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Abstract. In this review article we discuss connections between the physics of

disordered systems, phase transitions in inference problems, and computational

hardness. We introduce two models representing the behavior of glassy systems, the

spiked tensor model and the generalized linear model. We discuss the random (non-

planted) versions of these problems as prototypical optimization problems, as well as

the planted versions (with a hidden solution) as prototypical problems in statistical

inference and learning. Based on ideas from physics, many of these problems have

transitions where they are believed to jump from easy (solvable in polynomial time)

to hard (requiring exponential time). We discuss several emerging ideas in theoretical

computer science and statistics that provide rigorous evidence for hardness by proving

that large classes of algorithms fail in the conjectured hard regime. This includes

the overlap gap property, a particular mathematization of clustering or dynamical

symmetry-breaking, which can be used to show that many algorithms that are local

or robust to changes in their input fail. We also discuss the sum-of-squares hierarchy,

which places bounds on proofs or algorithms that use low-degree polynomials such

as standard spectral methods and semidefinite relaxations, including the Sherrington-

Kirkpatrick model. Throughout the manuscript we present connections to the physics

of disordered systems and associated replica symmetry breaking properties.

1. Introduction

Computational complexity theory [?] aims to answer the question of what problems can

be solved by computers. More specifically, it aims to classify computational problems

according to the resources (usually time or memory) needed to solve them, and how

these resources scale with the problem size. Computationally hard problems are those

that can be solved in principle but require prohibitively large amounts of resources, such

as a running time that grows exponentially with the problem size.

The most iconic result of computational complexity theory is the existence of

so-called NP-complete problems [1]. These problems, of which hundreds have been
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identified, are all hard unless P = NP, in which case they are all easy. But if P = NP,

anything which is easy to check would be easy to find. All modern cryptosystems would

be breakable; it would be easy to find short proofs of unsolved mathematics problems

or elegant theories to explain empirical data, without any need for insight or intuition.

Even evolution would gain shortcuts: it would be easy to design proteins with certain

structures, rather than having to search for them by exploring a vast space of possible

amino acid sequences. This would violate many of our deepest beliefs about the nature

of search, proof, and even creativity. For these and other reasons, resolving the P 6= NP

conjecture is considered the most important problem of theoretical computer science,

and one of the most important open problems in mathematics more generally.

Since we believe some problems are computationally hard, the question becomes the

nature of this hardness. What is it about a problem’s structure that defeats polynomial-

time algorithms? Since the late 1980s and early 1990s (e.g., [2, 3, 4]), some researchers

have looked to the physics of disordered systems as one source of hardness. This comes

very naturally since, for many canonical models such as spin glasses, finding a ground

state is easily shown to be NP-hard (i.e., at least as hard as any NP-complete problem).

Physical dynamics is itself computationally limited by the locality of interactions,

and physics-based algorithms such as Markov Chain Monte Carlo and simulated

annealing are subject to the same limits. In glassy systems these algorithms often get

stuck in metastable states, or take exponential time to cross free energy barriers. Unless

there is some miraculous algorithmic shortcut for exploring glassy landscapes—which

seems unlikely, except for a few isolated cases—it seems likely that no polynomial-time

algorithms for these problems exist.

In this paper we review some current areas of research on the connections between

theory of disordered systems and computational hardness, and attempts to make this

physical intuition mathematically rigorous. We will discuss two types of computational

problems: optimization problems where one aims to minimize an objective function

(such as the energy) over a set of variables, and signal recovery or inference problems

where a signal is observed but obscured by noise, and the task is to reconstruct it

(at least approximately) from these observations. In Section 2 we define canonical

examples of both these problems, stressing their relationship to disordered systems

studied in physics as well as their broad applicability to modelling various computational

tasks. In Section 3 we discuss recent results on computational hardness of optimization

problems based on the overlap gap property, which formalizes the idea that solutions

are widely separated from each other by energy barriers. Section 4 switches to signal

recovery/inference problems and presents a rather generic picture that emerges from

the study of phase transition in those problems. Finally, Section 5 discusses the sum-

of-squares hierarchy, another approach to proving computational lower bounds.
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2. Two problems in optimization and inference: Definitions

2.1. The spiked tensor model and spin glasses

One of the models we will consider from the statistics and computational perspective

is a natural variant of the spin glass model with a “planted signal” to be learned or

reconstructed—physically, a low-energy state built into the landscape. It is called the

spiked tensor model or tensor PCA, and is defined as follows. Given a hidden vector

u ∈ RN , we observe the following tensor:

Y = λu⊗p + J . (1)

Here u⊗p is the p-fold tensor outer product of u, and J is a N×· · ·×N tensor describing

the noise. We will assume that the entries Ji1,...,ip with 1 ≤ i1 < i2 < · · · < ip ≤ N

are drawn i.i.d. from some common distribution with mean zero and variance σ2, such

as the normal distribution N (0, 1). The other entries of J are fixed by a symmetry

assumption, Jiσ(1),...,iσ(p) = Ji1,...,ip for all permutations σ of [p] = {1, 2, . . . , p}.
We can think of λ as a signal-to-noise ratio, parametrizing how strongly the signal u

affects the observation Y compared to the noise J . In order to look for phase transitions

in the hardness of reconstructing the planted vector u, we will allow λ to scale in various

ways with N . We can also let J ’s variance σ2 vary with N , but in most of the paper we

will take it to be 1.

We can consider variants of this problem where different types of restrictions

are placed on u. One is to take u ∈ SN where SN is the N -dimensional sphere

{u : ‖u‖2 = N}. Another choice is to take Boolean values on the N -dimensional

hypercube or equivalently Ising spins, u ∈ BN where BN = {±1}N . We can also impose

sparsity by demanding that a fraction ρ of u’s entries are nonzero, writing u ∈ BN,ρ

where BN,ρ = {u ∈ {±1, 0}N : ‖u‖1 = Nρ}. In terms of Bayesian inference, we take the

uniform measure on each of these sets to be a prior on u.

The variant p = 2, i.e., the spiked matrix model, is particularly widely studied. It

is also known as the spiked covariance model, or as low-rank matrix estimation, since

u⊗ u is a rank-1 approximation of Y [5, 6].

The general questions to be addressed in this model are (a) can we learn, or

reconstruct, the planted vector u from the observation Y ? and (b) can we do this

with an efficient algorithm, i.e., one whose running time is polynomial in N? (We

assume p is a constant, so polynomial in N is equivalent to polynomial in the size Np of

the observed data.) Since reconstructing u exactly is often impossible, we are interested

in approximate reconstruction, i.e., producing an algorithmic estimate û = û(Y ) which

has a nontrivial correlation with the ground truth u: for instance, by having an overlap

(1/N)〈û, u〉 bounded above zero with high probability.

Question (a) is an information-theoretic or statistical question, unconcerned with

computational resources. Using the theory of Bayesian inference we can write the
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posterior distribution,

P (z|Y ) =
1

Z P (z)P (Y |z) where (2)

P (Y |z) =
∏

1≤i1<i2<···<ip≤N

N (Yi1,...,ip − λzi1zi2 · · · zip , 1) , (3)

where for concreteness we considered the elements of the noise J to be Gaussian with

variance 1. (Due to universality properties, e.g. [6], this is not very restrictive for what

follows.) Note that the partition function or normalization factor Z depends both on

the observed tensor Y , the prior P (z), and the parameters λ, σ of the likelihood P (Y |z).

In our notation we drop this explicit dependence.

The posterior distribution P (z|Y ) is an exponentially complicated object. However,

for several natural loss functions including the overlap 〈û, u〉 and the `2 error ‖û− u‖2,

the best possible estimator û depends only on the marginals P (zi|Y ). Thus question (b)

boils down to whether, given Y , we can approximate these marginals with a polynomial-

time algorithm.

Another common approach in statistics is the maximum likelihood estimator‡
(MLE) where we set û to the z that maximizes P (Y |z). In the Gaussian case (3),

we have

P (Y |z) ∝ exp

−1

2

∑
1≤i1<i2<···<ip≤N

(
Yi1,...,ip − λzi1zi2 · · · zip

)2


= exp

[
− 1

p!

(
1

2
‖Y ‖2 +

λ2

2
‖z‖2p − 2

〈
Y, z⊗p

〉)]
, (4)

where in the limit of large N we ignore terms with repeated indices, and where

〈Y, z⊗p〉 =
∑

1≤i1<i2<···<ip≤N

Yi1,...,ipzi1zi2 · · · zip . (5)

Since ‖Y ‖2 is fixed by the observed data, and since ‖z‖2 = N if z ∈ SN or BN (or ρN if

it is in BN,ρ) then the MLE is the z that maximizes (5). But this is exactly the ground

state of a p-spin model with coupling tensor Y , with spherical or Ising spins if z is in

SN or BN respectively.

In particular, if λ = 0 so that Y = J , we have a p-spin model with Gaussian random

couplings and Hamiltonian

E(z) = −
∑

1≤i1<i2<···<ip≤N

Ji1,...,ipzi1zi2 · · · zip . (6)

Studying the optimization landscape of this un-planted problem may seem irrelevant to

the inference problem of reconstructing u from Y . But in addition to being physically

‡ It should be noted that while the MLE and similar extremization-based approaches are very popular

in statistics, they are typically suboptimal in high-dimensional settings: that is, they do not optimize

the overlap or minimize the `2 error.
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natural, as a generalization of the Sherrington-Kirkpatrick model [7] which corresponds

to the case p = 2 and z ∈ BN , it serves both as a starting point for the inference problem

and as a null model where there is no signal at all.

Thus in addition to the reconstruction problem where we assume that Y is drawn

from the planted model (1) and we want to learn u, we will also consider the detection

problem. That is, given Y , we want to determine whether it is drawn from the planted

model, or the un-planted model where Y = J . Like reconstruction, this hypothesis

testing problem may or may not be information-theoretically possible. If it is, it may

or may not have a polynomial-time algorithm that succeeds with high probability.

In the literature there are many variants of the spiked tensor model. The signal

can be of higher rank, i.e.,
∑

j u
⊗p
j for multiple planted vectors uj, or one can plant

a subspace rather than a vector. In addition to being non-Gaussian, the noise can be

nonadditive, binary or sparse. And the observation could consist of multiple tensors

with different p rather than a single Y . All these variants have their own interest and

applications; see examples in e.g. [8, 6]. In what follows we will also sometimes refer to

sparse versions of the spiked matrix model, such as the stochastic block model which is

popular in network science as a model of community structure (see e.g. [?]).

2.2. The generalized linear model and perceptrons

Another class of problems we will consider in this paper is the generalized linear model

(GLM). Again, a planted vector u ∈ RN is observed through a set of noisy observations,

but this time through approximate linear combinations Y1, . . . , YP :

Yi ∼ Pout

(
Yi |

N∑
a=1

Jiaua

)
. (7)

Here J ∈ RP×N is a known matrix whose entries are i.i.d. with zero mean and variance

σ2, and Pout is some noisy channel. In other words, f(j) = 〈j, u〉 is an unknown linear

function from RN to R, and our goal is to learn this function—that is, to reconstruct

u—from noisy observations of its values f(j1), . . . , f(jP ) at P random vectors where ji
is the ith row of J . In machine learning we would say that the set of tuples (ji, Yi) are

the training data, and by learning u we can generalize to f(j) for new values of j.

The main questions for the GLM are the same as for the spiked tensor model: (a)

whether it is information-theoretically possible to learn the signal u given J and Y , and

(b) whether there are efficient algorithms that do that. Again Bayesian inference aims

at computing the marginals of a posterior

P (z|Y, J) =
1

Z P (z)
P∏
i=1

Pout

(
Yi |

N∑
a=1

Jiaua

)
. (8)

Here the partition function Z depends implicitly on the matrices Y and J as well as on

the parameters of the probability Pout and of the prior P (z). As in tensor PCA, u can
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be restricted to SN , BN or some other set, and we will assume that its Bayesian prior

is uniform over this set.

