
ORIGINAL ARTICLE

HONEM: Learning Embedding for Higher Order Networks
Mandana Saebi,1 Giovanni Luca Ciampaglia,2 Lance M. Kaplan,3 and Nitesh V. Chawla1,*

Abstract
Representation learning on networks offers a powerful alternative to the oft painstaking process of manual feature
engineering, and, as a result, has enjoyed considerable success in recent years. However, all the existing representation
learning methods are based on the first-order network, that is, the network that only captures the pairwise interactions
between the nodes. As a result, these methods may fail to incorporate non-Markovian higher order dependencies in
the network. Thus, the embeddings that are generated may not accurately represent the underlying phenomena in a
network, resulting in inferior performance in different inductive or transductive learning tasks. To address this chal-
lenge, this study presents higher order network embedding (HONEM), a higher order network (HON) embedding
method that captures the non-Markovian higher order dependencies in a network. HONEM is specifically designed
for the HON structure and outperforms other state-of-the-art methods in node classification, network reconstruction,
link prediction, and visualization for networks that contain non-Markovian higher order dependencies.

Keywords: higher order network; network embedding; network representation learning

Introduction
Networks are ubiquitous, representing interactions be-
tween components of a complex system. Applying
machine-learning algorithms on such networks has typ-
ically required a painstaking feature engineering process
to develop feature vectors for downstream inductive or
transductive learning tasks. For example, a typical link
prediction task may require the computation of several
network statistics or characteristics such as centrality,
degree, and common neighbors.1 And then a node clas-
sification task may require a different feature subset or
selection, requiring yet another feature engineering
task. This adds significant computational complexity es-
pecially with increasing graph sizes. This challenge in-
spired representation learning algorithms for networks
that led to generalized feature representations as low-
dimensional embeddings, learned in an unsupervised
manner, and thus being flexible enough for different
downstream network mining tasks.2–4

However, the research on network representation
learning has largely focused on first-order networks
(FONs), that is, the networks where edges represent
the pairwise interactions between the nodes—assuming

the naive Markovian property for node interactions
(Fig. 1b).2,5–9 In recognition of the possible higher
order interactions between the nodes beyond first
order, recent research has led to methods that try to
capture the higher order proximity in the network
structure. These methods often define a ‘‘higher order
proximity measure’’ based on the multihop node con-
nectivity pathways. Such higher order methods per-
form better in common network mining tasks such as
link prediction, network reconstruction, and commu-
nity detection.2 However, these methods infer the
higher order proximities from the FON structure,
which in itself is limiting in capturing the variable
and higher order dependencies in a complex system.10

Recent research in the network science domain has
pointed out the challenges with the FON view and the
limitations it poses in network analysis (e.g., community
detection,11–15 node ranking,16 dynamic processes,17 risk
assessment,18 and anomaly detection19), and proposed
higher order network (HON) representation methods
that have been shown to be more accurate in capturing
the trends in the underlying raw data of a complex sys-
tem.10–12,17,20,21 Unlike the conventional FON in which

1Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, Indiana, USA.
2Department of Computer Science and Engineering, University of South Florida, Tampa, Florida, USA.
3U.S. Army Research Laboratory, Adelphi, Maryland, USA.
A pre-print version of this article is available at: https://arxiv.org/abs/1908.05387

*Address correspondence to: Nitesh V. Chawla, Department of Computer Science and Engineering, University of Notre Dame, 384 Fitzpatrick Hall, Notre Dame, IN 46556, USA,
E-mail: nchawla@nd.edu

Big Data
Volume 8, Number 4, 2020
ª Mary Ann Liebert, Inc.
DOI: 10.1089/big.2019.0169

255

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

B
A

T
H

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 1
0/

17
/2

1.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 

https://arxiv.org/abs/1908.05387


every node represents a single state, a node in this HON
structure represents the current and previous states
(illustrated in Fig. 1c), thus capturing valuable higher
order dependencies in the raw data.10,11,20,21

This study advances a representation learning algo-
rithm for HON—higher order network embedding
(HONEM)—and shows that representation learning al-
gorithms developed for FON, including ones that capture
higher order proximities, are limited in their performance
on HON. HONEM is scalable and generalizable to a va-
riety of tasks such as node classification, network recon-
struction, link prediction, and visualization.

To that end, this study addresses the following key
questions:

1. How to develop a network embedding method
that captures the dependencies encoded in the
HON structure?

2. Does a network embedding developed specifically
for HON offer an advantage in common network
mining tasks compared with embedding methods
based on FON?

Contributions
The main idea of HONEM is to generate a low-
dimensional embedding of the networks such that the
higher order dependencies (represented in HON) are
accurately preserved. HONEM takes HON directly as
input and is thus able to capture higher order depen-
dencies present in the raw data that are encoded in
HON.

Consider the following example. We are provided
human trajectory/traffic data of the area around a uni-
versity campus. Suppose from the trajectory data, we
observe that students who live on-campus are more
likely to visit the central library after visiting the down-
town area, while people living in a certain residential
area are more likely to go to the business area of the
city after passing through the downtown area (assum-
ing none of the four locations overlap with each other).
In Figure 1, each of the nodes represents the following:
C: on-campus dorm, B: residential area, A: downtown
area, E: library, D: business area. Suppose we model
such dependencies as FON (Fig. 1b), and then try to
infer second-order dependencies from FON structure

FIG. 1. A toy example showing how higher order neighborhood can be inferred from HON. Given the
sequential data provided in (a), we can construct both FON (b) and HON. From FON, it is not clear that only
node C and E have a second-order dependency through node AjC. Similarly, only node B and D have a second-
order dependency through node AjB. There is no second-order dependency between B and E, or C and D. (c)
The neighborhood information is inferred from HON (d). FON, first-order network; HON, higher order network.

256 SAEBI ET AL.

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

B
A

T
H

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 1
0/

17
/2

1.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



to derive the node embeddings (as typically done in
existing methods5–8). In the FON structure, both the li-
brary and the business area are two-steps away from
the campus dorms (or the residential area). Therefore,
we may conclude that students living on-campus
have an equal probability of visiting the library and
the business area through downtown. As a result,
all the abovementioned methods based on FON will
miss important higher order dependencies or infer
higher order dependencies that do not exist in the orig-
inal raw data. By modeling these interactions as
HON, instead (Fig. 1c), we observe that node C and
E have a second-order dependency through node
AjC. Similarly, nodes B and D have a second-order de-
pendency through node AjB. There is not a second-
order dependency between B and E, or C and D.
The question then becomes: how to learn embeddings
on HON such that these higher and variable order of
dependencies are captured? Methods such as
GraRep22 or Node2Vec5 assume a fixed kth-order
neighborhood to infer the higher order neighborhood.
When k is set to 2, these methods assume a second-
order relation for all pairs (C, E), (C, D), (B, D), (B, E).
However, based on the raw data, there is not a second-
order relation between (C, D) or (B, E). HONEM can
assign the correct order for each pair of nodes,
which can vary depending on the higher order pat-
terns in the raw data. Similarly, if higher order depen-
dencies beyond second order exist in the raw data,
methods based on FON cannot discover such patterns
with k � 2.

