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Abstract. Information theory is a statistical theory concerned with the relative

state of detectors and physical systems. As a consequence, the classical framework

of Shannon needs to be extended to deal with quantum detectors, possibly moving

at relativistic speeds, conceivably within curved space-time. Considerable progress

toward such a theory has been achieved in the last ten years, while much is still not

understood. This review recapitulates some milestones along this road, and speculates

about future ones.

1. Entropy and Information: Classical Theory

Since Shannon’s historical pair of papers [1], information theory has changed from an

engineering discipline to a full-fledged theory within physics [2]. While a considerable

part of Shannon’s theory deals with communication channels and codes [3], the concepts

of entropy and information he introduced are crucial to our understanding of the physics

of measurement, and turn out to be more general than thermodynamical entropy. Thus,

information theory represents an important part of statistical physics.

When discussing the relationship between information theory and statistical

physics, it is impossible not to mention Jaynes’ work on the subject [4], who realized that

optimal inference (that is, making predictions based on available information) involves

choosing probability distributions that maximize Shannon’s entropy. In this manner,

he was able to justify certain parts of statistical physics using probability theory. The

general point of view promulgated here goes beyond that. It is argued that information

theory is a unifying framework which can be used to describe those circumstances in

nonequilibrium physics that involve an observer and an observed.

In the following, I present an overview of some crucial aspects of entropy and

information in classical and quantum physics, with extensions to the special and general

theory of relativity. While not exhaustive, the treatment is at an introductory level, with

pointers to the technical literature where appropriate.

1.1. Entropy

The concepts of entropy and information quantify the ability of observers to make

predictions, in particular how well an observer equipped with a specific measurement
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apparatus can make predictions about another physical system. Shannon entropy (also

known as uncertainty) is defined for mathematical objects called random variables. A

random variable X is a system that can take on a finite number of discrete states xi,

where i = 1, ..., N with probabilities pi. Now, physical systems are not mathematical

objects, nor are their states necessarily discrete. However, if I want to quantify my

uncertainty about the state of a physical system, then in reality I need to quantify my

uncertainty about the possible outcomes of a measurement of that system. In other

words, my maximal uncertainty about a system is not a property of the system, but

rather a property of the measurement device with which I am about to examine the

system. If my measurement device, for example, is simply a “presence-detector”, then

the maximal uncertainty I have about the physical system under consideration is 1 bit,

which is the amount of potential information I can obtain about that system.

Thus, the entropy of a physical system is undefined if we do not specify the device

that we are going to use to reduce that entropy. A standard example for a random

variable that is also a physical system is the six-sided even die. Usually, the maximal

entropy attributed to this system is log2(6) bits. Is this all there is to know about it?

If it is a physical system, the die is made of molecules and these can be in different

states depending on the temperature of the system. Are those knowable? What about

the state of the atoms making up the molecules? They could conceivably provide labels

such that the number of states is in reality much larger. What about the state of the

nuclei? Or the quarks and gluons inside those?

This type of thinking makes it clear that indeed we cannot speak about the entropy

of an isolated system without reference to the coarse-graining of states that is implied by

the choice of detector. And even though detectors exist that record continuous variables

(such as, say, a mercury thermometer), each detector has a finite resolution such that

it is indeed appropriate to consider only the discrete version of the Shannon entropy,

which is given in terms of the probabilities pi as‡

H(X) = −
N
∑

i

pi log pi . (1)

For any physical system, how are those probabilities obtained? In principle, this

can be done both by experiment and by theory. Once I have defined the N possible

states of my system by choosing a detector for it, the a priorimaximal entropy is defined

as

Hmax = logN . (2)

Experiments using my detector can now sharpen my knowledge of the system. By

tabulating the frequency with which each of the N states appears, we can estimate

the probabilities pi. Note, however, that this is a biased estimate that approaches the

‡ From now on, I shall not indicate the basis of the logarithm, which only serves to set the units of

entropy and information (base 2, e.g., sets the unit to a “bit”).
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true entropy Eq.(1) only in the limit of an infinite number of trials. On the other

hand, some of the possible states of the system (or more precisely, possible states of

my detector interacting with the system) can be eliminated by using some knowledge

of the physics of the system. For example, we may have some initial data about the

system. This becomes clear in particular if the degrees of freedom that we choose to

characterize the system with are position, momentum, and energy, i.e., if we consider

the thermodynamical entropy of the system (see below).

1.2. Conditional Entropy

Let us look at the basic process that reduces uncertainty: a measurement. When

measuring the state of system X , I need to bring it into contact with a system Y .

If Y is my measurement device, then usually I can consider it to be completely known

(at least, it is completely known with respect to the degrees of freedom I care about). In

other words, my device is in a particular state y0 with certainty. After interacting with

X , this is not the case anymore. Let us imagine an interaction between the systems X

and Y that is such that

xiy0 → xiyi i = 1, ..., N , (3)

that is, the states of the measurement device yi end up reflecting the states of X . This

is a perfect measurement, since no state of X remains unresolved. More generally, let

X have N states while Y has M states, and let us suppose that M < N . Then we

can imagine that each state of Y reflects an average of a number of X ’s states, so that

the probability to find Y in state yj is given by qj , where qj =
∑

i pij, and pij is the

joint probability to find X in state xi and Y in state yj. The measurement process then

proceeds as

xiy0 → 〈x〉jyj (4)

where

〈x〉j =
∑

i

pi|jxi . (5)

In Eq.(5) above, I introduced the conditional probability

pi|j =
pij
qj

(6)

that X is in state i given that Y is in state j. In the perfect measurement above,

this probability was 1 if i = j and 0 otherwise (i.e., pi|j = δij), but in the imperfect

measurement, X is distributed across some of its states i with a probability distribution

pi|j, for each j.

We can then calculate the conditional entropy (or remaining entropy) of the system

X given we found Y in a particular state yj after the measurement:

H(X|Y = yj) = −
N
∑

i

pi|j log pi|j . (7)
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This remaining entropy is guaranteed to be smaller than or equal to the unconditional

entropy H(X), because the worst case scenario is that Y doesn’t resolve any states of

X , in which case pi|j = pi. But since we didn’t know anything about X to begin with,

pi = 1/N , and thus H(X|Y = yj) ≤ logN .

Let us imagine that we did learn something from the measurement of Y , and let

us imagine furthermore that this knowledge is permanent. Then we can express our

new-found knowledge about X by saying that we know the probability distribution of

X , pi, and this distribution is not the uniform distribution pi = 1/N . Of course, in

principle we should say that this is a conditional probability pi|j , but if the knowledge

we have obtained is permanent, there is no need to constantly remind ourselves that

the probability distribution is conditional on our knowledge of certain other variables

connected with X . We simply say that X is distributed according to pi, and the entropy

of X is

Hactual(X) = −
∑

i

log pi log pi . (8)

According to this strict view, all Shannon entropies of the form (8) are conditional if they

are not maximal. And we can quantify our knowledge about X simply by subtracting

this uncertainty from the maximal one:

I = Hmax(X)−Hactual(X) . (9)

This knowledge, of course, is information.

1.2.1. Example: Thermodynamics We can view thermodynamics as a particular case

of Shannon theory. First, if we agree that the degrees of freedom of interest are position

and momentum, then the maximal entropy of any system is defined by its volume in

phase space:

Hmax = log∆Γ , (10)

where ∆Γ = ∆p∆q
k

is the number of states within the phase space volume ∆p∆q. Now

the normalization factor k introduced in (10) clearly serves again to coarse-grain the

number of states, and should be related to the resolution of our measurement device.

