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Abstract
Decomposing a graph into groups of nodes that share similar connectivity properties is essential to understand the organization and 
function of complex networks. Previous works have focused on groups with specific relationships between group members, such as 
assortative communities or core–periphery structures, developing computational methods to find these mesoscale structures within a 
network. Here, we go beyond these two traditional cases and introduce a methodology that is able to identify and systematically 
classify all possible community types in directed multi graphs, based on the pairwise relationship between groups. We apply our 
approach to 53 different networks and find that assortative communities are the most common structures, but that previously 
unexplored types appear in almost every network. A particularly prevalent new type of relationship, which we call a source–basin 
structure, has information flowing from a sparsely connected group of nodes (source) to a densely connected group (basin). We look 
in detail at two online social networks—a new network of Twitter users and a well-studied network of political blogs—and find that 
source–basin structures play an important role in both of them. This confirms not only the widespread appearance of nonassortative 
structures but also the potential of hitherto unidentified relationships to explain the organization of complex networks.

Significance Statement

Networks are a powerful mathematical representation of various datasets and systems. An important computational tool to study 
and extract information from large complex networks is to partition it into groups of nodes with similar connectivity. Previous works 
focused on groups forming so-called assortative communities, in which nodes link preferentially to other nodes in the same group. In 
our work, we show that other (previously unexplored) types of community organizations are ubiquituous in complex networks. In 
particular, we find that a new type of “source–basin” structure organizes the flow of information in online social networks, which hap-
pens from a community of sparsely connected influential nodes (the source) to a community of densely inter-connected active nodes 
(the basin).

Introduction
An important step in the analysis of complex networks is the par-
titioning of nodes into groups or communities according to their 
connectivity pattern (1–5). Most approaches focus on finding 
groups in which users link preferentially to other users of the 
same group. A variety of computational methods have been pro-
posed to identify such assortative communities (2, 3, 6, 7), such as, 
modularity maximization (8, 9), spectral methods (10), and 
Infomap (11). Another well-studied form of network organization 
is the core–periphery structure, in which information flows from a 
tightly connected core community of users to a loosely connected 
periphery (12–14). Here, also different algorithms have been spe-
cifically proposed to identify such structures (12, 15–17).

More recent research has shown the importance of going be-
yond these “descriptive methods,” which seek predefined struc-
tures, and instead use “inferential methods” (18–20) that can 

learn the most relevant structure from the data. These methods 

are robust against the detection of spurious communities (e.g. 

communities in simple random graphs), and provide better parti-

tions of the graph in groups (in terms of better compression of data 

and retrieval of partitions in synthetic networks) (19–21). 

Inferential approaches connect the network-partition problem 

to generative models and random-network ensembles, settings 

in which a richer variety of structures appear naturally (22, 23). 

In particular, inferential methods based on stochastic block mod-

els (SBM) (24–26) do not commit to specific types of community 

structures (e.g. assortative or core–periphery), leaving it to the 

data to determine the most significant statistical signature that 

leads to the clustering of nodes into blocks (communities). In 

view of this key advantage of modern community-detection 

methods, several natural questions arise: to what extent are as-
sortative or core–periphery structures dominant in networks? 
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Are there other types of community structures that were not pre-
viously investigated? If so, what do these structures reveal about 
the organization and function of complex networks?

In this paper, we answer these questions by introducing a sys-
tematic classification of community structures in undirected and 
directed multigraphs. Figure 1 illustrates the four types of struc-
ture present at the highest level of our classification in the di-
rected case. Our analysis of different network data, sampling 
across both directed and undirected networks, reveals that as-
sortative relationships are the most prevalent type of relationship 
between communities—being the dominant feature in at least 
69% of networks—but that relationships that are neither assorta-
tive nor core–periphery appear in 68% of the networks. Our de-
tailed analysis of two case studies—the widely studied political 
blogs network (27) and one novel network of Twitter users (28)— 
confirms that new types of communities play an important role 
in the organization of online social networks.

