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Abstract
Large-scale sparse precision matrix estimation has attracted wide interest from the
statistics community. The convex partial correlation selection method (CONCORD)
developed by Khare et al. (J R Stat Soc Ser B (Stat Methodol) 77(4):803–825, 2015)
has recently been credited with some theoretical properties for estimating sparse
precision matrices. The CONCORD obtains its solution by a coordinate descent algo-
rithm (CONCORD-CD) based on the convexity of the objective function. However,
since a coordinate-wise update in CONCORD-CD is inherently serial, a scale-up
is nontrivial. In this paper, we propose a novel parallelization of CONCORD-CD,
namely, CONCORD-PCD.CONCORD-PCDpartitions the off-diagonal elements into
several groups and updates each group simultaneously without harming the computa-
tional convergence of CONCORD-CD. We guarantee this by employing the notion of
edge coloring in graph theory. Specifically, we establish a nontrivial correspondence
between scheduling the updates of the off-diagonal elements in CONCORD-CD and
coloring the edges of a complete graph. It turns out that CONCORD-PCD simulta-
noeusly updates off-diagonal elements inwhich the associated edges are colorablewith
the same color. As a result, the number of steps required for updating off-diagonal
elements reduces from p(p − 1)/2 to p − 1 (for even p) or p (for odd p), where
p denotes the number of variables. We prove that the number of such steps is irre-
ducible In addition, CONCORD-PCD is tailored to single-instruction multiple-data
(SIMD) parallelism. A numerical study shows that the SIMD-parallelized PCD algo-
rithm implemented in graphics processing units boosts the CONCORD-CD algorithm
multiple times. The method is available in the R package pcdconcord.
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1 Introduction

The estimation of a precision matrix, the inverse of a covariance matrix, is essen-
tial for many downstream data analyses and has wide application in social science,
economics, and physics, among others. Directly estimating the true precision matrix
under some sparsity conditions is a popular choice where the number of variables (p)
is relatively large compared to the sample size (n). Examples include likelihood-based
(Yuan and Lin 2007; Friedman et al. 2008; Witten et al. 2011; Mazumder and Hastie
2012), regression-based (Meinshausen and Bühlmann 2006; Peng et al. 2009; Sun and
Zhang 2013; Khare et al. 2015) and constrained �1-minimization approaches (Cai et al.
2011, 2016; Pang et al. 2014). The CONvex partial CORrelation selection methoD
(CONCORD) proposed by Khare et al. (2015) is a variant of a regression approach
called SPACE (Peng et al. 2009). It has good theoretical properties: the objective
function is convex and the estimator is statistically consistent (provided that the true
counterpart is sparse) while satisfying the symmetry requirement.

Scalability of CONCORD and any other precision matrix estimation methods is
a key challenge for application. Roughly speaking, they require at least O(np2)
or O(p3) of float-point operations (“flops”). As p increases, the computation time
increases dramatically. For example, a coordinate descent algorithm for the CON-
CORD (CONCORD-CD) proposed in Khare et al. (2015) requires 3440.95 (sec) for
n = 2000 and p = 5000 in our numerical study. Detailed settings are introduced in
Sect. 5. Applications to high-dimensional data, such as gene regulatory analysis and
portfolio optimization, face this computational challenge.

This study aims to fill this scalability gap by proposing a novel parallelization of the
CONCORD-CD algorithm, namely, CONCORD-PCD algorithm. A high-level moti-
vation of the algorithm is as follows. Recall that the CONCORD-CD runs consecutive
updates, because the cyclic coordinate descent algorithm minimizes a target objective
function with respect to one coordinate direction at each update while the other coor-
dinates are fixed. Thus, each update requires the result of the previous update, which
is essential to guarantee convergence. As a result, the CD algorithm for CONCORD
(i.e., CONCORD-CD) consumes p(p + 1)/2 serial updates per iteration to update
the entire precision matrix. We observe that a careful reordering of the elements to be
updated allows some consecutive updates to run simultaneously even as convergence
guarantee is preserved. This is because every elements corresponding to the carefully
chosen set of consecutive updates are independent in a sense that an update for each
element does not require the results of the updates for the other elements in the given
set.

We systematize such observation by the lens of the edge coloring, a well-known
concept in graph theory. Edge coloring is an assignment of colors to the edges of
a graph in a way that any pair of edges sharing at least one vertices has different
colors. Specifically, we build a conceptual bridge between updating an element of
the off-diagonal elements in CONCORD-CD and coloring the associate edges of a
complete graph. Then, we prove that a set of the off-digonal elements can be updated
simultaneously in parallel if the associated edges are colorable with the same color.
This theorem enables us to employ the so-called circle method, a scheduling principle
to color a complete graph with the minimal number of colors (i.e., parallel steps).
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Consequently, the consecutive steps required to update all the off-diagonal elements
reduce to p−1 (p) when p is even (odd), where each step runs a simultaneous update
of p/2 ((p − 1)/2) elements. After then, the entire diagonal elements can be updated
by one additional step.

