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Abstract. Distributions of the size of the largest component, in particular the large-deviation tail, are
studied numerically for two graph ensembles, for Erdös-Rényi random graphs with finite connectivity
and for two-dimensional bond percolation. Probabilities as small as 10−180 are accessed using an artifi-
cial finite-temperature (Boltzmann) ensemble. The distributions for the Erdös-Rényi ensemble agree well
with previously obtained analytical results. The results for the percolation problem, where no analytical
results are available, are qualitatively similar, but the shapes of the distributions are somehow different
and the finite-size corrections are sometimes much larger. Furthermore, for both problems, a first-order
phase transition at low temperatures T within the artificial ensemble is found in the percolating regime,
respectively.

1 Introduction

For many problems in science and in statistics, the large
deviation properties play an important role [1,2]. Only
for few cases analytical results can be obtained. Thus,
most problems have to be studied by numerical sim-
ulations [3], in particular by Monte Carlo (MC) tech-
niques [4,5]. Classically, MC simulation have been applied
to random systems in the following way: for a finite set
of independently drawn quenched random instances reg-
ular or large-deviation properties of these instances have
been calculated using importance-sampling MC simula-
tions. Only recently it has been noticed that by intro-
ducing an artificial sampling temperature also the large-
deviation properties with respect to the quenched random
ensemble can be obtained [6]. This corresponds somehow
to an annealed average, but the results are re-weighted in
a way that the results for the original quenched ensemble
are obtained. In this way, the large-deviation properties of
the distribution of alignment scores for protein compari-
son was studied [6–8], which is of importance to calculate
the significance of results of protein-data-base queries [9].

Motivated by these results, similar approaches have
been applied to other problems like the distribution of
the number of components of Erdös-Rényi (ER) random
graphs [10], the partition function of Potts models [11], the
distribution of ground-state energies of spin glasses [12]
and of directed polymers in random media [13], the distri-
bution of Lee-Yang zeros for spin glasses [14], the distribu-
tion of success probabilities of error-correcting codes [15],
the distribution of free energies of RNA secondary struc-
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tures [16], and some large-deviation properties of random
matrices [17,18].

Interestingly, so far no comparison between numerical
and mathematically exact results for the full support of a
distribution involving a large-deviation tail has been per-
formed to the knowledge of the author. In few cases, nu-
merical results had been compared to rigorous results [13],
but only near the peak of the distribution, where finite-
size effects are often very small. In another case [10], the
numerical and analytical distributions were compared on
the full support, but the result was obtained using a non-
rigorous statistical mechanics approach. In this work, the
numerical large-deviation approach is applied to obtain
the complete distribution of the size S of the largest com-
ponent of ER random graphs. In this case also mathemat-
ically exact results for the leading order large-deviation
rate function are available for arbitrary values of the fi-
nite connectivity c. This allows for a comprehensive com-
parison and an estimation of the strength of finite-size
effects. Furthermore, in this paper results are obtained for
the two-dimensional (2d) percolation problem, where no
analytic results are available for the distribution of the
largest-component size S. For both models also the de-
pendence of S on the artificial sampling temperature T is
studied. First-order phase transitions are found for both
graph ensembles in the percolating regime.

The two graph ensembles are defined as follows. In
both cases, each graph G = (V, E) consists of N nodes
i ∈ V and undirected edges {i, j} ∈ E ⊂ V (2). For ER
random graphs [19], each possible edge {i, j} is present
with probability c/N . Hence, the average degree (con-
nectivity) is c. Nevertheless, for all values of c, each
possible graph has a non-zero probability. for example,
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the fully connected graph will appear with probability
(c/N)N(N−1)/2, which is extremely small in particular for
c → 0, but still larger than zero.

For 2d percolation, the graph is embedded in a two-
dimensional square lattice of size N = L×L with periodic
boundary conditions in both directions, i.e., in a torus.
Each node can be connected by edges to its four nearest
neighbours, each edge is present with probabilty p. Hence,
the average deegree is 4p.