In quantum mechanics, of course, this factor is given by the amount of phase space

volume occupied by each quantum state, k = (2πh̄)n where n is the number of degrees

of freedom of the system. Does this mean that in this case it is not my type of detector

that sets the maximum entropy of the system? Actually, this is still true, only that here

we assume a quantum mechanical perfect detector, while still averaging over certain

internal states of the system inaccessible to this detector.

Suppose I am contemplating a system whose maximum entropy I have determined

to be Eq. (10), but I have some additional information. For example, I know that

this system has been undisturbed for a long time, and I know its total energy E, and

perhaps even the temperature T . Of course, this kind of knowledge can be obtained in

a number of different ways. It could be obtained by experiment, or it could be obtained
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by inference, or theory. How does this knowledge reduce my uncertainty? In this case,

we use our knowledge of physics to predict that the probabilities ρ(p, q) going into our

entropy

H(p, q) = −
∑

∆p,∆q

ρ(p, q) log ρ(p, q) (11)

are given by the canonical distribution§

ρ(p, q) =
1

Z
e−E(p,q)/T , (12)

where Z is the usual normalization constant, and the sum in (11) goes over all momenta

in the phase space volume ∆p∆q. The amount of knowledge we have about the system

is then just the difference between these two uncertainties:

I = log∆Γ− logZ − E

T
. (13)

1.3. Information

In Eq. (9), we quantified our knowledge about the states of X by the difference between

the maximal and the actual entropy of the system. This was a special case because we

assumed that after the measurement, Y was in state yj with certainty, i.e, everything

was known about it. In general, we can imagine that Y instead is in state yj with

probability qj (in other words, we have some information about Y but we don’t know

everything, just as for X). We can then define the average conditional entropy of X

simply as

H(X|Y ) =
∑

j

qjH(X|Y = yj) (14)

and the information that Y has aboutX is then the difference between the unconditional

entropy H(X) and Eq. (14) above,

H(X : Y ) = H(X)−H(X|Y ) . (15)

The colon between X and Y in the expression for the information H(X : Y ) is

conventional, and indicates that it stands for an entropy shared between X and Y .

According to the strict definition given above, H(X) = logN , but in the standard

literature H(X) refers to the actual uncertainty of X given whatever knowledge allowed

me to obtain the probability distribution pi, i.e., Eq. (8).

Eq. (15) can be rewritten to display the symmetry between the observing system

and the observed:

H(X : Y ) = H(X) +H(Y )−H(XY ) , (16)

where H(XY ) is just the joint entropy of both X and Y combined. This joint entropy

would equal the sum of each of X ’s and Y ’s entropy only in the case that there are no

§ We set Boltzmann’s constant equal to 1 throughout. This constant, of course, sets the scale of

thermodynamical entropy, and would end up multiplying the Shannon entropy just like any particular

choice of base for the logarithm would.
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correlations between X ’s and Y ’s states. If that would be the case, we could not make

any predictions about X just from knowing something about Y . The information (16),

therefore, would vanish.

1.3.1. Measurement Example An instructive example illustrating the effect of a

measurement on uncertainty has been given by Peres [5]. Suppose the random variable

X represents the location of a key, and prior knowledge has established the following:

the key is in my pocket with probability p = 0.9, but if it is not in my pocket, it can

be in exactly 100 places with equal probability. The random variable is thus actually

composed of two correlated variables: the pocket P (with two states, yes and no), and

the “other” places O, that has 100 states : X = PO. The entropy of X is:

H(X) = H(O|P ) +H(P ) , (17)

where naturally H(P ) is my uncertainty about whether the key is in my pocket, given by

H(P ) = −0.1 ln 0.1+ 0.9 ln 0.9 ≈ 0.325, and H(O|P ) is the average conditional entropy

of the “other” places, given I know whether or not the key is in my pocket. So:

H(O|P ) = pH(O|P = yes) + (1− p)H(O|P = no)

= 0.1× 0 + 0.1× ln(100) ≈ 0.4605 , (18)

since if the key is in my pocket, it is not in any of the 100 other places. Thus, my

uncertainty about the key location is H(X) ≈ 0.7856. Now, this type of example is often

used to claim that a measurement can sometimes increase uncertainty, by nothing that,

should I not find the key in my pocket (P = no), my uncertainty is now ln 100 ≈ 4.605,

much larger than 0.7856! But it is in fact not H(X) that has increased, since the new

uncertainty is of course just H(X|P = no), a conditional uncertainty. The entropy of

X was changed only by reducing H(P ) in Eq. (17) to zero (since the state of the pocket

will be known with certainty after the measurement), and therefore

H(X) → H(O|P ) ≈ 0.4605 . (19)

Thus, conditional entropies can increase or decrease due to a measurement, but the

unconditional entropy must decrease. This example is also instructive to illustrate that

in almost all cases, the entropy of random variables in physics is going to be conditional

on the state of other, measured variables. Indeed, subjectively you sense that your

uncertainty about the key’s location has increased after not finding it in your pocket,

because your uncertainty has become a conditional one after measurement. The fact

that it has decreased on average is irrelevant to you as an observer, because this may

be the one and only time you perform the measurement.

1.4. Information and the Second Law

Thermodynamics’ second law is often regarded as one of physics’ most curious, because

it appears to be intuitively correct while it cannot be derived from first principles. I

will take the position here that this is so because the second law is usually formulated
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Figure 1. Diffusion of an ideal gas from a small into a larger container. (a) The

molecules with entropy H(A1 · · ·An) occupy the smaller volume, and their correlation

entropy is zero. (b) The molecules have escaped into the larger container, which

increases the sum of the per-particle entropies and increases the correlation entropy

commensurately such that the overall entropy remains unchanged.

without giving sufficient heed to the notion that conditional and unconditional entropies

are fundamentally different, both from the point of view of our intuition and from their

mathematical structure. I have argued above that thermodynamics can be viewed as a

special case of information theory, and I elaborate this point here.

The second law makes a prediction about the behavior of closed systems that evolve

from a non-equilibrium state towards an equilibrium state. In particular, the second

law predicts that the entropy of such a system will almost always increase. The central

observation about the inconsistency of this formulation lies in recognizing that the

second law describes non-equilibrium dynamics using an equilibrium concept (namely

Boltzmann-Gibbs entropy). Above, we have seen that Shannon entropies, once we have

chosen thermodynamical variables such as position and momentum as those relevant to

us, turn into Shannon-Gibbs entropies if equilibrium distributions are used in Eq. (11).

But while a system moves from non-equilibrium to equilibrium, we certainly cannot

do this. Indeed, we know that as a system equilibrates, conditional and unconditional

entropies are not equal. In order to correctly describe this, we have to use information

theory.