Methodology
The community-detection problem in networks corresponds to 
partitioning a graph g (possibly directed and weighted) with adja-
cency matrix Aij ∈ N into r = 1, 2, . . . , B disjoint groups with Nr no-
des. For a given community partition of Aij, we characterize the 
connection between a pair of communities r and s based on their 
density ωrs which is given by the ratio of existing links and possible 
links:

ωrs =



i∈r,j∈s

Aij

NrNs
, if r ≠ s



i∈r,j∈s

Aij

1
2

Nr(Ns − 1)
, if r = s

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1) 

for undirected graphs (Aij = Aji) and

ωrs =



i∈r,j∈s

Aij

NrNs
, if r ≠ s



i∈r,j∈s

Aij

Nr(Ns − 1)
, if r = s

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(2) 

for directed graphs. Without loss of generality, we order the label 
of communities so that ωrr ≥ ωss for r < s. Each community- 
detection method applied to a network g will typically provide a 
different B × B density matrix ω and our methodology developed 
below applies to any method.

We now classify the relationship between a pair of communi-
ties r and s based on ωrs. In the simplest case of undirected graphs 
g, there are three relevant quantities ωrr, ωss, and ωrs = ωsr. 
Ranking these values by size, there are three possible configura-
tions U1, U2, and U3 (13, 29), as illustrated in Fig. 2a. They corres-
pond to the two previously studied types of community structures 
—assortative and core–periphery—and a new case—disassorta-
tive—that has strong connections between communities (the lim-
iting scenario ωrr = ωss = 0 corresponds to a bi-partite network). A 
categorical classification of the pairwise interaction between 
communities r and s based on the ranking order of the ωrs values 
can be written as

Assortative, if ωrs < min (ωrr, ωss),
Core − periphery, if min (ωrr, ωss) < ωrs < max (ωrr, ωss),
Disassortative, if ωrs > max (ωrr, ωss).

⎧
⎨

⎩
(3) 

The case for directed graphs g leads to a wider variety of possible 
configurations between communities r and s. Following the same 

approach employed for undirected graphs, we obtain 12 possible 
configurations D1, D2, . . . , D12 based on the ranking of the four 
quantities ωrr, ωrs, ωsr, and ωss. Figure 2b shows these 12 cases, 
grouped into 4 types. Configurations with the same general inter-
pretation are grouped into the same type, which can be one of the 
three types observed in undirected graphs (assortative, core–per-
iphery, and disassortative) or one new type. In particular, in the 
new type of relationship—denoted source–basin—influence flows 
from loosely connected source nodes to a basin of inter-connected 
nodes. Contrary to the core–periphery relationship, the most in-
fluential and central nodes (in the source community) do not 
form a core as they are more connected to nodes in the other com-
munity (the basin) than to nodes in their own community.

The categorical classification of the pairwise interaction be-
tween communities r and s into different community structure 
types based on ω for a directed graph can be written as

Assortative, if max (ωrs, ωsr) < min (ωrr, ωss),
Core − periphery, if min (ωrr, ωrs) > max (ωsr, ωss),
Disassortative, if min (ωrs, ωsr) > max (ωrr, ωss),
Source − basin, if min (ωrr, ωsr) > max (ωrs, ωss).

⎧
⎪⎪⎨

⎪⎪⎩

(4) 

The assortative (disassortative) interaction is thus defined natur-
ally as having more links to other nodes in the same (other) com-
munities. Core–periphery and source–basin are defined as 
interactions that show a mixed behavior, with one sparser com-
munity more linked to the other community and one denser com-
munity more linked to itself. The difference between the two types 
of interactions is that in the core–periphery the links (influence/ 
information) across communities flow preferentially from the 
denser to the sparser community, while in the source–basin inter-
action the flow is in the reversed direction.

