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Abstract
Weconstruct statistical ensembles ofmodular Boolean networks that are constrained to lie at the
critical line between frozen and chaotic dynamic regimes. The ensembles aremaximally randomgiven
the imposed constraints, and thus represent null models of critical networks. By varying the network
density and the entropic cost associatedwith biased Boolean functions, the ensembles undergo several
phase transitions. The observed structures range from fully random to several ordered ones, including
a prominent core–periphery-like structure, and an ‘attenuated’ two-group structure, where the
network is divided in two groups of nodes, and one of themhas Boolean functions with very low
sensitivity. This shows that such simple large-scale structures are themost likely to occurwhen
optimizing for criticality, in the absence of any other constraint or competing optimization criteria.

1. Introduction

Boolean networks are often used as genericmodels for the dynamics of complex systems of interacting entities,
such as social and economic networks, neural networks, and gene or protein interaction networks [1, 2].
Whenever the states of a system can be reduced to being either ‘on’ or ‘off’without loss of important
information, a Boolean approximation capturesmany features of the dynamics of real networks [3]. One of such
features is the transition between two dynamical regimes: a ‘frozen’ phase, where small perturbations of the
dynamics vanish after some time, and a ‘chaotic’ phase, where localized perturbations grow exponentially fast,
and disturb the entire system [2]. It is often posited thatmany real systems such as gene regulatory networks [4]
or the brain [5] possess features similar to networks which are at the critical line between these two phases, and
hence share features inherent to both of them.A central question has been how such systems are capable of self-
organizing in this critical state [6–8].

In this work, we tackle this question froma different point of view. Instead of describing how a specific
dynamics or evolutionary process can drive the structure of the system towards criticality, we focus on the
minimal ingredients necessary for a system to be critical under general constraints. In particular, we consider
nullmodels of critical Boolean networks that possess the necessary topological and functional characteristics for
criticality, but are otherwisemaximally random.We are interested both in the large-scale structure of such
networks, as well as the choice of Boolean functions.With this inmind, we parametrize general ensembles of
functional networks using the stochastic blockmodel [9], and obtain configurationswhichmaximize its entropy
[10] under the constraint that the dynamics lie in the critical line. By varying the density of the network, and the
entropic cost of choosing Boolean functions with specific sensitivities, we observe topological phase transitions
from a fully random configuration, tomany structured ones. Themost prominent structured topological phases
wefind are: (1) a core–periphery-like structure [11, 12], which achieves criticality by restricting the regulation of
most of the network by a few ‘core’ nodes, and (2) a two-group structurewhere one of the node groups possess
Boolean functionswith very low sensitivity.We also show that topologies formed by only two distinct groups of
nodes are sufficient to achieve criticality given the general constraints considered. This suggests thatmore
elaborate large-scale structures and choice of Boolean functions do not necessarily arise directly out of an
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optimization towards criticality, andmay have other direct causes, such as being the outcome of a growth
process or some other non-equilibriumdynamics.

This paper is divided as follows. In section 2we present ourmodel. In section 3we describe the optimized
ensemble of critical networks. In section 4we present the results of the optimization, and the phase diagram.We
then conclude in section 5with a general discussion.

2. TheModel

Our objective is to investigate the large-scale topology of networks which are forced to be critical under global
constraints.We parametrize the possible structures as a general directed stochastic blockmodel [9, 10], where
the nodes are divided intoB groups, where a given group rhas size nr, and ers is the number of edges randomly
placed from group s to group r.We also ascribe to each node in the network a Boolean function, chosen
randomly from the set of all possible functionswith a given bias pr (i.e. the fraction of input combinations that
correspond to output 1)3. On a given realization of this network ensemble, we consider a synchronous Boolean
dynamics, where at each discrete time step the Boolean values σ{ }i of all nodes are updated as

σ σ+ = ( ){ }t f t( 1) ( ) , (1)i i j

where fi is the Boolean function of node i, and σ t{ ( )}j is the set of inputs of i.We are interested in describing the
time evolution of perturbations of the dynamics, where a single Boolean value isflipped σ σ→ −1i i, and the
following cascade offlips ismeasured.More precisely, we are interested in theHamming distance between two
identical copies of the same network, butwhere one of them is unperturbed,

