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ABSTRACT
Many important problems can be modeled as a system of inter-
connected entities, where each entity is recording time-dependent
observations or measurements. In order to spot trends, detect anom-
alies, and interpret the temporal dynamics of such data, it is essen-
tial to understand the relationships between the different entities
and how these relationships evolve over time. In this paper, we
introduce the time-varying graphical lasso (TVGL), a method of
inferring time-varying networks from raw time series data. We cast
the problem in terms of estimating a sparse time-varying inverse
covariance matrix, which reveals a dynamic network of interdepen-
dencies between the entities. Since dynamic network inference is
a computationally expensive task, we derive a scalable message-
passing algorithm based on the Alternating Direction Method of
Multipliers (ADMM) to solve this problem in an efficient way. We
also discuss several extensions, including a streaming algorithm to
update the model and incorporate new observations in real time.
Finally, we evaluate our TVGL algorithm on both real and syn-
thetic datasets, obtaining interpretable results and outperforming
state-of-the-art baselines in terms of both accuracy and scalability.

1 INTRODUCTION
Applications in many settings, ranging from neurological connec-
tivity patterns [21] to financial markets [23] and social network
analysis [1, 22], contain massive sequences of multivariate times-
tamped observations. Such data can often be modeled as a network
of interacting entities, where each entity is a node associated with
a time series of data points. In these dependency networks, also
known as Markov random fields (MRFs) [16, 26, 33], an edge repre-
sents a partial correlation, or a direct effect (holding all other nodes
constant) between two entities. An important problem that arises
in many applications is using observational data to infer these rela-
tionships (i.e., edges) and their evolution over time. In particular,
it is necessary to understand how the structure of these complex
systems changes over a period of interest (Figure 1). For example,
in financial markets, companies can be represented as nodes, and
each acts like a “sensor” recording a time series of its stock price.
By understanding the relationships within the network and their
evolution over time, one can detect anomalies, spot trends, classify
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Figure 1: Three sensors with associated time series readings.
Based on such data, we infer a time-varying network that
reveals 1) the dependencies between the different sensors,
and 2) when and how these dependencies change over time.

events, forecast future behavior, and solve many other problems at
the intersection of time series analysis and network science.

To learn these dynamic networks, one can model the relation-
ships between the entities through an underlying inverse covari-
ance matrix that changes over time. Doing so allows for inference
of a dynamic undirected network, with nodes representing the dif-
ferent entities and edges defining the coupling between them. More
precisely, given a multivariate sequence of readings, one can esti-
mate the true inverse covariance matrix Σ−1 (t ) (which changes over
time), assuming a Gaussian distribution. The focus is specifically on
the inverse covariance because of its increased interpretability: if
Σ−1i j (t ) = 0 then, given the values of all the other entities (i.e., nodes),
i and j are conditionally independent at time t [17]. Therefore, the
inferred network has an edge between i and j at time t if Σ−1i j (t ) , 0,
denoting a structural dependency between these two entities at
that moment in time. In the static case, where Σ−1 is constant, this
inference is known as the graphical lasso problem [7, 35]. While
many efficient algorithms exist for the graphical lasso [2, 14], such
methods do not generalize to the time-varying case.

Inferring dynamic networks is challenging mainly because it is
difficult to simultaneously estimate both the network itself and the
change in its structure over time. This is in part due to the fact
that networks can exhibit many different types of changes. The
range of possibilities includes a sudden shift of the entire network
structure, a single node rewiring all of its connections, or even
just one or two edges changing in the whole network. Therefore,
any method must be general enough to discover many types of
evolutionary patterns, while also being powerful enough to learn
this temporal structure over very long time series. As such, solving
for time-varying networks is computationally expensive, especially
compared to time-invariant inference [6, 19]. There are more pa-
rameters, additional coupling, and more complicated dynamics.
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Standard methods have trouble scaling to large examples, so novel
algorithms and techniques are required.

Present Work. In this paper, we formulate time-varying network
inference as a convex optimization problem. Thus, our two primary
contributions are in formally defining this problem, which we call
the time-varying graphical lasso (TVGL), and in deriving a scalable
optimization method to solve it. Given a sequence of multivariate
observations, the TVGL estimates the inverse covariance Σ−1 (t ) of
the data to simultaneously achieve three goals: (1) matching the
empirical observations, (2) sparsity, and (3) temporal consistency.
Matching the empirical observations ensures that our estimated
network is well-supported by the data. A sparse inverse covariance
prevents overfitting and provides interpretable results via a sparse
graphical representation [2, 7]. Temporal consistency is the idea
that, most of the time, adjacent timestamps should have very sim-
ilar (or even identical) estimations of the network. We impose a
temporal penalty to limit how the network can evolve, where dif-
ferent penalties induce different dynamics. We suggest five specific
penalties that allow us to model different types of temporal varia-
tion (or evolutionary patterns) in networks: e.g., smoothly varying
networks, rare-but-large-scale shifts, or a single node rewiring its
connections. Then, since no scalable methods exist for solving our
TVGL problem, we develop a message-passing algorithm using the
alternating direction method of multipliers (ADMM) [3]. We de-
rive closed-form solutions for the ADMM subproblems, including
one for each of the five unique penalty types, to further speed up
the runtime. We also discuss several extensions, including one to
convert our approach into a streaming algorithm that can quickly
incorporate new data and update our estimate in real time.