The final step of our methodology is to apply the pairwise clas-
sification we just introduced to networks containing B > 2 com-
munities. Our approach is to look at each of the possible 
pairwise interactions, classify its structure type τ ∈ {“assortative,” 
“core–periphery,” “disassortative,” “source–basin”} and measure 
the prevalence of different community structure types, as de-
scribed in Fig. 3.

We test the methodology proposed above applying five 
community-detection methods to 52 real-world networks. The net-
works were retrieved from the Netzschleuder repository (30) and 
were selected to include both directed (26) and undirected (26) net-
works from a variety of domains and sizes (from 75 to 14,360 verti-
ces and from 181 to 150,985 edges, see Supplementary Section S1
for details). The five community-detection methods—Louvain 
(modularity maximization) (9, 31), Infomap (11, 32), Spectral meth-
od (33, 34), degree-corrected SBM (26, 35), and deep neural net-
works for graph representations (DNGR) (36, 37)—were selected 
as representative of different approaches to this problem [see 
Supplementary Section S2 for details and our repository (38) for 
the numerical implementation]. As pointed out in the 
Introduction section, we are particularly interested in inference- 
based methods (39), in particular degree-corrected SBM, because 
of their weaker assumptions on the possible structure of ω.

The results summarized in Fig. 4, averaging across both di-
rected and undirected networks, show that assortative relation-
ships are the dominant relationship type in most networks for 
all methods. In the three methods that target such structures 
(Spectral, Infomap, and Louvain), it is the dominant structure in 
almost all cases (one exception of Louvain is found for a network 
with only three communities detected, see Supplementary Fig. S1
for details) and there are in fact very few networks in which non-
assortative structures are detected. More interestingly, the SBM 
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method found nonassortative community relationships in a large 
fraction of the networks (92%). This corresponds not only to the 
well-studied core–periphery relationship (84%) but also the disas-
sortative (54%) and the intriguing source–basin relationship (81% 
of directed graphs). A diverse distribution is also found using the 
DNGR method, with an even stronger presence of the source–ba-
sin relationshop (92%). Similar results are observed when we re-
strict the analysis to only undirected or directed networks, or 
compute the average fraction of different community types, see 
Supplementary Section S2. Overall, this finding demonstrates 
that nonassortative communities are not only a theoretical possi-
bility, they are typical in empirical networks, as long as one uses 
methods that allow for this possibility and do not focus exclusive-
ly on finding assortative partitions. These results confirm also the 
practical importance of the theoretical advantages of inferential 
methods such as SBM, in particular of not being restricted to spe-
cific community structures.

Given the flexibility of SBM, including the method’s freedom to 
discover an optimal number of communities, we focus on this 
method and compare results obtained in networks from five dif-
ferent domains. Figure 5 shows that economic and biological net-
works have overall higher nonassortative fraction—with median 
fraction larger than 0.25 and higher variability—while social, 
technological, and informational networks have fewer nonassor-
tative interactions. In particular, the fact that SBM found such ar-
rangements indicates that they provide a more plausible partition 

of the nodes into communities than any partition that does not in-
volve them. In the next section, we obtain further insights on the 
interpretation and significance of source–basin structures 
through the detailed study of two particular cases.

Case studies
We consider two case studies that aim to understand the signifi-
cance and interpretation of the unusual, nonassortative, commu-
nity relationships that we found to be common in the previous 
section. We focus on the SBM method because of its ability to de-
tect such patterns. We use a degree-corrected SBM (25) so that the 
community allocation of nodes is not dominated by their number 
of links (degree) but instead by how these links are distributed 
across other communities. We increase the number of blocks B 
from two until we detect the first nonassortative communities be-
cause we are interested in the simplest settings in which they 
appear.

