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We investigated whether functional brain networks are abnormally
organized in Alzheimer’s disease (AD). To this end, graph theoret-
ical analysis was applied to matrices of functional connectivity
of beta band--filtered electroencephalography (EEG) channels, in 15
Alzheimer patients and 13 control subjects. Correlations between
all pairwise combinations of EEG channels were determined with
the synchronization likelihood. The resulting synchronization matri-
ces were converted to graphs by applying a threshold, and cluster
coefficients and path lengths were computed as a function of
threshold or as a function of degree K. For a wide range of thresh-
olds, the characteristic path length L was significantly longer in the
Alzheimer patients, whereas the cluster coefficient C showed no
significant changes. This pattern was still present when L and C
were computed as a function of K. A longer path length with a
relatively preserved cluster coefficient suggests a loss of complex-
ity and a less optimal organization. The present study provides
further support for the presence of ‘‘small-world’’ features in func-
tional brain networks and demonstrates that AD is characterized
by a loss of small-world network characteristics. Graph theoretical
analysis may be a useful approach to study the complexity of
patterns of interrelations between EEG channels.
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Introduction

According to Delbeuck and others (2003), cognitive dysfunc-

tion in Alzheimer’s disease (AD) could be due, at least in part,

to a functional disconnection between distant brain areas. One

possibility to examine this hypothesis is to study the correla-

tions between signals of brain activity (EEG, magnetoencepha-

lography [MEG] functional magnetic resonance imaging [fMRI]

blood oxygen level dependent [BOLD]) recorded from different

areas. The underlying assumption is that such correlations

reflect, at least in part, functional interactions between different

brain areas. The concept of statistical interdependencies be-

tween signals of brain activity as a tentative index of functional

interactions is referred to as ‘‘functional connectivity’’ (for a

review, see Lee and others 2003).

The synchronization likelihood (SL) is a recently introduced

measure of statistical interdependencies within a dynamical

systems framework (Stam and Van Dijk 2002). With this

measure, a loss of upper alpha-, beta-, and gamma-band

synchronization could be demonstrated in AD, both during

a no-task state as well as during a working memory task (Stam

and others 2002, 2003; Babiloni and others 2004; Pijnenburg

and others 2004). In these studies, the 13- to 30-Hz beta band

showed the most consistent abnormalities.

Although there seems to be growing consensus with respect

to the loss of functional connectivity in AD, it remains unclear

whether a decrease in the mean level of coupling is also

associated with a change in the global organization of functional

networks. Tononi and others (1998) have pointed out that

optimal brain functioning requires a suitable balance between

local specialization and global integration of brain activity. They

indicated this optimal state as ‘‘complex’’ and proposed a neural

complexity measure CN that is sensitive to the optimal balance

between segregation and integration (Tononi and others 1994).

However, application of the neural complexity measure to fMRI,

EEG, and MEG has not yet produced consistent results (Van

Putten and Stam 2001; Burgess and others 2003; Van Cappellen

van Walsum and others 2003; Branston and others 2005).

An alternative approach to the characterization of complex

networks is the use of graph theory (Strogatz 2001; Sporns and

others 2004). A graph is a basic representation of a network,

which is essentially reduced to nodes (vertices) and connec-

tions (edges) (Fig. 1).

Graphs are characterized by a cluster coefficient C and

a characteristic path length L, among other measures. The

cluster coefficient is a measure of the local interconnectedness

of the graph, whereas the path length is an indicator of its overall

connectedness. Watts and Strogatz (1998) have shown that

graphs with many local connections and a few random long

distance connections are characterized by a high cluster co-

efficient and a short path length; such near-optimal networks are

designated as ‘‘small-world’’ networks. Since then, many types of

real networks have been shown to have small-world features

(Strogatz 2001). Patterns of anatomical connectivity in neuronal

networks are particularly characterized by high clustering and

a small path length (Watts and Strogatz 1998). It has been

suggested that a small world--like network architecture may be

optimal for synchronizing neural activity between different

brain regions (Lago-Fernandez and others 2000; Latora and

Marchiori 2001; Barahona and Pecora 2002; Masuda and Aihara

2004). Networks of functional connectivity based upon record-

ings in animals, fMRI BOLD signals, or MEG recordings have also

been shown to have small-world characteristics (Stephan and

others 2000; Dodel and others 2002; Stam 2004; Eguiluz and

others 2005; Salvador, Suckling, Coleman, and others 2005;

