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On Utilizing Communities Detected From Social
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Abstract— Personalized recommendation automatically pre-
dicts the top- y hashtags to a given tweet. Most research in the
literature of hashtag recommendation focused on the content of
the posts such as words and topics. Although these methods
have measured the performance of hashtag recommendation
on large data sets, there is a lack of analysis on how these
methods perform on small communities. Motivated by the
well-studied research area of community detection algorithms
that aggregate strongly connected users with similar interests
and behaviors, in this article, we propose a community-based
hashtag recommendation framework, which studies hashtag
recommendation through tweet similarity task and applies it
on communities detected using the Clique percolation method,
Louvain algorithm, and label propagation method. The detected
communities are extracted from four social network constructions
based on following, mention, hashtag, and topic. Compared to
the three state-of-the-art hashtag recommendation methods, our
extensive experiments show that our community-based method
outperforms these methods, thus giving a higher hit rate. Our
in-depth analysis demonstrates that the performance of hashtag
recommendation is the best when the communities are generated
using the Clique percolation method (CPM) from the network
of users who share similar usage of hashtags.

Index Terms— Community detection algorithm, content sim-
ilarity, hashtag recommendation, network graphs, predictive
models, social computing.

I. INTRODUCTION

ONLINE Social Network (OSN) is a structure built
between individuals, and it is used as a source of

spreading information, sharing opinions, and promoting busi-
ness through social media platforms. Hashtags are the main
components within Twitter that work as a tagging technique to
group related messages of the same topic. The dynamic nature
of hashtag usage presented many research problems in the
recent years, such as hashtag recommendation [1]–[7], seman-
tic hashtag classification [8], and events discovery [9]. Since
these hashtags are user-generated, redundant hashtags are cre-
ated on the same topic. It is difficult and time-consuming for
a user to search for the related hashtags to use. In this context,
recommending the most contemporary relevant hashtags to
a user according to his/her interests and preferences is a
challenging problem.
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Several methods have been proposed in the literature of
Twitter hashtag recommendation. The most widely accepted
method is hashtag recommendation as a multiclass clas-
sification problem that automatically labels a given tweet
with a hashtag, where every hashtag is a distinct class
label [3], [10]–[13]. The increasing number of these classes
reduces the performance of the final recommendation.
Research following this method exploits only the content of the
tweet. An alternative approach is a hashtag recommendation
method based on the content similarity of tweets [14]. This
method extracts candidate hashtags from the set of similar
tweets. Generally, the problem with this method is that it
retrieves all similar tweets from a large data set whether
they contain relevant hashtags or not. For example, Bob is
posting a tweet about his children playing in the neighborhood
park. There are many similar tweets about park and children,
but they may contain hashtags that are irrelevant to Bob.
Therefore, hashtag recommendation based on the content
similarity of tweets has been extended with additional features,
such as collaborative filtering of like-minded users through
hashtag usage [15], topics [7], social, and time [1]. The social
factor [1], [16] is a significant factor. It utilizes historical
tweets of all mentioned users, followers, or followees of a
user. However, the number of users who join social media is
increasing every day, and each of these users generates massive
amounts of data. For example, the former U.S. president
Barack Obama’s account has 10 472 followers and 614 897 fol-
lowees relationships in 2019 [17], [18]. Therefore, a gigantic
number of processes and memory spaces are required to
perform such a task like hashtag recommendation for every
single user.

The closest state-of-the-art methods related to this article
are: first, hashtag recommendation based on the content sim-
ilarity of tweets applied on a large data set [19]; second,
a hybrid method of content similarity of tweets and collab-
orative filtering of users [15]; and third, a method which
recommends the most recent and frequent hashtags using
the content similarity method and utilizing historical tweets
of the followees [1]. Unlike these works, in this article,
we propose a novel framework that we call community-based
hashtag recommendation to study various factors influencing
the performance of hashtag recommendation. To achieve this
goal, we investigate and measure how different settings of
textual and social factors affect the performance of hashtag
recommendation. To deeply study the social factors, our
framework uses the tweet similarity method and applies it
on communities generated using various community detec-
tion algorithms from different subtleties of social network
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constructions to recommend hashtags. As for the textual factor,
we address the effect of the semantic and words co-occurrence
of the tweets on the performance of hashtag recommendation.

A. Research Contributions

A query tweet is a tweet posted by a user where its hashtags
are removed to be used in testing the recommended hashtags.
Our observations indicate that a large number of tweets are not
as important as the availability of highly similar tweets to the
query tweet for hashtag recommendation. Another observation
shows that the quality of the recommended hashtags varies a
lot among users; the model can perform very well for some
users and poor for others. Inspired by these observations and
the fact that different formations of network graphs lead to
different communities to be detected, this article extends our
previous work [20], where we only looked at the performance
of hashtag recommendation over communities detected from
the network created based on the following relations using
the Clique percolation method (CPM ) [21] and Breadth First
Search (BFS). The network based on the following relations
was already generated in [22]. The extension work we cover
in this article includes three extra types of user–user networks.

1) Network based on mention: This type of network groups
users who interact with each other through the mention
(which can be a tweet reply or a follow-up) of their
tweets [23], [24]. We construct mention-based networks
in this article by finding users who have at least one
interaction through mention (i.e., the @ symbol) in the
whole data set.

2) Network based on hashtag: This type of network groups
like-minded users who used similar historical hashtags.
Hashtags have been used as an indication for topics dis-
cussed between users [23]. We construct hashtag-based
networks in this article by finding users who used similar
historical hashtags where their similarity score is over a
predetermined threshold value.