The first case we consider is the famous blog network intro-
duced in Ref. (27). Each node corresponds to a political blog active 
during the US Presidential Election of 2004 and each directed edge 
j 7! i corresponds to a hyperlink from blog i to blog j (this choice of 
edge direction corresponds to our convention of aligning it to in-
fluence or information flow). Nodes have been self-reported or 
manually tagged as “liberal” and “conservatives,” depending on 
the alignment to the two main parties in United States of 

Fig. 1. The four main types of community relationship in directed graphs: assortative a), core–periphery b), disassortative c), and source–basin d). The left 
side corresponds to the graph with nodes colored according to their community assignment. The right side is a graphical representation of the edge 
density matrix ω for the two communities.
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America’s political election in 2004. This network has been exten-
sively studied, e.g. the retrieval of the two groups has often been 
used as a benchmark in the development of new community- 
detection methods. Importantly, only assortative and core–periph-
ery communities have been reported (17, 26), in line with the limita-
tions of traditional community-detection methods which target 
exclusively these types of structures. In Fig. 6a, we show that our 
more general approach finds source–basin structures as a statistical-
ly significant partition of nodes already for B = 5. This analysis 
reveals a fundamental difference between the liberal and conserva-
tive blogosphere, with conservative blogs organized internally in as-
sortative and core–periphery structures, while liberal blogs show the 
unusual source–basin structure. Looking at the 10 most referenced 
blogs (top in out-degree), 4 belong to the source community and 
none to the basin community. This surprising finding for the liberal 
blogosphere suggests that the information-source blogs (being heav-
ily referenced) are not tightly connected with each other, while 
information-receiver blogs are less referenced by others but highly 
active in referencing others and strongly connected with each other.

Having shown the appearance of new community structures in 
a well-known network, we now focus on a social-media example 
obtained following practices in computational social science 
(see Supplementary Section S1). The nodes in the resulting net-
work correspond to 4,029 Twitter users that were influential in 
the political debate around the role of climate change in the se-
vere bushfires in Australia in 2019–2020. The directed links i 7! j 
reflect user j retweeting a message originating with user i (infor-
mation flows from i to j). A fraction of the most influential mes-
sages were manually tagged as supporting or rejecting (1) a link 
between the bushfires and climate or (2) a link between the bush-
fires and the action of arsonists (28). This allows us to identify 
users that support the causal connection between climate change 
and the bushfires and those that deny it in favor of the (unsub-
stantiated) claim that the fires were due to arsonists. Our 
community-detection results shown in Fig. 6b confirm that the 
separation of these users into assortative communities is a dom-
inant feature of the network, and corroborates the significance 
of our approach (which is not based on content). Beyond this ex-
pected result, we find that already with B = 4 communities there 
are nonassortative relationships within the major assortative sep-
aration. Looking at the users in these communities, we find that 
the source community contains high-profile users (9 of the 
top-10 most retweeted users, 31% of the users are verified) who re-
tweet more rarely (average in-degree is 99). In contrast, the basin 
community has fewer high-profile users (0 of the top-10 most re-
tweeted users, only 7% of the users are verified) and they are more 
active in the debate (average in-degree is 225).

Fig. 2. Community type classification. a) The 3 possible community types 
in graphs with undirected edges. b) The 12 different possible 
configurations in directed graphs classified in four types. We use the 
convention that the link direction corresponds to the flow of information 
(or influence) so that a link from node i to j indicates that information is 
passing from i to j (or that i influences j). Assortative (disassortative) cases 
have the two largest entries in the diagonal ωrr, ωss (antidiagonal ωrs, ωsr). 
The remaining eight cases have a densely connected community (top), in 
which nodes are well connected to each other, and a loosely connected 
community (bottom). In four core–periphery cases, the influence flows 
from the well-connected core to the weakly connected periphery, while in 
the remaining four cases it flows in the reverse direction. We name this 
reversed core–periphery structure a source–basin structure.