Salvador, Suckling, Schwarzbauer, and Bullmore 2005).
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In the present study, we intend to address the question

whether functional brain networks in AD are characterized by

a loss of small-world features such as a high cluster coefficient

and a short path length.

Materials and Methods

Subjects
The study involved consecutive subjects referred to the Alzheimer

Center at the VU University Medical Center. All subjects were studied

according to a clinical protocol which involved history taking, physical

and neurological examination, blood tests, MMSE, neuropsychological

examination, magnetic resonance imaging of the brain, and a quantita-

tive EEG. The final diagnosis was based upon a consensus meeting where

all the available clinical data and the results of the ancillary investigations

were considered. A diagnosis of probable AD was based upon the

McKhann criteria (McKhann and others 1984). To overcome the lack of

pathological verification, clinical diagnosis was monitored at regular

intervals, and for studies, the unchanged diagnosis at 1 year was used.

The same procedure has been used in other studies (De Leeuw and

others 2004; Schoonenboom and others 2004).

The present study concerned 28 subjects, 15 with a diagnosis of

probable AD (4 males, mean age 69.6 years, standard deviation [SD] 7.9,

range 54--77) and 13 control subjects with only subjective memory

complaints (subjective complaints [SC], 6 males, mean age 70.6 years, SD

7.7, range 57--78). Mean Mini Mental State Examination score of the

Alzheimer patient group was 21.4 (SD 4.0, range 15--28); mean MMSE

score of the SC subject group was 28.4 (SD 1.1, range 27--30).

EEG Recording
EEGs were recorded in all subjects as part of the examination protocol.

EEGs were recorded (against an average reference electrode) with an

OSG digital EEG apparatus (Brainlab (R)) at the following positions of

the 10--20 systems: Fp2, Fp1, F8, F7, F4, F3, A2, A1, T4, T3, C4, C3, T6, T5,

P4, P3, O2, O1, Fz, Cz, and Pz. ECG was recorded in a separate channel.

Electrode impedance was below 5 kX. Initial filter settings were: time

constant = 1 s and low pass filter = 70 Hz. Sample frequency was 500 Hz

and analog-digital precision 16 bit. EEGs were recorded in a sound

attenuated, dimly lit room while patients sat in a slightly reclined chair.

Care was taken by the EEG technicians to keep the patients awake

during the whole recording. For the present analysis, 30 s of artifact-free

data (containing no eye blinks, slow eye movements, excess muscle

activity, electrocardiogram artifacts, etc.) were selected off-line. The

EEG was down sampled to 125 Hz, resulting in time series of 4096

samples for further analysis. Digital, zero-phase shift filtering of the EEG

in the beta band (13--30 Hz), computation of the SL, and the 2 graph

theoretical measures (cluster coefficient and characteristic path length)

were done off-line with the DIGEEGXP software written by one of the

authors (C.S.). Graph theoretical analysis was based on the full 21 3 21

matrix of all possible pairwise combinations of electrodes.

