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In memory of R. L. Dobrushin

Limit distribution of the energy of a quantum ideal gas from
the viewpoint of the theory of partitions of natural numbers

A. M. Vershik

R. L. Dobrushin was one of those people who could not only listen to 'someone
else's' problems but also find in them a connection with his own problems. On
many occasions I discussed with him topics close to the one below. Conversations
with him were always interesting and helpful. Dobrushin's mathematical think-
ing, which was above all probabilistic, made it possible for him to see clearly the
strictly probabilistic part of the problem, which is always present in almost every
asymptotic problem. We would often find something in common when discussing
questions far removed from mathematics. His colourful personality and mathemat-
ical talent attracted friends and students. Dobrushin himself was certainly among
those who significantly determined the general picture of our mathematics.

0. When posing and investigating problems on the asymptotic behaviour and limit
form of combinatorial and geometric objects the author often looks back to statis-
tical physics. Many problems which give rise to such questions (random partitions,
substitutions, asymptotic representation theory, configuration growth, statistical
geometry, number theory, and the like) have an unambiguous statistical character.
These problems have diverse motivation and various answers and connections with
other branches of mathematics. At the same time, apart from their intrinsic inter-
est, they obviously should play the role of useful algebraic and geometric models for
more complex problems (such as phase transitions in many-dimensional systems,
and the like).

The goal of the present paper is to show how close to one another the following
two problems are: the typical asymptotic form of the partition of a natural number
and computing the limit distribution of the energy of a quantum ideal gas. We
present the solution to the first problem and interpret it in terms of the other.
There is no doubt about the usefulness of the parallelism in both domains.

1. Remarkably, the problem of energy distribution in the grand canonical ensem-
ble and the microcanonical ensemble for a quantum ideal gas with some statistics
belongs to a large class of problems including the problems of additive asymptotic
number theory with the number of components growing unboundedly, and, in par-
ticular, the problem of partitions of natural numbers and vectors. In the traditional
theory one is usually interested in the number or the asymptotic behaviour of the
number of solutions (partitions). But we are also interested in the more general
question of the asymptotic structure of typical partitions or configurations, their
limit shape, invariants, and so on. As a rule, in additive number theory (for exam-
ple, in the classical Waring problem) the number of components is fixed. But in
problems in combinatorics, geometry, not to mention statistical physics, the number
of components grows in a prescribed or random way.
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Here is one formulation of this kind. We consider a countable set Λ C IK+
without finite limit points and a number Ε e K+. A measure (statistics) is given
on the set of all partitions Ε = λι + λ2 + · · ·, λί € Λ, of E with decreasing order
Χι ^ Χ2 ^ • • • We can pose the question of the asymptotic properties of such
measures as Ε —>• oo. Do they have a limit in some sense (after the necessary
normalization of partitions)? If so, is it degenerate or not? That is, are almost all
partitions asymptotically the same?

We can replace M+ by E™ or by a commutative semigroup, and Λ by a subset of
the semigroup. One can impose various additional conditions on the components,
and the like (the growth of their number, dimensions, and so on). The problem of
the asymptotic behaviour of measures and, in particular, of the limit shape is a key
problem connected with many branches of mathematics, see [1], [2].

2. We shall consider in more detail some problems concerned with partitions of
natural numbers. In this case Λ = Ν and Ε = η e Ν in the notation above. We
shall denote by Ί*η = {λ : λ Ι- η} the set of partitions of a natural number η and
by η(λ) = η the sum for a given partition λ. We also put CP = \Jn'J'n- For a
given partition λ = {Aj} we put rk(X) = #{i : λ, = k} (the number of components
equal to a given number). We call these occupation numbers. It is obvious that
^2k krk(X) = n(X) and the number of components is J2k

 rk{X) = N(X). We denote
by ^n,N = {X '• nW = n, N(X) = N} the number of partitions of η with TV
components. The function ψ\: R+ —¥ Ν given by

will be called the distribution of a partition X. Its subgraph is the Young diagram.
POO

It is obvious that φχ(0) = N(X) and / ψ\(ί) dt = n{X).
Jo

Let us distinguish an important class of measures on partitions: we say that a
family of statistics (measures) μχ on 7 is multiplicative if

1) the occupation numbers {/>(· )}£L0 as functions on the measure spaces
(J", μχ) are independent for all μχ;

2) the restriction of μχ to 7η, η = 1, 2, . . . , is independent of x:

1 „ I = .n

Lemma. Every multiplicative family can be reduced to the following form by a
change of parameter: χ runs through an open interval (0,i?o) with Ro ^ oo; there
are functions 3"*(-) analytic in the disc \z\ < Ro that have non-negative Taylor
coefficients, 3k{y) = Σ™=0 ckry

r, k - 1,2,..., with ckr > 0, and

μχ{{Χ}) = x<

μ*{{Χ} • rk{X) = r) = ckrx
kT7k{xk)~l.
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Remarks. 1. Comparison of the above formulae implies that ri(A),r2(A),... are
independent functions.