We also provide the details to implement the CONCORD-PCD algorithm tailed
for graphics processing unit (GPU) devices, which is also available in R Package
pcdconcord at http://sites.google.com/view/seunghwan-lee. GPU devices receive
growing attention in statistical computing since GPU has many light-weight cores
that can enormously reduce computation time when the given operations are adequate
for single-instruction multiple-data (SIMD) parallelism. SIMD parallelism refers to
a processing method where multiple processing units perform the same operation on
multiple data points. A typical example of SIMD is summing two vectors where
the sum of each element is conducted by one sub-processing unit. We note that
the CONCORD-PCD algorithm is well-suited for SIMD parallelism. Our numeri-
cal results show that the GPU-parallelized CONCORD-PCD algorithm boosts the
original CONCORD-CD algorithm implemented in the CPU multiple times.

Parallelization of coordinate descent algorithms have been considered in the lit-
erature. Richtárik and Takáč (2016) and Bradley et al. (2011) proposed parallelized
coordinate descent algorithms for regularized convex loss functions. In particular,
Richtárik and Takáč (2016) randomly partitioned the coordinates and distributed the
partitioned subprograms. Bradley et al. (2011) updated the iterative solution by the
direction of the average of increments on each axis. It is worth noting that both studies
required an appropriate learning rate (a constant multiplied by the descent direc-
tion) to guarantee convergence to the optima. In practice, the optimal learning rate is
unknown and is set sufficiently small, which results in a large number of iterations
for convergence. In contrast, our algorithm does not involve selection of the learning
rate to guarantee convergence. The literature of sparse precision matrix estimation has
considered the parallelization of the likelihood-based and constrained �1-minimization
approaches (Hsieh et al. 2013; Hsieh 2014;Wang et al. 2013). To the best of our knowl-
edge, it has devoted much less attention to the regression-based approach, including
CONCORD.

The remainder of this paper is organized as follows. In Sect. 2, we briefly review
the CONCORD-CD algorithm as well as key concepts in graph theory, focusing on the
edge coloring. In Sect. 3, we provide the details of the CONCORD-PCD algorithm.
In Sect. 4, we prove the convergence of the CONCORD-PCD algorithm by leveraging
edge coloring. In Section 5,we demonstrate the computational gain of theCONCORD-
PCD algorithm with extensive numerical studies. Finally, we conclude the paper in
Sect. 6.

2 Preliminaries

2.1 CONCORD: the objective function and coordinate descent algorithm

CONCORD (Khare et al. 2015) is a regression-based pseudo-likelihood method for
sparse precision matrix estimation. The CONCORD estimator is given by a minimizer
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of the following convex objective function:

L(�; λ) = −
p∑

i=1

n logωi i + 1

2

p∑

i=1

n∑

k=1

(
ωi i Xki +

∑

j �=i

ωi j Xk j

)2 + λ
∑

i< j

|ωi j |, (1)

where � = (wi j )1≤i, j≤p is a precision matrix term, X = (Xki )1≤k≤n,1≤i≤p is the
given data matrix (assumed to be centered columnwise), and λ > 0. The consistency
of the solution was proved when the true counterpart is sparse.

The CONCORD-CD algorithm proposed in the paper cyclically minimizes (1)
with respect to each element. We briefly review the algorithm for completeness. With
a slight abuse of notation, let (ω̂i j ) be the current update of the algorithm. First, the p
diagonal elements are updated by

ω̂new
i i ←

−∑
j �=i ω̂i j Ti j +

√(∑
j �=i ω̂i j Ti j

)2 + 4nTii

2Tii
. (2)

Second, the p(p − 1)/2 off-diagonal elements are updated by

ω̂new
i j ← Softλ(−∑

j ′ �= j ω̂i j ′Tj j ′ − ∑
i ′ �=i ω̂i ′ j Tii ′)

Tii + Tj j
, (3)

where Ti j is (i, j)th element of XTX, Softτ (x) = sign(x)(|x | − τ)+, and (x)+ =
max(0, x).

Note that each element is updated consecutively; that is, once an element is updated,
it is used as input in the right-hand sides of (2) and (3). Thus, the CONCORD-CD
algorithm appears to be inherently serial. In Sect. 3, we propose partitioning of the
updating equations for the off-diagonal updates (3) such that each partitioned group
of updating equations can run simultaneously in parallel. In Sect. 4, we prove that
the convergence guarantee is preserved. Our claim will leverage the edge coloring
described below.