Computation of the SL
Correlations between all pairwise combinations of EEG channels were

computed with the SL (Stam and Van Dijk 2002). Mathematical details

can be found in the appendix to this paper; here we give a brief

description. The SL is a general measure of the correlation or syn-

chronization between 2 time series, which is sensitive to linear as well

as nonlinear interdependencies. The SL ranges between Pref (a small

number close to 0) in the case of independent time series and 1 in the

case of maximally synchronous signals. Pref is a parameter that has to be

set; in the present study, Pref was set at 0.01. The basic principle of the SL

is to divide each time series into a series of ‘‘patterns’’ (roughly, brief

pieces of time series containing a few cycles of the dominant frequency)

and to search for a recurrence of these patterns. The SL is then the

chance that pattern recurrence in time series X coincides with pattern

recurrence in time series Y; Pref is the small but nonzero likelihood of

coincident pattern recurrence in the case of independent time series.

The end result of computing the SL for all pairwise combinations

of channels is a square N 3 N matrix of size 21 (the number of EEG

channels), where each entry Ni,j contains the value of the SL for the

channels i and j.

Computation of the Cluster Coefficient C and Characteristic
Path Length L
The 1st step in applying graph theoretical analysis to synchronization

matrices is to convert the N 3 N synchronization matrix into a binary

graph. A binary graph is a network that consists of elements (also called

‘‘vertices’’) and undirected connections between elements (called

‘‘edges’’) (Fig. 1). Edges between vertices either exist or do not exist;

they do not have graded values. The synchronization matrix can be

converted to a graph by considering a threshold T. Because there is no

uniqueway to choose T, we explored a whole range of values of T, 0.01 <

T < 0.05, with increments of 0.001 and repeated the full analysis for each

value of T. If the SL between a pair of channels i and j exceeds T, an edge

is said to exist between i and j; otherwise no edge exists between i and j.

Once the synchronization matrix has been converted to a graph, the

next step is to characterize the graph in terms of its cluster coefficient C

and its characteristic path length L. A schematic explanation of graphs,

cluster coefficients, and path lengths is given in Figure 1.

To compute the cluster coefficient of a certain vertex, we first

determine to which other vertices it is directly connected; these other

vertices (1 edge away) are called ‘‘neighbors.’’ Now the cluster co-

efficient is the ratio of all existing edges between the neighbors and the

maximum possible number of edges between the neighbors; it ranges

between 0 and 1. This cluster coefficient is computed for all vertices of

the graph and then averaged. It is a measure for the tendency of network

elements to form local clusters. The characteristic path length L is the

average shortest path connecting any 2 vertices of the graph; the length

of a path is indicated by the number of edges it contains. The path length

L is an emergent property of the graph, which indicates how well its

elements are integrated/interconnected.

Figure 1. Schematic explanation of a graph and graph theoretical measures. A graph
consists of elements or vertices, denoted by black dots. If 2 vertices are connected
a line is drawn between them. Such a connection is called an edge. The size of a graph
is equal to the total number of vertices, in this case N = 18. The degree K of a graph is
the average number of edges per vertex. In a graph all vertices need to be connected.
The distance between 2 vertices is expressed by the number of edges that have to be
traveled to get from the 1 vertex to another. For instance, the shortest path from
vertex A to vertex F has a length of 3 edges (path indicated by dotted lines). The
characteristic path length L of a graph is the mean (or median) of all shortest paths
connecting all pairs of vertices. L is a measure of how well connected a graph is. The
cluster coefficient C is a measure of local structure. For example, to compute the
cluster coefficient for vertex A, we first determine the other vertices to which it is
directly (with path length 1) connected. These neighbors are vertices B, C, and D. Then
we determine how many edges exist in the set of neighbors. In this case, only B and C
are connected. Next, we determine how many edges could have existed between the
neighbors. In this case this is 3 (B--C, C--D, and B--D). The cluster coefficient of A is now
the ratio of these 2 numbers: 1/3. In a similar way, the cluster coefficient can be
determined for all vertices. This results in an average cluster coefficient C for the whole
graph. C is a measure of the existence of local densely connected clusters within
a network. Optimal networks are characterized by a high C and a low L; such networks
are designated small-world networks (Watts and Strogatz 1998).
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When C and L are computed as a function of threshold T, the results

might be influenced by differences in the mean level of synchronization

between the 2 groups. Because the SL is expected to be significantly

lower for Alzheimer patients than controls, for a given value of T, AD

graphs will have fewer edges than controls graphs, and this will

influence the differences in C and L between the 2 groups. To control

for this effect, we repeated the analysis computing C and L as a function

of degree K, which is the average number of edges per vertex. In this

way, graphs in both groups are guaranteed to have the same number of

edges so that any remaining differences in C and L between the groups

reflect differences in graph organization.