To summarize, the key contributions of HONEM are
as follows:

1. Data-agnostic: HONEM extracts the actual order
of dependency from the non-Markovian interac-
tions of the nodes in raw data by allowing for var-
iable orders of dependencies rather than a fixed
order for the entire network, as used in prior
work.5,6,8,22

2. Scalable and parameter-free: HONEM does not
require a sweep through the parameter space of
window length. HONEM also does not require
any hyperparameter tuning or sampling as is
often the case with deep learning or random
walk-based embedding methods.

3. Generalizable: HONEM embeddings are directly
applicable to a variety of network analytic tasks
such as network reconstruction, link prediction,
node classification, and visualization.

Higher Order Network Embedding
In summary, the HONEM algorithm comprises the fol-
lowing steps:

1. Extraction of the higher order dependencies from
the raw data.

2. Generation of a higher order neighborhood ma-
trix, given the extracted dependencies.

3. Applying truncated singular value decomposition
(SVD) on the higher order neighborhood matrix
of the network to discover embeddings, which
can then be used by machine-learning algorithms.

Preliminaries
Let us consider a set N of interacting entities and a set S
of variable-length sequences of interactions between
entities. Given the raw sequential data, the HON can
be represented as GH = fNH, EHg with EH edges and
NH nodes of various orders, in which a node can repre-
sent a sequence of interactions (path). For example, a
higher order node ijj represents the fact that node i is
being visited given that node j was previously visited,
while a higher order node ijk, j represents the node i
given previously visited nodes j and k. In this context,
a first-order node p is shown by node pj�, in which
the notation ‘‘j�’’ indicates that no previous step infor-
mation is included in the data.

Using these higher order nodes and edges in GH, our
goal is to learn embeddings for nodes in the FON,
GF = fNF, EFg. Keep in mind that NH � NF, as several
nodes in GH will correspond to a node in GF. For exam-
ple, all HON nodes AjB, AjC, D, and AjE represent
node A in the FON. It is important to highlight this
connection between HON nodes and their FON coun-
terparts. Indeed, we are interested in evaluating our
embeddings in a number of machine-learning tasks—
such as node classification and link prediction—that
are formulated in terms of FON nodes, for example,
the class label information is available on A (and not
AjB, AjC, D, AjE). Therefore, it is important to eventu-
ally obtain embeddings for FON nodes.

One approach to address the above challenge is to learn
embeddings on higher order nodes AjB, AjC, D, AjE
using existing network embedding methods and then
combine them to derive the embedding for node A.
We experimented with this approach using a different
method of combining HON embeddings (max, mean,
weighted mean) and realized that it does not scale to
large networks, as the number of higher order nodes
can be much higher than that of first-order nodes. We

HONEM: EMBEDDING FOR HIGHER ORDER NETWORKS 257

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

B
A

T
H

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 1
0/

17
/2

1.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



therefore refrain from constructing the HON directly,
and modify the ‘‘rule extraction’’ step in the HON algo-
rithm to generate the higher order dependencies and the
higher order neighborhood matrix.

Extracting high-order dependencies
The first step of the HONEM framework is to extract
higher order dependencies from the raw sequential
data. To accomplish this task, we modify the rule ex-
traction step in the HON construction algorithm.10

Please note that the HON algorithm simply results in
the network representation of the data but does not
generate any embeddings or feature vectors. HON is
simply a network representation of the raw data.
HONEM, on the contrary, learns embeddings from
the said HON to automate the process of feature vector
generation. We briefly explain the rule extraction in the
HON algorithm below:

Rule extraction (HON). In the FON, all the nodes are
assumed to be connected through pairwise interactions.

To discover the higher order dependencies in
the sequential data, given a pathway of order k:
S = [St� k, St� (k� 1), . . . , St], we follow the steps below:

1. Step 1: Count all the observed paths of length =
1, 2, . . . , k (where k is the MaxOrder) in the se-
quential data.

2. Step 2: Calculate probability distributions d for
next step in each path, given the current and pre-
vious steps.

3. Step 3: Extent the current path by checking whether
including a previous step St� (kþ 1) and extending S
to Snew = [St� (kþ 1), St� k, St� (k� 1), . . . , St] (of or-
der knew = kþ 1) will significantly change the nor-
malized count of movements (or the probability
distribution, dext). To detect a significant change,
the Kullback–Leibler divergence23 of S and Snew, de-
fined as dKL(dextjjd), is compared with a dynamic
threshold, d = knew

log2 (1þ SupportSnew )
. If dKL is larger

than d, order knew is assumed as the new order of
dependency, and S will be extended to Snew.

This procedure is repeated recursively until a prede-
fined parameter, MaxOrder, is reached. However, the
new parameter-free version of the algorithm (which
is used in the study) does not require setting a prede-
fined MaxOrder, and extracts the MaxOrder automat-
ically for each sequence. The parameter SupportSnew

refers to the number of times the path Snew appears

in the raw trajectories. The threshold d assures that
higher orders are only considered if they have sufficient
support, which is set with the parameter MinSupport.
Patterns less frequent than MinSupport are discarded.
For an example of this procedure, refer to Supplemen-
tary Data S1 in the Extracting Higher Order Dependen-
cies section.

The above method only accepts dependencies that
are significant and that have occurred a sufficient
enough number of times. This is required to ensure
that any random pattern in the data will not appear
as a spurious dependency rule. Furthermore, this
method admits dependencies of variable order for
different paths. Using this approach, we extract all
possible higher order dependencies from the sequen-
tial data. These dependencies are then used to con-
struct the HON. For example, the edge ij� ! jjq� in
the HON corresponds to the rule i! q! j—in
other words, i and j are connected through a second-
order path.

Modified rule extraction for HONEM. In the HONEM
framework, we modify the standard HON rule extrac-
tion approach by preserving all lower orders when in-
cluding any higher order dependency. This is
motivated by a limitation of the previously proposed
HON algorithm.10 In the original HON rule extraction
algorithm, after extracting all dependencies, the HON
is constructed with the assumption that if higher orders
are discovered, all the lower orders (except the first-
order) are ignored. However, discovering a higher
order path between two nodes does not imply that the
nodes cannot be connected through shorter pathways.
For example, if q and j are connected through the
third-order path q! i! k! j, and a second-order
path q! i! j, they have a second-order dependency
as well as a third-order dependency.

