-
ties: (i) how single-edge fluctuations influence fluctuations in
three-node subgraph frequencies and (ii) how global network
properties affect three-node subgraphs frequencies.

Network motifs were introduced as a method for analyzing
transcriptional regulatory systems [3]. A comparison of the
transcriptional regulatory network of the bacterium E. coli with
random graphs has revealed that three characteristic local node
and link patterns appear substantially more frequently than
expected at random [4]: feed-forward loops (FFLs), single-
input modules (SIMs), and densely overlapping regulons. The
benefit from an identification of over-represented node and
link patterns is twofold: (i) One can formulate models of the
dynamics encoded by such few-node devices and (ii) one
can discuss selected examples of such motif occurrences
in detail. In this way, feed-forward loops and single-input
modules could, in subsequent work [4–6], be linked to specific
dynamical functions [such as noise buffering (FFL) and the
implementation of temporal programs (SIM)].

To a certain extent, the analysis of such node and link
patterns is a balance between an automatized statistical view

on a complex network and the discussion of individual cases.
An interesting example of this balance is the discussion
of various types of feed-forward loops in transcriptional
regulatory networks. Once the statistical over-representation
of this node and link pattern had been established [4,5], the
specific forms of feed-forward loops occurring in the networks
could be further analyzed. One classification scheme is to
enumerate all distributions of signs on the links (activating
and inhibitory) and see whether the two paths (directly and
via the third, intermediate node) from the top-level node to the
bottom-level node in the feed-forward loop both provide the
same signal (both activating or both inhibiting) (coherent FFL)
or conflicting signals (incoherent FFL). Surprisingly, not all
variants of these coherent and incoherent FFLs seem to occur
in equal proportions in transcriptional regulatory networks.
Instead there seems to be a strong bias toward only one type
of coherent FFL and one type of incoherent FFL [7].

An important debate in the study of biological systems from
a network perspective is the biological relevance of statistical
signals derived from graph representations (see also Ref. [8]).
In addressing this question it is interesting to explore the con-
sistency of large-scale biological data sets with graph abstrac-
tions of biological networks. This has been done in particular
for the gene regulatory network and the metabolic network of
yeast and E. coli. Luscombe et al. [9] showed that the topology
of subnetwork structures in yeast is specific for cellular pro-
grams triggered by environmental conditions: Slow programs
(e.g., cell cycles) employ a densely interconnected subnetwork
structure, while programs required to act rapidly (e.g., DNA re-
pair) employ networks with shorter path lengths and less com-
plex motif content. The arrangement of genes on the genome
and their correspondence to the gene regulatory network have
been analyzed using methods from point process statistics [10].
The agreement of active metabolic networks (as predicted
by flux-balance analysis) and gene expression data [12] has
been studied using the method of control strengths derived
from effective networks [11]. The interplay between feed-
forward loops and larger-scale structures (subsets formed by all
nodes topologically downstream of a reference node) in gene
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regulatory networks has been explored [13] with the aim of
better understanding the validity of the motif perspective. The
rationale of this analysis has been to explore the interplay of
two scales within the transcriptional regulatory network of E.
coli. In particular, in Ref. [13] it was shown that when one scale
dominates (high subnet usage) few regulatory devices on the
smaller scale are found (low feed-forward loop occurrence).

A strong step toward an automatized statistical view on
network motifs has been the work in Ref. [14], where the
over- and under-representation of three-node subgraphs [the
motif signature or triad significance profile (TSP)] compared
to randomized networks is analyzed. This analysis of the TSP
has been applied to a wide range of complex networks [15–19]
and has become synonymous with a motif analysis. Many of
the TSPs of real networks either show no significant over- or
under-representation of three-node subgraphs or follow one of
the four patterns (or superfamilies) discussed in Ref. [14].