1.4.1. Equilibration Let us analyze the quintessential irreversible dynamics, the

notorious “perfume bottle” experiment, in which a diffusive substance (let’s say, an ideal

gas) is allowed to escape from a small container into a larger one (see Fig. 1a). Both

the initial and the final state of the system can be described by equilibrium equations;

common wisdom however states that the entropy of the gas is increasing during the

process, reflecting the non-equilibrium dynamics. I shall now show that this is not the

case, by describing the gas in the smaller container by a set of variables A1, · · · , An, one
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for each molecule. (What I will show is that it is instead a conditional entropy that is

increasing.) The entropy H(Ai) thus represents the entropy per molecule. The entire

gas, on the other hand, is described by the joint entropy

Hgas = H(A1 · · ·An) , (20)

which can be much smaller than the sum of per-particle entropies because there are

strong correlations between the variables Ai. In information theory, such correlations

are described by information terms such as (15). And as we discussed above, they must

vanish at equilibrium. The sum of per-particle entropies, because it ignores correlations

between subsystems, is just the standard thermodynamical entropy Seq

H(A1 · · ·An) ≪
n
∑

i=1

H(Ai) = Seq . (21)

The difference between Seq and (20) is given by the n-body correlation entropy

Hcorr =
n
∑

i=1

H(Ai)−H(A1 · · ·An) , (22)

which can be calculated in principle, but becomes cumbersome already for more than

three particles.

We see that in this description, the molecules after occupying the larger volume

cannot be independent of each other, as their locations are in principle correlated (as

they all used to occupy a smaller volume, see Fig. 1a). It is true that once the molecules

occupy the larger volume (Fig. 1b) the observer has lost track of these correlations,

and the second law characterizes just how much information was lost. This statement,

however, has nothing to do with physics, but rather concerns an observer’s capacity to

make predictions. Indeed, these correlations are not manifest in two– or even three-body

correlations, but are complicated n-body correlations which imply that their positions

are not independent, but linked by the fact that they share initial conditions. This state

of affairs can be summarized by rewriting Eq. (22):

H(A1 · · ·An) =
n
∑

i=1

H(Ai)−Hcorr . (23)

We assume that before the molecules are allowed to escape, they are uncorrelated with

respect to each other: Hcorr = 0, and the entire entropy is given by the extensive sum

of the per-molecule entropies. After expansion into the larger volume, the standard

entropy increases because of the increase in available phase space, but this increase is

balanced by an increase in the correlation entropy Hcorr in such a manner that the actual

joint entropy of the gas, Hgas, remains unchanged.

Note that this description is not, strictly speaking, a redefinition of thermodynami-

cal entropy. While in the standard theory, entropy is an extensive (i.e., additive) quantity

for uncorrelated systems, the concept of a thermodynamical entropy in the absence of

equilibrium distributions has been formulated as the number of ways to realize a given

set of occupation numbers of states of the joint system (which gives rise to (1) by use
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of Stirling’s approximation, see, e.g., [6]) and is thus fundamentally non-extensive. As-

suming the Ai are uncorrelated reduces H(A1 · · ·An) to the extensive sum
∑n

i=1H(Ai),

and thus to an entropy proportional to the volume they inhabit. From a calculational

point of view the present formalism does not represent a great advantage in this case,

as the correlation entropy Hcorr can only be obtained in special situations, when only

few-body correlations are important.

The examples of non-equilibrium processes treated here (measurement and

equilibration) suggest the following information-theoretical reformulation of the second

law:

In a thermodynamical equilibrium or non-equilibrium process, the unconditional

(joint) entropy of a closed system remains a constant.

Nothing can be said in principle about the conditional entropies involved (namely the

conditional entropy of the system given the state of the observer, or the conditional

entropy of the observer, given the state of the system), because they can be increasing

or decreasing. In a measurement, the conditional entropy decreases (but the conditional

entropy given a particular outcome can increase), while during equilibration, the

conditional entropy usually increases. That it can sometimes decrease is acknowledged

in the standard formulation of the second law by the words “almost always”. We

recognize this as just one of these rare fluctuations encountered in Section 1.3.1, where

the entropy conditional on a particular outcome behaves counter-intuitively, while on

average everything is as it should be.

The formulation of the second law given above directly reflects probability

conservation (in the sense of the Liouville theorem), and allows a quantitative description

of the amount by which either the conditional entropy is decreased in a measurement,

or the amount of per-particle entropy is increased in an equilibration process.

2. Quantum Theory

In quantum mechanics, the concept of entropy translates very easily, but the concept

of information is thorny. John von Neumann introduced his eponymous quantum

mechanical entropy as early as 1927 [7], a full 21 years before Shannon introduced

its classical limit! In fact, it was von Neumann who suggested to Shannon to call his

formula entropy, simply because “your uncertainty function has been used in statistical

mechanics under that name” [8].

2.1. Measurement

In quantum mechanics, measurement plays a very prominent role, and is still considered

somewhat mysterious in many respects. The proper theory to describe measurement

dynamics in quantum physics, not surprisingly, is quantum information theory. As in the

classical theory, the uncertainty about a quantum system can only be defined in terms

of the detector states, which in quantum mechanics are a discrete set of eigenstates of
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a measurement operator. The quantum system itself is described by a wave function,

given in terms of the quantum system’s eigenbasis, which may or may not be the same

as the measurement device’s basis.

For example, say we would like to “measure an electron”. In this case, we may

mean that we would like to measure the position of an electron, whose wave function is

given by Ψ(q), where q is the coordinate of the electron. Further, let the measurement

device be characterized initially by its eigenfunction φ0(ξ), where ξ may summarize the

coordinates of the device. Before measurement, i.e., before the electron interacts with

the measurement device, the system is described by the wave function

Ψ(q)φ0(ξ) . (24)

After the interaction, the wave function is a superposition of the eigenfunctions of

electron and measurement device
∑

n

ψn(q)φn(ξ) . (25)

Following orthodox measurement theory, the classical nature of the measurement

apparatus implies that after measurement the “pointer” variable ξ takes on a well-

defined value at each point in time; the wave function, as it turns out, is thus not given

by the entire sum in (25) but rather by the single term

ψn(q)φn(ξ) . (26)

The wave function (25) is said to have collapsed to (26).

Let us now study what actually happens in such a measurement in detail. For ease

of notation, let us recast this problem into the language of state vectors instead. The

first stage of the measurement involves the interaction of the quantum system Q with

the measurement device (or “ancilla”) A. Both the quantum system and the ancilla are

fully determined by their state vector, yet, let us assume that the state of Q (described

by state vector |x〉) is unknown whereas the state of the ancilla is prepared in a special

state |0〉, say. The state vector of the combined system |QA〉 before measurement then

is

|Ψt=0〉 = |x〉|0〉 ≡ |x, 0〉 . (27)

The von Neumann measurement is described by the unitary evolution of QA via the

interaction Hamiltonian

Ĥ = −X̂QP̂A , (28)

operating on the product space of Q and A. Here, X̂Q is the observable to be measured,

and P̂A the operator conjugate to the degree of freedom of A that will reflect the result

of the measurement. We now obtain for the state vector |QA〉 after measurement (e.g.,

at t = 1, putting h̄ = 1)

|Ψt=1〉 = eiX̂QP̂A|x, 0〉 = eixP̂A|x, 0〉 = |x, x〉 . (29)

Thus, the pointer A that previously pointed to zero now also points to the position x

that Q is in. This operation appears to be very much like the classical measurement
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process Eq. (3), but it turns out to be quite different. In general, this unitary operation

introduces quantum entanglement, which is beyond the classical concept of correlations.

This becomes evident if we apply the unitary operation described above to an initial

quantum state which is in a quantum superposition of two states:

|Ψt=0〉 = |x+ y, 0〉 . (30)

Then, the linearity of quantum mechanics implies that

|Ψt=1〉 = eiX̂QP̂M

(

|x, 0〉+ |y, 0〉
)

= |x, x〉+ |y, y〉 . (31)

This state is very different from what we would expect in classical physics, because Q

and A are not just correlated (like, e.g., the state |x + y, x + y〉 would be) but rather

they are quantum entangled. They now form one system that cannot be thought of as

composite.