We then apply our TVGL method to both real and synthetic
datasets. First, we test accuracy and scalability on synthetic exam-
ples with known ground truth networks. Our TVGL method leads
to accuracy improvements of up to 92% over two state-of-the-art
baselines. Furthermore, our ADMM-based implementation is sev-
eral orders of magnitude faster than other solution methods, able to
solve for 5 million unknown variables in under 12 minutes (while
other solvers take several hours for even 50 thousand unknowns).
Finally, we analyze two real-world case studies, using financial
and automobile sensor data, to demonstrate how the TVGL ap-
proach can find meaningful insights, understandable structure, and
different types of evolutionary patterns in time series data.

Related Work. This work relates to recent advancements in both
graphical models and convex optimization. Inferring static net-
works via the graphical lasso is a well-studied topic [2, 6, 7, 35].
However, previous work on dynamic inference has only focused
on a kernel method [36] or an ℓ1-fused penalty [15, 21, 31]. One of
the main contributions of our approach is that it is able to model
many different types of network evolutionary patterns, for exam-
ple a small set of edges rewiring, a single node changing all its
edges, or the entire network restructuring at a single time step.
This opens up a variety of new applications, several of which we
examine in Sections 6 and 7. Whereas previous work allows for only
one time-varying pattern [15, 21, 31], we show how the selection
of the proper evolutionary penalty is a very important parameter
for obtaining accurate results. We also propose several extensions,

including a streaming approach, that to the best of our knowledge
have not been explored in the literature.

To solve our TVGL problem, we develop an ADMM-based algo-
rithm [3] so that the same framework can incorporate all of the
different penalty types that we study. This is necessary because,
even though many problem-specific methods exist to solve the stan-
dard (static) graphical lasso [7, 14], no ready-to-use methods exist
for the time-varying case. To make our algorithm more scalable,
we rewrite the ADMM subproblems in terms of proximal operators
[6, 21, 27]. This allows us to take advantage of known properties
and solution methods to derive closed-form ADMM updates [4, 25],
which speed up our solver by several orders of magnitude over a
naive ADMM implementation (Section 6.2).

Another common method of time series analysis is the Kalman
filter [9], a special type of dynamic factor model [20]. Although used
in similar domains, these models are fundamentally different from
our network inference approach. They are typically used to predict
values of unknown variables, given all previous data. Our algorithm
instead learns the underlying dynamic graphical structure of the
variables [16, 17]. Thus, our method helps remove the effects of
noisy data and adds interpretability to the results. Additionally, we
note the difference between our work here and information cascade-
based network inference [8, 22], which assumes a viral spreading
process over the nodes and aims to infer the links based on the
node infection times. We instead aim to uncover the dependency
structure (i.e., inverse covariance matrix) based on multivariate
time series observations.

2 PROBLEM DEFINITION
Consider a sequence of multivariate observations in Rp sampled
from a distribution x ∼ N (0, Σ(t )). Observations come in at times
0 ≤ t1 ≤ · · · ≤ tT , where at each time ti , there are ni ≥ 1 different
observation vectors over the readings of all the nodes. (For now
we assume that the readings are synchronous, where ti − ti−1 is a
constant value for all i , but in Section 3.1 we extend this approach
to asynchronous observations.) With these samples, we aim to esti-
mate the underlying covariance matrix Σ(t ), which can change over
time. That is, given a changing underlying distribution, we attempt
to estimate it based on a sequence of observations. Here, we formu-
late a convex optimization problem to infer a sequence of sparse
inverse covariance matrices, Θi = Σ(ti )

−1, one for each ti . These
estimates are based on local empirical observation vector(s), as
well as coupling constraints with neighboring timestamps’ covari-
ance estimates. Recall that a sparse inverse covariance allows us to
encode conditional independence between different variables [16].

Inferring Static Networks. We first consider static inference,
which is equivalent to the graphical lasso problem [2, 7, 35], and
then build on it to extend to dynamic networks. In the static case,
Σ(t ) is constant for all t . Given a series of multivariate readings,
this can be written as

minimize − l (Θ) + λ ∥Θ∥od,1 , (1)

where ∥Θ∥od,1 is a seminorm ofΘ, the off-diagonal ℓ1-norm,
∑
i,j |Θi j |.

This lasso penalty enforces element-wise sparsity in our solution
for Θ, regulated by the trade-off parameter λ ≥ 0. In Problem (1),
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Figure 2: Dynamic network inference can be thought of as an optimization problem on a chain graph, where each node objec-
tive solves for a network slice at each timestamp, and edge objectives define the penalties that enforce temporal consistency.

l (Θ) is the log likelihood of Θ (up to a constant and scale) [29, 35],

l (Θ) = n(log detΘ − Tr(SΘ)),

where Θ must be symmetric positive-definite (Sp++), S is the empiri-
cal covariance 1

n
∑n
i=1 xix

T
i , n is the number of observations, and

xi are the different samples. When S is invertible, l (Θ) encourages
Θ to be close to S−1.

Inferring Dynamic Networks. In order to infer a time-varying
sequence of networks, we extend the above approach and allow Σ(t )
to vary over time. To do so we set up a sequence of graphical lasso
problems, each coupled together in a chain to penalize deviations
in the estimations, which we call the time-varying graphical lasso
(TVGL). We solve for Θ = (Θ1, . . . ,ΘT ), our estimated inverse
covariance matrices at times t1, . . . , tT ,

minimize
Θ∈Sp++

T∑
i=1
−li (Θi ) + λ ∥Θi ∥od,1 + β

T∑
i=2

ψ (Θi − Θi−1).

(2)

Here, li (Θi ) = ni (log detΘi − Tr(SiΘi )), β ≥ 0, andψ (Θi − Θi−1)
is a convex penalty function, minimized atψ (0), which encourages
similarity between Θt−1 and Θt . We examine in Section 2.1 how
differentψ ’s enforce different behaviors. Note that Problem (2) can
be viewed as an optimization problem defined on a chain graph,
where each element solves for a different Θi , as shown in Figure 2.

