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Abstract. In order to detect patterns in real networks, randomized graph
ensembles that preserve only part of the topology of an observed network
are systematically used as fundamental null models. However, the generation
of them is still problematic. Existing approaches are either computationally
demanding and beyond analytic control or analytically accessible but highly
approximate. Here, we propose a solution to this long-standing problem by
introducing a fast method that allows one to obtain expectation values and
standard deviations of any topological property analytically, for any binary,
weighted, directed or undirected network. Remarkably, the time required to
obtain the expectation value of any property analytically across the entire graph
ensemble is as short as that required to compute the same property using
the adjacency matrix of the single original network. Our method reveals that
the null behavior of various correlation properties is different from what was
believed previously, and is highly sensitive to the particular network considered.
Moreover, our approach shows that important structural properties (such as
the modularity used in community detection problems) are currently based on
incorrect expressions, and provides the exact quantities that should replace them.

3 Author to whom any correspondence should be addressed.

New Journal of Physics 13 (2011) 083001
1367-2630/11/083001+47$33.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:squartini@libero.it
http://www.njp.org/


2

Contents

1. Introduction 2
2. Available methods and their limitations 3
3. A fast and analytical method 5
4. Results 7

4.1. Binary undirected networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2. Directed networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3. Reciprocity and motifs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4. Weighted networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5. Discussion 20
6. Conclusions 21
Acknowledgments 22
Appendix A. The general maximum-likelihood method 22
Appendix B. Local constraints 30
Appendix C. Non-local constraints 39
Appendix D. Comparison with computational microcanonical algorithms 42
References 46

1. Introduction

Detecting relevant patterns in real networks, a fundamental problem for many research
fields [1–3], relies on the possibility of distinguishing the properties explained by the presence
of simple constraints from more complex and non-trivial structural features. For this reason,
statistical ensembles of graphs with specified constraints, and otherwise completely random,
have been introduced and systematically used as a reference to identify non-random patterns
in a real network [4–26]. Such ensembles serve also as powerful models to study dynamical
processes on networks displaying only a set of desired properties, and allow one to highlight
the dynamical effect of each property separately. The simplest and most important ensembles
specify only local constraints. For unweighted networks, this amounts to specifying the degree
ki (the number of incident edges) of each vertex (i = 1, . . . , N , where N is the total number
of vertices), and results in the so-called configuration model [4, 5, 7]. In the weighted case, the
corresponding constraint is obtained by fixing the strength si (the sum of incident edge weights)
of each vertex [15–17]. More generally, one could enforce different or additional properties
[6, 11, 13, 14, 16, 19–23].

Unfortunately, as we discuss in detail in what follows, it turns out that even in the simplest
case with local constraints, the correct generation of random ensembles corresponding to a
particular real-world network is problematic. Both analytical and computational approaches
proposed so far have severe limitations. Motivated by this, we propose here a new maximum-
entropy method that is entirely analytical and does not require the generation of randomized
variants of a real network. Our method provides the exact probabilities of occurrence of
random graphs with the same (average) constraints as the real network, from which the
expectation values and standard deviations (and in principle the higher moments) of any
topological quantity of interest can be calculated mathematically, either exactly or using proper
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Figure 1. An illustration of the LRA whose iteration allows one to
computationally explore the microcanonical CM.

approximations. Owing to its analytical character, our method is extremely faster than all the
available alternatives. Moreover, it can be applied to undirected, directed, binary and weighted
networks in a unified way. We will illustrate the power of our approach on several real-world
networks of different nature and type, by studying a range of topological properties of interest.

2. Available methods and their limitations

First we briefly review existing problems in the case of binary unweighted networks, which
is the most frequently explored situation. A binary unweighted graph with N vertices is
completely specified by an N × N adjacency matrix A with entries ai j = 1 if the vertices i and
j are connected, and ai j = 0 otherwise. Generally, one is interested in comparing the observed
topological properties of a particular real-world network A∗ against the average properties of
a randomized family of networks with the same degree sequence Ek(A∗)= {ki(A∗)}, where
ki(A∗)=

∑
j a∗i j is the degree (the number of connections) of vertex i in the network A∗.

