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Abstract— We consider discovering the graph structure
of a pairwise Markov random field (MRF) on p binary
random variables using n samples from the underlying
MRF distribution. We analyze the information-theoretic
limitations of this problem under high-dimensional scaling,
when the number of connections of each variable in the
underlying MRF is bounded by d. We derive both necessary
and sufficient conditions on the scaling of the triplet
(n, p, d) for asympotically reliable reocovery of the graph
structure.

I. INTRODUCTION

The problem of graphical selection is to correctly

estimate the graph structure of a Markov random field

given samples from the underlying distribution. This

problem is central to statistics and machine learning,

with consequences for a variety of application domains,

e.g., image analysis [2], social networks, and computa-

tional biology [6].
In general, a graphical model is a structured represen-

tation of a joint distribution of potentially dependent ran-

dom variables. In the models considered in this paper, we

use the vertices of a graph G = (V, E) to represent our

(binary) random variables. Let |V | = p. Corresponding

to the graph, we associate a joint probability distribution

on the p random variables with the edges E determining

the exact joint distribution. Perhaps a big strength of

the graphical model representation is the visualization

possible about which models are close to each other.

One would expect distributions with similar graphs to

be close to each other and indeed, as an auxillary result,

we formalize this notion in this paper.
The distributions we consider are Markov random

fields with respect to their graphs. Namely, each dis-

tribution satisfies a spatial Markov-type independence

relationship—any random variable X , conditioned on

those adjacent to it in the graph associated with the

distribution, is independent of all other variables.
Consider a set G of such models. A sample from a

distribution in G is a p−dimensional binary vector, cor-

responding to the realization of the p random variables.

Given several samples from a distribution, formally,

the graph selection problem requires us to choose the

structure of the model in G that best fits the data.
If the underlying graph is known to be tree-structured,

then the problem can be reformulated as a maximum-

weight spanning tree problem [5], and solved in polyno-

mial time. On the other hand, for fully general graphs

with cycles, the problem is known to be computa-

tionally hard [4]. Nonetheless, a variety of practical

methods have been proposed, including constraint-based

approaches [14], heuristic search, and �1-based relax-

ations [9], [16], [17]. In particular, it can be proven

that some of the �1-based approaches are consistent for

model selection under particular scalings of the graph

size, degrees, and number of samples [9], [16], and for

the case where each degree is bounded by d, the sample

complexity has been independently obtained in [3].

Of complementary interest—and the focus of the

paper—are the information-theoretic limitations of the

graphical selection problems for pairwise binary Markov

random fields, also known as Ising models [1]. The

Ising model (1) has its origins in statistical physics [1],

where it is used to model physical phenomena such as

crystal structure and magnetism. Its relative simplicity

and the ability to capture practically useful dependencies

makes it a candidate for image processing [2], [7],

gene network analysis, analysis of social networks, and

recently in coding theory starting from [13] (see e.g. [10]

for details and a list of references on the topic) and

communications, e.g. [8].

At the same time, the dimensionality of the data

sets—the number of random variables in question—has

increased significantly for many practical problems. For

example, gene networks attempt to model interactions

between the expression levels of thousands of genes,

usually using only tens of samples. The natural question,

one that will be addressed here, is whether it is even

possible to obtain anything useful from such limited data,

and if so, what?

We are given n i.i.d. samples—namely, n
p−dimensional vectors—from a fixed but unknown

model in G. As mentioned before, we consider infering

E of the graph alone—namely, given samples from an

unknown model in G, we have to infer the structure

(edge set E) of the unknown model. This setting

is useful for problems in gene regulatory network

inference, for example, where there is a severe shortage

of data to do a model selection problem.

How must n scale with parameters corresponding to
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the graphs of the G so that there exists a method that

recovers the correct probability model? Conversely, for

what scalings does any method fail to recover the under-

lying structure correctly? Note that from this perspective,

the graphical selection problem is a channel coding

problem, in which the messages are the graphs in our

family, and each use of the channel corresponds to taking

an i.i.d. sample.

