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a b s t r a c t

This paper addresses the problem of network reconstruction from data. Previous work identified
necessary and sufficient conditions for network reconstruction of LTI systems, assuming perfect
measurements (no noise) and perfect system identification. This paper assumes that the conditions
for network reconstruction have been met but here we additionally take into account noise and
unmodelled dynamics (including nonlinearities). In order to identify the network structure that generated
the data, we compute the smallest distances between the measured data and the data that would
have been generated by particular network structures. We conclude with biologically inspired network
reconstruction examples which include noise and nonlinearities.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

One of the fundamental interests in systems biology is the
discovery of the specific biochemical mechanisms that explain the
observed behaviour of a particular biological system. In particular,
we consider the problem of reconstructing the network structure
from input and partially measured output data of a dynamical
system, and in turn uncovering the underlying mechanisms
responsible for the observed behaviour. The biological network
reconstruction problem challenges come from the necessity to deal
with noisy and partial measurements (in particular, the number
of hidden/unobservable nodes and their position in the network
is unknown) taken from a nonlinear and stochastic dynamical
network.

There are several tools in the literature to infer causal network
structures. These tools are mainly rooted in three fields: Bayesian
inference (Dojer, Gambin, Mizera, Wilczynski, & Tiuryn, 2006;
Yu, Smith, Wang, Hartemink, & Jarvis, 2004), information theory
(ARACNe Basso et al., 2005; Butte & Kohane, 2000; Faith et al.,
2007) and ODE methods (inferelator Bansal & di Bernardo, 2007;
Bonneau et al., 2006; di Bernardo et al., 2005; Gardner, Bernardo,
Lorenz, & Colins, 2003; Sontag, 2008). Details on these and other
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methods can be found in several reviews of the field such as Bansal,
Belcastro, Ambesi-Impiombato, and Bernardo (2007), Cantone
et al. (2009), De Smet and Marchal (2010), Hecker, Lambeck,
Toepfer, Someren, and Guthke (2009) and Koyuturk (2010).
The vast majority of network reconstruction methods produce
estimates of network structure regardless of the informativity
of the underlying data. In particular, most methods produce
estimates of network structure even in cases with data from
only a few experiments. Such data may not contain enough
information to enable the accurate reconstruction of the actual
network, thus the obtained network estimates can be arbitrarily
different from the true network structure (Cantone et al., 2009).
To compensate for the lack of information in data, most methods
have heuristics that try to ‘‘guess’’ at the remaining information,
either by specifying prior distributions or by appealing to a priori
beliefs about the nature of real biological networks, such as looking
for the sparsest network. Nevertheless, these heuristics bias the
results and lead to incorrect estimates of the network structure.

In contrast, our approach has been to identify the conditions
when data is sufficiently informative to enable accurate network
reconstruction. The results indicate that even in an ideal situation,
when the underlying network is linear and time-invariant (LTI)
and the measurements are noise-free, network reconstruction is
impossible without additional information (Gonçalves & Warnick,
2008). Surprisingly, this information gap is not due to a lack of
data, or a deficiency in the number of experiments, but rather
it occurs because system states are only partially observed; the
information gap is present in all data sets except those that
satisfy certain experimental conditions. Our analysis identified
a particular experimental protocol that satisfies these necessary
conditions to ensure that data will be sufficiently informative
to enable network reconstruction. This protocol suggests the
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following.
1. A network composed of p measured species demands p

experiments.
2. Each experiment requires a distinct input that independently

controls a measured species, i.e. experimental input i must
affectmeasured species i andno othermeasured species except,
possibly, indirectly through measured species i.

If data acquisition experiments are not performed in this (or an
equivalent) way, the network cannot be reconstructed. Moreover,
the resulting information gap is catastrophic, meaning that any
internal network structure explains the data equally well (i.e. fully
decoupled, fully connected, and everything in between). On the
other hand, if some information about the network is available a
priori, as is usually the case, then these conditions can be relaxed
as explained in Gonçalves and Warnick (2008).

