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Abstract

Single cell transcriptomic data allow us to probe the tran-
scriptional changes occurring during cell development in un-
precedented detail. These complex datasets are driving the
development of new computational and statistical tools that are
revolutionizing our understanding of differentiation processes.
Many clustering and dimensionality reduction methods exist to
aid visualization and exploration of structure in these datasets.
Increasingly, pseudotemporal ordering and network inference
algorithms are emerging that aim to elucidate the regulatory
mechanisms that drive and control changes in gene expres-
sion state. Combining multiple analytical approaches enables
us to make best use of the complementary information they
offer, and provides the detail needed to infer mathematical
models describing the structure and dynamics of gene regu-
latory networks.
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Introduction

Advances in genomics technologies now enable high-
throughput screening of many biomolecules within
single cells. Perhaps the best developed techniques are
those allowing measurement of gene expression levels in
up to thousands of individual cells, enabling us to
explore how cellular transcriptional states vary during
e.g. developmental processes. These techniques are
widely applied in stem cell and developmental biology
research, where they are revolutionizing our under-
standing of the changes that occur as cells progress
through development. Single cell data have, for
example, enabled identification of rare cell types, pro-
vided insight into the subpopulation structure of

developing cell populations, and challenged existing
models of developmental hierarchies (see Refs. [1—3]
for recent reviews).

Precisely controlled spatial and temporal patterns of
gene expression accompany the differentiation of cells
from multipotent progenitor states towards specialized
cell lineages, as a multicellular organism develops from
a single fertilized egg. Single cell transcriptomic data
— cross-sectional data comprising ‘snapshots’ of mRINA
expression levels that are generated using single cell
RNA (scRNA) sequencing or quantitative PCR —
provide unprecedented insights into individual cells
and how they respond to environmental, develop-
mental and physiological cues. However, analysing
these data poses new computational and statistical
challenges due to the technical and biological hetero-
geneity that characterise such data. Numerous
methods — specifically tailored for single cel data —
have been developed for pre-processing (including
normalizing) and visualizing these high-dimensional
data, characterising cell types and subpopulation
structure, and detecting differentially expressed genes
(reviewed in Refs. [4—8]). Here, we focus on recent
computational methods for analysing scRNA data that
address the challenge of learning temporal dynamics
from static measurements, allowing us to examine po-
tential functional interactions between genes, and
move towards developing mathematical models
describing the gene regulatory mechanisms controlling
cell development and differentiation.

Gene regulatory networks and models of
cell development

Complex gene regulatory networks (GRNs) comprising
activating and repressing interactions between tran-
scription factors and their targets control the transcrip-
tional state of cells. In a dynamical systems framework,
such networks are viewed as regulating the probability of
cells occupying different gene expression states. Stable
‘attractor’ states are associated with discrete cell types
observed experimentally, and the potential landscape
determines probable transition routes between states
[9—11]. The analogy of landscapes that dictate cellular
developmental pathways has long been used as a con-
ceptual framework for describing differentiation pro-
cesses [12].

Single cell experiments effectively provide snapshots of
these notional landscapes, enabling us to quantitatively
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assess the distributions in gene expression space of cell
populations undergoing differentiation. While the
landscape analogy implies smooth, continuous transi-
tions between stable states, single cell data allow much
more detailed examination of the moments when cells
commit to certain lineages and have led to proposals
that we should refine our descriptions of these key
bifurcation or cell fate decision events. Rather than
smooth transitions, these may be discontinuous, sto-
chastic transition events driven by the dynamic nature
of the landscape (which changes in response to GRN
activity and extracellular signals) and reflected in the
observed increased transcriptional heterogeneity at
these points [11,13—15]. There is great interest in
analysing single cell data to understand the transcrip-
tional changes that occur as cells differentiate and the
genes and regulatory mechanisms controlling these
processes [1,5,6,8,16].