This nonseparability of a quantum system and the device measuring it is at the heart

of all quantum mysteries. Indeed, it is at the heart of quantum randomness, the puzzling

emergence of unpredictability in a theory that is unitary, i.e., where all probabilities are

conserved. What is being asked here of the measurement device, namely to describe the

system Q, is logically impossible because after entanglement the system has grown to

QA. Thus, the detector is being asked to describe a system that is larger (as measured

by the possible number of states) than the detector, and that includes the detector

itself. This is precisely the same predicament that befalls a computer program that

is asked to determine its own halting probability, in Turing’s famous Halting Problem

analogue [9] of Gödel’s Incompleteness Theorem. Chaitin [10] showed that the self-

referential nature of the question that is posed to the program gives rise to randomness

in pure Mathematics. A quantum measurement is self-referential in the same manner,

since the detector is asked to describe its own state, which is logically impossible‖. Thus
we see that quantum randomness has mathematical (or rather logical) randomness at

its very heart.

2.2. von Neumann Entropy

Because of this inherent uncertainty, measurements of a quantum system A are then

described as expectation values, which are averages of an observable over the system’s

density matrix, so that

〈Ô〉 = Tr(ρAÔ) , (32)

where Ô is an operator associated with the observable we would like to measure, and

ρA is the density matrix of system A. The latter is obtained from the quantum wave

function ΨQA (for the combined system QA, since neither Q nor A separately have a

wave function after the entanglement occurred) by tracing out the quantum system:

ρA = TrQ|ΨQA〉〈ΨQA| . (33)

‖ The logical impossibility of describing one’s own state is intrinsically the same as that posed by the

Cretan Paradox (Epimenides the Cretan says “All Cretans are liars.”)
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The partial trace represents an averaging over the states of the quantum system, which

after all is not being observed: we are looking at the measurement device only. The

uncertainty about quantum system A can then be calculated simply by von Neumann’s

entropy:

S(ρA) = −Tr ρA log ρA . (34)

If Q has been measured in A’s eigenbasis, then the density matrix ρA is diagonal, and

von Neumann entropy turns into Shannon entropy, as we expect. Indeed, this is precisely

the classical limit, because entanglement does not happen under these conditions.

Quantum Information Theory needs concepts such as conditional entropies and

mutual entropies. They can be defined in a straightforward manner [11], but their

interpretation needs care. For example, we can define a conditional entropy in analogy

to Shannon theory as

S(A|B) = S(AB)− S(B) (35)

= − TrAB(ρAB log ρAB) + TrB(ρB log ρB) ,

where S(AB) is the joint entropy of two systems A and B. But can we write this

entropy in terms of a conditional density matrix, just as we were able to write the

conditional Shannon entropy in terms of a conditional probability? The answer is yes

and no: a definition in terms of a conditional density operator ρA|B exists [11, 12], but

it is technically not a density matrix (its trace is not equal to one), and the eigenvalues

of this matrix are very peculiar: they can exceed one (this is of course not possible for

probabilities). Indeed, they can exceed one only when the system is entangled. As a

consequence, quantum conditional entropies can be negative [11].

Even thornier is quantum mutual entropy. We can again define it simply in analogy

to (16) as

S(A : B) = S(A) + S(B)− S(AB) , (36)

but what does it mean? For starters, this quantum mutual entropy can be twice as

large as the entropy of any of the subsystems, so A and B can share more quantum

entropy then they even have by themselves! Of course, this is due to the fact, again,

that “selves” do not exist anymore after entanglement. Also, in the classical theory,

information, that is, shared entropy, could be used to make predictions, and therefore

to reduce the uncertainty we have about the system that we share entropy with. But

that’s not possible in quantum mechanics. If, for example, I measure the spin of a

quantum particle that is in an even superposition of its spin-up and spin-down state,

my measurement device will show me spin-up half the time, and spin-down half the

time, that is, my measurement device has an entropy of one bit. It can also be shown

that the shared entropy is two bits [11]. But this shared entropy cannot be used to make

predictions about the actual spin. Indeed, I still do not know anything about it! On

the other hand, it is possible, armed with my measurement result, to make predictions

about the state of other detectors measuring the same spin. And even though all these

detectors will agree about their result, technically they agree about a random variable,
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not the actual state of the spin they believe their measurement device to reflect [13].

Indeed, what else could they agree on, since the spin does not have a state? Only the

combined system with all the measurement devices that have ever interacted with it,

does.

Information, it turns out, is a concept that is altogether classical. Quantum

information, in hindsight, is therefore really a contradiction in terms. But that does

not mean that the entire field of quantum information theory is absurd. Rather,

what we mean by “quantum information theory” is the study of storage, transmission,

and manipulation of qubits (the quantum analogues of the usual bit), which are

quantum particles that can exist in superpositions of zero and one. Indeed, the

capacity of quantum channels to transmit classical information is higher than any

classical channel [14, 15], for example, and quantum bits can be used for super-fast

computation [16].

The extension of Shannon’s theory into the quantum regime not only throws new

light on the measurement problem, but it also helps in navigating the boundary between

classical and quantum physics. According to standard lore, quantum systems (meaning

systems described by a quantum wave function) “become” classical in the macroscopic

limit, that is, if the action unit associated with that system is much larger than h̄.

Quantum information theory has thoroughly refuted this notion, since we now know

that macroscopic bodies can be entangled just as microscopic ones can [17]. Instead,

we realize that quantum systems appear to follow the rules of classical mechanics if

parts of their wave function are averaged over [such as in Eq. (33)], that is, if the

experimenter is not in total control of all the degrees of freedom that make up the

quantum system. Because entanglement, once achieved, is not undone by the distance

between entangled parts, almost all systems will seem classical unless expressly prepared,

and then protected from interaction with uncontrollable quantum systems. Unprotected

quantum systems spread their state over many variables very quickly: a process known

as decoherence of the quantum state.

3. Relativistic Theory

Once convinced that information theory is a statistical theory about the relative states

of detectors in a physical world, it is clear that we must worry not only about quantum

detectors, but about moving ones as well. Einstein’s special relativity established an

upper limit for the speed at which information can be transmitted without the need

to cast this problem in an information-theoretic language. But in hindsight, it is clear

that the impossibility of superluminal signaling could just as well have been the result

of an analysis of the information transmission capacity of a communication channel

involving detectors moving at constant speed with respect to each other. As a matter of

fact, the capacity of an additive white noise Gaussian (AWNG) channel for information

transmission for the case of moving observers just turns out to be [18]

C = W log(1 + αSNR) , (37)
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whereW is the bandwidth of the channel, SNR is the signal-to-noise ratio, and α = ν ′/ν

is the Doppler shift. As the relative velocity β → 1, α → 0 and the communication

capacity vanishes.