2.2 Undirected graph and edge coloring

We briefly review key concepts of the edge coloring in graph theory. See Nakano et al.
(1995) and Formanowicz and Tanaś (2012) for comprehensive reviews.

A (simple undirected) graph G is defined by an ordered pair of sets of nodes and
edges, namely, G = G(V , E). V is a set of nodes (also called vertices), typically
representing variables, say, V = {1, . . . , p}. E is a set of edges that are unordered
pairs of nodes, E ⊆ {{i, j} | (i, j) ∈ V × V , i �= j}. For simplification, we denote
an edge by i j ∈ E with a slight abuse of notation. We say that the pair i, j ∈ V is
connected if i j ∈ E . One example of a graph is a complete graph with p vertices, say,
Kp, in which every pair of nodes is connected. In other words, there are p(p − 1)/2
of edges in Kp.
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Edge coloring is defined as an assignment of colors to the edges of a graph such
that any pair of adjacent edges (edges sharing at least one vertices) is colored with
different colors. Coloring all edges with mutually distinct colors, say, 1, . . . , K , where
K is a number of edges in G(V , E), is a typical example of edge coloring. The central
interest is to minimize the number of colors, K . The following theorem, a special
case of Baranyai’s Theorem, mathematically establishes optimal edge coloring for
complete graphs.

Theorem 1 (Baranyai’s Theorem) Suppose that Kp is an undirected complete graph
with p vertices. the minimum number of colors that can edge-color Kp is p − 1 (if p
is even) or p (if p is odd).

For example, Table 1 compares two edge-colorings forK6; the left graph represents a
trivial edge coloring with mutually distinct colors, while the right graph is an example
of Theorem 1 with a minimal number of colors.

Note that our usage of graph is unrelated to Gaussian graphical models, where the
presence of an edge implies nonzero partial correlation in a true precision matrix.

3 Parallel coordinate descent algorithm for CONCORD
(CONCORD-PCD)

In this section, we construct the proposed algorithm and explain implementation
details. We begin with a motivational example. Suppose p = 6, and let �̂ = (ω̂i j ) be
the current iterate of the CONCORD-CD algorithm. From (3), the elements used to
calculate ω̂new

16 , ω̂new
25 , and ω̂new

34 can be displayed as below:

ω̂new
16 ←

⎛

⎜⎜⎜⎜⎜⎝

ω̂11 ω̂12 ω̂13 ω̂14 ω̂15
ω̂12 × ω̂26
ω̂13 × ω̂36
ω̂14 × ω̂46
ω̂15 × ω̂56

ω̂26 ω̂36 ω̂46 ω̂56 ω̂66

⎞

⎟⎟⎟⎟⎟⎠
ω̂new
25 ←

⎛

⎜⎜⎜⎜⎜⎝

ω̂12 ω̂15 ×
ω̂12 ω̂22 ω̂23 ω̂24 ω̂26

ω̂23 × ω̂35
ω̂24 × ω̂45

ω̂15 ω̂35 ω̂45 ω̂55 ω̂56
× ω̂26 ω̂56

⎞

⎟⎟⎟⎟⎟⎠

ω̂new
34 ←

⎛

⎜⎜⎜⎜⎜⎝

ω̂13 ω̂14 ×
ω̂23 ω̂24 ×

ω̂13 ω̂23 ω̂33 ω̂35 ω̂36
ω̂14 ω̂24 ω̂44 ω̂45 ω̂46

× ω̂35 ω̂45
× ω̂36 ω̂46

⎞

⎟⎟⎟⎟⎟⎠

We note that the updates of the three elements considered do not use each other;
otherwise, they would have appeared at the locations indicated as “×”. To understand
the implication, suppose that ω16, ω25, and ω34 are scheduled to be consecutively
updated in theCONCORD-CDalgorithm.The algorithm runs the three updates serially
with a single processing unit. However, by the independency observed above, the
actual computation of the three updates can run simultaneously onmultiple processing
units sharing memory storing {ω̂i j }\{ω̂16, ω̂25, ω̂34}. Thus, under a parallel computing
environment, the three serial steps of updates can be replaced with one parallel step.
We would like to mention that the associated edges 16, 25, and 34 are colored with
the same color in the right part of Table 1. In fact, we can show that any collection of
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ω̂i j , with the associated edges assigned the same color, can be updated simultaneously
if they are consecutively updated in the CONCORD-CD algorithm. In this example,
p(p− 1)/2 = 15 of serial steps of updates can be replaced with p− 1 = 5 steps with
the aid of multiple processing units.