Note that in HONEM, we extract the higher order
dependencies from the sequential data and not from
the FON topology, as is done by other methods in
the literature.5,6,8,24 Therefore, our notion of ‘‘higher
order dependencies’’ refers to such dependencies that
are extracted from sequential data over time. Although
these methods are able to improve performance by pre-
serving higher order distances between nodes given the
topology of the FON, they are unable to capture depen-
dencies over time. This is important because not all the
connections through higher order pathways will occur
if they do not exist in the raw sequential data in the first
place.

258 SAEBI ET AL.

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

B
A

T
H

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 1
0/

17
/2

1.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



Higher order neighborhood matrix
In the second step of our framework, we design a
mechanism for encoding these higher order dependen-
cies into a neighborhood matrix. In this context, we
refer to higher order dependencies as higher order dis-
tances. We define a vth-order neighborhood matrix as
Dv, in which the Dv(i, j) element represents the vth-
order distance between nodes i and j. Intuitively, D1

is the first-order adjacency matrix. We derive the
neighborhood matrices of various orders until the max-
imum existing order in the network, k, is reached. The
maximum order k is determined by finding the nodes
of highest order in the network. For each node pair,
the Dv(i, j) distance is obtained by the edge weights of
HON (or the corresponding higher order dependen-
cies). For example, in Figure 1 D2(C, E) = e1 and
D2(B, D) = e2.

It is possible, however, that two given nodes are con-
nected through multiple higher order distances (i.e.,
multiple paths). In this case, the average probabilities
of all paths (or the average edge weights in HON) are
considered as the higher order distance. For example,
suppose node j can be reached from node i via either
path 1: i! q! j (with probability p1) or path 2:
i! p! j (with probability p2). The higher order dis-
tance D2(i, j) between node i and node j is equal to the
average edge weight of qji ���!p1

jj � � and pji ���!p2
jj�,

corresponding to path 1 and path 2, respectively.
Both of these connections have a second-order depen-
dency. Note that node i (or j) may have different de-
pendency orders, but only second-order ones are
included in D2. Once distances Dv for all desired orders
are obtained, we derive the higher order neighborhood
matrix S as follows:

S =
1
N

+
L

k = 0
e� kDkþ 1 (1)

For k = 1, S equals the conventional first-order adja-
cency matrix. The exponentially decaying weights are
chosen to prefer lower order distances over higher or-
ders ones, since higher order paths are generally less
frequent in the sequential data.10 We experimented
with increasing and constant weights, and found
decaying weights to work best with our method. We
leave out the exploration of other potential weighting
mechanisms to future work.

It is worth mentioning that the higher order neighbor-
hood matrix provides a richer and more accurate repre-
sentation of node interactions in FON and thus can be
viewed as a means of connecting HON and FON repre-

sentation. In many network analysis and machine-
learning applications—such as node classification and
link prediction—working with the HON representation
is inconvenient, and requires some form of transforma-
tion. HONEM provides a more convenient and general-
izable interpretation of HON, while preserving the
benefits of the more accurate HON representation.

Higher order embeddings
In the third step, the higher order embeddings are
obtained by preserving the higher order neighborhood
in vector space. A popular method to accomplish this is
to obtain embedding vector U using matrix factorization,
in which the objective is to minimize the loss function:

min k S�U� � V�TkF (2)

The widely adopted method for solving the above
equation is SVD. Formally, we can factorize a given
matrix S as below:

S = U�dV�T (3)

where U�, V� 2 RN · N are the orthogonal matrices
containing content and context embedding vectors. d
is a diagonal matrix containing the singular values in
decreasing order.

However, this solution is not scalable to sparse large
networks. Therefore, we use truncated SVD25 to ap-
proximate the matrix S by Sd (S � Sd) as below:

Sd = U�dddV�Td (4)

where U�d, V�d 2 RN · d contain the first d columns of
U and V, respectively. dd contains the top-d singular
values. The embedding vectors can then be obtained
by means of the following equations: U� = U�d

ffiffiffiffiffi

dd
p

,
V� =

ffiffiffiffiffi

dd
p

V�Td . Without loss of generality, we use U�

as the embedding matrix.

Experiments
We used three different real-world data sets represent-
ing transportation and information networks, and as-
sess the performance on the following tasks: (1)
network reconstruction; (2) link prediction; (3) node
classification; and (4) visualization. We compared
HONEM to a number of baselines representing the
popular deep learning and matrix factorization-based
methods. We provide details on the data and bench-
marks first, before presenting the performance results
on the aforementioned tasks. We also provide a com-
plexity analysis of HONEM in the next section.

HONEM: EMBEDDING FOR HIGHER ORDER NETWORKS 259

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

B
A

T
H

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 1
0/

17
/2

1.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



Data sets
The HONEM framework can be applied to any sequen-
tial data set or HON describing interacting entities to
extract latent higher order dependencies among
them. To validate our method, we use four different
data sets for which raw sequential data are available
and there is a higher or variable order of dependency
among the nodes. Table 1 summarizes the basic FON
and HON properties for each of the data sets. To em-
phasize the versatility of HONEM, these data sets are
drawn from three different domains: vehicular traffic
flows from two Italian cities (Rome and Bari), Web
browsing patterns on Wikipedia, and global freight
shipping. Specifically, the four data sets are as follows:

� Traffic data of Rome: This is a car-sharing data
provided by Telecom Italia big data challenge
2015,* which contains the trajectories of 616, 356
unique vehicles over 30 days. We divided the
city into a grid containing 477 first-order nodes
with 5614 edges. Each taxi location is mapped
to a node in the grid, and the edges are derived
from the number of taxis traveling between the
nodes. This data set contains higher order de-
pendencies of 10th order or less. With the inclu-
sion of higher order patterns, the number of
nodes and edges increases by 39.67% and
20.29%, respectively. This data set also contains
locations of accident claims, which are used for
node labeling.
� Traffic data of Bari: This is another car-sharing

data (provided by Telecom Italia big data chal-
lenge 2015) containing trajectories of 962, 100
taxis over 30 days. We divided the city into a
grid containing 522 first-order nodes with 5916
edges (obtained using the same approach as the

Rome traffic data). This data set contains higher
order dependencies of 12th order or less. With
the inclusion of higher order patterns, the number
of nodes and edges increases by 25.61% and
13.97%, respectively. This data set also contains
locations of accident claims, which are used for
node labeling.
� Global shipping data: Provided by Lloyd’s Mari-

time Intelligence Unit; this contains a total of
9, 482, 285 voyages over a span of 15 years
(1997–2012). Applying the rule extraction step
to this network yields higher order dependencies
of up to the 14th order. The number of nodes
and edges increase by 18.54% and 4.95%, respec-
tively, after including the higher order patterns
in HON.
� Wikipedia game: Available from West and Lesko-

vec26; this contains human navigation paths on
Wikipedia. In this game, users start at a Wikipedia
entry and are asked to reach a target entry by fol-
lowing only hyperlinks to other Wikipedia entries.
The data include a total of 4043 articles with
51, 318 incomplete and 24, 875 complete paths.
We discarded incomplete paths of length 3 or
shorter. This data set contains higher order de-
pendencies of 10th order or less. The inclusion
of higher order patterns results in an increase in
the number of nodes and edges by 15.79% and
5.62%, respectively.

