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a b s t r a c t

Financial markets are a typical example of complex systems where interactions between
constituents lead to many remarkable features. Here we give empirical evidence, by
making as few assumptions as possible, that the market microstructure capturing almost
all of the available information in the data of stock markets does not involve higher
order than pairwise interactions. We give an economic interpretation of this pairwise
model. We show that it accurately recovers the empirical correlation coefficients; thus
the collective behaviors are quantitatively described by models that capture the observed
pairwise correlations but no higher-order interactions. Furthermore, we show that an
order–disorder transition occurs, as predicted by the pairwise model. Last, we make the
link with the graph-theoretic description of stockmarkets recovering the non-random and
scale-free topology, shrinking length during crashes andmeaningful clustering features, as
expected.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Complex systems are particularly interesting because they exhibit very sophisticated behaviors caused by, a priori,
simple rules. Indeed, magnetic materials and neural networks, for instance, have some striking features such as phase
transitions, memory, complicated equilibria structures and clustering. It is remarkable that these properties are caused
by such simple interactions as pairwise ones. We believe that the markets are also driven by such simple rules and that
the higher-order interactions encountered in financial systems are the pairwise ones. Typical characteristics of a complex
system are numerous entities and interaction rules (with a degree of non-linearity), all leading to the emergence of collective
behaviors. Those behaviors in general depend more on the interactions (e.g., their scaling and their order) and their effects
than on the intrinsic nature of the elementary constitutive entities taken individually. The market can be viewed as such
a system. The entities can be stocks or traders interacting through non-obvious rules. We note that we should interpret
interaction at the larger sense of mutual or reciprocal influence.

What one knows is that the markets exhibit features such as synchronization [1], structural reorganization [2,3], power
laws [4,5], hierarchical and non-randomness [6]. What one does not know is the truemarket dynamics. Even if trading rules
are known, microscopic equations of motion are not known. This is a fundamental difference between finance and physics
(or neuroscience).

A natural approach, given the above considerations, is a statistical modeling collecting and using at best the available
amount of information and allowing (in a certain sense) the emergence of critical properties. This is exactly the purpose of the
maximum entropymodeling in complex systems theory. Indeed themaximum entropy principle (MEP) allows the selection
of the less restricting model on the basis of incomplete information [7]. We choose this data-based approach to avoid the
use of any particular microscopic schemes (e.g. trader–agent-based rules, a priori unknown) which are difficult to assess
experimentally or to avoid any analogy (even if some of such models are valuable [8]). The reason is that, even if one does
not know the underlying microscopic processes, the macroscopic collective behaviors can still be described by an effective
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model. One has long experience of this powerful approach in the description of phase transitions andmagneticmaterials [9].
More recently, it has led to valuable results about the description of real neural networks [10]. Moreover, this approach also
has counterparts in economics. Indeed, in addition of the statistical meaning of entropy, one can interpret it as a measure
of economic activity [11] and it is linked to the central concept of utility of many interacting economic entities [12,13].

An important outcome of such a modeling is a convenient simplified version of the real interaction structure that is still
consistent with the data. In the following, we derive the model in this point of view and we study the structural properties
of the resulting complex network. The critical properties will be investigated in another work.

The paper is organized as follow. In Section 2, we present the model, its economic interpretation and the link between
the interactionmatrix and themoments. In Section 3, we give evidence that the information embedded in the data is mostly
explained by the pairwise but no higher-order interactions. In Section 4, we show an order–disorder transition through
actual data. In Section 5, we highlight the properties of the interaction matrix and its link to the crises. Finally, in Section 6,
we explain the link with the graph-theoretic approach and the topological evolution of the market network.