Historically, however, no-one seems to have worried about an “information theory

of moving bodies”, not the least because such a theory had, or indeed has, little

immediate relevance. (The above-mentioned reference [18] is essentially unknown in

the literature.) A standard scenario of relativistic information theory would involve

two random variables moving with respect to each other. The question we may ask

is whether and how relative motion is going to affect any shared entropy between the

variables. First, it is important to point out that Shannon entropy is a scalar, and

we therefore do not expect it to transform under Lorentz transformations. This is also

intuitively clear if we adopt the “strict” interpretation of entropy as being unconditional

(and therefore just equal to the logarithm of the number of degrees of freedom). On the

other hand, probability distributions (and the associated conditional entropies) could

conceivably change under Lorentz transformations. How is this possible given the earlier

statement that entropy is a scalar?

We can investigate this with a gedankenexperiment where the system under

consideration is an ideal gas, with particle velocities distributed according to an arbitrary

distribution. In order to define entropies, we have to agree on which degrees of freedom

we are interested in. Let us say that we only care about the two components of the

velocity of particles confined in the x−y-plane. Even at rest, the mutual entropy between

the particle velocity components H(vx : vy) is non-vanishing, due to the finiteness of

the magnitude of v. A detailed calculation [19] using continuous variable entropies of a

uniform distribution shows that, at rest

H(vx : vy) = log(π/e) . (38)

The velocity distribution, on the other hand, will surely change under Lorentz

transformations in, say, the x-direction, because the components are affected differently

by the boost. In particular, it can be shown that the mutual entropy between vx and vy
will rise monotonically from log(π/e), and tend to a constant value as the boost-velocity

β → 1 [19]. But of course, β is just another variable characterizing the moving system,

and if this is known precisely, then we ought to be able to recover Eq. (38), and the

apparent change in information is due entirely to a reduction in the uncertainty H(vx).

Similar conclusions can be reached if the Maxwell distribution is substituted for the

uniform one. This example shows that in information theory, even if the entire system’s

entropy does not change under Lorentz transformations, the entropies of subsystems,

and therefore also information, can.

While a full theory of relativistic information does not exist, pieces of such a

theory can be found when digging through the literature, For example, relativistic

thermodynamics is a limiting case of relativistic information theory, simply because as

we have seen above, thermodynamical entropy is a limiting case of Shannon entropy. But

unlike in the case constructed above, we do not have the freedom to choose our variables
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in thermodynamics. Hence, the invariance of entropy under Lorentz transformations

is assured via Liouville’s theorem, because the latter guarantees that the phase-space

volume occupied by a system is invariant. Yet, relativistic thermodynamics is an odd

theory, not the least because it is intrinsically inconsistent: the concept of equilibrium

becomes dubious. In thermodynamics, equilibrium is defined as a state where all relative

motion between the subsystems of an ensemble has ceased. Therefore, a joint system

where one part moves with a constant velocity with respect to the other cannot be at

equilibrium, and relativistic information theory has to be used instead.

One of the few questions of immediate relevance that relativistic thermodynamics

has been able to answer is how the temperature of an isolated system will appear from a

moving observer. Of course, temperature itself is an equilibrium concept and therefore

care must be taken in framing this question [20]. Indeed, both Einstein and Planck [21]

tackled the question of how to Lorentz-transform temperature, with different results.

The controversy [22] can be resolved by realizing that no such transformation law can in

fact exist [23], as the usual temperature (the parameter associated with the Planckian

blackbody spectrum) becomes direction-dependent if measured with a detector moving

with velocity β = v/c and oriented at an angle θ′ with respect to the radiation [24, 25]

T ′ =
T
√
1− β2

1− β cos θ′
. (39)

In other words, an ensemble that is thermal in the rest frame is non-thermal in a moving

frame, and in particular cannot represent a standard heat bath because it will be non-

isotropic.

4. Relativistic Quantum Theory

While macroscopic quantities like temperature lose their meaning in relativity,

microscopic descriptions in terms of probability distributions clearly still make sense.

But in a quantum theory, these probability distributions are obtained from quantum

measurements specified by local operators, and the space-time relationship between

the detectors implementing these operators becomes important. For example,

certain measurements on a joint (i.e., composite) system may require communication

between parties, while certain others are impossible even though they do not require

communication [26]. In general, a relativistic theory of quantum information needs

to pay close attention to the behavior of the von Neumann entropy under Lorentz

transformation, and how such entropies are being reduced by measurement.

4.1. Boosting Quantum Entropy

The entropy of a qubit (which we take here for simplicity to be a spin-1/2 particle) with

wave function

|Ψ〉 = 1
√

|a|2 + |b|2
(

a| ↑〉+ b| ↓〉
)

, (40)
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(a and b are complex numbers), can be written in terms of its density matrix ρ = |Ψ〉〈Ψ|
as

S(ρ) = −Tr(ρ log ρ) . (41)

A wave function is by definition a completely known state (called a “pure state”),

because the wave function is a complete description of a quantum system. As a

consequence, (41) vanishes: we have no uncertainty about this quantum system. As

we have seen earlier, it is when that wave function interacts with uncontrolled degrees

of freedom that mixed states arise. And indeed, just by boosting a qubit, such mixing

will arise [27]. The reason is not difficult to understand. The wave function (40), even

though I have just stated that it completely describes the system, in fact only completely

describes the spin degree of freedom! Just as we saw in the earlier discussion about the

classical theory, there may always be other degrees of freedom that our measurement

device (here, a spin-polarization detector) cannot resolve. Because we are dealing with

particles, ultimately we have to consider their momenta. A more complete description

of the qubit state then is

|Ψ〉 = |σ〉 × |~p〉 , (42)

where σ stands for the spin-variable, and ~p is the particle’s momentum. Note that the

momentum wave function |~p〉 is in a product state with the spin wave function |σ〉. This
means that both spin and momentum have their own state, they are unmixed. But as is

taught in every first-year quantum mechanics course, such momentum wave functions

(plane waves with perfectly well-defined momentum ~p) do not actually exist; in reality,

they are wave packets with a momentum distribution f(~p), which we may take to be

Gaussian. If the system is at rest, the momentum wave function does not affect the

entropy of (42), because it is a product.

What happens if the particle is boosted? The spin and momentum degrees do mix,

which we should have expected because Lorentz transformations always imply frame

rotations as well as changes in linear velocity. The product wave function (42) then

turns into

|Ψ〉 −→
∑

σ

∫

f(~p)|σ, ~p〉d~p , (43)

which is a state where spin-degrees of freedom and momentum degrees of freedom are

entangled. But our spin-polarization detector is insensitive to momentum! Then we

have no choice but to average over the momentum, which gives rise to a spin density

matrix that is mixed,

ρσ = Tr~p(ρσ~p) , (44)

and which consequently has positive entropy. Note, however, that the entropy of the

joint spin-momentum density matrix remains unchanged, at zero. Note also that if the

momentum of the particle was truly perfectly known from the outset, i.e., a plane wave

|~p〉, mixing would also not take place [28].



Physics of Information 17

While the preceding analysis clearly shows what happens to the quantum entropy

of a spin-1/2 particle under Lorentz transformations (a similar analysis can be done

for photons [29]), what is most interesting in quantum information theory is the

entanglement between systems. While some aspects of entanglement are captured by

quantum entropies [30] and the spectrum of the conditional density operator [12],

quantifying entanglement is a surprisingly hard problem, currently without a perfect

solution. However, some goodmeasures exist, in particular for the entanglement between

two-level systems (qubits) and three-level systems.

