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Abstract

Consider a bipartite graph G = (X,Y ;E) with real-valued weights on its
edges, and suppose that G is balanced, with |X| = |Y |. The assignment
problem asks for a perfect matching in G of minimum total weight. Assign-
ment problems can be solved by linear programming, but fast algorithms
have been developed that exploit their special structure. The famous Hun-
garian Method runs in time O(mn + n2 log n), where n := |X| = |Y | and
m := |E|. If the edge weights are integers bounded in absolute value by
some constant C > 1, then algorithms based on weight scaling, such as that
of Gabow and Tarjan, can lower the time bound to O(m

√
n log(nC)).

But the graphs that arise in practice are frequently unbalanced, with r :=
min(|X|, |Y |) less than n := max(|X|, |Y |). Any matching in an unbalanced
graph G has size at most r, and hence must leave at least n − r vertices in
the larger part of G unmatched. We might want to find a matching in G of
size r and of minimum weight, given that size. We can reduce this problem
to finding a minimum-weight perfect matching in a balanced graph G′ built
from two copies of G. If we use such a doubling reduction when r � n,
however, we get no benefit from r being small.

We consider problems of this type in graphs G that are unbalanced.
More generally, given any s ≤ r, we consider finding a matching in G of size
s and of minimum weight, given that size. The Hungarian Method extends
easily to compute such a matching in time O(ms + s2 log r). Note that all
of the n’s in the time bound for the balanced case have become either r’s
or s’s, where s ≤ r ≤ n. But weight-scaling algorithms do not extend so
easily. We introduce new machinery that enables us to compute a minimum-
weight matching of size s in time O(m

√
s log(sC)) via weight scaling. Our

techniques give some insight into the general challenge of designing efficient,
matching-related algorithms.

This report’s key algorithm is presented more concisely in HPL-2012-72R1.
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Chapter 1

Introduction

Consider a bipartite graph G = (V ;E) = (X,Y ;E), where the vertex set
V = X ∪ Y is partitioned into two parts X and Y with E ⊆ X × Y . We
refer to the elements of X as women and the elements of Y as men.1 The
graph G is balanced when |X| = |Y |, so that there are the same number of
women as men. Otherwise, G is unbalanced. (Some authors use the terms
symmetric and asymmetric [3].)

For a balanced graph G, we follow tradition by using n := |X| = |Y | for
the number of vertices in each part and m := |E| for the number of edges.
For an unbalanced graph, we use n := max(|X|, |Y |) for the size of the larger
part, while we introduce the symbol r := min(|X|, |Y |) for the size of the
smaller part.2 (Some authors use n1 and n2 for our r and n [1].) Note that
the number of vertices in the larger part and the total number of vertices,
n and n+ r, differ by at most a factor of 2; so, in an asymptotic bound, we
don’t need to distinguish between them. But it can happen that r is much
smaller than n. For example, r = O(

√
n) or r = O(log n) or even r = O(1)

are perfectly feasible. We call such graphs asymptotically unbalanced — that
is, unbalanced by more than a constant factor, with r = o(n). (Some authors
reserve the term unbalanced for these graphs [1].)

Our bipartite graphs are weighted. So each edge in G has a weight,
which is a real number that can be either positive, zero, or negative. We
can interpret the weights either as costs, whose sums we try to minimize, or
as benefits, whose sums we try to maximize. We can convert between those
two points of view simply by negating all of the weights, so it makes little
difference which point of view we adopt. And the existing literature includes
both cost-minimizers and benefit-maximizers. To simplify comparisons with
either camp, we introduce both a cost function c : E → R and a benefit
function b : E → R, requiring that c(x, y) + b(x, y) = 0 for each edge (x, y)
in E. In this report, we talk mostly about minimizing cost, but with the
understanding that maximizing benefit would be equivalent.

1To remember which is which, think about how sex chromosomes behave in mammals.
2As a mnemonic aid, think of n as the size of that part in which vertices are more

numerous, while r is the size of that part in which vertices are more rare.
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A matching in the graph G is a set M of edges that don’t share any
vertices. The size (or cardinality) of a matching M is the number of edges:
s := |M |. If (x, y) is an edge of a matching M , we refer to the woman x and
the man y as matched or married in M . We define the cost of a matching
to be the sum of the costs of its edges, and similarly for benefits:

c(M) :=
∑

(x,y)∈M

c(x, y) and b(M) :=
∑

(x,y)∈M

b(x, y) (1-1)

We denote by ν(G) the maximum size of any matching in G. A balanced
graph G has ν(G) = n just when matchings of size n exist in G. Such
matchings are called perfect ; they pair up each vertex in X with a vertex
in Y and vice versa. An unbalanced graph G always has ν(G) ≤ r. If
matchings of size r exist, we call them one-sided perfect : Every vertex in
the smaller side of G is matched, but n− r vertices in the larger side are left
unmatched, left as either maidens3 or bachelors. A matching of size smaller
than r is imperfect ; it leaves both some maidens and some bachelors.

1.1 Three variants of the assignment problem

In an assignment problem, an output size s is somehow determined, and we
then compute a matching in G of size s whose cost is minimum, among all
matchings of that size. Note that we minimize cost only over the matchings
of size s; matchings of other sizes are irrelevant.

We deal with three variants of the assignment problem:

Perfect Assignments (PerA) Let G be a balanced bipartite graph with
edge weights. If ν(G) = n, compute a min-cost perfect matching in G;
otherwise, return the error code “infeasible”.

Imperfect Assignments (ImpA) Let G be a bipartite graph with edge
weights, either balanced or unbalanced, and let t ≥ 1 be a target size.
Compute a min-cost matching in G of size s := min(t, ν(G)).

Incremental Assignments (IncA) Let G be a bipartite graph with edge
weights, either balanced or unbalanced. Compute min-cost matchings
in G of sizes 1, 2, . . . , ν(G), presenting each in turn to the caller. The
caller determines s by choosing to stop whenever satisfied.

For ImpA and IncA, our time bounds are functions of s, the size of
the output matching, and are hence output sensitive. For simplicity in our
time bounds, we assume that s ≥ 1; and, when we introduce C below, we
will assume that C > 1. We also assume that our bipartite graphs have no
isolated vertices, so we have r ≤ n ≤ m ≤ rn. It follows that m has to go to

3English doesn’t have a word that means simply an unmarried woman; “maiden” and
“spinster” both have irrelevant overtones, which are politically incorrect to boot. Indeed,
when faced with this challenge, television shows have typically resorted to “bachelorette”.
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infinity along with n, as our graphs get large. But r can remain bounded;
indeed, we can even have r = 1.

Historically, the problem PerA has been the most studied. If the graph
G is both balanced and complete bipartite, then the costs of its edges can
be conveniently represented using a square matrix. The resulting linear-sum
assignment problem has been the object of much study, as described in a
book by Burkard, Dell’Amico, and Martello [4].

1.2 Known algorithms for the balanced case

The algorithms for the problem PerA that perform the best in practice
are local methods. These algorithms maintain a matching and prices at the
vertices, and their basic step is some flavor of local update, an update that
changes the matching status of just one or two edges and the prices just at
the vertices that those edges touch. Algorithms of this type were invented
by several groups of researchers, under different names. Goldberg calls them
push-relabel algorithms [12], and the term preflow-push is also used by this
group; but Bertsekas calls them auction algorithms [2]. Even a cursory
examination reveals that push-relabel and auction algorithms are similar;
and Marcos Vargas analyzed a particular pair of such algorithms and showed
them completely equivalent [20]. So we won’t distinguish between those two
families of algorithms, referring to them simply as local methods. While
local methods perform the best in practice, achieving the best theoretical
time bounds seems to require methods that are nonlocal, at least in part.

By the way, some simple local methods solve those instances of PerA
in which ν(G) = n but would run forever if ν(G) < n. Extra machinery is
needed to guard against the lack of perfect matchings in those methods.

The granddaddy of polynomial-time algorithms for PerA is the famous
Hungarian Method, from Kuhn [16] in 1955.4 This method is purely global;
it builds up its min-cost matching incrementally by augmenting along entire
augmenting paths, paths from a maiden to a bachelor. While the Hungarian
Method doesn’t perform as well as local methods in practice, it is attractive
from a theoretical perspective, with time bounds that have been improved
by a slew of researchers over the years. Fredman and Tarjan [10] proposed
using Fibonacci heaps, getting an algorithm that runs in space O(m) and
in time O(mn + n2 log n). That’s the current champion among strongly
polynomial algorithms for PerA. If the weights are assumed to be integers,
then Thorup [19] showed that the time can be reduced to O(mn+n2 log log n)
by using the weights to compute the addresses of buckets.

Weight-scaling is a different way to achieve improved time bounds; like
Thorup’s technique, weight-scaling requires that the edge weights be integers
and fails to be strongly polynomial. Using weight-scaling, we can solve the
assignment problem in space O(m) and in time O(m

√
n log(nC)), where

4Going even further back, Carl Gustav Jacob Jacobi solved the assignment problem in
polynomial time in the 19th century, published posthumously in 1890 in Latin.
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C > 1 is a bound on the absolute values of the edge weights. This time bound
is achieved by three different algorithms, due to Gabow and Tarjan [11], to
Orlin and Ahuja [17], and to Goldberg and Kennedy [13]. Gabow-Tarjan
is the most important of those three for our current purposes, and it is
purely global; that is, like the Hungarian Method, Gabow-Tarjan builds its
matchings by augmenting along entire augmenting paths. The other two
algorithms are hybrids of local and global techniques.

A note about C: In this report, we use the symbol C̄ to denote the
maximum of the absolute values of the edge weights in the graph G:

C̄ := max
(x,y)∈E

|c(x, y)|. (1-2)

Even a large graph G can have C̄ = 0, if all of the edge weights in G are
precisely 0. It is this maximum C̄ that is relevant, for example, in Section 3.8,
where we show that the prices in the Hungarian Method always lie in the
interval [0 . . (2`+1)C̄]. When C̄ = 0, that interval collapses to [0 . .0] = {0}.
In asymptotic time bounds, however, it is more convenient to work with
some constant C ≥ C̄ that also has C > 1, so that log(C) and log(sC) are
well defined and positive.

1.3 Reducing from unbalanced to balanced

The assignment problems that arise in practice are often unbalanced. One
approach for solving such problems is to reduce them to balanced problems.
The simplest reduction beefs up the smaller part of G to the same size as
the larger part by adding n − r new vertices to the smaller part and then
adding zero-cost edges connecting each of those new vertices to each of the
vertices in the larger part. But that involves adding (n − r)n new edges,
which is quadratically many. There is a better way.

A standard doubling technique lets us reduce an assignment problem for
an unbalanced graph G to an assignment problem for a balanced graph G′

of linear size — that is, with n′ = O(n) and m′ = O(m). We build G′ by
taking two copies of the input graph G and flipping one of them over, giving
us a forward copy Gf and a backward copy Gb, each with the same edges and
edge costs as G. We then add some linking edges, new edges that connect
the two copies in G′ of some of the vertices in G. The authors thank Marcos
Vargas [20] for clarifying the roles played by these linking edges.

Suppose first that our graph G does have one-sided-perfect matchings
and that our goal is to find such a matching that is min-cost; and suppose,
for convenience, that X is the smaller part of G and Y is the larger part.
As shown in Figure 1.1, we can then add, to G′, just one linking edge for
each vertex y in Y , connecting the copies of y in Gf and in Gb. And we give
these large-to-large linking edges cost zero. The resulting balanced graph
G′ will have perfect matchings, and any such matching will consist of one-
sided-perfect matchings in both Gf and Gb, with the unmatched vertices
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y2

yn

G
Gf

Gb

G′ large-to-large
linking edges,
cost = 0

Figure 1.1: Reducing to PerA instances of ImpA with t ≥ ν(G) = r

x1
x2

xr

y1
y2

yn

G

Gf

Gb

G′ large-to-large
linking edges,
cost = 0

small-to-small
linking edges,
cost = 4rC

Figure 1.2: Reducing to PerA instances of ImpA with t ≥ ν(G) < r

paired up using n − r of the large-to-large linking edges (so the matchings
in Gf and Gb must match corresponding subsets of the larger part). This
technique reduces to PerA those instances of ImpA in which s = r, that
is, those instances in which t ≥ ν(G) and ν(G) = r.

Suppose next that we have an instance of ImpA with t ≥ ν(G), but with
ν(G) < r. In addition to the large-to-large linking edges discussed above,
we then also add small-to-small linking edges, as shown in Figure 1.2; but
we give each of those edges a large positive cost — say, the cost 4rC. (So
the graph G′ is now slightly more than linear, with C ′ = O(rC) instead of
C ′ = O(C).) The resulting graph G′ always has perfect matchings, which are
of size n′ = n + r. Indeed, all of the linking edges of both types constitute
a perfect matching. But a perfect matching in G′ of minimum cost must
consist of matchings in Gf and Gb, each of size ν(G) and of minimum cost
given that size, brought up to perfection by some n − ν(G) large-to-large
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linking edges and some r − ν(G) small-to-small linking edges. To see that
the matchings in Gf and Gb will have size ν(G), note that the worst that
can happen to the cost, when we increase the size of a matching in G by
one, is that we lose r − 1 extremely attractive edges and replace them with
r extremely expensive edges, thus increasing our cost by (2r − 1)C̄. This
could happen in both Gf and Gb; but we get to reduce by one the number
of small-to-small linking edges that we need, which saves us 4rC; so the
transaction, as a whole, reduces our cost.

But these doubling reductions are unsatisfactory in various respects.
They don’t seem to help with instances of ImpA in which t < ν(G), since
there is no obvious way to impose a bound less than ν(G) on the size of
the matching in G that we extract from G′. And they don’t seem to help
with IncA. But the key problem with these doubling reductions, from our
current perspective, is that we gain no speed advantage when s� n.

1.4 Tackling the unbalanced case directly

Rather than using some reduction, we can instead take an algorithm for
the balanced case of the assignment problem and try to generalize it to
handle the unbalanced case directly. Indeed, on the practical side, Bertsekas
and Castañon [3] generalized an auction algorithm to work on unbalanced
graphs directly.5 In this report, we explore that same direct approach from
a theoretical perspective: We consider the time bounds for PerA algorithms
and we try to replace as many of the n’s in those time bounds as we can
with r’s or s’s. Ahuja, Orlin, Stein, and Tarjan [1] replaced lots of n’s with
r’s in the time bounds of network flow algorithms for bipartite graphs; but
the corresponding challenge for assignment algorithms seems to be new.

The Hungarian Method is an easy success story; it generalizes nicely to
handle the unbalanced case, with no new algorithmic ideas needed and with
attractive resulting time bounds. Recall that the Hungarian Method, when
implemented with Fibonacci heaps, solves PerA in time O(mn+ n2 log n).
We show, in Section 3, that it solves ImpA in time O(ms+ s2 log r). Note
that most of the n’s have become s’s, with a single r remaining in the loga-
rithm that arises from the heap overhead. In fact, the Hungarian Method is
incremental, so it even solves IncA in that same time bound. If the costs are
integers and we use Thorup’s technique, the log r factors in either of these
bounds can be reduced to log log r.

Generalizing weight-scaling algorithms to the unbalanced case, however,
turns out to be trickier. The algorithm of Goldberg and Kennedy [13] can
compute imperfect matchings that are min-cost; but it isn’t clear whether
any of the n’s in the resulting time bound can be replaced with r’s or s’s.
Worse yet, a straightforward attempt to compute an imperfect matching
with the algorithm of Gabow and Tarjan [11] or of Orlin and Ahuja [17] may
result in a matching that fails to be min-cost. In Section 2.7, we derive the

5We discuss an interesting aspect of their generalized algorithm in Section 4.5.
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maiden and bachelor bounds, inequalities that relate the prices of unmatched
vertices to those of matched vertices and thereby help to prove that an
imperfect matching is min-cost. The Hungarian Method preserves these
bounds naturally, as does Goldberg-Kennedy; but neither Gabow-Tarjan
nor Orlin-Ahuja does so.

Our central result is FlowAssign, a weight-scaling algorithm that solves
ImpA in time O(m

√
s log(sC)); but FlowAssign is not incremental, so it

doesn’t solve IncA. Roughly speaking, FlowAssign is Gabow-Tarjan with
dummy edges to a new source and sink added, to enforce the maiden and
bachelor bounds. FlowAssign also simplifies Gabow-Tarjan in two respects.
First, Gabow-Tarjan adjusts some prices as part of augmenting along an
augmenting path. Those price adjustments turn out to be unnecessary, and
we don’t do them in FlowAssign (though we could, as Section 10.1 discusses).
Second, a person posing an assignment problem sometimes wants prices that,
through complementary slackness, prove that the output matching is indeed
min-cost. Gabow and Tarjan compute such prices in a O(m) postprocessing
step. In FlowAssign, we compute such prices simply by rounding, to integers,
the prices that we have already computed, that rounding taking time O(n).

FlowAssign has an attractive theoretical time bound, and it deals with
unbalanced graphs without the overhead of a doubling reduction. But it
is purely global, building all of its matchings by augmenting along entire
augmenting paths. As such, its performance in practice may not be all that
attractive. Both Goldberg-Kennedy and Orlin-Ahuja are hybrid algorithms,
using local techniques for many of their updates and mixing in only enough
global updates to achieve good time bounds — in the balanced case. To find
an algorithm for the unbalanced case that performs well in both theory and
practice, it might be good to aim for such a hybrid algorithm.

1.5 The matching problem

Two problems related to the assignment problem are worth mentioning. In
this section, we consider the matching problem, where we simply search for
any matching of the relevant size s. We don’t try for a matching that is
min-cost, and, indeed, we ignore any edge weights that might exist.

We consider three variants of the matching problem, analogous to our
three variants of the assignment problem:

Perfect Matchings (PerM) If G has any perfect matchings, return one;
otherwise, return the error code “infeasible”.

Imperfect Matchings (ImpM) Let G be a bipartite graph and let t ≥ 1
be a target size. Compute a matching in G of size s := min(t, ν(G)).

Incremental Matchings (IncM) Let G be a bipartite graph. Compute
matchings in G of sizes 1, 2, . . . , ν(G), presenting each in turn to the
caller. The caller determines s by choosing to stop whenever satisfied.
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The most famous algorithm for the matching problem was proposed by
Hopcroft and Karp [14]. As published, Hopcroft-Karp computes a matching
of size ν(G) in time O(m

√
ν(G)), thus solving those instances of ImpM

that have t ≥ ν(G). We show, in Section 5, that Hopcroft-Karp actually
solves all instances of ImpM, and even IncM as well, in time O(m

√
s).

Our algorithm FlowAssign exploits this by using Hopcroft-Karp to solve an
instance of ImpM as part of its initialization.

Consider computing a max-size matching — that is, a matching of size
ν(G) — in a balanced graph G, and in a context where output-sensitive
time bounds aren’t interesting; Hopcroft-Karp does this in time O(m

√
n).

If the graph G is sufficiently dense, then Feder and Motwani [9] show how
to improve on Hopcroft-Karp by a factor of as much as log n. In particular,
they compute a max-size matching in time O(m

√
n log(n2/m)/ log n). If

m is nearly n2, then the log factor in the numerator is small and we are
essentially dividing by log n. But the improvement drops to a constant as
soon as m is O(n2−ε), for any positive ε.

We won’t be applying the Feder-Motwani technique in this report. But
it would be interesting to generalize their technique to the unbalanced case.
By using a doubling reduction, their algorithm can find a max-size match-
ing in an unbalanced graph in the time bound given above. But it isn’t
clear whether that time could be improved by tackling the unbalanced case
directly — perhaps improved to O(m

√
r log(rn/m)/ log n).

1.6 Maximum-weight matchings

We now return to bipartite graphs with weights on their edges, and we tackle
the maximum-weight matching problem MWM: the problem of computing
a matching that has the maximum possible benefit (and hence the minimum
possible cost), among all matchings of any size whatever. Duan and Su [8]
recently found a weight-scaling algorithm for the balanced case of MWM
that runs in space O(m) and in time O(m

√
n logC). Thus, they managed

to reduce the logarithmic factor of the typical weight-scaling bound from
log(nC) to logC. They discuss the intriguing open question of whether a
similar reduction can be achieved for the assignment problem, where the
optimization is over matchings of some fixed size.

Like most researchers in this area, Duan and Su did not consider the
asymptotically unbalanced case, so they made no attempt to replace n’s
with r’s. Their algorithm might generalize straightforwardly, thus solving
the unbalanced case of MWM in time O(m

√
r logC); we leave that as

another open question.

By the way, we can easily reduce from the unbalanced case of MWM
to ImpA, with no doubling needed. As shown in Figure 1.3, we simply
add r new vertices to the larger part of G, and we add r new, zero-weight
edges that connect these new vertices to the vertices in the smaller part of
G. The resulting graph G′ is even more unbalanced than G, but it clearly
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Figure 1.3: Reducing from MWM to ImpA

has one-sided-perfect matchings, and such a matching of maximum benefit
gives us a max-weight matching in G. By using FlowAssign to solve the
resulting instance of ImpA, we can solve the unbalanced case of MWM in
time O(m

√
r log(rC)). Thus, we can reduce the

√
n to

√
r, but only at the

price of bumping the logarithmic factor back up from logC to log(rC).
Finally, recall that Feder and Motwani showed how to speed up Hopcroft-

Karp a bit, for quite dense graphs. Suppose that we have a fairly dense,
balanced bipartite graph G with positive edge weights, but most of those
weights are quite small; and we want to compute a max-weight matching
in G. If all of the weights were precisely 1, then a max-weight matching
would be the same as a max-size matching, so we could use Feder-Motwani.
Kao, Lam, Sung, and Ting [15] showed that a similar improvement is possi-
ble as long as most of the edge weights are quite small. Assuming that the
edge weights are positive integers and letting W denote the total weight
of all of the edges in G, they compute a max-weight matching in time
O(
√
nW log(n2C/W )/ log n). When C = O(1) and hence W = Θ(m), their

bound matches that of Feder and Motwani. But they continue to achieve
improved performance until W gets up around m log(nC), at which point
we are better off reducing to an assignment problem. (We could reduce to
ImpA as in Figure 1.3 and then apply FlowAssign; or we could reduce to
PerA by using the doubling reduction in Figure 1.2, but with the weights
of both the large-to-large and small-to-small linking edges set to zero.)

If someone manages to generalize Feder-Motwani to the asymptotically
unbalanced case, it might then be worthwhile to consider similarly gener-
alizing the Kao-Lam-Sung-Ting result. The main issue would be replacing
their initial

√
n with

√
r.
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Chapter 2

From matchings to flows

We begin by constructing a flow network NG from the given bipartite graph
G. This converts the problem of finding min-cost matchings in G to the
problem of finding min-cost integral flows in NG. This construction is quite
standard, but our version has some wrinkles: We renounce a skew-symmetry
that many authors adopt, and we introduce the new term “flux”.

2.1 Building the flow network NG

Figure 2.1 shows an example of how we construct, from an undirected graph
G, a directed graph NG that we call the flow network of G. We imagine
shipping various quantities of some commodity — perhaps liters of water —
along the various arcs of NG. For example, we might ship f(v, w) liters of
water from node v to node w along the arc v → w.

Each arc v → w in any of our flow networks will have a maximum
capacity of one unit of flow and will have a per-unit-of-flow cost, which we
denote c(v, w). If we ship f(v, w) units of flow along the arc v → w, then
the cost that we accrue from this arc is the product f(v, w)c(v, w).