We analyze the information-theoretic limitations of

this problem under high-dimensional scaling, when the

connections of each variable in the underlying MRF is

bounded by d. We derive both necessary and sufficient

conditions on the scaling of the triplet (n, p, d) for

asympotically reliable reocovery of the graph structure.

In Section II, we set up the problem of determining

the sample complexity of graphical selection formally.

Section III contains the formal statements of our sam-

ple complexity results. Section VI contains our results

regarding the divergence between Ising models, show-

ing that, roughly speaking, distributions represented by

graphs that are similar are indeed closer. Section V

outlines the core results that we use for the proofs of

results in Section III, and Sections VII and VIII outline

the proofs.

II. PROBLEM STATEMENT

We begin with a precise statement of the problem.

Given an undirected graph G = (V, E), let us asso-

ciate with each vertex i ∈ V a binary random variable

Xi ∈ {−1, +1}. We then consider a distribution over

the random vector X = (X1, . . . , Xp) with probability

mass function

Pλ(x) =
1

Z(Λ)
exp

⎧⎨
⎩

∑
(s,t)∈E

λstxsxt

⎫⎬
⎭ , (1)

where Z(Λ) is the normalization constant.

We will refer to the
(
p
2

)
parameters, λ{st}, s, t ∈ V,

as the edge parameters.

At the outset, the sample complexity of inferring an

edge set depends in on some form of an upper bound on

the edge parameters. As the following example indicates,

if the edge parameters are unboundedly large, it may

be impossible to distinguish distinct models (potentially

with distinct edge sets), even given infinite amounts of

data.

Example 1. Consider the set of all graphical models

on p = 3 variables, and every edge parameter ∈ {0, λ}.

Note that there are a total of three such graphs corre-

sponding to graphs on 3 vertices with exactly 2 edges.

If λ = ∞, it is easy to see that all these models

reduce to the guilt by association distribution—i.e., the

two configurations
[
1 1 1

]
and

[−1 −1 −1
]

have

probability 1
2 each. There is hence no way to distinguish

between the 3 models in the case λ = ∞. �

To take into account the above observation, our results

for a class G depend on B—the smallest real number that

satisfies the following for all Λ ∈ G. If Λ is associated

with the graph (V, E), with parameters λst on (s, t) ∈ E,

then for all s ∈ V , ∑
(s,t)∈E

|λst| ≤ B. (2)

No matter what the class G is, selection of a graphical

model is not necessarily the same as simply estimating

pairs of vertices (s, t) for which cov{Xs, Xt} �= 0; in-

deed, given the distribution (1), it can be seen that Xs

and Xt could be correlated even when there is no direct

edge connecting them.

On the other hand, if each edge parameter that is non-

zero is finite, given infinite amounts of data, two distinct

models Λ
(i)

and Λ
(j)

can always be told apart by looking

at the vector of all covariances {EXsXt}(s,t)∈V 2

s �=v

.

We observe that a new elementary proof of the above

statement can be constructed along the lines of the

arguments presented here (see [11] for full proofs). Mor-

ever, we note that a more general result on exponential

families exists along these lines, see [15].

With finite data covariances can only be approximated.

The question therefore is, how fine should these ap-

proximations be? This question determines the number

of samples that are necessary for the graph selection

problem, and a constructive argument determines the

number of samples that are sufficient.

In [12], we considered fitting bounded degree models.

Let θ be a
(
p
2

)
length vector of real numbers. We index

the components of the vector by a pair of numbers

{s, t}, s, t ∈ V , and write the components as θst.

Furthermore, assume that for some real number λ > 0,

|θ| ≥ λ1, where the vector inequality is taken to mean

a component-wise one. Then the set Gd,p,θ contains all

models on vertices V such that

(a) each vertex v in V has degree at most d, namely

for the edge set E associated with the model,

|{e ∈ E : v ∈ e}| ≤ d, for some d ≥ 1;

(b) if (s, t) ∈ E, the edge parameter is θst, else 0.

We build on the above case to let the edge parameters

be arbitrary, as long as they are bounded. Specifically,

Gd,p = ∪Gd,p,θ,

where the union is taken over all θ such that |θ| ≥ λ1 and

each class in the union satisfies Equation (2). Note that

corresponding to each edge set, there is now a (infinite)

set of models possible. The task now is to determine the

edge set of the underlying model, hence it is sufficient to
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distinguish between the subsets of Gd,p that correspond

to different edge sets, rather than different models.