Empirical Covariance. The log-likelihood li depends on Si , the
empirical covariance at time ti . In high-dimensional settings, where
the number of dimensions p is larger than the number of obser-
vations ni , Si will be rank deficient and therefore non-invertible.
However, our method is well-suited to overcome this problem of
an insufficient number of observations. By enforcing structural
similarity, each Θi borrows strength from the fact that neighbor-
ing network estimates should be similar, or even identical, across
time. In the extreme case, we are able to estimate a network at a
time where there is only one observation. The empirical covariance,
xix

T
i , is rank 1, but between the sparsity and the temporal consis-

tency penalties, our approach can still infer an accurate estimate of
the network at that snapshot in time.

Regularization Parameters λ and β . Problem (2) has two param-
eters, λ and β , which define important values on two trade-off
curves. λ determines the sparsity level of the network: small values
will better match the empirical data, but will lead to very dense
networks, which are less interpretable and often overfit. β deter-
mines how strongly correlated neighboring covariance estimations
should be. A small β will lead to Θ’s which fluctuate from estimate-
to-estimate, whereas large β ’s lead to smoother estimates over time.

As β → ∞, the temporal deviation penalty gets so large that Prob-
lem (2) turns into the original graphical lasso, since a constant Θ
will be the solution across the entire time series.

2.1 Encoding Network Evolutionary Patterns
Different types of penalty functionsψ allow us to enforce different
behaviors in the evolution of the network structure. In particular,
if we have an expectation about how the underlying network may
change over time, we are able to encode it intoψ . Here, we define
several common temporal patterns and their associated penalty
functions. In Sections 6 and 7, we use these to analyze the time-
varying dynamics of multiple real and synthetic datasets. For these
penalties, note thatψ can sometimes be split into a sum of column-
norms. As such, we refer to the j-th column of a matrix X as [X ]j .
• A few edges changing at a time — Settingψ (X ) =

∑
i, j |Xi, j |,

an element-wise ℓ1 penalty, encourages neighboring graphs to be
identical [6, 34]. When the ij-th edge of the network “breaks”, or
is different at two neighboring times, this penalty still encourages
the rest of the graph to remain exactly the same. As a result, this
penalty is best used in cases where we expect only a handful of
edges — at most — to change at a time.
• Global restructuring — Setting ψ (X ) =

∑
j ∥[X ]j ∥2, a group

lasso ℓ2 penalty, causes the entire graph to restructure at a se-
lect few timestamps, while at all other times, the graph remains
piecewise constant [6, 10]. This is useful for event detection and
time-series segmentation, as it finds exact times where there is a
regime-change, or shift, in the underlying covariance matrix.
• Smoothly varying over time — Setting ψ (X ) =

∑
i, j X

2
i, j , a

Laplacian penalty, causes smooth transitions of the graphical
model from timestamp to timestamp. Adjacent graphs will often
differ by small amounts, but severe deviations are largely penal-
ized so they rarely occur [30]. This penalty is best used when we
want to come up with a smoothly varying estimate over time.
• Block-wise restructuring — Setting ψ (X ) to an ℓ∞ penalty,
ψ (X ) =

∑
j
(
maxi |Xi, j |

)
, implies that, when an element in the

inverse covariance matrix changes by ϵ at a given time, other
elements are free to change by up to that same amount with no ad-
ditional penalty (except for the original ℓod,1 sparsity condition).
This is best used when a cluster of nodes suddenly changes its
internal edge structure, the rest of the network does not change.
• Perturbed node — Settingψ to the row-column overlap penalty
[18], defined asψ (X ) = min

V :V+V T =X

∑
j
∥[V ]j ∥2, yields an interest-

ing behavior. When node i has a reweighting of one edge at time
t , this says that the node can rewire all its edges at that same time
with a minimal penalty. However the rest of the graph is strongly
encouraged to remain the exact same. It is best used in situations
where we are looking for single nodes re-locating themselves to
a new set of neighbors within the network.
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3 EXTENSIONS
Here, we develop three extensions of the basic time-varying graph-
ical lasso. First, we update our approach to allow for asynchronous
observations of the data. Then, we derive a method of inferring
an estimate at any time, even if there is no temporally-local data.
Finally, we extend the algorithm so it can be deployed in an appli-
cation with streaming data and real-time update constraints.

Asynchronous Observations. Problem (2) can be extended to
asynchronous settings, where samples are observed at irregularly-
spaced intervals. We rewrite the problem as

minimize
Θ∈Sp++

T∑
i=1
− li (Θi ) + λ ∥Θi ∥od,1 + β

T∑
i=2

hiψ

(
Θi − Θi−1

hi

)
,

where hi = ti − ti−1, the interval of time between sample i − 1
and sample i . This is similar to putting hi different intermediate
Θ’s between the two samples (with no loss, since there is no data).
Since ψ is convex, we know that the loss is minimized by evenly
spreading the change in Θi − Θi−1 across these hi steps. We also
know from convexity that this penalty gets smaller as hi gets larger.
That is, the temporal consistency penalty is less important when
consecutive samples have a large time gap between them. Of course,
we can scale this penalty through the regularization parameter β
to account for the average frequency of the data.

Inferring Intermediate Networks.With this approach, it is pos-
sible to infer the covariance estimation at any time, even if there
are no observations at that moment in time. This can be very use-
ful if, for example, we want to get a granular estimate of a sharp
breakpoint. To infer a network estimate at intermediate time s , we
create a dummy node at s and merge it into the chain graph by
connecting it to the nearest observation in either direction, j − 1
and j. To get an estimate of Θs , we solve for

minimize
Θs ∈S

p
++

w (s − tj−1)ψ (Θs − Θj−1) +w (tj − s )ψ (Θj − Θs ).