3) Network based on topic: This type of networks group
like-minded users who share similar discussed topics
generated using topics model, such as Latent Dirichlet
Allocation (LDA). LDA is one of the most popular
techniques [25] that generates the most probable topics
discussed in a set of documents and words representing
each topic joined with their probabilities. We construct
topic-based networks by finding similar users who share
similar discussed topics generated using LDA where
their similarity score is greater than a predetermined
threshold value.

This work also compares the results of hashtag recommen-
dation of communities detected using the Clique percolation
method (CPM) [21], Louvain algorithm (LA) [26], and label
propagation algorithm (LPA) [27]. The main contributions of
this article are as follows.

1) We design a community-based hashtag recommendation
framework (Section III-B). This framework exploits the
shared hashtag usage among dense users within com-
munities for hashtag recommendation. The experimental
results show the effectiveness of our proposed frame-
work.

2) Our proposed framework helps researchers understand
various factors influencing hashtag recommendation,
which are more difficult to achieve in existing methods.
Using our framework, we found in [20] that the social
and textual factors were the most influential factors
in hashtag recommendation on detected communities.
In this article, we further investigate these two factors.
In the textual factor, TF-IDF and Mean of Word Embed-
dings (MOWE) are integrated into the community-based
hashtag recommendation framework, and their results
are compared. The framework with the MOWE achieves
better results than the one integrated with the TFIDF,
which indicates the importance of the tweet’s semantics
over the words co-occurrence. We deeply investigate the
social factor in terms of the network constructions and
the user grouping methods through community detection
algorithms. We find that the performance of hashtag
recommendation on communities detected using CPM
from a hashtag network outperforms all other variations
as explained in Section IV-B (Stage 3).

3) We introduce the use of density curves to visualize
and compare the performance of the community-based
hashtag recommendation frameworks under different
configurations on many communities (Section III-C).
The optimal result is observed when the performance
has a heavy tail on the right end of the curve.

The remainder of this article is structured as follows.
Section II reviews The related work. Section III describes
a brief review of the basics, the proposed methodologies,
and the evaluation methods. In Section IV, we describe the
data set, the preprocessing techniques, the parameter settings,
the conducted experiments, and the results. Section V presents
general discussions and limitations. Finally, the conclusion and
future work are given in Section VI.

II. RELATED WORK

In this section, we review the research work in the following
four main areas: OSN, community detection methods, hashtag
recommendation methods, and ranking methods of hashtags.

A. OSN and Community Detection Algorithms

The immense amount of metadata available in OSN allows
heterogeneous social networks with various node and edge
properties or correlations to be generated. The majority of
existing research work focuses on the edge attributes of the
networks like the social relations between users (followerships,
friendships, or actual interactions) [21], [26], [28], [29]. Other
research articles focus on the node attributes to connect
like-minded users. Node attributes are typically stored under
user profiles, which can contain explicit information about the
user, such as biography (name, geo-location, and date of birth)
or implicit information extracted from the OSN metadata via
some user profiling techniques. Typical implicit information
can be the interests of the user [30], topics of their posted
messages [31], [32], or the users’ behaviors in using the social
networks [23], [24].
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Social relations, similar interest, similar geo-locations, and
so on, naturally put users in OSN into clusters. It is, therefore,
important at the onset to identify communities, which connect
groups of users. Subsequent operations can focus just on the
detected communities. Indeed, various community detection
algorithms have been reported in the literature, including the
clique-based methods, modularity-based methods, and label
propagation methods. Representatives of these algorithms are
briefly discussed in the following.

CPM [21] is an algorithm focusing on detecting subgraphs
of fully connected users, i.e., cliques in the network. For
a given value k, it finds cliques of k nodes, and if two
cliques share k−1 nodes, then they are integrated. This clique
detection and integration process is repeated until no more
cliques can be joined. Modularity-based methods use a mea-
sure known as modularity to form communities. Modularity
gives values in the range [−1,+1]. It measures how well the
connection would be when a node is added to a community
as opposed to when it is added to a random network. Two
example modularity-based methods are the eigenvalue-based
approach proposed by Newman [29] and the Louvain algo-
rithm [26]. In [29], modularity is expressed in terms of the
eigenvectors and eigenvalues of a matrix called the modularity
matrix, and communities are formed by iteratively partitioning
the nodes into two smaller sets until no further improvement
of the modularity of the subgraphs is possible. Proposed a few
years after Newman’s method, the Louvain algorithm [26] is a
heuristic approach targeting at fast community construction for
large networks of a few million nodes. Initially, the algorithm
randomly assigns nodes into local clusters and computes the
modularity values. Next, it reassigns each node from its current
community to a neighbor community. The node is placed in the
community where the modularity value is higher. These two
steps are repeated until no further optimization is possible.
The LPA [27] is another fast community detection algorithm.
It labels all nodes in the network graph depending on the
structure of the network. At the start, it assigns labels to a
subset of nodes. These labels are then propagated through the
whole network according to the label of the first degree of the
neighbor nodes. The algorithm terminates when all nodes have
the label of the maximum neighbors. Finally, communities are
formed by grouping nodes having similar labels.

One can consider community detection as a network con-
struction process where, rather than processing on the meta-
data of the entire social network, only subnetworks are
extracted and analyzed. Ideally, one should aim at detecting
communities that are sufficiently large instead of many small
communities. However, the number and the size distribution of
communities are highly dependent on the underlying network,
the community detection algorithm, and various factors. For
instance, Darmon et al. [23] reported that the density of
users within the communities generated based on the usage of
similar hashtags and conversation between users was higher
than that when similar temporal activities and social relations
are taken into account.

B. Hashtag Recommendation Methods

Research on natural language processing (NLP) has shown
great success in mapping words and sentences into vectors.