2. The lemma asserts that a multiplicative family can be defined by one function
7(x) analytic in the disc \z\ < Ro and its decomposition into an infinite product
7(x) = n^Li 3rk{xk), where all the factors 7k have non-negative Taylor coefficients.
7k is the generating function of the distribution of r^ (•).

3. The normalized restrictions of μχ to Ύη look like this:

1
T% I r \ Ί \ / r Λ Ί \ s~~\ — 1 | |

μ ι "ί /\ Ϊ ι ^z — —~ μχ 11 Λ Γ ι — t ^ „ ι ι Cl· *., f χ \,

where Qn = Σλΐ-η Flit c*rfc(A); Mx being a convex combination of the measures μ":

n=0

The same data (7(x) = \\k 7k(xk)) define a multiplicative family on the micro-
canonical ensemble Τη/ν· In this case the formulae are

where

rfc(A) (micropartition function).
Xhn k

Here the analogies with the notions of statistical physics of an ideal gas are
obvious, see below.

Now the basic problem can be stated like this: to find the asymptotic behaviour
of μ", μη'Ν as η, Ν -> oc and of μχ, μΧΐΖ as χ —¥ RQ and ζ —¥ 1 and to com-

pare them. The equality of the limits of these measures means that the ensembles
("Ρ,βχ) and (ΊΡη,μ

η) or (7,μΧιΖ) and (<ί'η)Ν,μη'Ν) are asymptotically equivalent.
The question of asymptotic behaviour involves finding a suitable non-trivial
normalization (scaling), which makes it possible to consider all measures on the
same scale. The scaling is essentially unique and a direct answer to the above
question will be given below in the case of the classical statistics for a quantum
ideal gas and their generalizations.

3. From the whole class of multiplicative measures we shall consider only the fol-
lowing:

oo .. oo
ct-BE , \ _ TT l rcrFD ι \ _ TT/, , k\bk
a{bk}(x> - 1 1 (i-xk)bk> ·*{&*>w - H U + z ; ,

where bk € N, k = 1,2,... . By virtue of what we said earlier, these functions define
statistics on 7, 7n, "Ρη,Ν, namely, μχ^,^}, and so on. We shall omit the index {b).}
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whenever possible. If 6* = jd(k) = #{(fci,..., kd) € Zd : k\ Η h k\ = k}, then
these statistics are the same as the Bose-Einstein and Fermi-Dirac statistics of a
d-dimensional quantum ideal gas.

We define a = a({bk}) by

Γ
a = inf < a' :the Dirichlet series y j — is an analytic function

* = i kS

of s on the half-plane Re s ^ a' >.

By the well-known Siegel theorem, a = rf/2 for 6* = jk{d).

The parameter α is the only characteristic of 7BE and J F i J that is needed to
answer the questions posed above. We shall assume that a < oo.

The following theorem asserts that there is a unique scaling such that μχ and
μη are equal to one another and the limit is a degenerate measure concentrated on
one special curve uniquely determined by a.

Theorem. For any a,b > 0 and ε > 0

: sup
te[a,b]

sup

rk
{\) - ua~l du < ε \ = 1,

it lie J

Ζ 1 0 0 e~ c u 1
(\) - u""1 du < ε } = 1.

Jt 1Ψβ-™ J
rk(\) -

27ie choice of the sign ψ corresponds to the BE and FD statistics, respectively, the
constant c being defined below.

Thus, the scaling is defined as follows up to a constant: {η^+τ, n^+τ). The limit
measures on the two ensembles coincide and are equal to the J-measure on the
curve defined by

/

oo p-cu

u^j^^du. (*)
Ta(t) is a distribution density, so c is determined by the condition

Ta(t)dt =

We observe that Γα(0) < oo for a > 1 (that is, d > 2) and Γα(0) = oo for 0 < a ^ 1.
The case a = 1 corresponds, on the one hand, to the uniform distribution on "Pn

and the Euler functions

= Π nbf
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and, on the other hand, to the two-dimensional ideal gas (a = d/2). The curve
Γχ(ί) in symmetric form is given by the equation (the BE case)

e x p ( — 7 E X ) + e x p ( — 7 ^ ) =

the scaling being [y/n, φι).
Interestingly, its behaviour at zero (logarithmic singularity) explains an old

theorem of Erdos that in a typical partition of a number η the number of compo-
nents grows as c^/nlnn, which is directly related to the question of phase
transition (more precisely, its absence when d ^ 2, see below).