The following subsections generalize the motivation. In Sect. 3.1, we propose
an analogy between the edge coloring of Kp and the scheduling of off-diagonal
updates in the CONCORD-CD algorithm. In Sect. 3.2, we employ the circle method,
a particular scheme for edge-coloring Kp, to explain the proposed parallelization
of the CONCORD-CD algorithm. We hereafter refer to the proposed algorithm as
CONCORD-PCD. In Sect. 3.3, we describe the complete algorithm and provide the
implementation details. The theoretical guarantees are deferred to Sect. 4.

3.1 Analogy between edge coloring and update ordering

We now assosiate vertex r of the complete graph κp with the r -th variable and then
edge i j with ωi j of the given data. We propose the following analogy:

(A) Associate the edge-coloring of edgei jby color k

with the update ofω̂i j as in (3) at the k − th step.

For example, coloring all edges with colors 1 through p(p − 1)/2 is a trivial
edge-coloring of Kp. By (A), this coloring scheme is associated with the original
CONCORD-CD algorithm: all the coordinate descent updates of the off-diagonal ele-
ments run serially. On the other hand, coloring multiple edges i j with the same k-th
color means that the associated ωi j ’s are simultaneously updated given the same cur-
rent iterate. In Sect. 4, we will show the well-definedness of (A), i.e., any set of edges
colorable with the same color can be updated simultaneously.

3.2 The circle method of edge-coloringKp

The circle method is used to assign colors to the edges ofKp with minimal number of
colors. See Dinitz et al. (2006) for a comprehensive review. By (A), application of the
circle method implies that p/2 elements can be updated simultaneously, and (p − 1)
stpes (i.e., colors) are required to update all off-diagonal elements if p is even. Where
p is odd, (p−1)/2 off-diagonal elements can be updated simultaneously with p steps.

Here, we provide a sketch of the circle method. Its implementation details in Algo-
rithm 1. We define a variable peven as peven = p if p is even and peven = p + 1 if
p is odd to handle the differences between the two situations. The circle method of
CONCORD-PCD consists of following steps:

(i) Clockwisely rotate the round-robin table with the (1, 1) element is fixed, which
results in peven − 1 distinct tables:

(ii) Define target sets: We call a pair of two indices in the same column as a matching
pair. We define the k-th target set, Ik , as the collection of all matching pairs in the
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k-th table in (i), k = 1, . . . , peven − 1. For example, the k-th target set in the first
table in (i) is Ik = {{1, peven}, {2, peven − 1}, . . . , {peven/2, peven/2 + 1}}.

(iii) Discard a pair containing the (p + 1) index in Ik , k = 1, . . . , peven − 1 if p is
odd.

(iv) Color Ik (the edges associated with Ik) by the k-th color, k = 1, . . . , peven − 1.
In other words, update the off-diagonal elements associated to Ik simultaneously
at the k-th parallel step.

Consequently,we update the off-diagonal elements of �̂ in peven−1 steps.Note that
the pair in (iii) is implicitly discarded in the implemented circlemethod, becausewecan
skip the pair containing the (p+1)-th index when updating the off-diagonal elements.
This circle method applies regardless of whether p is even or odd since the numbers of
pairs and iterations are (p/2, p−1)where p is even and ((p+1)/2−1, (p+1)−1) =
((p − 1)/2, p) where p is odd, in which case a pair is discarded and the number of
pairs to be simultaneously updated is computed by peven/2 (i.e., peven/2 − 1).

3.3 A complete algorithm and implementation details

Acomplete CONCORD-PCD algorithm is described inAlgorithm 1. The inner loop of
the complete CONCORD-PCD algorithm consists of two parallel update procedures
for off-diagonal elements and diagonal elements. As described in the previous section,
the parallel update of off-diagonal elements involves peven − 1 steps of updating
peven/2 elements in parallel. In addition, the parallel update of diagonal elements
involves one step since all p diagonal elements can be updated simultaneously with
the given off-diagonal elements. Thus, the complete algorithm runs peven steps per
one outer iteration. The algorithm converges to a global minima, which is proved in
Theorem 2 in Sect. 4.