We define the ratio c = #HONedges
#FONedges

as a measure of the
density of higher order dependencies, resulting in a
larger gap between FON and HON. The two traffic
data sets show the highest gap between FON and
HON in terms of the number of nodes and edges. Spe-
cifically, the gap is the highest in the traffic data of
Rome.

Baselines
We compare our method with the following state-of-
the-art embedding algorithms, which only work on
FON representation of the raw data.

� DeepWalk24: This algorithm uses uniform ran-
dom walks to generate the node similarity and
learns embeddings by preserving the higher
order proximity of nodes. It is equivalent to
Node2Vec with p = 1 and q = 1.
� Node2Vec5: This method is a generalized version

of DeepWalk, allowing biased random walks. We

Table 1. Basic properties of each data set

Rome Bari Shipping Wiki

FON nodes 477 522 3058 4043
FON edges 5614 5916 52,366 38,580
FON avg. in-degree 11.76 11.33 17.12 9.54
HON nodes 19,403 13,893 59,779 67,907
HON edges 119,566 88,594 311,691 255,672
HON avg in-degree 6.16 6.37 5.214 3.76
c 21.29 14.97 5.95 6.62

The gap between the number of first-order and higher order nodes
and edges in each data set indicates the density of higher order depen-
dencies in each data.

FON, first-order network; HON, higher order network.

*https://bit.ly/2UGcEoN

260 SAEBI ET AL.

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

B
A

T
H

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 1
0/

17
/2

1.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



used 0.5, 1, and 2 for p and q values and report the
best performing results.
� LINE6: This algorithm derives the embeddings by

preserving the first- and second-order proximities
(and a combination of the two). We ran the exper-
iments for both the second-order and combined
proximity, but did not notice a major improve-
ment with the combined version. Thus, we report
results only for the embeddings derived from
second-order proximity.
� Graph factorization (GF)27: This method gener-

ates the embeddings by factorizing the adjacency
matrix of the network. HONEM will reduce to
GF if it only uses the first-order adjacency matrix.
� LAP28: This method generates the embeddings

by performing eigen-decomposition of the Lap-
lacian matrix of the network. In this framework,
if two nodes are connected with a large weight,
their embeddings are expected to be close to
each other.
� GraRep22: This is a powerful higher order embed-

ding method that preserves the k-order proximity
of the nodes. It uses SVD to factorize the higher
order neighborhood of the nodes obtained by
the random walk transition probabilities. We use
k = 5 as this value yields the highest performance
for this baseline.

Among the above baselines, Node2Vec, Deep-
Walk, LINE, and GraRep learn embeddings using
higher order proximities. GraRep in particular goes
beyond second-order proximity and is the closest
method to ours, but it extracts the higher order prox-
imity from the FON structure and only accepts a
fixed order of dependency. We also used locally lin-
ear embedding (LLE) as a baseline in our early exper-
iments. However, LLE failed to converge on several
dimensions in link prediction and network recon-
struction experiments. Therefore, we did not include
it in the final results.

Network reconstruction
Network embedding can be interpreted as a compres-
sion of the graph.2,8 An accurate compression should
be able to reconstruct the original graph from the em-
beddings. To accomplish this, we use the embeddings
to predict the original links of the network. This task
is closely related to the link prediction task, where
the goal is to predict the future links using the existing
links of the graph. However, in the reconstruction task,

we use the existing links as ground truth. Please note
that this is different from the link prediction task,
which is trying to predict the probability of link forma-
tion in the future.

Network reconstruction is an important evaluation
task for representation learning algorithms, as it provi-
des an insight into the quality of the embeddings gen-
erated by the method. We measure the reconstruction
precision for the top k evaluated edge pairs using
Precision@k = 1

k +k
i = 1 di, where di = 1 when the ith

reconstructed edge is correctly recovered, and di = 0
otherwise.

Figure 2b shows the network reconstruction results
with varying k. We notice that although the perfor-
mance of other baselines is data dependent, HONEM
performs significantly better on all data sets. Results
on both the traffic data sets display similar trends,
and methods such as LINE, which perform relatively
well on these data sets but fail on the larger data sets
(shipping and Wikipedia). HONEM not only performs
better than GF, which preserves the first-order proxim-
ity, but also outperforms Node2Vec, DeepWalk, LINE,
and GraRep, which preserve the higher order proxim-
ity based on FON. GraRep is the second-best perform-
ing baseline in all data sets except the shipping data, but
still does poorly compared with HONEM. With the in-
crease in k, all of the actual edges are recovered but the
number of possible pairs of edges becomes too large, and
thus, almost all methods converge to a small value. How-
ever, there is still a large gap between HONEM and other
baselines even at the largest k on all data sets.

Link prediction
We posit that embeddings derived from HON perform
better for link prediction as those embeddings are more
accurately capturing the higher and variable order de-
pendencies in a complex system, which are missed by
the FON representation that contemporary embedding
methods work on. Methods based on FON do not cap-
ture the non-Markovian higher order interactions of
the nodes, which creates a potential for link formation.
For example, suppose there is a directed edge in HON
from Bj� to Aj�, denoted by Bj� ! Aj� (corresponding
to the path B! A) and another directed edge from a
second-order node CjD to B, denoted by CjD! Bj�
(corresponding to the path D! C ! B). In this struc-
ture, node A can be reached within three steps from
node D. In FON, however, we only have D! C,
C ! B, and B! A. Therefore, FON might miss the
potential interesting edge between D and A, or D and

HONEM: EMBEDDING FOR HIGHER ORDER NETWORKS 261

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

B
A

T
H

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 1
0/

17
/2

1.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



B. To validate our argument, we remove 20% of the
edges from the current network, and derive node em-
beddings on the remaining network using HONEM.
We then predict the missing edges by calculating the
pairwise distance between embedding vectors and se-
lect the top highest values as potential edges.

