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Abstract

We construct statistical ensembles of modular Boolean networks that are constrained to lie at the
critical line between frozen and chaotic dynamic regimes. The ensembles are maximally random given
the imposed constraints, and thus represent null models of critical networks. By varying the network
density and the entropic cost associated with biased Boolean functions, the ensembles undergo several
phase transitions. The observed structures range from fully random to several ordered ones, including
aprominent core—periphery-like structure, and an ‘attenuated’ two-group structure, where the
network is divided in two groups of nodes, and one of them has Boolean functions with very low
sensitivity. This shows that such simple large-scale structures are the most likely to occur when
optimizing for criticality, in the absence of any other constraint or competing optimization criteria.

1. Introduction

Boolean networks are often used as generic models for the dynamics of complex systems of interacting entities,
such as social and economic networks, neural networks, and gene or protein interaction networks [ 1, 2].
Whenever the states of a system can be reduced to being either ‘on’ or ‘off’ without loss of important
information, a Boolean approximation captures many features of the dynamics of real networks [3]. One of such
features is the transition between two dynamical regimes: a ‘frozen’ phase, where small perturbations of the
dynamics vanish after some time, and a ‘chaotic’ phase, where localized perturbations grow exponentially fast,
and disturb the entire system [2]. It is often posited that many real systems such as gene regulatory networks [4]
or the brain [5] possess features similar to networks which are at the critical line between these two phases, and
hence share features inherent to both of them. A central question has been how such systems are capable of self-
organizing in this critical state [6—8].

In this work, we tackle this question from a different point of view. Instead of describing how a specific
dynamics or evolutionary process can drive the structure of the system towards criticality, we focus on the
minimal ingredients necessary for a system to be critical under general constraints. In particular, we consider
null models of critical Boolean networks that possess the necessary topological and functional characteristics for
criticality, but are otherwise maximally random. We are interested both in the large-scale structure of such
networks, as well as the choice of Boolean functions. With this in mind, we parametrize general ensembles of
functional networks using the stochastic block model [9], and obtain configurations which maximize its entropy
[10] under the constraint that the dynamics lie in the critical line. By varying the density of the network, and the
entropic cost of choosing Boolean functions with specific sensitivities, we observe topological phase transitions
from a fully random configuration, to many structured ones. The most prominent structured topological phases
we find are: (1) a core—periphery-like structure [ 11, 12], which achieves criticality by restricting the regulation of
most of the network by a few ‘core’ nodes, and (2) a two-group structure where one of the node groups possess
Boolean functions with very low sensitivity. We also show that topologies formed by only two distinct groups of
nodes are sufficient to achieve criticality given the general constraints considered. This suggests that more
elaborate large-scale structures and choice of Boolean functions do not necessarily arise directly out of an

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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optimization towards criticality, and may have other direct causes, such as being the outcome of a growth
process or some other non-equilibrium dynamics.

This paper is divided as follows. In section 2 we present our model. In section 3 we describe the optimized
ensemble of critical networks. In section 4 we present the results of the optimization, and the phase diagram. We
then conclude in section 5 with a general discussion.

2. The Model

Our objective is to investigate the large-scale topology of networks which are forced to be critical under global
constraints. We parametrize the possible structures as a general directed stochastic block model [9, 10], where
the nodes are divided into B groups, where a given group r has size n,, and e, is the number of edges randomly
placed from group s to group r. We also ascribe to each node in the network a Boolean function, chosen
randomly from the set of all possible functions with a given bias p, (i.e. the fraction of input combinations that
correspond to output 1)°. On a given realization of this network ensemble, we consider a synchronous Boolean
dynamics, where at each discrete time step the Boolean values {s;} of all nodes are updated as

ait+1) =f({o;0}), (1)

where f; is the Boolean function of node i, and {c; (¢) } is the set of inputs of i. We are interested in describing the
time evolution of perturbations of the dynamics, where a single Boolean value is flipped 6; > 1 — 6;, and the
following cascade of flips is measured. More precisely, we are interested in the Hamming distance between two
identical copies of the same network, but where one of them is unperturbed,

hm=%;hm—dm, @

where {o; ()} and {6/ (¢) } are the states of the original and perturbed copies, respectively. According to the order
parameter h(f) we can distinguish between two phases in the thermodynamic limit N > 1:a frozen dynamics
where lim;_, ./ (t) = 0,and a ‘chaotic’ one for lim,_, ,h () > 0.In terms of our imposed block structure, we
have

mn=%;mmm, 3)

where h, = Y.,
investigating the microscopic dynamics of equation (1) directly, here we make use of the annealed
approximation [13], and consider that at each time step the edges of the network are re-sampled from the same
ensemble. By restricting ourselves to the early times after the perturbation, such that h, (t) < 1, we can neglect
the probability that more than one input flips simultaneously, which is of order O (h, (¢)?). This allows us to
write the time evolution of the individual h,(¢) values as

hy(t+ 1) 2 b, Y wihs (1), (4)

