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ABSTRACT

Gene coexpression is synchronization of gene ex-
pression across many cellular and environmental
conditions and is widely used to infer the biologi-
cal function of genes. Gene coexpression informa-
tion is complex, comprising a complete graph of all
genes in the genome, and requires appropriate vi-
sualization and analysis tools. Since its initial re-
lease in 2007, the animal gene expression database
COXPRESdb (https://coxpresdb.jp) has been contin-
uously improved by adding new gene coexpression
data and analysis tools. Here, we report COXPRESdb
version 8, which has been enhanced with new fea-
tures for an overview, summary, and individual ex-
amination of coexpression relationships: CoexMap
to display coexpression on a genome scale, pathway
enrichment analysis to summarize the function of co-
expressed genes, and CoexPub to bridges coexpres-
sion and existing knowledge. COXPRESdb also fa-
cilitates downstream analyses such as interspecies
comparisons by integrating RNAseq and microarray
coexpression data in a union-type gene coexpres-
sion. COXPRESdb strongly support users with the
new coexpression data and enhanced functionality.

INTRODUCTION

Living systems, from cells to individuals to populations,
have a complex hierarchical structure, and the coordination
of genes is fundamental to construct and maintain this sys-
tem. Gene coexpression is synchronization of gene expres-
sion across many cellular and environmental conditions and
is widely used to infer the biological function of genes (1–3).

Since a larger number of samples improves the quality of co-
expression information (4,5), many coexpression databases
have been developed based on a meta-analysis of publicly
available gene expression data (6–11). Although the idea of
gene coexpression is simple, the actual calculation involves
many technical and conceptual issues, including sample se-
lection, normalization within and across experiments, and
coexpression indices. Many studies, including benchmark
studies, have been performed on this subject (4,5,8,12–17).

One of the most natural ways to represent the coex-
pression information is a gene list ordered by coexpression
strength for a given guide gene (1). Database users can sim-
ply examine the coexpressed genes one by one from the top
of the list to search for functionally related genes to the
guide gene. On the other hand, gene relationship is not as
simple as to represent on list. The individual genes on the list
also have coexpression relationships with each other. Gene
network represents such a many-gene relationship. How-
ever, coexpression networks are a kind of correlation net-
work and tend to be dense networks with high clustering
coefficients, sometimes colloquially referred to as hairballs.
In addition, coexpression value is assigned for every gene
pair, meaning that coexpression network is a weighted com-
plete graph. To effectively show coexpression information
as a network, binarization of the display and non-display
of edges is necessary, resulting in loss of information.

Due to the difficulty of simply understanding gene coex-
pression information, various analyses have been proposed.
As a macroscopic analysis, it is possible to display all genes
by ignoring the individual relationships of gene pairs and
placing nodes without edges (18). For pathway-level sum-
marization, enrichment analysis of functional annotation
of coexpressed genes is helpful (11,19). After an overview
of gene coexpression relationships, an individual examina-
tion is necessary. Some databases such as STRING-DB in-
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corporates multiple data sources including a text mining of
scientific publications (11).

We have developed COXPRESdb, a gene coexpression
database for animals. COXPRESdb has been continuously
improved with new coexpression data and analysis tools
since it was first released for human and mouse in 2007 (20–
24). COXPRESdb provides gene lists and gene networks as
basic functionalities. The coexpressed gene list is displayed
as a parallel view of different species and platforms for com-
parison. The COXPRESdb gene network uses a set of the
top three coexpression edges from all genes in the genome,
based on the same idea as transitive reduction, which draws
only A-B and B-C and omits the presumed A-C. This draw-
ing rule improves the visibility of the network structure, but
the local network around a gene of interest remains a dense
network. Therefore, the coexpressed gene network in the
gene page uses only the 20 genes that are directly or indi-
rectly coexpressed with the guide gene. COXPRESdb ver-
sion 8 offers enhanced capabilities with new features for
an overview, summary, and individual examination of coex-
pression relationships: CoexMap displays coexpression on
a genome scale; pathway enrichment analysis summarizes
the functions of the coexpressed gene list; and CoexPub
bridges coexpression and existing knowledge. In addition, a
union-type coexpression, which integrates RNAseq and mi-
croarray coexpression data, facilitates downstream analyses
such as interspecies comparisons. COXPRESdb has been
enhanced to assist in exploring complex gene networks for
molecular biological studies.