Through feature learning, words of similar meaning are close
to each other in the embedding space. This allows the meaning
of words to be predicted. The most popular and effective word
embedding method is the word2vec model [33]. The total,
average, or concatenation of the embedding vectors [34] of
surrounding words have also been used to predict the candidate
words in sentences.

Hashtag recommendation task analyzes the contents of the
tweets, as tweets of similar contents are more likely to use
similar hashtags. This task is commonly tackled as a multiclass
classification problem of hashtags [3], [3], [10], [35] or content
similarity problem of tweets [1], [14], [15]. Tackling the
hashtag recommendation as a multiclass classification problem
predicts a hashtag for a given tweet, where every hashtag is
considered as a distinct class label for a tweet. However, two
main challenges face this method. First, the hashtag popularity
follows the power low distribution, where the majority of hash-
tags are low in popularity and fewer numbers of hashtags are
high in popularity. By training a classifier on an imbalanced
data set, the classifier is more biased toward the more popular
hashtags. Hence, only a small number of hashtags need to be
handled. Westen et al. [10] proposed the #TAGSPACE model,
which is a convolutional neural network (CNN) that only con-
siders the top 100 000 popular hashtags in the classification.
Gong et al. [35] worked on the local and global channels
of tweets. The global channel encodes the feature vectors
of every word in the tweet using a CNN, while the local
channel encodes only the feature vectors of the significant
words using an attention mechanism. Their best result is a
recall value of 0.36. Li et al. [3] designed a long-short term
memory-recurrent neural network (LSTM-RNN) as a classifier
to predict the hashtags. Although this method achieves the
highest hit rate (0.86) over the other methods mentioned
earlier for the top-10 hashtag recommendations, the number of
hashtags is limited to 20, which restricts the real application
of the method.

An alternative approach to tackling hashtag recommenda-
tion is the content similarity of tweets. A content similarity of
tweets method was first developed for hashtag recommenda-
tion by Zangerle et al. [14], where TFIDF is used to represent
tweets as one-hot vectors. For each tweet in the test set, all
the candidate tweets with TFIDF vectors similar to that of the
query tweet are retrieved. The corresponding hashtags of these
candidate tweets are then ranked, and the top-y hashtags are
recommended to the user. The authors found that the choice
of the similarity measure affects the quality of the recommen-
dation, with the cosine similarity measure outperforming the
Dice coefficient, Jaccard coefficient, and Levenshtein distance.
In the last few years, TFIDF-based hashtag recommendation
methods have been studied extensively, and additional features
have been incorporated to improve the quality of recommen-
dation [1]–[6], [15], [20], [36]–[38]. Few examples are briefly
outlined in the following. Kywe et al. [15] proposed a person-
alized hashtag recommendation model, which involves inte-
grating content similarity and collaborative filtering to extract
candidate hashtags. Their collaborative filtering is designed to
group like-minded users who have similar historical behavior
in hashtags usage. Kowald et al. [1] put forward a Base
Level Learning (BLL) method, which combines social and
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temporal factors into the hashtag recommendation procedure.
Specifically, their BLL method recommends the most recent
and frequent hashtags that are used in the user’s and his/her
followees’ tweets.

More recently, word and sentence embeddings have super-
seded TFIDF vectors for content similarity measure in hash-
tag recommendation [7], [16], [39]. Tran et al. [16] and
Kou et al. [7] recommend hashtags based on the weight
of combining multiple features. In [16], content similarity,
collaborative filtering of users who use similar hashtags, and
the user interaction strength features are incorporated. The
content similarity of tweet embeddings is calculated by sum-
ming up the embeddings of the tweet’s words generated from
word2vec. The interaction strength of a user is calculated by
weighting the mentioned users from a set of followers. In [7],
three features are integrated: content similarity, collaborative
filtering of users with similar hashtag usage, and topical
interests.

In [20], we studied the hashtag recommendation problem
by applying a content similarity method on communities of
users detected based on the following relationships. We found
that the quality of recommendation varies significantly among
communities detected using CPM and BFS.

C. Ranking Methods of Hashtags

Given a list of candidate hashtags that have been identified,
not all of them should be put forward for recommendation;
instead, these hashtags should be ranked so that only the
top few of them are recommended to the user. The aim
of the hashtag ranking process is to reorder the candidate
hashtags extracted by one of the hashtag recommendation
methods described in the previous subsection. The reordering
of importance values is usually from high to low. In the
literature, candidate hashtags have been ranked based on their
popularity, relevance, and recency. The definition of these
ranking methods is listed below:

1) Hashtag Popularity: The term popularity is defined to
be the number of times a hashtag has been adopted in
the set of tweets being considered [14] or has been used
by a given set of users [15], [40].

2) Global Hashtag Popularity: Different from the ranking
method mentioned above, the global hashtag popularity
value is calculated over the whole data set [14].

3) Tweet Hashtag Relevance: Hashtags are ranked in the
order of their corresponding tweets’ similarity scores
between a query tweet and those in the repository and
the decreasing order. Hence, the most relevant hashtags
are near the top for recommendation. The similarity
scores can be computed using a lexical tweet similar-
ity [14] or a semantic tweet similarity function [39],
[41].

4) Hashtag Recency: This ranking method uses the age
(number of days) of each hashtag so that the most
recently used hashtags are ranked near the top for
recommendation [42].

In [14] and [20], tweet hashtag popularity was found to
outperform the other similarity measures for hashtag recom-
mendation. However, tweet hashtag relevance is the commonly
used method [14], [39], [41].

III. METHODOLOGY

In this section, we first provide a brief review of the docu-
ment representation and similarity measure. We then describe
our proposed framework in detail.