Another family of estimators minimize some loss function `, perhaps with a

regularization term with strength λ:

L(z) =
P∑
i=1

`

(
Yi,

N∑
a=1

Jiaza

)
+ λ

N∑
a=1

r(za) . (9)

In a linear regression context, J is the observed data and Y the observed dependent

variable, and (9) seeks to minimize the empirical risk `. A typical regularization term

might be r(za) = |za|, giving the “lasso” or L1 regularization λ‖z‖1 which pushes z

towards sparse vectors.

The GLM captures many versions of high-dimensional linear regression, and covers

a broad range of applications and situations. In signal processing or imaging u would

be the N -dimensional signal/image to be reconstructed from measurements Y , where J

is the measurement matrix and the channel Pout typically consists of additive Gaussian

noise. In compressed sensing we consider the under-determined case N > P , but with

a sparse prior on the signal u.

Just as for the spiked tensor model the signal u can be seen as a planted solution

to recover from Y and J . The version of the model where the distribution of Y is

independent of u is well known in the statistical physics literature as the perceptron.

The variant with z ∈ SN is the spherical perceptron [9], and z ∈ BN gives the binary

perceptron [9, 10]. The perceptron model is particularly important as its study started

the line of work applying physics of disordered systems to understanding supervised

learning in artificial neural networks. The recent major success of methods based on

deep learning [11] only added importance and urgency to this endeavour.

3. Hardness of optimizing p-spin models: the overlap gap property and

implications

In this section we discuss the algorithmic hardness of the problem (6) of finding near

ground states of p-spin models using the overlap gap property (OGP). The OGP is

a property of solution space geometry which roughly speaking says that near optimal

solutions should be either close or far from each other. It is intimately related to the

replica symmetry breaking (RSB) property and the clustering (also sometimes called

shattering) property exhibited by some constraint satisfaction problems. In fact it

emerged directly as way to establish the presence of the shattering property in constraint

satisfaction problems [12, 13]. There are important distinctions, however, between RSB,

clustering and OGP, which we will discuss as well. A survey of OGP-based methods

is in [14]. Our main focus is to illustrate how OGP presents a barrier to a certain

class of algorithms as potential contenders for finding near ground states. Loosely

speaking, it is the class of algorithms exhibiting input stability (noise insensitivity), thus

revealing deep and intriguing connections with a rich field of Fourier analysis of Boolean
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functions [15]. Many important algorithms are special cases of this class, including

Approximate Message Passing (AMP) [16], Low-Degree Polynomials [17, 18], Langevin

Dynamics [17], and low-depth Boolean circuits [19]. OGP was also established to be

a barrier for certain types of quantum algorithms, specifically Quantum Approximate

Optimization Algorithms (QAOA) [20, 21, 22], using a slightly different implementation

of the stability argument. We will therefore conclude that the values produced by these

algorithms are bounded away from optimality. We will discuss various extensions of

the OGP, including the multi-overlap gap property (m-OGP), which will allow us to

bring the algorithmic barriers to the known algorithmic thresholds. In the case of the

p-spin models these thresholds are achieved by AMP. It is entirely possible that models

in the OGP regime do not admit any polynomial time algorithms, which at this stage

is evidenced by just the lack of those. Proving this say modulo P 6= NP assumption

does not yet appear to be within the reach of the known techniques.

3.1. p-spin model, ground states and algorithms

We recall that our focus is the optimization problem (6). The optimization is over choice

of z in some space ΘN which for the purposes of this section is either SN or BN . The

former is referred to as spherical p-spin model and the latter is called the Ising p-spin

model. We assume that the variance σ2
N of the i.i.d. entries of the tensor J is N−(p+1).

A series of groundbreaking works by Parisi [23, 24], followed by Guerra-Toninelli [25],

Talagrand [26], and Panchenko [27, 28, 29] led to proof of the existence and a method

for computing a deterministic limit of (6) in probability as N → ∞. We denote this

limit by ηp,OPT in either case, where the choice of ΘN will be clear from the context.

The value of this limit arises as a solution of a certain variational problem over the space

of one-dimensional probability measures. The measure which provides the solution to

this variational problem is called the Parisi measure which we denote by µ.

The algorithmic goal under consideration is the goal of constructing a solution

z ∈ ΘN which achieves near optimality, namely the value close to ηp,OPT when the

tensor J is given as an input. Ideally, we want an algorithm A which for every constant

ε > 0 produces a solution ẑ , A(J) satisfying 〈J, ẑ⊗p〉 ≥ (1− ε)ηOPT in polynomial (in

N) time. This was achieved in a series of important recent developments [30, 31, 32],

when the associated Parisi measure µ is strictly increasing. This monotonicity property

is related to the OGP as we will discuss below.

3.2. OGP and its variants

The following result states the presence of the OGP for the p-spin models.

Theorem 1. For every even p ≥ 4, ΘN = BN or ΘN = SN , there exists ηp,OGP < ηp,OPT,

0 < ν1 < ν2 < 1 and c > 0 such that with probability at least 1 − exp(−cN) for large
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enough N the following holds. For every z1, z2 ∈ ΘN satisfying 〈J, z⊗pj 〉 ≥ ηp,OGP, j = 1, 2

1

N
|〈z1, z2〉| /∈ (ν1, ν2).

Here 〈x, y〉 denotes the inner product
∑

1≤i≤N xiyi. Namely, modulo an exponentially in

N unlikely event, the normalized angle (overlap) between any two solutions with value

at least ηp,OGP cannot fall into the interval (ν1, ν2). The model exhibits an overlap gap.

The values ηp,OGP and νj (and in fact the optimal values ηp,OPT themselves) are

in general different for Ising and spherical models and their precise values are of no

algorithmic significance. While the result is only known to hold for even p ≥ 4, it is

expected to hold for all p ≥ 3. It is conjectured not to hold when p = 2 [24] for the

Ising case and the AMP algorithm achieving the near ground state value in this case is

effective modulo this conjecture [31]. It does not hold when p = 2 for the spherical case

for a trivial reason as in this case the problem corresponds to optimizing a quadratic

form over sphere SN . The proof of this Theorem 1 for the Ising case can be found in [33],

and is obtained by a detailed analysis of the variational problem associated with pairs

of solutions z1, z2 within a certain proximity to optimality. The proof for the spherical

case can be found in [34].

In order to use this result as an algorithmic barrier, we need to extend this theorem

to the following ensemble variant of the OGP which we dub e-OGP. For this purpose

it will be convenient to assume that the distribution of the entries of J is Gaussian.

Consider an independent pair of tensors J, J̃ ∈ RN⊗p with Gaussian entries. Introduce

the following natural interpolation between the two: J(t) =
√

1− tJ +
√
tJ̃ , t ∈ [0, 1].

The distribution of J(t) is then identical to one of J and J̃ for every t.

Theorem 2. For every even p ≥ 4, ΘN = BN or ΘN = SN , for the same choice of

parameters ηp,OGP, ν1, ν2 as in Theorem 1 the following holds with probability at least

1 − exp(−cN) for some c and large enough N . For every t1, t2 ∈ [0, 1] and every

z1, z2 ∈ ΘN satisfying 〈J(tj), z
⊗p
j 〉 ≥ ηp,OGP, j = 1, 2 we have

1

N
|〈z1, z2〉| /∈ (ν1, ν2).

Furthermore, when t1 = 0, t2 = 1, it holds 1
N
|〈z1, z2〉| ∈ [0, ν1].

The probability event above is with respect to the joint randomness of J and J̃ .

Theorem 2 says that the OGP holds for pairs of solutions with values above ηp,OGP

across the entire interpolated sequence of instances J(t). Furthermore, at the extremes,

that is for the pair of instances J and J̃ , these solutions must have overlap at most

ν1. We note that the overlap value 1 is trivially achievable when t1 = t2 by taking two

identical solutions z1 = z2 with value at least ηp,OGP. The proof for the Ising case can

be found in [16], and for the spherical case in [17], and it is a rather straightforward

extension of Theorem 1 by appealing to the chaos property exhibited by many glassy

models [35, 36].
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3.3. e-OGP as an algorithmic barrier to stable algorithms

We now discuss how the presence of the e-OGP presents an algorithmic barrier to a

class of algorithms we loosely define as stable (noise-insensitive) algorithms. This part

will be discussed rather informally, as each concrete instantiation of the arguments is

model and algorithm dependent. We think of algorithms as mappings of the form

A(J) → ΘN which map instances (tensors) J into a solution z = A(J) in the

solution space ΘN . In some cases the algorithms can take advantage of an additional

randomization with functions now taking the form A(J, ω), where ω is a sample

corresponding to the randomization seed. For simplicity, we stick with non-randomized

versions A : RN⊗p → ΘN . Informally, we say that the algorithm A is stable (noise-

insensitive), if a small change in J results in a small change in the output. Namely,

‖A(J1) − A(J2)‖ is likely to be small with respect to the natural metric on ΘN when

‖J1 − J2‖2 is small. The choice of metric on ΘN is driven by the space itself and can

be Hamming distance when ΘN = BN or L2 norm when it is SN . The “likely” is in

reference to the randomness of the tensor J . The following theorem stated informally

shows why the presence of the e-OGP presents a barrier to stable algorithms.

Theorem 3 (Informal). For every stable algorithm A and every ε > 0, 〈J, (A(J))⊗p〉 ≤
ηp,OGP + ε w.h.p. as N →∞.

Namely, this theorem states that stable algorithm cannot overcome the OGP

barrier.

Proof sketch: We provide an outline of a simple proof of this theorem. The stability

of the algorithm can sometimes be used to establish the concentration of its value

around expectation, namely that 〈J, (A(J))⊗p〉 ≈ E〈J, (A(J))⊗p〉 as N → ∞. This is

not the case universally, but for simplicity let’s assume this for now. Then it suffices

to establish the claim E〈J, (A(J))⊗p〉 ≤ ηp,OGP + ε. Suppose not. Then we have

E〈J, (A(J))⊗p〉 ≥ ηp,OGP + ε implying E〈J(t),A(J(t))〉 ≥ ηp,OGP + ε for every t in

the interpolation path. We will obtain a contradiction.

By the second part of Theorem 2 we then must have w.h.p. and in expectation

1

N
|〈A(J(0)),A(J(1))〉| ≤ ν1,

namely

1

N
‖A(J(0))−A(J(1))‖2 ≥

√
2− 2ν1.

Here we assume that we use L2 for ΘN and the norm of every solution produced by the

algorithm is
√
N (which is the case when say ΘN = BN). On the other hand trivially

1
N
|〈A(J(0)),A(J(0))〉| = 1 > ν2, implying

1

N
‖A(J(0))−A(J(1))‖2 = 0 ≤

√
2− 2ν2.
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Figure 1. The smaller circle represents ηp,OGP-optimal solutions at distance ≤√
2− 2ν2 from A(J(0)). The complement to the larger circle represents ηp,OGP-

optimal solutions at distance ≥ √2− 2ν2 from A(J(0)). As distance between the

circle boundaries is
√

2− 2ν1−
√

2− 2ν2 , κ, at some instance t the distance between

“successive” solutions A(J(t)) and A(J(t + δt)) has to be at least κ, contradicting

stability.

Stability of the algorithm A implies then the existence of time τ such that

1

N
|〈A(J(0)),A(J(τ))〉| ∈ (ν1, ν2),

which is a contradiction to the first part of Theorem 2.