We use mean average precision (MAP) as the link
prediction evaluation metric. MAP is the average
precision over all the nodes, and is defined as:

MAP = +iAP(i)
NF

, Where AP(i) = +kPrecision@k(i) · dik

+k dik
in which

Precision@k(i) = 1
k +k

j = 1 dij. k is the number of evaluated

edges,dij = 1 when the jth reconstructed edge for node i ex-
ists in the original network, and dij = 0 otherwise. We eval-
uated link prediction using the Precision@k measure on
dim = 128 as well (refer to the Supplementary Data S1
for details). However, since we are interested to analyze
the effect of dimension, we provide MAP as a precision
measure for all nodes. The results are displayed in
Figure 2a. We notice that the MAP score is generally
lower in larger data sets, namely Shipping and Wiki
(due to sparsity). In the traffic data sets (Bari and
Rome), the HONEM shows a monotonically increasing
performance with increasing the embedding dimension,
while the performance of other methods either saturates
after a certain dimension or deteriorates.

Effect of dimensionality. Overall, HONEM provides
superior performance in dimensions of 64 or larger.
We notice that while Node2Vec provides a better
MAP score on the traffic data sets in lower dimensions
(smaller than 64 in Bari and smaller than 32 in Rome),
it fails to improve over higher dimensions. We further
investigated our results by visualizing the node preci-
sion, AP(i), over various dimensions on the Rome
city map. The results are shown in Figure 3. We realize
that nodes with the highest precision (darker color) are
located in the high-traffic city zones (green lines show
the major highways of the city). Based on our analysis,
nodes located in the high-traffic zones are 80.56% more
likely to have a dependency of second order or more.
As a result, we observe that in lower dimensions,
HONEM consistently exhibits high precision for these
higher order nodes. As the dimension increase, the pre-
cision of the lower order nodes also increases. On the
contrary, node precision obtained by Node2Vec is
not related to the node location. In dim = 32 and
dim = 64, HONEM provides an overall better coverage
and better precision than Node2Vec. A comparison of
the top-k (k = 1024) prediction between Node2Vec and
HONEM is provided in Table 2. Even though Node2-
Vec provides better MAP scores in lower dimensions,
HONEM provides better precision for the top-k

FIG. 2. (a) Reconstruction results. The x-axis represents the number of evaluated edge pairs. HONEM performs
better than other baselines with a large margin. (b) Link prediction results. The x-axis indicates the embedding
dimension. HONEM provides the best performance on all data sets in dimension 64 or more. In the traffic data set,
even though Node2Vec provides better MAP scores. HONEM provides the best precision for the top-k predictions
(refer to Table 2). GF, graph factorization; HONEM, higher order network embedding.

262 SAEBI ET AL.

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

B
A

T
H

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 1
0/

17
/2

1.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



predictions. Looking back at data characteristics, we
notice that this phenomenon only happens for the traf-
fic data set, where c is significantly larger than the other
two data sets. Therefore, in data sets with significant
higher order dependencies resulting in a large gap be-
tween HON and FON, our method provides the best
precision for the potentially most important nodes
(i.e., those of higher order).

Node classification
We hypothesize that higher order dependencies can re-
veal important node structural roles. In this section, we
validate this hypothesis using experiments on real-
world data sets. Our goal is to find out whether

HONEM can improve the node classification accu-
racy by encoding the knowledge of higher order
dependencies.

We answer the above question by comparing state-
of-the-art node embedding methods based on FON
and our proposed embedding method, HONEM, cap-
turing higher order dependencies. We evaluate our
method on four different data sets and compare the
performance with state-of-the-art embedding methods
based on FON. In the traffic data, nodes are labeled
given the likelihood of having accidents (i.e., ‘‘Low’’
or ‘‘High’’). In Wikipedia, the nodes are labeled based
on whether or not they are reachable within less than
5 clicks in the network. In the shipping data, nodes
are labeled given the volume of the shipping traffic
(i.e., ‘‘Low’’ or ‘‘High’’). We use 70% of the data for
training and 30% for testing. Our experiments show
that compared with five state-of-the-art embedding
methods, HONEM yields significantly more accurate
results across all data sets regardless of the type of clas-
sifier used.

We evaluated the node classification performance using
area under receiver operating characteristic curve across
four different classifiers: Logistic Regression, Random

FIG. 3. Variation of node precision with embedding dimension for Rome. The highlighted green lines
indicate the major traffic routes of the city. The node color intensity indicates the link prediction precision for
node i [AP(i)]. In lower dimension, higher order nodes have the best precision using HONEM. The precision of
other nodes increases in higher dimensions, eventually outperforming Node2Vec in Dim = 32 and Dim = 64.
Node2Vec does not differentiate between higher order and first-order nodes in lower dimensions.

Table 2. Comparison of Precision@k (k = 1024) for link
prediction using Node2Vec and higher order network
embedding over various dimensions

4 8 16 32 64 128 256

Node2Vec 0.079 0.152 0.165 0.184 0.195 0.1536 0.141
HONEM 0.316 0.364 0.409 0.528 0.529 0.543 0.591

Even though Node2Vec provides better MAP score in lower dimen-
sions, it fails to accurately predict the top-k links.

HONEM, higher order network embedding; MAP, mean average precision.

HONEM: EMBEDDING FOR HIGHER ORDER NETWORKS 263

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

B
A

T
H

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 1
0/

17
/2

1.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



Forest, Decision Tree, and AdaBoost. The results are
shown in Figure 4. We observe that HONEM performs
consistently better than other embedding methods. Specif-
ically, we analyzed the HONEM advantage in each data
set. We noticed that in the traffic data sets, nodes
with more higher order dependencies are more likely
to have an accident (Pearson correlation: 0.7535,
p < 0.005). In the Wikipedia data, reachable nodes are
more likely to have higher order dependencies (Pearson
correlation: 0.6845, p < 0.001). In the shipping data,
nodes with higher shipping traffic contain more higher
order dependencies (Pearson correlation: 0.8612,
p < 0.005). Such higher order signals do not emerge in
methods based on FON (regardless of the method com-
plexity). Furthermore, we notice that HONEM is fairly
robust to the type of classifier. However, Decision
Tree performs poorly regardless of the embedding
method, as it picks a subset of features that do not
fully capture the node representation in the network.
In line with expectations, ensemble methods perform

better overall, even though Logistic Regression offers
competitive performance on the Wikipedia data set.