2. The model

2.1. Model derivation

The aim is to set up a statisticalmodel describing themarket state. This requires away to infer the probability distribution
in order to get the observables (here, the associated moments). The model will also allow the study of the market structure.
All these quantities will be defined below. We consider a set of N market indices or N stocks with binary states si (si = ±1
for all i = 1, . . . ,N). A system configuration will be described by a vector s = (s1, . . . , sN). The binary variable will be equal
to 1 if the associated index is bullish and equal to −1 if not. A configuration (s1, . . . , sN) is a binary version of the index
returns. One knows that this approximation is already useful in the description of neural populations [10] and that neural
networks are similar to financial networks [6]. We may think that it will also be the case in finance; this will be justified a
posteriori as the model gives consistent results.

We seek to establish a less structuredmodel explaining only themeasured indexmean orientation qi = ⟨si⟩ and instanta-
neous pairwise correlations qkl = ⟨sksl⟩. The brackets ⟨·⟩ denote the average with respect to the unknown distribution p(s).
As the entropy of a distribution measures the randomness or the lack of interaction among the binary variables, a way to
infer such probability distribution knowing the mean orientations and the correlations is the maximum entropy principle.
Jaynes showed how to derive the probability distribution using the maximum entropy principle [14]; for supplementary
information see Ref. [7]. It consists in the following constrained maximization:

max S(s) = −


{s}

p(s) log p(s)

s.t.

{s}

p(s) = 1,

{s}

p(s)si = qi,

{s}

p(s)sisj = qij.
(1)

The resulting two-agent distribution p2(s) is the following:

p2(s) = Z−1 exp


1
2

N
i,j

Jijsisj +
N
i=1

hisi


≡

e−H(s)

Z
, (2)

where Jij and hi are Lagrange multipliers and Z a normalizing constant (the partition function). They can be expressed in
terms of partial derivatives of the entropy as

∂S(s)
∂qi

= −hi
∂S(s)
∂qij

= −Jij. (3)

Thus preferences are conjugated to mean orientations and interaction strengths to pairwise correlations. Including
higher-order correlations in constraints in (1) could bring more information and thus decrease the maximum entropy. We
will show below that this will not be the case.

The Gibbs distribution (2) is similar to the one given by Brock and Durlauf in the discrete choice problem [12] and to the
one in stochastic models in macroeconomics [11], and also to the Ising model used in description of magnetic materials and
neural networks [9,10]. It is also a special case of Markov random fields [15]. It is to be noted that the Gibbs distribution and
Shannon entropy naturally arise from the stochastic modeling in economics; this is discussed in Ref. [11].

We obtain the parameters {Jij, hi} by performing explicitly the maximization (1) so that the theoretical moments ⟨si⟩ and
⟨sisj⟩ match the measured ones qi and qij. We note that this requires the computation of 2N terms. If this number is large,
the computation will take a while, and we can benefit from one of the methods described in Ref. [16].

Last, we show how the cumulants are obtained from this model and their relation to interaction strengths. As the
statistical model (2) is expressed as a Gibbs distribution, we have the relations

⟨si1 · · · siN ⟩c = ∂N lnZ/∂hi1 · · · ∂hiN , (4)
where ⟨·⟩c is the cumulant average [17]; it gives the relation between J and the correlation functions. If the partition function
Z cannot be explicitly computed, we can use the Plefka series [18] or a variational cumulant expansion [19].
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Fig. 1. (a) Maximum entropy distribution of the interaction strengths J̃ME and (b) empirical distribution of the pairwise correlations obtained from the
collected data.

Hereafter, we will show that the covariances are consistently deduced from this statistical model and thus that they are
a function of the interaction strengths.

2.2. Interpretation

We interpret the objective function H(s) defined by the MEP in the distribution (2) as follows. The pairwise interactions
between economic agents are modeled by interaction strengths Jij which describe how i and j influence each other. Here, by
interaction, we mean a measure of mutual influence or a measure of share comovement. In this framework, our intention
is not to give a description of these interactions but to study their effects. Actually, the causes underlying the interaction
process seem to be unnecessary in the description of emergent macroscopic behaviors. Indeed the complicated interactions
between magnetic moments or between neurons are efficiently simplified in their maximum entropy description but one
still recovers themainmacroscopic features observed in these systems. In this description, the crucial features are the scaling
(dependence on or independence of the system size) of interaction strengths and the order of interactions. The matrix J is
set to be symmetric in this first approach. There is disagreement or conflict between entities when the weighted product of
their orientations Jijsisj is negative. If two shares are supposed to move together (Jij > 0), a conflicting situation is the one
where they do not have the same orientation (bearish or bullish).