Fig. 3. Illustration of our methodology for classifying community types. (Left) Applying a given community-detection method to a network g, we obtain a 
partition of the nodes in B communities (B = 4 in the example). (Center) From the node partition we construct the B × B density matrix ω from Eq. 1 or 2. 
(Right) We apply the pairwise classification defined in Fig. 2—and Eqs. 3 and 4—to ω considering all pairwise combinations of communities r, s and 
compute the fraction of each of the four different types of community relationships, where “A” stands for “assortative,” “CP” stands for “core–periphery,” 
“D” stands for “disassortative” and “SB” stands for “source–basin.”
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Our finding and analysis of the source–basin structures in both 
cases discussed above suggests a new picture for the flow of informa-
tion in online networks. The group that act as a source of information 
(within one of the sides of the polarized political debate) contains the 
more central (high-status) nodes which do not interact significantly 
with each other. This possibly happens because the source users 
compete for the attention of the basin users within their side of the 
political division (i.e. on the same side of the main assortative div-
ision of the network). In the basin community, the receivers are 
more strongly connected with each other, discussing and referen-
cing both source nodes and each other during the debate.

Conclusion
While mesoscale structures in complex networks have been suc-
cessfully explored using community-detection methods for more 

than two decades, the majority of studies assume communities to 
have either assortative or core–periphery connectivity patterns. 
As we have shown, this does not exhaust the possible connectiv-
ity patterns between communities. The main finding of this work 
is to show that these additional patterns are not only possible, 
they are typical—as long as communities are detected using 
methods that are agnostic about the underlying type of commu-
nities—and important to understand the underlying complex 
system. In particular, we find a new community arrangement in 
which information (influence) flows from a source community 
of nodes—weakly connected with each other—toward a basin 
community of information receivers that engage repeatedly 
with each other forming a strongly connected community. This 
“source–basin” structure reveals a new type of organization of 
social-media networks that has evaded previous analysis (mostly 
based on methods that target specific structures) and that is typ-
ical also in other networks. In fact, our survey of 52 networks 
shows that nonassortative community structures appear in all 
categories of networks, being more prevalent in economic and 
biological networks and less prevalent in social, technological, 
and informational networks.

The methodology we introduced to identify and quantify the 
prevalence of unusual communities in networks can be applied to 
any directed multigraphs. Evidence of its potential to reveal new in-
sights is that it found unusual community structures in both a para-
digmatic network in community-detection studies—the political 
blogs network—and in a new social-media network constructed 
through standard procedures in computational social science. The 
fact that such community patterns have not been previously re-
ported in these cases, despite being extensively studied networks 
and construction approaches, confirms both the potential of our 
methodology and the limitations of community-detection methods 
that fix a priori specific structures. We can thus expect that studies 
with networks in other areas will be similarly successful in identify-
ing unusual structures and providing new insights not only on the 
role of specific nodes and communities but also on the organization 
and function of the network as a whole.

Beyond applications to specific settings, future work should 
consider how to extend the applicability and interpretability of 
our methods and findings. For instance, generalizations that over-
come simplifying assumptions of our methods could consider 
more general types networks (e.g. multilayered) and definitions 
of community type (e.g. beyond pairwise classification). To better 
understand the findings, a complimentary approach to our data- 
driven methods is to consider generative models that give rise to 
the different community types we detect. A case of special interest 
is to reveal mechanisms that lead to source–basin structures.

Fig. 4. Community types in empirical directed and undirected networks. 
Top: fraction of networks (y-axis) in which each community type (x-axis) 
is dominant. Bottom: fraction of networks (y-axis) in which each 
community type (x-axis) occurs. For the source–basin classification, only 
directed networks are considered. See Supplementary Section S2 for 
details on the community-detection methods (listed in the legend) and 
Supplementary Section S3 for details on the classification of the results. 
The symbols with error bars were obtained in a null-model which 
considers a random edge-density matrix ω (see Supplementary Section S4
for details).

Fig. 5. Nonassortative relationships are found in a variety of empirical directed and undirected networks. Left: fraction of nonassortative relationship 
(y-axis) as a function of the number of nodes (x-axis), with each symbol representing a network (see legend for their categories). Right: Boxplot of 
nonassortative fraction for networks grouped into their categories: Social (S), Economic (E), Technological (T), Biological (B), and Informational (I). The 
results correspond to the communities obtained using the SBM method.
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