The work in Gonçalves and Warnick (2008), however, did not
take into account the realistic scenario that typically systems
are nonlinear and data are noisy. This paper extends and details
earlier results in Gonçalves and Warnick (2009) by developing
an effective method to reconstruct networks in the presence of
noise and nonlinearities, assuming that the conditions for network
reconstruction presented above in (1) and (2) have been met.
Steady-state (resp. time-series) data can be used to reconstruct the
Boolean (resp. dynamical) network structure of the system.

The paper is organised as follows. After a motivating example
showing that input–output data alone does not enable network
reconstruction, Section 2 reviews dynamical structure functions
and gives fundamental results concerning their usefulness in the
network reconstruction problem. Section 3 presents the main
results of the paper regarding robust network reconstruction from
input–output data subject to noise and nonlinearities. Finally,
we conclude the paper with biologically inspired examples in
Section 4.
Notation. For a matrix A ∈ CM×N , Aij ∈ C denotes the element in
the ith row and jth columnwhile Aj ∈ CM×1 denotes its jth column.
For a column vector α, α[i] denotes its ith element. We define
eTr = [0, . . . , 0, 1rth , 0, . . . , 0] ∈ R1×N . I denotes the identity
matrix. When it is clear from the context, we omit the explicit
dependence of transfer functions on the Laplace variable s, e.g. we
write G instead of G(s).
Motivating example. Consider the transfer function

G(s) =
1

s + 3


1

s + 1
1

s + 2


obtained from data (partial observations) using system identifica-
tion tools. For simplicity, assume that G(s) accurately represents
the input–output relation of the original system. This transfer func-
tion is consistent with two state-space realisations ẋ = Ax +

Bu, y = Cx given by

A1 =


−1 0 1
0 −2 1
0 0 −3


, A2 =


−2 −1 1
−1 −3 1
0 −1 −1


, (1)

B1 = B2 = [0 0 1]T , and C1 = C2 = [I 0] ∈ R2×3 (i.e., the
third state is hidden/non-observable). Note that both realisations
areminimal and correspond to very different network structures as
seen in Fig. 1. This demonstrates that even in the idealised setting
(LTI system, no noise and perfect system identification), network
reconstruction in the presence of hidden/unobservable states is not
possible without additional information about the system.

2. Dynamical structure functions and network reconstruction

In Gonçalves and Warnick (2008) we introduced the notion
of dynamical structure functions and showed how they can be
used to obtain necessary and sufficient conditions for network
Fig. 1. The same transfer function yields two minimal realisations with very
different network structures (left vs. right). Pink nodes are measured (nodes 1 and
2), while blue nodes (here, node 3) represent unmeasured hidden states; the top
diagram on either side reveals the complete network structure explicitly showing
hidden states,while the lower diagram indicates the corresponding causal structure
captured by the dynamical structure function (edges associated with Q are red,
while those associated with P are blue). The system on the left is (A1, B1, C1) in
(1), and the system on the right is (A2, B2, C2) in (1). Note how completely different
the two network structures are (completely decoupled vs. fully connected) even
though either realisation would be an equally valid description if all one knew
about the system was its transfer function, identified from input–output data. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

reconstruction. For the sake of clarity and completeness, we state
these previously obtained results herewithout proofs.We refer the
interested reader to Gonçalves andWarnick (2008) and Yuan, Stan,
Warnick, and Goncalves (2009) for the corresponding proofs.

Consider a nonlinear system ˙̄x = f (x̄, ū, w1), ȳ = h(x̄, w2)
with p measured states ȳ, hidden states z̄ (potentially a large
number of them), m inputs ū, and noises w1, w2. The system is
linearised around an equilibrium point (i.e., a point (x̄∗, ū∗) such
that f (x̄∗, ū∗, 0) = 0), and it is assumed that inputs and noises do
not move the states too far from the equilibrium point so that the
linearised system is a valid approximation of the original nonlinear
system. The linearised system can be written as ẋ = Ax + Bu, y =

Cx, where x = x̄ − x̄∗, u = ū − ū∗ and y = h(x̄, 0) − h(x̄∗, 0). The
transfer function associated with this linearised system is given by
G(s) = C(sI−A)−1B.Whenwe have partial observations, i.e., when
C = [I 0], we partition the linearised system equation as follows[
ẏ
ż

