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AbstractÐWe propose assessing a mixture model in a cluster analysis setting

with the integrated completed likelihood. With this purpose, the observed data are

assigned to unknown clusters using a maximum a posteriori operator. Then, the

Integrated Completed Likelihood (ICL) is approximated using an aÁ la Bayesian

information criterion (BIC). Numerical experiments on simulated and real data of

the resulting ICL criterion show that it performs well both for choosing a mixture

model and a relevant number of clusters. In particular, ICL appears to be more

robust than BIC to violation of some of the mixture model assumptions and it can

select a number of clusters leading to a sensible partitioning of the data.

Index TermsÐMixture model, clustering, integrated likelihood, BIC, integrated

completed likelihood, ICL criterion.
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1 INTRODUCTION

FINITE mixture models are commonly used as a basis for cluster
analysis (see for instance, [21]). One advantage of model-based
clustering is that it provides a specific framework for assessing the
resulting partitions of the data and especially for choosing a
relevant number of clusters. A model-based clustering model is a
parametric finite mixture model characterized by its form, denoted
m in this article, (for instance, m is a Gaussian mixture whose
components have the same variance matrix) and the number K of
the mixture components. Choosing a relevant model consists both
of choosing its form m and the number of components K. In the
Bayesian framework, a way of selecting a model among H models
M1; . . . ;MH is to choose the model of highest posterior probability.
According to Bayes' theorem, the posterior probability of Ml given
the data x is

P �Ml j x� � f�x jMl�P �Ml�PH
r�1 f�x jMr�P �Mr�

;

where f�x jMl� is the integrated or marginal likelihood of the

model Ml and P �Ml� is its prior probability. Thus, assuming that all

models have equal prior probabilities, choosing the model with

highest posterior probability is equivalent to selecting the model

with the largest integrated likelihood. The Bayesian Information

Criterion (BIC) of Schwarz [27] provides, under regularity

conditions, a reliable approximation to the integrated likelihood.

Although the regularity conditions for BIC do not hold for

assessing the number of components K in a mixture model (see

[1] for a precise insight), there is an increasing practical support for
its use in this context (see for instance, [17], [26]).

The point that we want to address here is the following: The
integrated likelihood does not take into account the clustering
purpose at hand for selecting a mixture model in a model-based
clustering perspective. As a consequence, if the correct model is
not in the family of considered models, BIC criterion will tend to
overestimate the correct size regardless of the separation of the
clusters (see [4] and Section 4 of the present article for illustra-
tions).

In this article, we propose an Integrated Completed Likelihood
(ICL) criterion which aims at answering this above mentioned
limitation of BIC. In Section 2, the mixture model framework for
clustering is reviewed and the differences between the likelihood
and the completed likelihood are stressed. In Section 3, the ICL
criterion is presented and discussed. Section 4 is devoted to
numerical experiments on simulated and real data sets. A
discussion section ends the paper.

2 MODEL-BASED CLUSTERING

In model-based clustering, observations are assumed to be a
sample from a finite mixture of probability distributions. In a
multivariate clustering context, we are mainly concerned with
Gaussian distributions. For simplicity, we restrict attention to this
situation. But the ICL criterion can be straightforwardly defined in
other contexts, such as the latent class model (see for instance, [16])
in which a mixture of multivariate multinomial distributions is
involved.

In the multivariate Gaussian mixture model, data x �
�x1; . . . ;xn� in Rnd are assumed to be a sample from a probability
distribution with density

f�xi j m;K; �� �
XK
k�1

pk��xi j ak�; �2:1�

where the pks are the mixing proportions �0 < pk < 1 for all k �
1; . . . ;K and

P
k pk � 1� and ��: j ak� denotes the d-dimensional

Gaussian density with mean �k and variance matrix �k with
ak � ��k;�k�, and � � �p1; . . . ; pK;a1; . . . ;aK� denotes the vector
parameter of the mixture �m;K� at hand. The form m of a Gaussian
mixture depends essentially on the assumptions concerning the
variance matrices �k (see [2] or [8] for a detailed presentation of
some meaningful assumptions). In Section 4, most of those forms
will be considered.