A. Brief Review of the Basics

1) Tweet Representations: An important step in hashtag
recommendation is tweet representation. In NLP, the feature
vector representing a document can be expressed in terms of
the terms in the document. By treating tweets as small docu-
ments, the same representation for documents can be used for
tweets. As reviewed in the previous section, the word2vec is
a popular and effective way to represent terms in a document.
This gives another possible way of representing tweets. Just
like other NLP tasks, all the tweets must be preprocessed,
such as removing the stop words and punctuation. In the
remainder of this subsection, we will briefly outline two
different ways for representing tweets: term frequency-inverse
document frequency (TFIDF) and mean of word embeddings
(MOWE).

a) Term frequency-inverse document frequency (TFIDF):
TFIDF is a statistic that reflects how important a term is to a
document in a collection of documents. If there are N terms
in the corpus, then each document d can be represented by a
wd ∈ RN vector. By treating each tweet as a small document,
TFIDF has been used in [38] to represent tweets. Following
the standard formula for TFIDF, wd is given by

wd = TFt,d · IDFt,D (1)

where

IDFt,D = 1+ log

( |D|
1+ DFt

)
(2)

TFt,d denotes the frequency of the term t in the tweet d , IDFt,D

is the inverse frequency of the tweets that contain the term t ,
|D| is the total number of tweets in the repository data set
D, and DFt is the number of tweets that contain the term t .
The term TF in (1) gives a higher weight to those terms that
are frequently used in many tweets, whereas the IDF term
decreases these weights unless the terms are very specific to
the tweet being analyzed, i.e., they are rarely used by all other
tweets.

b) Mean of word embeddings (MOWE): Google’s
word2vec model locates words that have similar meaning
closely together in the vector space. In this article, we adopt
the skip-gram word2vec model and train it on our data rather
than using the Google’s pretrained model. This is because
of the difference in vocabularies between proper documents
and tweets. When a tweet da contains similar words as
another tweet db, it has similar word2vec vectors as those in
tweet db and their mean word2vec vectors should be similar
also. Following [43], we use the mean of word embeddings
(MOWE) as a feature representation for each tweet. First, our
word2vec model is applied to every tweet to obtain the feature
vectors of terms {v1, v2, . . .} in the tweet. Next, instead of (1),
wd is defined as the mean vector of all the terms in the tweet d

wd =
T∑

i=1

vi/T (3)

where T is the total number of terms in the tweet.
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2) Similarity Measures of Tweets: We use the cosine sim-
ilarity function to measure the nearness between two tweet
feature vectors wq and wd generated using (1) or (3)

sim(wq , wd) = wq · wd

�wq�2�wd�2
. (4)

The cosine similarity measure gives values in the range
[−1,+1]. When the two tweets are identical, sim(wq , wd) =
1; when they share nothing in common, sim(wq, wd) ≈ 0; and
when they represent something opposite, sim(wq , wd) is close
to −1.

B. Proposed Framework

The raw input twitter data have the entries of users, their
incomplete profiles, their possible followers and followees,
etc. There are also inactive and new users who have no
social relationships with other users. These users are not
of interest for further analysis. The very first step of our
framework is, therefore, to construct a network. As the focus
of this article is to investigate the influence of communities
on hashtag recommendation. The second step is to detect
communities from the network. The third and final step is
hashtag recommendation.

1) Network Construction: Online social networks inherently
have a graph structure and are best represented as graphs.

Given a set of users U = {u1, u2, . . .} in an OSN, these
users naturally form the set of nodes of the graph G = (U ,E )
with E being the set of edges that connect pairs of users
based on some node or edge properties. Depending on the
edge properties that are of interest, the set E will comprise
different edges, and, consequently, a different graph G will be
formed.

The four types of networks studied in our framework are
outlined below. To simplify the graph structure, we build
these networks as undirected and unweighted graphs. Hence,
if (ui , u j ) ∈ E , then it automatically implies that (u j , ui ) ∈ E
also.

a) Network construction based on the following relation:
A followership edge (ui , u j ) is added to the set E when a user
ui ∈ U is a follower of user u j ∈ U or vice versa.

b) Network construction based on mention: An interac-
tion edge (ui , u j ) is added to E when user ui ∈ U mentions
user u j ∈ U in a message and vice versa.

c) Network construction based on hashtag: As the name
suggests, this network connects users who share one or more
common hashtags. Details of the network construction pro-
cedure are outlined in Algorithm 1. The sets of historical
hashtags of all the users are put together for training a
word2vec model. After that, the trained model can be used
to map hashtags into feature vectors. The algorithm goes
through each user ui ∈ U and retrieves the feature vectors
corresponding to ui ’s hashtags from the trained model. The
profile of user ui is defined as the MOWE vector of these
feature vectors. The abovementioned procedure is applied to
all users in the set U . After the profiles of all the users are
defined, the cosine similarity function given in (4) is applied
to the profile vectors of each pair of users ui and u j . If the
similarity score is larger than τu, then edge (ui , u j ) is added

Algorithm 1 Network Construction Based on Hashtag
INPUT:

H1, . . . , HN : sets of historical hashtags of N users in U
τu: a threshold for measuring user similarity

OUTPUT: G = (U ,E ): the hashtag-based network graph

1: Initialize: E ← ∅ /* output set of edges for G */
2: Train a word2vec model on {Hk}Nk=1 to get the hashtags

feature vectors
3: for each user ui ∈ U do
4: Retrieve all the hashtags Hi = {h1, h2, . . .} used by ui

5: Retrieve the hashtag feature vectors {d1, d2, . . .} for Hi

from the trained word2vec model
6: /* Compute the profile vector of user ui */
7: Profile(ui)← MOWE({d1, d2, . . .}) using Eq. (3)
8: end for
9:

10: for ui �= u j ∈ U do
11: if sim(Profile(ui), Profile(u j)) > τu then
12: E ← E ∪ {(ui , u j )}
13: end if
14: end for
15: return G

to E . The graph G = (U ,E ) output by the algorithm is the
network constructed based on hashtag.