]
=

[
A11 A12
A21 A22

] [
y
z

]
+

[
B1
B2

]
u

y =

I 0

 [
y
z

] (2)

where x = [yT zT ]T ∈ Rn, is the full state vector, y ∈ Rp is a
partial measurement of the state (we assume p > 1), z are the
n − p ‘‘hidden’’ states, and u ∈ Rm is the control input. We restrict
our attention to situations where output measurements constitute
partial state information, i.e., p < n. Taking the Laplace transforms
of the signals in (2), solving for Z , and substituting into the Laplace
transform of the first equation of yields sY = WY + VU , where
W = A11 + A12(sI − A22)

−1A21 and V = A12 (sI − A22)
−1 B2 + B1.

Now, letting D be the matrix composed of the diagonal elements
of W , we write (sI − D)Y = (W − D)Y + VU . We then obtain
Y = QY + PU where

Q = (sI − D)−1(W − D) and P = (sI − D)−1V . (3)

Given the system in (2), we define the dynamical structure function
of the system to be (Q , P). If all the measured states are removed
from the system except for Yi and Yj then the transfer function Qij
corresponds to the exact transfer function between Yj (considered
as input) and Yi (considered as output). The same holds for P in
terms of Uj and Yi.



1232 Y. Yuan et al. / Automatica 47 (2011) 1230–1235
It can be shown that G = (I − Q )−1P (see Gonçalves
& Warnick, 2008). Based on this latter relation, it can be seen
that the dynamical structure function of a system contains more
information than the transfer function, and less information than
the state-space representation (Gonçalves & Warnick, 2008). We
can then conclude that, with no other information about the
system, neither dynamical nor Boolean reconstruction is possible.
Moreover, for any internal structure Q there is a dynamical
structure function (Q , P) that is consistentwithG, i.e., that satisfies
G = (I − Q )−1P . In particular, this shows that the use of criteria
such as sparsity or decoupledness to guide our selection of a
proposal network structure can be misleading. If one were to
optimise for decoupledness, for example, a dynamical structure
(0,G) could and would always be found, regardless of the true
underlying structure. Thus, if we are to use these kinds of criteria,
they must be firmly justified a priori.

Proposition 1 (Gonçalves & Warnick, 2008). Given a p×m transfer
function G, dynamical structure reconstruction is possible from partial
structure information if and only if p − 1 elements in each column of
(Q , P)T are known that uniquely specify the component of (Q , P) in
the nullspace of [GT I].

The importance of this result is that it identifies exactly what
information about a system’s structure, beyond knowledge of its
transfer function, must be obtained to be able to recover the
structure without appeal to a priori assumptions, such as sparsity,
or parsimony, etc. This enables the design of experiments targeting
precisely the additional information needed for reconstruction. In
particularwhen p = m andG is full rank, we observe that imposing
that P is diagonal, i.e., that each input controls a measured state
independently, is sufficient for reconstruction.

Corollary 1 (Gonçalves & Warnick, 2008). If m = p,G is full rank,
and there is no a priori information about the internal structure of the
system, Q , then the dynamical structure can be reconstructed if each
input controls a measured state independently, i.e., if, without loss of
generality, the inputs can be numbered such that P is diagonal.

3. Robust network structure reconstruction

In this section, we consider the problem of robustly recon-
structing dynamical network structures. Data are obtained from in-
put–output measurements of a noisy nonlinear system. From this
type of data we aim to find the internal network structure Q as-
sociated with the linearised system (2). To average out the noise,
data-collection experiments are repeatedN times. For simplicity of
exposition, we assume that no a priori information on the internal
network structure Q is available. The results still follow if some a
priori information about Q is available, and such information can
typically be used to relax the experimental protocol according to
Proposition 1. Hence, data are collected according to the measure-
ment protocol described in the Introduction.
(1) The number of distinct data-collection experiments is the same

as the number of measured species. This in particular implies
that u(t), y(t) ∈ Rp;

(2) Each input ui controls first the measured state yi so that P is a
p × p diagonal matrix.