The proof above is just an outline of the main ideas that have different specific

implementations for specific problems. The earliest application of this idea was in [37],

in a different context of finding large independent sets in sparse random graphs. The

method was used to show that local algorithms, appropriately defined, are stable, where

J denotes random graph connectivities. In the context of spin glasses, it was shown

in [16] that the AMP algorithm is stable and thus cannot overcome ηp,OGP barrier. This

was generalized in [17] where algorithms based on low-degree polynomials were shown

to be stable. In the same paper Langevin dynamics was shown to be stable for spherical

spin models when the running time is linear in N . Extending the limitation of the

Langevin dynamics beyond linear bound is an interesting open problem. A natural

conjecture is that the Langevin dynamics produces a value at most ηp,OGP when run for

NO(1) time.

By leveraging the multi-e-OGP method, which involves studying overlap patterns

of more than two solutions, the barrier ηp,OGP and its analogues for other models can

be pushed to the value achievable by the state of the art algorithms. These algorithms

are AMP in the p-spin Ising case [32] and the spherical p-spin model case [30], simple
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greedy algorithms for the case of random K-SAT problem and the case of independent

sets in sparse random graphs. The implementation of the multi-e-OGP for spin glass

models was done by Huang and Sellke [38], who have implemented a very ingenious

version of the multi-OGP, called branching-OGP. This version was motivated by the

ultrametric structure of the solution space of p-spin models, widely conjectured to hold.

The implementation for the random K-SAT was done by Bresler and Huang [39], and

for independent sets in sparse random graphs by Wein in [18].

Arguably the strongest implication of the OGP as an algorithmic barrier is its

usage for establishing the state of the art lower bounds on depth of polynomial

size Boolean circuits. There is a long history in the theoretical computer science

literature on establishing such lower bounds for various problems. In the context

of constraint satisfaction problems, the prior state of the art result was achieved by

Rossman [40, 41] (see also extensions in [42, 43]), who established a depth lower bound

Θ(log n/(κn log log n)) for poly-size circuits deciding the presence of an independent

set of size kn in graphs with n nodes. When the depth of the circuit is bounded by

an n-independent constant, he showed that the size of the circuit has to be at least

nΩ(logn). This was done in the regime of random graphs where the typical value of kn
grows at most logarithmically in n. Using the OGP method this bound was improved

to Θ(log n/ log log n), though for the search as opposed to the decision problem [19].

Similarly, when the depth of the circuit is at most a constant, a stretched exponential

lower bound exp(nΩ(1)) on the size was established as well. It is in the context of this

problem where the concentration around expectation adopted in the proof sketch does

not hold, and furthermore, the stability property does not hold w.h.p. Instead the idea

was to establish that circuits with small depth have stability property with at least

sub-exponentially small probability. On the other hand, the stability can occur only for

the event which is complementary to the OGP, and this complement event holds with

exponentially small probability, thus leading to a contradiction.

A similar application of the OGP based method shows that poly-size circuits

producing solutions larger than ηp,OGP in p-spin models also have depth at least

Θ(log n/ log log n). Pushing this result towards the value algorithmically achievable

by the AMP, say using the Huang and Sellke [38] is not immediate due to the overlap

Lipschitz concentration assumption required in [38]. This extension is an interesting

open problem.

Broadly speaking a big outstanding challenge is the applicability of OGP or similar

methods for models with a planted signal, which we discuss in the following sections.

While a version of OGP takes place in many such models, its algorithmic implication

is far narrower than in the settings discussed above, such as p-spin models and random

constraint satisfaction problems. This presents an interesting and rather non-trivial

challenge for future.
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3.4. Connections with Replica Symmetry, Symmetry Breaking and the clustering

(shattering) property

We discuss these connections rather informally now, leaving the technical aspects to

other sources which we reference here.

The OGP arose in connection with studying the replica symmetry, replica symmetry

breaking and related properties of spin glasses and their variants. Specifically, it arose

as a method of proving that the set of satisfying solutions of a random constraint

satisfaction problem is clustered (sometimes called shattered), meaning that it can be

partitioned into “connected” components with order Θ(N) distance between them. How

can one establish the existence of such a clustering picture? If the model exhibits the

OGP say with parameters ν1 < ν2, then clustering follows immediately, provided that

solutions at distances
√

2− 2ν1 or larger exist, as in this case one defines clusters as

the set of solutions which can be reached from each other by paths in the underlying

Hamming cube. The fact that distances between
√

2− 2ν2 and
√

2− 2ν1 do not exist

between the pairs of solutions imply that at least two (but in fact many) clusters exist.

There are several caveats associated with this connection between the OGP and

the clustering property. First this connection is one directional, in the sense that the

presence of clustering does not necessarily imply the OGP, for a very simple reason: the

diameter of the cluster can in principle be larger than the distances between the clusters.

In this case, while the clustering property takes place, the set of all normalized pairwise

distances could potentially span the entire interval [0, 1] without any gaps. Therefore

the path towards establishing algorithmic lower bounds is not entirely clear.

Second, as it turns out in some models and in some regimes, the clustering picture

has been established for the “majority” of the solution space, and not for the entire

solution space. We will call it the weak clustering property, to contrast with the

strong clustering property, which refers to a clustering property without exceptions.

For example, for the random K-SAT problem the onset of the clustering property is

known to take place close to the threshold (2K/K) logK for the clauses to variables

densities, when K is large, but only in the weak clustering sense discussed above: most

but not necessarily all of the solutions can be split into clusters [44].

As it turns out, these exceptions are not just a minor nuisance, and can have

profound algorithmic implications. The so-called symmetric perceptron model is a

good demonstration of this [45, 46, 47, 48, 49]. For this model, the weak clustering

property is known to take place at all constraints to variables densities, yet polynomial

time algorithms exist at some strictly positive density values [47]. The multi-OGP

analysis conducted in [48] reveals that the gaps in the overlaps occur at densities higher

than the known algorithmic thresholds and thus the thresholds for the weak clustering

property and the OGP do not coincide and, furthermore, the weak clustering property

is apparently not a signature of an algorithmic hardness. Whether the strong clustering

property can be used as a “direct” evidence of algorithmic hardness remains to be seen.

For the further discussion of the connection between the OGP, the weak and strong
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clustering properties, and the algorithmic ramifications, we refer the reader to [14].

Next we discuss the connection between the OGP, replica symmetry, symmetry

breaking and the Parisi measure µ. The Parisi measure µ arises in studying the Gibbs

measure associated with Hamiltonian H. (Very) roughly speaking, it describes an

overlap structure of two nearly optimal solutions σ and τ chosen uniformly at random.

This can be formalized by introducing a small positive temperature parameter in the

Gibbs distribution, but we skip this formalism. The idea is that (1/N)|〈σ, τ〉| has the

Cumulative Distribution Function (CDF) described by µ in the large N limit. The

support of µ is naturally some subset of [0, 1]. The source of randomness is dual here,

one arising from the randomness of the Hamiltonians, and one arising from the sampling

procedure. Whether µ is indeed the limit the CDF of the overlaps in the limit remains

a conjecture, which has been confirmed only for the spherical case. Loosely speaking

the model is defined to be in the replica symmetric regime (RS) if µ is just a δ mass

at zero. Namely, the overlap (1/N)〈σ, τ〉 is approximately zero with high probability,

implying that typical pairs of solutions are nearly orthogonal to each other.

Replica symmetry breaking (RSB) then refers to µ being distinct from this singleton

structure. Now if the model exhibits OGP, then a part of µ is flat: the CDF of the

overlaps is constant on (ν1, ν2). Namely, the CDF is not strictly increasing. The absence

of this flat part of µ is exactly what was used in constructions of near optimal solutions

in [30, 31, 32], (and the presence of the OGP is an algorithmic obstruction as we have

discussed). So presumably, we could have used the flatness of the Parisi measure as a

“certificate” of hardness. However, there are challenges associated with this alternative.

First, as we have discussed, whether µ indeed describes the distribution of overlaps

remains an open question, whereas the presence of the OGP has been confirmed. More

importantly though, even modulo the µ being the accurate descriptor of the overlaps,

the connection between OGP and the flatness of µ is one-directional. The flatness of

µ in some intervals (ν1, ν2) means only that the density of the overlaps falling into this

interval is asymptotically zero after taking N to infinity. It does not imply the absence of

such overlaps. This is similar to the distinction between the weak and strong clustering

property: most of the overlaps are outside of the flat parts, but exceptions might exist.

The presence of such exceptions is bad news for the efforts of establishing algorithmic

lower bounds. Not only the argument for proving the algorithmic lower bounds appears

to break down, but also the presence of exceptions, namely a small number of overlaps

falling into this interval, might be potentially a game changer, as we saw in the case of

the symmetric perceptron model.

4. Statistical and computational trade-offs in inference and learning

In this section we move from optimization problems to statistical inference, in other

words from the non-planted problems to the planted ones. We recall our working

examples defined in section 2, that cover a large range of settings and applications,

the spiked tensor model and the generalized linear model.
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In order to describe the conjectured results on the algorithmic hardness of the

planted problems we will first discuss the Bayes-optimal inference of the planted

configuration from observations. We will then show how to analyze the performance

of the Bayes-optimal inference in the large size limit N → ∞ and under the stated

randomness of the generative model. We will then show that phase transitions in the

capability of the Bayes-optimal estimator to reconstruct the signal have an intriguing

algorithmic role as a suitable type of message passing algorithms are able to reach

optimal performance for all parameters except in the metastable region of first order

phase transitions. This metastable region is then conjectured to be algorithmically hard

– the hard phase. Section 5 will then present the currently strongest known method for

showing evidence of such hardness in some cases.

4.1. The minimum mean-squared error

In both the spiked tensor model and the generalized linear model as defined in section 2

the optimal inference of the planted signal u can be achieved by computing the marginals

of the posterior probability distribution

P (z|Y ) =
1

ZP (z)P (Y |z) . (10)

Concretely, when aiming to find an estimator ẑ that would minimize the mean-squared

error to the signal u

MSE(ẑ) =
1

N

N∑
i=1

(ui − ẑi)2 (11)

we conclude that from all the possible estimators we should take ẑ to be the marginal

of the posterior

ẑi = EP (z|Y )(zi) . (12)

We will call the MSE achieved by this estimator the minimum-MSE, abbreviated MMSE.

In the large size limit N → ∞ computing marginals over P (z|Y ) with z ∈ RN is in

general exponentially costly in N , and thus potentially computationally hard even in

the specific probabilistic generative models from Section 2.

However, for the spiked tensor model as well as for the generalized linear model

tools from the theory of spin glasses come to the rescue and allow us to analyze the

value of the MMSE in the larger size limit as well as design message passing algorithms

with properties closely related to the approach to obtain the MMSE. Let us start by

describing the form in which we obtain the asymptotic value of the MMSE. Replica

theory allows us to derive an explicit formula for a function ΦRS(m), m ∈ R, called the

replica symmetric free entropy such that

lim
N→∞

EY,u,J logZ = max
m

ΦRS(m) . (13)
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We note that in physics it is more common to define the free energy which is just

the negative of the free entropy. The average over Y, u, J applies to the generalized

linear model. In the spiked matrix model the Y can be dropped as in the definition we

gave it explicitly depends on u and J . The function ΦRS(m) explicitly depends on the

parameters of the prior, the likelihood and the ratio α = N/P , but in our notation we

omit this dependence. We then call

m∗ = argmax ΦRS(m) (14)

and state a generic result for the MMSE that is given by the global maximizer of the

replica symmetric free entropy

lim
N→∞

MMSE = ρ−m∗ (15)

where the constant ρ = E(u2
i ) is simply the second moment of the signal components.