The mixture model is typically an incomplete data structure
model (see [13]). The complete data are

y � �y1; . . . ;yn� � �x1; z1�; . . . ; �xn; zn�� �;
where the missing data are z � �z1; . . . ; zn�, with zi � �zi1; . . . ; ziK�
are binary K-dimensional vectors such that zik � 1 if and only if xi
arises from component k. Note that z defines a partition P �
�P1; . . . ; PK� of the observed data x with Pk � fxi j zik � 1g.

The observed log-likelihood of � for the sample x1; . . . ;xn is

L�m;K� �
Xn
i�1

log
XK
k�1

pk��xi j ak�
" #

: �2:2�

The complete log-likelihood of � for the complete sample y is

CL�m;K� �
Xn
i�1

XK
k�1

zik log pk��xi j ak�� �: �2:3�
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In the clustering literature, it is also known as the classification log-

likelihood [6]. In the mixture approach of model-based clustering,

the observed log-likelihood is maximized using generally the EM

algorithm [23]. In the classification approach of model-based

clustering, the completed log-likelihood is maximized using

generally a Classification EM (CEM) algorithm (see [20] or [7]).
It is easily seen that the observed log-likelihood and the

completed log-likelihood are linked by the following relation:

CL�m;K� � L�m;K� ÿ EC�m;K�; �2:4�
where

EC�m;K� � ÿ
XK
k�1

Xn
i�1

zik log tik � 0;

with

tik � pk��xi j ak�PK
j�1 pj��xi j aj�

�2:5�

denoting the conditional probability that xi arises from the kth

mixture component �1 � i � n and 1 � k � K�.
Equation (2.4) shows that the completed log-likelihood can be

regarded as a criterion penalizing the log-likelihood with

ÿEC�m;K�. Moreover, EC�m;K� is the realization of a random

variable with mean E�m;K�, the entropy of the fuzzy classification

matrix t � ftikg,

E�m;K� � ÿ
XK
k�1

Xn
i�1

tik log tik � 0;

and with variance

Var�EC�m;K�� �
Xn
i�1

XK
k�1

tik log2 tik ÿ
Xn
i�1

XK
k�1

tik log tik

" #2

:

The entropy E�m;K� (see [9]) is a measure of the ability of the

K-component mixture model m to provide a relevant partition of

the data �x1; . . . ;xn�. If the mixture components are well separated,

the classification matrix t tends to define a partition of �x1; . . . ;xn�
and E�m;K� � 0. But if the mixture components are poorly

separated, E�m;K� has a large value. As a consequence, penalizing

the log-likelihood with ÿE�m;K�, or ÿEC�m;K�, favors mixtures

leading to a clustering of the data with the greatest evidence. In

fact, the random variable CL�m;K� has been employed as a
criterion for assessing the number of clusters arising from a

Gaussian mixture model [4].
In practical situations, the criterion CL�m;K� is computed in

the following way. Let �̂ be the maximum likelihood (m.l.) estimate

of the mixture vector parameter and let t��̂� be the corresponding

estimate matrix of the classification matrix t, where t��̂� is derived
from (2.5) by replacing �pk; ak� with �p̂k; âk�. The missing cluster

indicators zik are replaced with

ẑik � 1 if arg max` ti`��̂� � k
0 otherwise:

�
In the following, we will denote MAP (for Maximum A

Posteriori) the function providing guessed values for the

missing data from estimate value of �:

ẑ � MAP��̂�:
The completed likelihood criterion CL�m;K� works well when

the mixing proportions are restricted to be equal. But, it tends to

overestimate the correct number of clusters when no restriction is

placed on the mixing proportions (see [5]). The reason of this

behavior is that the completed log-likelihood CL�m;K� does not

penalize the number of parameters in the mixture model. But, if a

completed likelihood criterion would properly penalize the

complexity of the model, it could be expected to provide a feasible

estimate of the correct number of components in a mixture giving

rise to partitioning the data with the greatest evidence. This

penalized classification criterion is the integrated completed

likelihood that we describe in the next section.