The ensemble of binary undirected networks with a specified degree sequence is known as
the configuration model (CM) [4, 5, 7] and is currently treated in two very different ways:
computationally, by explicitly generating many random networks with the desired degree
sequence and averaging the quantities of interest across the randomized networks [4, 5],
or analytically, by using approximations that allow one to directly estimate the average of
topological properties as a function of the enforced degree sequence, without actually measuring
them on any network [7, 8]. Currently, both approaches suffer from severe limitations.

A ‘bottom-up’ computational approach consists in assigning to each vertex i a number
of ‘edge stubs’ equal to its observed degree ki(A∗), and randomly matching pairs of stubs
(avoiding self-loops and multiple links) until all the degrees reach their desired values (edge stub
reconnection). However, this procedure is known to get stuck in configurations where vertices
requiring additional connections have no more eligible partners [4, 5]. As a consequence, one
must implement a ‘top-down’ computational approach where the entire real network A∗ is taken
as the initial configuration, and a family of randomized variants is generated by iteratively
applying a local rewiring algorithm (LRA) where two edges (A, B) and (C, D) are randomly
selected and replaced by the two edges (A, D) and (C, B) if the latter are both not already
present [4, 5] (see figure 1 for an illustration).

This generates a microcanonical ensemble (see the appendix for a detailed discussion)
where all randomized networks have exactly the same degree sequence as the original network,
and are sampled with equal probability. This method has been applied to various networks,
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including the Internet [5], cellular networks [6] and food webs [12], in order to detect higher-
order patterns (such as clustering and motifs) not merely due to local constraints. However, this
approach is time-consuming since many (a number R much larger than the observed number
of links L [4, 24], even though not rigorously specified) iterations of the LRA are required to
obtain a single randomized network, and the entire process must be repeated several times to
produce a large number M (again unspecified) of randomized networks, on each of which any
topological property X of interest must be measured explicitly and averaged at the end to obtain
an estimate for 〈X〉. The computational time required to obtain 〈X〉 is therefore of the order
O(M · TR · R) + O(M · TX), where TR is the average time required to perform a single successful
rewiring step and TX is that required to compute X on a single network in the randomized set.
Moreover, even when the sufficient statistics of the problem is the degree sequence Ek(A∗) alone,
the above approach requires the entire original network A∗ (or any other network with the same
degree sequence, which however is difficult to obtain from scratch due to the problems discussed
above) as the starting configuration, thus making use of much more information than required
in principle.

By contrast, analytical approaches seek to provide theoretical expressions to directly
obtain the ensemble averages of topological properties, without generating the ensemble
computationally. Two main approaches exist. One makes use of generating functions for the
relevant probability distributions. In the case that we are discussing here, the key quantity is
the generating function g(z)=

∑
k zk P(k) of the degree distribution [7]. Unfortunately, this

method assumes that the network is infinite and locally tree-like (even though in some cases
this approximation turns out to perform unexpectedly well even beyond its formal range of
applicability [27]), and is thus inappropriate if the size of the network is small and if the input
degree distribution can only be realized by dense and/or clustered networks. In this approach,
clustered or dense networks can only be generated by imposing additional constraints apart from
the degree sequence, such as the number of triangles attached to vertices [28], thus leading to a
different ensemble which is not the one we are seeking to characterize.

A different approach looks for an analytical expression for the probability pi j that the
vertices i and j are connected in the randomized ensemble [8]. Owing to its probabilistic
nature, this approach generates a (grand) canonical ensemble where even graphs violating the
constraint are present and assigned different probabilities. In such a case, the constraints are
realized on average, i.e. the expectation value 〈X〉 of any specified property X is fixed exactly
(see the appendix). While this approach is indeed very fast in providing averages of the desired
properties, it has been shown [9] that it makes use of a highly approximate expression for pi j ,
valid only when the original network is sparse and/or the degree distribution is not too broad.
This expression is

pi j =
ki(A∗)k j(A∗)

2L∗
, (1)

where L∗ ≡ L(A∗)=
∑

i ki(A∗)/2=
∑

i< j a∗i j is the total number of links. While the expected
degree 〈ki〉 =

∑
j pi j generated by the above formula coincides with the desired degree ki(A∗),

the probability pi j may exceed 1 for pairs of highly connected nodes such that ki(A∗)k j(A∗) >