4.2. Boosting Quantum Entanglement

If we wish to understand what happens to the entanglement between two spin-1/2

particles, say, we have to keep track of four variables: the spin states |σ〉 and |λ〉 and

the momentum states |~p〉 and |~q〉. A Lorentz transformation on the joint state of this

two-particle system will mix spins and momenta just as in the previous example. In

fact, it is known that this type of mixing will affect the entanglement between pairs of

particles that are used to test the violation of Bell inequalities, for example [31]. In

order to investigate this effect from the point of view of quantum information theory,

we need to study the behavior of an entanglement measure under Lorentz boosts.

A good measure for the entanglement of mixed states, i.e., states that are not pure

such as (42), is the so-called concurrence, introduced by Wootters [32]. This concurrence

C(ρAB) can be calculated for a density matrix ρAB that describes two subsystems A

and B of a larger system, and quantifies the entanglement between A and B. For our

purposes, we will be interested in the entanglement between the spins σ and λ of our

pair. The concurrence is unity if two degrees of freedom are perfectly entangled, and

vanishes if no entanglement is present.

In order to do this calculation we first have to specify our initial state. We take

this to be a state with spin and momentum wave function in a product, but where the

spin-degrees of freedom are perfectly entangled in a so-called Bell state:

|σ, λ〉 = 1√
2
(| ↑, ↓〉 − | ↓, ↑〉) . (45)

Of course, such states have concurrence C(ρσλ) = 1. We now apply a Lorentz boost

to this joint state, i.e., we move our spin-polarization detector with speed β = v/c

with respect to this pair (or, equivalently, we move the pair with respect to the

detector). If the momentum degrees of freedom of the particles at the outset are

Gaussian distributions unentangled with each other and the spins, the Lorentz boost

will entangle them, and the concurrence between the spins will drop [33]. How much it

drops depends on the ratio between the spread of the momentum distribution σr (not to

be confused with the spin σ) and the particle’s mass m. In Fig. 2 below, the concurrence

is displayed for two different such ratios, as a function of the rapidity ξ. The rapidity ξ

is just a transformed velocity: ξ = sinh β, such that ξ → ∞ as β → 1. We can see that

if the ratio is not too large, the concurrence will drop but not disappear altogether. But
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if the momentum spread is large compared to the mass, all entanglement can be lost.

Figure 2. Spin-concurrence as a function of rapidity, for an initial Bell state with

momenta in a product Gaussian. Data is shown for σr/m = 1 and σr/m = 4 (from

Ref.[33]).

Let us consider instead a state that is unentangled in spins, but fully entangled in

momenta. I depict such a wave function in Fig. 3, where a pair is in a superposition

of two states, one moving in opposite directions with momentum ~p⊥ in a relative spin

state Φ− (this is one of the four Bell spin-entangled states, Eq. (45)), and one moving

in a plane in opposite orthogonal directions with momentum p, in a relative spin-state

Φ+. It can be shown that if observed at rest, the spins are actually unentangled. But

when boosted to rapidity ξ, the concurrence increases [33], as for this state (choosing

m = 1)

C(ρAB) =
p2(cosh2(ξ)− 1)

(
√
1 + p2 cosh(ξ) + 1)2

. (46)

A similar analysis can be performed for pairs of entangled photons, even though

the physics is quite different [34]. First of all, photons are massless and their quantum

degree of freedom is the photon-polarization. The masslessness of the photons makes the

analysis a bit tricky, because issues of gauge invariance enter into the picture, and as they

all move with constant velocity (light speed), there cannot be a spread in momentum as

in the massive case. Nevertheless, Lorentz transformation laws acting on polarization

vectors can be identified, and an analysis similar to the one described above can be

carried through. The difference is that the entangling effect of the Lorentz boost is now

entirely due to the spread in momentum direction between the two entangled photon

beams. This implies first of all that fully-entangled photon polarizations cannot exist,

even for detectors at rest, and second that existing entanglement can either be decreased
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Figure 3. Superposition of Bell-states Φ+ and Φ− at right angles, with the particle

pair moving in opposite directions.

.

or increased, depending on the angle with which the pair is boosted (with respect to

the angle set by the entangled pair), and the rapidity [34].

5. Information in Accelerated Frames and Curved Space Time

Relativistic quantum information theory is a growing field [35] that has naturally

engendered questions about the relative state of detectors in non-inertial frames.

Accelerated detectors introduce a new twist to information theory: whether or not

a detector registers depends on its state of motion, that is, even presence or absence can

become relative! To some extent this is not a completely unfamiliar situation. We are

used to radiation being emitted from accelerated charges, and from detectors moving

through a medium with changing index of refraction [36, 37]. In such cases, the state of

the detector depends on which vacuum it perceives. For all inertialmeasurement devices,

all vacua are equivalent because they are invariant under the Poincaré group. Yet this

invariance doesn’t hold for accelerated observers or detectors in strong fields [38], and

no particular vacuum state is singled out. Indeed, different vacua can be defined using

Bogoliubov transformations to transform one set of creation/annihilation operators into

another, and in principle none would be preferred. How do we then make sense of the

physical world, which requires that all observers agree about the result of measurements?

Usually, the agreed-upon vacuum is the one where absence of particles is perceived by

all inertial observers, for example in the remote past or future. This is also the approach

taken below when we consider black hole formation and evaporation, where quantum

states |k〉in and |k〉out refer to in- and out-states in past and future infinity. In the

meantime, let us discuss briefly the relative state of non-inertial detectors.

That something interesting must happen to entropies in non-inertial frames is
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immediately clear from the Unruh effect [39, 40, 41]. The Unruh effect is perhaps the

most important clue to our understanding of quantum field theory in curved space time,

which is still quite incomplete. Accelerated observers perceive a vacuum quite different

from that apparent to a non-accelerated observer: they find themselves surrounded by

thermal photons of temperature TU = h̄a
2πc

(the Davies-Unruh temperature), where a

is the observer’s acceleration, and c is the speed of light. If we were to calculate the

entropy of a particle in the inertial vs. the non-inertial frame, the absence or presence

of the Unruh radiation implies that they would be different. In other words, standard

thermodynamic or von Neumann entropies do not transform covariantly under general

co-ordinate transformations, that is, they are not scalars. Again this should not be

surprising, because positive von Neumann entropies only occur if part of an entangled

state is averaged over. Only the entropy of the pure state is invariant (it vanishes).

There are immediate consequences for standard quantum information protocols such as

quantum teleportation: while the required resource (and entangled pair) can be used

to teleport one qubit perfectly in an inertial frame, the appearance of Unruh radiation

dilutes the entanglement such that the fidelity of teleportation is reduced [42]. There

are also consequences when positive entropies are forced upon us simply because certain

parts of spacetime are inaccessible to measurements. Such is the case beyond black-hole

event horizons.

5.1. Black Hole Information Paradox

Ever since the discovery of Hawking radiation [43] we are faced with what is known as

the black hole information paradox [44]. The paradox can be summarized as follows.

According to standard theory, a black hole (without charge or angular momentum) can

be described by an entropy [45] that is determined entirely in terms of its mass M (in

units where h̄ = c = G = k = 1):

SBH = 4πM2 . (47)

From the point of view adopted in this review, this formula implies that black holes are

very peculiar objects. They have an entropy given by one quarter of the surface area of

the black hole event horizon (r = 2M in these units), which we have to associate with

an uncertainty in classical information theory. Yet, it seems we cannot learn anything

about the black hole, because we cannot measure its states. Fortunately, quantum

mechanics comes to the rescue here. Classically, a black hole has zero temperature

(because it does not radiate), but a quantum treatment shows that vacuum fluctuations

near the event horizon cause the black hole to radiate like a black body at a temperature

TH = (8πM)−1, the Hawking temperature. In a sense, the black hole polarizes the

vacuum around it, causing spontaneous emission of radiation, and a reduction of entropy.