3 THE INTEGRATED COMPLETED LIKELIHOOD

A finite mixture model is characterized by the number

of components K and the vector parameter � �
�p1; . . . ; pK;a1; . . . ; aK�: We aim to find the mixture model

leading to the greatest evidence for clustering the data x. A

classical way for choosing it is to select the model maximizing

the integrated likelihood,

�m̂; K̂� � arg max
m;K

f�x j m;K�;

where

f�x j m;K� �
Z

�m;K

f�x j m;K; ����� j m;K�d�; �3:6�

with

f�x j m;K; �� �
Yn
i�1

f�xi j m;K; ��;

and �m;K being the parameter space of the model m with K

components and ��� j m;K� a noninformative or a weakly

informative prior distribution on � for the same model. A classical

way to approximate (3.6) is to use BIC (see for instance, [18])

log f�x j m;K� � log f�x j m;K; �̂� ÿ �m;K
2

log�n�; �3:7�

where �̂ is the m.l. estimate of �

�̂ � arg max
�

f�x j m;K; ��

and �m;K is the number of free parameters in the model m with K

components. In the mixture context, the regularity conditions in

[19] ensuring that

log f�x j m;K� ÿ log f�x j m;K; �̂� � �m;K
2

log�n� � OP �n1=2�

do not hold and there is a lack of theoretical justification for the

BIC aproximation. But, simulations experiments (see [26] or [17])

show that the BIC approximation of the integrated likelihood

works well at a practical level.
But, the use of the integrated likelihood (3.6) does not take into

account the ability of the mixture model to give evidence for a

clustering structure of the data. Instead, we consider the integrated

likelihood of the complete data �x; z� (or integrated completed

likelihood)

f�x; z j m;K� �
Z

�m;K

f�x; z j m;K; ����� j m;K�d�; �3:8�

where

f�x; z j m;K; �� �
Yn
i�1

f�xi; zi j m;K; ��

with
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f�xi; zi j m;K; �� �
YK
k�1

pzikk ��xi j ak�� �zik :

To approximate this integrated completed likelihood, we

propose to use a BIC-like approximation. That is

log f�x; z j m;K� � log f�x; z j m;K; �̂�� ÿ �m;K
2

logn; �3:9�

where

�̂� � arg max
�

f�x; z j m;K; ��: �3:10�

But z is unknown. It means that the objective functions to be

maximized in (3.8) and (3.10) are not available and so is �̂�. But, for

n large enough, we have �̂� � � and we approximate �̂� with �̂.

Moreover, we replace the missing data z with ẑ � MAP��̂�. Finally,

we propose the criterion:

ICL�m;K� � log f�x; ẑ j m;K; �̂� ÿ �m;K
2

logn: �3:11�

Some comments are in order.

1. The ICL criterion is essentially the ordinary BIC penalized
by the substraction of the estimated mean entropy.

2. As for the BIC approximation of the integrated likelihood,
and for the same reasons, there is a lack of theoretical
justification of the aÁ la BIC approximation of the integrated
completed likelihood. Thus, there is the need to consider
simulations to see if the ICL criterion works well at a
practical level. Such simulations are presented in the next
section.

3. It is natural to replace the missing data z with ẑ �
MAP��̂� since the ICL criterion is built with �̂. In practical
situations, replacing z using the MAP operator from an
other consistent parameter estimate ~� as the minimum
Hellinger distance estimator, see [12], or a Bayesian
estimator, see for instance, [14], can be considered and
will presumably do not affect the performance of the ICL
criterion. On the contrary, we do not recommend
replacing z from the classification m.l. estimator of �
since in general this estimator is inconsistent and can be
highly biased (see [6]).