By the way, the per-unit-of-flow cost c(v, w) is frequently positive; but
one can imagine situations where it would be negative. For example, the
node v might be at a higher altitude than the node w, and we might be able

x1
x2

xn

y1
y2

yr

` a

G NG

bipartite
arcs

left-dummy
arcs,

cost = 0

right-dummy
arcs,

cost = 0

Figure 2.1: Converting a bipartite graph G into the flow network NG
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to generate hydroelectric power as a result of shipping a liter of water from
v to w, thus leading to c(v, w) < 0.

The flow network NG has one node for every vertex in G and has two
special nodes called the source and the sink, which we denote by ` and a.
Each edge (x, y) in G gives rise to a directed arc x → y in NG, directed
from x toward y. We refer to the arcs that arise in this way as bipartite
arcs. The per-unit cost of the bipartite arc x→ y is c(x, y), the cost of the
corresponding edge in G. In addition to the bipartite arcs, the network NG

includes dummy arcs. For each vertex x in X, there is a left-dummy arc
` → x, directed from the source node ` to the node x. The per-unit cost
of a left-dummy arc is zero: c(`, x) := 0. Symmetrically, for each vertex y
in Y , the network NG includes a right-dummy arc y → a, directed from the
node y to the sink node a and of cost zero: c(y,a) := 0.

Warning: Many authors set up their flow networks to include a backward
version of each arc, along with the forward version. They then define the
functions f and c that measure flow quantity and per-unit cost to be skew-
symmetric, with f(w, v) = −f(v, w) and c(w, v) = −c(v, w). This approach
has some advantages, but we do not adopt it. Instead, our flow networks
have only forward arcs, oriented from left to right. Thus, if we ever talk
about an arc v → w in a flow network NG, we must have either:

• v → w is a left-dummy arc, with v = ` and w ∈ X;

• or v → w is a bipartite arc, with v ∈ X and w ∈ Y ;

• or v → w is a right-dummy arc, with v ∈ Y and w = a.

We avoid backward arcs because FlowAssign quantizes the reduced costs
of arcs in a one-sided manner, using “ceiling quantization”, as we discuss
in Section 6.1. If we included backward arcs, we would have to use floor
quantization on them, to be consistent with the ceiling quantization that we
use on our forward arcs. It seems simpler to avoid backward arcs entirely.

Of course, our augmenting paths will have to take both forward steps,
adding a new edge to the matching, and backward steps, removing an edge
from the matching. But our augmenting paths will be paths in an auxiliary
graph called the residual digraph. To avoid confusion, we use different terms
and notations for our three different levels of graphs. The original bipartite
graph G has vertices and edges, where a typical edge is written (x, y). The
flow network NG has nodes and arcs, where a typical arc is written v → w,
and all arcs go forward. The residual digraph will have nodes and links,
where a typical link is written v ⇒ w, and some links go forward while
others go backward.

2.2 Of matchings and integral flows

There is no standard term for a function f that assigns some real-valued flow
f(v, w) to each arc v → w in a flow network, with no restrictions whatsoever.
Let’s call such a function f a flux.
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Figure 2.2: A matching M in a bipartite graph G and the corresponding integral
flow f on the flow network NG. The matching M has three edges and is imperfect,
leaving x1, x3, and x6 as maidens and leaving y2 and y5 as bachelors.

A pseudoflow is a flux in which the flow f(v, w) along each arc v → w is
nonnegative and satisfies the unit-capacity constraint: 0 ≤ f(v, w) ≤ 1. If f
is a pseudoflow, we refer to an arc v → w with f(v, w) = 0 as idle in f , to an
arc with f(v, w) = 1 as saturated in f , and to an arc with 0 < f(v, w) < 1
as having fractional flow in f .

A flow is a pseudoflow in which flow is conserved at all nodes except for
the source and the sink; that is, the total flow entering each such node is the
same as the total flow leaving it. The value of a flow f , denoted |f |, is the
total flow out of the source, which is also the total flow into the sink – and,
for that matter, the total flow over all of the bipartite arcs. (“Circulations”
and “preflows” are other flavors of fluxes, for which we have no current need.)

A flux f is integral when, for every arc v → w, the flow f(v, w) over that
arc is an integer. We will typically be dealing with fluxes, pseudoflows, and
flows that are integral. If a pseudoflow on some flow network is integral,
then every arc is either idle or saturated — no arcs have fractional flow.

Given any flux f in the flow network NG, we define the cost of that flux
to be the sum of the costs of its arcs:

c(f) :=
∑

v→w∈NG

f(v, w)c(v, w). (2-1)

Recall that our flow network NG has only forward arcs, so we have no need
to divide by 2 in this formula, as the fans of skew-symmetry must do. Also,
since all of the dummy arcs in NG are zero-cost, only the bipartite arcs
actually contribute to the sum in (2-1).

Prop 2-2. Matchings M in the bipartite graph G naturally correspond to
integral flows f in the flow network NG. In this correspondence, the size
of the matching is the value of the flow: |M | = |f |. And the cost of the
matching is the cost of the flow: c(M) = c(f). Thus, a min-cost matching
of some size s corresponds to a min-cost integral flow of value s.

Proof. Figure 2.2 shows an example. Given a matching, the edges in that
matching tell us which bipartite arcs should be saturated in the correspond-
ing flow, and then conservation of flow determines which dummy arcs have
to be saturated. Conversely, given a flow, the saturated bipartite arcs of
that flow become the edges of the matching.
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2.3 The dual variables as prices

With Prop 2-2 in mind, computing a min-cost matching of some size s in the
bipartite graph G is the same as computing a min-cost integral flow of value
s in the flow network NG. If we drop the integrality constraint, the latter
problem is a linear program. So we now appeal to concepts from linear
programming, but stripped down for this situation. In particular, rather
than saying that a flow f and prices p “satisfy complementary slackness”,
we will abbreviate by saying that the pair (f, p) is proper.

We invent a dual variable for each node in the flow network NG, whose
value we can interpret as the per-unit price of the commodity at that node.
But here we face another choice of sign: Are we talking about the price
that we would be charged to acquire a unit of the commodity at this node
or the price that we would be charged, at this node, to dispose of a unit
of the commodity? (The latter assumes, of course, that we dispose of our
extra units of commodity in an ecologically responsible manner, which may
involve some cost; we don’t simply dump those units in a ditch on a dark
night.) This choice of sign is analogous, in some ways, to the choice between
costs and benefits; but the two choices are independent.

In this report, we are trying to accommodate both benefit-maximizers
and cost-minimizers by introducing notations for both the benefit of an edge
and its cost: b(x, y) + c(x, y) = 0. In an analogous way, let’s introduce
notations for both acquire prices and dispose prices.1 So, for any node v in
the network NG, let pa(v) be the per-unit price to acquire the commodity
at v, while pd(v) is the per-unit price to dispose of the commodity at v. We
always have pa(v) + pd(v) = 0, for all nodes v. But both of these prices can
have either sign; for example, gold typically has a positive acquire price and
a negative dispose price, while asbestos has the reverse.

Warning: The distinction between the acquire price of a commodity and
its dispose price is not at all the same as the distinction — say, for a precious
metal — between its buying price and its selling price. The selling price is
the acquire price: the money that you must pay to a dealer to acquire the
commodity. But the buying price is the money that a dealer will pay you
to dispose of the commodity for you; so the buying price is the negative
of the dispose price. In our idealized economy, we assume that the acquire
and dispose prices sum to zero, which means that the buying price and the
selling price always coincide.

2.4 Net costs of arcs and flows

Suppose that we are given prices at all of the nodes in the flow network NG;
we refer to these prices as p, from which we can compute both pa(v) and
pd(v) for any node v. It then makes economic sense to adjust the per-unit

1It is serendipitous that the words “cost”, “benefit”, “acquire”, and “dispose” start with
the first four letters of the alphabet.
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cost c(v, w) of each arc v → w to account for the difference in prices between
the nodes v and w. We refer to this adjusted cost as the reduced cost of
the arc v → w, and we denote it as cp(v, w). Each arc v → w also has a
reduced benefit bp(v, w), which satisfies bp(v, w) + cp(v, w) = 0. A moment
of economic thought reveals the proper signs to use in the formulas that
compute the reduced cost from the cost and the prices. There are four such
formulas, since we might be keeping track of either costs or benefits and we
might be using either acquire prices or dispose prices:

cp(v, w) := c(v, w) + pa(v)− pa(w) = c(v, w)− pd(v) + pd(w) (2-3)

bp(v, w) := b(v, w)− pa(v) + pa(w) = b(v, w) + pd(v)− pd(w) (2-4)

Warning: In work on the balanced case of the assignment problem, it has
been traditional to compute reduced costs using a formula like cp(x, y) :=
c(x, y) +p(x) +p(y) or cp(x, y) := c(x, y)−p(x)−p(y), where the prices at x
and at y enter with the same sign. To get such a formula, acquire prices are
used in one of the two parts of the bipartite graph G, while dispose prices
are used in the other. The undirected graph underlying our network NG is
bipartite, so we could choose to continue this tradition. For example, we
could use acquire prices at nodes in X and at the sink a, but dispose prices
at the nodes in Y and at the source `. Our adjustment formulas would then
have two prices with the same sign; but arcs of different types would have
different adjustment formulas:

cp(`, x) := c(`, x)− pd(`)− pa(x) for a left-dummy arc ` → x

cp(x, y) := c(x, y) + pa(x) + pd(y) for a bipartite arc x→ y

cp(y,a) := c(y,a)− pd(y)− pa(a) for a right-dummy arc y → a.

It could be confusing to keep track of which formula applies in which cases.
Once we add a source and sink to our network, it seems simpler to use either
acquire prices throughout or dispose prices throughout.

But which prices shall we adopt: acquire or dispose? If we use dispose
prices, it will turn out that the price changes in our Hungarian searches
will be price increases, which are more familiar from real life than price
decreases; so let’s do that. From now on, when we say “price” without
further specification, we mean “dispose price”. So the adjustment formula
that we will use most often is cp(v, w) = c(v, w)− pd(v) + pd(w).

In equation (2-1), we defined the cost of a flux f to be the sum of the
costs of its arcs. Given prices p on the nodes of the network NG, we define
the reduced cost of the flux f in the analogous way:

cp(f) :=
∑

v→w∈NG

f(v, w)cp(v, w). (2-5)

If the flux f is actually a flow, then there is a simple relationship between
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its cost and its reduced cost. We have

cp(f) =
∑

v→w∈NG

f(v, w)cp(v, w)

=
∑

v→w∈NG

f(v, w)
(
c(v, w)− pd(v) + pd(w)

)
= c(f)− |f |

(
pd(`)− pd(a)

)
. (2-6)

To justify that last step, note that the value |f | is the total flow out of the
source ` and into the sink a, while flow is conserved at all other nodes.

2.5 Proper arcs

The theory of linear programming gives us a concept and a result.

Definition 2-7. Let f be a pseudoflow on the network NG and let p specify
prices at the nodes of NG. We refer to the pair (f, p) as proper when every
arc v → w that has cp(v, w) > 0 has f(v, w) = 0 and every arc v → w that
has cp(v, w) < 0 has f(v, w) = 1. In words, every arc with positive reduced
cost is idle and every arc with negative reduced cost is saturated.

If a pseudoflow f and prices p form a proper pair (f, p), it is clear that f
has the smallest reduced cost cp(f) that is possible for any pseudoflow under
the prices p, since each arc’s contribution to the sum in (2-5) is minimized.
If f is a flow, however, the cost c(f) is also minimum, in a certain sense.

Prop 2-8. Let f be a flow on the flow network NG and let p specify prices at
the nodes of NG. If the pair (f, p) is proper, then the cost c(f) is minimum,
among all flows of value |f |.

In Appendix A, we prove Prop 2-8 as an instance of the duality of linear
programming. For completeness, however, we prove it here directly.

Proof. Let f ′ be any flow in the network NG with |f ′| = |f |. We will show
that c(f ′) ≥ c(f) by calculating the reduced cost cp(f

′− f) of the difference
flux f ′−f in two different ways. Note, by the way, that the flux f ′−f might
not be a pseudoflow, since it might assign negative flow to some arcs.

We first calculate the reduced cost on an arc-by-arc basis:

cp(f
′ − f) =

∑
v→w∈NG

(f ′ − f)(v, w) cp(v, w)

Each term in this sum is nonnegative: If cp(v, w) > 0, properness implies
that f(v, w) = 0, so (f ′ − f)(v, w) ≥ 0; and, if cp(v, w) < 0, properness
implies f(v, w) = 1, so (f ′ − f)(v, w) ≤ 0. It follows that cp(f

′ − f) ≥ 0.
Calculating in a different way, we can split up the flux f ′−f into its two

constituent flows and use equation (2-6) on each:

cp(f
′ − f) = cp(f

′)− cp(f)

=
(
c(f ′)− |f ′|(pd(`)− pd(a)

)
−
(
c(f)− |f |(pd(`)− pd(a)

)
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Since the flows f and f ′ have the same value, the correction terms cancel.
So we have cp(f

′− f) = c(f ′)− c(f) ≥ 0, and we conclude that c(f ′) ≥ c(f),
as required.

Definition 2-7 tests whether an arc is proper by using the arc’s reduced
cost to constrain its flow. We can turn this around, using the arc’s flow to
constrain its reduced cost. Taking contrapositives of the conditions in Defi-
nition 2-7, arcs that are not idle must have nonpositive reduced cost, while
arcs that are not saturated must have nonnegative reduced cost. Combining
these, it follows that arcs with fractional flow must have zero reduced cost.
So here is an equivalent way to define what it means to be proper.

Definition 2-9. Given a pseudoflow f on the flow network NG and prices
p at the nodes of NG, we define an arc that is idle in f to be proper when
its reduced cost is nonnegative; we define an arc that is saturated in f to
be proper when its reduced cost is nonpositive; and we define an arc that
has fractional flow in f to be proper only when its reduced cost is zero. We
say that the pair (f, p) is proper when all of the arcs in NG — whether idle,
saturated, or with fractional flow — are proper.

Note that, if the pseudoflow f is integral, as ours will typically be, then
there are no arcs with fractional flow; so the third case doesn’t arise.

Corollary 2-10. Let f be an integral flow in the flow network NG of value
s := |f | and suppose that we can find prices p at the nodes of NG that make
the pair (f, p) proper. The cost c(f) is then minimum, among all flows of
value s. It follows that the matching in G that corresponds to f is min-cost,
among all matchings of size s.

2.6 The perspective of linear programming

We now discuss some connections with the theory of linear programming.
Given the flow network NG and a specified value s, it is a linear program

to minimize the cost c(f) of a flow f in NG of value s. We refer to this as
the primal problem. The decision variables of the primal problem are the
flows f(v, w) along the various arcs in NG.

The dual problem has, as its decision variables, the prices at the nodes
of NG. (The dual problem also has decision variables associated with the
arcs of NG, but those variables play a minor role, as shown in Appendix A.)
Given any prices at the nodes, the objective function of the dual gives a
lower bound on the cost of any flow of value s. The goal of the dual problem
is to maximize the resulting lower bound.

Let’s now assume that s ≤ ν(G), so that the primal is feasible. The
theory of linear programming tells us that there will exist pairs (f, p) where f
is a solution of the primal, p is a solution of the dual, and the primal objective
at f matches the dual objective at p. In any such pair, f and p will satisfy
a condition called complementary slackness. Furthermore, if complementary
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slackness does hold for some pair (f, p), then both the primal solution f and
the dual solution p are optimal. Appendix A shows that complementary
slackness is precisely the condition that we are calling properness.

A word about integrality: Even when all of the numbers that arise in
specifying a linear program are integers, it may easily happen that the only
optimal solutions are nonintegral. If that happened in our primal program,
it would be bad, since we are hoping for an integral flow f in the network
NG, which we can then convert by Prop 2-2 into a matching M in the graph
G. There is a high-powered theory to which we could appeal, to ensure that
this bad thing won’t happen. In particular, the coefficient matrix that arises
in our primal program is totally unimodular, and the capacity constraints
on the arcs in NG are all integers — in fact, are all 1. This guarantees
that, as long as any flows of value s exist, then min-cost flows of value s will
exist that are integral. In this report, however, we don’t need to appeal to
that high-powered theory. Both of the algorithms that we consider — the
Hungarian Method and our weight-scaling algorithm FlowAssign — compute
an integral flow f and prices p that make the pair (f, p) proper. And those
proper prices demonstrate that the integral f that we have computed is an
optimal solution to the primal.

In fact, in FlowAssign, we are going to have integrality also for the dual.
The coefficient matrix for the dual program is the transpose of the primal
matrix, so the dual matrix is also totally unimodular. In addition, when
we are doing weight-scaling, we require that the edge costs c(x, y) all be
integers. By that same high-powered theory, we can thus conclude that the
dual program has optimal solutions that are integral. And, indeed, both the
flow f and the prices p that FlowAssign computes will be integral.

2.7 The maiden and bachelor bounds

Let G be a weighted bipartite graph, let M be a matching of size s := |M |,
and suppose that we hope to use Corollary 2-10 to show that the cost of M
is minimum, among matchings of size s. Let f denote the integral flow of
value s = |f | that corresponds to M as in Prop 2-2; recall that Figure 2.2
gave an example. To apply Corollary 2-10, we must come up with prices p
at the nodes of NG that make all of the arcs of NG proper. In particular, the
left-dummy arcs must be proper and ditto for the right-dummy arcs. This
turns out to boil down to two inequalities that we call the “maiden bound”
and the “bachelor bound”.

Having somehow chosen some prices p at the nodes of NG, will the left-
dummy arcs be proper? If x is a married woman in the matching M , then
the left-dummy arc ` → x will be saturated in the flow f . For this arc to
be proper, we must have cp(`, x) = c(`, x)− pd(`) + pd(x) ≤ 0, which, since
the cost c(`, x) is zero, means pd(x) ≤ pd(`). In words, the (dispose) price
at any married woman must be at most the (dispose) price at the source.
On the other hand, if x is a maiden, then the left-dummy arc ` → x will
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be idle, so we must arrange that pd(`) ≤ pd(x). In words, the price at the
source must be at most the price at any maiden. Putting these together, we
conclude that the left-dummy arcs will all be proper just when

max
x married

pd(x) ≤ pd(`) ≤ min
x maiden

pd(x). (2-11)

To achieve this, it had better be the case that the maidens are the most
expensive women. We refer to this inequality as the maiden bound :

max
x married

pd(x) ≤ min
x maiden

pd(x). (2-12)

If the maiden bound holds, then there is a closed interval in which we can
choose the price at the source so as to make all left-dummy arcs proper.

The right-dummy arcs are a similar story. If y is a married man, then
the right-dummy arc y → a is saturated, and we must have cp(y,a) =
c(y,a)− pd(y) + pd(a) ≤ 0, which means pd(a) ≤ pd(y). So the price at the
sink must be at most the price at any married man. But the price at any
bachelor must be at most the price at the sink, so the right-dummy arcs will
all be proper just when

max
y bachelor

pd(y) ≤ pd(a) ≤ min
y married

pd(y). (2-13)

To make this possible, it had better be the case that the bachelors are the
cheapest men, as specified by the bachelor bound :

max
y bachelor

pd(y) ≤ min
y married

pd(y). (2-14)

When there are no maidens, choosing the price pd(`) at the source to
be anything large enough makes all left-dummy arcs proper. And, when
there are no bachelors, choosing the price pd(a) at the sink to be anything
small enough makes all right-dummy arcs proper. So we can prove that a
perfect matching is min-cost without worrying about the maiden and bach-
elor bounds. We do need to worry when our matching is less than perfect,
however. In this sense, ImpA and IncA are somewhat harder problems
than PerA, which might explain why PerA has been more studied.
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Chapter 3

The Hungarian Method

Like many of the assignment algorithms that followed it, the Hungarian
Method operates on the bipartite graph G itself, rather than on some flow
network constructed from G. To ensure that its matchings are min-cost,
the Hungarian Method computes prices that, from our perspective, make
all of the bipartite arcs of the flow network NG proper. The maiden and
bachelor bounds are thus relevant. If they hold, then we can choose prices
at the source and sink that make all of the dummy arcs proper as well, at
which point Corollary 2-10 will guarantee that the matching is min-cost.
Fortunately, if the Hungarian Method is implemented carefully, it naturally
preserves the maiden and bachelor bounds; so it generalizes neatly to the
unbalanced case. In fact, it solves IncA, which is the hardest of our three
assignment variants, in space O(m) and time O(ms+s2 log r). Its high-level
structure is shown in Figure 3.1.

HungarianMethod(G)
set M to the empty matching;
set prices at women to 0, at men to C̄;
for s from 0 by 1 until stopped do

announce(M is min-cost of size s);
use Dijkstra to build a shortest-path forest

with roots at all remaining maidens;
if some bachelor β was reached then

raise prices to tighten the tree path to β;
augment M along that tight path;

else
announce(ν(G) = s);
return(M);

fi;
od;

Figure 3.1: Pseudocode for the Hungarian Method
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Flipping the bipartite graph G over, swapping the roles of X and Y ,
doesn’t change the assignment problem. But we get a better time bound for
our implementation of the Hungarian Method if women are in the majority.
Let’s flip, if necessary, to ensure that n = |X| ≥ |Y | = r. (So we would flip
the graph in Figure 1.1, but not the graph in Figure 2.1.)

3.1 Two invariants on the reduced costs of arcs

We view the Hungarian Method as taking place on the flow network NG. But
the source and sink nodes and the dummy arcs play no role until we prove,
in Section 3.7, that the matchings computed by the Hungarian Method are
indeed min-cost. Until then, only the bipartite arcs in NG are relevant. For
brevity, though, we will talk about the edges in G, rather than bipartite arcs
in NG. So we say that an edge in G is either saturated or idle, according as
it does or does not belong to the current matching M .

The Hungarian Method associates prices with the nodes in X and Y , and
we here assume that those prices are dispose prices. We maintain, as our
first invariant, that every idle edge (x, y) in G has nonnegative reduced cost:
cp(x, y) ≥ 0. We also maintain, as our second invariant, that every saturated
edge (x, y) has zero reduced cost: cp(x, y) = 0. Note that a saturated edge
is proper as long as its reduced cost is nonpositive; so we are doing more
than keeping our saturated edges proper. Edges with zero reduced cost are
called tight ; so the Hungarian Method keeps its saturated edges tight.

We establish these two invariants at the outset by starting with the empty
matching, so all edges are idle. To guarantee that all edges have nonnegative
reduced cost, we set pd(x) := 0, for all x in X, and pd(y) := C̄, for all y in
Y . Recall that C̄ := max(x,y)∈G|c(x, y)|. As a result, the reduced cost of the
edge (x, y) is cp(x, y) = c(x, y)− pd(x) + pd(y) = c(x, y) + C̄ ≥ 0.

3.2 The residual digraph

The Hungarian Method builds up its matching by augmenting along tight
augmenting paths, where these augmenting paths are paths in an auxiliary
directed graph called the residual digraph.

Given a matching M in G, the residual digraph RM has nodes and links
that correspond precisely to the vertices and edges of G, but each saturated
edge (x, y) becomes a backward-directed link y ⇒ x in the residual digraph
RM , while each idle edge (x, y) becomes a forward-directed link x⇒ y. That
is, idle arcs become left-to-right links in RM , while saturated arcs become
right-to-left links. Figure 3.2 shows an example. Note that the residual
digraph RM depends only on the matching M , not on the prices p.