Defining cell types and subpopulation
structure

Single cell transcriptomic data are high-dimensional
comprising information on up to thousands of genes
and cells depending on the experimental protocol, so
most analyses start by visualizing and exploring struc-
ture in these data using clustering and dimensionality
reduction algorithms. The assumptions and inherent
biases of different algorithms — e.g. the relative
emphasis on preserving local versus global structure
when reducing dimensions, or how to define similarities
between cells or genes — affect our conclusions about
structure and patterns in these data [6,7,17,18]; choices
made during the preliminary steps will therefore influ-
ence any subsequent downstream analyses relying on
these results (Figure 1).

When studying cell differentiation, detecting genes
showing variable expression across different develop-
mental stages is a first step towards identifying putative
GRN components. Clustering genes by expression pro-
file similarity (or bi-clustering by both gene and cell
similarities) can identify gene modules showing coor-
dinated expression changes associated with develop-
mental progression (e.g. Refs. [19,20]). Several
approaches to detect differential expression of genes
between cell subsets are specifically tailored to deal
with the complexities of single cell data, e.g. by ac-
counting for the prevalence of ‘dropouts’ (where gene
expression is undetected in a given cell due to low
mRNA capture rates) [21—25].

These approaches are helpful for many downstream
analyses — particularly by revealing any subpopulation
structure — but may only provide cursory mechanistic
insights. Here, we focus on efforts to gain more insight
into the precise dynamics and regulation of gene
expression changes.

Inferring temporal progression through
development

Longitudinal scRNA data cannot be collected straight-
forwardly (since cells are lysed for mRNA quantifica-
tion) but, under certain assumptions, we can use
samples of populations of cells undergoing differentia-
tion to reconstruct probable developmental trajectories.
The asynchronous behaviour of cells means that even
when we trigger differentiation artificially, experimental
sampling times will not necessarily reflect the extent of
a cell’s developmental progression. Instead, by assuming
that transcriptional state reflects developmental stage,
and that cells follow common trajectories, we can order
cells according to similarities in expression state and
infer their relative progression; individual cells are
assigned a ‘pseudotime’ depending on their position in
this inferred order. Many pseudotemporal ordering al-
gorithms exist, with different capabilities in terms of the
types of trajectories they can infer and requirements for
prior knowledge (see Table 1) [26—39].

This re-ordering provides candidate temporal trajec-
tories for each gene that, if correct, give a clearer view of
developmental gene expression dynamics. This can
show the relative timing of expression changes, reveal
sets of genes with coordinated dynamics, identify gene
expression signatures of specific developmental line-
ages, or indicate cellular processes that change system-
atically during development [26—28,30—32,40—42]. We
can also study the transcriptional changes associated
with bifurcation or cell fate decision events, enabling us
to identify putative regulators of specific transitions
from gene expression changes that accompany or
immediately precede such events [26,28,30,40].
Determining the number and location of these bifur-
cation events remains a challenging problem [26,28—
30,32,36,37]. Comparing gene expression dynamics
may of course indicate the directionality of any regula-
tory interactions and, in a few cases, pseudotemporal
trajectories have been used to infer dynamical models of
GRNs [43,44].

Pseudotemporal ordering algorithms have generated
much interest and provided insight into developmental
processes. However, as with all inference and model-
ling, we should bear in mind the limitations and un-
derlying assumptions: many algorithms rely on initial
clustering and/or dimensionality reduction steps, and
some require or can incorporate prior knowledge (e.g.
number of lineages or experimental sampling times);
these methods and choices will influence our results.
Comparisons demonstrate that inferred trajectories can
differ substantially between algorithms due to e.g.
different susceptibilities to noise and data sparsity
[26—28,30]. While such algorithm-dependent in-
fluences can be assessed through quantitative com-
parisons, we should always consider whether the
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Figure 1
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Common workflows for analysing single cell data. A wide array of computational methods are available for analysing single cell transcriptomic data, with
the complementary aims of characterising cell subpopulations and their gene expression patterns, identifying genetic drivers of transition events and
inferring (mechanistic) models of gene interactions. Following pre-processing steps such as eliminating poor quality data, normalizing, and correcting
technical errors (not depicted), dimension reduction and clustering help characterise cell subtypes, and may provide the initial steps for pseudotemporal
ordering. Using clustering or pseudotemporal ordering, it is then possible to identify genes that are differentially expressed in different states, or more
ambitiously, infer a gene regulatory network (the arrows indicate common — but not all possible — analysis workflows).