Two nodes i, j are called connected if there exist a path
of disjoint edges {i0, i1}, {i1, i2}, . . . , {il−1, il} such that
i = i0 and j = il. The maximum-size subsets C ⊂ V
of nodes, such that all pairs i, j ∈ C are connected are
called the (connected) components of a graph. The size of
the largest component of a graph is denoted here by S.
Via the random-graph enembles, a probability distribu-
tion P (S) for the size of the largest component and the
corresponding probability P (s) for relative sizes s = S/N
are defined. The probabilities P (s) for values of s different
from the typical size are exponentiall small in N . Hence,
one uses the concept of the large-deviation rate function [1]
by writing

P (s) = e−NΦ(s)+o(N) (N → ∞). (1)

This leading-order behavior of the large-deviation rate
function ΦER(s, c) for ER random graphs with connec-
tivity c is known exactly [20] and given by the following
set of equations

S̃(s) = s log s + (1 − s) log(1 − s)
π1(α) = 1 − e−α

Ψ(α) = (log α − 0.5[α − 1/α]) ∧ 0

ΦER(s, c) = S̃(s) − s log π1(cs) − (1 − s) log (1 − π1(cs))
−(1 − s)Ψ (c(1 − s)) , (2)

where the expression g(α) ∧ 0 results in 0 if g(α) > 0 and
in g(α) else.

For percolation in finite dimensions similar results are
not available, to the knowledge of the author. There are
only analytical results for the distribution of finite (non-
percolating) components [21].

The paper is organised as follows. In the second sec-
tion, the numerical simulation technique and the corre-
sponding re-weighting approach are explained. In the third
section, the results are displayed, first for the ER random
graph ensemble, next for the 2d percolation problem. Fi-
nally, a summary and an outlook are given. A concise sum-
mary of this paper is available at the papercore web page1.

2 Simulation and reweighting method

To determine the distribution P (S) for any measurable
quantity S, here denoting the largest component for an

1 Papercore is a free and open-access database for summaries
of scientific (currently mainly physics) papers, http://www.

papercore.org/Hartmann2010

ensemble of graphs, simple sampling is straightforward:
one generates a certain number K of graph samples and
obtains S(G) for each sample G. This means each graph G
will appear with its natural ensemble probability Q(G).
The probability to measure a value of S is given by

P (S) =
∑

G

Q(G)δS(G),S . (3)

Therefore, by calculating a histogram of the values for S, a
good estimation for P (S) is obtained. Nevertheless, P (S)
can only be measured in a regime where P (S) is relatively
large, about P (S) > 1/K. Unfortunately, the distribution
decreases exponentially fast in the system size N when
moving away from its typical (peak) value. This means,
even for moderate system sizes N , the distribution will be
unknown on almost its complete support.

To estimate P (S) for a much larger range, even pos-
sibly on the full support of P (S), where probabilities
smaller than 10−100 may appear, a different approach
is used [6]. For self-containedness, the method is out-
lined subsequently. The basic idea is to use an additional
Boltzmann factor exp(−S(G)/T ), T being a “tempera-
ture” parameter, in the following manner: a standard
Markov-chain MC simulation [4,5] is performed, where
in each step t from the current graph G(t) a candidate
graph G∗ is created: a node i of the current graph is se-
lected randomly, with uniform weight 1/N , and all adja-
cent edges are deleted. For all feasible edges {i, j}, the
edge is added with a weight corresponding to the natu-
ral weight Q(G), i.e., with probability c/N (ER random
graph) or with probability p (percolation), respectively.
For the candidate graph, the size S(G∗) of the largest
component is calculated. Finally, the candidate graph is
accepted, (G(t + 1) = G∗) with the Metropolis probability

pMet = min
{
1, e−[S(G∗)−S(G(t))]/T

}
. (4)

Otherwise the current graph is kept (G(t + 1) = G(t)).
By construction, the algorithm fulfills detailed balance.
Clearly the algorithm is also ergodic, since within N steps,
each possible graph may be constructed. Thus, in the limit
of infinite long Markov chains, the distribution of graphs
will follow the probability

qT (G) =
1

Z(T )
Q(G)e−S(G)/T , (5)

where Z(T ) is the a priori unknown normalisation factor.
The distribution for S at temperature T is given by

PT (S) =
∑

G

qT (G)δS(G),S

(5)
=

1
Z(T )

∑

G

Q(G)e−S(G)/T δS(G),S

=
e−S/T

Z(T )

∑

G

Q(G)δS(G),S

(3)
=

e−S/T

Z(T )
P (S)

⇒ P (S) = eS/T Z(T )PT (S). (6)

http://www.papercore.org/Hartmann2010
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A.K. Hartmann: Large-deviation properties of largest component for random graphs 629