2L(A∗). In general, only if the degree sequence is such that

ki(A∗) <
√

2L(A∗)=
√∑

j

k j(A∗) ∀i (2)
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then using equation (1) on the real network A∗ will not lead to the above problem. While
the above condition is typically obeyed by networks with a narrow degree distribution such
as the Erdős–Rényi random graph, it is generally violated by scale-free networks displaying
a power-law degree distribution P(k)∼ k−γ , and this violation becomes stronger and stronger
as the density of the network increases. In particular, it is possible to show that in order to
ensure equation (2), the maximum degree kmax in the network should not exceed the so-called
structural cut-off kc ∼ N 1/2 [29]. This is particularly evident for dense networks where the
average degree k̄ =

∑
i ki/N = 2L/N remains constant as N increases, so that equation (2)

remains valid only if kmax <
√

2L ∼ N 1/2. By contrast, extreme value theory shows that in
networks with degree distribution P(k)∼ k−γ the maximum degree scales as kmax ∼ N 1/(γ−1),
so that if γ < 3 (as observed in most real-world scale-free networks), then kmax > N 1/2 which
exceeds kc. The meaning of pi j being larger than 1 for some pairs of vertices in equation (1) is
that, in order to actually realize the degree sequence of the real network A∗, one must let i and j
be connected by more than one undirected edge. Also, since the desired equality 〈ki〉 = ki(A∗) is
only ensured if one lets the sum in

∑
j pi j = 〈ki〉 run over all vertices including i itself, one must

allow the presence of self-loops in the randomized networks. Thus, even if this is not evident at
a first glance, the ensemble generated by equation (1) does not contain only binary and loop-less
undirected graphs and is thus not a proper null model for an empirical binary loop-less network
A∗ with degree sequence Ek(A∗) violating equation (2), as is typically the case for real-world
networks with broad degree distributions.

An elegant proof that the correct ensemble probability pi j for loop-less graphs with no
multiple connections differs from equation (1) has been proposed [9] and re-derived within the
framework of maximum-entropy graph ensembles [14]. We shall exploit this result to obtain
an exact method later on. We will also show that in real networks the deviation is stronger
than expected, and affects sparse networks as well. An independent proof of the inadequacy of
equation (1) is that it does not generate the graph A∗ with maximum likelihood [30]. This can
be confirmed by treating L as a free parameter and look for its value LML that maximizes the
probability to obtain A∗. One finds that LML

6= L(A∗), which implies that under the maximum
likelihood choice 〈ki〉 6= ki(A∗) and 〈L〉 6= L(A∗), violating the desired constraint on the degree
sequence and the implied one on the number of links [30]. This shows that the functional form
of pi j in equation (1) is intrinsically problematic and does not give the highest likelihood to A∗

and to all other graphs with the same degree sequence as A∗.
Therefore, while the available analytical methods are useful in characterizing artificially

generated networks with special properties, they cannot be used to correctly randomize any
real-world network that is small, clustered or dense. Unfortunately, the above limitations are
generally ignored, and equation (1) is frequently used beyond its limits of applicability to
estimate connection probabilities. Moreover, as we note later on, it is also used as a key
ingredient in order to define important structural properties that implicitly rely on a comparison
against the CM. Analogous problems exist in the analysis of directed and/or weighted networks.
We will consider each of these cases separately in what follows.

3. A fast and analytical method

The above discussion highlights that no method developed so far succeeds in obtaining
randomized properties of a particular real-world network such that two requests are met
simultaneously: (i) the method is general and works for any network, even if displaying small
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size, high link density and large clustering; (ii) expected values across the ensemble can be
computed analytically, without sampling the configuration space explicitly. The need to resort to
the LRA as the only statistically correct method available, which however requires the artificial
generation of many randomized networks, makes the general problem very complicated and all
its applications time-consuming.

In this paper, we propose a solution to this long-standing problem. We develop an approach
that combines exact expressions for the occurrence probabilities of graphs in maximum-entropy
ensembles with given constraints [9, 11, 14, 21–23] with more recent results on the application
of the maximum likelihood principle to graph ensembles [30]. In the appendix, we describe
our method in great detail. We start with a general discussion that is formally valid for any
constraint, and then consider explicitly the application to real networks where a set of local
constraints is enforced. We consider the cases of binary, weighted, directed and undirected
networks separately. We show that in all these cases the enforcement of local constraints
always leads to exact probabilities that can be easily obtained analytically. Then we also
consider an extension to non-local constraints that can still be dealt with analytically. Finally,
we compare our (grand) canonical method with the corresponding microcanonical ensemble
generated computationally as in the LRA.