assumptions are appropriate for the particular system
under study. While initial analyses such as dimension-
ality reduction often appear to depict cells undergoing
smooth, continuous changes in transcriptional state,
the homogeneity, parsimony and irreversibility of

developmental transitions are in fact assumptions that
may or may not accurately reflect the true biological
processes. In addition there may be a host of other
factors — apart from development — that affect
changing gene expression patterns [11,16,28].
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Overview of single cell pseudotemporal ordering algorithms. Summary of algorithms developed to infer lineage hierarchies and temporal
ordering of cells from single cell transcriptomic data. A brief overview of each method and key features is provided, see the original
references for more detail. N.B. This is not a comprehensive list of all algorithms, but aims to provide an overview of the most commonly
used and recent algorithms, and illustrate the wide range of methods that have been applied to this type of problem. Abbreviations used in
table: k-nearest neighbour graph (k-NNG), Gaussian process (GP), minimal spanning tree (MST), Latent Dirichlet Allocation (LDA).

Algorithm Method summary Key features References
GPfates First infers pseudotimes (and potentially reduces Uses experimental cell capture times; Ldnnberg 2017 [26]
dimensions) using a GP latent variable model, using provides uncertainty estimates;
experimental capture times as prior information. Then currently limited to a single bifurcation
identifies bifurcation using a nonparametric temporal mixture event.
model.
Monocle 2 Selects genes showing differential expression between cell Unsupervised method to select Qiu 2017 [27]
clusters. Uses reversed graph embedding to learn a informative genes and branching
mapping between high and low-dimensional space, and a  structure; scalable for large datasets.
spanning tree connecting cell clusters in low-dimensions.
scTDA Uses a topological data analysis (TDA) algorithm to Scalable; infers multi-branching Rizvi 2017 [28]
construct low-dimensional network representation, where lineages; does not enforce common
nodes represent cell clusters, and edges connect nodes with differentiation trajectories, allows more
cells in common. complex topological structures.
Slingshot Constructs MST between cell clusters to identify number and Infers multi-lineage structures; Street 2017 [29]
location of branch points. Infers pseudotemporal trajectories compatible with any upstream
by fitting principal curves to each lineage (option for user to dimensionality reduction/clustering
define lineage endpoints). methods.
Mpath Hierarchical clustering identifies ‘landmark’ cell clusters Infers multi-branching lineages; relies Chen 2016 [30]
representing different states. Constructs a network between on observing transitioning cells (i.e.
landmarks, with edges weighted by the number of assumes continuum).
transitioning cells.
CellTree Bayesian method to infer branching hierarchies and gene  Requires user-defined number of duVerle 2016 [31]
sets associated with developmental stages. Based on LDA topics (provides heuristic guide);
— a model that assumes a mixture of unobserved ‘topics’  directly links gene expression patterns
(gene sets) can explain the observed cell states. to cellular hierarchy.
Diffusion Introduces a distance metric describing transition Scalable to large datasets; identifies ~ Haghverdi 2016 [32]
pseudotime  probabilities between any cell pair by considering random  branch points and metastable cell
walks of all lengths between cells in gene expression space. states; requires user-defined number
Automatically detects branching points. of branches.
TSCAN Averages expression values in each cell for genes with Uses clustering to improve robustness; Ji 2016 [33]
similar expression profiles. Clusters cells in reduced (optionally) uses prior knowledge (e.g.
dimensions by fitting mixture of multivariate normal no. of clusters or branches); allows
distributions, and constructs MST linking clusters. multi-branching lineages.
SCOUP Initial temporal ordering based on MST in reduced Currently applicable to linear or Matsumoto 2016 [34]
dimensions. Refines ordering by optimising a mixture bifurcating trajectories; identifies
Ornstein-Uhlenbeck (OU) process model (models variables putative regulatory interactions through
moving towards an attractor state with Brownian motion).  correlation analysis.
delLorean Uses GPs to model gene expression profiles and infer Uses experimental cell capture times; Reid & Wernisch 2016
pseudotimes within a Bayesian inference framework, using only infers linear trajectories; not [35]
experimental cell capture times as prior knowledge. scalable; provides uncertainty
estimates.
Wishbone Reduces dimensions using diffusion maps and constructs a Limited to single bifurcation; relies on  Setty 2016 [36]
k-NNG between cells. Initial cell ordering based on shortest- gene ontology annotations to select
paths. Refines trajectory and identifies branching structure informative diffusion components;
using randomly selected ‘waypoint’ cells. scalable to large datasets.
SLICER Selects genes varying systematically across cell population. Unsupervised method to select Welch 2016 [37]
Constructs k-NNG between cells in reduced dimensions. informative genes and branching
Infers pseudotimes and branching structure using geodesic structure; allows multiple differentiation
distances and entropy respectively. routes between two points.
Waterfall Reduces dimensions before clustering cells using a k-means Uses cell clustering to improve Shin 2015 [38]
algorithm. Constructs MST to link cluster centres, and robustness; linear trajectories only.
assigns cell pseudotimes by projection onto trajectory.
SCUBA Fits a smooth curve in reduced dimensions using principal Automatically infers trajectory Marco 2014 [39]