One observation regarding the models described

above: in a model belonging to any of the classes above,

for all vertices s ∈ V , EXs = 0.

III. RESULTS

We begin by stating the results obtained for the sample

complexity of inferring the structure of graphical models.

The following theorem addresses the sufficiency part.

Theorem 1. Let 0 < δ ≤ 1 and let

λ = min
(s,t)∈V 2

λst.

If

n >
(3e2B + 1)2

sinh4
(

λ
2

) (
2 log p + log

1
δ

)

then ∃ decoder q : Xn → Gd,p such that for all Λ
(i)

,
1 ≤ i ≤ N ,

P(q(Xn) �= Λ
(i) |Λ(i)

) < δ. �

The following theorem addresses the number of sam-

ples that are necessary for the estimation of the edge

structure.

Theorem 2. For all decoders q : Xn → Gd,p, if B ≥ 1
and

n ≤ 1
2

eB/2dλ(log pd − 1)
32(eλ − e−λ)

+
1
4
d log

p

d

there ∃ model Λ
(i)

such that

P(q(Xn) �= Λ
(i) |Λ(i)

) ≥ 1
2
.

IV. PRELIMINARIES

To quantify how far apart and therefore, how easy it

is to tell models apart, we define distance measures be-

tween models. In Section IV-B, we examine the behavior

of the edge inference problem for various values of the

parameter B.

A. Properties of the distance measures

We use the following distance between models Λ
(i)

and Λ
(j)

D(Λ
(i)

, Λ
(j)

) def= D

(
Λ

(i)
+ Λ

(j)

2
||Λ(i)

)
+

D

(
Λ

(i)
+ Λ

(j)

2
||Λ(j)

)
, (3)

where the (Λ
(1)

+Λ
(j)

)/2 denotes the model obtained by

averaging the parameters of the two models. This bounds

the Chernoff exponent in the hypothesis test between

models Λ
(i)

and Λ
(j)

. In Theorem 3, we bound D(i, j)
for any two models.

Another useful measure of distance we consider is the

symmetrized KL distance between two models, Λ
(i)

and

Λ
(j)

,

J (Λ
(i)

, Λ
(j)

) def= D(Λ
(i) ||Λ(j)

)+

D(Λ
(j) ||Λ(i)

). (4)

Clearly D(Λ
(i)

, Λ
(j)

) ≥ 0 and J (Λ
(i)

, Λ
(j)

) ≥ 0. For the

above defined distances between models Λ
(i)

and Λ
(j)

,

we write D(i, j) and J (i, j) where there is no ambiguity.

Note that

J (i, j)

= J (Λ
(i)

, Λ
(j)

)

=
∑

(s,t)∈Ei∪Ej

(λi
st − λj

st)(EΛ
(i) XsXt − E

Λ
(j) XsXt)

(5)

Corollary 1. Let Λ
(1)

be any Ising model. Let Λ
(2)

be the model obtained by increasing (decreasing) the

parameter corresponding to any edge. The correlation

on the edge increases (decreases) in model Λ
(2)

since

J (1, 2) ≥ 0. �

Lemma 1. For all models Λ
(i)

and Λ
(j)

, D(i, j) ≤
1
2J (i, j).

Proof The lemma follows by noting that

D(i, j) ≤ J
(

i,
i + j

2

)
+ J

(
j,

i + j

2

)
,

and with a little bit of algebra that

J
(

i,
i + j

2

)
+ J

(
j,

i + j

2

)
=

1
2
J (i, j). �

B. Inference for various values of B

Let Km be a fully connected graph on m+1 vertices.

Let Λst be a model with its graph being Kr with the

edge (s, t) removed, and every edge parameter being λ.

We compute the indirect correlation on the missing edge.

In the Ferromagnetic case, the FKG inequality implies

that this is the maximum possible indirect correlation

due to a model with any graph on these m + 1 nodes,

and edge parameters being λ.