∑ σ σ= − ′h t
N

t t( )
1

( ) ( ) , (2)
i

i i

where σ t{ ( )}i and σ ′ t{ ( )}i are the states of the original and perturbed copies, respectively. According to the order
parameter h(t) we can distinguish between two phases in the thermodynamic limit ≫N 1: a frozen dynamics
where =→∞h tlim ( ) 0t , and a ‘chaotic’ one for >→∞h tlim ( ) 0t . In terms of our imposed block structure, we
have

∑=h t
N

n h t( )
1

( ), (3)
r

r r

where σ σ= ∑ − ′∈h t t n( ) ( )r i r i i r is the contribution to h(t) from the nodes belonging to group r. Instead of

investigating themicroscopic dynamics of equation (1) directly, here wemake use of the annealed
approximation [13], and consider that at each time step the edges of the network are re-sampled from the same
ensemble. By restricting ourselves to the early times after the perturbation, such that ≪h t( ) 1r , we can neglect
the probability thatmore than one inputflips simultaneously, which is of order O h t( ( ) )r

2 . This allows us to
write the time evolution of the individual hr(t) values as

∑+ ≃h t b w h t( 1) ( ), (4)r r

s

rs s

with =w e nrs rs r being the fraction of inputs of group r that belong to group s, and = −b p p2 (1 )r r r is the
probability that if an input of a node belonging to group rflips its output will alsoflip [14–16]. The general
solution of this linear system is

⃗ = ⃗h t M h( ) (0) (5)t

with ⃗ =h t h t( ) { ( )}r and

= = −( )M b w p p e n2 1 . (6)rs r rs r r rs r

ThematrixM is non-negative and non-symmetric, and hence it has at least one purely real non-negative leading
eigenvalue λ, with a non-negative eigenvector ⃗x . Henceforthwe further assume thatM is strictly positive4, so
that this eigenvalue is positive and unique, and then for a sufficiently large twe canwrite

λ⃗ ≃ ⃗ ⃗ ⃗( )h t h x x( ) (0), . (7)t

3
For nodeswhich do not receive any input, we impose that they receive constant functions, with a randomly chosen output value.

4
In some of the following results wewill observe values →M 0rs . These should simply be interpreted as asymptotic limits where the values

become arbitrarily small but always strictly positive, and hence do not invalidate equation (7).
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From this we have that λ < 1 corresponds to the frozen phase, since themagnitude of the perturbationwill
decrease exponentially, and conversely λ > 1 corresponds to the ‘chaotic’ phase, since it will increase
exponentially. Hence the special value λ=1marks the critical line between the two phases. Therefore, given
some parameter choice for n{ }r , e{ }rs and p{ }r , we can decide inwhich phase the corresponding dynamics will lie
by computing the largest eigenvalue of theB×BmatrixM. Note that from this criterionwe recover trivially the
critical value for biased randomBoolean networkswithB= 1, λ = − 〈 〉p p k2 (1 )r r [2].

3.Optimized ensembles

Weare interested in generating ensembles of Boolean networkswhich lie in the critical line λ=1.More
specifically, wewant nullmodels of critical networkswhere—in addition to being critical—the topology and
choice of functions ismaximally randomwithin the imposed constraints.We achieve this bymaximizing the
entropy of stochastic blockmodel ensemble [10]

Ω= ( ) ( )n e n e{ }, { } ln { }, { } (8)r rs r rsS

with Ω n e({ }, { })r rs being the total number of network realizations, as well as the entropy  n p({ }, { })r rF of the
distribution of Boolean functions, whichwe describe below. Themaximization is performed in a constrained
fashion, by imposing a critical sensitivity λ =n e p({ }, { }, { }) 1r rs r , and by adjusting the relative entropic cost of
modifying the structure of the network (the parameters n e{ }, { }r rs ) and the Boolean functions (the parameters
p{ }r ). This is achieved by finding the saddle point of the Lagrangian function

Λ μ μ λ= − + − −  ( ) ( )( ) { } { }n e n p c n e p(1 ) { }, { } { }, { }, { }, 1 , (9)r rs r r r rs rS F
⎡⎣ ⎤⎦

where c is a Lagrangemultiplier which imposes λ=1, and μ controls the relative entropic cost between the edge
placements and the choice of functions.