For most common ψ ’s, this problem has a closed-form solution.
With this we can efficiently “upsample” and predict underlying
covariances as frequently as our application requires, even if the
data has a slower sampling frequency.

Streaming Algorithm. In many applications, it is necessary to
deploy a network inference scheme that updates in real time as new
observations continue to arrive. Therefore, we require a streaming
algorithm to quickly incorporate new data into our model. That
is, given that we have solved for a problem with i timestamps, we
look for a fast way to update the solution when we receive a new
observation at time ti+1.

One approach is to use a warm-start ADMM. With this method,
we solve for the i+1 covariance matrices using the standard ADMM
approach, but the first i Θ’s initialize themselves at the value of the
solution to the previous problem. However, there are no guarantees
as to howmany iterations warm-start ADMMmay take to converge.
In particular, as i gets large, there is a risk that one single additional
reading takes a very long time as the new information needs to
propagate across the entire time series. Therefore, it may take
longer to incorporate the 1000th reading than the 100th. If we
want a real-time implementation of this algorithm, we need a way

Figure 3: To quickly update our estimates when the observa-
tion at ti+1 arrives, we re-solve for the most recentm times-
tamps, while enforcing that Θi−m must remain the same.

of guaranteeing that it takes the same amount of time to solve,
regardless of the current timestamp.

We do so using a small approximation where we fix the result a
certain distance in the past, and only solve for them most recent
nodes (Figure 3). Therefore, if the i + 1-st reading comes in, we
only solve for nodes i −m to i + 1, subject to the constraint that
Θi−m = Θ̂i−m , where Θ̂ is the solution from when there were only i
timestamps. We can pickm based on memory limitations, previous
breakpoints, or domain expertise.

4 PROPOSED ALGORITHM
When inferring small networks, or those without time-varying
dynamics, Problem (2) can be solved using standard interior-point
methods. However, our paper focuses on larger examples, where it
is infeasible to solve the whole problem at once. Here, we propose
the time-varying graphical lasso (TVGL) algorithm, based on the
alternating direction method of multipliers (ADMM) [3], a well-
established distributed convex optimization approach.With ADMM,
we split the problem up into a series of subproblems and use a
message-passing algorithm to converge on the globally optimal
solution. In this section, we analyze the separable subproblems and
develop analytical solutions, which are fast and easy to implement,
for every step in the ADMM process. To do so, we rewrite terms in
the form of proximal operators [25], which are defined for a matrix
A ∈ Rm×n and the real-valued function f (X ) as

proxηf (A) = argmin
X ∈Rm×n

(
f (X ) + 1/(2η) ∥X −A∥2F

)
. (3)

The proximal operator defines a trade-off forX betweenminimizing
f and being near A. Writing the problems in this form allows us
to take advantage of well known properties to find closed-form
updates for each of the ADMM subproblems.

4.1 ADMM Solution
To split Problem (2) into a separable form, we introduce a consen-
sus variableZ = {Z0,Z1,Z2} = {(Z1,0, . . . ,ZT ,0), (Z1,1, . . . ,ZT−1,1),
(Z2,2, . . . ,ZT ,2)}. With this, we can rewrite Problem (2) as its equiv-
alent problem,

minimize
T∑
i=1
−li (Θi ) + λ Zi,0od,1 + β

T∑
i=2

ψ (Zi,2 − Zi−1,1)

subject to Zi,0 = Θi , Θi ∈ S
p
++ for i = 1, . . . ,T

(Zi−1,1,Zi,2) = (Θi−1,Θi ) for i = 2, . . . ,T .
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The corresponding augmented Lagrangian [13] becomes

Lρ (Θ,Z ,U ) =
T∑
i=1
−l (Θi ) + λ Zi,0od,1 + β

T∑
i=2

ψ (Zi,2 − Zi−1,1)

+ (ρ/2)
T∑
i=1

(
Θi − Zi,0 +Ui,02F − Ui,0

2
F

)

+ (ρ/2)
T∑
i=2

(
Θi−1 − Zi−1,1 +Ui−1,12F − Ui−1,1

2
F

+ Θi − Zi,2 +Ui,22F − Ui,2
2
F

)
, (4)

where U = {U0,U1,U2} = {(U1,0, . . . ,UT ,0), (U1,1, . . . ,UT−1,1),
(U2,2, . . . ,UT ,2)} is the scaled dual variable and ρ > 0 is the ADMM
penalty parameter [3, §3.1.1]. ADMM consists of the following
updates, where k denotes the iteration number:

(a) Θk+1 := argmin
Θ∈Sp++

Lρ
(
Θ,Zk ,U k

)

(b) Zk+1 =



Zk+1
0

Zk+1
1

Zk+1
2


:= argmin

Z0,Z1,Z2

Lρ
(
Θk+1,Z ,U k

)

(c ) U k+1 =



U k+1
0

U k+1
1

U k+1
2


:=



U k
0

U k
1

U k
2


+



Θk+1 − Zk+1
0

(Θk+1
1 , . . . ,Θk+1

T−1) − Z
k+1
1

(Θk+1
2 , . . . ,Θk+1

T ) − Zk+1
2


.

Global Convergence. By separating Problem (2) into two blocks of
variables, Θ and Z , our ADMM approach is guaranteed to converge
to the global optimum. Our iterative algorithm uses a stopping
criterion based on the primal and dual residual values being below
specified thresholds; see [3].