Lemma 2. If B ≥ 1, for the model Λst defined above

EΛstXsXt ≥ 1 − 2(m + 1)e3λ/2

eB/2 + (m + 1)e3λ/2

Proof A simple computation yields

P(XsXt = 1)
P(XsXt = −1)

=∑m
l=0

(
m
l

)
exp

(
λ
2

[
(2l − m + 1)2 − 4

])
∑m

l=0

(
m
l

)
exp

(
λ
2

[
(2l − m)2

])
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We lower bound the above ratio. To do so, we pick the

largest term in the denominator. It will be shown that for

B ≥ 1
2 log m, the largest term is the one corresponding

to i = m and i = 0, while for 1 ≤ B ≤ 1
2 log m, the

largest term lies in the range i > 3m/4 and i < m/4.
Let the largest term be l∗, wolog, ≥ m/2. It follows

that

P(XsXt = 1)
P(XsXt = −1)

(a)

≥
(
m
l∗

)
exp

(
λ
2

[
(2l∗ − m + 1)2 − 4

])
(m + 1)

(
m
l∗

)
exp

(
λ
2

[
(2l∗ − m)2

])
=

exp
(

λ
2

[
4l∗ − 2m − 3

])
m + 1

≥ exp
(

λ
2

[
m − 3

])
m + 1

=
exp

(
B
2 − 3

2λ
)

m + 1
. �

Consider two models in Gd,p,θ with all their parame-

ters being λ: (i) Λ
(1)

with its graph being Kd with an

edge, say (s, t), removed and (ii) Λ
(2)

with its graph

being Kd with a different edge, say (s′, t′), removed.

From the FKG inequality and noting that model Λ
(2)

contains the edge (s, t), observe that

P2(XsXt = 1)
P2(XsXt = −1)

≤ P1(XsXt = 1)
P1(XsXt = −1)

e2λ.

Hence

J (1, 2) ≤ 2(e2λ − 1)
P1(XsXt=1)

P1(XsXt=−1)

. (6)

Hence if B > 1, it follows that

J (1, 2) = λ(E
Λ

(2) XsXt − E
Λ

(1) XsXt)+

λ(E
Λ

(1) Xs′Xt′ − E
Λ

(1) Xs′Xt′)

≤ 2Be5λ/2 sinh(λ)
eB/2

.

Similarly considering K√
2k and constructing two mod-

els from it as above, we obtain two models in Gk,p,θ

separated by a distance that is exponentially small in B.
It follows that if B ≥ 1 and any model is to be

infered with high probability, the sample complexity

should grow exponentially in the parameter B.

Lemma 3. If B ≤ 1
2 , then

EΛstXsXt ≤ 1 − 2
e2B + 1

Proof From the definition of B, it follows that

P(XsXt = 1)
P(XsXt = −1)

≤ e2B ,

implying the lemma.

V. TECHNIQUES

We briefly survey some of the results that form the

core of the attack on Theorems 1 and 2 in the next two

subsections respectively.

A. Achievable number of samples using an optimal
decoder

Roughly speaking, given distinct models Λ
(i)

and

Λ
(j)

, there exist edge(s) (a, b), a, b ∈ V such that

E
Λ

(i) [XaXb] �= E
Λ

(j) [XaXb]. The sample complexity

of estimating a model in Gd,p,θ or Gd,p depends on how

small the sample variance should be so that we can notice

the above difference in means in a statistically significant

manner.

We estimate the difference in means by using the

pairwise KL divergence between models (the two-way

hypothesis testing step).

B. Necessary number of samples

To estimate the necessary number of samples for

decoding the edge structure, we fall back on a version

of Fano’s inequality. Essentially, Fano’s inequality quan-

tifies how much information is gleaned from any single

sample, and therefore the number of samples we need

before we have sufficient information to infer the edge

structure.

1) Fano’s inequality: We formalize the above intu-

ition in the following lemma.

Lemma 4. For any set of w models Λ
(1)

through Λw

and all decoders q : Xn → {Λ(1)
, . . . ,Λw}, if

n ≤ w2 log w
4

2
∑

1≤i<j≤w J (i, j)
,

then

max
1≤i≤w

P

(
q(Xn) �= Λ

(i) |Λ(i)
)
≥ 1

2
.