As we show, in all the cases of interest a choice of constraints leads to a specific set of
coupled nonlinear equations to be solved. In such equations, the observed values of the enforced
topological properties (e.g. the degree sequence) determine the values of an equal number of
‘hidden’ parameters in such a way that the real network, or any other network with the same
constraints as the real one, is generated with maximum likelihood. Since only the enforced
constraints enter the equations, our method only requires knowledge of the sufficient statistics
of the problem and not of the whole topology, restoring a desirable feature of randomization
algorithms. Solving the maximum-likelihood equations only takes a computational time TE

which is negligible compared to the time required to measure any non-trivial topological
property, and entirely replaces the artificial generation of many randomized variants of the
original network.

Once the parameters solving the equations are found, they can be directly used to obtain
the expectation value 〈X〉 and standard deviation σ [X ] of any topological property X of interest
analytically. When useful, this also allows one to obtain a z-score representing the number of
standard deviations by which the randomized value 〈X〉 differs from the observed value X (A∗).
The possibility of obtaining the standard deviations and/or z-scores is very important, because it
allows one to assess which topological properties X are consistent with their randomized value
〈X〉 within a statistical error and which deviate significantly from the null expectation. In the
former case, one can conclude that the enforced constraints completely explain the higher-order
property X . In the latter case, the observed property cannot be traced back to the constraints and
therefore requires additional explanations or generating mechanisms apart from those required
in order to explain the constraints themselves (it should be noted, however, that z-scores can be
unambiguously interpreted only if the property X is normally distributed, and this is generally
not the case; nonetheless they still carry information about the discrepancy between observations
and the null model).

Importantly, the time required to compute the expectation value 〈X〉 of a given property
X analytically (formally corresponding to an average over a huge number of randomized
configurations) is the same as the time TX required to compute the same property on the single
original network. Therefore our method takes only a total time O(TE + TX) to obtain 〈X〉 exactly,
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which is incredibly shorter than the aforementioned time O(M · TR · R) + O(M · TX) required
by the LRA to obtain 〈X〉 approximately. Importantly, TE is independent of the complexity of the
topological property X to measure, which means that for complicated properties O(TE + TX)=

O(TX). Therefore, for any topological property X that can be measured in a large but still
reasonable time O(TX) on the real network, the computation of its expectation value 〈X〉 will
require the same time O(TX). If the time required in order to obtain 〈X〉 is too large, it is
because the time required to measure X is too large as well. In other words, the property X
is too complicated to be computed on the real network itself. In such a case, the problem
is not due to the method, but to a demanding choice of X for that particular network. Note
that we are assuming that the topological properties of the real network are computed using
the full adjacency matrix. This is the worst-case scenario, since in many cases (especially for
sparse networks) it is enough to use reduced information such as the list of existing links.
For instance, the time to measure the clustering coefficient can be significantly shorter, using
optimized algorithms, on a sparse network than on a generic network of the same size (and in
this case it will also be shorter than the time required to compute its randomized value across
our ensemble). However, our interest is precisely in focusing on the (worst) general case (e.g.
dense and very dense networks), because it is in this case that other approaches fail (such as
equation (1)) or become extremely time-consuming (such as the LRA, which takes longer for
denser graphs).

4. Results

We now show the application of our method to real networks of various types by considering
several topological properties and their randomized counterparts.

4.1. Binary undirected networks

We start with the simplest case of binary undirected networks. One of the most important
topological properties of a binary network is the correlation between the degrees of adjacent
nodes, which has been shown to dramatically affect various structural and dynamical
features [2]. These correlations can be measured by the average nearest neighbor degree
(ANND), which on the real network A∗ is defined as

knn
i (A∗)≡

∑
j 6=i

∑
k 6= j a∗i ja

∗

jk∑
j 6=i a∗i j

. (3)

While the degree is a first-order property that only depends on the number of links (topological
paths of length one) entering a vertex, the ANND is a second-order property contributed by
paths of length 2 (i.e. the terms a∗i ja