The values of C and L as a function of degree K were compared

with the theoretical values of C and L for ordered (C = 3/4, L = N/2K)

and random (C = K/N, L = ln(N)/ln(K)) graphs. However, statistical

comparisons should generally be between networks that have equal

(or at least similar) degree sequences, as these are known to affect all

kinds of network measures. Because the theoretical networks have

Gaussian degree distributions and may thus not provide valid controls

for the experimental networks in the present study, which may have

some other degree distribution, we also generated random and ordered

control networks following the procedure described by Sporns and Zwi

(2004) and Milo and others (2002) which preserve the degree

distribution exactly. For a K value of 3, for each EEG 20 random and

20 ordered networks were generated, and the mean C and L were

calculated.

Statistical Analysis
Statistical analysis consisted of independent samples t-tests and linear

regression of the plots of C and L as a function of threshold. In order to

investigate correlations between changes in topological parameters

with cognitive measures, we calculated Pearson’s correlation coefficient

between MMSE scores (as a measure of cognitive function) and both

cluster coefficient and path lengths.

Results

As can be seen in Figure 2, the synchronization matrices of both

groups show a complex but nonetheless rather similar pattern,

with various regions of high (darker) and low (lighter) levels of

synchronization. For instance, the dark region in the upper left

corner corresponds to high levels of synchronization between

prefrontal, frontal, and frontolateral channels.

Overall, the beta-band synchronization was lower in the

Alzheimer group (main effect of group, F1,26 = 4.656, P = 0.040).

Figure 3 shows the graphs corresponding to the mean

synchronization matrices of Figure 2 using a threshold T =

0.029. The graphs for both groups show a similar complex

network, consisting of frontal and parieto-temporo-occipital

components, linked by long distance connections (Fig. 3B,C).

Compared with the AD group, the graph of the control group

has a larger number of edges between the central, temporal, and

frontal regions (Fig. 3D). The graphs shown in Figure 3

represent group averages and serve primarily to illustrate the

main patterns. For the actual analysis, the conversion of the

synchronization matrix to a graph was done for each subject

separately, and the averaging was done over the individual

values of C and L as a function of the threshold T.

The mean cluster coefficient C as a function of threshold for

the 2 groups is shown in Figure 4A.

For a low value of the threshold, the corresponding graphs

are almost fully connected with edges between almost all

vertices yielding a corresponding C close to 1 (for T = 0, C is

expected to be 1). For increasing values of the threshold, more

and more edges will be lost (providing the corresponding value

of SL < T), and the cluster coefficient starts to decrease. Over

the whole range of threshold values investigated (0.010--0.050),

C of the control group is slightly higher than C of the Alzheimer

group. However, due to the large variance, which increases with

higher values of T, there are no consistent statistical differences

between the 2 groups.