For the structural entropy  n e({ }, { })r rsS we have simply [10]

∑≃ − ( )n e E e
e

n n
{ }, { } ln , (10)r rs

rs

rs
rs

r s
S

⎛
⎝⎜

⎞
⎠⎟

where = ∑E ers rs is the total number of edges, and the limit of sparse networks was assumed, i.e. ≪e n nrs r s.
For  n p({ }, { })r rF we have considered different choices. Afirst optionwould be to enumerate all possible

Boolean functions of k inputs with a given bias, Ω p k( , ), and compute Ω= ∑ n p n p p k({ }, { }) ln ( , )r r r k r k
r

rF ,

with pk
r being the in-degree distribution of group r, which is a Poissonwith average = ∑k e nr s sr r . For each

choice of k there are 2k possible input combinations, p2k ofwhichwill have output 1 and − p2 (1 )k will have
output zero. The total number of Boolean functions is therefore

Ω =p k
p

( , )
2

2
, (11)

k

k

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

fromwhichwe obtain using Stirling’s approximation for ≫2 1k

Ω ≃p k H pln ( , ) 2 ( ), (12)k
b

where = − − − −H x x x x x( ) ln (1 )ln(1 )b is the binary entropy function. As equation (12) shows, this choice
will result in an entropy functionwhich grows exponentially with the number of inputs k. Thismeans that, for
any choice of μ > 0 in equation (9) above, a trivialmaximization of the overall entropy can be achieved by
sufficiently increasing the average number of inputs of a vanishingly small fraction of the nodes, since the
remaining entropy termof equation (10)will only depend log-linearly on the size and density of the groups. In
otherwords, the functional entropywill exponentially dominate the structural one formany parameter choices,

≫ n p n e({ }, { }) ({ }, { })r r r rsF S . Hence, the outcomewould correspond always to fully randomnetworks, with
a uniformbias p selected to enforce λ=1.However, the choice of equation (12) corresponds to an unrealistic
situationwhere all entries of the truth table of the Boolean functionswith the same bias are equally accessible
evolutionary. As equation (12) itself shows, the number of such functions increases comparably fast to the

number of all Boolean functions with k inputs, 22k
. It is known, however, that the vastmajority of Boolean

functions are not realizable biochemically, and those that are empirically observed often fall within very narrow
classes, such as nested canalizing functions [17], which scale in number as ∼k!2k [18]; far slower than the biased
functions above. Furthermore, sincewe are only considering networks that are forced to lie at the critical line,
the vastmajority of input combinations of the biased functions considered above are not dynamically accessible.
Hence, for the purposes of the actual dynamics, the enumeration done in equation (11) is largely immaterial. In
view of this, here we consider instead themodified situationwhere the input combinations not present during

3
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typical dynamical trajectories of equation (1) are notwastefully encoded in the truth table (which can be
imagined to contain constant output values instead).We compute functional entropy approximately via the
sensitivity to perturbation itself, −p p2 (1 ), which corresponds to the probability that the output of the function
changes if one input is perturbed.With this we canwrite,

∑= − ( )( ){ } ( )n p n H p p{ }, 2 1 , (13)r r
r

r r rF b

which ismorewell behaved than equation (12)5.
Althoughwe can compute both  n e({ }, { })r rsS and  n p({ }, { })r rF , the value of λ can only be obtained

analytically for very small number of groupsB. Therefore, for larger values ofBwe are forced to perform the
maximization numerically. For details of the numericalmethodswe refer to appendix.