To further accelerate CONCORD-PCD, we also apply the cyclic reduction tech-
nique for pairwise comparison to calculate |�̂(k)−�̂|∞, where |A|∞ = maxi, j |Ai j | is
the maximum absolute value of matrix A. Let θ̂ = (θ̂1, . . . , θ̂m) = vech(�̂), which is
a half-vectorization for the parameter estimate �̂, and d = (d j )1≤ j≤m = θ̂new − θ̂old .
We further let z = 
log2(m)�, where 
x� is the smallest integer greater than or equal
to x . Consider a calculation of ‖d‖∞, where ‖d‖∞ = max j |d j | is the L∞-norm for
vector d. The pairwise comparison in the proposed algorithm is conducted as follows:

– Initialization: for q = z − 1,
d j ← max(|d j |, |d j+2q |) if j + 2q ≤ m and d j ← d j if j + 2q > m for
j = 1, . . . , 2q ,

– Cyclic reduction: for q = z − 2, . . . , 0,
d j ← max(|d j |, |d j+2q |) for j = 1, . . . , 2q .

After the cyclic reduction step for q = 0, the first element d1 of d becomes equal
to ‖d‖∞. With GPU-parallel computation, we can simultaneously compare 2q pairs
for each step in the cyclic reduction, and then the computational cost can be reduced
as O(log2(m)) if 2z−1 CUDA cores are available.
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Algorithm 1 Parallel coordinate descent algorithm for CONCORD (CONCORD-
PCD)

Require: Data matrix X of size n by p, �̂(0) = (ω̂
(0)
i j ), λ, and δtol

1: t ← 0, �̂ ← �(0), T ← XTX, peven ← p 
 initialization
2: if p is odd then
3: peven ← p + 1
4: end if
5: ( j1, . . . , jpeven ) ← (1, . . . , peven) 
 initialization of index set
6: repeat
7: t ← t + 1
8: for k = 1, 2, . . . , peven − 1 do 
 updating off-diagonal elements
9: Define a target set I = {(r , s) | r = jq , s = jpeven−q+1, q = 1, 2, . . . , peven/2}
10: Update, for all (r , s) ∈ I such that r , s �= p + 1, 
 computed in parallel

ω̂rs ← Softλ(−∑
u �=s ω̂ruTsu − ∑

u �=r ω̂usTru)

Trr + Tss

11: tmp ← jpeven , ( j3, . . . , jpeven ) ← ( j2, . . . , jpeven−1), j2 ← tmp
12: end for
13: for k = 1, 2, . . . , p do 
 updating diagonal elements in parallel
14:

ω̂i i ←
−∑

j �=i ω̂i j Ti j +
√(∑

j �=i ω̂i j Ti j
)2 + 4nTii

2Tii

15: end for
16: δ ← |�̂(t) − �̂|∞ 
 computed by cyclic reduction
17: �̂(t) ← �̂

18: until δ < δtol

4 Properties

In this section, we prove computational properties of CONCORD-PCD algorithm.
Recall the motivating example in Section 3 in which ω̂16, ω̂25 and ω̂34 are simulta-

neously updateable in the sense that their updates do not require each other’s current
iterates. The following lemma characterizes a sufficient condition for independent
updates.

Lemma 1 Suppose that two edges {i, j} and {k, l} of Kp are colorable by the same
color. Then, the updates of ω̂i j and ω̂kl by the CONCORD-CD algorithm does not
contain each other.

Proof For an edge {i, j}, we define U ({i, j}) as the family of coordinates needed to
update ωi j by (3). From the two summation operations in the right-hand side of (3),
we have U ({i, j}) = Ũ (i, j) ∪ Ũ ( j, i), where Ũ (i, j) is defined as

Ũ (i, j) := {(i, i ′) : i ′ �= j, 1 ≤ i ′ ≤ p}, for 1 ≤ i, j ≤ p and i �= j .

By the definition of edge coloring, if two edges are colorable by the same color, then
they do not share vertices, i.e., i, j, k, l are distinct integers. Observe that k �= i and
l �= i imply (k, l) /∈ U (i, j) and (l, k) /∈ U (i, j). Similarly, by k �= j and l �= j , we
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have (k, l) /∈ U ( j, i) and (l, k) /∈ U ( j, i). Combining these leads to (k, l) /∈ U ({i, j})
and (l, k) /∈ U ({i, j}). Hence, ωkl is not used for updating ωi j . In contrast, we can
verify that ωi j is not used for the update of ωkl by interchanging the role of subscripts.

��
Lemma 2 Suppose that any collection of edges of Kp, say, {i1 j1, . . . , iq jq}, is col-
orable with the same color. Then, the associated elements in �̂, that is, ω̂i1 j1 through
ω̂iq jq ,are simultaneously updatable by the CONCORD-PCD algorithm.

Lemma 2 straightforward fromLemma 1. The Lemmas provides a characterization for
themotivating example as well as Table 1: the sufficient condition for the simultaneous
updatability of ω̂16, ω̂25 and ω̂34 is from the observation that the edges 16, 25, and 34
are colorable with the same color.