Hashtags are usually not proper English words. They can
be the concatenation of several words, short-hands, and/or
replacements of words by numbers. It is, therefore, more
meaningful to compute the word2vec vectors of hashtags
directly, as done in Algorithm 1.

d) Network construction based on topic: The pseudocode
of the network construction process is given in Algorithm 2.
We use LDA [25] to extract the topics discussed by every
user in the data set. LDA does not work well on short tweet.
To overcome this deficiency, we follow [38] to aggregate
tweets posted by a user to extract his/her topics. First, all
the tweets are preprocessed to eliminate all the stop words,
keeping only nouns. Next, an LDA model M is trained using
all the preprocessed tweets to yield a number of topics. For
each user u ∈ U , a set of topic terms {t1, t2, . . .} is then
generated, where each ti is a feature vector representing a
topic term. The profile of user ui is defined as the MOWE
vector of these feature vectors using (3).

To find users who share similar topic terms and, there-
fore, should be connected by an edge, the cosine simi-
larity is used to pairwisely compare the Profile(u) vectors
described above. Thus, an edge (ui , u j ) is added to E if
sim(Profile(ui ), Profile(u j )) > τu, where τu is a predefined
threshold.

2) Community Detection: In our framework, we select the
three representative community detection methods, such as
CPM, Louvain algorithm, and LPA to analyze their influ-
ence in hashtag recommendation. For the modularity-based
methods, we choose the Louvain algorithm instead of New-
man’s algorithm because of its fast speed in constructing the
communities.
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Algorithm 2 Network Construction Based on Topics
INPUT:

D1, . . . , DN : sets of historical tweets of N users in U ,
M : LDA model trained on the tweets of all users,
τu: a threshold for measuring user similarity.

OUTPUT: G = (U ,E ): the hashtag-based network graph

1: Initialize: E ← ∅ /* output set of edges for G */
2: Initialize: Pre-process all tweets Dk,∀k = 1, . . . , N
3: Train an LDA model on {Dk}Nk=1 to get all topic-terms
4: for each user ui ∈ U do
5: T ← ∅ /* initial set of topic-term vectors of ui */
6: for d ∈ Di do
7: Td ← {feature vectors of topic-terms for tweet d

extracted from M }
8: T ← T ∪Td

9: end for
10: /* Compute the profile vector of user ui */
11: Profile(ui )← MOWE(T ) using Eq. (3)
12: end for
13:

14: for ui �= u j ∈ U do
15: if sim(Profile(ui ), Profile(u j )) > τu then
16: E ← E ∪ {(ui , u j )}
17: end if
18: end for
19: return G

Given the network G = (U ,E ) from one of the network
construction methods described above, a community detection
algorithm is applied to find n embedded communities {Ci }ni=1
from G , where ∪n

i=1Ci ⊆ U . For a user u to be included
in any community Ci , he/she must have posted at least one
hashtagged tweet. The intersection of any two communities
may be nonempty. This means that users can belong to more
than one community.

3) Hashtag Recommendation: Algorithm 3 shows the
pseudocode of the top-y hashtag recommendation steps for
a given query tweet in a community C .

a) Training the Word2Vec model: Prior to the hashtag
recommendation process, a Word2Vec model must be trained
using all the tweets in the data set as described in Section III-
A1. This process gives D = {(w1, d1), (w2, d2), . . .}, which is
a dictionary of words and their corresponding feature vectors.

b) Repository set: Tweets posted by a community are
defined as the MOWE feature vector ti [using (3)] of its
words feature vectors {d1, d2, . . .} that are retrieved from
the dictionary D . Every tweet feature vector ti is accom-
panied with its corresponding hashtags Hi and stored into
a repository set R = {(t1, H1), (t2, H2), . . .}. The test set
T = {(q1, H1), (q2, H2), . . .} contains the query tweet feature
vectors {q1, q2, . . .} and the corresponding sets of ground truth
hashtags {H1, H2, . . .}, which will be used for comparing the
hashtag recommendation performances. For a query tweet qi ,
Algorithm 3 looks for similar tweets from R of a certain
community, and if the similarity score is larger than τt, then
their hashtags are added to Sh . After that, the set of candidate

Algorithm 3 Top-y Hashtags Recommended for a Given
Query Tweet
INPUT:

q: the input query tweet feature vector,
C = (u1, u2, . . .): the community of users,
R = {(t1, H1), (t2, H2), . . .}: the repository set of tweet

feature vectors and set of hashtags,
A: hashtag ranking algorithm,
τt: a threshold for degree of tweet similarity,
y: the number of desired recommendations.

OUTPUT:
L: the output list of top-y recommended hashtags

1: /* Retrieve tweets similar to q */
2: Sh ← ∅

3: for ti ∈ R do
4: scorei ← sim(ti , q) using Eq. (4)
5: if scorei > τt then
6: Sh ← Sh ∪ {(scorei , Hi)}
7: end if
8: end for
9:

10: /* Call algorithm A to rank hashtags */
11: L̃ ← A(Sh, C)
12:

13: /* Variable L̃ now contains the hashtags sorted based on
the ranking method implemented in A */

14: if length(L̃) ≤ y then
15: L ← L̃
16: else
17: L ← L̃[1..y]
18: end if
19: return L

hashtags are ranked using a hashtag ranking method A, and
the top-y of them are put forward to u.

c) Ranking methods of hashtags: We adopt two hashtag
ranking methods in the framework (see Section II-C): hashtag
ranking based on tweet relevance and hashtag ranking based
on tweet popularity. Given a list of candidate hashtags that
have been identified for recommendation, the hashtag ranking
algorithm may need to look at: 1) the tweets’ similarity scores
and/or 2) all the users in the community being considered.
Thus, additional arguments such as the specific community
C being considered and tweet scores are required to pass to
the hashtag ranking algorithm A, as shown in line 11 of the
pseudocode in Algorithm 3.