We include the idiosyncratic preferences of the economic agents, here thewillingness to be bullish or not. These Lagrange
multipliers hi can also be interpreted as the external influences on entities i induced by the macroeconomic background. By
example a company canprosper andmake benefits during a crisis period and the associated stock can still fall simultaneously
because the investors are negatively influenced by the economic background. It results that the stock will have a propensity
to fall. We denote the external influence by hi. If i’s orientation satisfies its preference, hisi is positive. The total conflict of
the system is thus given by

H(s) = −
1
2

N
i=1

N
j=1

Jij sisj −
N
i=1

hisi. (5)

So, we interpret H(s) as the opposite of the so-called utility function U(s) = −H(s) with pairwise interacting and
idiosyncratic parts. Consequently the interaction strengths can be viewed as the incentive complementarities [12,13]. Indeed
we have ∂2U/∂si∂sj = Jij. The larger Jijsisj is, the stronger the strategic interaction between i and j is.

We emphasize that this Ising like model is forced upon us as the statistically consistent model with the measured
orientations and correlations. It is not an analogy based on specific hypotheses about the market dynamics.

3. Consistency of the pairwise modeling

One of the most exciting features of the model is the emergence of collective behaviors even if the interactions are weak.
If the model is able to explain the recorded data, the system is therefore dominated by pairwise correlations. The aim is to
provide quantitative empirical evidence that the pairwise modeling is a consistent paradigm to explain the financial data
and exhibited behaviors in the market. In the following, we apply the pairwise model to a set of six major market indices
(AEX, Bel-20, CAC 40, Xetra Dax, Eurostoxx 50, FTSE 100). We selected only European indices because some financial issues
are specific to Europe and we consider indices because they are the driving force of the respective stock markets [20];
they will reflect the main properties of the subjacent stock set. We will say that they are up or bullish if the closing price
is higher than the opening price and they are down or bearish if not. These will constitute our binary states. We observe
2253 configurations from 6/06/2002 to 14/06/2011 [21]. We take a nine year long time series including two large crises.
The daily sampling is enough since we want to study large crises, and the two principal peaks of the Fourier transform are
centered on frequencies f1 = 6× 10−4 d−1 and f2 = 1.2× 10−3 d−1; the unit day stands for trading day. The first frequency
f1 is the crisis occurrence frequency in our time window; the corresponding period is T1 = 1.7 × 103 d. Later, we will also
analyze the stocks composing the Dow Jones and the S&P100 indices, and another set of 116 stocks. First of all, we give the
magnitude order of the interaction strengths and of the empirical pairwise correlations in Fig. 1.

The Jij are all positive; we can therefore use net mean orientation (net magnetization) as an order parameter. The mean
value of hi is about 0.0113.
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Fig. 2. (Color online) Comparison of simulated orientations and the actual ones. The straight line shows equality.
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Fig. 3. (Color online) Recovered correlation coefficients from MCMC versus empirical ones. The straight line shows equality. The result based on 130
observations (left) and the result based on 2258 observations (right).

As mentioned above, higher-order interactions can be involved in the interaction structure. In order to show that pair-
wise correlations are prevailing, we compute the Kullback–Leibler (KL) divergence, DKL(P2 ∥ Pdata) between the two-agent
maximum entropy (ME) distribution P2 and the empirical one Pdata. The KL divergence is equal to 2.27 × 10−2 for the ME
distribution inferred from 2253 observations. It must be compared to DKL(P1 ∥ Pdata) = 1.4801 for the independent agents
model P1. The closer to zero this quantity is, the closer P2 to Pdata is. Specifically, a consistent way to test if the pairwise corre-
lationmodel satisfactorily explains the data statistics is to evaluate the ratio between S(P1)−S(P2) and the Kullback–Leibler
discrepancy IN ≡ DKL (PN ∥ P1), where S(P2) is the entropy of the pairwise model. If this ratio is close to 1, the pairwise cor-
relations explain most of the available information. Indeed the multi-information IN = S(P1) − S(PN) measures the total
amount of correlations in the system [22]. In this application, we obtain I2/IN = 98.5%. The pairwise correlation model is
effective since it explains almost all the available information; only 1.5% of information is due to higher-order interactions.