Using Lemma 2, we can show the global convergence property of the proposed
algorithm.

Theorem 2 Algorithm 1 converges to the minimizer of (1).

Proof Wewill show that the updates ofAlgorithm1 are essentially the serial reordering
of the CONCORD-CD algorithm. To fix the idea, assume that p is even (extending to
odd p is straightforward). We further fix one outer loop at line 7 of Algorithm 1. For
the inner parallel step k, k = 1, . . . , p − 1, let I be the target set defined at line 9,
which coincides the k-th target set Ik in Sect. 3.2. Let J = {(1, 1), . . . , (p, p)} denote
the indices for the main diagonal. Then, the update order of the indices of � given the
algorithm is

U1 : I1 → I2 → · · · → Ip−1 → J ,

where the elements associated with each set is calculated simultaneously. Now, con-
sider a serialized update ofU1, sayU2, which inherits the order inU1, and the elements
in each Ik and J are arbitrarily ordered. We can apply Lemma 2 to inductively verify
thatU1 andU2 produce exactly the same updated �̂. Now recall that I1, . . . , Ip−1, and
J in U1 are a disjoint union for all coordinates {(i, j) : 1 ≤ i, j ≤ p}. The serialized
update schemeU2 then satisfies the conditions of Theorem 5.1 in Tseng (2001), which
guarantees that convergence to the global minima. Thus, iterating U1 also converges
to the global minima, which completes the proof. ��

The construction ofU1 in the proof can easily be extended to arbitrary edge coloring
of Kp. Specifically, given an edge coloring of Kp with colors 1, 2, . . . ,C , one can
mimic the proof to organize a parallelizable update order of CONCORD-CDalgorithm
with C steps for the off-diagonal elements plus 1 step for the diagonal elements.
One would naturally want to know how much we can reduce the number C while
preserving convergence, considering that the fewer the steps we need to follow, the
more we canmaximize the utility of parallel processing units.We note that the number
of parallel steps for the off-diagonal update in Algorithm 1 is minimal. This is due to
the construction of our edge coloring with p − 1 (for even p) or p (for odd p) colors,
which is guaranteed as the minimal possible number of edge colors by Theorem 1.
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5 Numerical study

To illustrate the computational advantage of the proposed parallelization implemented
on a GPU, we compare the computation time of the CONCORD-CD algorithm of
Khare et al. (2015) and the proposed CONCORD-PCD algorithm. We developed
an R package pcdconcord where the CONCORD-PCD algorithm is implemented
with a dynamic library using CUDA C, which is available at https://sites.google.com/
view/seunghwan-lee/software. We refer to CONCORD-PCD as “PCD-GPU” in the
comparison to emphasize that the proposed algorithm is running on GPUs. Next, the
CONCORD-CD algorithm is available in R package gconcord and implemented
with a dynamic library using C with BLAS (basic linear algebra subroutine) (Law-
son et al. 1979). We describe the CONCORD-CD implemented in gconcord as
“CD-BLAS”. In addition to twomain algorithms (CD-BLAS and PCD-GPU), we also
implemented aCONCORD-CDwithout BLAS, “CD-NAIVE”, andCONCORD-PCD
without computation on GPUs, “PCD-CPU”, to study the gain from GPU paralleliza-
tion. We remark that the single precision (32-bit floating point representation) is more
efficient than the double precision (64-bit floating point representation) for the com-
putations on GPUs. However, the R platform only supports the double precision. To
maximize the efficiency of the GPU in the R environment, we first convert the double-
precision data in the host (CPU) memory to single-precision data in the device (GPU)
memory. It is worth noting that Python is favorable for CONCORD-PCD since it sup-
ports both single and double precision for CUDA C. Thus, Python can fully utilize the
computation capacity of GPUs with single precision. The computation time is mea-
sured in seconds on a workstation (Intel Xeon(R) W-2175 CPU (2.50GHz) and 128
GB RAM with NVIDIA GeForce GTX 1080 Ti). Note that the CONCORD-CD and
CONCORD-PCD algorithms should produce the same estimates after convergence
since the only difference between the two algorithms is the updating order of the
matrix elements. In practice, small differences might be observed due to numerical
errors when the convergence tolerance δtol is not sufficiently small.