The derivations of these result and the explicit formulas for ΦRS(m) were given

in the spin glass literature for many special cases and mostly without a rigorous

justification. In the general form considered in this paper and including rigorous proofs

they were given for the spiked tensor model in [50], and for the generalized linear model

in [51]. For the purpose of this paper we will stay on the abstract level expressed above

because on this level the discussion applies to a broad range of settings and we do not

want to obfuscate it with with setting-dependent details.

An important comment needs to be made here about the very generic validity

of the replica symmetric result for the free entropy in the Bayes-optimal setting, i.e.

when the prior and likelihood match the corresponding distributions in the model that

generated the data. By the very nature of the Bayes’ formula the signal u has properties

interchangeable with properties of a random sample from the posterior P (z|Y ). This

is true even at finite size N and even for models where J is not random and where

the likelihood and the prior are not separable. A consequence of the interchangeability

is that under the averages over the posterior measure and the signal u we can replace

the signal u for a random sample from the posterior and vice versa. This is called the

Nishimori condition in the statistical physics literature [52, 53]. A direct consequence of

the Nishimori condition is that the magnetization (correlation between the signal and a

random sample) and the overlap (correlation of two random samples) have to be equal,

which in return means that the overlap distribution needs to be concentrated on a delta

function and thus no replica symmetry breaking is possible in the Bayes-optimal setting.

The Nishimori conditions also play a key role in the proof techniques used to establish

the above results rigorously in [50, 51].

It it also important to note that what we discuss in this section is limited to the

large size limit N →∞ with parameters scaling in such a way with N for the MMSE to

go from ρ to 0 as the signal-to-noise ratio α increases from 0 to large O(1) values. This

imposes scaling on the λN for the spiked tensor model that is O(N (1−p)/2). This will be

in particular important for our claims about the optimality of the AMP algorithm that
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will be restricted to this regime and will not necessarily apply to performance of AMP

for much larger signal to noise ratios.

4.2. AMP and its state evolution

In the previous section we analyzed the MMSE as it would be achieved by the exact

computation of the posterior average. This is, however, in general computationally

demanding and thus a next natural question is whether we can reach this MMSE

computationally efficiently. Message passing algorithms provide an algorithmic counter-

part of the replica method. In particular, the approximate message passing algorithm

(AMP) that is an extension of the TAP equations [54] to the general setting of the

spiked tensor model and the generalized linear model is of interest to us in this paper.

AMP is an iterative algorithm that aims to compute the Bayes-optimal estimator ẑ.

Schematically the update of AMP at time step t for the AMP’s estimate ztAMP ∈ RN

can be written for both the considered models as

zt+1
AMP = F(ztAMP) (16)

for an update function F(.) that depends on Y , parameters of the prior and the

likelihood, and for the generalized linear model also on J .

The key property that makes AMP so theoretically attractive is that in the large

size limit the accuracy of the AMP estimator can be tracked via low-dimensional set

of equations called state evolution. To state this we introduce the correlation between

AMP estimate and the signal at iteration t

mt
N =

1

N

N∑
i=1

ui (z
t
AMP)i (17)

The state evolution implies that this quantity in the large size limit mt = limN→∞m
t
N

behaves as

mt+1 = fSE(mt) , (18)

for a function fSE that depends on the parameters of the models, but not any longer

of any high-dimensional quantity. The state evolution of AMP is a crucial contribution

that came from mathematical developments of the theory [55, 56] and was not known

in its current form in the statistical physics literature before that. The proofs of state

evolution have been extended to a broader setting [57, 58, 59].

What makes the state evolution particularly appealing in the statistical physics

context is its connection to the computation of the MMSE. The fixed points of the

expression (18) can be expressed at the stationary points of the replica symmetric free

entropy

m = fSE(m) ⇔ ∂ΦRS(m)

∂m
= 0 (19)
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where ΦRS(m) is indeed the same free entropy as in eq. (13).

Since the signal u is unknown the corresponding initialization is mt=0 = 0 (this is

for prior distribution with zero mean) and thus the performance of AMP is given by

the stationary point of the free entropy that is reached by iterating (18) initialized

at mt=0 = 0. The performance of AMP at convergence thus corresponds to the

local maximum mAMP of the free entropy ΦRS(m) that has the largest error. The

corresponding MSE is then

MSEAMP = ρ−mAMP . (20)

4.3. The phase diagrams and the hard phase

We have seen in the previous two subsections that the values of the MMSE as well as

the MSE obtained by the AMP algorithm can both be deduced from the extremizers of

the free entropy function ΦRS(m).

While the MMSE is given by the global maximizer of ΦRS(m), the MSE reached by

the AMP algorithm is given by the maximizer having the smallest m. In the following

we will consider all the extremizers of ΦRS(m) as this will allow us to understand the

resulting overall picture. We will discuss how the extremizers depend on some kind of

signal to noise ratio α. This signal to noise ratio can be simply the value of α = λ in

the spiked matrix model, or the sample complexity ratio α = P/N in the generalized

linear model.

Depending on the other parameters of the model we can observe a number of

scenarios, we will discuss several of them below and refer to examples where they appear.

In the following sketches all the colored curves are extremizers of ΦRS(m). Those in

blue are the global maximizers of the free entropy corresponding to the MMSE. No

algorithmic procedure can achieve an error lower than the MMSE. When the AMP

algorithm does not achieve the MMSE, the MSE it reaches at its fixed point corresponds

to a maximizer of the free entropy of a higher error MSEAMP depicted in green. In red

we depict the other extremizers of the free entropy, in dashed red the minimizers, and

in full red the other maximizers.

The region of error between the green and the blue curve are values of the MSE that

are information-theoretically reachable, but the AMP algorithm does not reach them.

We call this region the hard phase, and its boundaries on the signal-to-noise ratio axes:

αIT for the information theoretic threshold where the values of the two maximizers of

ΦRS(m) switch order, and αalg above which AMP reaches the MMSE. The hard phase

exists in between these two thresholds, αIT < α < αalg. A third threshold αs marks the

spinodal point at which the lower-error maximizer of the free entropy ceases to exist,

this point does not have significant algorithmic consequences for finding the signal. In

other cases there may be no phase transition at all or a second order (continuous) phase

transition marked by αc.

The physical interpretation of the cases where the hard phase exists is the one

of first order phase transition in a high-dimensional (mean-field) system. The αIT
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corresponds to the thermodynamic phase transition while αs and αalg are the spinodals,

i.e. the boundaries of the metastable regions. In the hard phase the thermodynamic

equilibrium corresponds to the higher free entropy branch depicted in blue, and the green

fixed point corresponds to the metastable state. In the region αs < α < αIT the AMP

algorithm finds the thermodynamic equilibrium, but this state is split into exponentially

many separated states, each corresponding to the metastable branch (full red). In the

language of replica-symmetry breaking this phase corresponds to the dynamical-1RSB

phase (d-1RSB). In the d-1RSB phase the AMP algorithm reached optimal performance

in terms of finding the signal, however, sampling the posterior measure in the d-1RSB

region is conjectured computationally hard.

In Fig. 2 we depict one possible structure of extremizers of the free entropy ΦRS(m)

for models where neither m = 0 nor m = ρ are fixed points for α > 0. On the left

hand side of Fig. 2 we depict a case without a phase transition. This situation arises for

instance in generalizes linear models with Gaussian prior and a sign activation function,

corresponding to the spherical teacher-student perceptron, see e.g. center of Fig. 2 in

[51] for a concrete example. On the right hand side of Fig. 2 we depict a case with a

first order phase transitions. Such as situation arises for instance spiked matrix model

where the prior is sparse with non-zero mean, see e.g. rhs of Fig. 4 in [6] for a concrete

example.

snrα =

M
SE

ρ

0
snrα =

M
SE

ρ

0
αc αIT αalg

Figure 2. Extremizers of the replica symmetric free entropy when neither m = 0 nor

m = ρ are stationary points. Colors explained in the text. (Left) A case without a

phase transition. (Right) A case with a first order phase transition.

In Fig. 3 we depict another possible structure of extremizers of the free entropy

ΦRS(m) for models where m = 0 is a fixed point. On the left of Fig. 3 there is a

situation with a second order phase transition as is the case for instance in the symmetric

stochastic block model with two groups, see e.g. Fig. 1 in [60] for a specific example.

On the right of Fig. 3 there is a situation with a first order phase transition as is the
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case for instance in the symmetric stochastic block model with more than 4 groups,

see e.g. Fig. 3 in [60] for a specific example. In this case the threshold at which the

fixed point at m = 0 ceases to be a maximum and start to be a minimum is the well-

known Kesten-Stigum threshold [61], marked αc on the lhs of the figure, and αalg on

the rhs of the figure. When m = 0 and MMSE = ρ is the thermodynamic equilibrium

no correlation with the signal can be obtained and the phase α < αIT is in this case

referred to as the undetectable region. In this phase the planted model is contiguous to

the non-planted model in the sense that all high-probability properties in the planted

model are the same in the non-planted one other [62]. This is the setting that is most

often explored in the sum-of-squares approach of section 5.

snrα =

M
SE

ρ

0 αc snrα =

M
SE

ρ

αc
0

αIT αalg

Figure 3. Extremizers of the replica symmetric free entropy when m = 0 is a

stationary point for all α. Colors explained in the text. (Left) A case with a

(continuous) 2nd order phase transition. (Right) A case with a (discontinuous) first

order phase transition.

In Fig. 4 we depict yet another possible structure of extremizers of the free entropy

ΦRS(m) for models where m = ρ is a fixed point and thus where exact recovery of the

signal with MMSE = 0 is possible for sufficiently large signal-to-noise ratios. On the

right of Fig. 4 we depict a case with a first order phase transition. Such a situation arises

e.g. in the generalized linear model with binary prior and sign activations, corresponding

to the teacher-student binary perceptron, see left hand side of Fig. 2 in [51]. On the

left of Fig. 4 we depict a case with a second order phase transition, this arises e.g.

in the generalized linear model with Laplace prior and no noise, corresponding to the

minimization of the `1 regularization, see e.g. Fig. 3 in [63].

The examples we depict in this section do not exhaust all the possible scenarios

one encounters in computational problems. Some of those we did not cover include the

planted locked constraint satisfaction problems where both m = 0 and m = ρ fixed

points exist and an all-to-nothing first order phase transition happens between these

two fixed points [64]. Both m = 0 and m = ρ fixed point also exist for instance
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snrα =

M
SE

ρ

0 αc snrα =

M
SE

ρ

0
αc αIT αalg

Figure 4. Extremizers of the replica symmetric free entropy when m = ρ is a

stationary point for all α. Colors explained in the text. (Left) A case with a 2nd

order phase transition. (Right) A case with a first order phase transition.

in the generalized linear model with Gaussian prior and absolute value activation

corresponding to the phase retrieval problem. In that case there is a second order

phase transition from the undetectable phase to a detectable one and later on a first

order phase transition to exact recovery, see e.g. left hand side of Fig. 5 in [51].

Another interesting and very generic case is depicted e.g. in Fig. 6 of [6] for the

spiked matrix model with a symmetric Rademacher-Bernoulli prior. In this case the

undetectable phase (m = 0 fixed point) is followed by a phase where a correlation with

the signal is detectable but small, and where AMP reaches a small but suboptimal

correlation to the signal. The position of the first order phase transition can be either

before or after the detectability threshold (as in the left or right of the lower part of

Fig. 6 in [6]). While this may seem a rare scenario, results in [65] (see Fig. 2) actually

indicate that it is likely very generic and that often the size of the region where detection

is possible but sub-optimal is very thin.

Yet another interesting example of a phase transition in a planted problem is the

planted matching problem where the phase transition is infinite order, i.e. all the

derivatives of the order parameter m exist at the transition from partial recovery phase

to exact recovery phase [66].

4.4. Is the hard phase really hard?

A fundamental question motivating the discussion of this paper is for what class of

algorithms is the hard phase computationally inaccessible?