As a further test of the pairwise model consistency, we show below that this statistical model is able to recover the
observed empirical moments. We compare the average index orientations qi = T−1T

t=1 si,t obtained by simulation to the
real ones. We simulated the process by doing 1 × 105 equilibration Monte Carlo time steps (MCS) and we take the average
on the next 2×107 MCS in order to reduce the variance of the estimator. The flipping attempts are simulated by the Glauber
dynamics. Namely, we take an entity i chosen randomly and the attempt to flip the associated binary variable si is performed
with a rate depending on the exponential weight, the other orientations remaining fixed [23]. We take the time average for
each index from the data and we compare it to the value obtained with the simulation; they are illustrated in Fig. 2.

The root mean squared error (RMSE) is equal to 7×10−4, which represents 1.5% of the root mean squared (RMS) value of
the six arithmetic means (equal to 4.90× 10−2). We recover quantitatively the average orientation of the six indices on the
observation period. Moreover, since we obtained the probability distribution, we can compare the correlation coefficients
resulting from the sampling of the proposed probability distribution to the empirical ones. We sample the probability law
p2(s, JME,hME) by a Monte Carlo Markov chain (MCMC). We take 1.2 × 106 equilibration steps and 1.2 × 104 independent
sampling steps between each sample. Fig. 3 illustrates the recovered correlation coefficients with the maximum entropy
estimation versus the empirical ones. The results for only 130 observations (chosen arbitrarily corresponding to half a
year) are conclusive. Indeed the RMSE represents 8.3% of the RMS value and the correlation coefficient of the empirical
and simulated values is equal to 0.963. Including more observations (2258 trading days) allows us to reduce the dispersion
in the results (correlation coefficient of the empirical and simulated values equal to 0.997; the RMSE represents 1.8% of the
RMS value). We note that it is effective even with few data.

We perform the same work for the Dow Jones and the S&P100 indices (2500 configurations observed from 10/10/2001
to 02/08/2011). We also consider 116 stocks from the New York Stock Exchange available on the Onnela website
(http://jponnela.com/) extending from the beginning of 1982 to the end of 2000 (4800 trading days). For these larger
stock sets, the exact entropy maximization (1) is not computationally tractable. There are several approximate inversion

http://jponnela.com/
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Fig. 4. (Color online) Comparison of simulated orientations and the actual ones. From left to right: DJ, S&P100 and Onnela’s set. The straight line shows
equality.
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Fig. 5. (Color online) Recovered covariances versus empirical ones. From left to right: DJ, S&P100 and Onnela’s set. The straight line shows equality.

methods to estimate the parameters. The mean field methods (naïve, TAP and Tanaka’s inversion; see Refs. [16,24,25])
are the faster ones and they are accurate if the interaction strengths are weak (the weakness will be investigated in a
further work). These methods will be used in the investigation of the structure evolution due to their reasonable accuracy
and quickness. Two other valuable inference methods are minimum probability flow (MPF) [26] and regularized pseudo-
likelihood maximization (rPLM) [27]. In our application the rPLMmethod performs best. The results for the first and second
recovered moments (2× 106 equilibration MCS, values estimated on 2× 107 samples recorded each N MCS) are illustrated
in Figs. 4 and 5.

The correlation coefficient between the recovered and empirical values is respectively 0.998, 0.996 and 0.997 for the net
orientations illustrated in Fig. 4 and 0.989, 0.964, 0.997 for the covariances illustrated in Fig. 5, which shows the strong linear
statistical relation between the empirical and the recovered values. The relative deviation between the RMSE and the RMS
values is respectively 2%, 7% and 6% for the net orientations and 9%, 17%, 8% for the covariances.