Proof Let Λ be a uniform random variable taking

values from the set of models Λ
(1)

through Λw. Let

Pe =
1
w

∑
1≤i≤w

P

(
q(Xn) �= Λ

(i) |Λ(i)
)
.

From Fano’s inequality, H(Λ|Xn) ≤ 1−Pe log(w− 1),
we obtain

log(w) − 1 − Pe log(w − 1)
≤ H(Λ) − H(Λ|Xn)
= H(Xn) − H(Xn|Λ)

=
n

w

w∑
i=1

D(Λ
(i) || 1

w

w∑
j=1

Λ
(j)

)

≤ n

w2

∑
1≤i,j≤w

D(i||j)

=
n

w2

∑
1≤i<j≤w

J (i, j).

The lemma follows. �
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VI. DIVERGENCE BETWEEN MODELS

We require a bound on the distance D(i, j) between

models Λ
(i)

and Λ
(j)

in order to see how far apart the

vector of edgewise correlations of the two distributions

are.

It is intuitive that the distance D(i, j) between models

should be related to the number of edges that exist only

in one model. Indeed, Theorem 3 confirms this—D(i, j)
is proportional to the matching number of (Ei − Ej) ∪
(Ej − Ei). Recall that a matching of a graph G is a

subgraph H of G such that each vertex in H has degree

1, and that the matching number of G is the largest

possible number of edges in any matching.

Theorem 3. Let Λ
(i)

and Λ
(j)

be models with distinct
edges, and let m be the matching number of the graph
(Ei − Ej) ∪ (Ej − Ei). Let

λ = min
(s,t)∈Ei∪Ej

λst.

Then

D(i, j) ≥ m

3e2B + 1
sinh2

(
λ

4

)
.

VII. PROOF OUTLINE OF THEOREM 1

For the class Gd,p, we pick the set of edges in the

model which best models the data, given the freedom to

pick the edge parameters as we see fit so long as they are

bigger than λ. If we locate regions that could arise from

each set of edges in the space of covariances {EXsXt},

then the separation between the regions determines the

precision to which the covariances must be estimated in

order to retrieve the edges accurately.

Suppose we have two models Λ
(1)

and Λ
(2)

. The

following Lemma shows that adjacent to any vertex s
with different neighborhoods in the two models, there

exists an edge (s, t) such that |E1XsXt − E2XsXt| is

suitably large.

Lemma 5. Let Λ
(1)

be a model with edge set E1 and
Λ

(2)
be a model with edge set E2. For all edges (s, t) ∈

(E1 − E2) ∪ (E2 − E1)

max
u∈{s,t},v∈V

∣∣EPλ
XuXv − EPΛ′ XuXv

∣∣ ≥ sinh2 (λ/4)
B(3e2B + 1)

.

A Hoeffding-type large deviations result and an union

bound yields the following result. If

n >
(3e2B + 1)2

sinh4
(

λ
2

) (
2 log p + log

1
δ

)

then ∃ decoder q : Xn → Gd,p such that for all Λ
(i)

,

1 ≤ i ≤ N ,

P(q(Xn) �= Λ
(i) |Λ(i)

) < δ.

VIII. PROOF OUTLINE OF THEOREM 2

The trick is to find subsets of models in Gd,p,θ (for

any θ) that determine the necessary regions. Since we

determine the necessary region for Gd,p,θ no matter what

the edge parameters θ are, the necessary region for Gd,p

follows from the result on Gd,p,θ.

We require the following lemma to determine a lower

bound on sample complexity.

Lemma 6. The cardinality of Gd,p,θ satisfies for d ≤ p
2 ,

(

 p

d + 1
�!

)d(d+1)/2

≤ |Gd,p,θ| ≤ pd

((
p
2

)
pd
4

)
,

therefore

log |Gd,p,θ| = Θ
(
pd log

p

d

)
.