An important evidence towards the hardness is summarized in [67] where it is shown

that a very broad range of algorithms related structurally to the approximate message

passing cannot improve over the AMP that uses the Bayes-optimal parameters. Efforts
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to prove lower bounds are considerable, as discussed in section 5. A number of authors

put forward a conjecture that in settings where the large-size limit and randomness is

taken in such a way that AMP and the Bayes-optimal solution are related in the way

we describe above, then AMP is optimal among a large class of algorithms. But could

this possibly be all polynomial algorithms?

It is important to note that there are problems with the phenomenology leading to

the hard phase yet for which polynomial algorithms to find the signal exist never-the-

less. One of them is that planted XOR-SAT problem [68, 64] that is mathematically

a linear problem in the Boolean algebra and can thus always be solved using Gaussian

elimination. Gaussian elimination, however, runs with time larger than linear in the

size of the system and is not robust to noise where we plant a solution that violates a

small fraction of clauses. A more surprising and recent example is given by the noise-less

phase retrieval problem for Gaussian matrix J where the so-called LLL algorithm also

works in polynomial time down to the information-theoretic threshold [69, 70]. The

phase retrieval problem is NP-hard, unlike the planted XOR-SAT. Again the LLL is

based on linear algebra and thus in some sense related to Gaussian eliminations, it is

not robust to noise, or runs in time that is polynomial with an exponent considerably

larger than one.

The existence of these examples makes it clear that in some cases other algorithms

can perform better than AMP with the Bayes-optimal parameters in the high-

dimensional limit. It is thus more reasonable to conjecture that the AMP algorithm

may be optimal among those polynomial ones that are required to be robust to noise?

Or among those that run with resources linear with the input size of the problem (i.e.

quadratic in N)?

We also want to note here another case that is often cited as an example where

other algorithms beat AMP. This is the spiked tensor model for p ≥ 3. However, in this

case the algorithmic threshold happens at λN ∼ N−p/4 while the information theoretic

one at λN ∼ N (1−p)/2. We do not expect AMP to be in general optimal for other scalings

than the information-theoretic one, we thus do not consider this as a counter-example to

the conjecture of optimality of AMP. Our conjectures about optimality of AMP restrict

to the information-theoretic scaling.

4.5. The hard phase is glassy, causing hurdles to gradient-based algorithms

From the physics point of view the conjecture of optimality of AMP is very intriguing.

It needs to be stressed that the state evolution that rigorously tracks the performance

of the AMP algorithm corresponds to the replica symmetric branch of the free entropy

while replica symmetry breaking is needed to describe the physical properties of the

metastable state [71].

Physically, and following the success of survey propagation [72] in solving the

random K-SAT problem, one may have hoped that including the glassiness in the form

of the algorithm, as done in [73], would improve the performance. This is, however, not
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happening and is rigorously precluded by the proof of [74]. So in a sense while AMP

follows the non-physical solution for the metastable state, this solution has fundamental

meaning in terms of being the best solution achievable by a computationally tractable

algorithm.

It is interesting to note that early work in statistical physics indeed dismissed the

replica symmetric spinodal as non-physical, see [75], and presumed that algorithms will

be stopped by the glassiness of the metastable phase. This is a nice example where

the later state-evolution proof takes over the early physical intuition about what is the

relevant algorithmic threshold.

At the same time, the physics intuition of the glassiness stopping the dynamics for

signal-to-noise ratios larger than where the replica symmetric appears was not wrong.

It simply does not apply to the AMP algorithm that does not correspond to a physical

dynamics as it does not perform a walk in the space of possible signals but rather iterates

marginals over the signal components. If we consider now instead physical dynamics such

and Monte-Carlo Markov chains (MCMC) or algorithms updating the signal estimate

based on possibly noisy gradient descent the early intuition of [75] turned out to be

completely correct in the sense that these algorithms actually perform considerably

worse than AMP when the hard phase is present. Interestingly this was not expected in

some works, e.g. [60] conjectured that MCMC performs as well as message passing in

the stochastic block model, which turns out to be wrong [76]. Very clear-cut examples

of gradient-based Langevin algorithms performing worse than AMP are given for the

mixed spiked matrix-tensor model in [77] and for the phase retrieval in [78].

The phase retrieval example is particularly relevant due to its interpretation as a

neural network and given that gradient descent is the working horse of the current

machine learning revolution. One may ask whether some key parts of the current

machine learning tool-box such as over-parametrization and stochasticity in gradient

descent are not a consequence of mitigation of the hurdles that gradient descent

encounters due to glassiness of the landscape. Some resent works on the phase retrieval

problem do point in that direction [79, 80].

5. Polynomial Proofs: the Sum-of-Squares Hierarchy

In the absence of a proof that P 6= NP, we have no hope of proving that problems

in a certain parameter range truly require exponential time. There may in fact be no

hard regimes. But we can try to gather the efficient algorithms we know of into large

families—each characterized by a particular strategy or kind of reasoning, or which can

only “understand” certain things about their input—and show that no algorithm in

these families can succeed. In the previous section, we discussed how the overlap gap

property can be used to defeat algorithms that are stable to noise or small perturbations

in their input.

Here we discuss classes of algorithms that have an algebraic flavor. We will focus

on the sum-of-squares hierarchy, and briefly discuss its cousin the low-degree likelihood
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ratio. Many of the best algorithms we know of are captured by these classes, including

powerful generalizations of spectral algorithms and classic approximation algorithms.

Thus if we can show that they fail to solve certain problems, or more precisely that

they require polynomial “proofs” or “likelihood ratios” of high degree, this constitutes

additional evidence that these problems are hard.

There are types of reasoning that these systems have difficulty with, as our first

example will illustrate. This leaves open the possibility that some very different

algorithm could efficiently solve problems in what we thought was a hard regime.

However, these other types of reasoning seem fine-tuned and fragile, and only work

in noise-free settings. For a wide variety of noisy problems, algorithms associated with

sum-of-squares are conjectured to be optimal [81].

5.1. Proofs and refutations

At its heart, the sum-of-squares (SoS) hierarchy is a way of constructing refutations of

constraint satisfaction or optimization problems: proofs that a solution does not exist, or

that no solution achieves a certain value of the objective function. It comes with a dual

problem, of evading refutation by finding a pseudoexpectation: a fictional distribution

of solutions that looks reasonable as long as we only ask about polynomials up to a

certain degree. If a pseudoexpectation can be constructed that “fools” polynomials up

to degree d, then any refutation must have degree greater than d.

Let’s look at an example. Consider three variables x, y, z ∈ {±1}. Is it possible for

them to sum to zero? This problem may seem trivial, but bear with us. Algebraically,

we are asking whether the following system of polynomials has a solution,

x2 − 1 = 0

y2 − 1 = 0

z2 − 1 = 0

x+ y + z = 0 .

(21)

Here is a proof, that the motivated reader can verify, that no solution exists:

1

8

[(
x2 + 3(y2 + z2) + 4(xy + xz + 3yz)− 3

)
(x2 − 1)

+
(
y2 + 3(x2 + z2) + 4(yz + xy + 3xz)− 3

)
(y2 − 1)

+
(
z2 + 3(x2 + y2) + 4(xz + yz + 3xy)− 3

)
(z2 − 1)

]
+ (x+ y + z)2

=
1

8

(
(x+ y + z)2 − 1

)2
+ 1 . (22)

If the constraints (21) hold, then the left-hand side of (22) is identically zero. On

the other hand, the right-hand side is the square of a polynomial plus 1, giving the

contradiction 0 ≥ 1. We will reveal below how we constructed this proof.
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More generally, suppose we have a set of polynomials f1(x), . . . , fk(x) over n

variables x1, . . . , xn. We wish to prove that there is no x ∈ Rn such that fi(x) = 0 for

all i. A sum-of-squares proof consists of additional polynomials g1, . . . , gk and h1, . . . , ht
such that

k∑
i=1

gi(x)fi(x) =
t∑

j=1

hj(x)2 + 1 , (23)

where 1 on the right-hand side can be replaced by any positive constant. In other

words, we find a linear combination of the fi that is strictly positive everywhere, so

they can never be zero simultaneously. Any unsatisfiable system of polynomial equations

{fi(x) = 0} has a refutation of this form [82, 83]. A logician would say that the SoS

proof system is complete.

Now, we say a SoS proof is of degree d if the polynomials gifi and h2
j on the left

and right sides of (23) have maximum degree d. Thus our example (22) is a proof of

degree d = 4. (By convention d is always even: the hj have degree at most d/2 = 2.)

As we increase d, we obtain a hierarchy of increasingly powerful proof systems.

In some cases the lowest possible degree of an SoS proof is much larger than the

degree of the original constraints fi, since we may need high-degree coefficients gi to

create the right cancellations so that the sum can be written as a sum of squares. As

we will see below, if the necessary degree grows with the size of the problem, we can

interpret this as evidence that the problem is computationally hard.

5.2. From proofs to algorithms: semidefinite programming

Of course, the existence of an SoS proof doesn’t necessarily make it easy to find.

Algorithmically, how would we search for these polynomials? If we choose some

ordering for the monomials up to some degree, writing a symbolic vector m =

(1, x, y, z, x2, xy, xz, y2, . . .), then we can represent a polynomial q as a vector q of its

coefficients and write q(x) as an inner product 〈q |m〉. Multiplying two polynomials is

a bilinear operation, and the sum on the right-hand side of (23) can be written

t∑
j=1

hj(x)2 =
t∑

j=1

〈m |hj〉 〈hj |m〉 = 〈m|H |m〉

where H =
t∑

j=1

|hj〉 〈hj| . (24)

This bilinear form H is positive semidefinite, which we denote H � 0.

With this abstraction, the problem of finding SoS proofs asks for a positive

semidefinite matrix that matches the left-hand side of (23). To nail this down, for

a polynomial q let qu denote the coefficient of each monomial u. Then summing over all

the cross-terms in the product of two polynomials p, q gives

(pq)u =
∑

v,w: vw=u

pvqw . (25)
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Since for any two monomials s, t the entry Hs,t = 〈s|H |t〉 must equal the coefficient of

u = st on the left-hand side of (23), for any s, t such that st 6= 1 we have∑
i

∑
v,w: vw=st

(gi)s(fi)t = Hs,t , (26)

and for s = t = 1 we have ∑
i

(gi)1(fi)1 = 1 +H1,1 . (27)

For a given set {fi}, these constraints are linear in the coefficients of the {gi}. Adding

the semidefiniteness constraint H � 0 to this linear system of equations makes this a

case of semidefinite programming or SDP [84, 85, 86, 87].

SDP can be solved up to arbitrarily small error in polynomial time whenever the

number of constraints and the dimension of the matrices is polynomial. (There is an

important caveat, namely that the coefficients of the SoS proof need to be polynomially

bounded [88, 89].) Since the number of monomials over n variables of degree d is(
n+d−1

d

)
= O(nd), this means that SoS proofs are easy to find whenever the degree d is

constant.

On the other hand, if we can somehow prove that the lowest degree of any SoS

proof grows with n, this rules out a large class of polynomial-time algorithms. When we

can prove them, these SoS lower bounds are thus evidence of computational hardness.

5.3. Sum-of-squares lower bounds: enter the Charlatan

To see how we might prove such a lower bound, let’s return to our earlier problem. A

Charlatan§ comes along and claims that the system (21) has not just one solution, but

many. That is, they claim to know a joint probability distribution over reals x, y, z such

that x2 = y2 = z2 = 1 and x + y + z = 0. To convince you, they offer to tell you the

expectation E[q] of any polynomial q(x, y, z) you desire—but only for q of degree d or

less, where in this case d = 2.