0;(t) — o (t)| /n, is the contribution to h(¢) from the nodes belonging to group r. Instead of

with w; = e,s /n, being the fraction of inputs of group r that belong to group s, and b, = 2p (1 — p)isthe
probability that if an input of a node belonging to group r flips its output will also flip [ 14—16]. The general
solution of this linear system is

h(t) = M'h(0) (5)
with 7 (t) = {h, (t)}and
My, = bows =20 (1 = p)en/n,. (6)

The matrix M is non-negative and non-symmetric, and hence it has at least one purely real non-negative leading
eigenvalue 4, with a non-negative eigenvector ¥. Henceforth we further assume that M is strictly positive”, so
that this eigenvalue is positive and unique, and then for a sufficiently large t we can write

h(t) ~ A‘(E(O), z)z (7)

For nodes which do not receive any input, we impose that they receive constant functions, with a randomly chosen output value.

*In some of the following results we will observe values M,; — 0. These should simply be interpreted as asymptotic limits where the values
become arbitrarily small but always strictly positive, and hence do not invalidate equation (7).
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From this we have that 4 < 1 corresponds to the frozen phase, since the magnitude of the perturbation will
decrease exponentially, and conversely 4 > 1 corresponds to the ‘chaotic’ phase, since it will increase
exponentially. Hence the special value A = 1 marks the critical line between the two phases. Therefore, given
some parameter choice for {n,}, {e.s} and {p }, we can decide in which phase the corresponding dynamics will lie
by computing the largest eigenvalue of the B X B matrix M. Note that from this criterion we recover trivially the
critical value for biased random Boolean networks with B=1, = 2p (1 — p) (k) [2].

3. Optimized ensembles

We are interested in generating ensembles of Boolean networks which lie in the critical line A = 1. More
specifically, we want null models of critical networks where—in addition to being critical—the topology and
choice of functions is maximally random within the imposed constraints. We achieve this by maximizing the
entropy of stochastic block model ensemble [10]

Ss({m), len)) = 2({n}, len}) (8)

with Q ({n,}, {e,}) being the total number of network realizations, as well as the entropy Sg ({, }, {p}) of the
distribution of Boolean functions, which we describe below. The maximization is performed in a constrained
fashion, by imposing a critical sensitivity 4 ({n,}, {es}, {n}) = 1,and byadjusting the relative entropic cost of
modifying the structure of the network (the parameters {r, }, {e,;}) and the Boolean functions (the parameters
{p.}). This is achieved by finding the saddle point of the Lagrangian function

A= (1= wSs(tnh ted) + w8t (tnh {n}) = e[ 2(1nh teah {n.}) - 1] ©)

where cis a Lagrange multiplier which imposes A = 1, and y controls the relative entropic cost between the edge
placements and the choice of functions.
For the structural entropy Ss ({7, }, {e,s}) we have simply [10]

Ss({ne} fen}) = E - Zersln( - ) (10)

N1

where E = Y e, is the total number of edges, and the limit of sparse networks was assumed, i.e. e,; < 1, ;.
For Sg ({1}, {p.}) we have considered different choices. A first option would be to enumerate all possible

Boolean functions of k inputs with a given bias, £ (p, k), and compute S¢ ({n.}, {p}) = Zr,k nrpk’ InQ(p, k)

with pi being the in-degree distribution of group r, which is a Poisson with average < kr> = Y. ey /n,. Foreach

choice of k there are 2¥ possible input combinations, 2¥p of which will have output 1 and 25 (1 — p) will have
output zero. The total number of Boolean functions is therefore