4.2 Θ-Update
The Θ-step can be split into separate updates for each Θi , which
can then be solved in parallel:

Θk+1
i

(a)
= argmin

Θi ∈S
p
++

− log det(Θi ) + Tr(SiΘi ) +
1
2η
∥Θi −A∥

2
F

(b )
= argmin

Θi ∈S
p
++

− log det(Θi ) + Tr(SiΘi ) +
1
2η


Θi −

A +AT

2



2

F

where (a) holds for A =
Z k
i,0+Z

k
i,1+Z

k
i,2−U

k
i,0−U

k
i,1−U

k
i,2

3 and η = ni
3ρ ,

and (b) holds due to the symmetry of Θi . This can be rewritten as
a proximal operator,

Θk+1
i = proxη (− log det( ·)+Tr(Si ·))

(
(A +AT )/2

)
.

Since A+AT
2 is symmetric, this has an analytical solution,

Θk+1
i :=

1
2η−1

Q
(
D +

√
D2 + 4η−1I

)
QT , (5)

where QDQT is the eigendecomposition of η−1 A+A
T

2 − Si [6, 32].
This is the most computationally expensive task in our algorithm,
as decomposing a p × p matrix has an O (p3) runtime.

4.3 Z -Update
The Z -update can be split into two parts: Z0, which refers to the
∥Θ∥od,1-penalty that enforces sparsity in the inverse covariance
matrices, and (Z1,Z2), which denotes theψ -penalty that minimizes
deviations across timestamps. These two updates can be solved
simultaneously, and each part can be parallelized even further to
speed up computation.

4.3.1 Part 1: Z0-Update. Each Zi,0 can be written as the prox-
imal operator of the ℓod,1-norm, which has a known closed-form
solution [25]

Zk+1
i,0 = prox λ

ρ ∥ · ∥od,1
(Θk+1

i +U k
i,0) = S λ

ρ
(Θk+1

i +U k
i,0),

where S λ
ρ
(·) is the element-wise soft-threshold function, for 1 ≤

i , j ≤ p. The (i, j )-th element of this update is(
S λ
ρ
(A)

)
i j
=



0 |Ai j | ≤
λ
ρ

sgn(Ai j ) ( |Ai j | − λ
ρ ) otherwise.

4.3.2 Part 2: (Z1, Z2)-Update. Zi−1,1 and Zi,2 are coupled to-
gether in the augmented Lagrangian, so they must be jointly up-
dated. In order to derive the closed-form solution, we define

ψ̃ (

[
Z1
Z2

]
) = ψ (Z2 − Z1).

We now solve a separate update for each (Z1, Z2) pair,


Zk+1
i−1,1
Zk+1
i,2


= prox β

ρ ψ̃ ( ·)
*
,



Θk+1
i−1 +U

k
i−1,1

Θk+1
i +U k

i,2


+
-
. (6)

Part 2-1: (Z1,Z2)-Updates for the Sum of Column Norms. For
the ℓ1, ℓ2, ℓ22 , and ℓ∞ penalties defined in Section 2.1, we solve the
proximal operator by utilizing the following two properties [25, 28]:
• If a function f is a composition of another function д with an
orthogonal affine transformation, i.e., f (x ) = д(Cx + D) and
CCT = (1/α )I , then

proxf (x ) = (I − αCTC )x + αCT (prox 1
α д

(Cx + D) − D).

• If f is block-separable, i.e., f (x ) =
∑
j fj (x j )wherex = (x1,x2, . . .),

then
(
proxf (v )

)
j
= proxfj (vj ).

Recall that our goal is to get the analytical solution to (6). To do
so, we apply the first property with f = ψ̃ , д = ψ , C =

[
−I I

]
,

D = 0, and α = 1
2 , which converts the (Z1,Z2)-update into



Zk+1
i−1,1
Zk+1
i,2



(a)
=

1
2



Θk+1
i−1 + Θ

k+1
i +U k

i−1,1 +U
k
i,2

Θk+1
i−1 + Θ

k+1
i +U k

i−1,1 +U
k
i,2


+
1
2

[
−E
E

]
,

where (a) holds for

E = prox 2β
ρ ψ

(
[
Θk+1
i − Θk+1

i−1 +U
k
i,2 −U

k
i−1,1

]
).

Now, for each penalty functionψ , we simply need to solve for the
corresponding E. We denote A =

[
Θk+1
i−1 − Θ

k+1
i +U k

i−1,1 −U
k
i,2

]

and η = 2β
ρ . Then, since ψ is just the sum of column-norms and

thus block-separable, we simplify E as

[E]j =
(
proxηψ (A)

)
j
(b )
= proxηϕ ([A]j ), (7)
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where ϕ is the column-norm for ℓ1, ℓ2, ℓ22 , and ℓ∞. Note that we
have narrowed the (Zi−1,1,Zi,2)-update in (6) down to just finding
Ej in (7), expressed by the proximal operator of ϕ defined on a
vector, each of which has a closed form solution as follows:

Element-wise ℓ1 Penalty. The ℓ1 proximal operator is

[E]j = proxη ∥ · ∥1 ([A]j ) = Sη (Aj ).

This is just the element-wise soft threshold,

Ei j = Sη (Ai j ) =



0 |Ai j | ≤ η

sgn(Ai j ) ( |Ai j | − η) otherwise.

Group Lasso ℓ2 Penalty. The proximal operator for the ℓ2-norm
is a block-wise soft thresholding,

[E]j = proxη ∥ · ∥2 ([A]j ) =



0 ∥[A]j ∥2 ≤ η
(1 − η/∥[A]j ∥2)[A]j otherwise.