In contrast, the characteristic path length L does show clear

differences between the groups (Fig. 4B). In the curves of

Figure 4B, several patterns can be discerned. For small values

of T (0.010--0.019), the path length increases almost linearly

with the threshold. For increasing values of T, more and more

edges will drop out, increasing the average path length

between randomly chosen vertices. For an intermediate range

of values of T (0.020--0.032), the path length is significantly

larger for the Alzheimer group compared with the control

group; the most significant difference is found for T = 0.029

(t-test, P = 0.0049). For further increases of T, the path length

starts to level off; this phenomenon occurs earlier in the

Alzheimer group than in the control group. This can be

explained owing to the fact that for high values of T some of

the vertices (EEG channels) become disconnected from the

graph (splitting off); the resulting graph will be smaller, which

will limit the further growth of L. For very high values of

Figure 2. Mean synchronization matrices for the Alzheimer patients (N = 15) and the control subjects with subjective memory complaints (N = 13). The synchronization matrix is
a 21 3 21 square matrix, where the x axis and the y axis correspond with the channel numbers, and where the entries indicate the mean strength of the SL between specific pairs of
channels. The strength of the SL is indicated with a gray scale, from white (SL = 0) to black (SL = 1). The diagonal running from the upper left to the lower right is intentionally left
blank. The names of the electrodes according to the 10--20 electrode placement system have been indicated next to the corresponding channel numbers on the left side.
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T (T > 0.043), the path length actually decreases with in-

creasing T. This is due to the fact that the graph will be divided

into 2 or more sub graphs (fragmentation). Because these sub

graphs will be much smaller than the original full graph, the

corresponding mean L will decrease. This graph fragmentation

occurs earlier in the AD group than the control group, re-

sulting in significantly larger path length of the controls for

very high values of T.

Figure 3. Mean synchronization matrices of Figure 2 converted to graphs using a threshold of T = 0.029. (A) Schematic image of the head seen from above, with the positions
of the electrodes indicated by small circles and numbered according to the 10--20 electrode placement system. (B) Graph of the control subjects. If the SL between 2 electrodes
is above a threshold, a line is drawn (an edge exists between the 2 vertices), otherwise not. (C) Graph of the Alzheimer patients. (D) Differences between the 2 groups:
Co-AD = edges only present in control group (solid lines), AD-Co: edges only present in AD group (dotted line). Abbreviations: F = frontal, P = posterior, L = left, R = right.

Figure 4. (A) Mean cluster coefficient C and (B) path length for the Alzheimer group (black diamonds) and the control group (open squares) as a function of threshold. Error bars
correspond to standard error of the mean. Black triangles indicate where the difference between the 2 groups is significant (t-test, P < 0.05). The cluster coefficient shows
a decrease for increasing threshold values. Although C is consistently higher for the control group, especially for higher values of the threshold, due to the large variance the
difference between the groups is statistically not significant. For intermediate ranges of the threshold (0.020--0.032) the path length is significantly longer in the Alzheimer group. For
very high values of the threshold (T > 0.043), the path length is significantly shorter in the Alzheimer group, due to fragmentation of the graph into sub graphs.
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Results of the analysis of C as a function of K are shown in

Figure 5A.

As expected, C increases with K. No significant differences

between the 2 groups are present. Comparisons with the

theoretical values of C for ordered (C = 3/4) and random graphs

with size N (C = K/N) (Fig. 5A) and with the constructed random

and orderedmatrices that preserve the degree sequences of their

experimental counterparts (Fig. 5C) show that C for EEG data is

intermediate between ordered and random graphs. Results of

the analysis of L as a function of K are shown in Figure 5B.

Here L decreases as K increases because more edges allow

shorter possible paths. L is significantly longer in AD patients for

2.85 < K < 3.15. Comparison with theoretical values of L for or-

dered and random graphs (ordered graph: L = N/2K, random

graph: L = ln(N)/ln(K)) shows that the path length of the EEG data

is very short and smaller than that of a random graph for K < 3.4

(Fig. 5B). However, for the constructed random and ordered ma-

trices, L of the EEG is lower than L of ordered networks and close

to (but not smaller than!) L of random networks; also L of the AD

group is significantly longer than L of the control group (Fig. 5D).

Pearson correlation coefficient between MMSE scores and

path length was significant for the combined AD and control

subject group: r = –5.91 (P = 0.01), but not for the AD group

alone: r = –4.05 (P = 0.13). Correlations between MMSE scores

and cluster coefficient were not significant for the combined

AD and control subjects: r = 0.28 (P = 0.15) or the AD group:

r = 0.22 (P = 0.42) (Fig. 6).