OVERVIEW OF THE LATEST COEXPRESSION DATA

Global similarity among coexpression platforms in COX-
PRESdb ver. 8.1

Since the last report for COXPRESdb version 7.0 (24), we
have updated COXPRESdb with one major version and
four minor versions. In addition to the update of all the
pre-existing coexpression data, we have added the cat co-
expression data since version 8.1 (Table 1). Cats have had
a close relationship with humans and are an important
model species for medical and veterinary research (25–28).
As per our strategy, COXPRESdb independently calculates
RNAseq-based and microarray-based coexpression values
and then compares the two to examine the reliability of
the coexpression information (24). However, it is not con-
venient to always use multiple coexpression data for down-
stream analyses, including interspecies comparison. Since
version 7.1, we have provided a union-type coexpression
data for each species, which is the average of RNAseq-based
and microarray-based coexpression values. For gene pairs
that do not have microarray data, we use RNAseq coexpres-
sion values with a shrinkage penalty.

Similarities among all coexpression platforms in COX-
PRESdb ver 8.1 are summarized in Figure 1. We performed
this comparison using one-to-one orthologous genes in the
12 species. Based on the ortholog calculation in COX-
PRESdb using OrthoFinder (29), there were 656 one-to-
one orthologous genes, composing 214 840 gene pairs in
each species. The Pearson correlation coefficients using the
214 840 gene pairs among the 35 coexpression platforms
are shown in each cell as a 10-fold rounded value (Figure

1). The coexpression platforms are hierarchically clustered
by the average linkage method, revealing that interspecies
coexpression similarity reflects evolutionary relationships
among species, as we reported previously (24). The new cat
RNAseq coexpression (Fca-r) is closest to the canine coex-
pression, as expected (Figure 1).

In each species, the union-type gene coexpression data
is more similar to the RNAseq coexpression data than the
microarray coexpression data. This phenomenon is primar-
ily due to two factors. First, about 40% of all gene pairs
do not have microarray coexpression values (Supplemen-
tary Table S1). In this case, union-type gene expression only
uses RNAseq coexpression values with a penalty, result-
ing in similar coexpression values between the union and
RNAseq coexpression data. Second, RNAseq-based coex-
pression tends to show larger variance of coexpression val-
ues for the more highly expressed genes (Supplementary
Figure S1), as reported (30). In contrast, this trend was
less pronounced for microarray coexpression (Supplemen-
tary Figure S2). One-to-one orthologous genes among the
12 species, including yeast, are expected to be highly ex-
pressed because of their housekeeping functions. As a re-
sult, RNAseq gene coexpression values of one-to-one or-
tholog gene pairs predominantly take over the union-type
coexpression data. CoexMap, described below, successfully
visualizes the characteristics of the one-to-one orthologous
gene pairs.

Quality assessment of coexpression data by pathway annota-
tions

To assess the quality of individual gene coexpression data,
we quantified the consistency between the gene coexpres-
sion and the functional annotations of KEGG pathway (31)
and Gene Ontology Biological Process (GOBP) (32), which
we have denoted as KEGG and GOBP scores (13,24). Com-
parison of these scores between the current and previous
versions revealed the gradual improvement of these scores
(Supplementary Figures S3 and S4). The union-type coex-
pression, which is the default platform in the tools in COX-
PRESdb, stably scored higher than RNAseq and microar-
ray gene coexpression data, supporting the suitability of the
union coexpression data as representative of a species. The
scores for the current version (8.1) are also shown on the
right side of the similarity matrix in Figure 1. In mammalian
species, human, mouse, and rat, have relatively better scores,
reflecting their enormous amount of gene expression data
(Table 1). The lower scores of the microarray coexpression
for macaque monkey (Mcc-m) and chicken (Gga-m) were
consistent with lower correlation of these platforms with the
others (Figure 1).