Prop 3-1. In the residual digraph RM corresponding to any matching M
in the graph G, the in-degree of any married woman is 1, while the in-degree
of any maiden is 0; symmetrically, the out-degree of any married man is 1,
while the out-degree of any bachelor is 0.
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Figure 3.2: A matching M of size 3 and its residual digraph RM
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Figure 3.3: An augmenting path of length 3 from x1 to y5 in RM , the new matching
M ′ that results from augmenting along that path, and the residual digraph RM ′ .
(By the way, there are two augmenting paths of length nine in RM ′ . Augmenting
along either of them would marry off the final bachelor y2, bringing the matching
up to one-sided perfection and leaving either x3 or x6 as the sole maiden.)

Proof. Any link in RM that arrives at a woman or leaves a man must be
backward, arising from an edge in the matching M . There is precisely one
such edge arriving at each married woman and leaving each married man;
but no such edges arrive at any maiden or leave any bachelor.

An alternating path is a path in the residual digraph RM . Note that
the links along an alternating path must alternate between forward and
backward. An augmenting path is an alternating path that starts at a maiden
and ends at a bachelor. So the first and last links of an augmenting path are
both forward links. An augmenting path is tight when all of the edges that
underlie its links are tight, that is, have zero reduced cost.

We augment along a tight augmenting path by swapping the status of
the edges that underlie its links, saturating the idle edges and idling the
saturated ones. This process increases the size of the matching by exactly 1.
It marries off the maiden and bachelor at the ends of the augmenting path,
thus reducing the number of places where future augmenting paths can start
or end. Figure 3.3 shows an example. Note that every vertex that was mar-
ried before the augmentation remains married after it, although the married
vertices along the augmenting path, which are y1 and x4 in Figure 3.3, end
up with new spouses. Note also that our invariants about the reduced costs
of edges allow a tight edge to be either idle or saturated. Hence, augmenting
along a tight augmenting path preserves those invariants.
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3.3 Defining length in the residual digraph

How does the Hungarian Method find a tight augmenting path along which
to augment? We define a notion of distance on the residual digraph, a
notion in which every link has nonnegative length and the links of length
zero are precisely those whose underlying edges are tight. Given this notion
of distance, we use a variant of Dijkstra’s algorithm to find an augmenting
path that is as short as possible. We then raise prices so as to tighten all of
the idle edges along that path, the saturated edges being already tight.

Let RM be the residual digraph and let p be the prices that are in effect
at some point during the Hungarian Method. If x ⇒ y is a forward link
in RM , corresponding to an idle edge (x, y), we define the length of that
link to be the reduced cost of the edge: lp(x ⇒ y) := cp(x, y). Recall that
this reduced cost is nonnegative. We define the length of any backward link
y ⇒ x to be zero: lp(y ⇒ x) := 0. And we define the length of an alternating
path to be the sum of the lengths of its links.

Of course, people often define the “length” of a path in a directed graph
to be the number of links along that path, rather than the sum of the lengths
of those links. In this report, when we are counting links, we will talk about
the link-count of a path, rather than its length.

In the Hungarian Method, saturated edges are kept tight, so defining
lp(y ⇒ x) := 0 for a backward link y ⇒ x has the same effect as defining
lp(y ⇒ x) := cp(x, y) or lp(y ⇒ x) := −cp(x, y). For future reference, the
last of these three is the choice that we will later adopt. In FlowAssign,
saturated edges will be kept proper, but not necessarily tight. So, for a
saturated edge (x, y), we will know only that cp(x, y) ≤ 0, and we will need
to define lp(y ⇒ x) := −cp(x, y), to keep our link lengths nonnegative. That
is, for an alternating path A, we will define

lp(A) :=
∑

x⇒y on A

cp(x, y) −
∑

y⇒x on A

cp(x, y). (3-2)

The clumsy subtraction in this definition is a price that we pay, in this
report, for setting up our flow network NG to have only forward arcs, not
backward arcs. Recall that many authors define cp(y, x) = −cp(x, y); but we
leave cp(y, x) undefined.

By the way, we could model an alternating path A as a flux fA on the
network NG by assigning flow fA(x, y) := 1 for each forward link x ⇒ y
along A and fA(x, y) := −1 for each backward link y ⇒ x. Equation (3-2)
would then become a special case of our definition, in (2-5), of the reduced
cost of a flux, with the clumsy −1 hidden in the definition of the flux fA.

3.4 Building the shortest-path forest

The Hungarian Method chooses an augmenting path of minimal length as
its next path along which to augment. We find that shortest path using
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a variant of Dijkstra’s algorithm, but with two differences, as explained in
Fredman and Tarjan [10].

First, Dijkstra’s algorithm is often used to build a shortest-path tree,
rooted at some single node. Instead, we build a shortest-path forest in the
residual digraph RM , with each remaining maiden as the root of a tree in
that forest. Thus, the distance `(v) that we will compute, for each vertex v
in G, is the minimum length of an alternating path in RM from some maiden
to v. We initially set `(µ) := 0 for each maiden µ, while we set `(v) := ∞
for all other vertices v. We lower the distance `(v) to some finite value when
we find an alternating path from some maiden to v.

Second, we can optimize our processing slightly by treating the vertices
in X and in Y , the women and the men, differently. Prop 3-1 tells us that
the in-degree in RM of a married woman is 1. So any alternating path in
RM from a maiden to a married woman x must arrive at x by traversing the
backward link y ⇒ x, where y is the husband of x. Thus, a shortest path to x
must consist of a shortest path to y, with the link y ⇒ x tacked on at the end.
So it suffices to search for shortest paths to men, the shortest paths to their
wives falling out with no extra work. Indeed, we have lp(y ⇒ x) = 0, since
backward edges are kept tight; so the shortest path to a married woman has
the same length as the shortest path to her husband (though the link-count
of the path to the woman is one greater).

Figure 3.4 sketches the code for building a shortest-path forest in the
Hungarian Method. As Fredman and Tarjan suggest [10], we use a Fibonacci
heap to store those men who have not yet joined the forest, but who have
been reached by some alternating path from some maiden. The key of a
man in the heap is the length of the shortest such path found so far.

Let x be some woman who is reachable from a maiden along an alter-
nating path of length `(x), and suppose that we know that no shorter path
to x will be found. As part of adding x to the forest, we must scan her by
considering each incident edge (x, y) that is idle — that is, each forward link
x⇒ y in the residual digraph RM . Using the link x⇒ y, we have found an
alternating path of length L := `(x) + lp(x⇒ y) = `(x) + cp(x, y) from some
maiden to y. If `(y) = ∞, this is the first path that we’ve found reaching
y. We set `(y) := L and we insert y into the heap with key L. If `(y) is
finite, but L < `(y), our new path is shorter than the former record-holder,
so we set `(y) := L. The vertex y will be in the heap at this point, so we
also decrease the key of y in the heap to the new, smaller value of `(y). On
the other hand, if L ≥ `(y), then our new path doesn’t break any records, so
we ignore it. (In this case, the man y might still be in the heap or he might
have already moved from the heap to the forest.)

We begin by setting `(µ) := 0 for every maiden µ and scanning each
maiden in turn. We then enter the forest-building loop. We do a delete-min
operation on the heap, thereby finding some reachable man y whose distance
from a maiden is minimal, among all men not yet in the forest. We add y
to the forest, confident that the distance `(y) won’t decrease any further. If
y is married, we exploit the backward link y ⇒ x that connects y to his wife
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BuildForest()
make-heap();
for all nodes v, set `(v) :=∞;
for all maidens µ, set `(µ) := 0 and ScanAndAdd(µ);
while heap is nonempty do

y := delete-min();
add y to the forest;
if y is married then

x := wife of y;
set `(x) := `(y) and ScanAndAdd(x);

else
exit(bachelor β := y reached);

fi;
od;
exit(no bachelor reached);

ScanAndAdd(x)
for all forward links x⇒ y in RM do

L := `(x) + lp(x⇒ y); Lold := `(y);
if L < Lold then

set `(y) := L;
if Lold =∞ then insert(y, L) else decrease-key(y, L) fi;

fi;
od;
add x to the forest;

Figure 3.4: Building a shortest-path forest in the Hungarian Method
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x by setting `(x) := `(y), scanning x, and adding her to the forest; we then
return to the top of the forest-building loop. Otherwise, y is a bachelor, so
we have found an augmenting path of minimum length and we stop.

It might happen that, when we return to the top of the forest-building
loop, ready to do a delete-min operation on the heap, the heap is actually
empty. In that case, we have proven that no augmenting paths exist, so we
stop without reaching a bachelor.

3.5 The time for building the forest

How much time does it take us to build this shortest-path forest? Recall
that, in a Fibonacci heap, a delete-min operation costs O(log(heap size)),
while the other heap operations are O(1).

We do one make-heap operation. We do at most r insert operations,
since each man in Y is inserted at most once and we have arranged that Y is
the smaller part of the bipartite graph G, with |Y | = r. So r is a bound on
the size of the heap. We do at most m decrease-key operations, since each
such operation is sparked by processing some edge — in fact, an idle edge.
Finally, we do at most s delete-min operations. Each of these operations
except perhaps the last deletes a man who turns out to be married; and
there are only s edges in the current matching, and hence only s married
men. If we succeed in finding an augmenting path, then the final delete-min
that we perform deletes a bachelor. But augmenting along the resulting
augmenting path increases s by 1, so it is still true that, when the smoke
has cleared, we have done at most s delete-min operations.

Thus, the overall cost for building the shortest-path forest that results
in a matching of size s is O(m + s log r). The remaining operations in the
main loop of the Hungarian method are all O(m). The total running time,
on the way to a matching of any final size s, is thus

O((m+ log r) + (m+ 2 log r) + · · ·+ (m+ s log r)) = O(ms+ s2 log r).

A practical remark: We started out by flipping G around, if necessary, to
make Y the smaller part, with |Y | ≤ |X|. This reduced the worst-case time
bound by making log |Y | = log r, rather than log |Y | = log n. In practice,
though, it might be faster to flip G the other way, so that there are more
men than women. There will then be fewer maidens, so the shortest-path
forests may then be smaller — perhaps enough smaller to more than pay
for doing heap operations on a potentially larger heap. Experiments will be
needed to determine which strategy performs better in practice.

3.6 Raising prices to tighten the path

If an iteration of the Hungarian Method starts with the matching M already
of size s = ν(G), then no augmenting paths can exist, so the building of
the shortest-path forest doesn’t stop until we are ready to do a delete-min
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operation on an empty heap. In that case, we announce that s = ν(G) and
halt. In every other case, the building of the forest stops when we first add
a bachelor to the forest. Let β denote the bachelor that we found, and let µ
denote the maiden at the root of the shortest-path tree that β joins. Note
that `(β) is the length of the tree path A from µ to β, that path being an
augmenting path of minimal length. Our next task is to raise prices on the
nodes in the forest so as to make all of the edges on the path A tight.

Using p′ to refer to the prices after we raise them, we reset the (dispose)
price at each vertex v in the shortest-path forest by setting

p′d(v) := pd(v) + `(β)− `(v). (3-3)

This change in price is nonnegative, that is, `(β)−`(v) ≥ 0, because vertices
are added to the shortest-path forest in nondecreasing order of their ` values.
We have three things to check.

Consider first a saturated edge (x, y), that is, an edge in the current
matching. It was tight before we raised our prices, and we must show that
it remains tight afterward. Is the woman x in the forest? Note that x is
married. The only way that a married woman ever enters the forest is as a
side effect of her husband’s entering the forest. So, if x is in the forest, then
y is also in the forest, and we have `(x) = `(y). Thus, we raise the prices
at x and at y by the same amount, so the edge (x, y) remains tight. On the
other hand, if x is not in the forest, then y can’t be in the forest either, since
x is added to the forest as part of adding y; so then we don’t change the
prices at either x or y.

Next, consider an idle edge (x, y). It had nonnegative reduced cost
cp(x, y) = c(x, y) − pd(x) + pd(y) ≥ 0 before we raised our prices, and we
must show that its reduced cost remains nonnegative afterward: cp′(x, y) =
c(x, y)−p′d(x)+p′d(y) ≥ 0. If the price at x doesn’t rise, a rise in the price at
y can only help. So we can assume that the price at x does rise, which means
that x belongs to the forest. When x entered the forest and was scanned, we
considered the idle edge (x, y), and we lowered `(y), if necessary, to ensure
that `(y) ≤ `(x) + cp(x, y). In subsequent processing, `(y) may have been
lowered even further; but `(x) didn’t change. So, when we finished building
the forest, we had

`(y) ≤ `(x) + cp(x, y) = `(x) + c(x, y)− pd(x) + pd(y). (3-4)

Since we are assuming that x did enter the forest, we have p′d(x) = pd(x) +
`(β)− `(x), so we have

`(y) ≤ c(x, y)− p′d(x) + pd(y) + `(β). (3-5)

Now, the vertex y may or may not have entered the forest. If y did enter
the forest, we have p′d(y) = pd(y) + `(β) − `(y). Substituting into (3-5), we
find that 0 ≤ c(x, y) − p′d(x) + p′d(y) = cp′(x, y), which is our goal. If y did
not enter the forest, we have p′d(y) = pd(y), and substituting into (3-5) tells
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us `(y) ≤ cp′(x, y) + `(β). But we can also conclude that `(β) ≤ `(y), since
β was selected by doing a delete-min operation on a heap that included y.
So we again have our goal.

One more thing to check: After we raise prices, we want all of the edges
on the alternating path A from µ to β to be tight, so that we can augment
along A. We have already checked that all saturated edges continue to have
zero reduced cost after the repricing, including the saturated edges on A. It
remains to consider one of the idle edges on A, say the forward link x⇒ y.
Both x and y belong to the forest, so we have p′d(x) = pd(x) + `(β) − `(x)
and p′d(y) = pd(y) + `(β) − `(y). Furthermore, x is the predecessor of y on
a shortest path from a maiden; so we have `(y) = `(x) + cp(x, y), which
means that inequality (3-4) holds with equality. Substituting in, we find
that cp′(x, y) = 0, as we hoped.

3.7 Verifying optimality

We have shown that, for each s in turn, the Hungarian Method computes
a matching M of size s in time O(ms+ s2 log r). And the invariants of the
Hungarian Method ensure that all idle bipartite arcs will have nonnegative
reduced cost and all saturated bipartite arcs will have nonpositive reduced
cost — in fact, zero reduced cost. If the maiden and bachelor bounds hold,
then we will be able to choose prices at the source and the sink that make
all of the dummy arcs proper, thus ensuring that the matching M will be
min-cost of its size s, by Corollary 2-10. We here establish those bounds,
pulling out some parts of the argument as propositions for future reference.

Prop 3-6. Let M be a matching computed by the Hungarian Method, let
x0 be some woman who is married in M , and let µ0 be some woman who
is still a maiden. During the running of the Hungarian Method so far, the
price at µ0 has increased by at least as much as the price at x0.

Proof. Each time that we build a shortest-path forest, we include all of the
remaining maidens as tree roots, and each such maiden µ has `(µ) = 0.
When prices are raised based on this forest, we set p′d(µ) := pd(µ) + `(β)− 0
for each such µ. The prices at all remaining maidens are thus increased by
the same amount, by `(β), and that amount is the maximum price increase.
It follows that the overall price increase so far at any remaining maiden µ0 is
at least as great as the corresponding increase at any other vertex, including
at any married woman x0.

In the Hungarian Method, every woman x starts out at the same price
pd(x) := 0. It follows from Prop 3-6 that the remaining maidens are always
the most expensive women, which establishes the maiden bound (2-12).

Prop 3-7. Let M be a matching computed by the Hungarian Method, let
y0 be some man who is married in M , and let β0 be some man who is still a
bachelor. During the running of the Hungarian Method so far, the price at
β0 has not increased at all, while the price at y0 may have increased.
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Proof. As the Hungarian Method runs, the prices at some men are raised,
because those men belong to a shortest-path forest. But the price at a
bachelor is never raised. Indeed, each shortest-path forest that causes some
prices to rise contains just one bachelor, the vertex β whose entry into that
forest stopped its construction. And the price at β is raised by the formula
p′d(β) := pd(β) + `(β)− `(β), and hence is left unchanged. Thus, every man
retains his original price for as long as that man remains a bachelor.

In the Hungarian Method, every man y starts out at the same price
pd(y) := C̄. It follows from Prop 3-7 that the remaining bachelors are always
the least expensive men, which establishes the bachelor bound (2-14). This
completes our performance analysis of the Hungarian Method:

Prop 3-8. The Hungarian Method computes min-cost matchings incremen-
tally, thus solving IncA in space O(m) and time O(ms+ s2 log r).

The Hungarian Method generalizes neatly to the unbalanced case because
it naturally preserves the maiden and bachelor bounds. But be warned that
some people, when using the Hungarian Method to compute perfect match-
ings, find their augmenting paths by building a shortest-path tree starting
from some single maiden, rather than a shortest-path forest starting from all
remaining maidens. If a perfect matching exists, then we are guaranteed to
find some augmenting path, even if we start looking from just one arbitrarily
chosen maiden. But the resulting variant of the Hungarian Method does not
preserve the maiden bound, and hence any matching that it constructs that
leaves some women as maidens may fail to be min-cost.

Be warned also that some people add a preprocessing phase to their
Hungarian Method, a phase that consists of local updates to the prices.
After setting the prices at all women to 0 and at all men to C̄, they consider
each vertex in turn, in some order. They raise the price at each woman as
far as they can and they lower the price at each man as far as they can, while
keeping the reduced costs of all bipartite arcs nonnegative. (All bipartite arcs
are idle at this point, so their reduced costs must remain nonnegative to keep
them proper.) These local updates can help the subsequent processing to go
faster; but the resulting variant of the Hungarian Method doesn’t preserve
either the maiden bound or the bachelor bound, so the imperfect matchings
that it computes may fail to be min-cost.

3.8 Bounding the prices

Finally, let’s verify that the prices don’t get too big. This is interesting in
its own right, and some bound of this type is also needed to show that the
Hungarian Method is indeed strongly polynomial.

Prop 3-9. For any s ≥ 1, let 2l − 1 be the link-count of the path A along
which the Hungarian Method augments to bring its matching up to size s.
So 1 ≤ l ≤ s. The (dispose) prices that the Hungarian Method uses to
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Figure 3.5: An example in which the Hungarian Method generates large prices;
nodes are labeled with prices, edges with costs

demonstrate the optimality of its matching of size s are nonnegative real
numbers bounded by (2l + 1)C̄.

Proof. All of the prices are initialized to nonnegative values, and they change
only when they are increased; so nonnegativity is clear.

Let A be the path of length 2l− 1 along which we augment to bring our
matching up to size s. We found the path A by building a shortest-path
forest. Let β be the bachelor whose discovery stopped the construction of
that forest, and let µ be the maiden at the root of the shortest-path tree that
β joins. So A is an alternating path in RM from µ to β, and augmenting
along A results in marriages for both µ and β. Let p denote the prices after
we raise them based on this forest, so the prices p are in effect when we
augment along A. We intend to show that pd(x) ≤ 2lC̄, for all women x,
and that pd(y) ≤ (2l + 1)C̄, for all men y.

The price increases in the round that we are studying brought the reduced
cost of every arc on the path A to zero. So the prices at the two endpoints
of such an arc can’t differ by more than C̄. It follows that pd(µ) ≤ pd(β) +
(2l − 1)C̄. But we have pd(β) = C̄, since the price at any bachelor remains
at C̄ until some round of price increases that happens after he is already
married. So we have pd(µ) ≤ 2lC̄.

In each round of price increases, the prices at all of the remaining maidens
increase by the same amount, and that amount is at least as large as any
other price increase during that round. Since µ has been a maiden in every
round of price increases so far and since the prices at all women are initialized
to the same value — in fact, to 0 — we have pd(x) ≤ pd(µ) ≤ 2lC̄, for all
women x. The same argument applies to the men, with the only difference
being that they are initialized to C̄, rather than to 0; so we have pd(y) ≤
pd(µ) + C̄ ≤ (2l + 1)C̄, for all men y.

Figure 3.5 shows an example in which these bounds are tight. The graph
G consists of a path of length 7 (that is, of edge-count 7), together with a
separate path of length 2. The costs along the path of length 7 alternate
between C̄ and −C̄, with the first and last edges being cost C̄. The costs
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of the two edges on the other path are both −C̄. The Hungarian Method
builds a matching of size 4 in this graph without any price increases, as
shown on the left in Figure 3.5, with the matching edges drawn bold. (Some
accident of ordering determines which of the two edges on the path of length
2 participates in this matching.) There are two maidens that remain, acting
as roots in the next shortest-path forest. The last vertex to join that forest
is the only remaining bachelor, labeled β, and it joins the tree rooted at the
maiden labeled µ. The augmenting path A thus discovered is the length-7
portion of G, and we have `(β) = 8C̄. We then raise prices and augment
along A, leading to the state shown on the right in Figure 3.5.
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Chapter 4

Weight-scaling

The Hungarian Method takes time O(ms+s2 log r); but something more like
O(m

√
s) would be better. The known algorithms that achieve this type of√

s performance use some version of weight-scaling. And the key to weight-
scaling is defining what it means for arcs to be “approximately proper”.

4.1 Approximately proper

Recall that an idle arc, to be proper, must have nonnegative reduced cost,
while a saturated arcs must have nonpositive reduced cost. To make this con-
cept approximate, one introduces a real parameter ε > 0. Roughly speaking,
an arc is ε-proper when its reduced cost is within ε of making the arc proper.
But what happens in the boundary cases, when the reduced cost is precisely
ε away from making the arc proper? In FlowAssign, we are going to resolve
those boundary cases in a somewhat subtle, one-sided way, as discussed in
Section 6.1. But we don’t have to worry about that subtlety here.

For now, we say that an idle arc v → w is ε-proper when cp(v, w) > −ε
and that it isn’t ε-proper when cp(v, w) < −ε; and we don’t specify which
happens in the boundary case, where cp(v, w) = −ε. In a similar way, we
say that a saturated arc v → w is ε-proper when cp(v, w) < ε and that it
isn’t ε-proper when cp(v, w) > ε; and we don’t specify which happens in the
boundary case, where cp(v, w) = ε.

To see how this approximate notion of properness could be helpful, note
that ε-properness is easy to achieve when ε is large enough. In particular,
when ε > C̄, we can set all prices to zero and make all arcs ε-proper. On the
other hand, when ε is small enough, then ε-properness can, by itself, suffice
to demonstrate that a matching M is min-cost. If all costs are integers, for
example, it turns out that ε < 1/6s suffices, where s := |M |.

Prop 4-1. Let G be a bipartite graph whose edge weights are all integers,
let f be an integral flow on the flow network NG of value s := |f |, and
suppose that we can find prices p at the nodes of NG that make all arcs of
NG be ε-proper, for some ε < 1/6s. The flow f is then min-cost, among all
integral flows of value s.
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Proof. We begin, as in the proof of Prop 2-8, letting f ′ be any flow whose
value is also s = |f ′| and considering the reduced cost of the difference flux
f ′ − f :

cp(f
′ − f) =

∑
v→w∈NG

(f ′ − f)(v, w)cp(v, w).

In Prop 2-8, we argued that cp(f
′ − f) ≥ 0 because each term in the sum

was nonnegative. But we are now assuming, not that all arcs are proper,
but only that they are ε-proper. On the other hand, we are here assuming
that both of the flows f and f ′ are integral. Since the arcs v → w with
f(v, w) = f ′(v, w) drop out of the sum, we thus have

cp(f
′ − f) =

∑
f(v,w)=0
f ′(v,w)=1

cp(v, w)−
∑

f(v,w)=1
f ′(v,w)=0

cp(v, w).