A very promising development over the past few years has
been that some features of such motif signatures are found to be
related to the robustness of the system (see, e.g., Refs. [16,20]).
Avetisov et al. [21] analyzed the motif signatures of graphs
obtained from a block-hierarchical adjacency matrix. By
introducing randomness (i.e., random flips 1 ↔ 0) in the
adjacency matrix, the authors were also able to study the
robustness of the motif pattern. They found that the motif
signature persists under small amounts of such topological
noise. The work of Ref. [21] is one of the few examples
(together with the comment on spatial networks in Ref. [22])
of motif signatures arising from global organizational features
(in this case, the block-hierarchical structure of the adjacency
matrix) of the network. Remarkably, the motif signature is
quite similar to one of the superfamilies from Ref. [14].

It is therefore of great interest to better understand the
crosstalk between local and global network properties as
well as the interdependences between the different few-node
subgraphs. In order to investigate this crosstalk, it is helpful
to distinguish between two different kinds of global network
properties: (i) a property visible only when one looks at the
whole network (e.g., modularity) and (ii) a property present at
every place of the network (e.g., assortativity).

For the special case of Erdős-Rényi (ER) random graphs we
formulate a simple statistical description of expectation values
for subgraph frequencies. Similar approaches were formulated
in Refs. [23,24]. Subgraph counts in the ER model are a well-
investigated topic. In Ref. [25] an analytical framework for
computing significant over- and under-representations of (in
that case, noninduced) subgraphs in undirected graphs was
proposed as an alternative to the usual switch randomization
and thus not requiring the simulation of a pool of null model
graphs (see also Ref. [26]).

Here our question is different. We want to understand the
systematic crosstalk between subgraph statistics and more
global network properties. To this end, we require a simple
statistical description for the influence, e.g., of link density on
subgraph fluctuations. The three-step approach (variations in
link density, variations in template counts, and variations in
subgraph counts) described in the Sec. III allows us to explore
the crosstalk, e.g., between modularity and the triad signifi-
cance profile. By grouping the possible three-node subgraphs
into categories, we are able to understand differences between

subgraph counts arising on purely combinatorial grounds. This
formulation can be used to analyze potential artifacts in motif
signatures arising, e.g., from fluctuations in the number of
unidirectional and bidirectional edges.

Both the expectation values and the standard deviations of
subgraph counts enter the computation of subgraph z scores,
which are frequently employed to quantify the statistical over-
and under-representation of subgraphs in real networks. We
can thus employ our method to the computation of a motif
signature (or TSP) in all cases, where fluctuations in the edge
density induce a nonzero motif signature for an otherwise
random graph. Modular graphs, as the most important case of
this category, are discussed as an application.

II. SUBGRAPH STATISTICS

In this section we introduce a simple model for the emer-
gence of templates and motifs in random networks. We discuss
the expectation values of motif counts and the corresponding
fluctuations. This yields insight into the correlations from
single-node properties to motifs.

A. Subgraph categories

Throughout this paper we will discuss only simple directed
graphs with a node number N and an edge number M . Simple
means that parallel edges pointing in the same direction and
self-links are forbidden. Because of these conditions the graph
is complete when it contains M = N (N − 1) edges. When
two nodes a and b are connected by a single edge they are
connected by a unidirectional edge u;when the opposing edge
is also present they are connected by a bidirectional edge b.
Finally, two nodes can be unconnected. Formally, this can be
described by a nonedge n (see Fig. 1).

Between global network properties on the one hand and
single-node properties on the other, motifs can be used to
understand networks on a mesoscopic scale. For directed
networks, most studies use three-node subgraphs and we
will do the same here, although the formalism can easily
be extended to higher motif sizes. Throughout this paper we
discuss induced subgraphs, as they constitute the objects of
interest in the vast literature on network motifs (see, e.g.,
Ref. [5]). A graph H is called an induced subgraph of G

if it has exactly the edges that appear in G over the same
vertex set. In other words, for any pair of vertices v and w

of H , (v,w) is an edge of H if and only if it is an edge of
G. Many analytical descriptions have focused on noninduced
subgraphs, where the subgraph H contains an arbitrary subset
of edges of G, restricted to the vertices of H (e.g., Ref. [25]).
Note that the interpretation of motifs as noninduced subgraphs
leads to different subgraph counts.