NEW FUNCTIONALITIES

Coexpressed gene list

The coexpressed gene list provides a direct approach to in-
vestigating gene coexpression information. This page has
been enhanced with new functionalities since our previous
report for version 7.0 (24). For demonstration, we focus on
the CXorf21 (TASL) gene, which is one of the causative
candidate genes in a GWAS study for human autoimmune
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Table 1. Coexpression data in COXPRESdb version 8.1

Species Version Release date Samples KEGG score GO score

Nematode Cel-u.c3-1 2022.06.30 7.250 5.508
Nematode Cel-m.c5-0 2021.12.16 1357 5.966 4.552
Nematode Cel-r.c3-0 2021.12.16 5785 7.304 5.468
Dog Cfa-u.c3-1 2022.06.30 4.577 1.459
Dog Cfa-m.c4-0 2021.12.16 619 3.364 1.065
Dog Cfa-r.c3-0 2021.12.16 1361 4.019 1.380
Fly Dme-u.c3-1 2022.06.30 7.050 4.544
Fly Dme-m.c5-0 2021.12.16 3401 6.394 4.105
Fly Dme-r.c4-0 2021.12.16 13514 6.659 4.326
Zebrafish Dre-u.c3-1 2022.06.30 7.835 5.254
Zebrafish Dre-m.c5-0 2021.12.16 1321 9.020 6.264
Zebrafish Dre-r.c3-0 2021.12.16 10037 7.777 5.192
Domestic cat Fca-r.c1-0 2022.06.30 267 3.610
Chicken Gga-u.c3-1 2022.06.30 5.236 2.282
Chicken Gga-m.c5-0 2021.12.16 1155 3.283 1.794
Chicken Gga-r.c3-0 2021.12.16 3333 5.558 2.248
Human Hsa-u.c4-0 2022.06.30 6.302 2.995
Human Hsa-m.c7-0 2021.12.16 25362 4.343 2.182
Human Hsa-m2.c4-0 2021.12.16 10511 4.860 2.493
Human Hsa-r.c6-0 2022.06.30 235187 6.105 2.800
Monkey Mcc-u.c3-1 2022.06.30 4.301
Monkey Mcc-m.c4-0 2021.12.16 590 2.200
Monkey Mcc-r.c3-0 2021.12.16 5665 4.321
Mouse Mmu-u.c4-0 2022.06.30 7.205 3.335
Mouse Mmu-m.c5-0 2021.12.16 25087 6.220 2.955
Mouse Mmu-r.c6-0 2022.06.30 214753 6.953 3.150
Rat Rno-u.c3-1 2022.06.30 6.977 2.745
Rat Rno-m.c5-0 2021.12.16 7872 6.735 2.383
Rat Rno-r.c3-0 2021.12.16 13267 6.329 2.519
Budding yeast Sce-u.c3-1 2022.06.30 9.143 4.712
Budding yeast Sce-m.c4-0 2021.12.16 3071 9.347 4.398
Budding yeast Sce-r.c3-0 2021.12.16 6225 8.791 4.509
Fission yeast Spo-u.c3-1 2022.06.30 5.782 3.222
Fission yeast Spo-m.c4-0 2021.12.16 166 3.539 2.190
Fission yeast Spo-r.c3-0 2021.12.16 556 5.892 3.061

disease, Systemic lupus erythematosus (33,34). Odhams et
al. reported coexpression between CXorf21 and genes for
Toll-like receptor (TLR) signalling pathway using the Hsa-
r.c1-0 coexpression data in COXPRESdb version 6.0 and
then experimentally determined the colocalization of CX-
orf21 with TLR7 in B cells by a structured illumination
microscopy technique (34). Here, we show how the cur-
rent COXPRESdb (version 8.1) supports this study. Fig-
ure 2A is the coexpressed gene list page for TASL (CX-
orf21). The summary of the KEGG pathway enrichment
analysis helps understand the coexpressed gene list as a
whole, shown by clicking on ‘summary of pathways’, dis-
playing that the top-50 gene list includes the Toll-like re-
ceptor signaling pathway (KEGG pathway: hsa04620) (Fig-
ure 2B), as reported (34). The coexpressed genes are or-
dered according to the union-type human coexpression data
(Hsa-u.c4-0), which is indicated by bold coexpression val-
ues in the 6th column of the table. The most strongly coex-
pressed genes are GAPT (GRB2 binding adaptor protein,
transmembrane) and TLR7, with coexpression z-scores of
9.8 and 9.0, respectively. In COXPRESdb, the coexpres-
sion z-scores follow an almost perfectly normal distribu-
tion except for those above three (Supplementary Figure
S5). Given that the coexpression z-scores from random ex-
pression profiles are normally distributed, a coexpression
z-score of three is a possible threshold of coexpression re-
flecting actual co-regulation in a cell. Compared with this