Hence, the target distribution P (S) can be estimated, up
to a normalisation constant Z(T ), from sampling at finite
temperature T . For each temperature, a specific range of
the distribution P (S) will be sampled: using a positive
temperature allows to sample the region of a distribution
left to its peak (values smaller than the typical value),
while negative temperatures are used to access the right
tail. Temperatures of large absolute value will cause a sam-
pling of the distribution close to its typical value, while
temperatures of small absolute value are used to access
the tails of the distribution. Note that the graphs which
are sampled will have different properties, e.g., different
actual connectivities which might be much larger or much
smaller than c, corresponding to extreme graph instances.
Nevertheless, the sampling procedure and the re-weighting
guarantees that the final results are for the correct pre-
scribed value of c. To summarize, by choosing a suitable
set of temperatures, P (S) can be measured over a large
range, possibly on its full support.

The normalisation constants Z(T ) can easily be ob-
tained by including a histogram obtained from simple
sampling, which corresponds to temperature T = ±∞,
which means Z ≈ 1 (within numerical accuracy). Us-
ing suitably chosen temperatures T+1, T−1, one measures
histograms which overlap with the simple sampling his-
togram on its left and right border, respectively. Then
the corresponding normalisation constants Z(T±1) can be
obtained by the requirement that after rescaling the his-
tograms according to (6), they must agree in the overlap-
ping regions with the simple sampling histogram within
error bars. This means, the histograms are “glued” to-
gether. In the same manner, the range of covered S values
can be extended iteratively to the left and to the right
by choosing additional suitable temperatures T±2, T±3, . . .
and gluing the resulting histograms one to the other. A
pedagogical explanation and examples of this procedure
can be found in reference [22].

In order to obtain the correct result, the MC simu-
lations must be equilibrated. For the case of the distri-
bution of the size of the largest component, this is very
easy to verify: the equilibration of the simulation can be
monitored by starting with two different initial graphs,
respectively:

– Either an unbiased random graph is taken, which
means that the largest component is of typical size.
In the inset of Figure 1 the evolution of S as a func-
tion of the number tMCS = t/N of Monte Carlo sweeps
is shown for Erdös-Rény random graphs with N = 500
nodes, connectivity c = 0.5 at temperature T = −2.
As one can see, S(tMCS) moves quickly away from the
typical size which is around S = 30 towards a values
around S = 200. This shows that easily different parts
of the distribution can be addressed. The result of a
second run with a negative temperature is shown in the
same inset. In this case an initial graph was used which
consists of a single line of nodes, i.e., in particular the
graph is fully connected leading to S = N .

– Alternatively, one can start with an empty graph (S =
1) or with a complete graph (S = N) In any case, for
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Fig. 1. Distribution of the size S of the largest component
for Erdös-Rényi random graphs of size N = 500 at connec-
tivity c = 0.5. In this and all other plots, error bars are of
symbol size or smaller if not explicitly shown. The inset shows
the size of the largest component as function of the number
tMCS of Monte Carlo sweeps for the same type of graphs at
temperature T = −2. Four different starting conditions are
displayed: either a complete graph (leading to the component
size S = 500), a graph consisting of a line (S = 500), a ran-
dom graph (typical size S = 30), or an empty graph (S = 1)
were used. In all cases, the measured component sizes agree
within the fluctuations after few MC sweeps, proving that the
simulation is equilibrated.

the two suitably different initial conditions, the evolu-
tion of S(tMCS) will approach from two different ex-
tremes, which allows for a simple equilibration test:
equilibration is achieved if the measured values of S
agree within the range of fluctuations. Only data was
used in this work, where equilibration was achieved
within 200 Monte Carlo steps. All final results are ob-
tained with random initial graphs.

The resulting distribution for ER random graphs (c =
0.5, N = 500) is shown in the main plot of Figure 1. As
one can see, the distribution can be measured over its
full support such that probabilities as small as 10−180 are
accessible.

Note that in principle one can also use a Wang-Landau
approach [23] or similar approaches to obtain the distribu-
tion P (S) without the need to perform independent simu-
lations at different values for the temperatures. Neverthe-
less, the author has performed tests for ER random graphs
and experienced problems by using the Wang-Landau ap-
proach, because the sampled distributions tend to stay
in a limited fraction of the values of interest. Using the
finite-temperature approach it is much easier to guide the
simulations to the regions of interest, e.g., where data is
missing using the so-far-obtained data, and to monitor the
equilibration process. Furthermore, the behavior of S as
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Table 1. Parameters used to determine the distributions P (S)
for the different models. T1 is the minimum and T2 the maxi-
mum temperature used. NT denotes the number of different
temperature values. Note that for determinining the average
value S(T ), see Figures 4 and 10, usually a higher number of
temperatures was used.