4.Numerical results

Weobtained the values of n e{ }, { }r rs and p{ }r , characterizing the network structure andBoolean functions,
whichmaximize μ μ− + n e n p(1 ) ({ }, { }) ({ }, { })r rs r rS F , subject to the constraint that the dynamics lies
exactly on the critical line, λ=1.We obtained results for different values of the average in-degree per node
〈 〉 =k E N , as well as different values of μ, which regulates the relative trade-offs between the structural and
functional entropies.We consider only the thermodynamic limit with ≫N 1.

We have investigated ensembles with different number of groupsB. However, we found that in all cases the
obtained structures could be fully equivalently formulated as aB=2 structure, where one ormore groups could
bemerged together, resulting in the exact same network ensemble, with the same structural and functional
entropies. Hencewe concluded that a number ofB=2 groups is sufficient to describe the obtained topologies for
all parameter choices, similarly to previous work focusing on optimization against noise [19], and structural
stability [20]. Thus, we focus on theB=2 case fromnowon.

Varying both 〈 〉k and μwe obtain a variety of structural phases, characterized by distinct large-scale
structures, as well as several phase transitions between them, as can be seen in the phase diagramoffigure 1.We
have identified phases by searching for discontinuities and abrupt changes in   n e, , { }, { }r rsS F and p{ }r , which
correspond to qualitatively distinct structural patterns. An example for this can be found infigure 2, which
shows the values of both entropies in the phase diagram,where the phase boundaries can be identified.

Overall, for a functional entropy bias μ becoming sufficiently small, the observed topology is a fully random
onewithB=1, and a functional bias p chosen so that λ = − 〈 〉 =p p k2 (1 ) 1. These correspond to the fully
randombiased Boolean networks often considered in the literature [2]. As soon as μ increases sufficiently, and
hence also the entropic cost of choosing biased functions, the network rewires itself in specific configurations,
depending on howdense it is. For 〈 〉k approaching 2, the network becomes fully randomagain, since a fully

Figure 1.Phase diagram for the critical networks as a function of the average in-degree 〈 〉k and functional entropy bias μ. The different
phases are color-coded according to the legend, and described inmore detail infigure 3.

5
A similar alternative would be to use the directly the bias pr instead of −p p2 (1 )r r in equation (13).We investigated this variant as well, and

obtained results qualitatively equivalent to those presented here using equation (13).
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Figure 2.Relative distance of the structural entropy SS (left) and functional entropy SF (right) from theirmaximal value, as a function
of 〈 〉k and μ. The abrupt changes (dotted lines)mark the phase boundaries infigure 1.

Figure 3. Sample blockmodel parametrizations belonging to the different phases infigure 1. At the top are graphical representations
of thematrix ers (with line thickness corresponding themagnitude), followed the group sizes n{ }r , function biases p{ }r , and average in-

and out-degree per group 〈 〉k r
in and 〈 〉k r

out, respectively.

5
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randomBoolean networkwith p= 1/2 is critical precisely at 〈 〉 =k 2 [1]. For increasing values of 〈 〉k a fully
randomnetworkwould be super-critical, and hence other structures arise in order to achieve criticality. For a
region around < 〈 〉 ≲k2 3 the systemmay find itself divided into two groups of identical sizes and functional
biases ( =n n1 2, =p p1 2), butwhich are asymmetrically connected, such that one group receivesmore links than
the other.We observe also a very narrow phase for smaller μ values (‘other’), for which our numerical precision
did not allow an accurate characterization, but itmost likely corresponds to an extension of the =n n1 2 phase, as
figure 2 seems to imply. For even larger values of 〈 〉k the systemmoves towards two other phases, thefirst one
being a core–periphery-like ( × =e e 012 21 ), where one of the groups (the periphery) is predominantly regulated
by the other group (the core), which regulates itself. Because of this, the core is alsomore densely connected than
the periphery, however it also has a smaller bias. For even larger 〈 〉k , the system transits to yet another phase,
where the number of edges between both groups is the same ( =e e12 21), but the groups have different sizes, and
hence different in-degrees. The groupwith a higher in-degree has amuch smaller bias pr, such that its sensitivity
to perturbations is significantly lower than the other group.Overall, the core–periphery-like structure is
preferred for high μ and large k, in comparison to the other phases.