curve analysis. Divides cells into temporal clusters, before
iteratively clustering cells at each time and mapping between
different times to infer hierarchical structure.

endpoints and number of lineages; can
detect multiple branching events.
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Developing gene regulatory network

models

While approaches used for network inference from bulk
transcriptomic data have been directly applied to single-
cell data, newer dedicated methods have also been
developed. Despite the challenges posed by technical
noise, single cell data offer several potential advantages
for inferring regulatory relationships — larger sample
sizes; inherent biological heterogeneity provides the
variability necessary to infer relationships without
needing perturbation experiments; and the ability to
visualise subpopulation structure avoids potential
confounding effects from analysing mixed populations of
cell types [3,8,9,16].

A common (and simple) approach is to calculate pairwise
correlations between gene expression states, generating
an undirected network indicating statistical relationships
between genes that are interpreted as putative (co-)
regulatory interactions. While this method has success-
fully identified regulatory relationships from single cell
developmental data (e.g. Refs. [45—48]), it only detects
linear (or monotonic) relationships and thus may over-
look many biological interactions. Information theory
provides alternative measures, e.g. mutual information,
that can capture more complex non-linear statistical
dependencies between variables and are widely applied
for GRN inference from bulk data [49]. Calculating in-
formation measures typically requires estimating joint
probability distributions from experimental data so these
methods benefit hugely from the larger sample sizes
afforded by new single cell technologies, particularly
when using measures that quantify relationships be-
tween three or more variables [49,50]. Both pairwise and
higher-order information theoretical measures have been
successfully integrated into network inference algo-
rithms to infer regulatory interactions from single cell
data [51,52]. Without making further assumptions (e.g.
temporal ordering) or integrating other data (e.g. tran-
scription factor binding) these statistical models
(whether correlation or information theoretic based) do
not indicate the directionality of interactions.