Proof For the upper bound on |Gd,p,θ|, observe that

every model in Gd,p,θ has at most pd
2 edges. An upper

bound on |Gd,p,θ| is provided by the number of graphs

with at most pd/2 edges with no restrictions on degrees.

To upper bound the later, note that the number of graphs

with exactly r edges is
((p

2)
r

)
and for d ≤ p/2, the

number of graphs with pd/2 edges is greater than the

number of graphs with r edges for all r ≤ pd/2, the

upper bound on Gd,p,θ follows.

For the lower bound, we proceed as follows. Group p
vertices into d+1 even groups (throw away any remain-

ing vertices). Pick a permutation of 
p/(d + 1)�, and

form an bijection from group 1 to group 2 corresponding

to the permutation. Similarly form an injection from

group 1 to 3 , . . . , d + 1 using d − 1 other permutations

(we use up d permutations in all).

Similarly use d−1 permutations to connect from group

2 to groups 3 , . . . , d+1; d+1−i permutations to connect

from group i to groups i + 1 , . . . , d + 1 and so on.

Therefore each choice 1 + 2 + · · · + d = d(d + 1)/2
permutations leads to a different graph satisfying degree

bound d. The lemma follows. �

We reproduce the statement of Theorem 2 for conve-

nience here: for all decoders q : Xn → Gd,p, if B ≥ 1
and

n ≤ 1
2

eB/2dλ(log pd − 1)
32(eλ − e−λ)

+
1
4
d log

p

d
.

there ∃ model Λ
(i)

such that

P(q(Xn) �= Λ
(i) |Λ(i)

) ≥ 1
2
.

Proof outline We first consider the necessary region for

the class Gk,p,θ. Let k+1 ≥ (
l
2

)
for some l, consider the

following two models: (i) Λ
(1)

: the completely connected

graph with an edge removed, say (s, t) and (ii) Λ
(2)

:

ThC6.1

1236
Authorized licensed use limited to: Centro Universitário Senai Cimatec. Downloaded on December 24,2023 at 13:29:50 UTC from IEEE Xplore.  Restrictions apply. 



the completely connected graph with a different edge

removed, say (s′, t′). Note that

P2(XsXt = 1)
P2(XsXt = −1)

≤ P1(XsXt = 1)
P1(XsXt = −1)

e2λ,

we obtain as in (6) that

J (1, 2) ≤ 2(e2λ − 1)
P1(XsXt=1)

P1(XsXt=−1)

. (7)

The FKG inequality implies that reducing the parameter

on every edge of Λ
(1)

to λ only reduces the correlation

on the edge (s, t). Using Lemma 2 and (7) that long as

B > 1,

J (1, 2) ≤ 2B sinh(λ)
eB/2

.

We now consider the set of k + 1 models, each with a

different edge removed from the complete graph. From

Lemma 4, if

n <
eB/2 log k

2B sinh(λ)
≤ log k

J (1, 2)
,

then the error probability is ≥ 1
2 . Similarly considering

the set of models obtained with the addition of any edge

to any one of the models above, say 1, (except for the

one that completes the fully connected graph) yields that

for the error probability to be < 1
2 ,

n >
2 log p

(eλ − e−λ)
.

For the bounded degree case, we group the p vertices

into sets of d + 1 vertices, and consider the graph G0

obtained by fully connecting each subset of d+1 vertices

(
p/(d + 1)� cliques of size d+1. Consider the following

subset of models: from G0, remove one edge. If p ≥
2(d + 1), it follows that we obtain 
p/(d + 1)�(d+1

2

) ≥
pd/4 such models, and for each distinct pair of models

i and j so obtained

J (i, j) ≤ 4B(eλ − e−λ)
eB

.

Fano’s inequality yields

n− >
log pd − 1
J (1, 2)

≥ eB(log pd − 1)
4B(eλ − e−λ)

≥ eB/2dλ(log pd − 1)
32(eλ − e−λ)

.

Next, we show that > d log p are always required.

Observe that for all n

I(Xn; Λ) ≤ H(Xn) ≤ np.

From Lemma 6, for all n,

I(Xn; Λ)
log |Gd,p,θ| ≤

np

pd log p
d

≤ n

d log p
d

.

The theorem follows. �
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