FIG. 1. The three different placements for the three possible types
of edges. Shown on the right are the different types of edges that can
occupy the placements and their notation for templates and subgraphs.
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TABLE I. The 7 templates together with the 13 subgraphs they can
form; subgraph numbers in parentheses correspond to the standard
ordering from Ref. [14].

Template Subgraph Subgraph (b) Subgraph (c)

uun (1) (2) , (3)

ubn (4) (5)

bbn (6)

uuu , (7) , (8)

uub (9) (10) , (11)

ubb , (12)

bbb (13)

(a)

In this paper we distinguish between templates and
subgraphs. Templates are sets of edges with an undefined
position relative to each other. Some templates have two
(uu, ub, and bb) and others three (uuu, uub, ubb, and bbb)
edges. These 7 templates can form 13 different (induced)
subgraphs, as illustrated in Table I. A subgraph is obtained
by defining the relative orientations of the edges within a
template. Orientations are defined using ↑ for clockwise and
↓ for counterclockwise directions of the edge. Using this
shorthand notation, we can summarize the template-subgraph
relationships in a tabular form (see Table II). As only relative
positions and orientations matter, ↓↓↓ is indistinguishable
from ↑↑↑; however, ↑↓ � is a different subgraph from ↓↑ �.

TABLE II. Illustration of how templates are distributed among
their constituting subgraphs on the example of the template uun.

Template
Subgraph rmuun

1
4

1
4

1
2

⇒ ⇒

⇒

⇒

⇒

⇒

⇒

⇒

FIG. 2. (Color online) Probabilities pn (red solid line), pu (blue
dotted line), and pb (green dashed line) as functions of the edge
density p.

B. Edge counts

Here we work with the ER model of random graphs, where
a graph is characterized by the number of nodes N and the edge
probability p. A graph represented by N and p contains on
average M = pN (N − 1) edges. We specify a certain number
of edges M and then use the corresponding edge density (or
connectivity) p = M/N(N − 1) to characterize the network
in our statistical assessment. For random networks we can
estimate some basic probabilities and counts.

In a directed network model two edges that connect
the same two nodes pointing in opposite directions form a
bidirectional edge. The number of bidirectional edges can be
estimated by the probability that a single position is selected
twice p2 times the number of possible slots N (N − 1)/2:

Mbi = M2

2N (N − 1)
.

The number of unidirectional edges is then given by

Muni = M − M2

N (N − 1)
.

C. Subgraph counts

In order to obtain expectation values for the subgraph counts
cm, we formulate a simple model of subgraphs where each of
the three positions between the three nodes can be in one of
three states: the unidirectional edge, the bidirectional edge,
and no edge. The edge density of the graph is defined as
p = M

N(N−1) and the probabilities for the three states are then
given by

pu(p) = 2(p − p2),

pb(p) = p2,

pn(p) = 1 − pu − pb = (1 − p)2.

Figure 2 shows probabilities over p. By denoting the numbers
of unidirectional edges um, bidirectional edges bm, and
nonedges nm for every subgraph m, we can write the expected
number cm of type m as

cm = plpu(p)umpb(p)bmpn(p)nmsm,

where the number of possible placements for a subgraph is
pl = ( N

3 )3! and sm are symmetry factors

sm = ξt/rm,
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FIG. 3. (Color online) To illustrate the prediction quality of the
subgraph counts we show the predicted (full curve) and numerically
observed (dots) counts of the first six three-node subgraphs in a
random network with N = 100. The connectivity is varied over the
whole range (p = 0−100 %). The numerical points are obtained by
averaging over 100 random graphs. The subgraphs, together with
their IDs, are indicated above each plot. The figures for the full 13
motifs are available in Ref. [27].

where ξt accounts for the symmetries of the template t and
rm represents the ratio by which the template is split up
into subgraphs. These predictions are compared to numerical
experiments in Fig. 3.