System T1 T2 NT

ER c = 0.5 –5 –0.4 14
ER c = 1.0 –7.0 –0.6 9
ER c = 2.0 –2.0 10.0 6
perc p = 0.3 –10.0 –0.6 13
perc p = 0.5 –5.00 50.0 13
perc p = 0.6 0.60 30.0 14

a function of T appears to be of interest on its own, see
next section.

3 Results

ER random graphs of size N = 500 and 2d percolation
problems with lateral size L = 32 (N = 1024 sites) were
studied. In few cases, additional system sizes were consid-
ered to estimate the strength of finite-size effects, see be-
low. For each problem, the model was studied right at the
percolation transition, for one point in the non-percolating
regime, and for one point in the percolating regime. The
temperature ranges used for the different cases are shown
in Table 1. Note that, depending on the position of the
peak of the size distribution, sometimes positive, some-
times negative and sometimes both types of temperatures
had to be used. For the systems listed in the table, equili-
bration was always achieved within the first 200 MCS. In
general, studying significantly larger sizes or going deeper
into the percolation regime makes the equilibration much
more difficult. After equilibration, data was collected for
9800 MCS, in some cases, to improve statistics, for about
106 MCS. In the two subsequent subsections, the results
for ER random graphs and for 2d percolation are pre-
sented, respectively.

3.1 ER graphs

For the numerical simulations, first the case of ER random
graphs is treated, because the analytical result (2) can be
used for comparison. This allows to assess the quality of
the method and to get an impression of influence of the
non-leading finite-size corrections.

In Figure 2 the empirical rate function

Φ(s) ≡ − 1
N

log P (s) (7)

for c = 0.5 is displayed, corresponding to the distribution
shown in Figure 1. Note that by just stating the analytical
asymptotic rate function ΦER(s, c), the corresponding dis-
tribution P (s) is not normalised. Hence, for comparison,
Φ(s) is shifted for all values of the connectivity c such that
it is zero at its minimum value, like ΦER(s, c).
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Fig. 2. Large-deviation rate function Φ(s) of ER random
graphs with average connectivity c = 0.5 < cc, N = 500 (sym-
bols). The line displays the analytical result from equation (2).
The inset shows the same for the case c = 1.0 = cc.

The numerical data agrees very well with the analytic
result. Only in the region of intermediate cluster sizes, a
small systematic deviation is visible, which is likely to be a
finite-size effect. Given that for the numerical simulations
only graphs with N = 500 nodes were treated, the agree-
ment with the N → ∞ leading-order analytical result is
remarkable.

The resulting rate function right at the percolation
transition c = cc = 1 is shown in the inset of Fig-
ure 2. Qualitatively, the result is very similar to the non-
percolating case c = 0.5, except that the distribution is
much broader, corresponding to smaller values of the rate
function. Again, the agreement with the analytical result
is very good, except for the data close to the origin s = 0:
the numerical results exhibit a minimum near s = 0.05,
while the analytical result exhibits its minimum naturally
at s = 0. This is clearly due to the finite size of the nu-
merical samples.

The case of the percolating regime (connectivity c =
2), is displayed in Figure 3. The rate function exhibits a
minimum at a finite value of s, corresponding to the finite
average fraction of nodes contained in the largest compo-
nent. The behaviour of the rate function is more interest-
ing compared to c ≤ cc, because ΦER(s) grows strongly
near its minimum, but for s → 0 it levels off horizontally.
For most of the support of the distribution, the numer-
ical data for N = 500 agrees again very well with the
analytic result. Nevertheless, for s → 0, strong deviations
become visible because the numerical rate function Φ(s)
grows strongly as s → 0. By comparing with the result
for a smaller system, N = 100, where this deviation is
even larger, it becomes clear that this is a finite-size ef-
fect, corresponding to the non-leading corrections, which
will disappear for N → ∞.