In any integral flow of value s, there are exactly 3s arcs that have unit
flow: s left-dummy arcs, s bipartite arcs, and s right-dummy arcs. Hence,
there are at most 3s terms in each of these two sums. Furthermore, any arc
v → w with f(v, w) = 0 must have cp(v, w) ≥ −ε to be ε-proper; and any
arc with f(v, w) = 1 must have cp(v, w) ≤ ε. Thus, while we can’t conclude
that cp(f

′ − f) ≥ 0, we do have cp(f
′ − f) ≥ −6sε > −1.

Considering the costs and reduced costs of the flows f ′ and f separately,
as in Prop 2-8, we have cp(f

′ − f) = c(f ′) − c(f), so c(f ′) > c(f) − 1. But
both c(f ′) and c(f) must be integral, since all edge weights are integers, so
we deduce that c(f ′) ≥ c(f).

Note: In papers that focus on PerA and thus compute only perfect
matchings, the analogs of this proposition get by with the weaker assumption
that ε < 1/2n, rather than our ε < 1/6s. If f and f ′ are flows of value n
in the flow network NG of a balanced graph G, then both f and f ′ must
saturate all n of the left-dummy arcs and all n of the right-dummy arcs. The
argument above can thus consider only the bipartite arcs, of which there are
most n in each sum, leading to the bound cp(f

′ − f) ≥ −2nε.

4.2 The weight-scaling technique

Here is the rough structure of a typical weight-scaling algorithm. It computes
flows and prices that are ε-proper, for various values of ε. It starts with
ε := C, or thereabouts, to make the initialization straightforward. It then
carries out a sequence of scaling phases, each of which divides ε by some
factor q > 1, typically taken to be a constant. Let s denote the size of
the output matching, the matching that we must show to be min-cost. The
algorithm reduces ε from about C to about 1/s, perhaps to 1/6s, by carrying
out about logq(sC) scaling phases. At this point, some result like Prop 4-1
is invoked, to show that the output matching is indeed min-cost.

A scaling phase thus takes, as input, a flow of value s and prices that are
(qε)-proper. It produces, as output, a new flow of value s and new prices
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that are ε-proper. Thus, it improves the accuracy of the approximation to
properness by a factor of q. A typical weight-scaling algorithm manages
somehow to implement a scaling phase to run in time O(m

√
s), leading to

an overall running time of O(m
√
s log(sC)).

Various weight-scaling assignment algorithms have been published. They
typically solve only PerA, and hence compute only perfect matchings. We
now discuss three of them, commenting on how easy it might be to generalize
them to compute imperfect matchings that are still min-cost.

4.3 Gabow-Tarjan and perfect matchings

We first consider the Gabow-Tarjan algorithm [11]. Like the Hungarian
Method, Gabow-Tarjan works directly on the graph G, not on some flow
network constructed from G, and it verifies that its matchings are min-cost
by coming up with prices that make all bipartite arcs proper. That suffices,
because Gabow-Tarjan computes only perfect matchings — so there are no
maidens or bachelors to worry about.

Gabow-Tarjan has a straightforward weight-scaling structure. Each scal-
ing phase builds a new matching from scratch, exploiting only the prices
computed by the previous phase. The new matchings are computed using
augmenting paths, very much as in the Hungarian Method. Indeed, Gabow-
Tarjan builds shortest-path forests and does rounds of price increases, just
like the Hungarian Method. But some things must be different, of course,
since each scaling phase of Gabow-Tarjan has to run in time O(m

√
s), while

the Hungarian Method takes time O(ms+ s2 log r).

The biggest challenge is to reduce the ms term to m
√
s. Gabow-Tarjan

does this using ideas like those used in the Hopcroft-Karp algorithm for
the matching problem. We discuss how Hopcroft-Karp achieves its

√
s per-

formance in Section 5.2. Gabow-Tarjan and our new algorithm FlowAssign
achieve their

√
s performance in very similar ways, and we discuss how Flow-

Assign does so in Section 9.4.

Avoiding the factor of log r is a simpler matter. In the scaling phase that
ends with prices that are ε-proper, Gabow and Tarjan constrain all prices to
be multiples of ε, and they round the weights of all edges to be multiples of
ε as well. They thus arrange that the keys associated with the nodes in their
heap are all small integers. As we discuss in Section 8.1, this means that they
can avoid any logarithmic heap overhead by using the Dial technique [7].

4.4 Gabow-Tarjan and imperfect matchings

Does Gabow-Tarjan generalize to compute imperfect matchings that are still
min-cost? On the positive side, each scaling phase of Gabow-Tarjan is much
like the Hungarian Method, and that method preserves the maiden and
bachelor bounds. But it turns out that the maiden and bachelor bounds are
lost in going from one scaling phase to the next.
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The Hungarian Method preserves the maiden bound (2-12) because the
prices at all remaining maidens increase by at least as much as the prices at
any woman, as we showed in Prop 3-6. That property holds true, also, for
each scaling phase of Gabow-Tarjan. In the Hungarian Method, all women
start out at the same price, so the maidens end up as the most expensive
women. Unfortunately, in the scaling phases of Gabow-Tarjan, the women
start out at whatever prices were computed by the preceding phase. If all
phases ended up choosing the same set of women to be their final maidens,
we’d still be okay. The prices at those perpetual maidens would both start
and end each phase at least as high as the prices at the other women. But
each scaling phase in Gabow-Tarjan makes its own, independent decision
about which women will be the final maidens of that phase. So Gabow-
Tarjan does not preserve the maiden bound, and we cannot trust it to com-
pute imperfect matchings that are min-cost.

The story for the bachelor bound (2-14) is similar. The Hungarian
Method doesn’t raise the price at any man until after that man is no longer
a bachelor, as we showed in Prop 3-7. The same holds for each scaling phase
of Gabow-Tarjan. In the Hungarian Method, all men start out at the same
price, so the bachelors end up as the cheapest men. In Gabow-Tarjan, how-
ever, the men start each phase at whatever prices were computed by the
preceding phase. If all phases chose the same men to end up as bachelors,
we’d still be okay. But the phases make independent decisions about which
men will end up as bachelors, so the bachelor bound is not preserved.

Our new algorithm is quite similar to Gabow-Tarjan; but, in FlowAssign,
we work on the flow network NG, rather than on G itself. In particular, we
keep track of prices at the source and the sink throughout the algorithm,
and we search for a flow and prices that make the dummy arcs proper, as
well as the bipartite arcs. So we have no need to appeal to the maiden and
bachelor bounds, after the fact, to establish that our matchings are min-cost.

FlowAssign also differs from Gabow-Tarjan in that more information is
carried over from one scaling phase to the next. In both algorithms, each
new phase starts off using the prices computed by the preceding phase. In
FlowAssign, however, each new phase also remembers which vertices ended
up matched versus unmatched, at the end of the preceding phase. The
details of how the preceding phase paired up married women to married
men are forgotten, as in Gabow-Tarjan. But the married-versus-unmarried
status of each vertex is remembered. The new phase may choose to marry
off different vertices; but any such choice is guided by the current prices and
requires explicit bookkeeping.

4.5 Orlin-Ahuja

The Orlin-Ahuja algorithm [17] also has a straightforward weight-scaling
structure, but the scaling phases in Orlin-Ahuja build their new matchings
using a combination of local and global techniques. Each phase starts out
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working locally, building most of its new matching using auctions. But it
finishes up by working globally, bringing its new matching up to perfection
using augmenting paths. This hybrid structure may lead to performance
that is good both in theory and in practice.

Orlin-Ahuja works directly on the graph G and computes prices that
are make all bipartite arcs proper. As published, it computes only perfect
matchings in balanced graphs, so there are neither maidens nor bachelors to
worry about. If we tried to generalize it to compute imperfect matchings,
we would have trouble for several reasons. First, like Gabow-Tarjan, Orlin-
Ahuja carries over prices from one scaling phase to the next, and each phase
makes independent decisions about which vertices end up matched. So it fails
to preserve the maiden and bachelor bounds for the same reason that Gabow-
Tarjan does. But Orlin-Ahuja has another problem as well. The auction-like
updates at the start of each scaling phase make no attempt to preserve the
maiden and bachelor bounds; so those bounds are lost immediately.

There are fancier versions of auction-like updates that are careful to
preserve the maiden and bachelor bounds. For example, Bertsekas and
Castañon [3] compute one-sided-perfect matchings in graphs with a ma-
jority of men, so their matchings leave some bachelors. Their matchings are
min-cost despite these bachelors because they introduce an auction step that
maintains a scalar λ that they call a profitability threshold. In our frame-
work, λ serves as a fence that separates the prices at the bachelors from the
prices at the married men, thus ensuring that the bachelor bound is pre-
served — and, in fact, we can think of λ as a proposed value for the price at
the sink. Auction steps of these fancier types might be useful in designing
an algorithm for ImpA that combines local and global techniques so as to
perform well in both theory and practice, as we discussed in Section 1.4.

4.6 Goldberg-Kennedy

The Goldberg-Kennedy algorithm [13] uses weight-scaling, not to compute
a min-cost matching in the given bipartite graph G directly, but instead to
compute a min-cost circulation in a certain flow network.1 As a result, their
algorithm generalizes to the unbalanced case easily from a correctness point
of view; but the performance of the result is unclear.

Goldberg and Kennedy first reduce PerA to the problem of finding a
min-cost circulation in a flow network. Their network is quite close to our
NG, but with loop-back arcs added from the sink to the source, thereby
enabling their network to support circulations. Because they use a network
in this way, it should be straightforward to adjust their algorithm to compute
imperfect matchings that are min-cost. That’s the good news.

Having constructed their flow network, Goldberg and Kennedy then find
a min-cost circulation in that network using a local, push-relabel algorithm,

1A circulation is like a flow, except that flow is conserved at all nodes; so the network
has no source or sink.
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supplemented by a subtle machinery of occasional global price updates. They
show that their algorithm achieves the standard weight-scaling time bound
of O(m

√
n log(nC)). But their arguments are complex and are phrased

entirely in terms of n, with r and s playing no role. To make Goldberg-
Kennedy interesting from our perspective, we would have to replace some
of the n’s in this time bound with r’s or s’s. Doing so is an intriguing open
problem.
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Chapter 5

Hopcroft-Karp

The matching algorithm of Hopcroft and Karp [14] was the first algorithm
in this area to achieve

√
s performance. We now analyze Hopcroft-Karp

because our new algorithm FlowAssign follows Gabow-Tarjan by achieving
its
√
s performance in a very similar way.

Keep in mind that Hopcroft-Karp solves matching problems, rather than
assignment problems. So the bipartite graphs in this chapter don’t have
weights on their edges, and we have no costs, prices, or reduced costs to deal
with. Also, in this chapter, we treat all edges as unit length, so the length
of a path is the same as its link-count.

Figure 5.1 sketches the code of Hopcroft-Karp. As published, Hopcroft-
Karp finds a matching of size ν(G) in a bipartite graph G in space O(m)
and time O(m

√
ν(G)). We are going to call Hopcroft-Karp as part of the

initialization of FlowAssign, and O(m
√
ν(G)) is more time than we are

going to be able to afford. Fortunately, Hopcroft-Karp builds its matching
incrementally, and we will show that, if we stop it when the matching has
reached size s, the time spent is O(m

√
s), which we can afford. So Hopcroft-

Karp solves both ImpM and IncM in time O(m
√
s).

HopcroftKarp(G)
set M to the empty matching;
do

find a maximal set P of vertex-disjoint augmenting paths,
for M , all of the minimum possible length;

if |P | = 0 then announce(ν(G) = |M |); return fi;
for P in P do

augment M along P ;
announce(M is a matching);

od;
od;

Figure 5.1: Pseudocode for Hopcroft-Karp
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5.1 The disjoint-path bound

The key to the
√
s performance of Hopcroft-Karp is an inequality that we

will call the disjoint-path bound, called that because the proof involves a
collection of paths that are vertex-disjoint.

Prop 5-1. In a bipartite graph G, let M0 be a matching of size s0 := |M0| ≥
0, and suppose that every augmenting path for M0 has length at least L. For
any integer s1 with s0 ≤ s1 ≤ ν(G), we then have the disjoint-path bound:

(s1 − s0)(L+ 1) ≤ 2s1. (5-2)

Proof. By augmenting along augmenting paths, we could transform M0 into
larger and larger matchings, until reaching a matching of size ν(G). Let M1

denote the matching of size s1 that we would reach during this process.

Let XM1 ⊆ X consist of those vertices in X that are matched in M1, and
let YM1 denote the corresponding subset of Y . So we have |XM1 | = |YM1 | =
s1. Since we can transform M0 into M1 by augmenting along augmenting
paths, every vertex that is matched in M0 is matched also in M1, although
the vertex to which it is matched may be different. Thus, each edge in M0

must connect some vertex in XM1 to some vertex in YM1 .

Consider the multigraph M0 ]M1 that results from assembling together
all of the edges of M0 and of M1. If any edge appears both in M0 and in
M1, we make that edge appear twice in M0 ]M1, and that’s why M0 ]M1

may be a multigraph. But note that the multigraph M0 ]M1 contains only
2s1 vertices: the vertices in XM1 ∪ YM1 .

What are the connected components of M0 ] M1? Of the s1 vertices
in XM1 , the s0 that are matched in M0 have degree 2, while the remaining
s1 − s0 have degree 1; and the analogous claim holds for YM1 . Some of the
connected components of M0 ]M1 may be even-length cycles, all of whose
vertices have degree 2 and whose edges alternate between M0 and M1. For
example, if M0 and M1 share any edge, the resulting double edge in M0]M1

is a cycle of this type of length 2. But any connected component of M0]M1

that isn’t a cycle must be a path of odd length whose first and last edges
belong to M1. Furthermore, there must be precisely s1 − s0 such paths,
matching up the degree-1 vertices in XM1 with the degree-1 vertices in YM1 .
And each such path is an augmenting path for M0.

We are assuming that all augmenting paths for M0 have length at least
L, which means that they touch at least L+ 1 vertices. And we have found
s1−s0 augmenting paths that fit, in a vertex-disjoint way, into the multigraph
M0]M1, which has only 2s1 vertices. So we have (s1−s0)(L+1) ≤ 2s1.

By the way, if the matching M0 was the current matching at some point
during some run of Hopcroft-Karp and if M1 was the output matching of
that run, then Hopcroft-Karp might be lucky enough to transform M0 into
M1 by augmenting along precisely the s1 − s0 augmenting paths that we
constructed above. That would be efficient, in the sense that no edge would
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change status more than once. Each edge in M1 \ M0 would enter the
matching at some point and each edge in M0 \M1 would leave it, and there
would be no other changes of status. In general, however, Hopcroft-Karp
will choose paths along which to augment that cause some edges to change
status more than once.

Corollary 5-3. If every augmenting path for a matching M of size s in a
bipartite graph G has length at least L = 2k + 1, then

s ≥
(

1− 2

L+ 1

)
ν(G) =

k

k + 1
ν(G). (5-4)

Proof. We apply the disjoint-path bound (5-2) with s0 := s and s1 := ν(g)
and then do some easy algebra.

By the way, for any k ≥ 0, it’s easy to find a matching that makes
inequality (5-4) tight: Take the even-numbered edges along a path of length
2k+1. The whole path is the unique augmenting path for this matching, and
we have s = k

k+1 ν(G). (Examples like this come up in Appendix B, where
we discuss graphs on which Hopcroft-Karp can experience a slow start.)

5.2 Showing square-root performance

The disjoint-path bound (5-2) is the key to the square root in the time bound
for Hopcroft-Karp. We won’t give the full proof here. In particular, we
simply assume two claims, referring to the literature for their proofs [5, 14].

First, we assume that Hopcroft-Karp can be implemented so that each
iteration of the outer loop takes time O(m). The challenge in doing this
is finding P , the maximal set of vertex-disjoint augmenting paths, all of
the minimum possible length. It isn’t hard, in O(m) time, to determine the
minimum possible length of an augmenting path and to find one augmenting
path of that length. But it takes some care to continue to find additional
augmenting paths of that same length, until we have built up a maximal set
of them, all in time O(m). Note that P may well fail to be maximum, and
that’s okay. It suffices that, given the choices of minimum-length augmenting
paths that we’ve already made, there is no additional augmenting path of
that same length that is vertex-disjoint from our current paths.

Second, we assume that the minimum length of an augmenting path
increases, from each iteration of the outer loop of Hopcroft-Karp to the
next. Suppose that the shortest current augmenting paths have length L. If
we compute a maximal set of vertex-disjoint augmenting paths of length L
and we then augment along all of those paths, any augmenting paths that
exist after we are done will have length greater than L. In fact, since lengths
of augmenting paths are always odd, they will have length at least L+ 2.

Assuming those two claims, we now consider the runtime of Hopcroft-
Karp in the light of the disjoint-path bound (5-2).
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Prop 5-5. Hopcroft-Karp solves IncM in space O(m) and time O(m
√
s).

Proof. We are assuming that each iteration of the outer loop takes time
O(m) and increases the minimum length L of an augmenting path by at
least 2. It’s clear that each such iteration also increases |M | by at least 1,
since each iteration (except perhaps the last) finds at least one augmenting
path and augments along it. Thus, each iteration makes progress on two
different fronts, increasing both L and |M |.

For any i ≥ 1, consider the state after the algorithm has completed i
iterations of its outer loop; suppose that the matching is then Mi, of size si.
We will then have L > 2i, since L increases by at least 2 per iteration. From
the disjoint-path bound, we deduce that s− si < s/i, where s is the size of
the output matching. Since |M | increases by at least 1 in each iteration, an
additional s/i iterations will finish the job, bringing our matching up from
size si to size s. Thus, the total number of iterations is at most i + s/i.
Setting i :=

√
s to balance the two terms in this upper bound, we deduce

that 2
√
s iterations suffice, so the overall runtime is O(m

√
s).

Let c ≤ 1 be some constant, and suppose that we set t = c ν(G) in
ImpM. Thus, we are looking for some matching that is within a factor of
c of being maximal. Prop 5-5 shows that Hopcroft-Karp will find such a
matching in time O(m

√
t) = O(m

√
ν(G)). And that is the correct answer

when c = 1. When c < 1, however, more is true.

Prop 5-6. If the target size t in ImpM satisfies t ≤ c ν(G) for some constant
c < 1, then Hopcroft-Karp solves ImpM in time O(m).

Proof. Run the algorithm for 1/(1 − c) = O(1) iterations of its main loop.
At this point, we will have L > 2/(1 − c). Invoking Corollary 5-3, we find
that s > c ν(G), so we are done in time O(m).
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Chapter 6

Introducing FlowAssign

FlowAssign is our new, weight-scaling algorithm for computing imperfect
assignments. To carry out a scaling phase, FlowAssign invokes a proce-
dure called Refine. In this chapter, we discuss the high-level structure of
FlowAssign, but we don’t dive into Refine until Chapter 7.

The input to FlowAssign is a bipartite graph G with integral edge weights
and a target size t. FlowAssign computes a min-cost matching in G of size
s := min(t, ν(G)), along with integral prices that demonstrate that its output
is indeed min-cost. It runs in space O(m) and in time O(m

√
s log(sC)),

where C > 1 is a bound on the magnitude of any edge weight.

We first perform some initialization. Ignoring the edges weights, we use
Hopcroft-Karp to look for some matching of size t. Hopcroft-Karp warns us
if t exceeds ν(G) and gives us an initial matching of size s := min(t, ν(G)).
Keep in mind that a matching of size s in the graph G corresponds to an
integral flow f of value |f | = s in the flow network NG, and it is best to
think, from here on, of working with such flows.

The core of FlowAssign is the procedure Refine, which carries out a single
scaling phase. This procedure takes, as input, a flow f of value s and prices
p that together make all arcs (qε)-proper, where q is an integer parameter.
Refine builds a new flow f ′, also of value s, and prices p′ that together
make all arcs ε-proper. Thus, it improves the quality with which we are
approximating properness by a factor of q. We are going to end up choosing
q to be a constant; q = 8 or q = 16 might be good choices. But we initially
treat q as an independent parameter, allowing for such algorithm-design
options as setting q = Θ(log n).

FlowAssign calls Refine about logq(sC) times, thus reducing the error
parameter ε from about C to about 1/s. At that point, our approximate
prices are so close to being proper that, with a little care, we can simply
round them to be proper, thereby proving that the matching produced by
the final call to Refine is indeed min-cost of size s.

Recall that the Hungarian Method in incremental, solving IncA as well
as ImpA; but be warned that FlowAssign is not. The procedure Refine does
use augmenting paths to build up its approximately min-cost matching of
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size s, so it produces smaller matchings along the way that are also approxi-
mately min-cost. But small matchings that are precisely min-cost might not
emerge from any calls to Refine until after lots of lousy matchings of the full
size s have been computed. So FlowAssign is not usefully incremental.

6.1 Ceiling quantization

In FlowAssign, when we define what it means for an arc to be ε-proper, we
are going to decide the boundary cases in a one-sided manner; and we are
going to exploit that one-sidedness when rounding our prices to make them
proper, at the end of FlowAssign.

Let ε be a positive real number. During the scaling phase in which Flow-
Assign is striving for ε-properness, how we treat an arc v → w will depend
upon that arc’s reduced cost cp(v, w) only through the quantity dcp(v, w)/εe.
So what matters is which of the following intervals on the real line contains
that arc’s reduced cost:

. . . , (−2ε . .−ε], (−ε . . 0], (0 . . ε], (ε . . 2ε], (2ε . . 3ε], . . . (6-1)

We have chosen these intervals to be left-open and right-closed, and we’ll
discuss why in a moment. We are following Gabow-Tarjan by quantizing
our reduced costs to multiples of ε, but we are adding a new wrinkle by
adopting this ceiling quantization.

Consider an integral pseudoflow f on the network NG and prices p at
the nodes of NG. We define an idle arc v → w in the network NG to be
ε-proper when cp(v, w) > −ε and a saturated arc v → w to be ε-proper
when cp(v, w) ≤ ε. Note that a saturated arc v → w is allowed to have
cp(v, w) = ε and still be ε-proper, but an idle arc v → w that wants to be
ε-proper is not allowed to have cp(v, w) = −ε. Those choices are dictated
by our ceiling quantization.1

Prop 6-2. Let v → w be an idle arc whose reduced cost is known to be a
multiple of ε. If the arc v → w is ε-proper, then it is automatically proper.

Proof. We must have cp(v, w) > −ε, so we actually have cp(v, w) ≥ 0.

We don’t get the analogous automatic properness for saturated arcs. But
idle arcs are typically in the majority, so we prefer to deal with the idle arcs
automatically and deal with the saturated arcs in some other way. That’s
why we quantize with ceilings, rather than floors.

Recall that an arc with reduced cost zero is often called tight. We say
that an idle arc v → w is ε-tight when −ε < cp(v, w) ≤ 0, while a saturated
arc v → w is ε-tight when 0 < cp(v, w) ≤ ε. (Gabow and Tarjan refer to
these arcs as eligible.) Note that ε-tight arcs are ε-proper, but just barely
so, in the sense of “just barely” that our ceiling quantization allows. We also

1It follows that an idle arc v → w with cp(v, w) = 0 is proper, but is not 0-proper; this
is potentially confusing, so we will talk about arcs being γ-proper only when γ > 0.
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Figure 6.1: Classifying an arc based on its reduced cost

define a saturated arc v → w to be ε-snug when −ε < cp(v, w) ≤ ε, a weaker
condition than ε-tight. Note that we define ε-snugness only for saturated
arcs, not for idle arcs.

Figure 6.1 shows how idle and saturated arcs are classified into these
various classes, based on their reduced costs. Note that all classes are right-
closed and all classes except for the idle-and-proper class are left-open.