The symmetry factor ξt is the ratio of possible three-symbol
permutations of the distinct permutations obtained in a tem-
plate. A template containing three distinct symbols exhausts
the full possible six permutations, yielding ξt = 1, while a
template with two distinct symbols allows for three permuta-
tions, yielding ξt = 6

3 = 2. If all three symbols in the template
are equal, we have ξt = 6. As the symmetry factor rm accounts
only for the distribution of the templates on the subgraphs (see
Table III), there must be

∑ 1
rm

= 1 for every template, where
the sum is over all subgraphs m in the template t .

D. Edge fluctuations

Changing any one of pu, pb or pn by a small probability �

at fixed edge density p results in the change of the other two
probabilities according to

p̂u(p) = pu(p) + 2� = 2(p − p2) + 2�,

TABLE III. Number of unidirectional edges um, bidirectional
edges bm, and nonedges nm and the symmetry factors in all subgraphs.

m 1 2 3 4 5 6 7 8 9 10 11 12 13
t 1 1 1 2 2 3 4 4 5 5 5 6 7
um 2 2 2 1 1 0 3 3 2 2 2 1 0
bm 0 0 0 1 1 2 0 0 1 1 1 2 3
nm 1 1 1 1 1 1 0 0 0 0 0 0 0
rm 4 4 2 2 2 1 4

3 4 4 4 2 1 1
ξt 2 2 2 1 1 2 6 6 2 2 2 2 6
sm 8 8 4 2 2 2 8 24 8 8 4 2 6

p̂b(p) = pb(p) − � = p2 − �,

p̂n(p) = pn(p) − � = 1 − pu − pb − �.

This is because the creation of a bidirectional edge needs two
unidirectional edges and frees one place. To be able to infer the
fluctuations of subgraphs it is useful to first derive equations for
the fluctuation of bidirectional edges. The expectation value
of the number of bidirectional edges is

Mbi = p2N (N − 1)

2
= M2

2N (N − 1)
.

In order to estimate the fluctuations in the number of
bidirectional edges at low edge densities (and large numbers
of nodes) we take the expectation value and variance λ = nP

for the Poissonian distribution, but replace the event number n

with the number of possible sites for bidirectional edges ( N

2 )
and the event probability P with the probability of two edges
p2. For the standard deviation we thus obtain σbl = √

Mbi at
low densities.

When the number of edges approaches its maximum value
M = N (N − 1) these fluctuations decrease again, which is due
to the decreasing number of places that are not yet occupied
by single edges that one would have to hit to not create another
bidirectional edge. In this case, the event probability is replaced
by (1 − p)2. It is also clear that σbh must be symmetric around
p = 0.5. So at high densities we get

σbh =
√

N2

2
−

√
Mbi.

As both fluctuations are mutually exclusive, their reciprocal
sum yields an analytical expression for the total fluctuations
of bidirectional edges as a function of the edge density p, i.e.,

σb = 1
1√
σbl

+ 1√
σbh

.

This situation is summarized in Fig. 4. These fluctuations
directly transfer to fluctuations of the unidirectional edges and
nonedges. As every additional bidirectional edge means two
uniedges less, there is a factor of 2 between their fluctuations
(see Fig. 4).

E. Subgraph fluctuations

In order to reduce trivial contributions to the subgraph
fluctuations, we keep the number M of edges in the ER graph
fixed (which makes the edge density p a secondary quantity, as
described above). Otherwise, the fluctuations in the number of
edges at a given p would partially mask the conceptually more
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FIG. 4. (Color online) Fluctuations of the number of unidirec-
tional and bidirectional edges in a random graph with N = 100 nodes
and varying edge density. We show the numerical results together with
the corresponding predictions.

important (and less trivial) contribution from fluctuations of
unidirectional and bidirectional edges at fixed M .