2k
Qp, k) = ) (11)
2’p
from which we obtain using Stirling’s approximation for 2F > 1
In Q(p, k) ~ 2FHy (p), (12)
where Hy, (x) = —x In x — (1 — x)In(1 — x) is the binary entropy function. As equation (12) shows, this choice

will result in an entropy function which grows exponentially with the number of inputs k. This means that, for
any choice of 4 > 0inequation (9) above, a trivial maximization of the overall entropy can be achieved by
sufficiently increasing the average number of inputs of a vanishingly small fraction of the nodes, since the
remaining entropy term of equation (10) will only depend log-linearly on the size and density of the groups. In
other words, the functional entropy will exponentially dominate the structural one for many parameter choices,
Se({n.}, {p.}) > Ss({n,}, {e;}). Hence, the outcome would correspond always to fully random networks, with
auniform bias p selected to enforce 4 = 1. However, the choice of equation (12) corresponds to an unrealistic
situation where all entries of the truth table of the Boolean functions with the same bias are equally accessible
evolutionary. As equation (12) itself shows, the number of such functions increases comparably fast to the

number of all Boolean functions with k inputs, 2% Ttis known, however, that the vast majority of Boolean
functions are not realizable biochemically, and those that are empirically observed often fall within very narrow
classes, such as nested canalizing functions [ 17], which scale in number as ~k!2* [18]; far slower than the biased
functions above. Furthermore, since we are only considering networks that are forced to lie at the critical line,
the vast majority of input combinations of the biased functions considered above are not dynamically accessible.
Hence, for the purposes of the actual dynamics, the enumeration done in equation (11) is largely immaterial. In
view of this, here we consider instead the modified situation where the input combinations not present during

3
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Figure 1. Phase diagram for the critical networks as a function of the average in-degree (k) and functional entropy bias u. The different
phases are color-coded according to the legend, and described in more detail in figure 3.

typical dynamical trajectories of equation (1) are not wastefully encoded in the truth table (which can be
imagined to contain constant output values instead). We compute functional entropy approximately via the
sensitivity to perturbation itself, 2p (1 — p), which corresponds to the probability that the output of the function
changes if one input is perturbed. With this we can write,

Se( (s {g}):anHb(ZP,(l—p,)), (13)

which is more well behaved than equation (12)°.

Although we can compute both Ss ({1}, {e,s}) and Sg({n,}, {p}), the value of 1 can only be obtained
analytically for very small number of groups B. Therefore, for larger values of B we are forced to perform the
maximization numerically. For details of the numerical methods we refer to appendix.

4. Numerical results

We obtained the values of {1, }, {e,s} and {p }, characterizing the network structure and Boolean functions,
which maximize (1 — ) Ss({n,}, {es}) + pSe({n,}, {p}), subject to the constraint that the dynamics lies
exactly on the critical line, 1 = 1. We obtained results for different values of the average in-degree per node
(k) = E/N,aswell as different values of u, which regulates the relative trade-offs between the structural and
functional entropies. We consider only the thermodynamic limit with N > 1.

We have investigated ensembles with different number of groups B. However, we found that in all cases the
obtained structures could be fully equivalently formulated as a B = 2 structure, where one or more groups could
be merged together, resulting in the exact same network ensemble, with the same structural and functional
entropies. Hence we concluded that a number of B =2 groups is sufficient to describe the obtained topologies for
all parameter choices, similarly to previous work focusing on optimization against noise [19], and structural
stability [20]. Thus, we focus on the B = 2 case from now on.

Varying both (k) and u we obtain a variety of structural phases, characterized by distinct large-scale
structures, as well as several phase transitions between them, as can be seen in the phase diagram of figure 1. We
have identified phases by searching for discontinuities and abrupt changesin Ss, Sg, {n,}, {es} and {p }, which
correspond to qualitatively distinct structural patterns. An example for this can be found in figure 2, which
shows the values of both entropies in the phase diagram, where the phase boundaries can be identified.

Opverall, for a functional entropy bias u becoming sufficiently small, the observed topology is a fully random
one with B= 1, and a functional bias p chosen so that 1 = 2p (1 — p)(k) = 1. These correspond to the fully
random biased Boolean networks often considered in the literature [2]. As soon as y increases sufficiently, and
hence also the entropic cost of choosing biased functions, the network rewires itself in specific configurations,
depending on how dense it is. For (k) approaching 2, the network becomes fully random again, since a fully