∗

jk). Similarly, a third-order (i.e. involving paths of length 3)
property is the clustering coefficient ci , which represents the fraction of pairs of neighbours of
vertex i which are mutually connected:

ci(A∗)≡

∑
j 6=i

∑
k 6=i, j a∗i ja

∗

jka∗ki∑
j 6=i

∑
k 6=i, j a∗i ja

∗

ki

. (4)

As we mentioned, it is always important to assess whether in a particular real network higher-
order properties arise merely as a consequence of low-level constraints or whether they signal
additional structural patterns. In particular, comparing the real network A∗ with the CM (which
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provides an ensemble of random networks having, on average, the same degree sequence Ek(A∗)
as A∗) allows us to assess whether longer topological paths and the structural properties they
involve are simply a random concatenation of the individual links enforced by the degree
sequence or whether they are irreducible to first-order constraints. As we discuss in detail in
the appendix, our method can solve this problem by making use of an auxiliary N -dimensional
vector Ex = {x1, . . . , xN } of parameters. In particular, one must look for the particular values Ex∗

that solve the following set of N coupled nonlinear equations,∑
j 6=i

x∗i x∗j
1 + x∗i x∗j

= ki(A∗) ∀i, (5)

where ki(A∗) is the observed degree of vertex i in the real network A∗. Once the parameter
values are found, they allow us to obtain analytically the expectation value 〈X〉∗ of any
topological property X across the desired ensemble. This simply amounts to replacing the
adjacency matrix entry a∗i j appearing in the definition of X (A∗) with its expectation value

p∗i j = 〈ai j〉
∗
=

x∗i x∗j
1 + x∗i x∗j

, (6)

which represents the correct expression that should be used in place of equation (1). Similarly,
it is possible to obtain the standard deviation σ ∗[X ] analytically in terms of Ex∗ (see the
appendix).

In figure 2, we show an application of our method to the network of the 500 largest
US airports [31], a synaptic network [32], two protein interaction networks (http://dip.doe-
mbi.ucla.edu/dip/Main.cgi), an interbank network [33] and the Internet at the Autonomous
Systems level [34]. These are among the most studied networks of this type. We compare
the correlation structure of the original networks, as measured by the dependence of knn

i (A∗)
and ci(A∗) on ki(A∗), with the expected values 〈knn

i 〉
∗ and 〈ci〉

∗ obtained analytically using
our method. Note that we are averaging the values of knn

i (A∗) and ci(A∗) over all vertices
with the same degree: this makes our comparison with the values 〈knn

i 〉
∗ and 〈ci〉

∗ consistent,
since both real and randomized quantities can be plotted using the same values 〈ki〉

∗
= ki(A∗)

on the abscissa (we use the same strategy in what follows). We also highlight the region
within one standard deviation around the average by plotting the curves 〈knn

i 〉
∗
± σ ∗[knn

i ] and
〈ci〉
∗
± σ ∗[ci ]. For the sake of comparison, we also report the average values obtained sampling

the microcanonical ensemble with the standard LRA [4, 5], and the expected values over
the ensemble of RGs with the same number of links (random graph model). As we have
mentioned, the microcanonical method requires the generation of many randomized variants,
many rewirings per variant, and the measurement of knn

i and ci on each variant separately, plus
a final averaging. By contrast, our method only requires the preliminary estimation of the {x∗i }.
Then the calculation of 〈knn

i 〉 and 〈ci〉 takes exactly the same time as that of the empirical values.
As can be seen, the two approaches yield very similar results (in the appendix we provide a
detailed comparison of the two methods). For the two largest networks (the protein interactions
in S. cerevisiae and the Internet), we only report the expectations obtained using our method, as
the microcanonical approach would require too much computing time.