4 NUMERICAL EXPERIMENTS

We compare the practical behavior of BIC�m;K� and ICL�m;K� for

choosing the form m and the number K of components of a

mixture model on the basis of numerical experiments on both

simulated and real data. Since, in this article we are interested in

model-based clustering, we restrict attention to multivariate

Gaussian mixtures. The form m of the mixture model is defined

by parameterizing the variance matrix �k of a component in terms

of its eigenvalue decomposition, as developed in [2] and [8],

�k � �kDkAkD
0
k; �4:12�

where �k � j�kj1=d; d denoting the number of variables, Dk is the
matrix of eigenvectors of �k and Ak is a diagonal matrix, such that

jAkj � 1, with the normalized eigenvalues of �k on the diagonal in
a decreasing order. The parameter �k determines the volume of the

kth group, Dk its orientation and Ak its shape. By allowing some,
but not all of these quantities to vary between groups, we obtain
easily interpreted models which are appropriate to describe

various clustering situations. Here, we considered 28 different
models related to different assumptions on the group variance

matrices and the proportions of the mixture model: 16 of these
models are obtained by assuming equal or different volumes,

shapes, orientations, or proportions. We denote conventionally

those models as exemplified now: �pk�DkAD
0
k� indicates the model

with different proportions and orientations and equal volumes and

shapes. Eight models assume diagonal variance matrices, we

denote B a diagonal variance matrix and, for instance, �p�kB�
indicates the model with equal proportions, different volumes,

equal shapes, and diagonal orientations. Finally, four models

assume spherical shapes: they are denoted �p�I�, �p�kI�, �pk�I�, and

�pk�kI�.
In all experiments, the clustering has been derived from the m.l.

estimate �̂ of the mixture vector parameter at hand obtained with

the EM algorithm. To get sensible maxima, for each considered

situation, the EM algorithm is initiated r � 20 times with random

centers and the solution providing the largest observed likelihood

is selected.

4.1 Monte Carlo Experiments

For each Monte Carlo experiment, we generate 50 samples from

each type of simulated data.

4.1.1 Three Clusters with Different Overlapping

We simulated two types of a three-component Gaussian mixture.

Both types of Gaussian mixtures only differ by second component

variance matrix �2. The common characteristics of the simulated

mixtures were the following:

n � 400; d � 2; p1 � 0:25; p2 � 0:25; p3 � 0:50

�1 � �2 � �0; 0�0; �3 � �8; 0�0

�1 � �3 � 0:11 0
0 9

� �
:

In both situations, we consider a variance matrix �2 with the same

volume and shape as �1, but with a different orientation. In the

first situation, we consider

�2 � 0:96 2:61
2:61 8:15

� �
:

The angle between the first eigenvector of �1 and �2 is 30 degrees.

(One of the 50 simulated data sets is displayed in Fig. 1.)
In the second situation, we consider
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�2 � 7:33 2:64
2:64 1:67

� �
:

The angle between the first eigenvector of �1 and �2 is 18 degrees.

Thus, the first two mixture components are quite overlapping.

(One of the 50 simulated data sets is displayed in Fig. 2.)
In this experiment, all the 28 models were considered with the

number of clusters varying from one to seven.

For the first situation, BIC and ICL exhibit a similar behavior:

both criteria dramatically favor the right model �pk�DkAD
0
k� with

K � 3 components (92 percent for BIC and 88 percent for ICL).

Note also that ICL (resp., BIC) chooses K � 3 in 96 percent (resp.,

92 percent) and K � 4 in 4 percent (resp., 8 percent) of the

simulations.

For the second ªoverlappingº situation, it is remarkable that BIC

gives exactly the same answer: it chooses the right model

�pk�DkAD
0
k�withK � 3 in 92 percent of the simulations and prefers

aK � 4 solution otherwise. ICL highly prefers aK � 2 solution with

the model �p�kDkAkD
0
k� in 88 percent of the simulations and selects

the right model withK � 3 in only 8 percent of the cases. But clearly,

the solution selected with ICL makes sense from the clustering point

of view. Figs. 1 and 2 displayed an example of simulated data for

situations 1 and 2 and depicted the BIC and ICL favorite couple

�m;K� for those data sets.