Discussion

The principal finding of the present study is that changes in EEG

beta-band functional connectivity display a loss of small-world

network characteristics. We showed that AD was characterized

by a longer characteristic path length with relative sparing of

the local clustering. Functional connectivity matrices of beta-

band synchronization were converted to graphs and analyzed in

terms of cluster coefficients C and characteristic path length L

for a range of thresholds. This approach is quite general and

could also be applied to connectivity matrices based upon

reconstructed sources in future studies. The main purpose of

this analysis was to characterize the whole network in terms of

local and global integration and to determine which aspect

might be affected most in AD.

For a whole range of threshold values, the cluster coefficient

showed a nonsignificant trend to lower values in AD patients

(Fig. 4A), implying that the local connectedness of networks in

AD is relatively spared. The sparing of the cluster coefficient in

Figure 5. (A) Mean cluster coefficient C and (B) path length for the Alzheimer group (black diamonds) and the control group (open squares) as a function of degree K. Error bars
correspond to standard error of the mean. Black triangles indicate where the difference between the 2 groups is significant (t-test, P < 0.05). The theoretical values of C and L for
ordered and random networks as a function of K are shown for comparison. (A) C increases as a function of K, but no significant differences between the Alzheimer patients and
subjective complaints group are present. The cluster coefficient of the EEG data is intermediate between that of ordered and random networks. (B) For K between 2.850 and 3.15,
the path length is significantly longer in the Alzheimer group. The path length of the EEG data L is much shorter than that of ordered networks and even smaller than that of random
networks for K < 3.4. (C) Comparison of the experimental cluster coefficient and (D) path length with those of the constructed random and ordered matrices that preserve the
degree sequences of their experimental counterparts. C is intermediate between ordered and random networks, whereas L of the EEG is lower than L of ordered networks and close
to (but not smaller than) L of random networks; also L of AD is significantly longer than L of controls (*).
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AD means that if a channel A is strongly correlated to 2 other

channels B and C, then the likelihood that B and C will also be

strongly coupled is not different from controls. An interesting

finding was the different dependence of characteristic path

length on threshold in Alzheimer patients and controls (Fig. 4B).

Here the range of threshold values higher than 0.035 should be

considered with caution because in this range, the size of the

graph is no longer fixed (due to splitting off) and the graph may

even split into sub graphs. For threshold values lower than

0.035, these problems do not exist, and a proper interpretation

of L as the average shortest distance between any 2 vertices is

valid. In this range, L was significantly longer for AD patients

than for controls. Short path lengths have been shown to

promote effective interactions between and across cortical

regions (Sporns and Zwi 2004). Interactions between intercon-

nected areas of the brain are believed to form the basis of

cognitive processes (Pastor and others 2000; Friston 2002;

Horwitz 2003). The significant correlation between path length

and cognitive functioning (as measured with MMSE) in the

present study is consistent with this notion and provides further

evidence for the concept of AD as a disconnection syndrome.

Figure 3D shows that the graph of the SL matrices in the AD

group contains a lower number of edges between temporal,

frontal, and specifically posterior central regions compared

with the control group. Although the EEG has a poor spatial

resolution and possible topographical implications of these

findings must be interpreted with extreme caution, these areas

are largely consistent with previously detected functional

connectivity maps of the conscious resting state involving

(among others) the temporal lobe, the posterior cingulate

gyrus, and medial and lateral prefrontal cortex (Greicius and

others 2003, 2004).

The finding of a lower level of beta-band synchronization is

in agreement with several previous studies using the SL (Stam

and others 2002, 2003; Babiloni and others 2004; Pijnenburg

and others 2004). Claus and others (1998) also stressed the

importance of the beta band in AD in the context of prognosis.