In the following two Sections 3.1 and 3.2, we propose two
approaches for estimating the dynamical structure function (Q , P)
from measured input–output data. The first approach is indirect
and involves estimating the transfer function G followed by
computing (Q , P) from G. Since some information is lost in the
process of estimating G, we consider a second approach where
(Q , P) is directly estimated from data (without estimating first
G). Concerning the type of input–output data collected, we first
consider time-series input–output data and then the special case
where only steady-state data are available.
3.1. Dynamical network reconstruction from identified transfer
functions

This section describes a method to obtain the dynamical
structure function from a stable transfer function G. This transfer
function was identified from noisy time-series data using standard
system identification tools (Ljung, 1999). According to Corollary 1,
if G is full rank there is a unique Q and diagonal P satisfying
(I − Q )G = P . Since G is an approximation of the actual
system, Q and P will typically be mere approximations of the
actual dynamical structure function. Moreover, due to noise and
unmodelled dynamics, it is likely that Q does not even have the
correct Boolean structure. Typically, the internal structure function
Q obtained from such a procedure will be fully connected, i.e., all
non-diagonal elements of Q will be non-zero.

The main idea to solve the network reconstruction problem
fromnoisy data is the following. For pmeasured states,Q has p2−p
unknowns. We want to quantify the smallest distance from G (or
directly from themeasured data) to all possible Boolean structures
(and there are 2p2−p of them). Some of such distances will be large
revealing that the corresponding Boolean structures are unlikely
to be the correct structures while other will be small making them
candidates for the correct structure.

There are a number of ways to model input–output data
with noise and nonlinearities. In order to obtain a convex
minimisation problem, we consider the output (could also be
input) feedback uncertainty model (Zhou, Doyle, & Glover, 1996).
In this framework, the ‘‘true’’ system is given by (I+∆)−1G, where
∆ represents unmodelled dynamics, including nonlinearities, and
noise. Based on this choice of dynamic uncertainty, the distance
from data to a particular Boolean structure is chosen to be ‖∆‖, in
somenorm, such thatQ obtained from (I+∆)−1G = (I−Q )−1P has
the desired Boolean structure. We can rewrite the above equation
as ∆ = GP−1(I − Q ) − I . Now, let X = P−1(I − Q ). Then
the Boolean structure constraint on Q can be reformulated on X ,
i.e., non-diagonal zero elements in X correspond to those in Q
(since Xij = P−1

ii Qij for i ≠ j).
We can order all Boolean structures from 1 to 2p2−p, and define

a set Xk containing transfer matrices that satisfy the following
conditions: (i) for i ≠ j, Xij(s) = 0 if for the considered kth Boolean
structure Qij(s) = 0; all other Xij(s) are free variables; (ii) when i =

j, Xii(s) is a free variable. Hence, the distance from G to a particular
Boolean structure can bewritten as αk = infX∈Xk ‖GX − I‖2, which
is a convex minimisation problem with a careful choice of a norm.
Next, we show that this problem can be cast as a least squares
optimisation problem. If we use the norm defined by ‖∆‖

2
= sum

of all ‖∆ij‖
2
2, where ‖ · ‖2 stands as the L2-norm over s = jω, then

using the projection theorem (Young, 1988) the problem reduces
to

αk = inf
X∈Xk

‖GX − I‖2
= inf

X∈Xk

−
i

‖GXi − ei‖2
2

=

−
i

inf
Yi

‖AiYi − ei‖2
2

=

−
i

‖Ai(A∗

i Ai)
−1A∗

i ei − ei‖2
2,

where Xi is the ith column of X ∈ Xk, Yi is a column vector
composed of the free (i.e., non-zero) elements of Xi, Ai is obtained
by deleting the jth columns of Gwhen the corresponding elements
Xi[j] are 0 for all j, and (·)∗ denotes transpose conjugate. The
infimum is achieved by choosing Yi = (A∗

i Ai)
−1A∗

i ei, and A∗

i Ai is
always invertible since G is full rank in Corollary 1. If experiments
are repeated N times, yielding a transfer function Gi for each
experiment, then the above analysis still follows simply by letting
G = [G1T

· · · GNT
]
T .
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3.2. Dynamical network reconstruction directly from time-series data

The previous sections used a two-step approach in which
system identification was first used to estimate a transfer function
from measured input–output data and then, in a second step,
the identified transfer function was used to obtain a dynamical
structure function representation of the system which is optimal
in terms of a particular metric. This section proposes a method
which allows identification of the optimal dynamical structure
function representation directly from the measured input–output
data. The advantage of this direct network structure reconstruction
from data is that no information is lost during the initial transfer
function identification stage.