Although the parameter T is mainly used as a way to
address different parts of the distribution, the temperature
dependence of S, which is shown in Figure 4, exhibits an
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Fig. 3. Large-deviation rate function Φ(s) of ER random
graphs with average connectivity c = 2 > cc, N = 100 and
N = 500 (symbols). (For the case N = 100, the distribution
was not obtained on its full support, see small values of s.) The
line displays the analytical result from equation (2).
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Fig. 4. Average relative size s of the largest component as
a function of artificial temperature T for ER random graphs
in the percolating regime (c = 2) and (inset) in the non-
percolating regime (c = 0.5).

interesting behaviour on its own in the percolating regime.
When studying the average size s as a function of tem-
perature, a strong increase around temperature T = 9.5
becomes visible, which may correspond to a kind of phase
transition, see below.

On the other hand, in the non-percolating regime
c < 1, the average size of the largest component is rather
smooth, as shown in the inset of Figure 4. Note that here
negative artificial temperatures are used, because the peak
of the distribution P (S) is close to S = 0, in contrast to
the percolating regime c > 1, where the peak of P (S) is
at finite values.
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Fig. 5. Time-series for the size S of largest cluster as function
of the number tMCS of MC sweeps for ER random graphs (c =
2, N = 500) at artificial temperature T = 9.5.
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Fig. 6. Distribution (normalised such that the integral is one)
of the size of the largest component for ER random graphs
(c = 2, N = 500) at artificial temperature T = 9.5.

In Figure 5 the size S of the largest component is
shown as a function of the number of MC sweeps for a
temperature T = 9.5, which is located in the regime of
the assumed transition. One can see that S(t) fluctuates
quickly between two sets of typical sizes, which shows also
that the data is well equilibrated. In particular, values
around S = 350 and around S = 100 are more frequent
than intermediate values.

This result is made more quantitative by studying the
resulting distribution of the sizes of the largest component,
see Figure 6. A two-peak structure can be observed, which
indicates that indeed a transition between small and large
components of first-order type is present in the percolat-
ing regime c > 1. Similar first-order transitions have been
observed for biased simulations of the one-dimensional
Ising model [24,25]. The first-order nature of this transi-
tion is a reason that obtaining Φ(s) becomes harder for
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Fig. 7. Binder parameter equation (8) of the largest compo-
nent as a function of artificial temperature T for ER random
graphs in the percolating regime (c = 2) and (inset) in the
non-percolating regime (c = 0.5). Lines are guides to the eyes
only.

large system sizes, because the time for tunnelling be-
tween the two sets of values grows quickly. Furthermore,
even worse, the number of observed configurations having
a value of S which is located between the peaks decreases
strongly, such that for large intervals no data can be col-
lected at all, already for N = 1000. Hence, P (S) cannot
be sampled for such system sizes on its complete support,
because the different parts of the distribution cannot be
“glued” together.

The first order nature of the phase transition be-
comes even more obvious when studying the Binder
parameter [26]

b =
1
2

⎛

⎜⎝3 − s4

(
s2

)2

⎞

⎟⎠ . (8)

The resulting Binder parameter as function of tempera-
ture is shown in Figure 7. Clearly, for c = 2.0 a strong
dip close to the transition point is visible, which is typi-
cal for first-order phase transitions. For the case c = 0.5,
the Binder parameter is close to one only in the large-
component region, typical for second-order transitions
(the small dip close to T = −4.5 is due to fluctuations
which are typical for the Binder parameter in the disor-
dered regime.)

A detailed study of this phase transition is beyond
the scope of this work, in particular because its physical
relevance is yet not fully clear.

3.2 Two-dimensional percolation

Again the discussion of the rate function for the distribu-
tion of the relative size s = S/N of the largest component
is started by considering the non-percolating regime. The
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Fig. 8. Large-deviation rate function Φ(s) of two-
dimensional (2d) bond percolation with occupation probabil-
ity p = 0.3 < pc, L = 32 (symbols). For small relative cluster
sizes s, the rate function behaves linearly (the line displays a
linear function with slope 0.1125, obtained from fitting a linear
function to the data in the range s ∈ [0, 0.5]).

rate function for p = 0.3 < pc (L = 32) is shown in Fig-
ure 8. In principle it looks similar to the ER case displayed
in Figure 2. A striking difference is that it exhibits a large
region where it behaves linearly, basically for half of the
support, while it grows stronger for s > 0.5. For L = 16
(not shown), the same result was found. This means, the
finite-size effects are small as in the ER case. This also
indicates that the shape of the rate function should basi-
cally remain the same for L → ∞. In particular, it appears
likely that for L → ∞, Φ(s) will consist of a linear part
for small values of s and it will grow stronger for s → 1.