We used simulated data for the comparison. To be specific, we generate 10 data sets
from a multivariate normal distribution Np(0,�−1) by varying the sample size (n =
500, 1000, 2000) and number of variables (p = 500, 1000, 2500, 5000). Because the
true precision matrix affects the number of iterations for convergence of the estimator,
we also consider AR(2) and scale-free network structures for a true precision matrix,
�, from the literature for sparse precision matrix estimation (Yuan and Lin 2007;
Peng et al. 2009). Let �AR and �SC , be precision matrices for the AR(2) and scale-
free networks, respectively. For the AR(2) network, the precision matrix �AR =
(ωAR

i j )1≤i, j≤p is defined by

ωAR
i j = ωAR

ji =
⎧
⎨

⎩

0.45 for i = 1, 2, . . . , p − 1, j = i + 1
0.4 for i = 1, 2, . . . , p − 2, j = i + 2
0 otherwise

For scale-free network, the precision matrix �SC = (ωSC
i j )1≤i, j≤p is defined by the

following steps:
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(i) Generate a scale-free network G = G(V , E) according to Barabási and Albert
model (Barabási andAlbert 1999), where the degree distribution P(k) ofG follows
the power-law distribution P(k) ∝ k−α . We set α = 2.3 following Peng et al.
(2009), which is close to the estimate from the real-world network (Newman
2003);

(ii) Generate a random matrix �̃ = (ω̃i j ) by
ω̃i j = ω̃ j i ∼ Unif

([−1,−0.5] ∪ [0.5, 1]) for {i, j} ∈ E , ω̃i i = 1 for i =
1, 2, . . . , p;

(iii) Scaling off-diagonal elements: ω̃i j ← ω̃i j/
(
1.25

∑
j �=i ω̃i j

)
;

(iv) Symmetrization: �SC ← (�̃ + �̃T )/2.

To avoid nonzero elements of �SC with small magnitude, we set ωSC
i j ← 0.1 ·

sign(ωSC
i j ) if |ωSC

i j | < 0.1 for (i, j) ∈ E .
In addition, we consider λ = 0.1 and λ = 0.3 for the tuning parameter to evaluate

the performance at different sparsity levels of the estimate. Note that we did not
search the optimal tuning parameter for CONCORD since our numerical studies aim
at evaluating computational gains. We set tolerance level as δtol = 10−5 for the
convergence criteria.

Tables 2 and 3 report the averaged elapsed times for computing CD-BLAS,
CD-NAIVE, PCD-CPU, and PCD-GPU for the AR(2) and Scale-free networks,
respectively. We also summarize the averages of the number of iterations and esti-
mated edges of the CD and PCD algorithms in the same tables to verify that the
proposed and original algorithms achieve the same solution.

From Tables 2 and 3, we first observe that PCD-GPU is always faster than PCD-
CPU for all cases we considered. The GPU-parallel computation is efficient to the
CONCORD-PCD algorithm and plays a key role. In addition, the efficiency of the
GPU-parallelization increases with the number of variables. For example, PCD-GPU
is 3.08–3.95 times faster than PCD-CPU for p = 500, but PCD-GPU is 9.93–10.62
times faster than PCD-CPU for p = 5000. Such an increase in efficiency seems
natural, since the CONCORD-PCD simultaneously updates peven/2 elements.

Next, we see that PCD-CPU is slightly slower than CD-NAIVE. This is due to the
fact that the PCD-CPU has an additional procedure for reordering the elements to be
updated (line 9 in Algorithm 1). Since the computation time for CD-NAIVE and PCD-
CPU is similar, we can conclude that PCD-GPU is more efficient than CD-NAIVE as
well.

Finally, we compare PCD-GPU and CD-BLAS in the original implementation of
CONCORD-CD (gconcord), where PCD-GPU was more efficient than CD-BLAS
for all cases except (n, p) = (500, 5000). Specifically, PCD-GPU is 1.41 and 6.63
times faster than CD-BLAS for the worst and the best cases, respectively. The effi-
ciency gain grows with an increase in both n and p. For (n, p) = (500, 5000),
CD-BLAS is only 1.03–1.19 times faster than PCD-GPU.

Note that the efficiency of CD-BLAS depends largely on the efficiency of BLAS
(implemented by FORTRAN), as is evident from a comparison between CD-BLAS
and CD-NAIVE. For a more precise comparison, we replicate Tables 2 and 3 in Figs. 1
and 2, respectively. The figures suggest that CD-BLAS is more sensitive to the sample
size compared to PCD-GPU. In the AR(2) network, for example, the computation
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(a) (b)

(c) (d)

Fig. 1 Average computation time per iteration for the AR(2) network. The vertical lines denote 95% CIs
of the mean computation time per iteration

time per iteration is measured as 0.4886 for (n, p) = (500, 1000) and 0.8486 for
(n, p) = (2000, 1000) with CD-BLAS, but as 0.1817 for (n, p) = (500, 1000) and
0.1831 for (n, p) = (2000, 1000) with PCD-GPU. This is because the incremental
computational burden associated with the sample size is less for each GPU compared
to the CPU because a GPU device has many CUDA cores. For example, the GPU
device NVIDIA GeForce GTX 1080 Ti used in the numerical studies has 3584 CUDA
cores.