Due to the equivalence between dynamical uncertainty pertur-
bations (Zhou et al., 1996), we are free to choose, without loss of
generality, the type of uncertainty perturbation that best suits our
needs. For the direct method, instead of a feedback uncertainty
as was considered in the previous section, the uncertainty per-
turbation we are considering here is the additive dynamic uncer-
tainty on the output, i.e., Y = G∆(U + ∆). In this case, we think
about the ‘‘distance’’ in terms of how much we need to change
the input (data) to fit a particular Boolean structure. Since G∆ =

(I − Q )−1P = X−1, the equality Y = G∆(U + ∆) can be written as

∆ = XY − U,

where X ∈ Xk, for some particular Boolean network k. Recall
that structural constraints in Q can be imposed directly on X from
the equality X = P−1(I − Q ). We can therefore use system
identification tools for non-causal autoregression models under
the structural constraints to identify X (which might be non-
causal). In this case, the distance is defined as the maximum
likelihood of the estimation problem.

3.3. Penalising connections

The above methodology suffers from a crucial weakness: there
are several Boolean structureswith distances smaller than or equal
to the distance to the ‘‘true’’ network. Indeed, the extra degrees of
freedom of the fully connected network allow its corresponding
distance αk to be the smallest of all. This is similar to the noisy data
over-fitting problem encountered in system identification where
the higher the order of the transfer function, the better the fit.
The typical approach in system identification is to penalise higher
dimensions and the analogy here is to penalise extra network
connections.

If the true network has l non-existent connections (l off-
diagonal elements in Q are zero) then there are 2l

− 1 different
Boolean networks that have a smaller or equal distance (due to the
additional degrees of freedom provided by the extra connections).
When noise is present, then the ‘‘true’’ network will typically have
an optimal distance similar to those other l networks. The question
of how to find the ‘‘true’’ network thus arises. With repeated
experiments, small enough noise (i.e., large enough signal-to-
noise ratio) and negligible nonlinearities, the optimal distances
of those l networks are comparable, and they are typically much
smaller than those of the other networks. To try to reveal the
‘‘true’’ network, one can strike a compromise between network
complexity (in terms of the number of connections) and data
fitness by penalising extra connections. There are several ways to
do this. Here, we consider one of the classical methods known as
Akaike’s information criterion (AIC) (Hirotugu, 1974), or someof its
variants such as AICc (which is AIC with a second order correction
for small sample sizes), and the Bayesian information criterion
(BIC) (Burnham & Anderson, 1998).

The AIC-type approach is a test between models—a tool for
model selection. Given a data set, several competing models may
be ranked according to their AIC value, with the one having the
lowest AIC being the best. From the AIC value one may typically
infer that the best models are in a tie and the rest are far worse,
but it would be arbitrary to assign a threshold above which a given
model is rejected (Burnham & Anderson, 1998). The AIC value for
a particular Boolean network Bk is defined as

AICk = 2Lk + 2 lnαk, (4)

where Lk is the number of (non-zero) connections in the Boolean
network Bk andαk is the optimal distance for this Boolean network.

Although finding the optimal distance in the second term of
Eq. (4) can be done efficiently, the number of Boolean networks
2p2−p grows very fastwith the number ofmeasured states p. To find
the network with the smallest distance it is thus not desirable to
compute the optimal distance for each possible Boolean network.
Fortunately, there are ways to reduce the number of networks
that need to be considered. As we saw in the previous section
infX∈Xk ‖GX−I‖2

=
∑

i infYi ‖AiYi−ei‖2
2 meaning thatwe can solve

each optimisation problem separately. Since each Yi corresponds
to p − 1 unknowns in the ith row of Q , this reduces the problem
to solving p2p−1 optimal distances. Finding a polynomial-time
algorithm to compute the optimal distance through this method
is a subject of current investigation. When it comes to the steady-
state case, (Bansal & di Bernardo, 2007) proposed a polynomial-
time algorithm to quickly find the ranked solutions at the expense
of solution accuracy.