We have seen that, in addition of the multi-information criterion, the net orientations and the covariances are recovered
from this model even with few data. We conclude that the proposed pairwise interaction structure is a trustful one; this
means that interactions are believed to be pairwise and symmetric ones and that they cause correlations.

4. Order–disorder transition

As the previous pairwise model describes market indices quantitatively, we expect to observe an order–disorder
transition in this system; we give below some empirical evidence that these transitions actually appear. As the interaction
strengths are all positive, the system is ordered if the net orientation distribution has two modes near the extreme values
−1 and 1 and disordered if the distribution has a unique mode. Indeed in an ordered situation, each index tends to have the
same orientation as the others. Furthermore, in the absence of external influences, both extreme values are equivalent (as a
consequence of the symmetry under sign exchange), and the distribution is thus bimodal. One of the extreme values can be
favored following the values taken by the external influences hi. It will be a first clue that the system is reorganized if the
distribution changes in such a way (having two modes and then a unique one, and reciprocally). We compute the system
net orientation q(τ , ∆t) = (∆t N)−1

i
τ+∆t

t=τ si,t on successive periods ∆t of 25 trading days (without overlapping), and
we show that the net orientation probability distribution can be bimodal or not on successive time windows. The resulting
empirical distributions for observations from 5 November 2010 to 30 March 2011 are illustrated in Fig. 6.

In Fig. 6 we see that the empirical probability distribution has initially two modes at extreme orientation values, then
has no clear mode, and finally again has two modes. During this period, initially the indices move in an organized way then
in a disorganized fashion, and finally the Fukushima nuclear accident caused a large global market fall followed by a large
recovery. During this event, the indices were in comovement. So the system is initially ordered then disordered for two
periods and then again ordered.
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line). The curves have been smoothed. The last major crisis is pointed out by an arrow. The shaded portions show orientation extrema and entropyminima.

Another way to characterize financial irregularities is to study the entropy S(s) on a sliding window (here, 300 trading
days shifted by 1 day). We compute the mean-field approximation of the entropy on those time windows (much faster than
the exact computation). The mean-field entropy [28] is

SMF(s) = −

N
i=1

1 + qi
2

ln

1 + qi

2


+

1 − qi
2

ln

1 − qi

2


. (6)

The entropy is maximal when the average orientations, computed on the corresponding time window, are equal to zero
and is minimal when the indices have the same orientation. During a disordered period, the entropy should be large, and
during a synchronized (ordered) period the entropy should be low.We should thus observe entropyminima simultaneously
to orientation extrema (bubbles or crashes).We check in the results illustrated in Fig. 7 that orientation extrema and entropy
minima are related to the periods of synchronization described in Ref. [1].

We observe large falls of the entropy when the net orientation is much larger than its mean (the mean is set to zero
in Fig. 7). The shaded portions show the orientation extrema and entropy minima on this time window. They correspond
(chronologically) to the end of the growth period and the end of the collapse. Furthermore the correlation coefficient of
the net-orientation and the financial time series is equal to 0.82 showing a high degree of linear statistical dependency. We
conclude that the entropy minima are thus related to financial irregularities (large upward or downward movements).

This is empirical evidence that order–disorder transitions occur inmarkets. This interpretation is supported by the recent
results obtained in Ref. [1], where the authors showed that market irregularities present a high degree of synchronization,
meaning an ordered state. The economic consequence is that the whole market is correlated when such transitions occur.
It also means the absence of a characteristic scale for the fluctuations and the emergence of power-laws.

In Appendix, we illustrate in Fig. 14 a larger version of Fig. 7.