The fact that the beta band shows fairly consistent changes in

relatively mild AD was our reason for concentrating on this

frequency band in the present study. The method described in

the present study can now be used to analyze small-world char-

acteristics in other bands, both during active and resting states.

A possible criticism of the graph theoretical results might be

that they simply reflect the lower level of synchronization in the

AD group. For a given value of T, graphs of AD patients are

expected to have fewer edges, and this will result in a lower C

and L. To determine whether the longer path length in the AD

group reflects a true difference in organization and not simply

a lower mean level of synchronization, we repeated the analysis

by computing C and L as a function of K. In this way, graphs in

both groups had equal numbers of edges, and any influence of

differences in mean SL was eliminated. This analysis showed

that AD patients still had a significantly longer L compared with

controls, with no significant difference in C. Thus, the longer

path length in AD patients cannot be ascribed to differences

in mean level of SL and reflects a true abnormality in the

organization of functional networks in this disorder.

A comparison of C and L of the EEG data with theoretical

values of C and L for ordered networks (formula’s taken from

Watts and Strogatz 1998) showed that L of the EEG graphs was

very small and even smaller than that of random graphs (Fig. 5B),

whereas C of the EEG graphs was intermediate between

ordered and random graphs (Fig. 5A). For a small-world graph,

L should be close to that of a random graph, whereas C should

be much higher than that of a random graph, and both would

be expected to lie between the values of these 2 graphs. The

reason the experimental L is smaller than that of random graphs

may be because the experimental data do not have a Gaussian

degree distribution. Therefore, we also generated random and

ordered control networks following the procedure described

by Sporns and Zwi (2004) and Milo and others (2002), which

preserve the degree distribution exactly. L for the experimental

data was close to (but not smaller than!) that of the random

graph, whereas C was higher than that of the random graph,

demonstrating that the pattern is still consistent with a small-

world configuration. These results are comparable with those

obtained for high- and low-frequency bands in a previous MEG

study (Stam 2004).

In neuroscience, graph theoretical analysis has mainly been

applied to the study of anatomical networks (Hilgetag and

others 2000; Strogatz 2001; Sporns and others 2004). Different

types of networks have been shown to be characterized by

a relatively high cluster coefficient and a short path length,

corresponding to the notion of small-world networks (Watts

and Strogatz 1998; Sporns and others 2004). When networks are

evolved while selecting for the highest complexity (defined as

an optimal balance between local specialization and global

integration), the resulting networks typically have the charac-

teristic ‘‘small-world properties’’; this suggests that small-world

features and a high neuronal complexity CN are in fact closely

associated (Sporns and others 2000). There are indications that

small-world networks and the related scale-free networks

represent an optimal organization in terms of low ‘‘wiring

costs,’’ local independence, and global integration. Modeling

Figure 6. Scatter plots with trendline showing (A) the cluster coefficient and (B) path lengths for the Alzheimer group (black diamonds) and the control group (open squares) as
a function of MMSE scores. Pearson correlation coefficient for path length was significant for the combined AD and control subject group: r = –5.91 (P = 0.01). Correlations between
MMSE scores and cluster coefficient were not significant for the combined AD and control subjects: r = 0.28 (P = 0.15).
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studies have shown that neural networks with a small-world

configuration facilitate synchronization between distant neu-

rons and efficient information processing (Lago-Fernandez and

others 2000; Masuda and Aihara 2004). Stephan and others

(2000) have shown that graph analysis can be applied equally

well to patterns of functional and anatomical connectivity;

in both cases a typical small-world network was revealed.

In agreement with this, analysis of correlation matrices de-

termined from fMRI BOLD signals has shown typical small-

world patterns (Dodel and others 2002; Eguiluz and others

2005; Salvador, Suckling, Coleman, and others 2005; Salvador,

Suckling, Schwarzbauer, and Bullmore 2005). Finally, in a study

dealing with MEG recordings from healthy subjects, graph

analysis of synchronization matrices revealed small-world pat-

terns in low- and high-frequency bands (Stam 2004). When C

and L are expressed as ratios of C and L of random graphs, the

results of the present study are quite comparable with those of

several previous studies (Table 1).