The above results allow us to interpret the effect of the degree sequence on higher-order
properties. Firstly, the trends displayed by the CM are not flat as those expected in the RG
case. This confirms that residual structural correlations, simply due to the enforced constraint,
are still present after the rewiring has taken place. The presence of these correlations does not
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Figure 2. Application of our method to binary undirected networks. The red
points are the empirical data, the black solid curves are averages over the CM
obtained using the LRA [4, 5] and the blue dashed curves are the analytical
expectations (±1 standard deviation) obtained using our method. The green
curves are the flat expectations under the Erdős–Rényi random graph model and
highlight the average level of correlation in the random case. The panels report
knn

i versus ki (left) and ci versus ki (right) for: (a, b) the network of the largest US
airports (N = 500) [31], (c, d) the synaptic network of Caenorhabditis elegans
(N = 264) [32], (e, f) the protein–protein interaction network of Helicobacter
pylori (N = 732) (http://dip.doe-mbi.ucla.edu/dip/Main.cgi), (g, h) the network
of liquidity reserves exchanges between Italian banks in 1999 [33] (N = 215),
(i) the Internet at the AS level (N = 11.174) [34] and (j) the protein–protein
interaction network of Saccharomyces cerevisiae (N = 4.142) (http://dip.doe-
mbi.ucla.edu/dip/Main.cgi). The last two networks are randomized using only
our method, as the LRA would require much more time given the large number
of edges.
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require any additional explanation apart from the existence of the constraints themselves. This is
very different from the picture one would get by using the (wrong) expectation of equation (1),
which would yield flat trends as well, naively suggesting that correlations can never be traced
back to the degree sequence alone. Secondly, while the trends observed in all the networks
considered are always decreasing, they unveil different correlation patterns when compared
with the randomized trends. The real interbank data are almost indistinguishable from the
randomized curves, meaning that structural constraints can fully explain the observed behavior
of higher-order network properties. Instead, in the airport network the randomized curves lie
below the real data (except for an opposite trend of 〈knn

i 〉 for low degrees). This means that
the real network is more correlated than the baseline randomized expectation and indicates
that additional mechanisms producing positive correlations must be present on top of structural
effects. By contrast, in the H. pylori’s protein network the expected curves lie above the real
data, suggesting the presence of mechanisms producing negative correlations. The same is true
for the correlation structure of the Internet, confirming previous results [5], while S. cerevisiae’s
protein network is completely different from its randomized variants. Therefore seemingly
similar trends can actually reveal very different types of structural organization. This means
that measuring the topological properties alone is uninformative and makes the comparison
between real data and randomized ensembles essential. Thus the possibility to analytically and
quickly characterize the latter, which was previously unavailable, is a remarkable advantage of
our approach.

4.2. Directed networks

We now consider binary directed networks, which are specified by an asymmetric adjacency
matrix A. The local constraints are now represented by the joint sequence of out-degrees and
in-degrees {kout

i , k in
i } = {

∑
j 6=i ai j ,

∑
j 6=i ai j}. Given a particular real network A∗ and a measured

topological property X (A∗), our method allows us to analytically obtain the expectation value
〈X〉∗ and standard deviation σ ∗[X ] across the ensemble of binary directed graphs with, on
average, the same directed degree sequences Ekout(A∗) and Ek in(A∗) as A∗ (directed configuration
model (DCM)). As shown in the appendix, in this case our method makes use of two N -
dimensional vectors Ex , Ey of auxiliary variables and requires that these parameters are set to
the particular values Ex∗, Ey∗ that solve the following set of 2N coupled nonlinear equations:∑

j 6=i

x∗i y∗j
1 + x∗i y∗j

= kout
i (A∗) ∀i, (7)

∑
j 6=i

x∗j y∗i
1 + x∗j y∗i

= k in
i (A∗) ∀i. (8)

The quantities Ex∗, Ey∗ allow 〈X〉∗ and σ ∗[X ] to be obtained analytically and quickly,
outperforming the directed version of the LRA4. Note that, as in the undirected case, the method
only makes use of the sufficient statistics of the problem.

We apply our method to various directed networks, by studying the second-order
topological properties measured by the outward ANND and the inward ANND, which are

4 In the directed version of the LRA, two directed edges (A, B)and (C, D) are randomly selected and replaced
with the directed edges (A, D)and (C, B) if the latter are not already present.
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defined as two natural generalizations of equation (3):

knn,out
i (A∗)≡

∑
j 6=i

∑
k 6= j a∗i ja

∗

jk∑
j 6=i a∗i j

, (9)

knn,in
i (A∗)≡

∑
j 6=i

∑
k 6= j a∗j ia

∗

k j∑
j 6=i a∗j i

. (10)