There are two reasons for the fluctuation of a subgraph
count: (i) fluctuations in the number of bidirectional edges
and (ii) fluctuations due to the subdivision of templates
(i.e., subgraphs with the same number of unidirectional,
bidirectional, and nonedges) into subgraphs. This subdivision
depends on the direction of the unidirectional edges, as
discussed in Tables I and II.

Contribution (i). The fluctuation of the number of bidi-
rectional edges can be translated into the fluctuation of a
subgraph count by processing the normal number of subgraphs
and subtracting that from the number of subgraphs one gets
by changing the probabilities for unidirectional, bidirectional,
and no edges by one standard deviation:

σbm = cm(p̂u,p̂b,p̂n) − cm(pu,pb,pn).

Contribution (ii). The other sources of fluctuations are the fluc-
tuations in the combination of unidirectional and bidirectional
edges to templates and the distribution of the templates among
the subgraphs. Together they can be estimated by the square
root of the subgraph count:

σmm = √
cm.

These sources of fluctuations need to be combined in a
Pythagorean sum:

σm =
√

σ 2
mm + σ 2

bm.

The resulting fluctuations are shown in Fig. 5.

III. APPLICATION

Here we will show as a simple example how the theory
presented above can be used to better understand properties
of subgraph signatures. The subgraph signature of a network
(or, more specifically, for three-node subgraphs, the TSP) is
the pattern of over- and under-representations of few-node
subgraphs in this network. It has become a standard method
of analyzing complex networks. More formally, it is the

FIG. 5. (Color online) Fluctuations of the first six three-node
subgraphs in a random network with N = 100. The connectivity
is varied over the whole range (p = 0−100 %) and contribution (i)
(orange dashed line), contribution (ii) (green dotted line), the total
expected value (red solid line), and numerical results (blue dots) are
shown. The subgraphs, together with their IDs, are indicated above
each plot. The figures for the full 13 motifs are available in Ref. [27].

(normalized) z score of the subgraph counts. The z score is
defined as

Zm = cm − μm

σm

,

where for every subgraph cm is the subgraph count in the
original network, μm is the expectation value of cm in an
ensemble of randomized networks, and σm is the standard
deviation of cm in the randomized networks.

To obtain the ensemble of randomized networks a random-
ization scheme is repeatedly applied, where typically the in
and out degree of each node (i.e., the degree sequence of the
graph) is conserved during the randomization process, as well
as the number of bidirectional edges at each node. The aim
of the randomization procedure is to remove any nonrandom
property (beyond the degree sequence). In this way deviations
of the subgraph counts (in the real network) from randomness
can be detected and functionally interpreted.

Apart from the case where some kind of selective process
in the evolution of a network or some other functional
requirement is enriching specific subgraphs, which is the most
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(a)

(b)

(c)

FIG. 6. (Color online) Motif z scores for a network that is com-
posed of five strong modules. (a) Example of such a random modular
graph. Two different randomization schemes are applied: (1) simple
flipping of two-edge end points and (2) flipping while preserving
the module structure. As the analyzed network is random apart from
its modularity the z-score using the correct randomization scheme
must be 0. This is shown for different densities: (b) N = 500, M =
2000, and ρ = 0.08 and (c) N = 500, M = 8000, and ρ = 0.16.

interesting case, there are many other reasons for a nonzero
z score. Here we discuss modularity as one such possible
reason. An example of a modular network is depicted in
Fig. 6. If the modular structure is not taken into account during
the randomization process and thereby conserved in the pool
of randomized networks (i.e., eliminated from its effect on
expected subgraph numbers), a false nonzero z score appears.