Other methods aim to infer mathematical models of
GRNs that represent the mechanistic nature and
directionality of interactions, and allow system dynamics
to be studied using Boolean or ordinary differential
equation (ODE) models (see Table 2) [43,44,51—57].
Boolean models rely on discretized data which may in-
crease their robustness to noise and provide benefits for
computational efficiency, and, unlike ODE models, they
make fewer assumptions about the nature of in-
teractions and avoid the need to infer many parameters.
However, Boolean discretization inherently results in
some data loss and may be overly simplistic, and the
method chosen to learn model structure may require
certain dataset features — e.g. one of the earliest

algorithms successfully applied to single cell data con-
structs a state-transition graph from binarised cell
expression states and thus requires large numbers (e.g.
thousands) of cells [56]. Several ODE-based models
have been inferred from single cell data using differing
assumptions about the nature of relationships, but in all
cases relying on temporal gene expression data — either
inferred pseudotemporal orderings or experimental
sampling times — and the assumptions associated with
these [43,44,53,57]. Temporal assumptions and as-
sumptions of irreversibility in particular have strong
implications on ODE-based analyses, because they
directly inform the directionality of inferred relation-
ships. So far, mechanistic models inferred from single-
cell data tend to be limited to smaller GRNs
(comprising tens of genes) than the statistical models
outlined previously (which can easily scale to hundreds
of genes), but they do provide the capability to simulate
GRN dynamics and thus allow predictions of system
behaviour under different scenarios.

All these statistical or mechanistic models of GRNs
provide a set of putative functional interactions between
genes (or modules of co-varying genes). While we of
course aim to develop methods that provide the most
reliable inference results, these networks should be
viewed as hypotheses about the underlying regulatory
mechanisms. These can guide further investigation and
experiments, and allow us to test our current under-
standing but, like any models, they should be continu-
ally refined and improved as new information emerges.
These models rely on some key assumptions: firstly, that
mRNA expression levels are indicative of the corre-
sponding protein levels (thus ignoring potential post-
transcriptional influences), but also that differentiation
is the dominant process driving the observed gene
expression dynamics. Our choice of cells and genes to
include in our analyses is critical to ensure this latter
assumption is appropriate.

There are of course technical limits to what we can learn
about a biological system by experimentally observing
the system state. Some interactions will not be infer-
able, e.g. if they do not drive observable expression
changes, or these changes are too transient to detect
associations between the corresponding genes. It can be
difficult to distinguish certain regulatory topologies,
such as indirect versus direct regulation, depending on
the inference method. Finally, while GRNs are some-
times defined as the complete collection of possible
gene regulatory interactions within a given cell, we can
of course only hope to infer the subset of interactions
active under our specific experimental conditions. We
expect to infer distinct networks using different cell
subsets, depending on the variability present in the
selected cell population, and thus should carefully
choose which data to analyse [45,51,58].
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Overview of single cell network/model inference algorithms. Summary of the different types of statistical and modelling approaches that
have recently been applied to single cell transcriptomic data in order to infer mathematical models of putative gene regulatory mech-
anisms. An overview of each class of method is given, with a few examples described in greater detail; some of the relative advantages
and disadvantages of these approaches are noted. Abbreviations used in table: transcription factor (TF), ordinary differential equation

(ODE).

Model

Method summary

Notes

Correlation/relevance networks

Overview

Information theory

Overview

PIDC [51]

MAGIC [52]

ODE model inference
Overview

Jang et al.,, 2017 [53]

SCODE [44]

Ocone et al., 2015 [43]

Undirected edges connect pairs of genes exhibiting co-
ordinated expression. Gene pairs are ranked by Pearson
(or Spearman) correlation; positive or negative values
indicate activation or repression respectively.

Undirected edges connect pairs of genes showing
statistically dependent expression profiles. Dependence
quantified using information theoretic measures, often
mutual information or a more complex variant.

Exploits large sample sizes to estimate a three-variable
information measure; aims to distinguish direct
interactions by decomposing mutual information
between a pair of genes into contributions that are unique
to that pair or shared with other genes.

Imputes missing expression values using a diffusion
process through cells, then estimates conditional
densities for pairs of genes using a k-nearest neighbour
approach. Calculates mutual information from
conditional densities to score putative interactions.

ODEs represent the regulatory interactions controlling
the expression of each gene; algorithms aim to infer
parameters for these ODEs in a network where directed
edges connect transcription factors to their targets.