In figure 3 we plot the observed values knn,in
i (A∗) versus k in

i (A∗) and knn,out
i (A∗) versus kout

i (A∗),
as well as the expectations 〈knn,in

i 〉
∗
± σ ∗[knn,in

i ] and 〈knn,out
i 〉

∗
± σ ∗[knn,out

i ] obtained using our
model (see the appendix), for three real directed networks: the neural network of C. elegans [32]
(now in its directed version), the metabolic network of E. coli [35] and the Little Rock Lake
food web [36]. As before, we also show the microcanonical average obtained using the LRA
and the expectation under the directed random graph model (DRG) with the same number
of links. Again, we find very good agreement between the two approaches, confirming that
our method yields the correct prediction in an incredibly shorter time (see the appendix for a
discussion on the convergence time of the LRA to our exact results). For the C. elegans network
(figures 3(a) and (b)), we also show the microcanonical standard deviations, which turn out to
be indistinguishable from the grand canonical ones. We also confirm that while some networks
(C. elegans and E. coli) are almost consistent with the null model, others (Little Rock) deviate
significantly.

However, the most interesting point for the present analysis is that, while for the undirected
networks considered above all randomized trends were decreasing, in this case we find that
the three randomized trends behave in totally different ways. In the neural network, both
〈knn,in

i 〉
∗ and 〈knn,out

i 〉
∗ are approximately constant. This means that the baseline behavior for

both quantities is flat and uncorrelated (as in the DRG, but at a different level). By contrast, in
the metabolic network the expected curves are decreasing, and thus the ensemble of randomized
networks is disassortative as for the undirected graphs considered above. Finally, in the food
web the constraints enforce unusual positive correlations, and the randomized ensemble is
even assortative. Interestingly, while it is expected that random networks with specified degrees
display disassortative behavior [5, 9], the assortative trend is totally surprising. This is because
our method extracts the hidden variables directly from the specific real-world network, rather
than drawing them from ad hoc distributions. The resulting values can be distributed in a
very complicated fashion, invalidating the results obtained under other hypotheses. To further
highlight this important point, we selected three more food webs characterized by a particularly
small size (see figure 4). Small networks cannot be described by approximating the mass
probability function of their topological properties (such as the degree) with a continuous
probability density.

Therefore in this case the difference between the expectations obtained by drawing the Ex
and Ey values from analytically tractable continuous distributions and those obtained by solving
equations (8) using the empirical degrees is particularly evident. As we show in figure 4 (where
for simplicity we omit the comparison with the LRA), we confirm that the (directed) CM
can display not only flat or decreasing trends, but also increasing ones. Importantly, in this
case all three webs do not deviate dramatically from the null model. This means that while
one would be tempted to interpret the three observed trends as signatures of different patterns
(zero, negative and positive correlation), actually in all three cases the observed behavior can
be roughly replicated by the same mechanism and almost entirely traced back to the degree
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Figure 3. Application of our method to directed networks. Red points are the
empirical data, the black solid curves are expectations under the DCM using the
LRA and the blue dashed curves are the exact expectations obtained using our
method (±1standard deviation). The green curves are the flat expectations under
the directed version of the Erdős–Rényi random graph model. The panels report
knn,in

i versus k in
i (left) and knn,out

i versus kout
i (right) for: (a, b) the directed neural

network of Caenorhabditis elegans (N = 264) [32], (c, d) the metabolic network
of Escherichia coli (N = 1078) [35] and (e, f) the Little Rock Lake food web
(N = 183) [36]. For the C. elegans network, we also show the microcanonical
standard deviations obtained using the LRA (black dotted curves), which are
indistinguishable from the grand canonical ones.

sequence only. This unexpected result highlights once again that the measured values of any
topological property are per se entirely uninformative and can only be interpreted in relation to
a null model.
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Figure 4. Application of our method to small-size directed food webs. Red
points are the empirical data and the blue dashed curves are the exact expec-
tations (±1 standard deviation) under the DCM obtained using our method.
The green curves are the flat expectations under the directed version of the
Erdős–Rényi random graph model. The panels report knn,in

i versus k in
i (left)

and knn,out
i versus kout

i (right) for: (a, b) the Narragansett Bay web (N = 35)
(http://vlado.fmf.uni-lj.si/pub/networks/data/bio/foodweb/foodweb.htm), (c, d)
the Mondego Estuary web (N = 46) (http://vlado.fmf.uni-lj.si/pub/networks/
data/bio/foodweb/foodweb.htm) and (e, f) the St Marks River web (N = 54)
(http://vlado.fmf.uni-lj.si/pub/networks/data/bio/foodweb/foodweb.htm). For
the latter, in (g, h) we also compare the empirical data with the expectations
under the reciprocal configuration model, where also the number of reciprocated
links of each vertex is specified.
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4.3. Reciprocity and motifs