6.1.1 An aside on ceilings versus floors

Our choice of ceiling quantization could be viewed as unfortunate, since
floors seem a bit simpler than ceilings. Of course, we have dte = −b−tc, so
ceilings are, at worst, only slightly more complicated than floors.

If we talked about maximizing benefit in presenting FlowAssign, rather
than minimizing cost, then the formula for classifying an arc would be
bbp(v, w)/εc, with a floor. But minimizing cost is convenient when discussing
the Hungarian Method or similar algorithms. The reduced costs of proper,
idle arcs are nonnegative, while the reduced costs of proper, saturated arcs
are nonpositive. When we then compute the length of an augmenting path,
we add the reduced costs of its idle arcs and subtract the reduced costs of
its saturated arcs (since we back up along them); so our path lengths are
nonnegative, which is a natural fit for a Dijkstra-like search. If we were
dealing with reduced benefits, instead of reduced costs, it would be clumsy
to end up with path lengths that were nonnegative. So we are sticking with
minimizing cost.

It’s not completely clear why floors are typically thought of as simpler
than ceilings, by the way; but here is one relevant issue. Let k be some
integer. Modern computers represent k using two’s complement, with the
digits 0 and 1. As a result, we can compute, say, bk/16c simply by shifting
the representation of k four bits to the right. This works for k ≥ 0 and also
for k < 0, as long as a right shift of a negative value shifts in 1’s at the left
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FlowAssign(G, t)
(M, s) := HopcroftKarp(G, t);
convert M into an integral flow f on NG with |f | = s;
for all nodes v in NG, set pd(v) := 0;
ε := ε; while ε > ε do

ε := ε/q;
Refine(f, p, ε);

od;
round prices to integers that make all arcs proper;

Figure 6.2: The high-level structure of FlowAssign

end. Computing dk/16e is a little clumsier.
If we liked, we could instead represent integers using two’s complement,

but with the digits 0 and −1. In this scheme, a sign bit of −1 would mean a
positive number, while a sign bit of 0 would mean either a negative number
or 0. Thus, zero would become “the largest negative number” instead of, as
we are used to, “the smallest positive number”. Using this scheme, it would
be dk/16e that could be computed simply by right-shifting; so we might well
then think of ceilings as simpler than floors.

6.2 The high-level structure of FlowAssign

Figure 6.2 shows the high-level structure of the algorithm FlowAssign, but
with the details about the scaling phase Refine elided for now.

The real parameter ε specifies how close our current prices come to being
proper. We also introduce an integer q ≥ 2. For now, we leave q as a free
parameter, perhaps chosen to depend in some way upon the parameters n,
m, r, and s. In the end, however, we will choose q to be a small constant.
The integer q tells us the factor by which ε is reduced, in moving from one
scaling phase to the next.

The primary state of FlowAssign consists of the flux f , the prices p, and
the real number ε. Here are four invariant properties of that state:

I1 The flux f on NG is a integral flow of value |f | = s.

I2 For each node v in NG, the price pd(v) is a multiple of ε.

I3 Every arc of NG, idle or saturated, is ε-proper.

I4 Every saturated bipartite arc is ε-snug.

At the start of each scaling phase, ε is reduced by a factor of q. This
reduction makes it easier to satisfy I2, but harder to satisfy I3 and I4. The
routine Refine begins with special actions that reestablish I3 and I4, given
the new, smaller ε.

In each call to Refine, we have ε = qe for some integer e. The initial
value ε = qe is the smallest power of q that strictly exceeds C; so we set
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e := 1+
⌊
logq C

⌋
. The final ε = qe is the largest power of q that is strictly less

than 1/(s+2); so we set e := −
(
1+
⌊
logq(s+ 2)

⌋)
. (We suggest pronouncing

these as “e-up”, “e-down”, “epsilon-up”, and “epsilon-down”.) The number
of calls to Refine is

e− e = O(logq(sC)) = O(log(sC)/ log q). (6-3)

The early scaling phases are those with e ≥ 0, so that ε is a positive integer;
the late phases are those with e < 0, so that ε is the reciprocal of an integer.

FlowAssign has to do arithmetic on costs, which are integers, and on
prices and reduced costs, which are rational numbers. But the integer 1/ε =
q−e is a global common denominator — a common denominator for every
price and reduced cost that ever arises. For simplicity, FlowAssign represents
these quantities as rational numbers with this denominator, that is, as integer
multiples of ε. Corollary 9-5 shows that the prices remain O(qsC). Since
1/ε = O(qs), the numerators that we manipulate are O(q2s2C), so, if we set
q to be a constant, q = O(1), then triple precision will suffice.

It might be more efficient in practice, rather than storing the prices as
integer multiples of ε, to store them as integer multiples of the current ε,
since the resulting integers would be smaller. But doing this would require
that we scale up all prices by a factor of q in moving from one phase to
the next, to compensate for ε being scaled down by that factor. Using the
current ε as our unit of measure would also require doing something special
about the costs, since the costs may not be multiples of ε during the early
phases. In any case, this optimization couldn’t improve performance by more
than a constant factor; so we stick to the simpler plan of representing all
prices and costs, throughout, as multiples of ε.

Returning to Figure 6.2, we begin the processing in FlowAssign by using
Hopcroft-Karp, as described in Section 5, to compute some matching of size
s = min(t, ν(G)), which takes time O(m

√
s). We convert the Hopcroft-Karp

matching into an integral flow f in the network NG, with |f | = s. Then we
set the prices at all nodes of NG to zero and we set ε := ε. This establishes
all four of our invariants:

I1 The flux f is an integral flow of value |f | = s, as required.

I2 All prices are zero, so they are multiples of anything, including ε.

I3 Because the prices are zero, the reduced cost of every arc equals its cost;
and the magnitude of every such cost is at most C. Since ε > C, we
conclude that −ε < cp(x, y) < ε, for every bipartite arc x→ y. So all
bipartite arcs are ε-proper, whether they are idle or saturated. As for
the dummy arcs, their reduced costs are all currently zero; so they are
also ε-proper, whether idle or saturated. In fact, they are currently
proper; but that won’t last.

I4 We have just seen that any saturated bipartite arc x → y must have
−ε < cp(x, y) < ε, and is hence ε-snug.
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So the core of the algorithm can now commence, with repeated reductions
of ε and calls to Refine. We’ll analyze that core in later chapters.

6.3 Rounding the final prices

The final call to Refine makes all arcs ε-proper, where ε = ε < 1/(s + 2).
After that call, we round our prices to integers by computing

p̃d(v) := bpd(v) + kε c , (6-4)

for all nodes v in NG, where k is a carefully chosen integer in the range
[0 . . 1/ε), the same k for rounding all prices. We now discuss choosing k so
that the rounded prices make all arcs proper.

The rounding operation u 7→ bu+ kε c is monotonic and commutes with
integer shifts; so an arc that is proper before we round will remain proper
afterward. For example, an idle arc v → w that is proper before we round
has c(v, w) + pd(w) ≥ pd(v); this implies that c(v, w) + p̃d(w) ≥ p̃d(v), so the
arc will be proper afterward as well. And the argument for saturated arcs is
the same, but with the inequalities reversed.

We claim next that all idle arcs are proper before we round. Since all
costs are integers and ε is the reciprocal of an integer, all costs are multiples
of ε. All prices are multiples of ε as well, by I2, so all reduced costs are
multiples of ε. It then follows from Prop 6-2 that all idle arcs, which are
ε-proper by I3, are automatically proper.

So all of the arcs that are improper before we round are saturated, and
our goal is to find a k that will convert all of those arcs from improper to
proper. Let v → w be a saturated, improper arc. The prices pd(v) and pd(w)
are multiples of ε and the cost c(v, w) is some integer, so the reduced cost
cp(v, w) is a multiple of ε. Given this, the only way for the arc v → w to
be ε-proper, with cp(v, w) ≤ ε, but improper, with cp(v, w) > 0, is to have
cp(v, w) = ε, which means that pd(w) ≡ pd(v) + ε (mod 1).

When we round prices, replacing p with p̃, one value for k will cause
pd(w) to round up while pd(v) rounds down. This will send the rounded
reduced cost cp̃(v, w) all the way up from ε to 1. But all other values for k
will cause pd(v) and pd(w) to round in the same direction, either both up
or both down, thus resulting in cp̃(v, w) = 0 and the arc v → w becoming
proper. We avoid the one bad value for k.

Each saturated arc v → w that is currently improper determines exactly
one bad value for k in a similar way, and we can determine that bad value
by looking at the fractional part of either pd(v) or pd(w). The bad choice is
the largest k that causes pd(v) to round down, which is also the smallest k
that causes pd(w) to round up. If an arc is ε-proper but improper, then that
arc must be saturated and those two values of k must coincide.

The current flow f in the network NG has precisely 3s arcs that are
saturated. Each of the s saturated bipartite arcs might rule out a distinct
possibility for k. But note that, of the s saturated left-dummy arcs, all of the
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ones that are currently improper, however many of them there are, must rule
out the same possibility for k, since all left-dummy arcs leave the same node:
the source. In a similar way, of the s saturated right-dummy arcs, all of the
ones that are currently improper must rule out the same possibility for k. As
a result, at most s+ 2 possibilities are ruled out. Since 1/ε ≥ s+ 3, we will
be able to choose a k that is not bad for any arc. (More concretely, we mark
each integer in the range [0 . . 1/ε) as tentatively good. We then consider
each saturated arc in turn and, if it determines a bad value for k, we clear
the corresponding mark. Finally, we scan for an integer that is still marked
good.) Rounding all prices using this good value for k generates integral
prices that make all arcs proper, thus demonstrating that the matching M
corresponding to the flow f is indeed min-cost.
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Chapter 7

Introducing Refine

The routine Refine, shown in Figure 7.1, carries out a scaling phase similar
to those in Gabow-Tarjan. As in the Hungarian Method, the main loop
starts with a Dijkstra-like search to build a shortest-path forest, followed by
a round of price increases. But then, as in Hopcroft-Karp, we augment, not
just along the single length-0 augmenting path that our price increases have
ensured, but along a maximal set of compatible such paths.

7.1 The pseudoflows in Refine

During Refine, the flux f temporarily degenerates from a flow into a pseud-
oflow, but a pseudoflow with a simple structure. If f is a pseudoflow on
NG, we define a surplus of f to be a node other than the sink at which the
entering flow exceeds the leaving flow. And we define a deficit of f to be a
node other than the source at which the leaving flow exceeds the entering

Refine(f, p, ε)
convert the s bipartite arcs that are saturated in f to idle;
raise the prices p, as in Figure 7.4, to make all arcs ε-proper;

S , {surpluses} := {the s women matched on entry};
D , {deficits} := {the s men matched on entry};
int h := s; while h > 0 do

build a shortest-path forest with the current surpluses
as tree roots, until reaching a current deficit;

raise prices at the forest nodes by multiples of ε,
creating at least one length-0 augmenting path;

find a maximal set P of length-0 augmenting paths
that are compatible, as defined in Section 8.3;

augment f along each of the paths in P , shrinking S
and D so as to reduce |S| = |D| = h by |P |;

od;

Figure 7.1: The high-level structure of Refine
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` a

` a

Figure 7.2: Converting the input flow into a pseudoflow at the start of Refine.
Zeroing the flow on the three bipartite arcs that were saturated results in three
surpluses and three deficits, which are circled.

flow. So a pseudoflow qualifies as a flow just when it has no surpluses and
no deficits.

For a woman x in X, let the left stub to x be the pseudoflow on NG

that saturates the left-dummy arc ` → x, but leaves all other arcs idle.
Symmetrically, for a man y in Y , the right stub from y saturates only the
right-dummy arc y → a. Any pseudoflow f that arises in Refine is the sum
of some flow, some left-stubs, and some right-stubs. The flow component,
which we denote f̂ , encodes the partial matching that Refine has constructed
so far, during this scaling phase. We initialize f̂ to zero, so this matching
starts out empty. The left-stubs remember those women who were matched
at the end of the previous phase and who have not yet been either matched or
replaced during this phase. Those women are the surpluses of the pseudoflow
f , and they constitute the set S. The right-stubs remember the previously
matched men in a similar way. Those men are the deficits of f , and they
constitute the set D.

During Refine, we generalize the invariant I1 into I1′:

I1′ The flux f on NG is a pseudoflow consisting of an integral flow f̂ of value
|f̂ | = s− h supplemented by left stubs to each of the women in S and
by right stubs from each of the men in D, where |S| = |D| = h.

Note that I1 is that special case of I1′ in which h = 0, so there are no stubs
and the flux f = f̂ is itself an integral flow.

When Refine is called, f is an integral flow of value |f | = s. But Refine
starts by altering f so as to zero the flow along the s bipartite arcs that were
saturated. Figure 7.2 shows an example with s = 3. The initialization of
Refine then raises prices so that every arc in NG becomes ε-proper, for the
resulting pseudoflow f and for the new, smaller value of ε.

The rest of Refine, its main loop, finds augmenting paths and augments
along them, each such path joining a node in S to a node in D, that is,
a surplus to a deficit. By augmenting along s such paths, we return f to
being a flow once again, but now with all arcs ε-proper, rather than just
(qε)-proper. Unlike in Gabow-Tarjan, however, our augmenting paths are
allowed to visit the source and the sink, as we discuss next.
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Figure 7.3: An augmenting path of length 3 in the residual digraph of the initial
pseudoflow and the new pseudoflow that results from augmenting along that path

7.2 The residual digraph Rf

Given an integral pseudoflow f on the network NG, we define the residual
digraph Rf as follows: Each node in NG becomes a node in Rf . Each idle arc
v → w becomes a forward link v ⇒ w in Rf ; and each saturated arc v → w
becomes a backward link w ⇒ v.1 Note that, because our flow network
NG includes source and sink nodes, the links along a path in Rf need not
alternate between forward and backward.

An augmenting path is a simple path in the residual digraph Rf that
starts at a surplus and ends at a deficit. An augmenting path is allowed to
visit either the source or the sink or both (in either order); but it can visit
each of them at most once, since it is simple. Figure 7.3 shows an example
of an augmenting path of length 3 that visits the source. This path starts at
the surplus x, leaving that surplus along the backward link x ⇒ `. It then
follows the forward link ` ⇒ x′ and the forward link x′ ⇒ y, arriving at
the deficit y. When we augment along that path, the arcs underlying these
three links reverse their idle-versus-saturated status, thus recording the fact
that the set of women who are going to end up married has changed, with
x′ replacing x in that set.

The residual digraphs Rf that arise during Refine are more complex
than the digraphs RM that arose in the Hungarian Method. Despite this
complexity, the simple rules from Prop 3-1 about the in-degrees of maidens
and the out-degrees of bachelors in RM have equally simple analogs for Rf
— but now it’s the in-degrees of surpluses and the out-degrees of deficits.

Prop 7-1. In the residual digraph Rf for any pseudoflow f that arises during
Refine, the in-degree of any non-surplus woman is 1, while the in-degree of

1Recall the three levels of terminology that we first discussed in Section 2.1: The
original graph G has vertices and edges, each edge (x, y) having a cost c(x, y); the flow
network NG has nodes and arcs, each arc v → w going forward and having a reduced cost
cp(v, w); and the residual digraph Rf has nodes and links, some links going forward and
some backward, while each link v ⇒ w will have an integral length lp(v ⇒ w) ≥ 0.
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any surplus is 0. Symmetrically, the out-degree of any non-deficit man is 1,
while the out-degree of any deficit is 0.

Proof. Consider a woman x, and consider a link in Rf that arrives at x.
Such a link can arise in one of two ways: either because the left-dummy arc
` → x is idle, leading to the forward link ` ⇒ x, or because some bipartite
arc leaving x, say x → y, is saturated, leading to the backward link y ⇒ x.
Appealing to I1′, any bipartite arc that is saturated in f must be saturated
also in the flow f̂ , since no stub saturates any bipartite arcs. Since flow
is conserved at x in the flow f̂ , there can’t be more than one bipartite arc
leaving x that is saturated, and there can’t be even one such saturated arc
unless the left-dummy arc ` → x that enters x is also saturated. So the
in-degree of x in Rf is at most 1. Furthermore, the node x is a surplus just
when the left-dummy arc ` → x is saturated and no bipartite arc leaving x
is saturated; so the in-degree of x is then 0.

The argument for the out-degree of a man is symmetric.

Corollary 7-2. On any augmenting path that arises during Refine, the only
surplus is the surplus at which it starts and the only deficit is the deficit at
which it ends.

7.3 The lengths of the links in Rf

We now associate a nonnegative length with each link in the residual digraph
Rf . In the Hungarian Method, the lengths of links were real numbers; but
they are integers in Refine because, as in Gabow-Tarjan, we quantize our
reduced costs to multiples of ε. More precisely, we do ceiling quantization.
A forward link v ⇒ w in the residual digraph Rf arises from an idle arc
v → w, and we define the length of that forward link to be

lp(v ⇒ w) :=

⌈
cp(v, w)

ε

⌉
. (7-3)

Since all arcs are maintained ε-proper by I3, the idle arc v → w will have
cp(v, w) > −ε, so we have lp(v ⇒ w) ≥ 0. A backward link w ⇒ v arises
from a saturated arc v → w, and we define the length of that backward link
to be

lp(w ⇒ v) := 1−
⌈
cp(v, w)

ε

⌉
. (7-4)

A saturated arc v → w that is ε-proper has cp(v, w) ≤ ε, so the value of the
ceiling is at most 1, and it could be large negative. Thus, the length of any
backward link is also a nonnegative integer: lp(w ⇒ v) ≥ 0.

In the Hungarian Method, all saturated arcs were bipartite and were kept
tight, so all backward links had length zero. In Refine, however, we have
dummy arcs, some of which are saturated, and their reduced costs might be
large negative. So we have to define the lengths of backward links in Refine,
and the minus sign in front of the ceiling in equation (7-4) makes sense, since
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the backward link w ⇒ v is the reverse of the saturated arc v → w. Indeed,
the presence of that minus sign simplifies the impact of a price increase on
the lengths of the affected links.

Prop 7-5. In a round of price increases in the main loop of Refine, raising
the price pd(v) at some node v in NG by ε lowers by 1 the length of any link
in the residual digraph Rf that leaves v and raises by 1 the length of any
link that enters v.

Proof. A link v ⇒ w leaving v is either forward or backward. If it is forward,
the arc underlying it is the idle arc v → w. Raising the price at v by ε lowers
the reduced cost of this arc by ε, which, by (7-3), lowers the length of the link
by 1. If the link v ⇒ w is backward, the arc underlying it is the saturated
arc w → v. Raising the price at v by ε raises the reduced cost of this arc by
ε, which, by (7-4), also lowers the length of the link by 1.

Links, either forward or backward, that enter v are a similar story.

So the minus sign in (7-4) makes good sense; but what about the offset of
+1? We obviously need some offset, since Dijkstra’s algorithm for shortest
paths requires our lengths to be nonnegative. One could argue that our
offsets of 0 in (7-3) and of +1 in (7-4) have somewhat the same effect that
offsets of −1

2 and +1
2 would have, where those offsets could be justified as

removing the upward bias of the ceiling function. But the real reason that
we adopt the offsets that we do is the following.

Prop 7-6. In Refine, a link in the residual digraph has length 0 just when
the arc underlying it is ε-tight; so an augmenting path has length 0 just
when all of its links are ε-tight. And a backward link has length at most 1
just when the saturated arc underlying it is ε-snug.

Proof. An idle arc v → w is ε-tight when −ε < cp(v, w) ≤ 0, in which
case (7-3) gives us lp(v ⇒ w) = 0. A saturated arc v → w is ε-tight when
0 < cp(v, w) ≤ ε, in which case (7-4) gives us lp(w ⇒ v) = 0; and it is ε-snug
when −ε < cp(v, w) ≤ ε, in which case lp(w ⇒ v) must be either 0 or 1.

Now that the links in Rf have lengths, we can add our final invariant.
During Refine, we maintain I1′, I2, I3, and I4, which we here repeat for
reference, and we add I5:

I1′ The flux f on NG is a pseudoflow consisting of an integral flow f̂ of value
|f̂ | = s− h supplemented by left stubs to each of the women in S and
by right stubs from each of the men in D, where |S| = |D| = h.

I2 For each node v in NG, the price pd(v) is a multiple of ε.

I3 Every arc of NG, idle or saturated, is ε-proper.

I4 Every saturated bipartite arc is ε-snug.

I5 The residual digraph Rf has no cycles of length zero.
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Figure 7.4: Price increases during the initialization of Refine

7.4 Before the main loop starts

As Refine begins, zeroing the flow along the s bipartite arcs that started out
saturated leaves all bipartite arcs idle. This establishes I1′ with h = s and
with f̂ = 0. It also establishes I4 trivially. In addition, there are now no
links y ⇒ x in the residual digraph that go backward from the men’s side
to the women’s side; hence, there can’t be any cycles at all in the residual
digraph, so I5 holds, whatever the prices might be. As for I2, all prices
start as multiples of qε, and hence also multiples of ε. To establish the
remaining I3, we must make all arcs ε-proper, which we do by raising prices
as indicated in Figure 7.4. Note that these increases are all multiples of ε,
so we don’t invalidate I2 in the process of establishing I3.

What can we say about the reduced costs of the various arcs, before we
raise any prices? The saturated left-dummy arcs ` → x are (qε)-proper, so
they satisfy cp(`, x) ≤ qε. The idle left-dummy arcs are (qε)-proper, all of
the prices are multiples of qε, and the costs of all dummy arcs are zero. It
follows, from Prop 6-2, that the idle left-dummy arcs are actually proper,
with cp(`, x) ≥ 0. Symmetrically, the saturated right-dummy arcs y → a
satisfy cp(y,a) ≤ qε and the idle right-dummy arcs y → a are actually
proper, with cp(y,a) ≥ 0. The bipartite arcs x → y come in two flavors.
Some of them were idle also in the flow that was in effect when Refine was
called. Those arcs were idle and (qε)-proper, so they satisfy cp(x, y) > −qε.
The others are idle now, but they were saturated when Refine was called.
By I4, we conclude that cp(x, y) > −qε also for those arcs.

We now verify that the price increases indicated in Figure 7.4 leave all
arcs ε-proper. Let’s use p′ to denote the prices after we have raised them.

Consider first a saturated left-dummy arc ` → x. We start with

cp(`, x) = c(`, x)− pd(`) + pd(x) ≤ qε.

The surplus x lies in S, so we leave the price at x unchanged: p′d(x) := pd(x).
But we raise the price at the source: p′d(`) := pd(`) + (q − 1)ε. So we have

cp′(`, x) = c(`, x)− p′d(`) + p′d(x) = cp(`, x)− (q − 1)ε.
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So cp′(`, x) ≤ ε, and the saturated left-dummy arc ` → x is left ε-proper.
What about an idle left-dummy arc ` → x? We start with cp(`, x) ≥ 0.

And we add (q − 1)ε to the prices at both ` and at x; so we end with
cp′(`, x) ≥ 0. We need only cp′(`, x) > −ε to leave the idle arc ` → x being
ε-proper; but Prop 6-2 tells us that the only way to achieve cp′(`, x) > −ε
is to make cp′(`, x) ≥ 0.

We consider the bipartite arcs x→ y next. They are now all idle, and we
have seen that cp(x, y) > −qε, whether the arc x→ y was idle or saturated
at the call to Refine. The price at x either stays the same or goes up by
(q−1)ε, according as x does or does not lie in S. So p′d(x) ≤ pd(x)+(q−1)ε.
The price at y goes up either by 3(q − 1)ε or by 2(q − 1)ε, according as y
does or does not lie in D. So p′d(y) ≥ pd(y) + 2(q − 1)ε. We thus have

cp′(x, y) = c(x, y)− p′d(x) + p′d(y)

≥ c(x, y)− pd(x)− (q − 1)ε+ pd(y) + 2(q − 1)ε

≥ cp(x, y) + (q − 1)ε,

from which it follows that cp′(x, y) > −ε. Thus, all of the bipartite arcs are
left idle and ε-proper.