First identifies discrete cell states, transition lineages,
and key gene modules. Creates a step-function based
model of gene module interactions; estimates parameter
probability distributions using linear programming with
observed cell states determining constraints.

Infers linear ODE-model of regulatory interactions
between TFs from pseudotemporal trajectories.
Develops an efficient parameter estimation algorithm that
relies on linear regression and a lower-dimensional
transformation of the data.

Modular approach combines dimension reduction,
pseudotemporal ordering and network inference. Infers
initial coarse network using random forest and correlation
methods, then infers a Hill-function ODE model using
Bayesian model selection and parameter inference.

Boolean model inference

Overview

BTR [54]

SingCelINet [55]

Binarised gene expression levels are governed by
update functions that describe the combinatorial action of
regulating genes in terms of Boolean logic rules. A state
transition graph comprises the possible cell states arising
from the governing Boolean network.

Infers an asynchronous Boolean model, by iterative
optimisation starting from an initial model (random or
prior knowledge) using a swarming hill climbing strategy.
Scores proposed models by comparing the experimental
data and model state spaces.

Infers an asynchronous probabilistic Boolean network.
Uses genetic algorithms to optimise network topology
and probabilities of Boolean update rules, based on
consistency with known cell lineage hierarchies; update
rules based on prior knowledge.

Simple to interpret and fast to calculate. Limited to
detecting linear (or monotonic) relationships.

Relatively computationally efficient. Can detect non-
linear dependencies thus avoids assumptions about the
nature of interactions. Often requires discretising data,
which may reduce noise, but may lose information.
Perform best with large sample sizes.

Avoids several common assumptions regarding state
space and temporal progression. An information-based
approach that is applicable to networks of hundreds of
genes.

Alleviates influence of dropouts and aims to recover
information from sparsely populated regions of
expression space. Assumes data inherently low-
dimensional, and that signal overcomes noise in sparse
regions.

Infer detailed mechanistic networks capturing direction
and strength of regulation; provide information on system
dynamics. May be computationally complex. Assume
specific mathematical forms for interactions, and often
rely on inferred temporal trajectories.

Coarse-resolution network connects modules of genes
with similar expression profiles. Uses binarised data
which may reduce noise or may lose information.

Assumes linear relationships. Computationally efficient,
compared to similar approaches.

Modularity allows substitution of different algorithms.
Multiple steps introduce multiple sets of assumptions.
Limited to small models.

Infer detailed mechanistic networks capturing direction of
interactions and combinatorial regulation; provide
information on system dynamics. Binarising data may
reduce sensitivity to noise or may lose information.

Avoids making assumptions about temporal progression.
Search strategy optimised for local searches, so
performs best when informed by prior knowledge of
regulatory interactions.

Limited to small networks. Assumes knowledge of cell
lineage hierarchy and putative update rules.

(continued on next page)
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Table 2 (continued)

Model

Method summary

Notes

SCNS [56]

Linear regression
SINCERITIES [57]

Creates state transition graph from observed binarised
transcriptional states of cells; initial/final cell states
defined using prior knowledge. Infers Boolean update
functions for each gene that are consistent with the
observed transitions.

Infers directed network of TF-target gene interactions
using linear regression. Assumes change in TF
expression distribution causes proportional change in

Assumes observed cell states represent state space of
Boolean network. Requires large datasets (thousands of
cells) to construct a connected state transition graph.

Relies on experimental sampling times (i.e. cross-
sectional time series data). Assumes linear relationships
between changes at consecutive times.

target gene distribution at subsequent time point.
Distinguishes activation and repression using partial

correlation.

Combining computational analyses

In general, we should use several of the approaches
outlined above to gain insights into the regulatory
mechanisms driving cell differentiation: they provide
complementary information, and using them in combi-
nation can help redress some of the limitations and
biases inherent to each method.