> A similar alternative would be to use the directly the bias p, instead of 2p (1 — p) in equation (13). We investigated this variant as well, and
obtained results qualitatively equivalent to those presented here using equation (13).
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Figure 2. Relative distance of the structural entropy Ss (left) and functional entropy Sg (right) from their maximal value, as a function
of (k) and y. The abrupt changes (dotted lines) mark the phase boundaries in figure 1.
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Figure 4. Qualitative example of a Pareto front of the joint optimization of Sg and Sy (black). The line segments highlighted in red are
the convex hull of the pareto front, which intersects some curve with slope u/(u — 1) furthest away from the origin (dotted lines).

random Boolean network with p = 1/2 is critical precisely at (k) = 2 [1]. For increasing values of (k) a fully
random network would be super-critical, and hence other structures arise in order to achieve criticality. For a
regionaround 2 < (k) < 3 the system may find itself divided into two groups of identical sizes and functional
biases (1, = n,, p, = p,), but which are asymmetrically connected, such that one group receives more links than
the other. We observe also a very narrow phase for smaller u values (‘other’), for which our numerical precision
did not allow an accurate characterization, but it most likely corresponds to an extension of the n; = n, phase, as
figure 2 seems to imply. For even larger values of (k) the system moves towards two other phases, the first one
being a core—periphery-like (e, X e;; = 0), where one of the groups (the periphery) is predominantly regulated
by the other group (the core), which regulates itself. Because of this, the core is also more densely connected than
the periphery, however it also has a smaller bias. For even larger (k), the system transits to yet another phase,
where the number of edges between both groups is the same (e}, = e5;), but the groups have different sizes, and
hence different in-degrees. The group with a higher in-degree has a much smaller bias p,, such that its sensitivity
to perturbations is significantly lower than the other group. Overall, the core—periphery-like structure is
preferred for high 4 and large k, in comparison to the other phases.

4.1. On the nature of the phase transitions
In order to understand the nature of the transitions between the phases we have described, it is useful to consider
the Pareto front of the joint optimization of both entropy functions Sg and Sg. The Pareto frontis aline in the
(Ss, Sp) plane where one could not increase one of the values without decreasing the other. Since we are linearly
combiningboth valuesas A = (1 — u)Ss + Sy, each line with slope u/(u — 1) in this plane will have the same
value of A. The maximization procedure consists in, for a given value of i, finding the intersection of the slope
u/(u — 1) with the Pareto front which is furthest away from the origin (see figure 4). Note that not all points in
the Pareto front will correspond to this intersection with this slope, only those which belong to its convex hull.
Since these segments of the Pareto front are often disconnected, a jump from one solution set to the other will
correspond to a (first-order) phase transition. The actual value of u where such a transition occurs depends on
(k). The only places where second-order phase transitions are observed are at the boundaries between more than
two phases, such as between ej, = e,;, e, X e;; = 0and B= 1, and at the onset of the n; = n, phaseat (k) = 2.
We also found a relatively simple explanation for the phase transition and its approximate position between
the fully random B = 1 phase and the other structured phases. For any given value of B, both entropy values will
be bounded within some interval depending on y, i.e. Sg € [ST", ST* Jand S € [T, S|, Using this,
we can rewrite our objective function as

A=(1—,u)(55—5§nin) +/A<SF—SE‘in)+c0nst, (14)

up to some unimportant constant. For small values of 1 the value of A is dominated by the structural entropy S,
and for larger values of ;1 by functional entropy Sy. A plausible hypothesis for the position 4 where the transition
occurs is when both values have an equal contribution

(1-1)ASs = pASr, (15)
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Figure 5. Critical point 4 marking the transition between a fully random B = 1 and one of the structured phases in figure 1. Blue:
analytic values corresponding to equation (16). Green: values obtained from the numeric optimization.

so that we have

ASs

= (16)
ASs + AS;

He

The values of ASg = ST — SMMand ASp = ST — S can also be obtained with simple arguments. The
maximal entropy will be obtained for the fully random case withB=1and p = 1/2 — \/1/4 — 1/2(k) [2]. The
minimum value we assume to correspond to the core—periphery-like topology e, X e;; = 0 with representative
values n; = n, = N/2,e;, = 0,¢e;1 = e = N, e = E — 2N and p, = p, = 1/2. Asshown in figure 5, the
value of y. obtained in this manner corresponds well to the numerical results obtained.