3.4. Boolean network reconstruction from steady-state data

So far we have assumed that time-series data are available.
Frequently, however, experimentation costs and limited resources
only permit steady-state measurements. In addition, with steady-
state measurements it is typically possible to perform a larger
number of experiments within the same amount of time, effort
and cost. As shown below, most of the connectivity of the network
togetherwith the associated steady-state gains (and the associated
positive or negative sign) can still be reconstructed from steady-
state data. However, no dynamical information will be obtainable.
In other words, for most cases we can still recover the Boolean
network from steady-state data.

Assume that after some time of maintaining the control input
concentrations at a constant value, the measured outputs y have
converged to a steady-state value. This is equivalent (if the system
is stable or quasi-stable Sontag, 2008) to assuming that we can
obtain G(0), i.e., G(s) evaluated at s = 0. Now the relationship
(I − Q (s))G(s) = P(s) evaluated at s = 0 becomes (I − Q (0))
G(0) = P(0). From this equation and the knowledge of G(0),
all of the results given in Sections 3.1 and 3.2 follow provided
that no element of G(s) has a system zero (Zhou et al., 1996)
at 0. In that case, a non-zero element in the obtained Boolean
network indicates the existence of a causal relationship between
the corresponding pair of nodes while a zero element indicates the
absence of such relationship.

4. Biologically inspired examples

This section illustrates with two examples the theoretical
results presented in the previous section. The corresponding sets
of ordinary differential equation describing the dynamics of the
considered networks are used to generate noisy data, which are
then fed to our reconstruction algorithm in order to assess its
ability to recover the correct network structure.

4.1. Single feedback loop

In this first example, we consider the following nonlinear
system:
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Fig. 2. (a) Complete network with all the states. The red circles represent
the measured states (nodes 1, 2 and 3) while the blue circles (nodes 4, 5 and
6) correspond to hidden states. (b) Network of the measured states only. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

ẏ1 = −y1 +
Vmax

Km + z33
+ u1 (5)

ẏ2 = −2y2 + 1.5z1 + u2 (6)
ẏ3 = −1.5y3 + 0.5z2 + u3 (7)
ż1 = 0.8y1 − 0.5z1 (8)
ż2 = 1.2y2 − 0.8z2 (9)
ż3 = 1.1y3 − 1.3z3 (10)
where Vmax = 0.5 and Km = 0.1. Eq. (5) includes a nonlinear
function of z3 known as a Hill equation. It represents a negative
regulation of the rate of reaction of y1 by z3. For simplicity, all
other terms are linear. In this example, p = 3, i.e., there are three
measured states (y1, y2 and y3) while the other 3 states are hidden
(z1, z2 and z3). The corresponding network is given in Fig. 2(a).

Three experiments were performed. In each experiment, one
input was a step while the others were set to zero and data was
collected for each of the measured species. The experiments were
repeated 3 times to average out the noise. For simplification, in this
example, only steady-state data was used. Data was obtained by
numerically integrating the differential equations in (5)–(10) and
adding independent Gaussian noises. The ratios between standard
deviations and means of the steady-state data were within the
range [0.35, 1.15], which shows that noise is considerable.

Since the true network has 3 elements in Q equal to zero,
there are 23

= 8 networks with a better or equal optimal cost.
Computing the corresponding distances and AICc values for all
possible Boolean structures between the three measured species,
we observed that the distance decreased by an order of magnitude
when we arrived at the true network. In addition, AIC, BIC and in
particular AICc were able to pick the correct network.

4.2. Chemotaxis in Rhodobacter sphaeroides

This section considers the reconstruction of the biochemical
network responsible for chemotaxis in Rhodobacter sphaeroides.
The network is represented in Fig. 3 (see Roberts et al., 2009;
Wadhams & Armitage, 2004, for a detailed explanation of this
model and its biological interpretation). It involves 10 species
dynamically interacting through a complex set of interconnections.
To illustrate our method, consider noisy data from 3 species only:
Y p
3 , Y p

6 and the ‘‘motor’’ (circled in red in Fig. 3(a)), obtained based
on simulations of the nonlinear ordinary differential equation
model proposed by Roberts et al. (2009). We follow our prescribed
experimental protocol and, for simplification, only steady-state
data are used. Relatively large Gaussian noise was added to the
collected data to simulate measurement noise in the data set.