4.1.On the nature of the phase transitions
In order to understand the nature of the transitions between the phases we have described, it is useful to consider
the Pareto front of the joint optimization of both entropy functions S and F. The Pareto front is a line in the ( , )S F planewhere one could not increase one of the values without decreasing the other. Sincewe are linearly
combining both values as Λ μ μ= − + (1 ) S F, each linewith slope μ μ −( 1) in this planewill have the same
value ofΛ. Themaximization procedure consists in, for a given value of μ,finding the intersection of the slope
μ μ −( 1)with the Pareto frontwhich is furthest away from the origin (see figure 4). Note that not all points in
the Pareto frontwill correspond to this intersectionwith this slope, only thosewhich belong to its convex hull.
Since these segments of the Pareto front are often disconnected, a jump fromone solution set to the other will
correspond to a (first-order) phase transition. The actual value of μwhere such a transition occurs depends on
〈 〉k . The only places where second-order phase transitions are observed are at the boundaries betweenmore than
two phases, such as between =e e12 21, × =e e 012 21 andB= 1, and at the onset of the =n n1 2 phase at 〈 〉 =k 2.

We also found a relatively simple explanation for the phase transition and its approximate position between
the fully randomB=1phase and the other structured phases. For any given value ofB, both entropy values will
be boundedwithin some interval depending on μ, i.e. ∈  [ , ]S S

min
S
max and ∈  [ , ]F F

min
F
max . Using this,

we can rewrite our objective function as

Λ μ μ= − − + − +   ( ) ( )(1 ) const, (14)S S
min

F F
min

up to some unimportant constant. For small values of μ the value ofΛ is dominated by the structural entropy S,
and for larger values of μ by functional entropy F. A plausible hypothesis for the position μc where the transition
occurs is when both values have an equal contribution

μ Δ μ Δ− = ( )1 , (15)c cS F

Figure 4.Qualitative example of a Pareto front of the joint optimization of S and F (black). The line segments highlighted in red are
the convex hull of the pareto front, which intersects some curvewith slope μ μ −( 1) furthest away from the origin (dotted lines).
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so thatwe have

μ
Δ

Δ Δ
=

+


  . (16)c
S

S F

The values of Δ = −  S S
max

S
min and Δ = −  F F

max
F
min can also be obtainedwith simple arguments. The

maximal entropywill be obtained for the fully random casewithB=1 and = − − 〈 〉p k1 2 1 4 1 2r [2]. The
minimumvaluewe assume to correspond to the core–periphery-like topology × =e e 012 21 with representative
values = =n n N 21 2 , =e 021 , = =e e N11 22 , = −e E N212 and = =p p 1 21 2 . As shown infigure 5, the
value of μc obtained in thismanner corresponds well to the numerical results obtained.

5. Conclusion

Wehave shown thatmaximum-entropy ensembles ofmodular Boolean networks posed at the critical line
exhibit structural phase transitions from a fully random topology to several structured ones. The phases occur
according to globally imposed constraints, such as the average in-degree and the relative entropic cost of
modifying Boolean functions versus the network topology itself. In the limit where non-randomBoolean
functions possess a very high entropic cost, the emerging topology is a two-group core–periphery-like structure,
where a small fraction of the nodes is responsible for the regulation of the entire system,which is formed
predominately of a non-regulatingmajority. If the entropic cost of adapting the Boolean functions diminish, this
core–periphery-like structure is replaced by a tiered one, where the network is divided into two groups of
comparable size and bidirectional connections, and one of themhas a sensitivitymuch smaller than the other.
Finally, for even smaller functional entropic cost, the emerging topology is a fully randomnetwork, with
uniformly sampled Boolean functionswith the necessary critical sensitivity.

The emerging core–periphery-like topology is very similar to the one arising out of optimization against
stochastic fluctuations [19] (aswell as structural robustness against failure [20]), and is qualitatively similar to
what is observed in real gene regulatory networks, where only aminority of genes (transcription factors) are in
fact responsible for regulation. Hence our results suggest not only a possible explanation for this property, but
also that such a core–periphery-like organizationmay provide fitness according tomultiple criteria.