Let’s call the Charlatan’s claimed value for E[q] the pseudoexpectation, and denote

it Ẽ[q]. How might you catch them in a lie? You are no fool; you know that the

expectation of a sum is the sum of the expectations. Since the constraints fi(x) = 0

must hold identically, you also know that any q that has fi as a factor must have zero

expectation. Finally, you are well aware that the square of any polynomial is everywhere

nonnegative, and thus has nonnegative expectation.

Putting this together, the pseudoexpectation must be a linear operator from the

space of polynomials of degree d to R with the following properties:

(i) Ẽ[1] = 1

(ii) Ẽ[fiq] = 0 for any polynomial q(x) of degree d− deg(fi) or less

§ Many concepts in theoretical computer science have become personified over the years: the Adversary,

the Oracle, Arthur and Merlin, Alice, Bob, and Eve, and so on. We propose that the Charlatan be

added to this cast of characters.
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(iii) Ẽ[q2] ≥ 0 for any polynomial q(x) of degree d/2 or less.

Let’s think of Ẽ as a bilinear form that takes two polynomials p, q of degree up to

d/2 and returns Ẽ[pq] = 〈p| Ẽ |q〉. Then condition (3) corresponds to Ẽ being positive

semidefinite, just as for H above. Since conditions (1) and (2) are linear, finding a

pseudoexpectation is another case of semidefinite programming.

In our example, since d = 2, the monomials that Ẽ needs to deal with are just

1, x, y, z. Without further ado, we present the Charlatan’s claim as a multiplication

table of pseudoexpectations:

Ẽ 1 x y z

1 1 0 0 0

x 0 1 −1/2 −1/2

y 0 −1/2 1 −1/2

z 0 −1/2 −1/2 1

(28)

That is, they claim that x, y, z each have expectation Ẽ[x] = 〈1| Ẽ |x〉 = 0; they each

have variance Ẽ[x2] = 〈x| Ẽ |x〉 = 1; and each distinct pair is negatively correlated, with

Ẽ[xy] = 〈x| Ẽ |y〉 = −1/2. As a result, Ẽ[x+ y + z] = 0, and Ẽ[(x+ y + z)p] = 0 for

any linear function p, satisfying condition (2) above.

It is easy to check that this matrix of pseudomoments is positive semidefinite.

Indeed its 3× 3 part is the Gram matrix of three unit vectors that are 120◦ apart. This

is impossible for three real-valued variables in {±1}, but as far as quadratic polynomials

of x, y, z are concerned, there is no contradiction.

On the other hand, we already know that we can debunk the Charlatan’s claims if we

ask about degree-4 polynomials. The left-hand side of (22) must have zero expectation

since it is a linear combination of the fi. By linearity, this would imply that

Ẽ
[

1

8

(
(x+ y + z)2 − 1

)2
]

= −1 < 0 . (29)

Thus there is no way to extend the pseudoexpectation in (28) from degree 2 to degree 4

without violating positive semidefiniteness. More generally, an SoS proof of the form (23)

would imply

Ẽ

[∑
j

h2
j

]
= −1 < 0 . (30)

Thus for each degree d, there is an SoS proof if and only if there is no

pseudoexpectation. These two problems are dual SDPs; a solution to either is a

certificate that the other has no solution. In particular, any degree at which the

Charlatan can succeed is a lower bound on the degree a refuter needs to prove that

no solution exists. In this example, we have shown that degree 4 is both necessary and

sufficient to prove that no three variables in {±1} can sum to zero.
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5.4. What does Sum-of-Squares understand?

The reader is probably wondering how the SoS framework performs on larger versions of

our example. Suppose we have n variables x1, . . . , xn. If n is odd, clearly it is impossible

to satisfy the system

x2
i − 1 = 0 for all i = 1, . . . , n∑n
i=1 xi = 0 .

(31)

To put it differently, if you take an odd number of steps in a random walk on the

integers, moving one unit to the left or right on each step, there is no way to return to

the origin.

It turns out [90, 91, 92] that any SoS proof of this fact requires degree n+ 1. That

is, the Charlatan can construct a pseudoexpectation for polynomials of degree d up to

n− 1. This includes the case n = 3 we studied above.

How can the Charlatan do this? Since x2
i = 1 for all i, it suffices for them to

construct pseudoexpectations for the multilinear monomials, i.e., those of the form

xS =
∏

i∈S xi for some set S ⊂ {1, . . . , n}. Furthermore, we can symmetrize over

all permutations of the xi, and assume that Ẽ[xS] only depends on their degree |S|:
semidefinite programming is a convex problem, so symmetric problems have symmetric

solutions if any.

Now let ak denote Ẽ[xS] for |S| = k. Equivalently, ak = Ẽ[x1x2 · · ·xk]. We can

compute ak as follows. Suppose I tell you that n/2 of the xi are +1, and n/2 are −1.

(Don’t ask whether n/2 is an integer.) If we choose a uniformly random set of k distinct

variables from among the xi, then ak is the average parity of their product. An enjoyable

combinatorial exercise gives, for k even,

ak = (−1)k/2

(
n/2
k/2

)(
n
k

) = (−1)k/2
(k − 1)(k − 3)(k − 5) · · · 1

(n− 1)(n− 3)(n− 5) · · · (n− k + 1)
(32)

and ak = 0 for k odd.

Again using the fact that x2
i = 1 for all i, for any two sets S, T we have xS xT = xS4T

where 4 denotes the symmetric difference. Thus we define the pseudoexpectation as a

bilinear operator that takes monomials xS, xT where |S|, |T | ≤ d/2, with matrix elements

〈xS| Ẽ |xT 〉 = Ẽ[xS xT ] = Ẽ[xS4T ] = a|S4T | , (33)

which generalizes (28) above. As long as d ≤ n− 1, it turns out that this Ẽ is positive

semidefinite [92]; its spectrum can be analyzed using representation theory [93]. Thus

any SoS refutation of the system (31) must be of degree at least d = n+ 1.

This lower bound is tight: any pseudoexpectation on Boolean variables x1, . . . , xn ∈
{±1} of degree n + 1 must be a true expectation, i.e., must correspond to an actual

distribution over the hypercube [94]. Thus at degree n+ 1, the Charlatan can no longer

produce a convincing pseudoexpectaton unless solutions actually exist. If n is odd, there

are no solutions, so by SDP duality there is a refutation of degree n+ 1.



Disordered Systems Insights on Computational Hardness 28

One way to construct a refutation is as follows. Let w denote
∑

i xi. First we

“prove” that w is an odd integer between −n and n by finding polynomials g1, . . . , gn
such that

n∑
i=1

gi(x) (x2
i − 1) =

...,n−2,n∏
t=−n,−n+2,...

(w − t) . (34)

For instance, the reader can check that the three terms inside the square brackets in (22)

sum to (w + 3)(w + 1)(w − 1)(w − 3) where w = x+ y + z. The polynomials gi in (34)

are guaranteed to exist because, in the ring of polynomials, the set {x2
i − 1} spans the

set of all polynomials that vanish on {±1}n. For the experts, {x2
i − 1} is a Gröbner

basis for this ideal.

Now we wish to show that some polynomial with w as a factor, say w2, is nonzero.

To do this, we find a polynomial q(w) that is everywhere positive and that coincides

with w2 at the odd integers between −n and n. By polynomial interpolation, we can

take q(w) to be even and of degree n+ 1. For n = 3, for instance, we have

q(w) =
1

8
(w2 − 1)2 + 1 ≥ 1 , (35)

which we have already written as a sum of squares.

Since the polynomial q(w)− w2 has these odd integers as roots, it is a multiple of

the expression in (34). Putting this together for n = 3 gives

1

8
(w + 3)(w + 1)(w − 1)(w + 3) + w2 = q(w) , (36)

which is exactly what we wrote in (22).

Now recall that SoS refutations of degree d can be found in polynomial time only

if d is a constant. This means that as far as SoS is concerned, proving that (31) is

unsatisfiable is hard. Clearly SoS doesn’t understand parity arguments very well.

Morally, this is because the matrix elements (32) are analytic functions of n: they

can’t tell whether n is odd or even, or even whether n is an integer or not. To put it

differently, binomials like those in the numerator of ak in (32) will happily generalize

to half-integer inputs with the help of the Gamma function. After all, there are(
3

3/2

)
= 32/(3π) = 3.395 . . . ways to take three steps of a random walk and return

to the origin.

The “hardness” of this example may make SoS look like a very weak proof system.

But parity is a very delicate thing. If n Boolean variables are represented as {0, 1}, then

their parity is merely their sum mod 2; but if we represent them as spins ±1, the parity

is their product, which is of degree n. When n is large, we would be amazed to find

such a term in the Hamiltonian of a physical system. No observable quantity depends

on whether the number of atoms in a block of iron is odd or even.

The situation seems similar to XORSAT, whose clauses are linear equations mod 2.

Its energy landscape has many of the hallmarks of algorithmic hardness, with clusters,

frozen variables, and large barriers between solutions [95]. See also the discussion in
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Subsection 3.4 of Section 3. In the noise-free case it can be solved in polynomial time

using Gaussian elimination over Z2. But if we add any noise, for instance only requiring

that 99% of the XORSAT clauses be satisfied, its algebraic structure falls apart and this

algorithmic shortcut disappears. So while parity and XORSAT are good cautionary

tales, we shouldn’t think of them as representative of more generic problems. As we will

see next, for many problems with noise, including those involving random matrices and

tensors with planted structure, the SoS framework is associated with many algorithms

that are conjectured to be optimal.

5.5. Relaxation and the Sherrington-Kirkpatrick model

Above we referred to the pseudoexpectation as the work of a charlatan who falsely claims

that an unsatisfiable problem has many solutions. But there is another, less adversarial

way to describe this character: rather than trying to fool us, they are a Relaxer who

honestly solves a less-constrained problem, and thus proves bounds on the optimum of

the original problem.‖
To celebrate the 40th anniversary that inspired this book, let’s consider the

Sherrington-Kirkpatrick model. Given a coupling matrix J we can write the ground

state energy of an Ising spin glass as

E0 = − max
x∈{±1}n

∑
i<j

Jijxixj = −1

2
max
X∈C

tr JX (37)

(where we take J to be symmetric and zero on the diagonal). In other words, the

energy is quadratic in the spins, but linear in the products Xij = xixj. So we just

have to maximize a linear function! This is exactly the maximization problem (6) when

p = 2, ignoring the −1/2 factor.

The tricky part is that we have to maximize tr JX over a complicated set. In (37),

C is the set of matrices X = |x〉 〈x| corresponding to actual spin configurations, namely

symmetric rank-1 matrices with ±1 entries and +1s on the diagonal. We would get the

same maximum if we defined C to be the polytope of all convex linear combinations of

such matrices. But this so-called cut polytope has exponentially many facets, making this

maximization computationally infeasible [96]. In the worst case where J is designed by

an adversary, it is NP-hard since, for instance, it includes Max Cut as a special case [97].

We can relax this problem by allowing X to range over some superset C ′ of C.
Then the maximum of tr JX will be greater than or equal to the true maximum over

C, providing a lower bound on E0. A hopeful goal is to find a set C ′ whose structure

is simple enough to perform this maximization efficiently, while giving a bound that is

not too far from the truth.