Based on the complete network given in Fig. 3(a), the correct
network to recover is presented in Fig. 3(b). Computing the
corresponding distances and AICc values for all the 26

= 64
possible Boolean networks, we observed that the networkwith the
smallest AICc was not the correct network in Fig. 3(b) as it was
missing the Q12 link. A closer look at the noisy steady-state data
of Y p

3 (from a step input in u2) revealed an extremely large ratio
Fig. 3. (a) Network representing the dynamical interaction between the 10 species
believed to be responsible for the chemotactic response of Rhodobacter sphaeroides.
We assume that only species Y p

3 , Y p
6 and ‘‘motor’’ are measured (circled in red). (b)

Network connecting the measured states only. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

between its standard deviation and mean value (≈200), showing
that the noise was completely overpowering the signal. Indeed,
it can be shown that Y p

6 has a very small influence on Y p
3 since

the pathway from Y p
6 to Y p

3 includes a reversible reaction with
a very small rate constant (for detail, see Nordling & Jacobsen,
2009; Yuan, Stan, Warnick, & Goncalves, 2010). The next set of
smallest values of AICc consists of 4 networks, including the true
one. If necessary, an extra experiment can be performed to further
discriminate between these five candidate networks.

5. Conclusion and discussion

This paper proposes a new network reconstruction method
in the presence of noise and nonlinearities based on dynamical
structure functions. The key idea is to find minimal distances
between the existent data and the data required to obtain
particular network structures. The method was illustrated with
two biologically oriented examples. They showed that even in
the presence of nonlinearities and considerable noise network
reconstruction was possible. Eventually, when the signal-to-noise
ratiowas too small, reconstructionwas no longer possible, but that
is true irrespective of the method used.

Obviously, the method has limitations with respect to non-
linearities. With stronger nonlinear terms eventually the method
fails. For example, network reconstruction for oscillatory systems
is still an open problem. However, when applied to the reconstruc-
tion of various equilibrium point models given in the literature,
we observed that reconstruction was always possible when the
signal-to-noise ratio of the measured data was not too small (far
less than 1).

A final note regarding the application of this methodology
to real data. We have looked throughout the literature for real
data and none of the available data that we found satisfied the
conditions necessary for accurate network reconstruction. Some
problems that we observe in the literature include: (1) many
publications do not include raw data (they typically only include
means and standard deviations), and many authors indicate that
they no longer have their data; (2) some microarray data do
not include repeats and others were obtained using dual channel
microarrays that only give ratios between channels, making it
impossible to reliably extract gene expression intensities. One
of the most promising papers was Cantone et al. (2009), which
followed our experimental protocol, and their rawdata is available.
We found, however, that the data did not meet the conditions
necessary for network reconstruction. In the paper, the authors
compared different network reconstruction methods only to find
that none of the methods even came close to identifying the true
network. Nevertheless, because the authors compared the results
to random guessing, they report that ‘‘Reverse engineering based
on differential equations and Bayesian networks correctly inferred
regulatory interactions from experimental data’’. We disagree
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with their conclusion, and point out that because the data was
not sufficiently informative in the first place, such a comparison
is not meaningful. To better understand the degree of the lack
of information in the data, we considered all 10 subnetworks
consisting of 3 nodes. The gap in distances between fully decoupled
and fully connected networks ranged from just 2% to a maximum
of 70%. This shows that there is not enough information in
the data to differentiate between Boolean structures. Note that
this data was obtained from over-expression, so based on these
results, we hypothesise that over-expressing genes saturate the
translation and transcription machinery, making linearisation a
poor approximation of the actual system dynamics. Current work
is exploring the design of experiments on known systems that
(1) satisfy our data-collection protocol to ensure that the resulting
data is sufficiently informative for network reconstruction, and
(2) facilitate a comparison of various methods so we can better
understand how different techniques perform in situations where
accurate network reconstruction is, in fact, possible.
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