4.1.2 A Non-Gaussian Cluster

We now consider experiment from a mixture of a uniform and a

Gaussian cluster. One of the 50 simulated data sets is displayed in

Fig. 3 and the mixture characteristics are as follows:

n � 200; d � 2
f�x� � 0:5 0:25 I�ÿ1;1��x1� I�ÿ1;1��x2�� �|�����������������������{z�����������������������}

non-Gaussian cluster

�0:5 ��x j �3:3; 0�0; I�� �|���������������{z���������������}
Gaussian cluster

;

where I�ÿ1;1� denotes the indicator function of the interval �ÿ1; 1�.
When running the EM algorithm, only the model �p�I� is

considered, K is varying from one to five. Percentage of choosing

K is displayed in Table 1. In this case, BIC has a disappointing

behavior. This example highlights a tendency of this criterion,

already mentioned in the introduction: When the clustering model

at hand (here, a Gaussian mixture model) does not fit the data well,

BIC tends to overestimate the number of components. On the

contrary, ICL includes a term E�m;K�, penalizing overlapping

clusters, balancing the lack of fit of the data to the model at hand

and can be thought of as more robust to violations of the model

specifications than BIC, as it appears in this experiment.

4.2 Real Data Sets

4.2.1 The Old Faithful Geyser

This first example on real data concerns the Old Faithful data (the

version from [29]) which consists of data on 272 eruptions of the

Old Faithful geyser in Yellowstone National Park. Each observa-

tion consists of two measurements: the duration (in minutes) of the

eruption and the waiting time (in minutes) before the next
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Fig. 2. Typical solutions for an example of data in situation 2.

Fig. 3. A uniform and a Gaussian cluster.

TABLE 1
Non-Gaussian Cluster Samples: Percentage of

Choosing K with the Model �p�I�



eruption. We consider the 28 models with K � 1; . . . ; 6 to compute
BIC and ICL on the 272 eruptions. For almost all models, BIC
prefers a K � 3 component mixture and selects the model
�p�DAD0�. On the contrary, for almost all models, ICL prefers a
K � 2 component mixture and selects the model �pk�kDAkD

0�.
Fig. 4a (resp., 4b) depicts the favorite couple �m;K� of BIC (resp.,
ICL). Those figures provide iso-density ellipses for each
component. The ICL solution with K � 2 components clearly
distinguishes two groups. The BIC solution with K � 3 compo-
nents appears to model deviations from normality in the two
obvious groups rather than a relevant additional group.

4.2.2 Departments

Fig. 5a displays log-population versus log-density (in inhabi-
tants/km2) of 312 towns of three French departments: Two
densely-populated departments in the suburbs of Paris, Seine-
Saint-Denis, and Hauts-de-Seine, and one rural department
Haute Corse (source: census 1990 of the French population,
INSEE Web site at http://www.insee.fr/vf/-chifcles/rp90/in-
dex.htm). For this bivariate dataset, we consider all the 28
models with K � 1; . . . ; 5. Both criteria favor the model
�pk�kDAD0� and we restrict attention to this model. Table 2
gives BIC and ICL values for K � 1; . . . ; 5. BIC chooses the

model �pk�kDAD0� with K � 3, whereas ICL chooses K � 2, but
its second choice K � 3 is not too far. The two-cluster solution
has an interesting interpretation since one cluster is closely
related to Haute Corse and the other cluster is closely related to
the Paris area departments (the partitions are depicted in Fig. 5b
and 5c). The three cluster solution splits Haute Corse into two
clusters.

4.2.3 Acoustic Emission Control

This example is concerned with flaws detection on a pressurized
vessel by acoustic emission. During a pressurization control, the
vessel sounds (the events) are located on its surface. The first step of
the flaw detection procedure consists of grouping those events in
homogeneous clusters. Data at hand are 2,061 event locations in a
rectangle of R2 representing the vessel.

In this setting, a Gaussian mixture model with equal propor-
tions, diagonal variance matrices with different volumes appears
to be relevant. Moreover, the uniform background noise is taken
into account with a uniform distribution on the rectangle where
the sounds are located. It is worth noting that adding such a
uniform distribution in the mixture is straightforward and simply
leads to consider the proportion of the uniform component as an
additional parameter.

For this example, the problem is to find a relevant number of
mixture components leading to a clear grouping of the sound
locations. In our experiments, K is varying from 2 to 20 with the
diagonal Gaussian mixture model with equal proportions and
different volumes and we consider the additional uniform
distribution. We ran the EM algorithm 50 times for each situation
from random centers. We stopped EM each time the relative
difference between two successive values of the observed log-
likelihood was smaller than 10ÿ16. (We chose such a small
convergence threshold in view of possible slow convergence of
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Fig. 4. Cluster ellipses for the Old Faithful geyser data. (a) BIC and (b) ICL.