In addition, we compared the computation times of the graphical Lasso (GLASSO),
which is a popular method in the likelihood approach (Friedman et al. 2008), and the
constrained �1-minimization for the inverse of matrix estimation (CLIME), which
is the constrained �1-minimization approach (Cai et al. 2011), with ours. For the
GLASSO, we used the R package glasso that boosts the original algorithm of Fried-
man et al. (2008) by adopting block diagonal screening rule (Witten et al. 2011). For
the CLIME, the original algorithm becomes inefficient when p is large. We apply the
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(a) (b)

(c) (d)

Fig. 2 Average computation time per iteration for the scale-free network. The vertical lines denote 95%
CIs of the mean computation time per iteration

FASTCLIME algorithm implemented in R package fastclime Pang et al. (2014),
which is more efficient and uses the parametric simplex method to obtain the whole
solution path of the CLIME. Since solving the problem of the FASTCLIME is still
expensive when p is large, we focus on the cases of n = 500, 1000, p = 500, 1000
and λ = 0.3 for the CONCORD. We choose the tuning parameter λs of the GLASSO
and the CLIME by searching values that obtain similar sparsity level to that of the
CONCORD with λ = 0.3, because the estimators of the GLASSO and CLIME are
different to that of the CONCORD. Table 4 reports the averages of the computation
times and the number of estimated edges. We found that the proposed PCD-GPU
was fastest for AR(2) and the second-best for the scale-free network. For the scale-
free network, the efficiency of the proposed PCD-GPU was comparable to that of the
GLASSO because the differences in the computation times only lie between 0.24 and
1.01. It has been numerically shown that the CONCORD has better performance than
the GLASSO for identifying the non-zero elements of the precision matrix in Khare
et al. (2015).
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To summarize, we conclude from the our numerical studies that the proposed
CONCORD-PCD is adequate for GPU-parallel computation, and more efficient than
CONCORD-CD when either the number of variables or the sample size is large.
It is also noteworthy that we implemented the PCD algorithm with GPUs by using
cuBLAS libary (PCD-GPU-cuBLAS), but we found that the PCD-GPU-cuBLASwas
less efficient than the PCD-GPU implemented by our own CUDA kernel functions.
Therefore, we have omitted the PCD-GPU-cuBLAS results.

6 Concluding remarks

In this paper, we proposed the parallel coordinate descent algorithm for CONCORD,
which simultaneously updates peven/2 elements, which is p/2 for an even p and
(p−1)/2 for an odd p.We also showed, by applying the theoretical results to edge col-
oring, that peven/2 is the maximum number of simultaneously updatable off-diagonal
elements in the CONCORD-CD algorithm. Comprehensive numerical studies show
that the proposed CONCORD-PCD algorithm is adequate for GPU-parallel computa-
tion, andmore efficient than the original CONCORD-CD algorithm, for large datasets.

We conclude the paper with discussion about possible extensions. Our idea of paral-
lelized coordinate descent can be applied to modeling gene regulatory networks from
heterogeneous data through joint estimation of sparse precision matrices (Danaher
et al. 2014). For example, let us consider the following objective function, which esti-
mates two precision matrices, �1 = (ω

(1)
i j ) and �2 = (ω

(2)
i j ), under the constraint that

both matrices are sparse and only slightly different from each other:

L joint (�1,�2; λ1, λ2)

=
2∑

m=1

{
−

p∑

i=1

n logω
(m)
i i + 1

2

p∑

i=1

n∑

k=1

(
ω

(m)
i i Xm

ki +
∑

j �=i

ω
(m)
i j Xm

k j

)2}

+λ1

2∑

m=1

∑

i< j

|ω(m)
i j | + λ2

∑

i≤ j

|ω(1)
i j − ω

(1)
i j |,

where Xm
ki is the (k, i)th element of the observed dataset from mth population (m =

1, 2). Consider a block coordinate descent algorithm that minimizes along (ω
(1)
i j , ω

(2)
i j )

for each update, in which the update formula has a closed-form expression similar to
one in Yu et al. (2018). One can show that if two edge indices i j and i ′ j ′ are disjoint,
then the update formula for (ω̂

(1)
i j , ω̂

(2)
i j ) does not involve (ω̂

(1)
i ′ j ′, ω̂

(2)
i ′ j ′). Thus, one can

develop a parallelization for this algorithm as presented in this paper.
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