5. Dynamics of interactions

Linked to the above, such a transition occurs if the stochasticity changes or the interaction strengths change. A possible
interpretation of time-varying interaction strengths is that some learning or adaptive process takes place through time.
This means that the market adjusts the interactions between its entities in some adaptive processes so the {Jij, hi} are time
dependent. The reason is that the background, namely worldwide economic conditions, changes through time and goes
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of width equal to 200 trading days shifted each time by 5 trading days.

through economic fluctuations with contractions (recessions) and expansions (growths). As the correlations are explained
by the pairwise interactions, it also means that the correlations do not necessarily match past correlations.

Following this interpretation, we expect that the temporal behaviors of the interaction strengths and external influences
are related to market evolution. This is indeed true, as we will see below. First of all, we study the preference evolution of
the six previous indices (reflecting the current state of the European economy) and its link to the crises. We use a sliding
temporal window of width T = 200 trading days shifted by a constant amount of ∆t = 2 trading days. We show that the
aggregate preference h =


i hi is negative during a crisis (or during a significative contraction), as illustrated in Fig. 8.

The first negative incursion corresponds to the 2002–2003 crisis and the second one to the 2008–2009 crisis [21]. As
expected, the external influences are decreasing when the market is subject to a crisis.

More interestingly, we will study the spectrum of the interaction matrix. Indeed the spectrum evolution will be related
to the market evolution. The spectrum of the interaction matrix of a stock set has an interesting feature; we will show it for
the Dow Jones index.We collected data for the Dow Jones index from 10 October 2001 to 1 August 2011 [21], andwe extract
the interaction strengths using the third-order approximation described in Ref. [25]. The trace of the interaction matrix, the
sum of its eigenvalues, has the following interesting property. It decreases during a crisis; specifically, the trace minus its
temporal average becomes negative if there is a substantial fall of the index. This feature is illustrated in Fig. 9.

The trace of the exact interaction matrix should be zero (without self-interactions) but, with Tanaka’s diagonal trick,
the diagonal entries are related to the second-order term and to a part of the third order of the Plefka series [25,18]. The
second-order term of the Plefka series is negative; the sign of the third-order term depends on the product of the interaction
strengths. The temporal variation of the trace reflects the temporal variation of these second-order and third-order terms.
These terms are particularly important near a transition. This explains why the trace of the interaction matrix is smaller
than its mean value during a crisis. Indeed during a crisis all the stocks act in similar way: they fall down. They thus have
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similarmean orientation (down) and the resulting system state is an ordered one. Before the crisis, during a commonmarket
growth or steady state, the price of some stocks rises (on average) and some others fall, leading to a dispersion of the mean
orientations. This is indirect evidence of a transition from one regime to another and of coordination. It is consistent with
the results obtained above and in Refs. [1,29]. In Appendix, we illustrate in Fig. 13 a larger version of the Fig. 9.

6. Link to the graph-theoretic approach

Hereafter, we make the link with the previous spectrum feature and the observation that the length of the minimum
spanning tree (MST) based on the Sornette–Mantegna distance decreases during a crash [30,31], meaning that stocks are
highly correlated during these events (as they should be in an order–disorder transition). We will see that we recover this
feature with the pairwise model with a distance based on interaction strengths in place of correlation coefficients. Indeed
the interaction matrix can be thought of as the weight matrix of an undirected complete graph. Using a modified version
of the method proposed in Ref. [32] and computing the minimum spanning tree length L(t) (the sum of the edges weights
of the MST), we also observe that this length decreases during a crash, as expected; the results for the Dow Jones index are
illustrated in Fig. 10.

Moreover, it also allows cluster identification. Indeed, it is known that the asset tree based on the Sornette–Mantegna
distance allows regrouping some stocks in clusters following their economic sectors [31]. As the correlations are caused
by the interactions, it is not surprising that the MST of the network defined by the interaction matrix also allows cluster
identification. This approach has the advantage of not being limited to linear or monotonic statistical dependencies. The
clustering feature is illustrated in Fig. 11.