Fig. 5. French departments. (a) True partion, (b) BIC partition, and (c) ICL partition.

TABLE 2
BIC and ICL Values for the Best Model �pk�kDAD0�

on the French Departments Data



EM.) Fig. 6 displays the values of BIC and ICL. BIC increases

almost monotonically with K and does not provide evidence for

any K value. On the contrary, ICL gives a preference for the ten-

cluster partition which is depicted in Fig. 7 by the iso-density of

each of the ten components. Note that ICL also points out that the

seven-cluster solution is of interest. But from the application in

view, a ten cluster solution seems more interesting. Actually, from

Fig. 7 it seems that the ten-cluster partition selected by ICL

captures the high density regions appearing in this data set.

5 DISCUSSION

Statistical analysis of finite mixtures are employed in statistical

modeling with two different purposes. In one perspective, finite

mixtures are essentially regarded as competitors to nonparametric

density estimation (see [15], [24] or [26]). In another view, finite

mixtures are considered as a powerful modeling way in cluster

analysis (see [17] or [21]). In both situations, choosing a relevant

form m for the model and assessing a sensible number K of
components is an important task.

When the concern of mixture modeling is density estimation,
our numerical experiments confirm that the BIC approximation of
the integrated observed likelihood can be regarded as a reasonable
tool for comparing mixture models. Choosing the form of the
model m and the number of components K by optimization of the
BIC criterion will generally result in a good approximation of the
density to be estimated. Experiments described in Section 4.1.1 and
other experiments in [3], not reported here, highlight this
satisfactory behavior of BIC in a spectacular way. Some other
criteria, based on heuristic arguments, have been proposed to
approximate the integrated observed likelihood in the mixture
context. We can mention the Cheeseman-Stutz (CS) criterion [10]
and [11], the MML criterion [22], and the Bayesian criterion in [25].
Numerical experiments showed that there is very little difference
between those criteria and BIC. (Numerical experiments compar-
ing BIC and CS criteria are in [3] and numerical experiments
comparing BIC, MML, and their Bayesian criterion are in [25].) An
alternative promising approach for estimating the proper number
of clusters is the cross-validated likelihood approach suggested by
Smyth [28].

When the interest in mixture modeling is cluster analysis
choosing a sensible number of clusters, K is crucial. In this
clustering context, the BIC criterion is less convincing. In
particular, it tends to overestimate the number K of clusters when
the fit of the data to the mixture model is not very good. (On the
contrary, when the fit is good, BIC tends to give too a few a
number of clusters, see [4] and [9] for illustrations.) The
experiments in Section 4.1.2 and all the experiments in Section
4.2 are illustrations of such a behavior of BIC. In this context, we
proposed maximizing the integrated completed likelihood rather
than the integrated observed likelihood to select both a relevant
form m of model and a relevant number of clusters K, the missing
cluster indicators being replaced by their maximum a posteriori
estimators. From a practical point of view, the ICL criterion, which
is basically the BIC approximation for the completed log-like-
lihood, seems to give an answer to the practical possible tendency
of BIC to overestimate the number of clusters as it appears from
numerical experiments in Sections 4.1.2 and 4.2. Additional
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Fig. 6. BIC and ICL values with the model applied to the vessel sound location

data.

Fig. 7. The ten-cluster partition of the vessel sound location data.



experiments supporting this assertion can be found in [3], where a
slightly different version of ICL is considered in a non informative
Bayesian framework. Yet it can be shown (through numerical
experiments not reported here) that ICL outperforms heuristic
criteria, developed for assessing mixture models in a clustering
setting, as AWE [2], which tends to underestimate the number of
clusters as shown in [9], or the entropy criterion NEC [9] which
exhibits a disappointing behavior to choose a relevant form m of
the mixture model, as shown in [5].

As compared to the integrated observed likelihood, the
integrated completed likelihood includes an additional entropy
term E�m;K� which favors well-separated clusters and which is
the essential difference between BIC and ICL criteria.
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