Visualization
To provide a more intuitive interpretation for the im-
provement offered by HONEM, we compare visualiza-
tions of the produced embeddings against those of the
baseline methods. As a case example, we visualize the
subgraphs corresponding to two different topics from
the Wikipedia data set. This is shown in Figure 5.
Topics were selected from standard Wikipedia catego-
ries. Here, we show results for mathematics and geog-
raphy, as they arguably represent two topics that are
comparable in terms of generality but are also distinct
enough to allow for meaningful interpretation. We use
t-SNE29 to map 128-dimensional embeddings to the 2-
dimensional coordinates. Figure 5 shows two separate
clusters for the embeddings derived from HONEM.
However, it is possible to notice that a number of math-
ematics entries are interspersed with geography entries.

FIG. 4. Node classification results. HONEM performs better across all data sets and is fairly robust to the type
of the classifier.

264 SAEBI ET AL.

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

B
A

T
H

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 1
0/

17
/2

1.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



FI
G

.
5.

Vi
su

al
iz

at
io

n
of

m
at

he
m

at
ic

s
an

d
ge

og
ra

ph
y

to
pi

cs
in

th
e

W
ik

ip
ed

ia
da

ta
se

t.

265

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

B
A

T
H

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 1
0/

17
/2

1.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



These are the nodes of encyclopedic entries such as
Sphere, Quantity, Arithmetic, Measurement, which, al-
though primarily categorized under mathematics,
are also related to many other topics—including
geography.

Figure 5 shows also the visualization results for the
baselines. We observe that for many methods, the clus-
ters are not as neatly distinguishable as those produced
by HONEM. Specifically, DeepWalk, Node2Vec, and
GraRep display separate clusters, but there are many
misclassified nodes within each cluster. With GF and
LINE, it is even more difficult to identify proper clus-
tering among the articles. This indicates that higher
order patterns are important to distinguish clusters
and capture node concepts within the network.

Analysis of Running Time
The running time of HONEM consists of the time re-
quired for extracting the higher order dependencies
and the time required for factorizing the higher order
local neighborhood matrix. In practice, this is domi-
nated by the time complexity of extracting higher
order dependencies. To analyze this complexity, suppose
the size of raw sequential data is L, and N is the number
of unique entities in the raw data. Then, the time com-
plexity of the algorithm is Y(N(2R1þ 3R2þ . . . )),
where Rk is the actual number of higher order depen-
dencies for order k: all observations will be traversed
at least once. Testing whether adding a previous step sig-
nificantly changes the probability distribution of the
next step (using Kullback–Leibler divergence) takes up
to Y(N) time.19

We compare the running time of HONEM with the
state-of-the-art baselines on the shipping data. We
tested the running time on other data sets and found
the shipping data to be the most challenging, both in
terms of the number of nodes and edges, and network
density. All the experiments were run on the same ma-
chine (Intel(R) Xeon(R) CPU E7-4850 v4 @ 2.10GHz).
The results are shown in Figure 6. The running time of
HONEM is robust to the embedding dimension. We
notice that GF is the only method having better run-
ning time than HONEM. This is understandable since
GF directly factorizes the first-order adjacency matrix
of the network, while HONEM requires extra time for
extracting the higher order neighborhood. However,
the difference in running time of HONEM and GF
translates to significantly better performance in link
prediction, network reconstruction, and node classifi-
cation. Moreover, higher order dependencies only

need to be extracted once for each data set (regardless
of the embedding dimension). However, for fair com-
parison, we added this time for experiments over all
dimensions.

Related Work
Higher order networks
Networks have become a common way of representing
rich interactions among the components of a complex
system. As a result, it is critical for the network model
to accurately capture the inherent phenomena in the
underlying system. This has motivated a new line of re-
search on HON models that are capable of capturing
complex interactions beyond the pairwise node rela-
tions. Motif-based higher order models,12,30,31 multi-
layer higher order models,32,33 and non-Markovian
higher order models10,11,17 are examples of efforts for
more accurate network models. In particular, non-
Markovian models have been shown to be more accu-
rate in community detection,11–15 node ranking,16

dynamic processes,17 risk assessment,18 and anomaly
detection19 system.10–12,17,20,21 In this work, we use
the non-Markovian network model proposed by Xu
et al.10 due to its accuracy and efficiency in modeling
higher order dependencies.

Network representation learning
Recent advances in graph mining have motivated the
need to automate feature engineering from networks.

FIG. 6. Comparison of the running time on the
global shipping data. HONEM provides the best
running time after GF. Both methods are robust to
embedding dimension.

266 SAEBI ET AL.

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

B
A

T
H

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 1
0/

17
/2

1.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



This problem finds its roots in traditional dimensional-
ity reduction techniques.34–36 For example, LLE34 rep-
resents each node as a linear combination of its
immediate neighbors, and LE28 uses the spectral prop-
erties of the Laplacian matrix of the network to derive
node embeddings.

More recently, methods based on random walks,
matrix factorization, and deep learning have been pro-
posed as well, although applicable to FONs. Deep-
Walk24 learned node embeddings by combining
random walks with the skip-gram model.37 Node2Vec5

extended this approach further, proposing to use biased
random walks to capture any homophily and structural
equivalence present in the network. A random walk-
based method for knowledge graph embedding is
proposed in Yu et al.38 Role2Vec39 further leverages at-
tributed random walks to capture the behavioral roles
of the nodes. In contrast, factorization methods derive
embeddings by factorizing a matrix that represents
the connections between nodes. GF27 explicitly factor-
izes the adjacency matrix of the FON. LINE6 attempts
to preserve both first-order and second-order proxim-
ities by defining explicit functions. GraRep22 and
HOPE8 go beyond second order, and factorize a simi-
larity matrix containing higher order proximities.
Walklets40 approximates the higher order proximity
matrix by skipping over some nodes in the network.
Qiu et al.41 show that LINE, Node2Vec, DeepWalk,
and predictive text embedding42 are implicitly factoriz-
ing a higher order proximity matrix of the network.
Rossi et al.4 propose another taxonomy by categorizing
the existing embedding methods into role-
based9,39,43,44 and community-based methods.5,6,22,24,45

A new crop of methods have been proposed recently
that allow for dependencies of arbitrary order.7,22 How-
ever, this order needs to be set by the user beforehand.
Therefore, these methods are unable to extract the
order of the system from raw sequential data and fail
to identify the higher order dependencies of the net-
work without trial and error. HONE9 uses motifs as
higher order structures, however, these motifs do not
capture higher order dependencies stemming from
non-Markovian interactions in the raw data. In addi-
tion, several deep learning-based methods have also
been proposed. SDNE46 uses autoencoders to preserve
first-order and second-order proximities. DNGR47

combines autoencoders with random surfing to capture
higher order proximities beyond second order. How-
ever, both methods present high computational com-
plexity. Models based on convolutional neural

networks were proposed to address the complexity
issue.45,48–50

Finally, dynamic approaches have been recently pro-
posed to capture the evolution of the network with em-
beddings.51–57 These methods still feature a
computationally demanding task of dynamic network
modeling. Furthermore, these methods are developed
based on the FON structure and require specification
of a time window, making them data dependent.