The alert reader should make a mental note at this point, because I have argued earlier

that, strictly speaking, only conditional entropies can decrease. Could it be that the

black hole entropy is in fact a conditional entropy? Before we enter this discussion, I

should summarize an apparently very alarming state of affairs in black hole physics.
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If a state that is fully known is absorbed by the black hole, i.e, if it disappears

behind the event horizon, it appears as if the information about the identity of the state

is lost. Even worse, after a long time, the black hole will have evaporated entirely into

thermal (Hawking) radiation, and the information appears not only to be irretrievable,

but destroyed. Indeed, it would appear that black holes have the capability to turn pure

states into mixed stated without disregarding parts of the wave function. Such a state

of affairs is not only paradoxical, it is in fact completely out of the question within the

standard model of physics.

It has been argued that this paradox stems from our incomplete understanding

of quantum gravity. For example, in the semiclassical framework (in which Hawking’s

calculation was carried out [43]), the space time metric remains unquantized, and is

treated instead as a classical background field. A consistent treatment instead would

allow particle degrees of freedom to be entangled with the metric, creating quantum

mechanical uncertainty (see [46] for a calculation of the decoherence of a qubit in an

orbit around a Scharzschild black hole due to entanglement with the metric). But it is

difficult to conceive that this effect has a significant impact on black hole dynamics.

Indeed, gravitational fields are weak up until the black hole is of the order of the

Planck mass, when backreaction effects on the space time metric presumably become

important [47]. But at this point, all the “damage” has already been done, because it is

difficult to imagine that lost information can be recovered from a Planck-sized object.

(An enormous amount of entropy would have to be emitted instantaneously by a black

hole of size LPlanck ≈ 10−33 cm, see Ref. [47], p. 184). Instead, we should look at the

treatment of black holes within classical equilibrium thermodynamics as the culprit for

the paradox.

Black holes have negative heat capacity (they become hotter the more energy they

radiate away), and therefore can never be at equilibrium with a surrounding (infinite)

heat bath. As we have seen, the concept of information itself is a non-equilibrium

one (because information implies correlations). Moreover, quantum correlations (in the

form of entanglement) can exist over arbitrary distances and across event horizons,

because entanglement does not imply signaling. Thus, a black hole can be entangled

with surrounding radiation even though the two are causally disconnected. These

considerations make it likely that a quantum information-theoretic treatment of black

hole dynamics could resolve the paradox without appealing to a consistent theory of

quantum gravity. In the following, I outline just such a scenario.

First, we must recognize that a positive entropy in quantum mechanics implies that

the black hole is described by a density matrix of the form

ρBH =
∑

i

piρi (48)

where ρi = |i〉〈i| are obtained from black hole eigenvectors. Such a mixed state can

always be written in terms of a pure wavefunction via a Schmidt decomposition:

ρBH =
∑

i

√
pi|ψi〉BH〉|i〉R , (49)
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where the |i〉R are the eigenstates of a “reference” system. While such a Schmidt

decomposition is always possible mathematically, what physics does it correspond to?

If there is a physical mechanism that associates states |i〉R outside of the event horizon

with states |ψi〉BH within it, then perhaps information entering a black hole will leave

some signature outside it. As it turns out, there is indeed such a physical mechanism,

as I now show.

Black hole evaporation is, as mentioned earlier, due to a quantum effect that has

no analogue in classical physics: the spontaneous decay of the vacuum. Quite literally,

the gravitational field surrounding the black hole polarizes the vacuum so as to create

virtual particle-antiparticle states. If one member of such a pair enters the event

horizon while the other goes off to infinity, the black hole itself will have to provide

the energy to convert the virtual particles to real ones, i.e., to put them on their mass

shell. This process reduces the black hole’s mass, and thus, via Eq. (47), its entropy.

Within quantum information theory, we write the black hole entropy in terms of the

von Neumann entropy

S(ρBH) = − tr ρBH log ρBH , (50)

and the reduction in entropy can be understood in terms of the removal of positive

energy modes due to the absorption of negative energy modes. As pointed out earlier,

such a description only makes sense if we consider aymptotic modes. Then, a flux of

particles of positive energy at t → ∞ must correspond to a flux of negative energy of

equal magnitude into the black hole. In a sense, it is our detectors in the future that

are allowing us to make predictions in the past.

In this picture then, we can describe particle absorption and emission from a black

hole with a standard interaction Hamiltionian, so that for an incoming particle in mode

k incident on a black hole with wavefunction |ψ〉Q (the index Q will be used to label

the black-hole Hilbert space throughout this section) we have the unitary evolution

U |k〉M|ψ〉Q|0〉R = lim
t→∞

e
i
∫

∞

−∞

Hintdt|k〉M|ψ〉Q|0〉R
= |k〉M|ψ〉Q|0〉R + αk|0〉M|ψk〉Q|0〉R + βk|k〉M|ψ−k〉Q|k〉R .

(51)

Here, we defined black hole wavefunctions that have either absorbed or emitted a mode

|k〉 using the “ladder operators” σ+
k and σ−

k

|ψ±k〉 = σ±
k |ψ〉 , (52)

and introduced a Fock space for stimulated radiation, with ground state |0〉R. The

coefficients αk and βk are related to the Einstein coefficients for emission and

absorption [48], so that βk = αke
−iωk/TH . Thus, we see that beyond spontaneous

emission and absorption, stimulated emission plays a crucial role in black hole

dynamics [49, 50, 51, 52]. Indeed, it is the key to the purification of the black hole

density matrix. If we ignore the elastic scattering term in Eq. (51) (it does not affect

the entanglement), we see that the accretion of n modes onto a pure black hole state
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|ψ〉 gives rise to the entangled wavefunction

|Ψ〉QMR =
2n
∑

i=1

√
pi|ψi〉Q|i〉MR , (53)

as promised. Information about the identity of the particle modes, i.e., the basis states

of M given by the labels attached to each incoming mode |ki〉M, are encoded in the

stimulated radiation states R in such a manner that they are perfectly correlated:

I = S(M : R). Because M and R share the same basis system, this von Neumann

mutual entropy actually reduces to a Shannon information, and we can say that M

plays the role of a preparer of the quantum states |ki〉R. The problem of understanding

the fate of information in black hole evaporation now just reduces to a problem in

quantum channel theory (namely the transmission of classical information through an

entanglement-assisted channel [14, 15, 53]), because spontaneous emission of particles

from state (53) creates a noisy quantum channel for the classical information I.

Because of the initial entanglement between the black hole and the stimulated

radiation, the final state after spontaneous emission will be an entangled pure state

between Q, the joint system MR, and the Hawking radiation. As the states MR are not

being measured, we need to trace them out to consider the joint state of black hole and

Hawking radiation. In particular, the Hawking radiation will appear completely thermal

with temperature TH. And as long as no additional particles accrete, the wavefunction

(53) ensures that the entropy of the MR system (note that S(MR) = S(M) = S(R)) is

always equal to the joint entropy of black hole and Hawking radiation. This implies that

we ought to be able to reformulate the second law of black hole thermodynamics in a

manner very similar to the modification introduced in section 1.4. This second law [45]

(see also [54] for a derivation in terms of quantum entanglement) states that the sum of

black hole entropy and surrounding matter/radiation (thermodynamical) entropy can

never decrease:

dStot = d(SBH + Stherm) ≥ 0 . (54)

But in information theory we can write equalities because we do not have to ignore

correlations, i.e., information entropies. According to the scenario above, we can thus

state that

In black hole evaporation, the joint entropy of black hole and Hawking radiation, as

well as the joint entropy of black hole, radiation, and the infalling matter distribution,

remain a constant.