In contrast, the large-deviation rate function right at
the percolation transition p = pc = 0.5 (L = 32), see
Figure 9, looks very different from the ER case: it exhibits
a minimum at a relative cluster size of about s = S/N =
0.78, see main plot in Figure 9. This is very large compared
to the ER case, but only a finite-size effect: for example
for L = 512 (additional simple sampling simulations, not
shown), the minimum of the rate function has already
moved to a smaller value of s ≈ 0.5 and for p = 0.49, just
before the percolation transition, the most likely relative
size of a cluster is s = 0.1. Hence, the finite-size effects,
i.e., corrections to the large-deviation rate function, are
close to pc much stronger for the finite-dimensional case
compared to ER random graphs.

The case of the percolating regime is displayed in the
inset of Figure 9. Here again, the result looks very simi-
lar to the ER case, except that the magnitude of the rate
function is somehow smaller. Hence, it appears likely that
the shape of the rate function for the 2d percolation prob-
lem in the limit L → ∞ is very similar to the ER case, i.e.,
it may level off horizontally for s → 0 at a finite value and
the strong increase found for L = 32 is again a finite size
effect. This is confirmed by the result for L = 16, which
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Fig. 9. Large-deviation rate function Φ(s) of two-dimensional
(2d) bond percolation with occupation probability p = 0.5 =
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exhibits a much stronger increase for s → 0 compared to
the L = 32 result, as in the case of ER random graphs.

In Figure 10 the result for the behaviour of S as a
function of the artificial temperature is shown. In the non-
percolating regime (p = 0.3), see right inset, the average
value s behaves very regularly as a function of the tem-
perature, no sign of a transition is visible. On the other
hand, inside the percolation regime (p = 0.6), see main
plot, s(T ) exhibits a strong increase around T = 27. The
distribution of S at T = 27 exhibits a strong bimodal
signature, which indicates that indeed a phase transition
of first-order type takes place. Also, the Binder parame-
ter (not shown) exhibits qualitatively the same behavior

as in the ER case, i.e., it discriminates between first and
second-order phase transitions.

In summary, the temperature dependence of the size
of the largest component is very similar to the results ob-
tained for the ER random graphs.

4 Summary and outlook

By using an artificial Boltzmann ensemble characterised
by an artificial temperature T , the distributions of the
size of the largest component for ER randoms graphs
with finite connectivity c and for 2d percolation have been
studied in this work. For not too large system sizes, the
distributions can be calculated numerically over the full
support, giving access to very small probabilities such as
10−180.

For the ER case, the numerical results for the large-
deviation rate function Φ(s), obtained for rather small
graphs of size N = 500, agree very well with analytical
results obtained previously for the leading behaviour in
the limit N → ∞. This proves the usefulness of the nu-
merical approach, which has been applied previously to
models where no complete comparison between numeri-
cal data and exact analytic results have been performed.
The main findings are that below and at the percolation
transition, Φ(s) exhibits a minimum at s = 0 and rises
monotonously for s → 1. Inside the percolating regime,
Φ(s) exhibits a minimum, grows quickly around this min-
imum and levels off horizontally for s → 0. The finite-size
corrections are usually small, except for the percolating
regime in an extended region near s = 0. Furthermore,
when studying the average value s as a function of tem-
perature, a transition of first-order type is found between
a phase where S is untypically small to a phase where S
is large.

For the 2d percolation problem, where no analytic re-
sults are available, basically the same results are found:
the shapes of the large-deviation rate functions below, at,
and above the percolation threshold are qualitatively the
same, except that the finite-size corrections at the perco-
lation threshold appear to be larger compared to the ER
results. Also the behaviour of the largest-component size
as a function of the temperature seems to be similar, in
particular exhibiting a first-order type transition for the
percolating regime.

Since the comparison with the exact results for the ER
random graphs indicates the usefulness of this approach
to study large-deviation properties of random graphs, it
appears promising to consider many other properties of
different ensembles of random graphs in the same way.
For example, it would be interesting to obtain the distri-
bution of the diameter of ER random graphs, where only
for c < 1 there is an analytic result available. Correspond-
ing simulations are currently performed by the author of
this work.

The author thanks Oliver Melchert for critically reading the
manuscript. The simulations were partially performed at the
GOLEM I cluster for scientific computing at the University of
Oldenburg (Germany).
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