threshold, the coexpression z-scores for TASL are remark-
ably high. In particular, the strong coexpression between
TASL and TLR7 is consistent with their colocalization (34).
To highlight strong coexpression, z-scores less than 3 are
shown in a lighter color in the coexpressed gene list (Figure
2A).

A reliability of the union-type coexpression can be
checked by individual platforms in the same species (Hsa-
r.c6, Hsa-m.c7, Hsa-m2.c4). The union-type gene coexpres-
sion (Hsa-u) is the z-score of the average of the RNAseq
(Hsa-r) and microarray (Hsa-m2) gene coexpression values.
In this coexpressed gene list, these two types of gene co-
expression data are consistent. The other microarray plat-
form, Hsa-m, which was not used to calculate union-type
gene coexpression, has a much weaker gene coexpression
but still shows a similar coexpression trend. On the right
side of the list, union-type coexpression for other species
is displayed as a cross-species reference to assess the impor-
tance of the coexpression (21). Almost all gene coexpression
with the human TASL gene is also observed in macaque,
mouse, rat, dog, and chicken, indicating its stability in evo-
lution.

A survey of relevant scientific reports is crucial to fur-
ther examine a coexpressed gene of interest. To support this
step, we develop a new tool, CoexPub, by machine learning
against the gene-publication association data on PubTator
Central (35). The CoexPub column in Figure 2A shows that
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Figure 1. Similarity among the coexpression platforms in COXPRESdb version 8.1. The Pearson correlation coefficients of the coexpression z-scores
among the 35 coexpression platforms are shown in each cell as a 10-fold rounded value, which is also indicated by shading. The coexpression platforms
are hierarchically clustered by the average linkage method. KEGG and GOBP scores indicate a degree of consistency of the gene coexpression data with
the gene annotations. The GOBP annotations were not available for cat (Fca) and macaque (Mcc), so the GOBP scores for these two species are blank.
The human and mouse platforms are the most heavily used in COXPRESdb and are highlighted in red.

there are five reports describing functional relationships be-
tween TASL and TLR7. By clicking on the number ‘5’,
CoexPub displays the most relevant sentences describing
the functional relationship between TASL (CXorf21) and
TLR7 for each of the five papers (Figure 2C), where the sec-
ond article is by Odhams et al. (34).

CoexMap

The CoexMap is a new tool that displays the location of a
given gene in the gene coexpression space constructed by
UMAP (36). The coexpression map shows that TASL gene
(red) and its top 20 coexpressed genes (green) form a com-
pact modular structure in the upper right corner of the map
(Figure 3A). The thumbnail of this map is also shown in the
upper right corner of the coexpressed gene list page (Figure
2A). Figure 3B–D shows the map for the genes for the three
KEGG pathways enriched in Figure 2B. Although the dis-
tributions of these pathway genes are various, these path-
ways commonly occupy the upper right region of the coex-
pression map, suggesting that a core module of the immune
system is located in this region. TASL and its coexpressed

genes (Figure 3A) are located adjacent to this core region,
suggesting a strong association of the TASL gene to the core
module of immune system.

The coexpression map can visualize global tendency of
the one-to-one orthologous genes used in Figure 1. We dis-
cussed that one-to-one orthologous genes tend to have a
housekeeping function and thus have somewhat different
characteristics than randomly selected genes. This idea is
clearly visualized in the coexpression map, which shows
that the one-to-one orthologous genes entirely cover the
dense structure on the left side of the map (Figure 3E). The
non-random nature of one-to-one orthologous genes illus-
trates the difficulty of comparing gene coexpression across
distantly related species in an unbiased manner. Similarly,
functional annotations are not randomly associated with
genes. Highly expressed genes are well studied and, there-
fore, well-annotated (13). We used 1743 genes associated
with informative KEGG terms to calculate of the KEGG
scores for Hsa-r and Hsa-u. CoexMap showed a broad dis-
tribution of these genes (Figure 3F), suggesting that the
KEGG score, while not yet a random selection of genes,
provides a more genome-scale assessment.
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Figure 2. The coexpressed gene list page for the human TASL gene. (A) The coexpressed genes are listed in descending order of coexpression with the
query gene, TASL (CXorf21). https://coxpresdb.jp/gene coexpression/?gene id=80231. (B) Summary of KEGG pathways in the coexpressed gene list. (C)
The CoexPub page for TASL and TLR7, which is linked from the CoexPub column in (A).