Laplacian Penalty. The proximal operator for the ℓ22-norm, Lapla-
cian regularization, is given by

[E]j = proxη ∥ · ∥22 ([A]j ) = (1 + 2η)−1 ([A]j ).

This can be rewritten in element-wise form

Ei j = (1 + 2η)−1 (Ai j ).

ℓ∞ Penalty. The proximal operator for the ℓ∞-norm is

[E]j = proxη ∥ · ∥∞ ([A]j ) =



0 ∥[A]j ∥1 ≤ η
[A]j − ηSσ ([A]j/η) otherwise,

where σ is the solution to
∑n
i=1max{Ai j/η − σ , 0} = 1, which has

no closed-form solution but can be solved via bisection.

Part 2-2: (Z1,Z2)-Update for Perturbed Node Penalty. The per-
turbed node proximal operator does not have an efficient analytical
solution. However, we can solve this new problem by deriving a
second ADMM algorithm. Here, in each iteration of our original
ADMM solution, we now call this second ADMM solver.

In order to avoid notational conflict, we denote the minimization
variables (Zi−1,1,Zi,2) as (Y1,Y2). We then introduce an additional
variable V =WT , and the augmented Lagrangian Lρ becomes

Lρ (V ,W ,Y1,Y2) = β ∥V ∥2 +
ρ

2



[
Y1
Y2

]
−



Θk+1
i−1 +U

k
i−1,1

Θk+1
i +U k

i,2





2

F

+
ρ

2
V +W − (Y1 − Y2) + Ũ1


2
F
+
ρ

2
V −W

T + Ũ2

2
F
,

where (Ũ1, Ũ2) is the scaled dual variable and ρ is the same ADMM
penalty parameter as outer ADMM. At the l-th iteration, the three
steps in the ADMM update are as follows:

(a) V l+1 = prox β
2ρ ∥ · ∥2

(Y l1 − Y l2 −W l − Ũ l
1 + ((W l )T − Ũ l

2 )
T

2
)
,

which has the following closed form solution for the jth column,

with A =
Y l
1 −Y

l
2 −W

l−Ũ l
1 +((W

l )T −Ũ l
2 )
T

2 ,

[V l+1]j =



0 ∥[A]j ∥2 ≤
β
2ρ

(1 − 1/(2ρ∥[A]j ∥2))[A]j otherwise.

(b)



W l+1

Y l+11
Y l+12


= (CTC + 2I )−1

*..
,
2



(V l + Ũ l
2 )
T

Θk+1
i−1 +U

k
i−1,1

Θk+1
i +U k

i,2


−CTD

+//
-
,

where C =
[
I −I I

]
, and D = (V l + Ũ l

1 ).

(c )

[
Ũ l+1
1

Ũ l+1
2

]
=

[
Ũ l
1

Ũ l
2

]
+

[
(V l+1 +W l+1) − (Y l+11 − Y l+12 ))

V l+1 − (W l+1)T

]
.

5 IMPLEMENTATION
We have built a custom TVGL Python solver1 on top of SnapVX [11],
an open-source convex optimization package. Our solver takes as
inputs the multivariate observations, the regularization parameters,
and the type of penalty (ℓ1, ℓ2, Laplacian, ℓ∞, or perturbed node),
and it returns the time-varying network. Although TVGL is capable
of being distributed across many machines, we instead distribute it
across multiple cores of a single large-memory machine.

6 EXPERIMENTS
Here, we run several experiments on synthetic data, where there
are clear ground truth networks, to test the accuracy and scalability
of our network inference approach. First, we compare our TVGL
method to two state-of-the-art baselines to measure accuracy, and
we demonstrate the importance of using appropriate penalties for
different types of temporal evolutions. Next, we vary the problem
size over several orders of magnitude and test our ADMM-based
algorithm’s scalability compared to three other solution methods.

6.1 Accuracy on Synthetic Data
We first analyze a synthetic problem in which the observations
are generated from a changing underlying covariance matrix. This
provides a known ground truth network, which we can use to verify
the accuracy of our network inference approach.

Experimental Setup.We evaluate two different types of temporal
evolutions: a global shift, where the entire structure of the network
changes at some time t , and a single node perturbation (which we
refer to as a local shift), where one node rewires its connections all
at once but the rest of the graph remains the same. We randomly
generate the ground truth covariance and subsequent samples using
the method outlined by Mohan et al. [19]. For both examples, we
generate data in R10 over 100 timestamps, where the shift (either
global or local) occurs at time t = 50. At each t , we observe 10
independent samples from the true distribution.

From this time series of observations, we then solve for Θt , t =
1, . . . , 100, our estimate of the dynamic network across this time
period. Here, we set the regularization parameters λ and β as the
values that minimize the Akaike Information Criteria (AIC) [12]
(on a separate, independently generated training set).

Baseline Methods. We compare our approach to two different
baselines: the static graphical lasso [7] and the kernel method [36].
For the static graphical lasso, we treat each ti as an independent
network. Since our data has 100 time steps, this means we solve 100
independent graphical lasso problems and infer 100 separate net-
works. For the kernel method, we modify the empirical covariances

1Code and solver can be found at http://snap.stanford.edu/tvgl/.
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True Score Static GL Kernel TVGL TVGL TVGL
Shift (ℓ1) (ℓ2) (Perturbed Node)

Local F1 0.646 0.768 0.819 0.817 0.853
TD ratio 2.02 2.41 27.9 23.3 55.5

Global F1 0.496 0.688 0.939 0.952 0.943
TD ratio 1.06 1.80 47.6 38.6 36.2

Table 1: F1 score and Temporal Deviation (TD) ratio for a lo-
cal and global shift, using the two baselines and three differ-
ent TVGL evolutionary penalties.

and weight them according to a non-negative kernel function. We
set the kernel width to the theoretically guaranteed optimum using
the method proposed by Zhou et al. [36].