To the best of our knowledge, there is a gap in the
literature when it comes to representation learning ap-
proaches that capture the higher order dependencies
based on the raw data. HONEM fills an important
and critical gap in the literature by addressing the chal-
lenges of learning embeddings from the higher order
dependencies in a network, thereby providing a more
accurate and effective embedding.

Note that although the raw trajectory data are collected
over a period of time, we view this as a single snapshot to
build both FON and HON. All the corresponding higher
order dependencies in this snapshot are encoded as rules
into the HON structure, which HONEM uses as higher
order neighborhood information. Other static methods
based on FON use the same sequential data but only
consider pairwise relations to build the FON. Therefore,
HONEM is not a dynamic network representation learn-
ing approach. We leave the exploration of the dynamic
scenario for future work.

Conclusion
In this study, we developed HONEM, a representation
learning algorithm that captures the higher and vari-
able order dependencies in the HONs. HONEM
works directly on HON and is able to discover embed-
dings that preserve the higher order dependencies
based on non-Markovian interactions of the nodes.
We show that the contemporary representation learn-
ing algorithms fail to capture higher order dependen-
cies, resulting in missing important information and
thus inaccuracies when dealing with HON. HONEM,
on the contrary, extracts the significant higher order
proximities from the data to construct the higher
order neighborhood matrix of the network. The node
embeddings are obtained by applying truncated SVD
on the higher order neighborhood matrix. We demon-
strate that compared with five state-of-the-art methods,
HONEM performs better in node classification, link
prediction, network reconstruction, and visualization
tasks. We show that HONEM is computationally effi-
cient and scalable to large data sets.

HONEM: EMBEDDING FOR HIGHER ORDER NETWORKS 267

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

B
A

T
H

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 1
0/

17
/2

1.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



There are several directions for future improve-
ments. In particular, different weighting mechanisms
for modeling the effect of distance matrix for various
orders can be explored. The HONEM framework cre-
ates a new path for the exploration of HONs. In the
context of network embedding, various decomposition
methods—other than truncated SVD—can be applied
to learn the node embeddings from the proposed
higher order neighborhood matrix. We also plan to im-
plement the dynamic version of HONEM that can up-
date the embeddings based on snapshots of HON over
time.

Author Disclosure Statement
No competing financial interests exist.

Funding Information
This study is based on research supported by the Army
Research Laboratory under Cooperative Agreement
Number W911NF-09-2-0053 (PI: N.V.C.). G.L.C. ac-
knowledges support from the Indiana University Net-
work Science Institute.

Supplementary Material
Supplementary Data S1
Supplementary Table S1
Supplementary Figure S1
Supplementary Figure S2

References
1. Lichtenwalter RN, Lussier JT, Chawla NV. New perspectives and methods

in link prediction. In: Proceedings of the 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2010. pp. 243–
252.

2. Goyal P, Ferrara E. Graph embedding techniques, applications, and per-
formance: A survey. Knowl Based Syst 2018;151:78–94.

3. Cui P, Wang W, Pei J, Zhu W. A survey on network embedding. IEEE Trans
Knowl Data Eng 2018;31:833–852.

4. Rossi RA, Jin D, Kim S, et al. From community to role-based graph em-
beddings. arXiv preprint arXiv:1908.08572, 2019.

5. Grover A, Leskovec J. node2vec: Scalable feature learning for networks. In:
Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 2016. pp. 855–864.

6. Tang J, Qu M, Wang M, et al. Line: Large-scale information network em-
bedding. In: Proceedings of the 24th International Conference on World
Wide Web. International World Wide Web Conferences Steering Com-
mittee, 2015. pp. 1067–1077.

7. Zhang Z, Cui P, Wang X, et al. Arbitrary-order proximity preserved net-
work embedding. In: Proceedings of the 24th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining. ACM,
2018. pp. 2778–2786.

8. Ou M, Cui P, Pei J, et al. Asymmetric transitivity preserving graph em-
bedding. In: Proceedings of the 22nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining. ACM, 2016.
pp. 1105–1114.

9. Rossi RA, Ahmed NK, Koh E. Higher-order network representation learn-
ing. In: Companion of the Web Conference 2018 on the Web Confer-
ence 2018. International World Wide Web Conferences Steering
Committee, 2018. pp. 3–4.

10. Xu J, Wickramarathne TL, Chawla NV. Representing higher-order depen-
dencies in networks. Sci Adv 2016;2:e1600028.

11. Rosvall M, Esquivel AV, Lancichinetti A, et al. Memory in network flows
and its effects on spreading dynamics and community detection. Nat
Commun 2014;5:1–13.

12. Benson AR, Gleich DF, Leskovec J. Higher-order organization of complex
networks. Science 2016;353:163–166.

13. Benson AR, Gleich DF, Leskovec J. Tensor spectral clustering for parti-
tioning higher-order network structures. In: Proceedings of the 2015
SIAM International Conference on Data Mining. SIAM, 2015. pp. 118–
126.

14. Zhou D, Zhang S, Yildirim MY, et al. A local algorithm for structure-
preserving graph cut. In: Proceedings of the 23rd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, 2017.
pp. 655–664.

15. Zhou D, He J, Davulcu H, Maciejewski R. Motif-preserving dynamic local
graph cut. In: 2018 IEEE International Conference on Big Data (Big Data).
IEEE, 2018. pp. 1156–1161.

16. Scholtes I, Wider N, Garas A. Higher-order aggregate networks in the
analysis of temporal networks: Path structures and centralities. Eur Phys
J B 2016;89:61.

17. Scholtes I, Wider N, Pfitzner R, et al. Causality-driven slow-down and
speed-up of diffusion in non-markovian temporal networks. Nat Com-
mun 2014;5:5024.

18. Saebi M, Xu J, Grey EK, et al. Higher-order patterns of aquatic species
spread through the global shipping network. BioRxiv, p. 704684, 2019.

19. Xu J, Saebi M, Ribeiro B, et al. Detecting anomalies in sequential data with
higher-order networks. arXiv preprint arXiv:1712.09658, 2017.

20. Scholtes I. When is a network a network? Multi-order graphical model
selection in pathways and temporal networks. In: Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. ACM, 2017. pp. 1037–1046.

21. Lambiotte R, Rosvall M, Scholtes I. Understanding complex systems: From
networks to optimal higher-order models. arXiv preprint arXiv:
1806.05977, 2018.