5. Conclusion

We have shown that maximum-entropy ensembles of modular Boolean networks posed at the critical line
exhibit structural phase transitions from a fully random topology to several structured ones. The phases occur
according to globally imposed constraints, such as the average in-degree and the relative entropic cost of
modifying Boolean functions versus the network topology itself. In the limit where non-random Boolean
functions possess a very high entropic cost, the emerging topology is a two-group core—periphery-like structure,
where a small fraction of the nodes is responsible for the regulation of the entire system, which is formed
predominately of a non-regulating majority. If the entropic cost of adapting the Boolean functions diminish, this
core—periphery-like structure is replaced by a tiered one, where the network is divided into two groups of
comparable size and bidirectional connections, and one of them has a sensitivity much smaller than the other.
Finally, for even smaller functional entropic cost, the emerging topology is a fully random network, with
uniformly sampled Boolean functions with the necessary critical sensitivity.

The emerging core—periphery-like topology is very similar to the one arising out of optimization against
stochastic fluctuations [19] (as well as structural robustness against failure [20]), and is qualitatively similar to
what is observed in real gene regulatory networks, where only a minority of genes (transcription factors) are in
fact responsible for regulation. Hence our results suggest not only a possible explanation for this property, but
also that such a core—periphery-like organization may provide fitness according to multiple criteria.

The ensembles considered in this work are optimized according to a single criterion, and are subject to no
constraints other than the total number of inputs per node. Furthermore our approach does not take into
account topological features which arise out of non-equilibrium processes such as gene duplication [21-23] or
frozen accidents, or even other specific parametrizations of Boolean functions such as canalizing [24, 25] or
nested canalizing functions [26, 27]. Nevertheless, this type of analysis can provide insight into the topological
features which are necessary outcomes of a given optimization procedure, and allows one to rule out others. For
instance, although it is known that gene duplication can result in broad degree distributions [21-23] and
assortative modular structure [28], these features are not present in our ensembles, although they are not
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forbidden. This strongly suggests that these features are not strictly necessary ingredients of robust systems, and
are simply the byproduct of non-equilibrium growth processes.

Although we have forced the networks in the ensemble to lie at the critical line, there are associated
properties of critical networks such as the scaling of the ‘frozen core’ [29] and the number of attractors [30] that
were not a priori imposed. It remains to be seen how the obtained topologies affect these characteristics, which
we leave to future work.
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Appendix. Numerical methods

Here we describe in more detail the numerical methods used for the optimization described in the main text.
The objective is to maximize

(1= Ss({m ), Len}) +uSe({nh {n}), (A1)
with respect to {n,}, {e,} and {p }, subject to the constraint
l({nr}’{ers}: {B}) =1, (A.2)

where 1({n,}, {e.}, {p})is theleading eigenvalue of the matrix M in equation (6). The approach we take is to
maximize the unconstrained objective function

A=(1-puSs+uSy— vl — 17, (A.3)

where v is determines the penalty for deviating from A = 1. By maxing v — oo we recover the original
constrained optimization. In practice, we make v sufficiently large, so that the results no longer depend on it (a
choice of v ~ 107 was enough for our purposes). For the computation of Ss, S and 4, we used the relative
densities w, = n,/N, m,; = e,/N,and (k) = E/N so that the value of our objective function no longer depends
on the absolute number of nodes and edges, N and E, except for unimportant multiplicative and additive
constants which do not affect the optimization.

We took some steps to reduce the degrees of freedom of the optimization by using some intrinsic constraints.
Since we havethat ), w, = land ), m,; = 1, one of each variable set can be eliminated and expressed asa
function of the remaining sum. Furthermore, we know that A is a eigenvalue of M which leads to

det(M — 2) = 0. (A.4)

For the special case of B=2 and the constraint A = 1, we can use this to the express the sensitivity of one group as a
function of the other

-1

(A.5)

We can use this to decrease the number of degrees of freedom, but we still need the dependence on v in
equation (A.3) to enforce that A = 1 is the largest eigenvalue of M.

For the actual optimization of A we used a mixture of different standard optimizers. First we have used S-
metric selection EMOA [31] maximizing two independent objective functions A, = uSs — v (4 — 1)*and
Ay = (1 — u)Sg — v (4 — 1)?, which return the Pareto front of the corresponding multi-objective
optimization. The resulting set of solutions for a given value of ¢ was used starting as points for the direct
optimization of A. The algorithm used was a combination of Powell’s method [32] followed by a downbhill
simplex heuristic [33], in addition to a simple heuristic of starting from the neighborhood of previously
obtained solutions.
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