We use a random graph that is composed of five strong
modules, where each module is an ER network. Additionally

a certain amount of intermodule edges is introduced. As the
base networks as well as the intermodule edges are constructed
in a motif-blind way, correct randomization should yield a
flat motif signature with z scores close to zero. The result
of the application of standard, module-blind randomization
techniques can be seen in Fig. 6. We also show the result
of a module-aware randomization that mixes edges inside
the modules and intermodule edges separately. In real world
networks the modular structure of a network is generally not
known and it is therefore necessary to detect the modules first,
before adjusting the randomization scheme accordingly.

To better understand the error made by the standard
randomization scheme we will analytically predict the error
signature using the formalism introduced above. To this end, it
is essential to notice that when the modules are destroyed the
effective local density of the network is reduced by a factor
of 5, the number of modules in this example. This is because
a network with N∗ = 2N and M∗ = 2M has a density of

FIG. 7. (Color online) Composition of the first six three-node
subgraphs in a modular network. The ratio of intermodular edges
is varied over the whole range and the contribution of intramodule
subgraphs (orange dotted line), intermodule subgraphs (green dashed
line), mixed subgraphs (blue dot-dashed line), the total expected value
(red solid line), and numerical results (blue dots) are shown (N = 500
and M = 2000). The subgraphs, together with their IDs, are indicated
above each plot. The figures for the full 13 motifs are available in
Ref. [27].
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d∗ = M∗
N∗2 = d

2 . A network with double the size has to have four
times the number of edges to have the same density. Let N and
M be the number of nodes and edges of the whole modular
network. Then cm can be estimated by 5cm(N/5,M/5) and
μm = cm(N,M) and σm by σm(N,M). The general form when
a graph consists of k modules with node counts n1,n2, . . . ,nk is

cm =
k∑

i=1

cm

(
ni,

Mni

N

)
.

The ratio of intermodule edges ρ can easily be taken into
account by adding motifs from an additional global network,
consisting of the intermodule edges:

cm =
k∑

i=1

cm

(
ni,

(1 − ρ)Mni

N

)
+ cm(N,ρM).

This simplification does not acknowledge subgraph instances
that contain intramodule and intermodule edges. These are
relevant mostly for the two-edge subgraphs. We evaluate the
number of these mixed subgraphs dm by taking into account the
different edge densities in the module and between the mod-
ules. We therefore introduce probabilities for unidirectional
and bidirectional edges in the components puc and pbc and out-
side the components puo and pbo. Using these probabilities we
can write the expectation value for the additional subgraphs as

dm = N3

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

pucpuo + puopuc for um = 2 ∧ bm = 0

pucpbo + puopbc for um = 1 ∧ bm = 1

pbcpbo + pbopbc for um = 0 ∧ bm = 2

0 otherwise.

These additional subgraphs are added to the intermodule
and intramodule subgraphs to obtain the total subgraph
counts. Figure 7 shows the quality of the prediction of the
subgraph counts. To verify the quality of the predictions of
the z score of a modular network, we compute the geometric
mean of the difference of the z score when applying the
appropriate module-aware randomization scheme and the
simple randomization scheme. This quantity can both be
computed numerically and analytically, as in Fig. 8.

FIG. 8. (Color online) Sum over the squared errors that occurs
from applying different randomization schemes over the ratio of
intermodule edges (N = 500 and M = 2000). We show the numerical
results for two different randomization schemes together with our
prediction.

IV. CONCLUSION

Statistical properties of random graphs have been studied
for decades in several disciplines and with a wide range of
applications in mind. Here we have focused on a topic that
in spite of its practical importance has received comparatively
little attention so far, namely, the statistical fluctuations of
few-node subgraphs induced by lower-level fluctuations in the
numbers of unidirectional and bidirectional edges.