The right-dummy arcs are similar to the left-dummy arcs. The idle ones
start out proper and remain proper, since we raise the prices at both ends
by the same amount. For the saturated ones, we raise the price at the left
end by (q − 1)ε more than we raise the price at the right end. This ensures
that the saturated right-dummy arcs are left ε-proper, so Inv3 has been
established, and we are ready for the main loop.

54



Chapter 8

The main loop in Refine

Recall, from Figure 7.1, that the main loop of Refine iterates four steps. We
now analyze each of those four steps in turn.

8.1 Building the shortest-path forest

We start the main loop of Refine by building a shortest-path forest, with
the h surpluses remaining in S as the roots of the trees. This process is
similar to what we did in the Hungarian Method: We are looking for an
augmenting path whose links we can then bring to length 0 by raising prices
appropriately. But there are some important differences.

• We need a path from a surplus to a deficit. In the Hungarian Method,
we were satisfied with a path from any maiden to any bachelor.

• Our paths may visit the source and the sink; if they do so, then the
links along them won’t alternate between forward and backward.

• We use a different notion of path length. In the Hungarian Method,
the length of a path is the sum of the reduced costs of its forward links,
all of its backward links having reduced cost zero. In Refine, both the
forward and backward links can have positive length; and the lengths
of all links are ceiling quantized to be multiples of the current ε.

• We don’t need Fibonacci heaps in Refine. Since all path lengths are
multiples of ε, we can follow Gabow-Tarjan in using the technique of
Dial [7] to maintain our heap without any logarithmic overhead.

• Refine is also simpler in another way. When building a shortest-path
forest in the Hungarian Method, we treated men and women differently,
using our heap to find a shortest path to a man, but then deducing a
shortest path to his wife as a corollary. In Refine, we treat all nodes the
same: The women, the men, the source, and the sink all pass through
the heap on their way into the forest. This means that r is no longer
a bound on the size of the heap; but that doesn’t matter, since we pay
no logarithmic heap overhead.
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BuildForest();
make-heap();
for all nodes v, set `(v) :=∞;
for all surpluses σ in S, set `(σ) := 0 and insert(σ, 0);
do v := delete-min();

scan: for all links v ⇒ w leaving v in Rf do
L := `(v) + lp(v ⇒ w); Lold := `(w);
if L ≤ Λ and L < Lold then

set `(w) := L;
if Lold =∞ then insert(w,L)

else decrease-key(w,L)
fi;

fi;
od;
add v to the forest;

until v is a deficit;

Figure 8.1: Building a shortest-path forest in Refine via Dijkstra

• In the Hungarian Method, all women start out at price 0 and all men
start out at price C̄. In Refine, however, the prices at the nodes start
out with whatever complicated structure has resulted from earlier calls
to Refine. We will analyze the changes to those prices, proving analogs
of Props 3-6 and 3-7 for Refine. But the prices in Refine don’t start
out with any particular uniformity.

We stop building our shortest-path forest when a deficit first joins it. We
will prove a bound in Corollary 9-4 on how long a path we might need, to
first reach a deficit. For now, we just assume that Λ is some such bound.
That is, whenever we start building a shortest-path forest, we assume that
some path in Rf from some surplus to some deficit will be found whose
length is at most Λ.

We build the heap using a Dijkstra-like search, as shown in Figure 8.1.
This code is somewhat shorter than the analogous code in Figure 3.4, because
we no longer treat women and men differently. The value `(v), when finite,
stores the minimum length of any path in Rf that we’ve found so far from
some surplus to v. We use a heap to store those nodes v with `(v) <∞ until
they join the forest. The key of a node v in the heap is `(v). The commands
insert, delete-min, and decrease-key operate on that heap.

Since our keys are small integers and our heap usage is monotone1, we can
use Dial [7] to avoid any logarithmic heap overhead. We maintain an arrayQ,
where Q[k] points to a doubly-linked list of those nodes in the heap that have

1Cherkassky, Goldberg, and Silverstein [6] call a pattern of heap usage monotone if,
whenever k is the key of a node that was just returned by a delete-min, then the key
parameter in any future call to insert or decrease-key will be at least k. The Dial technique
depends upon this monotonicity.
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key k. Exploiting our assumed bound Λ, we allocate the array Q as Q[0 . .Λ].
We ignore any paths we find whose lengths exceed Λ. We also maintain an
integer B, which stores the value `(v) for the node v that was most recently
added to the forest. We add nodes v to the forest in nondecreasing order
of `(v), so B never decreases. To implement insert(v, k), we add v to the
list Q[k]. To implement delete-min, we look at the lists Q[B], Q[B+ 1], and
so on, removing and returning the first element of the first nonempty list
we find. To implement decrease-key(v, k), we exploit the double linking to
remove v from the list Q[`(v)] and then add v to the list Q[k].

By our assumption about Λ, some deficit δ with `(δ) ≤ Λ will eventually
enter the forest, at which point we stop building it. The space and time that
we spend building it are both O(m+ Λ), where the Λ term accounts for the
space taken by the array Q and for the time taken to scan that array once
while doing delete-min operations.

By the way, suppose that every individual link had length at most K, for
some K � Λ. The only lists in the array Q that could then be nonempty
would be the lists Q[B], Q[B+1], through Q[B+K]. Thus, we could reduce
the storage needed for the array Q by treating its indices modulo K + 1.
That idea is also part of the Dial technique. But we don’t exploit that idea
here, since we don’t have any good bound on the lengths of individual links.

8.2 Raising the prices

The next step in the main loop of Refine is to raise prices. For each node v
in the shortest-path forest, we set the new (dispose) price p′d(v) by

p′d(v) := p(d) + (`(δ)− `(v))ε, (8-1)

where δ is the deficit whose discovery halted the growth of the shortest-path
forest. This is essentially the same formula that we used in the Hungarian
Method, back in equation (3-3), except for the multiplication by ε, which
we need here because our path lengths are now measured as multiples of ε.

Let σ be the surplus at the root of the tree that δ joins. We have
p′d(σ) = pd(σ) + `(δ)ε, but p′d(δ) = pd(δ). So Prop 7-5 tells us that our
price increases shorten the path from σ to δ by `(δ) length units. Since `(δ)
was the length of that path before our price increases, its length after the
increases will be zero. If our invariants are preserved, all of the links along
that path must end up of length 0, meaning that all of the underlying arcs
are ε-tight. As for our invariants, it’s clear that I1′ and I2 continue to hold.
But establishing the other three invariants takes more work.

For each node v in the network NG, let’s define i(v) to be the multiple
of ε by which we raise the price pd(v). So, for nodes v in the forest, we set
i(v) := `(δ)− `(v), while, for nodes v not in the forest, we set i(v) := 0. We
then have the repricing formula p′d(v) = pd(v) + i(v)ε, for all nodes v. Using
this repricing formula, we can express the impact of our repricings on an arc
v → w without needing to know whether or not the nodes v and w lie in the
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forest. We have

cp(v, w) = c(v, w)− pd(v) + pd(w)

cp′(v, w) = c(v, w)− p′d(v) + p′d(w),

so we have

cp′(v, w) = cp(v, w) + (i(w)− i(v))ε. (8-2)

Lemma 8-3. Suppose that, at some point during the construction of the
shortest-path forest, the node v in NG enters the forest and the link v ⇒ w
in the residual digraph is scanned. We can then conclude that, after the
forest’s construction, we will have

`(v) + lp(v ⇒ w) ≥ `(δ)− i(w). (8-4)

Proof. Three cases can arise, as we consider the length L := `(v)+lp(v ⇒ w)
of the new path that we have found from some surplus to w.

First, we might find that L > Λ, so that we ignore the new path com-
pletely. But we are assuming that some path to a deficit is eventually found
of length at most Λ, which means that Λ ≥ `(δ). So we have L > `(δ) in
this case, which implies inequality (8-4).

If the first case does not pertain, we next consider `(w), which might be
infinite, finite but larger than L, or at most L. Whichever of these three
subcases applies, our processing of the link v ⇒ w reduces `(w) enough so
that L ≥ `(w) then holds. During the remainder of the forest construction,
`(v) does not change and `(w) can only decrease further. So we still have
L ≥ `(w) after the forest-building has ceased.

When the forest-building has ceased, it might be that w has not entered
the forest; that constitutes our second top-level case. We then have `(w) ≥
`(δ), since δ has entered the forest and nodes enter the forest in nondecreasing
order of their ` values. So we have L ≥ `(w) ≥ `(δ) in this case, which also
implies inequality (8-4).

Finally, in our third top-level case, w has joined v the forest at some point
during its construction, along with v. We then have i(w) = `(δ) − `(w), so
L ≥ `(w) implies L ≥ `(δ)− i(w), and (8-4) holds for the third time.

8.2.1 Idle arcs are left ε-proper

We now establish I3 for idle arcs. Consider an idle arc v → w in the network
NG, which gives rise to the forward link v ⇒ w in the residual digraph Rf .
This arc was ε-proper before we raised our prices, so we had cp(v, w) > −ε.
We must show that cp′(v, w) = cp(v, w) + (i(w)− i(v))ε > −ε.

If v does not belong to the forest, we have i(v) = 0. The reduced cost of
the arc v → w couldn’t then have decreased, so the arc v → w ends ε-proper
because it started ε-proper. It remains to consider the case in which v does
belong to the forest.

58



If v entered the forest, then we must have scanned v, which means that
we considered the forward link v ⇒ w. We can deduce from Lemma 8-3 that

`(v) + lp(v ⇒ w) ≥ `(δ)− i(w).

Since v ⇒ w is a forward link and u+ 1 > due for all real u, we have

`(v) +
cp(v, w)

ε
+ 1 > `(v) +

⌈
cp(v, w)

ε

⌉
≥ `(δ)− i(w).

Multiplying through by ε and rearranging, we find that

cp(v, w) +
(
i(w)− (`(δ)− `(v))

)
ε > −ε.

Since v belongs to the forest, we have i(v) = `(δ)− `(v), so cp′(v, w) > −ε.
Thus, our price increases do indeed leave all idle arcs ε-proper.

8.2.2 Saturated arcs are left ε-proper

To finish verifying I3, we next consider a saturated arc v → w in the network
NG, which gives rise to the backward link w ⇒ v in the residual digraph Rf .
This arc was ε-proper before we raised prices, so we had cp(v, w) ≤ ε. Our
goal is to show that cp′(v, w) = cp(v, w) + (i(w)− i(v))ε ≤ ε.

If w does not belong to the forest, we have i(w) = 0, so the arc v → w
ends ε-proper because it started ε-proper. On the other hand, if w belongs to
the forest, we must have scanned w and considered the link w ⇒ v. Applying
Lemma 8-3 with v and w reversed, we deduce that

`(w) + lp(w ⇒ v) ≥ `(δ)− i(v).

Since w ⇒ v is a backward link and −u ≥ −due for all real u, we have

`(w) + 1− cp(v, w)

ε
≥ `(w) + 1−

⌈
cp(v, w)

ε

⌉
≥ `(δ)− i(v).

Multiplying through by ε and rearranging, we find that

ε ≥ cp(v, w) +
(
(`(δ)− `(w))− i(v)

)
ε.

Since w belongs to the forest, we have i(w) = `(δ) − `(w), so cp′(v, w) ≤ ε
as we hoped. Our price increases thus preserve I3.

8.2.3 Saturated bipartite arcs are left ε-snug

To show that I4 is preserved, we consider a saturated, bipartite arc x→ y;
we must show that cp′(x, y) = cp(x, y) + (i(y) − i(x))ε > −ε, which is the
lower-bound part of ε-snugness. Since we are now dealing with a lower bound
on the reduced cost of a saturated arc, though, our argument will have to
differ significantly from our arguments for the two halves of I3 above.
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If x does not belong to the forest, we have i(x) = 0, so the arc x → y
ends ε-snug because it started ε-snug. We henceforth assume that x belongs
to the forest.

But how did x get into the forest? Since x is the tail of the saturated
bipartite arc x → y, the node x isn’t a surplus; so x wasn’t put into the
forest initially. Since the arc x → y is saturated, the corresponding link in
the residual digraph is the backward link y ⇒ x, which arrives at x. By
Prop 7-1, the in-degree of a woman in the residual digraph never exceeds 1.
So y ⇒ x is the only link in the entire residual digraph that arrives at x. And
the only way that x could have entered the forest is because y entered the
forest first, causing the backward link y ⇒ x to be scanned, and, sometime
later, x was extracted from the heap with a delete-min.

It follows that `(x) was determined entirely by the link y ⇒ x. So we
have `(x) = `(y) + lp(y ⇒ x) = `(y) + 1−dcp(x, y)/εe. Since u+ 1 > due for
all real u, we have

cp(x, y)

ε
+ 1 >

⌈
cp(x, y)

ε

⌉
= `(y)− `(x) + 1.

Multiplying through by ε and rearranging, we have cp(x, y)+(`(x)−`(y))ε >
0. Since both x and y belong to the forest, we have i(x) = `(δ) − `(x) and
i(y) = `(δ) − `(y), and thus `(x) − `(y) = i(y) − i(x). So we find that
cp′(x, y) > 0 in this case, which is even stronger than the cp′(x, y) > −ε that
we needed. So I4 is also preserved.

8.2.4 Rf remains free of length-0 cycles

To show that I5 is preserved, we must show that raising the prices at the
nodes in the shortest-path forest doesn’t cause the residual digraph Rf to
acquire any length-0 cycles. But we saw, in Prop 7-5, that increasing the
price at a node v by ε lowers the lengths of all links leaving v by 1 and raises
the lengths of all links entering v by 1. It follows that price increases have
no effect on the overall length of any cycle, and hence price increases can’t
lower the length of any cycle in Rf to 0.

8.3 Finding compatible augmenting paths

The main loop of Refine has constructed a shortest-path forest and then
raised prices to ensure that there exists some length-0 path in the residual
digraph Rf from some surplus to some deficit. If we were mimicking the
Hungarian Method, our next step would be to augment along that length-0
augmenting path. But we want

√
s performance, so, like Gabow-Tarjan,

we are going to start mimicking Hopcroft-Karp instead. We define what it
means for augmenting paths to be “compatible”. We then find a maximal
set of compatible length-0 augmenting paths, and we augment along all of
the paths in that set, before returning to construct a new forest.
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In Hopcroft-Karp, augmenting paths are compatible just when they are
vertex-disjoint; but we need a more generous notion of compatibility for
Refine. Given the graph-theoretic properties of the residual digraph Rf , we
can define our notion of compatibility in two different, equivalent ways.

8.3.1 Defining compatibility

We define augmenting paths to be link-compatible when they start at distinct
surpluses, they end at distinct deficits, and they don’t share any links. We
define augmenting paths to be node-compatible when every woman is visited
by at most one of the paths, and the same for every man — that is, the
paths are node-disjoint, except for the source and sink.

Prop 8-5. Augmenting paths are link-compatible if and only if they are
node-compatible.

Proof. It’s easy to see that node-compatible augmenting paths are also link-
compatible. By node-compatibility, they must start at distinct surpluses and
end at distinct deficits. They also can’t share any links, since every link has
at least one end node that isn’t the source or the sink.

Conversely, consider some augmenting paths that are link-compatible,
and let x be a woman. If x is a surplus, then, by Corollary 7-2, an augmenting
path can visit x only by starting at x, which only one of our link-compatible
paths can do. If x is not a surplus, then an augmenting path can visit x
only by arriving at x over a link. By Prop 7-1, the in-degree of x in Rf is
at most 1, and at most one of our link-compatible paths can travel over any
single link. So x is visited by at most one of our paths.

In a similar way, let y be any man. If y is a deficit, then an augmenting
path can visit y only by ending at y, which only one of our paths can do. If y
is not a deficit, an augmenting path can visit y only if it then leaves y along
a link. But there is at most one link leaving y, which at most one of our
paths can traverse. So link-compatible paths are also node-compatible.

Since these two notions of compatibility are equivalent, we can henceforth
refer to augmenting paths as simply being compatible, without specifying
which flavor of compatibility we have in mind.

8.3.2 Finding a maximal set of compatible paths

Let R 0
f denote that subgraph of the residual digraph formed by links of

length zero. Note that we can construct an adjacency-list representation of
R 0
f in O(m) time. The next step in the main loop of Refine is to find a

maximal set P of compatible augmenting paths in the subgraph R 0
f . We

could search either for paths that are link-compatible or for paths that are
node-compatible.

Figure 8.2 shows how to search for node-compatible paths using a depth-
first search of the graph R 0

f . We build each path by pushing nodes onto a
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for v in NG do set v to be unmarked;
set K to empty;
Surp := S;

A: while Surp not empty do
x := first(Surp); Surp := rest(Surp);
push(x,K);

B: while K not empty do
v := top(K);
if v 6= ` and v 6= a then mark(v) fi;
if v in D then

add K to P as an augmenting path;
set K to empty;
goto A;

fi;
C: while L[v] not empty do

w := first(L[v]); L[v] := rest(L[v]);
if w not marked then push(w,K); goto B fi;

od;
pop(K);

od;
od;

Figure 8.2: Finding the augmenting paths

stack K. For each node v, we have a list L[v] of those nodes w for which
the link v ⇒ w in the residual digraph has length 0. When exploring the
node v, we consider the successor nodes w in turn. And Surp is a list of the
current surpluses, the nodes where an augmenting path could begin.

Each node has a mark bit, which we use to avoid examining nodes more
than once. But we may need to examine the source and sink multiple times,
since they can lie on multiple augmenting paths; so we never mark the
source or the sink. Instead, each time that we return to the source or the
sink, we resume where we left off in considering potential ways to continue
an augmenting path from there. Failing to mark some node in a general
graph would raise the risk that we would push that node onto the stack K
at a time when that node was already on K, thus outputting a path that
wasn’t simple. But the graph R 0

f is acyclic by I5, so we don’t run that risk.

Each iteration of the C loop can be charged to the link v ⇒ w being
traversed. Of the iterations of the B loop with any particular value for the
node v, the first can be charged to v itself, while any following iterations
can be charged to the link v ⇒ w that caused the stack to grow beyond
v, after which it later shrank back to have v on top. Thus, our search for
augmenting paths runs in O(m) time.

The paths that we add to P are clearly augmenting. And every node on
any such path, except for the source and the sink, is marked when we add
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Figure 8.3: Augmentation’s effects on the lengths of links in Refine

that path to P , so different augmenting paths in P will be node-compatible,
and hence compatible. Finally, when we consider starting at any surplus x,
if there is any augmenting path starting at x that is compatible with the
paths already in P , we will find it and add it to P . Thus, the set P that we
construct is maximal. (It can easily fail to be maximum; but that’s okay.)

If we liked, we could search for paths that are link-compatible, instead of
node-compatible. The resulting program would be shorter than the program
in Figure 8.2, since it could treat all nodes in the same way: the way in
which Figure 8.2 treats the source and sink. We would still need mark bits,
however, to mark those deficits reached by augmenting paths already in P .
And the program in Figure 8.2 will run faster, because it can cut off failing
branches of the search tree sooner.

8.4 Augmenting along those paths

Finally, we augment the pseudoflow f along each of the paths in P . These
augmentations reverse the forward-versus-backward orientation of each link
along the path and the idle-versus-saturated status of each underlying arc.
This restores the flow balance of the surplus at which the path starts and
of the deficit at which it ends, while no other flow-balances are affected.
So I1′ is preserved, but with h = |S| = |D| reduced by |P |. Augmenting
doesn’t change any prices, so I2 is preserved. As for I3, the length-0 forward
links along an augmenting path become length-1 backward links, while the
length-0 backward links become length-1 forward, as indicated in Figure 8.3.
So all of the underlying arcs are left ε-proper, though no longer ε-tight. The
formerly idle bipartite arcs that become saturated during the augmentation,
while not left ε-tight, are left ε-snug, by Prop 7-6; so I4 is also preserved.
Finally, for I5: Augmentation reverses the directions of some links, and this
may well produce cycles in Rf . Indeed, this is the only way that any cycles
ever arise in Rf . But every link that changes state during an augmentation
ends up being of length 1; so no cycle that exploits any such link can be of
length 0.

63



Chapter 9

Analyzing the performance

To finish analyzing FlowAssign, we need three things. First, we must choose
a value for the bound Λ, showing that the building of every shortest-path
forest finds a path from a surplus to a deficit of length at most Λ. Second,
we must show that our prices remain O(sC). Third, to achieve the weight-
scaling time bound, we must show that the main loop of Refine executes
O(
√
s) times. The key to all three of these is the inflation bound, which

limits the total amount by which prices can increase during a call to Refine.

9.1 The inflation bound

The inflation bound applies at any clean point in Refine’s main loop, where
a clean point is just before or just after the execution of one of the four
statements of the main loop. By restricting our attention to clean points,
we don’t have to worry about things being in some inconsistent state, say,
because we are in the middle of augmenting along some augmenting path.

In the round of price increases that follows the building of a shortest-
path forest, the surpluses at the roots of the trees in that forest have their
prices increased by `(δ)ε, where δ is the deficit whose discovery stopped the
building of the forest. Note that this is the largest increase that happens,
during that round, to the price at any node. Let’s refer to that quantity as
the max increase of that round.

Prop 9-1. Consider any clean point during an execution of the main loop
of Refine. Let ∆ denote the sum of the max increases of all of the rounds of
price increases so far, during this call to Refine. We then have the inflation
bound:

h∆ ≤ (4q + 4)sε. (9-2)

This bound holds even just after a round of price increases, during which
∆ increased, and before the subsequent batch of augmentations, which will
cause h to decrease.

Proof. We will prove the inflation bound (9-2) by calculating the quantity
(cp′−cp)(f ′−f) in two different ways. But we must first define this quantity.
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Figure 9.1: An example of the flux f ′ − f

Let f be the flow on the network NG that was in effect when Refine
was called. Let p be the prices that were in effect when control entered the
main loop of Refine. Note that those two times are different. During the
initialization code in Refine, we convert the input flow into a pseudoflow by
zeroing out the flows along all bipartite arcs. We use the symbol f here to
denote the input flow, before that zeroing out. We also raise the prices at
the various nodes, as described in Figure 7.4, so as to make all arcs ε-proper
with respect to the new pseudoflow. We use the symbol p here to refer to
the prices after those increases have happened.

Let f ′ be the pseudoflow at the current clean point in the execution of
Refine, and let p′ be the prices at that same clean point. Our proof will
compute the quantity (cp′ − cp)(f ′ − f) = cp′(f

′ − f) − cp(f ′ − f) in two
different ways.

Figure 9.1 shows one example of what might happen — though it is hard
for one small diagram to show all of the potential patterns. In Figure 9.1,
we have |X| = 9, |Y | = 10, and s = 7. The input flow f of value |f | = 7
is laid out very simply in the diagram. We are considering that point in
the execution of Refine at which there are h = 3 remaining surpluses and 3
remaining deficits, which are circled in the diagram of f ′. Note that, of the
four augmenting paths along which we have augmented so far, at least two
of them have visited the source and at least one has visited the sink.