C. Evaluation Methods

We evaluate the performance of hashtag recommendation
for a given tweet, a given community, and a set of communi-
ties.

1) Hashtag Recommendation Performance of a Tweet:
Three measures are commonly used to evaluate the perfor-
mance of hashtag recommendation: hit rate, precision, and
recall. The hit rate measure [15] gives the ratio of the number
of hits to the number of attempts. Precision and recall give a
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Algorithm 4 Average Hit Rate of a Given Community
INPUT:

L1, . . . , Ln : sets of the recommended hashtags for n
query tweets,

H1, . . . , Hn: sets of the ground truth hashtags
corresponding to L1, . . . , Ln

OUTPUT:
P: the average hit rate performance of the community

1: hit ← 0
2: /* Find common hashtags between L and H */
3: for i = 1, . . . , n do
4: if Li ∩ Hi �= ∅ then
5: hit← hit+ 1
6: end if
7: end for
8: P ← hit/n
9: return P

ratio of matched hashtags corresponding to the top-y and the
number of ground truth hashtags, respectively. For simplicity,
we use the hit rate to explain how to compute the performance
of a community and the performance of a set of communities
in hashtag recommendation.

2) Hashtag Recommendation Performance of a Community:
In order to calculate the hashtag recommendation performance
of a given community C , we use the average hit rate over all
query tweets in the test set T as described in Algorithm 4.
If there are common hashtags between the recommended
hashtags L and the ground truth hashtags H , this is considered
as a hit. Then, the average top-y hit rate performance P for a
community is calculated.

3) Hashtag Recommendation Performance of a Set of Com-
munities: The process of evaluating a community is repeated
over all the n detected communities in ∪n

i=1Ci to get P@y =
{P1, . . . , Pn}, which we will use later to compare between
frameworks. We use the notation P@y to denote the average
top-y hit rates of n communities of a given network. His-
togramming can then be performed on P@y to yield the
distribution of the numbers of communities obtaining different
hit rate values for the network. Those networks having promi-
nent peaks near the right-hand tail (i.e., more communities
achieving large average hit rate@y) are considered to have
better performance on hashtag recommendation.

IV. EXPERIMENTS AND RESULTS

In this section, we describe the data set, the preprocessing
steps, the parameter settings, our experimental setup, and the
results.

A. Data Set, Preprocessing, and Parameter Settings

The data set we use is the Data set-UDI-TwitterCrawl-
Aug2012 [22] collected during the period from 2011 to 2012.
The data set comprises: 1) a user profile folder, which is not
used in this work; 2) a following network file, which we use
directly for the following network; and 3) a folder containing
the tweets of all users. We use this last folder to gener-
ate the hashtag, mention, and topic networks, as explained
in Section III-B1.

In the preprocessing stage, we cleaned all tweets by remov-
ing stop words, punctuation except the # symbol, and hyper-
links. All tweets and hashtags were transformed into a lower
case letter. Any duplication in tweets was removed. The “rt”
word was also removed from retweets. In order to be able
to test the performance of hashtag recommendation and avoid
the randomness of the results, we use the average results of
the fivefold cross-validation of each community. For the test
set, the ground truth hashtags removed from query tweets are
used only for evaluation.

The word2vec model described in Section III-A1 is trained
on all the 9 241 235 hashtagged tweets from the data set
mentioned above. This training process is performed before
the network construction stage so that regardless of the net-
work type (following, hashtag, mention, or topic), the same
word2vec model is used to encode words. The hyperparame-
ters used in the training process are: the context window for
words is set to 5; the number of epochs is set to 30, words
that appear less than 3 times are ignored; and the dimension
of word embeddings is set to 300. Accordingly, the dimension
of the sentence embeddings is also set to 300. The training
produces 1 010 768 unique words in the word2vec dictionary.

We follow [20] and set the threshold τt for tweet similarity
in Algorithm 3 to 0.5, so tweets that are only marginally
similar to a query tweet q are discarded. Setting τt to a value
larger than 0.5 is not desirable as it would result in many
query tweets having no similar tweets, thus leading to poor
performance in hashtag recommendation.

B. Experimental Setups

We conduct our experiments in several stages: network con-
struction, community detection, and hashtag recommendation.

Stage 1 (Network Construction): Table I shows the statistics
of the four constructed networks mentioned in Section IV-
A. We can observe that the networks based on following
and mention are much larger than the other two networks,
with a lot more users and edges in the graphs. As the
τu threshold decreases for the hashtag and topic networks,
it allows more users to connect to each other, thus resulting
in more densely connected graphs. We set τu to 0.5 as,
at this value, the numbers of edges of the hashtag and topic
networks have similar magnitudes as the number of edges
in the mention network. Due to hardware constraints and to
maintain the consistency across all experiments, we reduce
the four networks constructed above to smaller subnetworks
by taking only their first 300 000 edges.

Stage 2 (Community Detection): Table II shows a compar-
ison between the three community detection algorithms and
the aforementioned subnetwork graphs in terms of the number
of generated communities and the total number of tweets
posted by users in all communities. Although all the networks
are restricted to the same number of edges, the numbers of
generated communities and the numbers of tweets greatly vary.