In the discussion of the practical relevance of our findings,
one needs to distinguish three elements: (i) The crosstalk
between a global graph property and the perceived motif
signature, (ii) the qualitative parts of the prediction (in
particular the grouping of subgraphs into seven templates, as
introduced in Table I), and (iii) the quantitative prediction of
subgraph fluctuations. The qualitative part of the prediction
is valid in general: Fluctuations in subgraph statistics induced
by other network properties (link density, fluctuations in the
number of bidirectional links, degree correlations, etc.) will
affect the templates and then split up into fluctuations of
individual subgraph counts within those templates according
to the combinatorial factors summarized in Table III. The
quantitative part, where this framework is applied to density-
induced subgraph fluctuations, is in the present form restricted
to the case of ER graphs. An extension of the formalism to
arbitrary degree distributions, which is possible by explicitly
including the degree dependence in the probabilities pi ,
i = u,b,n, introduced in Sec. II C and then averaging over
all degrees,

pi(p) →
∑

k

pi(p,k)P (k),

where p is the link density and P (k) is the degree distribution
of the graph, is beyond the scope of this paper. A directed
graph would require a double sum over the in degrees and the
out degrees.

Here the quantitative prediction serves as a proof of
principle that we have correctly identified all individual
contributions to subgraph fluctuations. In this way we can
quantitatively understand some of the crosstalk between global
and local network properties. As an example of such a crosstalk
we have here presented the motif signature arising from the
modularity of the graph. Using our analytical description of
subgraph fluctuations, we can precisely predict the artifactual
motif signature of this otherwise random graph. By mixing
intermodule edges and the different sets of intramodule
edges independently, we can additionally show that the full
motif signature is a sole consequence of the modular graph
structure.

Beyond a better understanding of such artifacts, we believe
that the classification of three-node subgraphs into the cate-
gories introduced in Sec. II has the potential to unravel the
theoretical background behind the empirical observation that
only four variants (or superfamilies) of three-node motif sig-
natures are observed across a vast range of complex networks
[14]. It is clear that all subgraphs within the same category
will display synchronous fluctuations distributed among the
participants of a category according to few well-understood
combinatorial factors. This approach may constitute a solid
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basis for understanding correlated subgraph fluctuations and
motif-motif covariations.

Note added. Recently the work by Reichardt et al.
[28] was pointed out to us, where a similar question is
addressed from a different perspective, namely, the con-
struction of a refined random graph model. Combining our
concept of motif templates with their random graph model

may provide additional insight into the superfamilies from
Ref. [14].

ACKNOWLEDGMENT

This work was supported by Volkswagen Foundation
Grants No. I/82717 and No. I/83435.

[1] J. Lee, K. Goh, B. Kahng, and D. Kim, Eur. Phys. J. B 49, 231
(2006).

[2] J. Park and M. E. J. Newman, Phys. Rev. E 68, 026112 (2003).
[3] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii,

and U. Alon, Science 298, 824 (2002).
[4] S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon, Nature Genet.

31, 64 (2002).
[5] U. Alon, Nature Rev. Genet. 8, 450 (2007).
[6] S. Mangan and U. Alon, Proc. Natl. Acad. Sci. USA 100, 11980

(2003).
[7] S. Kaplan, A. Bren, E. Dekel, and U. Alon, Mol. Syst. Biol. 4,

203 (2008).
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[11] C. Marr, M. Geertz, M. Hütt, and G. Muskhelishvili, BMC Syst.

Biol. 2, 18 (2008).
[12] N. Sonnenschein, M. Geertz, G. Muskhelishvili, and M.-T. Hütt,
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Comput. Biol. 6, e1000836 (2010).
[14] R. Milo, S. Itzkovitz, N. Kashtan, R. Levitt, S. Shen-Orr,

I. Ayzenshtat, M. Sheffer, and U. Alon, Science 303, 1538
(2004).

[15] P. Kaluza, M. Vingron, and A. S. Mikhailov, Chaos 18, 026113
(2008).

[16] K. Klemm and S. Bornholdt, Proc. Natl. Acad. Sci. USA 102,
18414 (2005).

[17] L. Krumov, C. Fretter, M. Müller-Hannemann, K. Weihe, and
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