The first attempt we might make is to allow X to range over all positive semidefinite

‖ Thanks to Tselil Schramm for suggesting the name “Relaxer” for this rehabilitated version of the

Charlatan. Perhaps “Slacker” would also work in contemporary English.
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matrices with trace n. Call this set C0:

C0 = {X : X � 0 and trX = n} . (38)

Then

max
x∈C0

tr JX = nλmax (39)

where λmax is J ’s most positive eigenvalue. For the SK model where the Jij are Gaussian

with mean 0 and variance 1/n, the Wigner semicircle law tells us that, in the limit of

large n, the spectrum of J is supported on [−2, 2]. Thus

lim
n→∞

E0/n ≥ −
λmax

2
= −1 . (40)

This is fairly far from Parisi’s solution E0/n = −0.7632 [98, 99]. Can we get a better

bound with some other choice of C ′?
We can tighten our relaxation by adding any constraint that holds for the true set

of matrices C. Let’s start with the constraint that X’s diagonal entries are 1. This gives

a set of matrices sometimes called the elliptope [100],

C2 = {X : X � 0 and Xii = 1 for all i} . (41)

We might hope that maximizing tr JX over C2 rather than C0 gives a better bound

on the energy. Unfortunately, this is not the case: for any constant ε > 0, with high

probability there is an X ∈ C2 such that tr JX ≥ 2−ε. We will sketch the proof of [101].

First let vλ denote the eigenvector of J with eigenvalue λ, normalized so that

|vλ|2 = 1. Let m denote the number of eigenvalues in the interval [2 − ε, 2]. These

eigevalues span a low-energy subspace where E0 ≈ −1. Now define Y as

Y =
n

m

∑
λ∈[2−ε,2]

|vλ〉 〈vλ| . (42)

That is, Y is n/m times the projection operator onto this subspace. Thus Y � 0 and

tr JY ≥ (2− ε)n.

We can write Y ’s diagonal entries as

Yii =
n

m

∑
λ

(vλ)
2
i . (43)

Since the distribution of Gaussian random matrices is rotationally invariant, the vλ are

distributed as a uniformly random set of m orthonormal vectors in n dimensions. Thus

the (vλ)
2
i are asymptotically independent, and are 1/n on average. As a result, each Yii

is concentrated around 1.

To turn Y into an X such that Xii = 1 holds exactly, define D as the diagonal

matrix Dii = Yii and let

X = D−1/2Y D−1/2 . (44)
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Clearly X � 0. Moreover, since D itself is close to the identity, we have tr JX = tr JY

up to a vanishing error term. Since X ∈ C2, we have shown that C2 doesn’t give a bound

any better than the simple spectral bound provided by C0.

The alert reader will note that C2 is exactly the set of pseudoexpectations Ẽ that a

degree-2 charlatan can choose from. If Xij = Ẽ[xixj], then X � 0 and Xii = Ẽ[x2
i ] = 1.

So whether we regard X as the solution to a relaxed problem or a false claim about the

covariances E[xixj], we have shown that degree-2 SoS proofs cannot establish a bound

better than E0/n > −1 on the SK ground state energy. That is, they are incapable

of refuting the claim that there are states with energy −1 + ε or below, for arbitrarily

small ε.

(There is a subtlety here. The refuter’s goal is not to understand the typical ground

state energy of the SK model, but to provide ironclad proofs for individual realizations J

that their ground state energy is above a certain point. What we have shown is that, for

most realizations J , there is no degree-2 proof that its ground state energy is noticeably

above −1.)

We should also note that, just as C is the set of matrices X = |x〉 〈x| where the

xi = ±1 are Ising spins, C2 is the set of matrices X = |x〉 〈x| where the xi are n-

dimensional vectors with |xi|2 = 1. So while Ising spins can’t achieve the covariances

Xij = Ẽ[xixj] that the Charlatan claims, these vector-valued spins can achieve them in

the sense that Xij = 〈xi |xj〉.
This is the heart of the Goemans-Williamson approximation algorithm for Max Cut

[102]—or, in physics terms, bounding the ground-state energy of an antiferromagnet. In

Max Cut, our goal is to assign a spin xi = ±1 to each vertex, and maximize the number

w of edges whose spins are opposite. For a graph with m edges and adjancency matrix

A, this is

w =
1

2

(
m− 〈x|A|x〉

)
. (45)

If we relax this problem by letting the xi be unit-length vectors in Rn instead of just

±1, this becomes an SDP that we can solve in polynomial time. It can be shown that

this relaxation increases w by a factor of at most 1/0.878 = 1.138..., so the optimum of

this relaxation is not too far from that of the original problem.

We do not know whether going to higher-degree SoS improves this approximation

ratio. If we assume the Unique Games Conjecture (a plausible strengthening of P 6= NP)

then no polynomial-time algorithm can do better than Goemans-Williamson [103].¶
This suggests that going to degree 4, 6, and so on doesn’t give a better algorithm, but

even for degree 4 this is an open question.

On the other hand, for the SK model it was recently shown [104] that higher-degree

SoS does not improve our bounds on the ground state energy, as we will see next.

¶ This is usually presented the other way around. If we round the relaxed solution to ±1 spins by

cutting Rn with a random hyperplane, the Goemans-Williamson algorithm gives a cut that is at least

0.878 times the optimum, and the Unique Games Conjecture implies that this cannot be improved.

The same argument [103] implies an upper bound on the relaxed solution. (Thanks to Tim Kunisky

for pointing this out).
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5.6. Beyond degree 2

Can SoS proofs of some constant degree d > 2 prove a tighter bound on the ground

state energy E0 of the Sherrington-Kirkpatrick model? Do higher-degree polynomials

help us go beyond the simple spectral bound E0 ≥ −1?

The Charlatan’s job for d = 4 is already quite interesting. In addition to providing

X ∈ C2, they now have to provide an
(
n
2

)
-dimensional matrix X(4), with rows and

columns for each pair (i, j), such that

X
(4)
(i,j),(k,`) = Ẽ[xixjxkx`] . (46)

Thus X(4) must have the symmetries of a symmetric four-index tensor,

X
(4)
(i,j),(k,`) = X

(4)
(i,k),(j,`) = X

(4)
(i,`),(j,k) . (47)

In addition, X(4) needs to be consistent with the degree-2 pseudexpectations and the

constraint x2
i = 1. Thus

X
(4)
(i,j),(i,k) = Ẽ

[
x2
ixjxk

]
= Ẽ[xjxk] = Xjk (48)

X
(4)
(i,j),(i,j) = Ẽ

[
x2
ix

2
j

]
= 1 . (49)

(We saw these relations in Section 5.4 where we wrote xSxT = xS4T .) Finally, as always

X(4) must be positive semidefinite,

X(4) � 0 . (50)

The energy E = −(1/2) tr JX is still a function of the second-order

pseudoexpectation X. But not all matrices X in C2 can be extended to fourth order in

this way: the set

C4 = {X ∈ C2 : ∃X(4) such that (47)–(50) holds} (51)

is a proper subset of the elliptope C2. In other words, armed with degree-4 SoS proofs,

a refuter can prove some new constraints on the covariances Xij = xixj that go beyond

Xii = 1 and X � 0.

For example, consider any three Ising spins, xi, xj, and xk. Their products

(xixj, xjxk, xixk) can only take the values (1, 1, 1), (1,−1,−1), (−1, 1,−1), and

(−1,−1, 1). Thus the expectation of their products (Xij, Xjk, Xik) must lie in the convex

hull of these four vectors, namely the tetrahedron with these four vertices. The facets

of this tetrahedron are the linear inequalities

Xij +Xjk +Xik + 1 ≥ 0 (52)

Xij −Xjk −Xik + 1 ≥ 0 (53)

−Xij +Xjk −Xik + 1 ≥ 0 (54)

−Xij −Xjk +Xik + 1 ≥ 0 . (55)
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We have already seen a pseudoexpectation in C2 that violates the first of these

inequalities—namely (28) where Xij = Xjk = Xik = −1/2. Thus we cannot prove

these inequalities with degree-2 sum-of-squares. But we can prove them with degree 4,

and we already have! After all, we can rewrite (52) as

Ẽ[xixj + xjxk + xixk + 1] ≥ 0 . (56)

But if x2
i = x2

j = x2
k = 1 this is equivalent to

Ẽ
[
(xi + xj + xk)

2
]
≥ 1 . (57)

Looking again at our proof (22) that no three spins can sum to zero, the reader will see

that we in fact proved that (x+ y+ z)2 ≥ 1 whenever x2 = y2 = z2 = 1. The symmetry

operations x 7→ −x, y 7→ −y, and z 7→ −z give similar proofs of (53)–(55).

Thus any matrix X that violates these “triangle inequalities” can be refuted by

degree-4 sum-of-squares. More generally, since any t + 1 pseudoexpectation on t spin

variables is a true expectation [94], any linear inequality on the covariances of t spins—

or equivalently any inequality that involves a t× t principal minor of X—can be proved

with degree t+ 1 sum-of-squares.

Perhaps these and other degree-4 constraints will finally give a better bound on

E0? Sadly—or happily if you love computational hardness—they do not. In fact, no

constant degree can refute the claim that some spin confirugation lies in the low-energy

subspace, and thus prove a bound tighter than tr JX ≤ 2 or E0 ≥ −1.

One intuition for this is that for natural degree-2 pseudoexpectations, like the X we

constructed above (44) by projecting onto the low-energy subspace, triangle inequalities

and their generalizations already hold with room to spare. In the SK model we typically

have Ẽ[xixj] = O(1/
√
n), so (52)–(55) all read 1 +O(1/

√
n) ≥ 0. Thus, with perhaps a

slight perturbation to make it positive definite and full rank, X is already deep inside

the elliptope C2, and is not refuted by the additional inequalities we can prove with

low-degree SoS proofs.

There are several ways to make this intuition rigorous. One is to explicitly construct

higher-degree pseudoexpectations X(4), X(6), and so on that extend X in a natural way,

somewhat like a cluster expansion in physics. For instance, we could define

X
(4)
(i,j),(k,`) = XijXk` +XikXj` +Xi`Xjk − 2

n∑
m=1

XimXjmXkmX`m . (58)

This expression has the permutation symmetry of (47). The first three terms look like

Wick’s theorem or Isserlis’ theorem for the moments of Gaussian variables [105]; the

reader can check that by cancelling two of these terms when k = `, the sum over m

ensures the consistency relations (48) and (49) to leading order. A small perturbation

then satisfies these conditions exactly [106] and it is relatively easy to show that the

result is positive semidefinite; see also [107]. A similar approach works for degree 6 [108].
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5.7. Pseudocalibration and clever planted models

While constructions like (58) could probably be carried out for higher degree, the recent

proof [104] that no constant degree of SoS can improve the bound on E0 comes from a

different direction called pseudocalibration [109, 110].

In pseudocalibration, the Charlatan claims that the data is generated by a planted

model where the claimed solution is built in, rather than the (true) null model. In the

Sherrington-Kirkpatrick model this means pretending that the couplings J have been

chosen so that some Boolean vector x ∈ {±1}n achieves the spectral bound E0 = −1.

If we can construct a pseudoexpectation around this idea, then low-degree SoS can’t

tell the difference between the null model and the planted model. In particular, it can’t

prove that the planted solution doesn’t exist.

Following [110], we can briefly describe pseudocalibration as follows. We consider

two joint distributions on a signal x and observed data Y . In both cases, we choose x

from a prior P (x). In the null model, we choose Y independently of x with probability

P0(Y ); in the planted model, we choose Y with probability P1(Y |x). Thus

P0(x, Y ) = P0(Y )P (x)

P1(x, Y ) = P1(Y |x)P (x) = P1(Y )P1(x |Y ) ,

where P1(Y ) = Ex∼P (x)P1(Y |x) is Y ’s likelihood in the planted model.

In the Charlatan’s first attempt, they define the pseudoexpectation of a function

q(x) as its true expectation given Y , but reweighted to change the null model into the

planted one:

Ẽ[q(x) |Y ] = Ex∼P (x)

[
P1(x, Y )

P0(x, Y )
q(x)

]
= Ex∼P (x)

[
P1(Y )P1(x |Y )

P0(Y )P (x)
q(x)

]
=
P1(Y )

P0(Y )
Ex∼P1(x |Y )q(x) . (59)

That is, the pseudoexpectation of q(x) is its true expectation in the posterior distribution

P1(x |Y ), multiplied by the likelihood ratio P1(Y )/P0(Y ).