Stage 3 (Community-Based Hashtag Recommendation): At
this stage, we apply the community-based hashtag recom-
mendation explained in Algorithm 3 on communities detected
from the four subnetworks formed in the second stage using
CPM, Louvain algorithm, and LPA. We investigate how the
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TABLE I

DETAILS OF THE FOUR CONSTRUCTED NETWORKS. τu DENOTES
A PREDEFINED THRESHOLD VALUE FOR MEASURING

THE SIMILARITY BETWEEN A PAIR OF USERS

TABLE II

COMPARISON BETWEEN THE THREE COMMUNITY DETECTION

ALGORITHMS AND THE AFOREMENTIONED NETWORK GRAPHS.
n DENOTES THE NUMBER OF COMMUNITIES

performance of hashtag recommendation is affected by the
four factors: 1) the features used to represent tweets; 2) the
algorithms used to construct the network; 3) the algorithms
used to detect communities; and 4) the ranking methods of
candidate hashtags. These four factors are closely related to
each other, as demonstrated below.

C. Results

Figs. 1 and 2 show the density curves of the hashtag rec-
ommendation performances P@y over communities. These
density curves have been smoothed to enhance visualization.
The horizontal axis is the average hit rate value for the
generated communities between [0, 1], where 1 means the
performance is 100% correct and 0 means all hashtags are
recommended incorrectly. The vertical axis is the number
of communities achieving a given average hit rate value.
To compare with the existing methods in the literature, in this
article, we report only the P@1 and P@10 performances
of hashtag recommendation. The variable μ ± σ denotes the
mean and standard deviation of the average hit rate of all the
communities.

The followings are the results of how the performance of
hashtag recommendation is affected by the four factors:

1) Features Used to Represent Tweets: For the first factor,
we compare the performance of hashtag recommendation

TABLE III

PERCENTAGE OF COMMUNITIES UNDER THE FIVE QUINTILES OF THE
AVERAGE HIT RATE FOR THE TOP-10 HASHTAG RECOMMENDATION

FROM THE THREE COMMUNITY DETECTION ALGORITHMS FOR

THE NETWORKS BASED ON HASHTAG

when the feature representations of tweets are encoded using
TFIDF as explained in (1) and using MOWE as explained
in (3). In Fig. 1, we observe that the performances of the
community-based hashtag recommendation frameworks inte-
grated with MOWE (represented in the last two columns) are
better than the performances of the frameworks integrated with
TFIDF (represented in the first two columns).

2) Algorithms Used to Construct the Network: The second
factor in this comparison is the effect of the network type.
By looking at the mean values of the density curves reported
in the subplots in Fig. 1, we find out that communities
detected from the network based on hashtag mostly tend to
have a higher average hit rate performance than communities
generated from other networks when the top-y is set to {1,10}
(see the cyan curves). The communities detected from the
network based on mention achieve the second high results (see
the red curves). It seems that people who mention each other
tend to use similar hashtags.

3) Algorithms Used to Detect Communities: The third factor
in this comparison is the effect of the used community
detection algorithm on hashtag recommendation. According
to the previous observation, we focus here only on the
community-based hashtag recommendation framework where
the communities are extracted from the network based on
hashtag, the tweet representation is MOWE, and the ranking
method is the tweet hashtag popularity. Table III shows the
division of the average hit rates of communities into quintiles
for the three community detection algorithms for the top-
10 hashtag recommendation. From this table and Fig. 1,
one can see that the hashtag recommendation performance
varies with respect to the community detection algorithms.
Some communities achieve high performances while other
communities perform very poorly. We explain our results
below.

Result 1: The two distribution curves of communities using
the MOWE feature vectors in Fig. 1 (rows 1 and 2, column
4) show that the communities detected by CPM and Louvain
algorithm for the hashtag-based network achieve similar aver-
age hit rate of 0.43. For the communities detected by the LPA
(row 3, column 4), the average hit rate is 0.27 only.

Result 2: In order to distinguish between CPM and Louvain
algorithm, we focus on the percentage of communities with
high average hit rate performances. Our results show that
the Louvain algorithm performs slightly better than CPM and
much better than LPA with 5.40% of the communities achiev-
ing higher than 0.8 average hit rate. However, while many
Louvain communities perform well in achieving high average
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Fig. 1. Distributions of the number of communities against the average hit rate value for communities generated by CPM, the Louvain algorithm, and LPA.
These distributions were generated from the P@y list described in Section III-C using the TFIDF features (columns 1 and 2) and the MOWE Word2Vec
features (columns 3 and 4). The text μ± σ in the legend denotes the mean μ and standard deviation σ of the average hit rates of hashtag recommendation
achieved by the communities [figure best viewed in color].

hit rates, there is also a large percentage of communities sitting
on the other end of the spectrum. As shown in Table III, about
13.18% of Louvain communities have less than 0.2 average hit
rate.

Result 3: Considering the 4th and 5th quintiles together, our
results show that 20.67% of CPM communities achieve their
average hit rates above 0.6. This high percentage value shows
that CPM communities perform slightly better than those
detected by the Louvian algorithm (20.31%) and much better
than those from LPA, which has only 3.39% communities
achieving the same range of average hit rate.

4) Ranking Methods of Candidate Hashtags: We com-
pare the performance between the tweet hashtag popular-
ity and the hashtag relevance ranking methods within the
community-based hashtag recommendation. Fig. 2 shows that
the hashtag recommendation is affected by the choice of
the ranking method. For the TFIDF, the performance of the
hashtag recommendation is much better when the hashtag
relevance ranking method is used. The mean value of hashtag
relevance is higher than the mean value in the tweet hashtag
popularity. On the other hand, the performance of hashtag
recommendation is more superior when the tweet hashtag
popularity is used as the ranking method in MOWE. By and
large, the best hashtag recommendation performance among
the distribution plots is the model that utilizes the MOWE
with the tweet hashtag popularity as the ranking method.