The ensembles considered in this work are optimized according to a single criterion, and are subject to no
constraints other than the total number of inputs per node. Furthermore our approach does not take into
account topological features which arise out of non-equilibriumprocesses such as gene duplication [21–23] or
frozen accidents, or even other specific parametrizations of Boolean functions such as canalizing [24, 25] or
nested canalizing functions [26, 27]. Nevertheless, this type of analysis can provide insight into the topological
features which are necessary outcomes of a given optimization procedure, and allows one to rule out others. For
instance, although it is known that gene duplication can result in broad degree distributions [21–23] and
assortativemodular structure [28], these features are not present in our ensembles, although they are not

Figure 5.Critical point μc marking the transition between a fully randomB=1 and one of the structured phases infigure 1. Blue:
analytic values corresponding to equation (16). Green: values obtained from the numeric optimization.
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forbidden. This strongly suggests that these features are not strictly necessary ingredients of robust systems, and
are simply the byproduct of non-equilibrium growth processes.

Althoughwe have forced the networks in the ensemble to lie at the critical line, there are associated
properties of critical networks such as the scaling of the ‘frozen core’ [29] and the number of attractors [30] that
were not a priori imposed. It remains to be seen how the obtained topologies affect these characteristics, which
we leave to future work.
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Appendix. Numericalmethods

Herewe describe inmore detail the numericalmethods used for the optimization described in themain text.
The objective is tomaximize

μ μ− +  ( )( ) { }n e n p(1 ) { }, { } { }, , (A.1)r rs r rS F

with respect to n e{ }, { }r rs and p{ }r , subject to the constraint

λ =( ){ }n e p{ }, { }, 1, (A.2)r rs r

where λ n e p({ }, { }, { })r rs r is the leading eigenvalue of thematrix M in equation (6). The approachwe take is to
maximize the unconstrained objective function

Λ μ μ ν λ= − + − − (1 ) ( 1) , (A.3)S F
2

where ν is determines the penalty for deviating from λ=1. Bymaxing ν → ∞we recover the original
constrained optimization. In practice, wemake ν sufficiently large, so that the results no longer depend on it (a
choice of ν ∼ 107 was enough for our purposes). For the computation of S, F and λ, we used the relative
densities =w n Nr r , =m e Nrs rs , and 〈 〉 =k E N so that the value of our objective function no longer depends
on the absolute number of nodes and edges,N andE, except for unimportantmultiplicative and additive
constants which do not affect the optimization.

We took some steps to reduce the degrees of freedomof the optimization by using some intrinsic constraints.
Sincewe have that ∑ =w 1r r and ∑ =m 1rs rs , one of each variable set can be eliminated and expressed as a
function of the remaining sum. Furthermore, we know that λ is a eigenvalue of M which leads to

λ− =Mdet( ) 0. (A.4)

For the special case ofB=2 and the constraint λ= 1,we can use this to the express the sensitivity of one group as a
function of the other

− = −
−

−

( )p p w m
m m

m
2 1 . (A.5)w

m

2 2 2 22
21 12

11

1

1

1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Wecan use this to decrease the number of degrees of freedom, butwe still need the dependence on ν in
equation (A.3) to enforce that λ=1 is the largest eigenvalue of M .

For the actual optimization ofΛweused amixture of different standard optimizers. First we have used S-
metric selection EMOA [31]maximizing two independent objective functions Λ μ ν λ= − − ( 1)1 S

2 and

Λ μ ν λ= − − −(1 ) ( 1)2 F
2, which return the Pareto front of the correspondingmulti-objective

optimization. The resulting set of solutions for a given value of μwas used starting as points for the direct
optimization ofΛ. The algorithmusedwas a combination of Powell’smethod [32] followed by a downhill
simplex heuristic [33], in addition to a simple heuristic of starting from the neighborhood of previously
obtained solutions.
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