This pseudoexpectation is proportional to a true expectation, albeit over another

distribution. Thus it is positive semidefinite, Ẽ[q2] ≥ 0. Similarly, if P (x) and therefore

P (x |Y ) are supported on x satisfying some constraint fi(x) = 0, then Ẽ[fiq] = 0 for

any q.

Moreover, (59) gives any function of x and Y the expectation over the null model

that it would have in the planted model,

EY∼P0Ẽ[q(x, Y )] = E(x,Y )∼P0

[
P1(x, Y )

P0(x, Y )
q(x, Y )

]
= E(x,Y )∼P1q(x, Y ) . (60)

where we took the average over Y as well as x.
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On the other hand, for individual Y we have some trouble. For instance, (59)

gives Ẽ[1 |Y ] = P1(Y )/P0(Y ), the likelihood ratio instead of 1. This would make it

easy to catch the Charlatan whenever the null and planted models can be distinguished

information-theoretically. Moreover, while the planted model guarantees that Y has a

solution x, most Y drawn from the null model have no such solution. In that case we

have P1(Y ) = 0, and the posterior distribution P1(x |Y ) is undefined.

We can fix both these problems by projecting Ẽ[q(x) |Y ] into the space of low-

degree polynomials, both in x and in Y . In other words, we take its Taylor series in

x and Y up to some degree. For Boolean variables, this is equivalent to keeping just

the low-frequency part of the Fourier spectrum; in some cases, we might project onto

a suitable set of orthogonal polynomials. This preserves the appearance (60) of of the

planted model for functions of low degree in x and Y .

If all goes well, this projection smooths the likelihood ratio, keeping it concentrated

around its expectation 1. It also smooths the posterior distribution P1(x |Y ) as a

function of Y , extending it from the small set of Y produced by the planted model (for

instance, the few instances of the SK model where E0 = −1) to the more generic Y

produced by the null model.

However, the Charlatan has to preserve enough of the dependence on Y to make

Ẽ[q |Y ] convincing. To do this for q(x) of degree d, they typically need to preserve terms

in Y up to some sufficient degree D > d.

Showing that Ẽ remains positive semidefinite after this projection, and that

it continues to satisfy the constraints Ẽ[fi] = 0, can involve summing over many

combinatorial terms. This was first done for the Planted Clique problem [109].

While each application since then has involved special-purpose calculations, several

conjectures [110] offer general principles by which this program might be extended.

The projection of Ẽ[1 |Y ] = P1(Y )/P0(Y ) into low-degree polynomials in Y is of

its own interest: it is the low-degree likelihood ratio. If it is usually close to 1 in the null

model but is large in the planted model, then it provides a polynomial-time hypothesis

test for distinguishing between these two. Thus showing that it has bounded variance

in the null model is in itself evidence of computational hardness [111]. In particular,

[112] showed that the degree-D likelihood ratio fails to improve the bound on the SK

model for any D = o(n/ log n). This does not in itself prove that SoS fails up to this

degree, but the two approaches are closely related.

We conclude this section by discussing the choice of planted model. Proving that

refutation is hard might require a clever way to hide a solution, as opposed to the

standard spiked matrices and tensors. For instance, to prove their SoS lower bounds

on the Sherrington-Kirkpatrick model, [104] related a planted model proposed by [107]

where a random subspace (i.e., the low-energy subspace) contains a Boolean vector to

a model of Gaussian random vectors, where in the planted case these vectors belong to

two parallel hyperplanes.

More generally, there is a long history in physics and computer science of “quiet”

planting, in order to make the solution as difficult as possible to detect [113, 64]. The
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quieter the planting, the harder it is to distinguish from the null model. In this case,

we want the planting to be computationally quiet [112], and in particular to match

the low-degree moments of the null distribution. For instance, rather than the usual

spiked model where we add a rank-1 perturbation to a Gaussian random matrix J—

which disturbs the entire spectrum—we can plant a large eigenvalue more quietly by

increasing the eigenvalue of a specific eigenvector [114].

5.8. Optimal algorithms and the curious case of tensor PCA

We’ve talked a lot about what SoS algorithms can’t do. But for many problems they

seem to be optimal, performing as well as any polynomial-time algorithm can. For Max

Cut and the Sherrington-Kirkpatrick model, we’ve seen evidence that this is the case

even at degree 2.

Thus in many cases, SoS algorithms seem to succeed or fail at the same place where

physics suggests a hard/easy transition. Even when these thresholds don’t coincide

exactly, they often have the same scaling and thus differ by a constant. For example,

degree-2 SoS—also known as the Lovász ϑ function—can refute graph colorings in

random regular graphs within a factor of 4 of the Kesten-Stigum transition [115], and

it’s possible that higher-degree SoS does better.

While refuting the existence of a planted solution lets SoS solve the detection

problem—distinguishing the null from a planted model—a refinement of this idea often

yields algorithms for reconstruction as well. Roughly speaking, if we can refute the

existence of a solution when it doesn’t exist, we can often find it when it does [110].

To see how this works, consider a planted model, and let x∗ denote the ground

truth. Let φ(x) be some polynomial for which φ(x∗) ≤ φ∗: for instance, in PCA, φ(x)

could be the `2 distance between the signal matrix |x〉 〈x| and the observed matrix Y .

Now suppose there is a degree-d refutation of the claim that there are any good solutions

far from the ground truth: that is, a proof that if φ(x) ≤ φ∗ then |x − x∗|2 ≤ ε. Then

any degree-d pseudoexpectation must claim that |Ẽ[x] − x∗|2 ≤ ε, and Ẽ[x] is a good

estimate of x∗.

This approach yields efficient algorithms for many problems [116, 117], including

tensor PCA [118]. But for tensor PCA in particular, a curious gap appeared between

algorithms and physics. Recall from Section 2.1 that tensor PCA, a.k.a. the spiked

tensor model, is a planted model of p-index tensors defined by

Y = λu⊗p + J . (61)

Here λ is the signal-to-noise ratio, the planted vector u is normalized so that |u|2 = n,

and the noise tensor J is permutation-symmetric with Gaussian entries N (0, 1). The

information-theoretic transition occurs at λ = λcn
−(p−1)/2 for a constant λc depending

on p and u’s prior [119, 50].

The best known polynomial-time algorithms, on the other hand, require a

considerably larger signal-to-noise ratio, λ & n−p/4. One such algorithm, called “tensor
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unfolding,” reinterprets Y as a matrix and iteratively applies PCA to it. For p = 4, for

instance, we treat Y as an n2×n2 matrix Yij,k` and find its leading eigenvector v. Since

v ≈ u⊗u, we then treat v as an n×n matrix and estimate u as its leading eigenvector.

At each stage we unfold the tensor into a matrix which is as square as possible.

Other algorithms, that also succeed for λ & n−p/4, can be derived directly from sum-

of-squares [120]. Conversely, SoS lower bounds suggest that there is no polynomial-time

algorithm if λ . n−p/4, so this appears to be the algorithmic threshold [121].+

On the other hand, physics-based algorithms such as belief propagation and its

asymptotic cousin approximate message passing (AMP), as well as Langevin dynamics,

all fail unless λ & n−1/2, making these algorithms suboptimal whenever p ≥ 3 [119, 122].

This does not contradict conjectures of optimality from section 4.4 as those were

restricted to the scaling of parameters corresponding to the information-theoretical

regime which in this case is λ ≈ n−(p−1)/2. Never-the-less, focusing on the regime

discussed here, does sum-of-squares know something that physics doesn’t?

This conundrum has a satisfying answer [123]: in the scaling regime λ & n−(p−1)/2

we were using the wrong physics. Belief propagation keeps track of pairwise correlations.

When we compute the Bethe free energy, we pretend that the Gibbs distribution, i.e.,

the posterior distribution P (x |Y ), has the form

P (x) =
∏
i

µi(xi)×
∏
(i,j)

µij(xi, xj)

µi(xi)µj(xj)
(62)

where µi and µij are one- and two-point marginals. Minimizing the resulting free energy

is equivalent to finding fixed points of belief propagation [124].

But when p ≥ 3, it becomes vital to consider correlations between clusters of p

variables. This gives rise to a hierarchy of free energies due to [125]. For p = 3, for

instance, we assume that the Gibbs distribution has the form

P (x) =
∏
i

µi ×
∏
(i,j)

µij
µi µj

×
∏

(i,j,k)

µijk µi µj µk
µij µjk µik

(63)

(where for readability we suppress (xi), (xi, xj), and so on). At each level of this

approximation, we correct for overcounting smaller clusters. Taking the logarithm of

this expression and averaging over x gives an inclusion-exclusion-like formula for the

entropy.

There are several ways one might turn this into a spectral algorithm. One is to write

an iterative algorithm to minimize the free energy. This gives rise to a generalization

of belief propagation in which each variable sends messages to clusters of up to p − 1

variables with which it interacts [126, 127]. One could then linearize this message-

passing algorithm around a trivial fixed point, producing a operator analogous to the

non-backtracking operator for belief propagation [128, 129].

+ Our notation & and . suppresses logarithmic factors. These are consequences of matrix Chernoff

bounds, and could probably be removed.
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An alternate approach is to compute the Hessian of the free energy at a trivial fixed

point, generalizing the use of the Bethe Hessian for spectral clustering in graphs [130].

This gives rise to the following operator. For a set U = {s1, . . . , sp} with |U | = p, let

YU denote Ys1,...,sp . Fix ` ≥ p/2. Then define the following
(
n
`

)
-dimensional operator,

whose rows and columns are indexed by sets S, T with |S| = |T | = `:

MS,T =

{
YS4T if |S4T | = p

0 otherwise ,
(64)

where 4 again denotes the symmetric difference.

The spectral norm of M can be used as a test statistic to distinguish the planted

model from the null model where λ = 0. In addition, the leading eigenvector of M

points approximately to the minimum of the free energy, and a voting procedure yields

a good estimate of the signal u. This yields polynomial-time algorithms for detection

and reconstruction whenever λ & n−p/4, matching the SoS threshold. Thus the marriage

of algorithms and statistical physics is redeemed [123].

The same analysis matches a continuum of subexponential-time algorithms at

smaller values of λ [131] and yields a simpler refutation of random constraint satisfaction

problems at high clause densities [132]. These “Kikuchi matrices” have additional

applications, e.g. [133].

6. Conclusion

What does the future hold? As our understanding of algorithms deepens, we hope

to understand the universal characteristics that make problems easy or hard, unifying

larger and larger classes of polynomial-time algorithms and connecting them rigorously

with physical properties of the energy landscape. Very recently, [134] connected the

low-degree likelihood ratio with the Franz-Parisi potential, adding to the evidence that

free energy barriers imply computational hardness. We will know much more in a few

years than we know now.
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[53] Zdeborová L and Krzakala F 2016 Advances in Physics 65 453–552

[54] Thouless D J, Anderson P W and Palmer R G 1977 Philosophical Magazine 35 593–601

[55] Bolthausen E 2014 Communications in Mathematical Physics 325 333–366

[56] Bayati M and Montanari A 2011 IEEE Transactions on Information Theory 57 764–785

[57] Javanmard A and Montanari A 2013 Information and Inference: A Journal of the IMA 2 115–144

[58] Bayati M, Lelarge M and Montanari A 2015 The Annals of Applied Probability 25 753–822

[59] Gerbelot C and Berthier R 2021 arXiv preprint arXiv:2109.11905

[60] Decelle A, Krzakala F, Moore C and Zdeborová L 2011 Physical Review E 84 066106
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