Performance Measures. We introduce two metrics to measure
the accuracy of our estimate:
• F1 score: This measures how closely we capture the true edge
structure of the network (i.e., howmany of the non-zero elements
in the inverse covariance we correctly identify as non-zero). This
score is the harmonic mean of the precision and recall.
• Temporal deviation (TD) ratio:The temporal deviation, ∥Θi−

Θi−1∥F , shows how much the estimate has changed at each
timestamp. This score is the ratio of the temporal deviation at
t = 50 (where the one “true” shift happened) to the average
temporal deviation value across the 100 timestamps.

Experimental Results. We show results for both the local and
global shift with several different TVGL penalties in Table 1. In
terms of both F1 score and temporal deviation, our TVGL approach
significantly outperforms the two baselines. The TVGL F1 score is
up to 38.4% higher than the kernel method and 91.9% higher than
the static graphical lasso. Regardless of penalty type, the TVGL also
always has a temporal deviation (TD) ratio at least 9.7 times larger
than any of the baseline methods. In fact, for both baselines and
both shift types, the largest temporal deviation peak in the time
series does not occur at t = 50. This means that the baselines do
not detect that there is a large shift in the network at this time,
whereas this sudden change is clearly discovered by TVGL (where
the largest peak always occurs at t = 50). We later use this idea in
Section 7 to detect significant events in real-world time series data.

Selection of Penalty Type. While the TVGL outperformed the
two baselines regardless of the penalty type, even greater gains
can be achieved by selecting the correct evolutionary penalty. In
real world cases, this parameter can be selected by cross-validation
or by incorporating domain knowledge, using the descriptions in
Section 2.1 to choose the proper penalty based on exactly what
type of temporal evolution one is looking for in the data. As shown
in Table 1, there are clear benefits from using certain penalties in
certain situations. For example, with a local shift, which is well-
suited to be analyzed by a perturbed node penalty, choosing this
penalty leads to a 5% higher F1 score and a temporal deviation ratio
that is more than twice as large as both the ℓ1 or ℓ2 cases. For the
Global shift, the ℓ2 penalty does the best job at reconstructing the
time-varying network (largest F1 score), though the ℓ1 is better
able to identify the sudden shift at t = 50 (with its TD ratio 23%
larger than either of the other two penalty types). This additional
selection parameter, which to the best of our knowledge has not
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Figure 4: Scalability comparison between our TVGL solver
and three other solution methods.

been previously explored in this context, expands the reach of time-
varying inference methods by allowing us to model various types
of network evolutions with high precision.

6.2 Scalability of TVGL
Next, we examine the scalability of our TVGL algorithm. We run
our TVGL solver on data generated by the method outlined in
Section 6.1, and we vary our problem size over several orders of
magnitude. Here, we estimatem slices of a n-node network, for a
total ofm n (n+1)

2 unknown variables.
While many algorithms exist to efficiently solve the static graph-

ical lasso problem (e.g., [7, 14]), these cannot be directly applied
to our problem because of the time-varying penalties coupling the
variables together. Instead, we compare our runtime against three
alternative methods that can solve our time-varying problem: two
semidefinite programming solvers (CVXOPT [5] and SCS [24]) and
a naive ADMM method (without the closed-form updates that we
developed in §4). We experiment on a single 40-core CPU where
the entire problem fits into memory. We setm = 10 and modify n to
vary the problem size. Even though our TVGL algorithm can solve
for problems with much larger values ofm, it is intractable to scale
the other methods beyond this point, and we run the experiments in
identical conditions to isolate our algorithm’s effect on scalability.

We compare the performance of the four solvers in Figure 4. As
shown, problems which take hours for the other solvers can be
solved in seconds using TVGL. For example, to solve for 50,000 un-
knowns, TVGL is over 400 times faster than SCS, the second fastest
solver (14.3 vs. 6,611 seconds). The main difference in solution time
is due to the closed-form ADMM solutions we derived in Section
4.1 for each of the ADMM subproblems. Our problem has a semidef-
inite programming (SDP) constraint, which is particularly difficult
to solve via standard methods. To infer a single n-by-n covariance,
the largest per-iteration cost in our algorithm is O (n3), the cost of
an eigendecomposition during the Θ-update. For the same problem,
general interior-point methods have a runtime ofO (n6) [19]. These
numbers empirically appear to hold true in Figure 4 (recall that the
total number of unknowns in the x-axis scales with O (n2)).

7 CASE STUDIES
We next apply the TVGL to two real-world domains to illustrate
several basic examples of how our approach can be used to learn
meaningful insights from multivariate time series data.
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Perturbed Node Detection for Finance Data

Figure 5: Plot of the temporal deviation of our estimated
stock network, which detects a local shift in late January.

(a) (b)

Figure 6: Sparsity structure of (a) the network change during
the local shift, indicating that Apple is the perturbed node,
(b) the relationships in the financial network.

7.1 Applications in Financial Data
By examining historical stock prices, we can infer a financial net-
work to model relationships between different companies. Learning
the structure of this network is useful because it allows us to de-
vise models of how certain stocks are related, which can be used
to predict future prices, understand economic trends, or even di-
versify a portfolio by avoiding highly correlated stocks. We infer
this network by examining the stock prices of several large compa-
nies in 2010. We apply our method by treating the closing price of
each stock as a daily “sensor” observation. Our inferred graphical
representation then shows how the stock prices affect each other.