22. Cao S, Lu W, Xu Q. Grarep: Learning graph representations with global
structural information. In: Proceedings of the 24th ACM International on
Conference on Information and Knowledge Management. ACM, 2015.
pp. 891–900.

23. Kullback S, Leibler RA. On information and sufficiency. Ann Math Stat
1951;22:79–86.

24. Perozzi B, Al-Rfou R, Skiena S. Deepwalk: Online learning of social repre-
sentations. In: Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 2014.
pp. 701–710.

25. Eckart C, Young G. The approximation of one matrix by another of lower
rank. Psychometrika 1936;1:211–218.

26. West R, Leskovec J. Human wayfinding in information networks. In: Pro-
ceedings of the 21st International Conference on World Wide Web.
ACM, 2012. pp. 619–628.

27. Ahmed A, Shervashidze N, Narayanamurthy S. et al. Distributed large-
scale natural graph factorization. In: Proceedings of the 22nd Interna-
tional Conference on World Wide Web. ACM, 2013. pp. 37–48.

28. Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and
data representation. Neural Comput 2003;15:1373–1396.

29. Maaten Lvd, Hinton G. Visualizing data using t-SNE. J Mach Learn Res
2008;9:2579–2605.

30. Arenas A, Fernandez A, Fortunato S, Gomez S. Motif-based communities
in complex networks. J Phys A Math Theor 2008;41:224001.

31. Petri G, Scolamiero M, Donato I, Vaccarino F. Topological strata of
weighted complex networks. PLoS One 2013;8:e66506.

32. Kivelä M, Arenas A, Barthelemy M, et al. Multilayer networks. J Complex
Netw 2014;2:203–271.

33. De Domenico M, Granell C, Porter MA, Arenas A. The physics of spreading
processes in multilayer networks. Nat Phys 2016;12:901.

34. Roweis ST, Saul LK. Nonlinear dimensionality reduction by locally linear
embedding. Science 2000;290:2323–2326.

35. Wold S, Esbensen K, Geladi P. Principal component analysis. Chemometr
Intell Lab Syst 1987;2:37–52.

36. Kruskal JB, Wish M. Multidimensional scaling. In: Sage University Paper
Series on Quantitative Applications in the Social Sciences, No. 07-011.
Newbury Park: Sage Publications, 1978.

268 SAEBI ET AL.

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

B
A

T
H

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 1
0/

17
/2

1.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



37. Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words
and phrases and their compositionality. In: Advances in Neural Infor-
mation Processing Systems. 2013. pp. 3111–3119.

38. Yu H, Kulkarni V, Wang W. Mohone: Modeling higher order network ef-
fects in knowledgegraphs via network infused embeddings. arXiv
preprint arXiv:1811.00198, 2018.

39. Ahmed NK, Rossi RA, Lee JB. et al. role2vec: Role-based network em-
beddings. In: Proceedings of the DLG KDD, 2019.

40. Perozzi B, Kulkarni V, Skiena S. Walklets: Multiscale graph embeddings for
interpretable network classification. arXiv preprint arXiv:1605.02115, 2016.

41. Qiu J, Dong Y, Ma H, et al. Network embedding as matrix factorization:
Unifying deepwalk, line, PTE, and node2vec. In: Proceedings of the
Eleventh ACM International Conference on Web Search and Data
Mining. ACM, 2018. pp. 459–467.

42. Tang J, Qu M, Mei Q. PTE: Predictive text embedding through large-scale
heterogeneous text networks. In: Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
ACM, 2015. pp. 1165–1174.

43. Sankar A, Zhang X, Chang KCC. Motif-based convolutional neural network
on graphs. arXiv preprint arXiv:1711.05697, 2017.

44. Ribeiro LF, Saverese PH, Figueiredo DR. struc2vec: Learning node repre-
sentations from structural identity. In: Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2017. pp. 385–394.

45. Hamilton W, Ying Z, Leskovec J. Inductive representation learning on
large graphs. In: Advances in Neural Information Processing Systems,
2017. pp. 1024–1034.

46. Wang D, Cui P, Zhu W. Structural deep network embedding. In: Pro-
ceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 2016. pp. 1225–1234.

47. Cao S, Lu W, Xu Q. Deep neural networks for learning graph represen-
tations. In: AAAI, 2016. pp. 1145–1152.

48. Kipf TN, Welling M. Semi-supervised classification with graph convolu-
tional networks. arXiv preprint arXiv:1609.02907, 2016.

49. Henaff M, Bruna J, LeCun Y. Deep convolutional networks on graph-
structured data. arXiv preprint arXiv:1506.05163, 2015.

50. Li Y, Tarlow D, Brockschmidt M, Zemel R. Gated graph sequence neural
networks. arXiv preprint arXiv:1511.05493, 2015.

51. Ma J, Cui P, Zhu W. Depthlgp: Learning embeddings of out-of-sample
nodes in dynamic networks. In: The Thirty-Second AAAI Conference on
Artificial Intelligence (AAAI-18), 2018.

52. Yin H, Benson AR, Leskovec J, Gleich DF. Local higher-order graph
clustering. In: Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 2017.
pp. 555–564.

53. Zuo Y, Liu G, Lin H, et al. Embedding temporal network via neighborhood
formation. In: Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 2018.
pp. 2857–2866.

54. Zhou L-K, Yang Y, Ren X, et al. Dynamic network embedding by modeling
triadic closure process. In: The Thirty-Second AAAI Conference on
Artificial Intelligence (AAAI-18), 2018.

55. Sankar A, Wu Y, Gou L, et al. Dysat: Deep neural representation learning
on dynamic graphs via self-attention networks. In: Proceedings of the
13th International Conference on Web Search and Data Mining, 2020.
pp. 519–527.

56. Kumar S, Zhang X, Leskovec J. Learning dynamic embeddings from
temporal interaction networks. Learning 2018;17:29.

57. Nguyen GH, Lee JB, Rossi RA, et al. Dynamic network embeddings:
From random walks to temporal random walks. In: 2018 IEEE Inter-
national Conference on Big Data (Big Data). IEEE, 2018. pp. 1085–
1092.

Cite this article as: Saebi M, Ciampaglia GL, Kaplan LM, Chawla NV
(2020) HONEM: learning embedding for higher order networks. Big
Data 8:4, 255–269, DOI: 10.1089/big.2019.0169.

Abbreviations Used
FON ¼ first-order network

GF ¼ graph factorization
HON ¼ higher order network

HONEM ¼ higher order network embedding
LLE ¼ locally linear embedding

SVD ¼ singular value decomposition

HONEM: EMBEDDING FOR HIGHER ORDER NETWORKS 269

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

B
A

T
H

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 1
0/

17
/2

1.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 