A preliminary descriptive analysis, using e.g. clustering,
dimensionality reduction, and bioinformatics annotation
of differentially expressed genes, can provide important
information about any subpopulation structure within
the data. This helps us to choose cell subsets to analyse
that will be most informative about the biological pro-
cess of interest — e.g. those where we believe that
differentiation is the dominant driver of transcriptional
variation. When detecting statistical relationships be-
tween genes for GRN inference, we might select cells
undergoing a specific developmental transition as some
statistical dependencies may be masked within more
complex datasets comprising cells in multiple develop-
mental lineages. Clustering or pseudotemporal ordering
can help to identify subsets of non-responsive cells to
exclude from subsequent analyses. Cells are likely to be
simultaneously affected by multiple biological pro-
cesses, SO we may aim to account for any potential
confounding factors, e.g. large-scale transcriptional
changes associated with cell cycle stage may mask the
variability linked to differentiation [59].

Although scRNA-sequencing provides information
about thousands of genes, analysis is greatly aided by
careful pre-processing and biologically guided selection
of relevant genes. Basic filtering metrics allow us to
remove genes expressed at very low levels (and there-
fore dominated by technical noise) or those showing
little variation in expression. Clustering and pseudo-
temporal ordering can help us select genes associated
with the biological process of interest, or identify gene
modules demonstrating similar dynamics. Removing
non-informative genes (or cells) aids all downstream

analyses, but particularly those that seek to develop
mechanistic — ODE and Boolean network — models.

Ideally, we should also consider the limitations and as-
sumptions of each of the methods we include in our
analysis, and aim to explore (at least to some extent)
how our algorithm choices influence our conclusions.
Many of the algorithms applied to single cell data do not
allow us to quantify uncertainties in the outputs of
carlier stages of analyses (e.g. clustering, dimensionality
reduction, or inferred temporal orderings), but conclu-
sions from any downstream analyses (e.g. inferred reg-
ulatory networks and models) are necessarily conditional
on the accuracy of these initial results. In the absence of
reliable methods to propagate uncertainties through the
different stages of analysis, perhaps a pragmatic solution
is to verify whether our conclusions are robust to some
variation in the methods selected during earlier steps —
e.g. we could explore how much inferred temporal or-
derings or network models vary when we subsample our
data or use different dimensionality reduction methods.

Conclusions

The biological questions we seek to address using
scRNA data are complex. We should carefully consider
how to analyse such data — ideally prior to data
collection to ensure suitable experimental design — and
make optimal use of them by incorporating multiple
analytical approaches. Particularly while these technol-
ogies and methods are relatively new, we should explore
and compare different analytical frameworks, and
continue to elaborate them. Flexible, open-source
software implementations are essential to allow such
comparisons and ensure algorithms are easy to adapt and
integrate with other complementary methods.

"To gain a more comprehensive picture of the regulatory
mechanisms controlling differentiation, we need to
incorporate other sources of information. We can design
experiments to test and refine our putative hypotheses,
and to verify that conclusions drawn from  vitro data
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correspond to zz vivo observations. We should develop ways
of integrating other types of data into our analyses, such as
incorporating information on transcription factor binding
or chromatin accessibility when inferring GRN models.
Genomics technologies are being adapted to measure
multiple characteristics (e.g. chromatin accessibility and
methylation) at single cell level with recent success at
quantifying several features within the same cells [2,16].
These datasets will provide much richer information
about the underlying biological processes and will demand
dedicated computational and statistical methods to
combine information from heterogenous data types.

We need to develop effective ways to integrate and
compare data generated from independent experiments
on similar biological systems, to ensure the conclusions
we draw are robust and biologically meaningful. As
experimental technologies advance we expect to see
improved performance of many methods — e.g. pseu-
dotemporal ordering and network inference methods
should benefit from increasing sample sizes and become
more robust to noise. Larger datasets will offer more
comprehensive sampling of different cell states,
providing better resolution of sparsely populated regions
of gene expression space (e.g. during rapid state tran-
sitions). Finally, existing approaches that require large
sample sizes for model inference [56,60] or data impu-
tation [52] will become feasible to apply more widely.
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