Note that since the original gene coexpression values are
non-Euclidean high-dimensional data, significant informa-
tion loss due to dimensionality reduction is inevitable. Nev-
ertheless, genome-scale visualization can reveal significant
trends in a set of genes. The examples for the immune sys-
tem and housekeeping functions characterized the over-
all structure of the coexpression map, with housekeeping
genes creating a large structure on the left side and mod-
ules of tissue-specific function distributed in the other re-
gions (Figure 3). To analyze multi-layered biological sys-
tems, a multi-layered approach is necessary. A suite of func-
tions in COXPRESdb supports multi-layered analysis with

high-quality gene coexpression information: CoexMap for
genome-scale viewing, NetworkDrawer for a selected gene
set, coexpressed genes list for a guide gene, and CoexPub
for a gene pair. COXPRESdb version 8 powerfully supports
individual studies in molecular biology with the enhance-
ments of the tools and new coexpression data.

MATERIALS AND METHODS

Calculation of coexpression data

The quantification of gene expression data was performed,
as reported previously (24). Briefly, Illumina RNAseq data
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Figure 3. Coexpression map for human gene coexpression. (A) TASL and
its top-20 coexpressed genes. (B) The 169 genes in the KEGG hsa04613
pathway (Neutrophil extracellular trap formation). (C) The 59 genes in
hsa04620 (Toll-like receptor signaling pathway). (D) The 145 genes in
hsa04145 (Phagosome). (E) The 656 one-to-one orthologous genes in the
12 species. (F) 500 randomly selected genes out of 1743 genes used to cal-
culate the KEGG score.

were downloaded from DDBJ Sequence Read Archive (37)
and quantified using Matataki (38). After eliminating runs
comprising <2M read counts, genes with average counts
of <30 are deleted. All read counts are converted to the
base-2 logarithms after adding a pseudo-count of 0.125.
Affymetrix microarray data were downloaded from EBI Ar-
rayExpress (39) and quantified by the RMA method (40). A
batch correction was performed using Combat (41), where
the SRP units and the download units were used as the
batch units. The expression matrix was rearranged by row-
centered principal component analysis, and the top 1000
principal components were used as the re-organized sam-
ples.

The main part of coexpression calculation methodology
was performed as previously described (14,24). In each iter-
ation of Subsampling Aggregating (Subagging) of the gene-
to-gene correlation calculation, we subsampled 100 (ver.
7.0) or 50 (after ver. 7.1) principal components from the

1000 principal components and calculated Mutual Rank
(MR) of Pearson correlation coefficient (PCC) for each gene
pair (12). After a logit transformation of the MR values
(13), the 1000-times iterative calculations were integrated by
average (14). Since version 8.0, the final coexpression values
are standardized to z-scores in each platform to easily com-
pare the coexpression values among different platforms and
versions (Supplementary Figure S5).

In COXPRESdb version 8.1, the numbers of RNAseq
runs for human and mouse are enormous, exceeding 200
000 each (Table 1). To handle these massive amounts of
RNAseq data, we partitioned the data into seven subsets
of experiments for each species and performed the same co-
expression calculation procedure described above for each
subset. We decided the number of subsets as small as pos-
sible because the total computation time will be nearly pro-
portional of the subset number. The genes in each of the
seven coexpression datasets differed due to the gene filter-
ing step. We selected genes included in more than three of
the seven coexpression data so that all gene pairs in the inte-
grated coexpression data will have gene coexpression values
in at least one subgroup. The multiple coexpression values
for a gene pair were integrated by average with a penalty in
terms of data coverage as follows,

(m
n

)k 1
m

∑
zi ,

where zi is coexpression z-score in the i-th subset, n is the
total number of subsets (7 in this case), m is the number of
subsets including the gene pair of interest (from 1 to 7 in
this case), and k is a parameter to determine the strength of
shrinkage for low reliability penalty. Since the optimal value
of k varies between 0.1 and 1 for different species based
on the KEGG score (data not shown), we commonly used
k = 0.2 for all species in version 8.1.