D. Processing Time

All the processes described in the previous sections are
implemented using Python on an iMac equipped with Intel
Core i9, 8 cores, and 64 GB of memory. Table IV shows
the computation time of each process in our framework.
The process that is the most time-consuming is the network
construction. It takes 505.989 s to construct 1000 edges of
the hashtag-based network. Although all the three community

TABLE IV

PROCESSING TIME OF THE FRAMEWORK FOR A SAMPLE DATA

SET OF 1000 EDGES. THE COMMUNITIES ARE DETECTED

OVER THIS SAMPLE DATA SET

detection algorithms used in this article are fast, detecting
communities using CPM takes less time than using Louvain
and LPA. As for training the Word2Vec model, it takes 0.524 s
to learn the vectors of 1000 tweets. If no new hashtags
are introduced after the above steps have been performed,
the word2vec model does not need to be retrained. In that
case, the time taken to recommend a hashtag (y = 10) for
one query tweet q should be the total of the following times:
1) the time taken to preprocess the query tweet q; 2) the time
taken to extract the tweet feature vector q from q; 3) the
time taken to run Algorithm 3 on q. It takes a longer time to
recommend hashtags on a larger size community with a much
greater number of tweets in the repository.

E. Comparison Between the Community-Based Hashtag
Recommendation and State-of-the-Art Methods

Recall that, in this article, we measure the performance
of hashtag recommendation of a set of communities. Our
community-based hashtag recommendation method performs
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Fig. 2. Comparison between two hashtag ranking methods: tweet hashtag popularity and hashtag relevance. The distributions show the number of communities
against the average hit rates for communities generated by CPM, Louvain algorithm, and LPA using the TFIDF features (columns 1 and 2) and the MOWE
Word2Vec features (columns 3 and 4). The text μ ± σ in the legend denotes the mean μ and standard deviation σ of the average hit rates of hashtag
recommendation achieved by the communities [figure best viewed in color].

TABLE V

COMPARISON OF OUR METHOD WITH THE STATE-OF-THE-ART METHODS.
THE RESULTS MARKED WITH ∗ ARE EXTRACTED

FROM THE ORIGINAL ARTICLES

the best when: 1) the communities are extracted using CPM
from the network based on hashtag; 2) the tweet representation
method is MOWE; and 3) the ranking method is Tweet
Hashtag Popularity. It is described in Section IV-C that 20.67%
of the communities achieve their average hit rates above 0.6.
However, in this section, Table V shows the average hit rate,
precision, and recall of all communities using our method
in comparison with the state-of-the-art methods. Our method
gives the highest average hit rate but less precision and recall,
where Kowald et al.’s method is ahead of all methods.

V. DISCUSSIONS AND LIMITATIONS

Our results in the previous section show that the CPM
communities in the hashtag-based network outperform other
communities detected in other networks for hashtag recom-
mendation. Being a method that detects cliques, it seems that
CPM associates users more strictly, and so, the network based
on hashtag contains smaller communities. With users who
are likely to use the same hashtags are grouped together,
higher average hit rate can be achieved for each community
and the whole network. It is, therefore, not unexpected that
CPM communities for hashtag-based network perform the best
in hashtag recommendation. This observation is compatible

with what Darmon et al. [23] reported in their research that
users grouped from a hashtag-based network are densely
connected. As our superior results are achieved by integrating
MOWE, it indicates the importance and efficiency of the
semantic features of the tweets in hashtag recommendation.
Semantic features, such as MOWE, are represented with less
dimensions. Using TFIDF, on the other hand, the memory limit
hinders the model’s ability when the number of repository
tweets is very large as the vectors become very sparse.
In addition, recommending hashtags by integrating TFIDF is
very time-consuming. The ranking method based on tweet
hashtag popularity outperforms the ranking method based on
hashtag relevance.

There are two limitations in our implementation that affect
our research findings reported above. These limitations are
summarized as follows.

1) It is difficult to generate hashtags that exactly match the
ground truth hashtags. For example, if the recommended
hashtag is #mba but the ground truth hashtag is #wom-
anMBA or if the recommended hashtag is #travel but the
ground truth is #holiday, then both cases yield a zero hit
rate even though, in terms of meanings of the hashtags,
both examples should be counted as excellent hashtags
to recommend to the user. This limitation is the reason
why the hit rates in our experiments are rather low.
One possible solution is to develop semantic measures
that find the closeness of the semantic meaning between
hashtags to evaluate the recommendation.

2) The pretrained word and sentence embedding models
require that all the words already exist when inferring
the feature vector for a given tweet. This requirement
is not realistic for real-world scenarios, thus making
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it impossible for hashtag recommendation methods to
readily work on new tweets. There is no clear solution
to overcoming this limitation except for periodically
and regularly retraining the system to learn the new
embedding vectors.

VI. CONCLUSION AND FUTURE WORK

Hashtag recommendation is a very challenging problem
within social media applications. In this article, we have
presented a community-based hashtag recommendation frame-
work that can help researchers to investigate factors influenc-
ing hashtag recommendation. Our community-based hashtag
recommendation framework identifies hashtags, which have
been shared with other community members. We have pre-
sented this study on different aspects of the community-based
hashtag recommendation framework: network construction,
community detection algorithm, tweet representation method,
and ranking method. Our experimental evaluation confirms
that different degrees of social relationships affect the perfor-
mance of hashtag recommendation. Our results also show that
the hashtag recommendation performance is better when it is
applied on the communities detected using CPM and extracted
from the network graph based on hashtag. In addition, for
hashtag recommendation, it is more suitable to use MOWE
rather than TFIDF to represent tweets.

For our future work, we will investigate the association
of the four networks mentioned in this article and their
combined effect on the performance of hashtag recommen-
dation. Furthermore, we will work on developing a hashtag
recommendation measure that can evaluate hashtags based on
their semantic similarity.
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