As a corollary, we note that the only entropy that can decrease in such a process

is indeed the quantum entropy of the black hole given the outgoing radiation, as we

suspected earlier. A detailed description of black hole formation and evaporation in

a quantum information-theoretic setting is beyond the scope of this review, and will

appear elsewhere [55].
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5.2. Entropies in Curved Space Time

The treatment of black hole dynamics outlined above, while suggestive, did not fully

use the formalism of quantum field theory in curved space time. For example, entropies

were calculated in terms of quantum mechanical wavefunctions, and in general our

information degrees of freedom were particles with particular quantum numbers. But

as we saw earlier, a description of detectors in non-inertial frames is inconsistent because

whether or not a detector fires depends on its acceleration. Indeed, the particle concept

itself is suspect in this context, and instead we should use an approach based entirely

on quantum fields and their fluctuations. Such a formalism is preferred also because

quantum field theory guarantees that observables interact in a manner compatible with

the causal structure of space-time. Thus, in order to consistently define quantum

entropies in curved space-time, we must define them within quantum field theory. To

close this review, I briefly speculate about such an approach.

The first steps toward such a theory involve defining quantum fields over a manifold

separated into an accessible and an inaccessible region. This division will occur along

a world-line, and we shall say that the “inside” variables are accessible to me as an

observer, while the outside ones are not. Note that the inaccessibility can be due either

to causality, or due to an event horizon. Both cases can be treated within the same

formalism (and indeed the derivation of the Unruh and Hawking effect are very similar

for this reason). States in the inaccessible region have to be averaged over, since states

that differ only in the outside region are unresolvable. Let me denote the inside region

by R, while the entire state is defined on E. We can now define a set of commuting

variables X that can be divided into Xin and Xout. By taking matrix elements of the

density matrix of the entire system

ρ = |E〉〈E| (55)

with the complete set of variables (Xin, Xout), we can construct the inside density matrix

(defined on R) as

ρin = TrXout
(ρXinXout

) . (56)

This allows me to define the geometric entropy [56, 57, 58] of a state on E for an observer

restricted to R

Sgeom = −Tr(ρin log ρin) , (57)

where the trace is performed using the inside variables only. For quantum fields with

equiprobable modes, we can see this expression as giving the logarithm of the number

of states in the inaccessible (i.e., “out”) region that are consistent with measurements

restricted to the “in” region [58]. Writing down such an expression, however, is just the

beginning.

As with most quantities in quantum field theory, the geometric entropy (57) is

divergent and needs to be renormalized. Rather than being an inconvenience, this is

precisely what we should have expected: after all, we began this review by insisting
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that entropies only make sense when discussed in terms of the possible measurements

that can be made of the system. This is, of course, precisely the role of renormalization

in quantum field theory. Quantum entropies can be renormalized via a number of

methods, either using Hawking’s zeta function regularization procedure [59] or by the

“replica trick”, writing

Sgeom = −
[

d

dn
Tr(ρnin)

]

n=1

, (58)

and then writing dS(n) in terms of the expectation value of the stress tensor. A thorough

application of this program should reveal components of the geometric entropy due

entirely to the curvature of space-time, components that vanish in the flat-space limit.

Furthermore, the geometric entropy can be used to write equations relating the entropy

of the inside and the outside space-time regions, as

S(E) = S(ρin,out) = S(ρin) + S(ρout|ρin) . (59)

A thorough application of this program, with appropriate renormalization of both

ultraviolet and infrared divergencies, should finally yield an origin of the mysterious

Bekenstein entropy fully in accord with information theory. First steps in this direction

have indeed been taken very recently by Terno [60], who studied the transformation

properties of geometric entropy, and found that Sgeom is not a scalar under Lorentz

transformation, while the Bekenstein-Hawking entropy is. Clearly, we are still not close

to a full quantum field-theoretic description of information in arbitrary space-times, but

it would appear that the necessary tools are available.

6. Summary

Entropy and information are statistical quantities describing an observer’s capability to

predict the outcome of the measurement of a physical system. Once couched in those

terms, information theory can be examined in all physically relevant limits, such as

quantum, relativistic, and gravitational. Information theory is a non-equilibrium theory

of statistical processes, and should be used under circumstances (such as measurement,

non-equilibrium phase transitions, etc.) where an equilibrium approach is inappropriate.

Because an observer’s capability to make predictions (quantified by entropy) is not a

characteristic of the object the predictions apply to, it does not have to follow the same

physical laws (such as reversibility) as that befitting the objects. Thus, the arrow of time

implied by the loss of information under standard time-evolution is even less mysterious

than the second law of thermodynamics, which is just a consequence of the former.

In time, a fully relativistic theory of quantum information, defined for quantum

fields on curved space-time, should allow us to tackle a number of problems in cosmology

and other areas that have as yet resisted a consistent treatment. These developments,

I have no doubt, would have made Shannon proud.
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(1927).

[8] M. Tribus and E. C. McIrvine, Energy and information. Scientific American 224/9, 178-184

(1971).

[9] A. M. Turing, On computable numbers, with an application to the Entscheidungsproblem. Proc.

London Math. Soc. Ser. 2, 42, 230 (1936), ibid 43, 544 (1937).

[10] G. J. Chaitin, The Limits of Mathematics (Springer, Singapore, 1997).

[11] N. J. Cerf and C. Adami, Negative entropy and information in quantum mechanics. Phys. Rev.

Lett. 79, 5195-5197 (1997).

[12] N. J. Cerf and C. Adami, Quantum extension of conditional probability. Phys. Rev. A 60, 893-897

(1999).

[13] C. Adami and N. J. Cerf, What information theory can tell us about quantum reality. Lect. Notes

in Comp. Sci. 1509, 1637-1650 (1999).

[14] C. Adami and N. J. Cerf. von Neumann capacity of noisy quantum channels. Phys. Rev. A 56,

3470-3483 (1997).

[15] C. H. Bennett, P. W. Shor, J. A. Smolin, and A. V. Thapliyal, Entanglement-assisted capacity of

a quantum channel and the reverse Shannon theorem. IEEE Trans. Info. Theory 48, 2637-2655

(2002).

[16] P. W. Shor, Algorithms for quantum computation: Discrete logarithms and factoring, in

Proceedings of the 35th Symposium on Foundations of Computer Science, edited by S.

Goldwasser (IEEE Computer Society, New York, 1994), pp. 124-134.

[17] B. Julsgaard, A. Kozhekin, and E. S. Polzik. Experimental long-lived entanglement of two

macroscopic objects. Nature 413, 400 (2001).

[18] K. Jarett and T. M. Cover, Asymmetries in relativistic information flow. IEEE Trans. Info. Theory

27, 152-159 (1981).

[19] R. M. Gingrich, unpublished (2002).

[20] R Aldrovandi and J. Gariel, On the riddle of the moving thermometer. Phys. Lett.A 170, 5 (1992).
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