Wenote thatGeneral Electric (GE) is not themost connectednode but it is a central one in the sense that it appears in three
different clusters; as such it is still considered as the root of the MST and defines the generational direction. This approach
provides a different classification as given in Ref. [31] or given by Forbes for instance. Indeed, the Forbes classification is
given by sector then by industry. Disney andWalmart are classified in the same sector, services; this category is too vague to
be an useful tag. Similarly, General Electric is tagged by Forbes as industrial goods and then as diversified machinery, but this
company also provides financial services, aircraft engines, TV channel broadcasting, etc. It is then clear that this company
should be classified with more than one tag, as does the proposed method. In this point of view, the internal structure of
each company seems to be the crucial information to identify stock clusters.

We can also study the topological structure of the remaining asset tree during a crash and a growth period. We will see
that, as expected, the degree distribution follows a power law.We consider the stocks of the S&P100 index on two intervals,
from 1/10/2007 to 01/02/2009 (360 trading day crisis period) and from 1/02/2005 to 1/07/2007 (600 trading day growth
period). The occurring frequencies of the vertex degrees are illustrated in Fig. 12.

This reveals that the degree distribution is a power law, f (n) ∼ n−α , and the value of the exponent is similar for the both
periods. For the growth period, we obtain α̂ = 1.64 ± 0.17, and during a crash α̂ = 1.58 ± 0.12. They can be included
in the confidence interval of each other, so they are very similar. The maximum degree is n = 8 in the both periods. They
are 58 vertices of degree n = 1 during the crash. This value is slightly larger (about 10%) than the one corresponding to the
growth period, 52 vertices of degree n = 1. This explains the difference between both exponents. The asset tree topology
is thus slightly different during a crash. The main change is the variation of the interaction strengths (the graph weights)
rather than the variation of the vertex degrees. In both regimes, the asset trees are thus scale-free networks. This implies
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Fig. 11. (Color online) The minimum spanning tree based on the interaction matrix J is estimated on 2500 trading days. The companies are denoted by
their ticks; they can be found on any financial website (Google finance for instance).

102

101

100

100 101

F(n)

n

102

101

100

F(n)

100 101
n

Fig. 12. The degree distributions during a growth period (left) and during a crash (right). The solid line is a power-law fit; the coefficients of determination
are respectively 0.98 and 0.93.

that the edges are not drawn at random and the asset trees exhibit small-worldness, as observed with another method in
Ref. [6]. Furthermore, the low value of this exponent implies that hubs (high-degree vertices) represent a significant part
of the total number of vertices. The market is thus sensitive to the failure of a hub (a highly connected company) whereas
the failure of a leaf (terminal node) will only slightly affect the market. By example the hypothetic failure of the American
Express Company (AXP)would leave a fragmentedmarketwhereas the bankruptcy of Kraft Food Inc. (KFT)would not change
the topology of the asset tree significantly; see Fig. 11. This could help in selecting the companies one has to save from an
eventual bankruptcy in order to minimize the impact of such an event. This could also help in selecting which companies
one has to monitor to prevent a hypothetical dramatic system failure.

7. Conclusion

We have seen that, without making assumptions on the market dynamics, the maximum entropy principle provides a
rigorous pairwisemodel which is able to describe the data and the observed collective behaviors quantitatively.We showed
that including higher-order interactions does not explain more than using the pairwise model, and thus that the collective
phenomena emerge from simple pairwise interactions. To confirm this result, we showed that this statisticalmodel is able to
recover the empirical moments computed from the data, especially the mean orientations and the correlations. The success
of the pairwise model implies that markets exhibit some properties observed inmagnetic materials and in neural networks.
Indeed, we showed that an order–disorder transition occurs in such a system, as described by a pairwise model equivalent
to the Ising model. Furthermore, we showed that the interaction strengths are time dependent, meaning that an adaptive
process occurs and that they are the starting point of the graph-theoretic approach of the market. In this view the system is
more than the sum of its parts, is ruled by its entities pairs, exhibits collective behaviors and is quantitatively described by
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a pairwise model. It is surprising that such sophisticated collective behaviors, emergent structures and underlying complex
trading rules are captured by a simple (a priori) scheme of interdependence involving only pairwise but no higher-order
interactions.
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Appendix

See Figs. 13 and 14.
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