When we subtract f from f ′, we get the flux f ′−f shown on the bottom.
Note that this difference is just a flux, not even a pseudoflow, since it assigns
a flow of −1 to various arcs. Since both f and f ′ have s units of flow leaving
the source and s units entering the sink, flow is conserved in the difference
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flux f ′ − f at both the source and the sink. Flow is conserved in f at all
nodes other than the source and the sink. In f ′, on the other hand, there are
h remaining unit surpluses in X and h remaining unit deficits in Y . Thus,
in the difference flux f ′ − f , flow is conserved at all nodes except for those
2h nodes, which have the same status in f ′ − f that they have in f ′.

9.1.1 Calculating the value precisely

If a flux conserves flow at some node v, then changing the price at the node v
has no effect on the reduced cost of the flux. Thus, to calculate the difference
(cp′− cp)(f ′−f) = cp′(f

′−f)− cp(f ′−f), it suffices to consider the changes
in price that happen at the 2h nodes where f ′ − f does not conserve flow.
Of those nodes, h are women with a unit surplus who have had that surplus
since we entered the main loop; and the other h are men with a unit deficit
who have had that deficit since we entered the main loop.

During the main loop of Refine, the only price changes that happen
are the rounds of price increases that follow the construction of a shortest-
path forest. Note that all h of the remaining surpluses have been roots
of trees in every shortest-path forest that we have constructed so far. So
all of them have had their prices increased by the max increase in every
round of price increases so far. Thus, for each remaining surplus x, we have
cp′(x) = cp(x) + ∆. On the other hand, a round of price increases doesn’t
change the price of any current deficit. The shortest-path forest includes
only one deficit: the deficit δ whose discovery stopped the growth of the
forest. And the repricing formula specifies that the price at δ shouldn’t
change. Thus, for each remaining deficit y, we have cp′(y) = cp(y).

So the flux f ′−f has h unit surpluses, at each of which the price increases
by precisely ∆ between p and p′, and it has h unit deficits, at each of which
the price doesn’t change between p and p′. So (cp′ − cp)(f ′ − f) = h∆.

9.1.2 Bounding the value

We next derive an upper bound on the quantity (cp′ − cp)(f ′ − f) by using
our bounds on the reduced costs of individual arcs.

The flow f and the pseudoflow f ′ each assign a flow of either 0 or 1 to
each arc in the network NG, so we can think of each of them as a set of
arcs. Taking their differences as sets, let f ′ \ f denote those arcs that are
saturated in f ′, but idle in f ; and define f \ f ′ symmetrically. We then have
f ′ − f = (f ′ \ f)− (f \ f ′), where the arcs saturated in both f and f ′ have
been omitted from both terms on the right-hand side. So we have

(cp′ − cp)(f ′ − f) = cp′(f
′ \ f)− cp′(f \ f ′)− cp(f ′ \ f) + cp(f \ f ′). (9-3)

We now consider each of these four sums in turn.
The first term cp′(f

′ \ f) sums the current reduced costs of those arcs
that are saturated in f ′, but were idle in f . Since Refine maintains all arcs
ε-proper by I3, any arc that is currently saturated has reduced cost at most
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ε. By I1′, the current pseudoflow f ′ saturates precisely s left-dummy arcs,
s− h bipartite arcs, and s right-dummy arcs. Some of those arcs may have
been saturated also in f , in which case they won’t contribute to cp′(f

′ \ f).
But we certainly have cp′(f

′ \ f) ≤ 3sε.
We boldly tackle the trickiest case next, which is the fourth and final

term cp(f \ f ′) in equation (9-3). Recall that f is the flow that was in effect
when Refine was called, but p is the prices that were in effect somewhat
later, when Refine entered its main loop. There are precisely s left-dummy
arcs in the flow f , so at most s in f \ f ′. Each of those arcs ` → x was
saturated when Refine entered its main loop, so we have cp(`, x) ≤ ε by I3.
Thus, the left-dummy arcs contribute at most sε; and a similar argument
shows the same for the right-dummy arcs.

The bipartite arcs are the tricky ones, in our analysis of the term cp(f\f ′).
Let x → y be a bipartite arc that was saturated in f . When Refine was
called, this arc was saturated and (qε)-proper. During the initialization of
Refine, we first changed the flow to make the arc x → y idle and we then
changed prices as described in Figure 7.4. Since x was then a woman with
a unit surplus, we left the price at x unchanged. But, since y was a man
with a unit deficit, we added 3(q − 1)ε to the price at y. It follows that
cp(x, y) ≤ qε+ 3(q − 1)ε = (4q − 3)ε. There are at most s arcs of this type,
so they contribute (4q − 3)sε to our sum. Adding in the dummy arcs, we
conclude that cp(f \ f ′) ≤ (4q − 1)sε.

What about the second term −cp′(f \f ′) in (9-3)? This term subtracts off
the reduced costs, in current prices, of those arcs v → w that were saturated
in f , but are idle in f ′. Since those arcs currently idle, I3 tells us that
cp′(v, w) > −ε, and hence −cp′(v, w) < ε. Furthermore, if the arc v → w
is either left-dummy or right-dummy, then Prop 6-2 tells us, in fact, that
cp′(v, w) ≥ 0, and hence −cp′(v, w) ≤ 0. So the dummy arcs v → w don’t
contribute anything. There were s bipartite arcs that were saturated in f ,
of which at most s could be currently idle, so we have −cp′(f \ f ′) < sε.

The third term −cp(f ′\f) in (9-3) is similar. It subtracts off the reduced
costs, at the time of entry into the main loop, of those arcs v → w that are
currently saturated, but were idle when Refine was called. Such an arc
v → w must have been idle also when Refine entered its main loop, since
converting f into a pseudoflow, while it does idle some saturated arcs, doesn’t
saturate any idle arcs. Applying I3 and Prop 6-2 once again, now at the
time of entry into the main loop, we conclude that −cp(f ′ \ f) < sε.

Adding everything together, we have h∆ ≤ (4q + 4)sε.

9.2 Determining the bound Λ

Using the inflation bound, we now establish that the bound Λ in Section 8.1
can be taken to be Λ := (4q + 4)s/h.

Corollary 9-4. The building of any shortest-path forest in the procedure
Refine is always halted by finding a deficit δ with `(δ) ≤ (4q + 4)s/h.
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Proof. Suppose that we are about to build a shortest-path forest. We have
h ≥ 1, so the matching that is encoded by the flow component f̂ of the
current pseudoflow f has size s − h < s. Since G has matchings of size at
least s, the standard theory of matchings tells us that there must exist a
path P in the residual digraph Rf from some maiden to some bachelor that
alternates between links that are forward bipartite and links that are back-
ward bipartite — no dummy links. The path P may not be an augmenting
path in our sense, however, since the maiden µ at which it starts may not
be a surplus and the bachelor β at which it ends may not be a deficit. If µ is
not a surplus, however, then the left-dummy arc ` → µ must be idle; so we
can tack two more links onto the beginning of P as follows: We choose any
surplus we like, say σ; we follow the backward link σ ⇒ `, then the forward
link ` ⇒ µ, and then continue along P . In a similar way, if β is not a deficit,
we can tack two more links onto the end of P ; we choose any deficit δ and
append the links β ⇒ a and a ⇒ δ. The result will be an augmenting path
from a surplus to a deficit, so some such path does exist.

If we allocated our Dial array Q large enough, then the building of the
forest would halt by discovering such a path. Let δ be the deficit whose
discovery would halt the building of the forest. The subsequent round of
price increases would raise the price at all remaining surpluses by `(δ)ε. The
inflation bound (9-2) would then apply, telling us that h∆ ≤ (4q+4)sε. But
we surely have `(δ)ε ≤ ∆. So we conclude that `(δ) ≤ (4q + 4)s/h.

9.3 Bounding the prices

The inflation bound also helps us to bound our prices.

Corollary 9-5. The prices in FlowAssign remain O(qsC).

Proof. Consider the invocation of Refine with a particular value for the
scaling parameter ε. By how much could any price increase, during this
call to Refine? During the initialization, we raise the prices by at most
3(q − 1)ε. Once we enter the main loop, we raise prices only after building
each shortest-path forest. From the inflation bound (9-2), we deduce that the
total impact of those price increases, throughout this entire call to Refine,
is at most (4q + 4)sε. Adding these up, we deduce that this call to Refine
doesn’t raise any prices by more than (4qs+ 4s+ 3q)ε = O(qs)ε.1

On entry to the first call to Refine, the prices are zero. And that first
call has ε = ε/q ≤ C. In subsequent calls, the values of ε decrease in a
geometric series with ratio 1/q, whose sum is O(1). Thus, we deduce that
all prices are O(qsC).

1Section 10.1 discusses TightRefine, a version of Refine in which augmenting along an
augmenting path involves raising the prices at all of the men along that path by ε. We
can allow for those price increases as well by raising the bound to (4qs+ 5s+ 3q)ε, since
only s augmentations happen during Refine.
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Since we store prices and manipulate them as multiples of ε where 1/ε =
O(qs), we conclude that the integers that we manipulate are O(q2s2C).

9.4 Demonstrating square-root performance

Prop 9-6. The number of iterations of the main loop of Refine is O(
√
qs).

Proof. Note first that every iteration of the main loop of Refine reduces h
by at least 1. The round of price increases ensures that at least one length-0
augmenting path exists, so we have |P | ≥ 1.

Next, we claim that every iteration of the main loop of Refine, except
perhaps the first, increases ∆ by at least ε. Note that ∆ could fail to increase
in some iteration only if we found a path in Rf from some surplus to some
deficit, all of whose links were already of length zero, with no need for any
price increases. If such a path A existed in any iteration after the first,
however, consider the maximal set P of compatible augmenting paths that
was computed near the end of the preceding iteration. The only changes to
the state (f, p) that happen after P is computed and before A is discovered
are the augmentations along the paths in P . But those augmentations affect
only the links along those paths, and none of those links can appear in A,
since the augmentations leave those links with length 1. So the length-0
augmenting path A must be link-compatible with all of the paths in P , and
is hence compatible with them. But the set P was maximal; so no such path
A can exist, and ∆ increases in all iterations of the main loop after the first.

Consider the state after
√

(4q + 4)s iterations of the main loop. By this
point, since ∆ increases in every iteration, we must have ∆ ≥

√
(4q + 4)s ε.

Applying the inflation bound (9-2), we deduce that h ≤
√

(4q + 4)s. Since
h decreases in every iteration, we see that the total number of iterations is
at most 2

√
(4q + 4)s = 4

√
(q + 1)s = O(

√
qs).

What does this tell us about the overall running time of Refine? The
building of the shortest-path forest is the most expensive step in the main
loop, so each iteration of that main loop takes space and time O(m + Λ),
where Corollary 9-4 tells us that we can take Λ = O(qs/h). Thus, each
iteration of the main loop of Refine takes space and time O(m + qs/h).
We should mention, though, that this bound is only relevant when q is
fairly small, say q < h log n. If q > h log n, then we would probably want
to abandon the Dial technique and switch over to Fibonacci heaps, which
would give us O(m) space and O(m+ s log n) time.

Assuming that we do stick with Dial, however, there will be O(
√
qs)

iterations of the main loop of Refine, each of which takes space and time
O(m + qs/h). The qs/h terms will have the largest sum if h takes on the
values 1 through

√
qs during these iterations, in which case the total time

for Refine will be

O
(
(m+ qs) + (m+ qs/2) + · · ·+ (m+ qs/

√
qs)
)

= O(m
√
qs+ qs log(qs)).
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Figure 9.2: The function
√
q + 1/ ln q

Recall, from equality (6-3), that the program FlowAssign calls the procedure
Refine O(log(sC)/ log q) times. Thus, the overall runtime for FlowAssign is

O
(
m
√
qs log(sC)/ log q + qs log(qs) log(sC)/ log q

)
.

Looking just at the first term in this sum, we conclude that we should choose
q to be a constant, to avoid being hurt by the

√
q factor. If we do this, the

running time of FlowAssign simplifies to O(m
√
s log(sC)), and the space

simplifies to O(m). Note that the O(m) space and the O(m
√
s) time taken

by Hopcroft-Karp during the initialization are subsumed by these bounds.
So we have finally established the following:

Prop 9-7. If we take q to be a constant, the algorithm FlowAssign solves
ImpA in space O(m) and time O(m

√
s log(sC)).

In deciding to take q = O(1), we have been manipulating upper bounds
on the running time — upper bounds that are likely to be far from tight.
So we can’t say much about what value for q might lead to the best running
time in practice. For whatever it’s worth, Figure 9.2 graphs the function√
q + 1/ ln q. The minimum value of about 1.439 happens at about q

.
= 9.186,

though the function is pretty flat in the neighborhood of that minimum.
Since it would probably be convenient to have q be a power of 2, this suggests
trying q = 8 or q = 16. But experiments on an actual implementation of
FlowAssign will be needed to find the best value for q in practice.
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Chapter 10

Closing remarks

10.1 The variant subroutine TightRefine

One way in which FlowAssign differs from Gabow-Tarjan involves invariant
I4, which requires that all bipartite, saturated arcs be ε-snug.

Since Gabow-Tarjan works directly on the graph G, not on a flow network
derived from G, all arcs in Gabow-Tarjan are bipartite. And Gabow-Tarjan
keeps all of its saturated arcs, not only ε-snug, but actually ε-tight. Per-
haps Gabow and Tarjan chose to do this because they were following the
Hungarian Method, which keeps its saturated arcs precisely tight.

Once we move from the graph G to the flow network NG, it is hope-
less to keep all saturated arcs ε-tight. We can and do keep all saturated
arcs ε-proper, which puts an upper bound on their reduced costs. But the
reduced costs of the dummy saturated arcs may get large negative — that
seems unavoidable. For the bipartite saturated arcs, however, we can and do
impose a lower bound on their reduced costs. In I4, we insist that they be
ε-snug. Following Gabow-Tarjan, we could go further and insist that they
actually be ε-tight. Let’s refer to that stronger invariant as I4′.

The main difficulty with maintaining I4′ crops up when augmenting
along an augmenting path. With the executable code of Refine as it now
stands, the arcs along an augmenting path that change status from idle to
saturated end up being ε-snug, but not ε-tight, as shown by the downward
arrow in Figure 8.3. The bipartite arcs of this type would blatantly violate
Inv4′; so something has to change.

Gabow and Tarjan deal with this difficulty by changing the code. In
our language, they increase the price of every man along an augmenting
path by ε, as part of doing the augmentation. With those price increases,
the bipartite arcs that change status from idle to saturated end up being
ε-tight, as shown by the downward slanting arrow in Figure 10.1. The good
news is that this change to the code succeeds even in our more complicated
context of FlowAssign, where there are dummy arcs, augmenting paths can
visit the source and the sink, and so forth. So we end up with two variants
of FlowAssign: One uses the version of Refine that we have analyzed in this
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Figure 10.1: Augmentation’s effects on the lengths of links in TightRefine;
contrast these with the effects in SnugRefine, shown in Figure 8.3

report, which we now rename SnugRefine, while the other uses TightRefine,
a variant in which augmenting along an augmenting path includes raising
the prices of the men on that path by ε.

This change to the code makes TightRefine more delicate to analyze than
SnugRefine. In the main loop of SnugRefine, the prices p change only during
the price increases after a shortest-path forest is built, while the pseudoflow
f changes only during the augmentations. In TightRefine, however, the
augmentations change p as well as f . More care is then required to verify
that the augmentations preserve I3 and I5, and other arguments get more
delicate as well. We take some steps, in Appendix C, toward showing that
TightRefine does the same job as SnugRefine, within the same space and
time bounds; but we leave the full details of that argument to the reader.

While TightRefine is more subtle to analyze than SnugRefine, it isn’t
clear which subroutine would perform better in practice. Experimentation
is indicated.

10.2 Quantizing versus nonquantizing

Like the Gabow-Tarjan algorithm, FlowAssign achieves its performance by
combining weight-scaling with good ideas from the Hungarian Method and
from Hopcroft-Karp. From the Hungarian Method, we take the concept
of raising prices based on a shortest-path forest. From Hopcroft-Karp, we
take the idea of augmenting, not just along one path at a time, but along a
maximal set of compatible augmenting paths.

Weight-scaling algorithms come in two flavors. In some of them, such
as in the ε-scaling auction algorithms of Bertsekas [2], each new scaling
phase simply reduces the slop that is allowed in the inequalities that capture
complementary slackness. In others, the scaling parameter is used also as a
unit of quantization for that scaling phase. That is, all prices during that
phase are required to be multiples of the scaling parameter, and all costs
and reduced costs are effectively quantized to be multiples of the scaling
parameter as well.
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Like Gabow-Tarjan, FlowAssign is of this latter, quantizing type. It is
because of that quantization that the lengths of the paths in FlowAssign’s
shortest-path forests are small integers, allowing us to exploit the Dial tech-
nique. That quantization is also a key ingredient in allowing us, at the end
of FlowAssign, to adjust our prices from being ε-proper to being proper
simply by rounding. It would be interesting to study whether there is a
nonquantizing analog of FlowAssign.
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Appendix A

Prop 2-8 via LP duality

We here prove Prop 2-8 by applying the standard duality theory of linear
programming. In the process, we demonstrate that a primal flow f and dual
prices p satisfy complementary slackness just when the pair (f, p) is proper,
according to Definition 2-7.

Our primal problem is to minimize the cost of a flow of value s on the flow
network NG. Note that, to remain within the scope of linear programming,
we here do not constrain the flow to be integral. We have stated our primal
problem as a minimization, while most descriptions of linear programming
take the primal problem to be a maximization. So let’s instead consider the
equivalent problem of maximizing the benefit of a flow f of value s on NG.

This primal problem has a decision variable f(v, w) for each arc v → w
in the network NG. The objective function of the primal is to maximize the
benefit of the flow f , that benefit being∑

v→w∈NG

f(v, w)b(v, w). (A-1)

The constraints of the primal problem ensure that the flows f(v, w) along
the various arcs fit together to form a flow of value s. So the constraints are:

f(v, w) ≥ 0 (A-2)

h(v, w) f(v, w) ≤ 1 (A-3)

pd(x) f(`, x)−
∑

y : x→y
f(x, y) = 0 (A-4)

pd(y)
∑

x : x→y
f(x, y)− f(y,a) = 0 (A-5)

pd(`) 0−
∑
x∈X

f(`, x) = −s (A-6)

pd(a)
∑
y∈Y

f(y,a)− 0 = s (A-7)

Constraints (A-2) and (A-3) ensure that our flows are nonnegative and that
they respect the unit capacities of the arcs. Constraints (A-4) through (A-7)
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ensure that flow is conserved at each node of NG in turn. Each is here written
in the form “flow in − flow out = whatever”. For example, (A-4) says that
the flow entering a node x in X, which is just f(`, x), minus the total flow
leaving x along bipartite arcs should be zero. In (A-6) and (A-7), the right-
hand sides reflect the value s of the desired flow.

Constraints (A-6) and (A-7) are actually redundant; either one implies
the other, given (A-4) and (A-5). But we leave both (A-6) and (A-7) in the
primal problem anyway. If we took one of them out, say removing (A-7),
this would effectively force the price at the sink in the dual problem to be
zero. The dual problem would still do its job, but we would no longer be
free to add any constant to all of the prices, as we’d like to be free to do.

The variables of the dual problem are multipliers on the constraints of
the primal; they appear in the left-hand column above. Constraint (A-2)
requires that the decision variables of the primal be nonnegative, so it doesn’t
get a multiplier. There is one instance of (A-3) for each arc in the flow
network, and let’s write the multiplier associated with the arc v → w as
h(v, w). Because these dual variables multiply inequalities, they will be
constrained to be nonnegative. The remaining constraints are equalities,
so they get multipliers that are not sign restricted. The multiplier on the
flow-conservation equality for some node v turns out to be the dispose price
pd(v). (We get dispose prices because (A-4) through (A-7) are written in the
form “flow in− flow out = whatever”. If we had instead chosen the equally
valid form “flow out − flow in = whatever”, we would have ended up with
acquire prices as our per-node dual variables.)

We now multiply each of the constraints from (A-3) through (A-7) by
the corresponding dual variable and add them all up. Lots of terms drop
out of the right-hand side, leaving∑

v→w
h(v, w)− pd(`)s+ pd(a)s.

What about the left-hand side? It will be a linear combination of the flow
variables f(v, w). In fact, for any arc v → w, we get h(v, w)f(v, w) from
(A-3), we get −pd(v)f(v, w) from the flow-equality constraint for node v,
and we get +pd(w)f(v, w) from the flow-equality constraint for node w.
Note that those latter two claims hold also when v = ` or when w = a;
so these claims hold for dummy arcs, as well as for bipartite arcs. Thus,
under our assumption that h(v, w) ≥ 0 for each arc v → w, the big sum of
constraints gives us:∑
v→w

f(v, w)(h(v, w)−pd(v)+pd(w)) ≤
∑
v→w

h(v, w)−s
(
pd(`)−pd(a)

)
. (A-8)

We want to use (A-8) to get an upper bound on the objective (A-1) of the
primal, the objective of the dual then being to minimize that upper bound.
So we insist, for every arc v → w in NG, that

b(v, w) ≤ h(v, w)− pd(v) + pd(w), (A-9)
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thus ensuring that the left-hand sum in (A-8) is an upper bound on the
objective (A-1) of the primal, so the right-hand sum is also an upper bound.
Note that (A-9) can be rewritten as h(v, w) ≥ b(v, w) + pd(v) − pd(w) =
bp(v, w), using equation (2-4) to compute the reduced benefit. So the dual
variable h(v, w) associated with any arc v → w must be at least the reduced
benefit of that arc.

So here is the dual problem. It has a decision variable pd(v) for each
node v, not sign-constrained, and a decision variable h(v, w) for each arc
v → w, constrained to be nonnegative. The dual problem has one constraint
for each arc in NG, where the constraint for the arc v → w insists that

h(v, w) ≥ b(v, w) + pd(v)− pd(w) = bp(v, w). (A-10)

The objective of the dual problem is to minimize the quantity∑
v→w

h(v, w)− s(pd(`)− pd(a)), (A-11)

which, as we have seen, is an upper bound on the value of the primal.
The per-arc dual variables h(v, w) can be removed from the problem

easily. The only constraints on them are the sign constraint h(v, w) ≥ 0 and
the arc constraint (A-10). And we want all of the h(v, w) values to be as small
as possible, since they are summed in the objective (A-11). So we simply
set h(v, w) := max(bp(v, w), 0). It follows that the dual problem is always
feasible: Whatever values we assign to the per-node variables pd(v), setting
the per-arc variables by the rule h(v, w) := max(bp(v, w), 0) guarantees that
all constraints will be satisfied.

Let’s now suppose that s ≤ ν(G), so that the primal problem is also
feasible. Solutions for the primal and dual will both be optimal and will
have matching objective values just when complementary slackness holds.
There are two parts to complementary slackness:

• If a bounding inequality in the primal has slack, then the corresponding
dual multiplier must be zero. So, for any arc v → w with f(v, w) < 1,
we must have h(v, w) = 0. Recalling that h(v, w) = max(bp(v, w), 0),
this means that bp(v, w) ≤ 0. Rephrasing in the language of Chapter 2,
any arc that isn’t saturated must have nonpositive reduced benefit,
and hence nonnegative reduced cost. Taking the contrapositive, any
arc with negative reduced cost must be saturated.

• In the other direction, if a bounding inequality in the dual has slack,
then the corresponding primal multiplier must be zero. So suppose
that there is slack in the bounding inequality h(v, w) ≥ bp(v, w).
Since h(v, w) = max(bp(v, w), 0), this is equivalent to supposing that
bp(v, w) < 0. Then the primal multiplier f(v, w) must be zero. In the
language of Chapter 2, any arc whose reduced benefit is negative —
and whose reduced cost is thus positive — must be idle.