Fixing the growth of the number of components leads to a similar theorem for
the measures μη'Ν, namely, if ΛΓ = «ηϊ+° with υ > 0, then the corresponding
formula for FQ „ is

when a ^ 1. If a > 1, then the graph of the curve is supplemented by an atom at 0
('Bose-Einstein condensation', see below) when υ is large enough. The curves Ta

and FQ j 1 ) are the limits of Young diagrams with suitable normalization, that is, the
limit distributions of partitions. The functions Γα and FQ „ contain information on
the leading term of the asymptotics of any functional of a typical partition.

4. We shall briefly consider the basic question of the connection with the statistics
of an ideal quantum gas. L. A. Khalfm's constructive criticism was useful to the
author and helped to refine some of the relationships.

In this case the state (= a point of the ensemble = configuration) is determined
by the momenta of the particles in the configuration, that is, by the eigenvalues
(with multiplicities) of the Dirichlet problem for the Laplace operator with periodic
boundary conditions. Let V be the volume of the d-dimensional torus and ω the
state of the system. Then the energy of the state is given by

where || · || is the d-dimensional Euclidean norm. Adopting a system of units in
which the factor in front of the sum is equal to 1, we obtain to within the notation
the situation considered above, where

OO

Π (!_

(the BE-statistics).
The asymptotic behaviour of all quantities (the number of particles, volume)

is interrelated as the energy increases, the latter being a basic parameter for us.
Perhaps in this lies some methodological difference as compared to what is tradi-
tional. Roughly speaking, energy is the natural number that we decompose: Ε = η.
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The components are, to within a multiplicative constant (which involves the inverse
temperature), natural numbers divided by some power of the volume.

The above theorem implies that the scaling along the axes is such that, to within
a constant,

We recall that a = d/2. Therefore V = V{E) ~ E*+$ and Ν = Ν (Ε) ~
(to within an order of magnitude). Here we consider the case when the number of
particles is random rather than fixed (the chemical potential being equal to zero).
The scaling constant is irrelevant to the measures μη, but it is essential for the
scaling of μχ (see below). It depends on x, and χ in the statistical interpretation is
the exponent of the inverse temperature with minus sign, divided by the appropriate
power of the volume.

A simple calculation demonstrates that the relationship between the volume
(that is, between the magnitude of the components or, in other words, the energy
of particles) on the one hand and the number of particles on the other hand becomes
automatically what it ought to be in the thermodynamical limit. Thus, our passage
to the limit corresponds exactly to the thermodynamical limit, in which Ν and V
have the same growth order. But if the limit of the ratio of the number of particles
(components) to the volume is fixed, then we arrive at a similar problem for the
conditional distribution, that is, for the microcanonical ensemble, see below.

We observe that in number-theoretic and geometric problems it is appropriate
to consider situations when the relationship between V — V(E) and Ν — Ν (Ε),
that is, between the number and magnitude of the components or the sum, is not
necessarily as rigid as in the thermodynamical limit. For example, the number of
components may be a function of the sum prescribed in advance.

Let us go back to the interpretation of the above theorem in statistical physics.
Suppose that rjfe(u>) is the number of particles with energy equal to k, that is, the
sum of ordinary occupation numbers over a sphere of radius k in the momentum
lattice. We shall state the theorem in the appropriate terms. Let ε > 0.

Theorem. For any sufficiently large energy Ε > Εε the set of states of an ideal
BE-gas {with random number of particles) for which the following property (*) holds
has Gibbsian measure larger than 1 — ε:

sup

It follows that Td is the graph of the limit distribution density of Ε (ω), the
2

energy of a typical configuration versus the energy of particles normalized to Ε ̂ +^.
It follows, for example, that in a typical configuration the total energy of all

particles, each having energy in the interval (aE'd~+^, bE*+*), is asymptotically equal

to / Γα(ί) dt • Ε and the number of particles with energy greater than tE~z+i is

equal to T
The question of whether Γα(0) is finite or not is crucial: if it is finite, then the

number of particles (components) in a typical configuration increases as Γα(0)Επ+ί,
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but if it is infinite, then slightly faster than that (by a power of the logarithm). We
observe that all the formulae are also valid for fractional dimensions d. In this case
bk = [k0^1] if 1 ^ a and, as before, d — 2a. The value of our density at zero is
finite for d > 2.