Identifying Single-Stock Perturbations.We observe daily stock
prices for six large American companies: Apple, Google, Ama-
zon, Intel, Boeing, and FedEx. Generally, large companies are well-
established in the market, so we would expect their correlation
network to change only slightly over time. However, events occa-
sionally occur which cause a sudden shift in the network structure.
We look at the dependencies of these companies while using a
perturbed node penalty. This enforces a temporal dynamic where
single nodes may occasionally reweigh all their connections at
once. This typically reflects that something happened to affect just
one company, while leaving the rest of the network unchanged.
We solve the TVGL optimization problem with a perturbed node
penalty and discover that one event stood out as having the largest
single-node effect on the dynamics between these stocks.

After running our TVGL method, we plot the temporal deviation,
∥Θi −Θi−1∥F , in Figure 5. We discover that there is a large spike in
the temporal deviation score during the last week of January. This
represents a significant “shift” in the network at this specific time.
We show the network change at this shift in Figure 6(a), where we
see that the perturbed stock was Apple. At this timestamp, only
Apple’s edges were affected, reflecting a local rather than global
change in the network. We examined the media to understand

what may have caused this shift, and we found that on January
27th, Apple first introduced the original iPad to the public. This
corresponds to the exact time that our TVGL method captured a
structural change in the network, where it was also able to identify
Apple as the cause of this shift.

We also plot the post-announcement network in Figure 6(b).
Analyzing the correlation structure yields some insightful relation-
ships. The four technology companies—Apple, Google, Amazon,
and Intel—are closely related. The shipping company (FedEx) and
the airplane manufacturer (Boeing) are both connected to only
one company, Amazon. Amazon heavily depends on both compa-
nies to deliver products on time, while both rely on Amazon for
a large portion of their business. Interestingly, our model predicts
that FedEx and Boeing’s stock prices are conditionally independent
given Amazon, a trend that holds true across the entire dataset.

Detecting Large-Scale Events. Time-varying inference can also
be used to detect significant events that affected the entire network,
not just single entities within it. We run a similar experiment to the
previous example, except we now include every company in the
S&P 500, which covers 500 of the largest US-based public companies.
Since we are focusing on macro-level event detection, we look for
the maximum temporal deviation with an ℓ1 penalty. This point in
time represents the largest “shock” to the network, the timestamp
where our TVGL model detected a large and sudden change. We
discover that a shift happens during the week of May 6th, 2010.
Surprisingly, we saw that there was in fact a “Flash Crash” that day,
where the entire market dropped 9% in a matter of seconds, only
to rebound back just minutes later. Our results imply that, even
though the market recovered from the crash in terms of stock price
values, there were tangible long-term effects on the correlation
network between companies in the S&P 500.

7.2 Application to Automobile Sensors
Inferring relationships between interrelated entities is of particular
interest to industries with large amounts of sensor data. One such
industry is automobiles, where modern cars contain hundreds of
sensors measuring everything from the car’s velocity to the slope of
the road. Inferring a time-varying network of relationships between
these sensors is an informative way to understand driving habits, as
each driver creates a unique “signature”, or dynamic sensor network,
while driving. This network can be used tomodel behavior, compare
driver ability, or even detect impaired drivers.

As a second case study, we analyze an automobile sensor dataset,
provided by a large car company. We look at a short session where a
driver goes down a straight road, makes a right turn, and continues
on a new road. We observe eight different sensors every 0.1 sec-
onds: steering wheel angle, steering wheel velocity, vehicle velocity,
brake pedal, gas pedal, forward acceleration, lateral acceleration,
and engine RPM. Since we do not expect any sudden shifts in this
network, we use a Laplacian penalty to enforce a smoothly varying
network across time. We run our TVGL algorithm and plot three
snapshots of the sensor network in Figure 7: one on the straight-
away before the turn, one in the middle of turning, and one after the
turn. Note that the “before” and “after” networks look quite similar,
since the driver is doing a similar activity (driving straight) on both.
The “during” network looks much different, however. The most
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Figure 7: Three snapshots of the automobile sensor network
measuring eight sensors, taken (1) before, (2) during, and (3)
after a standard right turn.

noticeable difference is that the steering wheel angle sensor (SA)
is now centrally located within the network, connected to almost
every other node. This means that variations in the other sensors’
observations can be largely explained by the steering wheel angle
during the turn. For straightaways, on the other hand, the steering
angle is on the network periphery, meaning that it is not well suited
to explain the other sensor readings.

8 CONCLUSION AND FUTUREWORK
In this paper, we have defined a general method for inferring dy-
namic networks from timestamped observational data. Our ap-
proach, the time-varying graphical lasso, provides a scalable algo-
rithm capable of encoding many different temporal dependencies.
This type of modeling allows us to infer structure from large-scale
“sensor” deployments. We leave for future work the examination of
additional penalty functions to enforce different behaviors in the
evolution of the network structure, along with their closed-form
proximal operator solutions. There are also new extensions, beyond
what was discussed in Section 3, which could be further analyzed.
For example, we currently assume that the underlying distribution
is zero mean. However, we could model a problem where obser-
vations come from a distribution x ∼ N (µ (t ), Σ(t )), and attempt
to simultaneously estimate both the mean and covariance as they
vary over time. Finally, this work could also be extended to infer
correlations across different timestamps. Currently, our algorithm
is suited to find simultaneously-related entities, i.e., stocks whose
prices move up and down in unison. However, there are other appli-
cations where the correlations are not immediate. For example, in
brain connectivity networks, neuron A firing at timestamp i could
cause neuron B to fire at time i + 1. Each of these additions would
open up our framework to new potential applications, providing
additional benefits to future research in this topic.
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