So complementary slackness is precisely the properness of Definition 2-7.
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Appendix B

Slow starts in Hopcroft-Karp

Recall that the algorithm of Hopcroft and Karp [14] builds large matchings
in bipartite graphs. This section discusses graphs on which Hopcroft-Karp
may, with sufficiently bad luck, experience a slow start.

Let M be a matching in a bipartite graph G. If every augmenting path
for M has length at least 2k + 1, we’ll say that M is k-unaugmentable.
By Corollary 5-3, the size s := |M | of any k-unaugmentable matching M
satisfies s ≥ k

k+1 ν(G). If this lower bound is tight, so that the matching M
has as few edges as any k-unaugmentable matching can have, we’ll say that
the matching M is k-scrawny.

Let Mk denote the matching that Hopcroft-Karp has computed after
k iterations of its outer loop, and let sk := |Mk|. The matching Mk is
always k-unaugmentable. We’ll say that a bipartite graph is an n-stage
slow-start graph for Hopcroft-Karp when, with sufficiently unlucky choices,
the matching Mk may be k-scrawny for all k ≤ n.

The graph G in Figure B.1 is a 3-stage slow-start graph for Hopcroft-
Karp. Figure B.1e shows the final matching M4 that Hopcroft-Karp com-
putes; it is the unique maximum matching in G, of size s4 = 12 = ν(G).

• Figure B.1a shows the graph at the start of processing, when the
matching M0 = ∅ is empty. Any edge is then an augmenting path
of the minimum possible length L = 1. And the matching M0 is
0-scrawny, with s0 = 0 = 0

1(12).

• If we are sufficiently unlucky, we may select the six edges that are
circled in Figure B.1a to be our maximal set P0 of vertex-disjoint
edges. Note that no other edge is vertex-disjoint from those six. Aug-
menting along those six edges leads to the 1-scrawny matching M1 in
Figure B.1b, with s1 = 6 = 1

2(12).

• If we are again unlucky, we may select the two augmenting paths of
length 3 that are shown circled in Figure B.1b as our set P1. Note that
no other augmenting path of length 3 is vertex-disjoint from those two.
Augmenting along those two paths leads to the 2-scrawny matching M2

in Figure B.1c, with s2 = 8 = 2
3(12).
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B.1a:

B.1b:
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Figure B.1: A 3-stage slow-start graph for Hopcroft-Karp
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Figure B.2: Other 3-stage slow-start graphs for Hopcroft-Karp

• We may then select the single augmenting path of length 5 that is
shown circled in Figure B.1c as P2. No other augmenting path of
length 5 is vertex-disjoint from that path. Augmenting leads to the
3-scrawny matching M3 in Figure B.1d, with s3 = 9 = 3

4(12).

• At this point, luck stops being an issue. There are precisely three
augmenting paths of length 7 in Figure B.1d. Those three paths are
vertex-disjoint, so we must choose P3 to consist of all three of them.
Augmenting along them leads to the maximal matching M4 in Fig-
ure B.1e, with s4 = 12. So our matching jumps, in this final iteration,
from being scrawny to being maximal.

The graph in Figure B.1 is not unique. Figure B.2 shows three other
bipartite graphs, each with 24 vertices and 25 edges, that are also 3-stage
slow-start graphs for Hopcroft-Karp. We leave as an open problem whether
graphs exist that are n-stage slow-start for n > 3. The next graphs to try
for would be a 4-stage slow-start graph with 120 vertices and 137 edges and
a 5-stage slow-start graph with 120 vertices and 147 edges.
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Appendix C

The analysis of TightRefine

The bulk of this report deals with SnugRefine, the version of the scaling
phase of FlowAssign in which all bipartite, saturated arcs are kept ε-snug.
Section 10.1 discusses the alternative of TightRefine, which goes further by
keeping its bipartite, saturated arcs ε-tight. In order to do this, TightRefine
has to raise the prices at all of the men along an augmenting path by ε,
as part of augmenting along that path. In this appendix, we analyze some
consequences of those price increases.

C.1 Augmentations preserve the invariants

We first show that an augmentation with those price increases preserves the
five invariants of TightRefine. I1′ discusses only the pseudoflow f , not the
prices p, and I2 asserts only that all prices remain multiples of ε; so those
invariants are easy. To guide our reasoning about I3, I4′, and I5, consider
the example augmenting path of length 13 shown in Figure C.1, connecting
the surplus σ to the deficit δ. The left-hand picture shows the path before
the augmentation, where the thin lines are ε-tight, idle arcs and the thick
lines are ε-tight, saturated arcs. This example path happens to visit both
the sink a and the source `, in that order. The right-hand picture shows

`

a

σ

δ

`

a

σ

δ
+ε

+ε

+ε

+ε

+ε

+ε

Figure C.1: An example augmenting path in TightRefine
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Before After
state red. cost state red. cost ε-tight?

left-dummy idle (−ε . . 0] left-dummy sat. (−ε . . 0] no
left-dummy sat. (0 . . ε] left-dummy idle (0 . . ε] no
bipartite idle (−ε . . 0] bipartite sat. (0 . . ε] yes
bipartite sat. (0 . . ε] bipartite idle (ε . . 2ε] no
right-dummy idle (−ε . . 0] right-dummy sat. (−2ε . . ε] no
right-dummy sat. (0 . . ε] right-dummy idle (−ε . . 0] yes

Table C.1: Arcs on an augmenting path in TightRefine

Before After
state red. cost state red. cost ε-tight?

bipartite idle (−ε . .∞) bipartite idle (0 . .∞) no
right-dummy sat. (−∞ . . ε] right-dummy sat. (−∞ . . 0] no

Table C.2: Arcs that are not on the augmenting path, but that are still
affected by the price increases in TightRefine

the path after the augmentation. All of the idle arcs have become saturated
and vice versa; and the prices at the men on the path have been raised by ε.

Table C.1 summarizes what happens to the arcs on the path as a result
of the augmentation (where “sat.” is short for “saturated” and “red.” for
“reduced”). All of the arcs on the path start out ε-tight, before the aug-
mentation. So the reduced cost of an idle arc lies in (−ε . . 0], while that of
a saturated arc lies in (0 . . ε]. The idle-versus-saturated state of all of the
arcs on the path swap during the augmentation. The price increases don’t
affect the reduced costs of the left-dummy arcs, but the reduced costs of
the bipartite arcs are raised by ε, while those of the right-dummy arcs are
lowered by ε. We can then determine, of the arcs on the path, which end up
ε-tight after the augmentation.

The price increases also affect some of the arcs in the residual digraph
Rf that aren’t on the augmenting path. Table C.2 shows what happens to
those arcs. But why is it that Table C.2 has only two rows?

We don’t need the two rows for the left-dummy arcs in Table C.2, because
a left-dummy arc that isn’t on the augmenting path clearly can’t be affected
by the augmentation.

We claim next that a bipartite saturated arc that is not on the augment-
ing path can’t be affected either. Let x → y be such an arc. It could be
affected only if the node y was on the path, so that the price at y went up
by ε. But every man on the augmenting path is the head of at least one
bipartite arc on the augmenting path. That arc is saturated either before
or after the augmentation. If y was a node on the path, then y would be
the head of two distinct bipartite saturated arcs, either before or after the
augmentation. This would mean that the man y had a surplus at that time,
which would violate I1′. So the node y can’t lie on the augmenting path.

We claim also that a right-dummy idle arc that isn’t on the augmenting

81



path can’t be affected. Let y → a be such an arc. It is idle both before
and after the augmentation, so the node y must not have any incoming flow,
both before and after the augmentation. If follows that y cannot lie on the
augmenting path.

Table C.2 is thus correct in having only two rows: one for bipartite idle
arcs and one for right-dummy saturated arcs. Note that, in both cases, the
affected arc won’t be ε-tight after the augmentation.

I3 asserts that all arcs remain ε-proper; that is, all idle arcs must have
reduced cost greater than −ε, while all saturated arcs must have reduced
cost at most ε. Now that we have Tables C.1 and C.2, we can check that I3
is maintained simply by scanning each row in turn.

I4′ asserts that every bipartite, saturated arc must be ε-tight. We can
verify that invariant also by scanning the two tables; indeed, only one row
in Table C.1 is actually relevant.

I5 asserts that there are no length-0 cycles in the residual digraph Rf .
We can assume that there are no length-0 cycles before the augmentation.
So any length-0 cycle that comes into existence because of the augmentation
must use some link whose status changes during the augmentation. Looking
through Tables C.1 and C.2, we see that there are only two types of arcs
whose status changes so as to make them newly ε-tight. In both cases, the
arc involved lies on the augmenting path. It either starts out bipartite idle,
say as x ⇒ y, and ends up bipartite saturated, as y ⇒ x; or it starts out
right-dummy saturated, say as a ⇒ y ends up right-dummy idle, as y ⇒ a.
Thus, all of the new links that appear in the length-0 subgraph R 0

f have, as
their tail, some man y on the augmenting path.

Suppose that there is some cycle in the new graph R 0
f that traverses one

of these links, either y ⇒ x or y ⇒ a. Consider the link that precedes that
link along the cycle. It must have the form v ⇒ y, for some node v. We’ve
just seen that the only arcs along the augmenting path that end up ε-tight,
after the augmentation, end up underlying links that have a man as their
tail. Such a link can’t also have a man as its head, so our assumed link v ⇒ y
can’t lie on the augmenting path. On the other hand, the arc underlying any
link v ⇒ y that doesn’t lie on the augmenting path is certainly affected by
the augmentation, since y lies on that path. So the arc underlying v ⇒ y
must be listed in Table C.2. In both rows of Table C.2, however, the arc
ends up not being ε-tight after the augmentation. So no link of the form
v ⇒ y can exist in the new graph R 0

f , which shows that the augmentation

leaves the graph R 0
f acyclic and I5 is preserved.

C.2 An augmentation’s effect on other paths

Raising prices as part of augmenting along an augmenting path, as we do
in TightRefine, complicates the issue of how this augmentation affects other
actual or potential augmenting paths. The following lemma is useful.
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Lemma C-1. Let B be a length-0 augmenting path in some residual digraph
that arises during TightRefine. If A is a length-0 augmenting path in that
same digraph that is compatible with B, then A will remain a length-0
augmenting path after we augment along B. In the reverse direction, if A is
a length-0 augmenting path that exists just after we augment along B, then
A was also a length-0 augmenting path before we augmented along B, and
A and B were then compatible.

The forward direction of Lemma C-1 ensures that, as we iterate through
the paths in the maximal set P , augmenting along each in turn, the earlier
augmentations don’t destroy the augmenting-path properties of the latter
paths. The backward direction of Lemma C-1 is needed when establishing
the square-root bound on the running time of TightRefine. In Section 9.4,
we argued that, in every iteration of the main loop after the first, the round
of price increases that follows the construction of the shortest-path forest
will have to raise some prices by some nonzero amount. If no price increases
were necessary, then the path A from some surplus to some deficit that the
shortest-path forest revealed would have been of length 0 already, back at
the end of the previous iteration. And we could use the backward direction
of Lemma C-1 to contradict the maximality of that iteration’s set P .

The SnugRefine version of Lemma C-1 is so obvious that we didn’t call
it out as a lemma. In SnugRefine, augmenting along an augmenting path B
eliminates the surplus at which B started and the deficit at which B ended.
The augmentation also replaces each of the length-0 links along B in the
residual digraph with a length-1 link in the reverse direction. But no other
surpluses, deficits, or links are affected, and no prices at all are changed. In
TightRefine, on the other hand, things are more complicated.

Proof. In the forward direction, assume that the path A is compatible with
B. By link-compatibility, A starts at a different surplus from B and ends at
a different deficit from B. Also, none of the links along A appear along B, so
augmenting along B doesn’t reverse their direction. By node-compatibility,
the path A doesn’t visit any of the men that lie along B; so the price increases
that are part of augmenting along B in TightRefine don’t change the lengths
of any of the links along A.

For the reverse direction, suppose that A is a length-0 augmenting path
that exists just after we augment along B. We argue by induction along
A that any woman or man that A visits can’t belong to B. Keep in mind,
though, that A and B might both visit the source and the sink.

As the base case of the induction, the path A starts at a surplus. Since
augmenting along B left every woman along B either married or a nonsurplus
maiden, we deduce that the start node of A doesn’t lie on B. We now
consider, in turn, the six types of links that A might traverse.

• If A backs up along a saturated, left-dummy arc ` → x, thus following
the backward link x ⇒ `, it arrives at the source; so there is nothing
to prove.
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• If A moves forward along an idle, left-dummy arc ` → x, thus following
the forward link ` ⇒ x, the woman x at whom it arrives must be
a nonsurplus maiden. There may be women along B who are now
nonsurplus maidens; but Table C.1 shows that the left-dummy arcs
that lead to such women, which are now idle, were not left ε-tight by
the augmentation. So x can’t belong to B.

• The path A might move forward along an idle bipartite arc x→ y, thus
following the link x ⇒ y and arriving at some man y. If y belonged
to B, however, we would have raised the price of y by ε as part of the
augmentation. Tables C.1 and C.2 tell us that bipartite arcs that are
affected by the augmentation and left idle are never left ε-tight. So
the man y can’t belong to B.

• If A moves backward along a saturated bipartite arc x → y, thus fol-
lowing the link y ⇒ x, the arc x → y must belong to the current
matching. But every woman who belongs to B and is now married is
married to a man who also belongs to B. Since our inductive hypoth-
esis tells us that the man y does not belong to B, the woman x can’t
belong to B either.

• If A moves forward along an idle, right-dummy arc y → a, following
the link y ⇒ a, it arrives at the sink, so there is nothing to prove.

• Finally, suppose that A backs up along a saturated right-dummy arc
y → a, following the link a ⇒ y. If the man y belonged to B, we
would have raised the price at y by ε. But Tables C.1 and C.2 tell us
that right-dummy arcs that are affected by the augmentation and left
saturated are never left ε-tight. So y can’t belong to B.

From this induction, we conclude that the paths A and B don’t share any
nodes except for perhaps the source and the sink. Thus, the changes to the
flow and to the prices that we made while augmenting along B didn’t affect
A, and the paths A and B must have been compatible, length-0 augmenting
paths before we augmented along B.
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Index of symbols

` the source node in the flow network NG.

a the sink node in the flow network NG.

Λ in Refine, in building a shortest-path forest, a bound on the length of
path that will be needed to reach from some surplus to some deficit.

β some bachelor, that is, a man who is not currently matched.

δ in Refine, some man who is a unit deficit of the current pseudoflow.

ε in weight-scaling, the slop in the approximate notion of properness.

µ some maiden, that is, a women who is not currently matched.

ν(G) the maximum size of a matching in the bipartite graph G = (X,Y ;E).

σ in Refine, some woman who is a unit surplus of the current pseudoflow.

C a real number that satisfies C ≥ C̄ and C > 1.

C̄ the maximum magnitude of an edge weight: C̄ := max(x,y)∈G|c(x, y)|.

D in Refine, the set of remaining deficits.

E the set of edges in the bipartite graph G = (X,Y ;E).

G a bipartite graph G = (X,Y ;E).

M a matching in the graph G.

NG the flow network built from the graph G.

P a maximal set of compatible augmenting paths.

Q an array of pointers to doubly-linked lists for a heap as in Dial [7].

Rf in Refine, the residual digraph of the pseudoflow f .

RM in the Hungarian Method, the residual digraph of the matching M .

S in Refine, the set of remaining surpluses.
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X the part of G = (X,Y ;E) whose vertices we call women.

Y the part of G = (X,Y ;E) whose vertices we call men.

a as a subscript, indicates acquire prices.

b(x, y) the benefit of the edge (x, y) in G.

b(v, w) the benefit of the arc v → w in the flow network NG.

c(x, y) the cost of the edge (x, y) in G.

c(v, w) the cost of the arc v → w in the flow network NG.

cp(v, w) the reduced cost of the arc v → w in NG, adjusted for the prices p.

d as a subscript, indicates dispose prices.

e in FlowAssign, the power to which q is raised when setting ε.

f a flux, pseudoflow, or flow on the network NG.

f̂ the flow component of the pseudoflow f during Refine.

h in Refine, the number of surpluses and deficits remaining.

lp(v ⇒ w) the length of the link v ⇒ w in the residual digraph Rf .

`(v) in building a shortest-path forest, the length of the shortest path yet
found to v.

m the number of edges m := |E| in the bipartite graph G = (X,Y ;E).

n the number of vertices n := max(|X|, |Y |) in the larger of the two parts
of the bipartite graph G = (X,Y ;E).

pa(v) the acquire price at the node v in NG.

pd(v) the dispose price at the node v in NG, where pd(v) = −pa(v).

q in Refine, the integer factor by which each scaling phase tightens the
approximation to properness.

r the number of vertices r := min(|X|, |Y |) in the smaller of the two
parts of the bipartite graph G = (X,Y ;E).

s the size of the matching computed by an assignment algorithm.

t the target size in ImpA; the size of the resulting matching is then
s := min(t, ν(G)).

v, w nodes in the flow network NG.

x some woman, that is, an element of X.

y some man, that is, an element of Y .
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Index

acquire price, 13

alternating path, 21

arc of a flow network, 11

assignment problem, 2

linear sum, 3

asymmetric (aka unbalanced), 1

asymptotically unbalanced, 1

auction algorithm, 3, 35

augmenting paths

compatible, 61

in Hungarian Method, 21

in Refine, 50

bachelor, 2

bachelor bound, 7, 18, 27, 28

fails in a Hungarian variant, 28

fails in Gabow-Tarjan, 34

fails in Orlin-Ahuja, 35

bachelorette, 2n

backward arcs omitted, 11

backward link, 20, 50

balanced bipartite graph, 1

benefit

interpret edge weight as, 1

use instead of cost, 43, 74

bipartite arc, 11

buying price, 13

capacity in a flow network, 10

cardinality of a matching, 2

ceiling function, 43

ceiling quantization, 11, 42, 51

circulation, 12, 35, 35n

clean point, 64

common denominator, 45

compatible augmenting paths, 60–62

complementary slackness, 76

relation to properness, 16, 76

cost
interpret edge weight as, 1
of a flux, 12
of a matching, 2
of linking edges, 4
reduced, 14

deficit of a pseudoflow, 48
delete-min heap operation, 25, 56, 57
Dial array Q, 68
Dial technique, 33, 69
Dijkstra’s algorithm, 23

code in Hungarian Method, 24
code in Refine, 56

disjoint-path bound, 38
dispose price, 13
dual problem, 16, 75, 76
duality of linear programming, 74
dummy arc, 11

ε-proper, 31, 42
ε-snug, 43, 71

relation to link length, 52
ε-tight, 42, 71

relation to link length, 52
early scaling phases, 45
edge of a bipartite graph, 11
eligible arc, 42
experiments called for, 25, 70, 72

Feder-Motwani technique, 8, 9
Fibonacci heap, 3, 23, 55, 69
flipping G over, 20, 25
floor function, 43
floor quantization avoided, 11
flow component

of a pseudoflow in Refine, 49
flow in a flow network, 12
flow network, 10
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FlowAssign, 7, 34, 41–70
high-level code of, 44
invariants of, 44
performance bounds on, 70
rounding the final prices in, 46

flux in a flow network, 11
forward link, 20, 50
fractional flow on an arc, 12

Gabow-Tarjan algorithm, 4, 6, 33
global common denominator, 45
global update, 3, 7, 36
Goldberg-Kennedy algorithm, 4, 6, 35

Hopcroft-Karp algorithm, 8, 33, 37–
41, 45, 70, 77

code of, 37
Hungarian Method, 3, 6, 19–30

code of, 19
flipping G over for, 20
variants of, 28

hybrid assignment algorithm, 4, 7, 35

idle
arc in flow network, 12
edge in bipartite graph, 20

ImpA problem, 2, 70
imperfect matching, 2
ImpM problem, 7
in-degree, 20, 50, 61
IncA problem, 2, 28
IncM problem, 7
incremental

FlowAssign is not, 7, 41
Hopcroft-Karp is, 37
Hungarian Method is, 19

inflation bound, 64, 67–69
integral flux, pseudoflow, or flow, 12
invariants

of FlowAssign, 44, 52
of the Hungarian Method, 20

Jacobi, Carl Gustav Jacob, 3n

k-scrawny, 77, 79
k-unaugmentable, 77

late scaling phases, 45

left stub, 49
left-dummy arc, 11
length

of a path in Hopcroft-Karp, 37
of links in Hungarian Method, 22
of links in Refine, 51

length-0 link
relation to ε-tight arc, 52

linear programming, 74
link of a residual digraph, 11

backward, 20, 50
forward, 20, 50

link-compatible, 61, 63, 83
link-count versus length, 22, 37
linking edge, 4

large-to-large, 4, 9
small-to-small, 5, 9

local update, 3, 7, 28

maiden, 2
maiden bound, 7, 18, 27

fails in Gabow-Tarjan, 34
fails in Hungarian variants, 28
fails in Orlin-Ahuja, 35

main loop of Refine, 49, 55
man vertex in bipartite graph, 1
matching, 2

maximum-weight, 8
max increase, 64
maximum-weight matching, 8
monotone heap usage, 56, 56n
MWM problem, 8

node
of a flow network, 11
of a residual digraph, 11

node-compatible, 61, 62, 83
nonquantizing

weight-scaling algorithm, 72
number representation in FlowAssign,

45

one-sided-perfect matching, 2
open problem, 7–9, 35, 36, 73, 79
Orlin-Ahuja algorithm, 4, 6, 34
out-degree, 20, 51
output sensitive bounds, 2
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PerA problem, 2, 3, 18, 32
perfect matching, 2
PerM problem, 7
preflow, 12
preflow-push algorithm, 3
price

acquire versus dispose, 13
buying versus selling, 13

primal problem, 16, 74
profitability threshold, 35
proper, see also ε-proper

cases based on flow, 16
cases based on reduced cost, 15
relation to complementary slack-

ness, 16, 76
pseudoflow, 12

in Refine, 48
push-relabel algorithm, 3, 35

quantizing
weight-scaling algorithm, 72

reduced cost of an arc, 14
Refine, 41, 48–63

code of, 48
residual digraph, 11

in Hungarian Method, 20
in Refine, 50

right stub, 49
right-dummy arc, 11
rounding the final prices, 46

saturated
arc in flow network, 12
edge in bipartite graph, 20

scaling phases, 32, 45
scan a vertex

in Hungarian Method, 23, 24
in Refine, 56

scrawny, 77, 79
selling price, 13
shortest-path forest

code in Hungarian Method, 24
code in Refine, 56

shortest-path tree, 23, 28
sink in a flow network, 11
size of a matching, 2

skew-symmetry, 11, 12, 22
slow start of Hopcroft-Karp, 39, 77
slow-start graph, 77, 79
snug, see ε-snug
SnugRefine, 72, 80
source in a flow network, 11
spinster, 2n
stub, 49
surplus of a pseudoflow, 48
symmetric (aka balanced), 1

Thorup technique, 3
tight, see also ε-tight

arc in a flow graph, 42
augmenting path, 21
edge in a bipartite graph, 20

TightRefine, 68n, 72, 80
totally unimodular, 17
two’s complement, 44

unaugmentable, 77
unbalanced bipartite graph, 1

asymptotically, 1

value
of a flow in a flow network, 12

Vargas Magaña, Marcos César, 3, 4,
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vertex of a bipartite graph, 11

weight-scaling, 3, 31, 32
nonquantized, 72
quantized, 72

weighted graph, 1
woman vertex in bipartite graph, 1
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