Let us state a more explicit formula for d = 3, the three-dimensional ideal
BE-gas:

Here Γ is the gamma-function and ζ is the Riemann zeta-function. The distribution
density Ta(t) is bounded at zero.

We have already touched upon the dimension d = 2 (a = 1). This case is
exactly the same as the classical uniform distribution on partitions. The function
ΓΊ( ·) has been described above. Its value at zero is unbounded. The asymptotic
behaviour of many concrete functionals has been found by Erdos and his successors,
but they have not been mentioned in connection with statistical physics, nor has the
problem of the limit shape been posed. The Erdos theorem on the typical number of
components in a uniformly distributed partition of a natural number (c^/n In n) is
a theorem on the typical number of particles, that is, on the asymptotic behaviour
of Γα at zero. It can also be derived from the theorem on the limit shape.

From the point of view of number theory the one-dimensional case d = 1 is also
interesting, but obviously not so in statistical physics. Here a = ^ and 6fc = 1 if
k is a perfect square and ft* = 0 otherwise. This case corresponds to the problem
of the limit density of the partition of a natural number into the sum of squares
with an unbounded number of terms. In other words, this is Waring's unbounded
square problem. Here the answer is also given by the formula stated in the theorem
for a = | .

Dimension d = A with a = 2 is very interesting in combinatorics. This is the
asymptotic theory of plane partitions or three-dimensional Young diagrams. This
is dealt with in another paper.

If we fix the growth of the number of components (particles) in a natural range
d

to within a constant, namely, Ν ~ cE^+z (and then, as we have already observed,
Ν

> υ is also fixed automatically, υ being a finite density), then the answer can also
be obtained by similar methods. Here we are concerned with the microcanonical
ensemble and weak limits under a suitable scaling of μχ<Ζ and μη'Ν. In this case
the chemical potential is different from zero. The limits of these measures may be
different even if the relationships between the joint growth of Ν, η and the joint
rate of convergence of χ, ζ to 1 are compatible, see [3]. The weak limit of μη'Ν is
again a ^-measure concentrated either on a curve or on a curve with an additional
atom at zero (see above).

The difference between dimensions (including fractional ones) d > 2 and d ^ 2
(that is, between a > 1 and a ^ 1) is manifested in the presence of Bose-Einstein
condensation, the essence of which can be explained in our terms as follows. If
Γα(0) = oo (which is the case for d ^ 2), then any given finite number of particles,
that is, components (normalized relative to the appropriate power of energy) will
have a lower order of magnitude than in the case when it is a random number.
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Indeed, as has been observed above, for a typical configuration the latter increases
slightly faster than £ « as the energy Ε increases, which means in fact that
Γα(0) is infinite. In this case the limit of μη'Ν under the appropriate scaling is
concentrated on a curve, namely, the energy distribution density, the formula for
which has been given. But if Γα(0) < oo (that is, d > 2), then for any given
normalized number of particles (components) larger than Γα(0) the 'forbidden'
number will be larger than in the case when the number of particles is random,
the 'shortage' of the number of particles can only be covered by particles with zero
momentum, that is, by zero components, and the limit οΐμη'Ν will be concentrated on
a curve with an atom at zero. This is what Bose-Einstein condensation is all about:
the contribution of zero particles with zero momentum (zero components) is positive.

This explanation differs slightly from the usual ones (see [4]) by the role played
by the case of zero chemical potential (random number of particles): we compare
the values of Γα (Ο) and the normalized number of particles under fixed density. We
recall that the temperature appears implicitly in the normalization of the number
of particles, and so of the function Γα( •) and its value at zero (see above, where
scaling has been defined to within a constant). Therefore the above discussion
eventually leads to the usual criterion: the condensation parameter is determined
by the same known expression depending on the density and temperature (see, for
example, [4], formula (55.5)), which should be compared with our Γα(0).

On the other hand, in the above considerations and, in particular, in the explana-
tion of Bose-Einstein condensation, we have used nothing but combinatorial terms
connected with the partition of natural numbers. Therefore, Bose-Einstein conden-
sation can be 'observed' both in statistical physics and in the present and similar
combinatorial-numerical problems. I believe that there are many such mutually
beneficial intersections.

The curves Γα are extremals of certain variational problems. The corresponding
variational principle was formulated by the author (see [1], [2]), but it will be
described in more detail elsewhere. The variational principle is closely related to
the method of large deviations and entropy. Dobrushin was one of the pioneers in
applying these methods in statistical physics.
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