The present study provides further support for the presence

of small-world features in functional networks in the brain.

Furthermore, this study shows for the 1st time that pathological

networks in AD may be less small world--like than normal brain

networks. Alzheimer patients have significantly longer path

lengths of their EEG graphs, even after correcting for differ-

ences in the mean level of synchronization, which suggests

a disruption in effective interactions between and across

cortical regions and provides further support for the concept

of AD as a disconnection syndrome. Graph theoretical analysis

can reveal abnormal patterns of organization of functional

connectivity. This approach may be useful not only in de-

generative dementia’s but also in other disorders such as

schizophrenia where abnormal functional connectivity plays

a role (Friston 1999; Breakspear and others 2003).

Notes
Address correspondence to B. F. Jones, Department of Neurology, VU

University Medical Centre, PO Box 7057, 1007 MB Amsterdam, The

Netherlands. Email: b.jones@vumc.nl.

Appendix: Mathematical Details of Computation of SL

This appendix is based upon Posthuma and others (2005). The SL is

a measure of the ‘‘generalized synchronization’’ between 2 dynamical

systemsX and Y (Stam and Van Dijk 2002). Generalized synchronization

(Rulkov and others 1995) that exists betweenX and Y of the state of the

response system is a function of the driver system: Y = F(X). The 1st step
in the computation of the SL is to convert the time series xi and yi

recorded from X and Y as a series of state space vectors using the

method of time delay embedding (Takens 1981):

Xi = ðxi ;xi + L ;xi + 23L ;xi + 33L; . . . ;xi + ðm –1Þ3LÞ; ð1Þ

where L is the time lag and m the embedding dimension. From a time

series of N samples, N – (m 3 L) vectors can be reconstructed. State

space vectors Yi are reconstructed in the same way.

SL is defined as the conditional likelihood that the distance between

Yi and Yj will be smaller than a cutoff distance ry, given that the distance

between Xi and Xj is smaller than a cutoff distance rx. In the case of

maximal synchronization, this likelihood is 1; in the case of independent

systems, it is a small, but nonzero number, namely, Pref. This small

number is the likelihood that 2 randomly chosen vectors Y (orX) will be

closer than the cutoff distance r. In practice, the cutoff distance is

chosen such that the likelihood of random vectors being close is fixed at

Pref, which is chosen the same for X and Y. To understand how Pref is

used to fix rx and ry, we first consider the correlation integral:

Cr =
2

N ðN –wÞ +
N

i = 1

+
N –w

j = i +w

hðr – jXi –Xj jÞ: ð2Þ

Here the correlation integral Cr is the likelihood that 2 randomly chosen

vectorsXwill be closer than r. The vertical bars represent the Euclidean

distance between the vectors. N is the number of vectors, w is the

Theiler correction for autocorrelation (Theiler 1986), and h is the

Heaviside function: h(X) = 0 if X > 0 and h(X) = 1 if X < 0. Now, rx is

chosen such that Crx = Pref, and ry is chosen such that Cry = Pref. The SL

between X and Y can now be formally defined as:

SL =
2

N ðN –wÞPref

+
N

i = 1

+
N –w

j = i +w

hðrx – jXi –Xj jÞhðry – jYi –Yj jÞ; ð3Þ

SL is a symmetric measure of the strength of synchronization betweenX

and Y (SLXY = SLYX). In equation (3), the averaging is done over all i and j;

by doing the averaging only over j, SL can be computed as a function of

time i. From equation (3), it can be seen that in the case of complete

synchronization SL =1; in the case of complete independence SL = Pref.

In the case of intermediate levels of synchronization Pref < SL < 1.

In the present study, the following parameters were used: L = 10,

M = 10, and Pref = 0.01.
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