The union-type coexpression is the average of RNAseq
and microarray coexpression z-scores. For gene pairs with
only RNAseq coexpression available, we used the RNAseq
coexpression value with a shrinkage. It was done by linear
regression (14) in versions 7.1, 7.2 and 8.0 and using the
same shrinkage formula above with n = 2, m = 1 and k = 0.2
in version 8.1.

Evaluation of coexpression

We used the same evaluation protocol reported previ-
ously (14). We downloaded the GOBP annotation (32),
the KEGG pathway annotation and KEGG Ortholog data
(31) on 2022-01-20, 2021-08-17 and 2020-05-26, respec-
tively. For GOBP annotations, we first mapped gene asso-
ciation information on the children’s terms to all parents’
terms. Then, we selected highly informative terms associ-
ated with <50 genes. Using these gene annotations, all gene
pairs were divided into groups with and without shared an-
notation terms. The consistency between gene coexpression
and sharing functional annotation was assessed by ROC
curves for moving thresholds of coexpression values. As the
evaluation index, the partial area under the ROC curve with
a false positive rate between 0 and 0.01 was used after being
scaled by a factor of 10 000 so that 0.5 indicates a random
prediction. Note that gene pairs in the same orthologous
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group were excluded from the evaluation to reduce the ef-
fect of large gene families (14).

CoexMap

CoexMap is a new tool that displays gene coexpression re-
lationships on a genome-scale. A two-dimensional map of
all genes with coexpression information was created using
the UMAP algorithm (36) via the ‘uwot’ package in R with
a parameter, n neighbors = 10. As the distance matrix, we
used the negative values of the coexpression z-scores. For
efficient visualization, points (genes) that are extremely far
from the center of the map are moderately displaced.

CoexPub

CoexPub links coexpressed gene pairs to existing knowl-
edge in scientific papers. Since many gene names appear
in scientific papers, their functional implications vary from
the main topic to methodological appendices. Therefore,
we use machine learning to prioritize informative sentences
about the functional relationship of a gene pair from gene-
publication association data in PubTator Central (35). We
manually selected 300 positive sentences describing a func-
tional relationship of human coexpressed genes and the
same number of negative sentences. 250 of 300 sentences
were used for training and the rest for test. We used a SciB-
ERT pre-trained model (allenai/scibert scivocab uncased)
(42) from Hugging Face’s Transformers library (43) for fine
tuning of the binary classification of the positive and nega-
tive sentences (learning rate = 1e-05, epochs = 3). In this
learning, the target coexpressed gene names in each sen-
tence were masked as GENEAAA and GENEBBB and
set as special tokens (tokenizer: padding = False, trunca-
tion = True, max length = 511). Using the resultant fine-
tuned model, we classified the test data, composing 50 pos-
itive and negative sentences each, resulting in an accuracy
of 0.85 with 46 true positives, 10 false positives, 4 false neg-
atives and 39 true negatives. We applied this model to all
sentences including a coexpressed gene pair in human and
mouse and presents 754 534 and 510 775 positive sentences
in CoexPub, respectively. We assigned a priority of 1.0 to the
300 positive sentences in the training data, meaning that the
sentences shown in Figure 2C are purely the result of ma-
chine learning. CoexPub was designed and evaluated pri-
marily for human genes but will be upgraded to apply to
other species as evaluations continue.

DATA AVAILABILITY

The coexpression data provided in COXPRESdb are also
available via RDF on https://coxpresdb.jp/sparql and in
Zenodo, https://zenodo.org/communities/coxpresdb/. The
evaluation program of coexpression data and manually cu-
rated sentences for CoexPub are available at https://github.
com/takeshiobayashi/coex-function-score and https://doi.
org/10.5281/zenodo.7069129, respectively.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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