So far, in our analysis of directed networks we have considered second-order topological
properties. In principle, third-order properties can be studied by introducing directed
generalizations of the clustering coefficient [37, 38]. However, there is a proliferation of possible
third-order patterns due to the directionality of links. For this reason, a more complete analysis
consists in counting (across the entire network) all the possible directed motifs [6] involving
three vertices, and comparing the empirical abundances with the expected ones under the null
model. As we show below, our method lends itself admirably in such a case. Before presenting
our results, we note however that directionality makes the possible specifications of the null
model proliferate as well. In particular, besides the DCM considered above, a more refined
way to randomize directed networks includes the possibility to enforce additional constraints
on the reciprocity structure [6, 11]. In other words, it is possible (and important in many
applications [6, 12]) to preserve not only the total numbers k in

i and kout
i of incoming and outgoing

links of each vertex, but also the number k↔i ≡
∑

j ai ja j i of reciprocated links (pairs of links
in both directions) [39, 40]. This specification is equivalent to enforcing, for each vertex i ,
the three quantities [11, 39] k→i ≡

∑
j 6=i a→i j (the number of non-reciprocated outgoing links),

k←i ≡
∑

j 6=i a←i j (the number of non-reciprocated incoming links) and k↔i ≡
∑

j 6=i a↔i j (the
number of reciprocated links), where a→i j ≡ ai j(1− a j i), a←i j ≡ a j i(1− ai j) and a↔i j ≡ ai ja j i .

Given a real directed network A∗, we denote the null model with specified joint reciprocal
degree sequences {k→i (A∗), k←i (A∗), k↔i (A∗)} as the reciprocal configuration model (RCM).
This is an example of a model with non-local (second-order) constraints that can still be treated
analytically using our method. As we show in the appendix, in this case one must solve the
following 3N coupled equations:∑

j 6=i

x∗i y∗j
1 + x∗i y∗j + x∗j y∗i + z∗i z∗j

= k→i (A∗) ∀i, (11)

∑
j 6=i

x∗j y∗i
1 + x∗i y∗j + x∗j y∗i + z∗i z∗j

= k←i (A∗) ∀i, (12)

∑
j 6=i

z∗i z∗j
1 + x∗i y∗j + x∗j y∗i + z∗i z∗j

= k↔i (A∗) ∀i. (13)

The expectation value of any topological property, as well as its standard deviation, can now be
calculated analytically in terms of the three N -dimensional vectors Ex∗, Ey∗, Ez∗. For instance, in
figures 4(g) and (h) we repeat the analysis of the directed ANND of the St Marks River food
web, now comparing the observed trend against the RCM. In this case, we find no significant
difference with respect to the DCM considered above (figure 4(e) and (f)). However, as we now
show, the analysis of motifs reveals a dramatic difference between the predictions of the two
null models.

If Nm denotes the number of occurrences of a particular motif m, our method allows one to
calculate the expected number 〈Nm〉

∗ and standard deviation σ ∗[N m] exactly (see the appendix),
and thus to obtain the z-score

z[Nm]≡
Nm(A∗)−〈Nm〉

∗

σ ∗[Nm]
(14)
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analytically. This can be done for both the DCM and the RCM. The value of z[N m] indicates
by how many standard deviations the observed and expected numbers of occurrences of the the
motif m differ. Large values of z[N m] indicate motifs that are either over- or under-represented
under the particular null model considered and that are therefore not explained by the lower-
order constraints enforced. In figure 5, we show the z-scores for all the possible 13 non-
isomorphic connected motifs with three vertices in eight real food webs, for both null models.
We also show the two lines z =±2 to highlight the region within two standard deviations
from the model’s expectations. This analysis is similar to that of [12], but is made much
simpler by our method, which does not require to randomize the webs through a computational
algorithm preserving the (reciprocal) degree sequences. The food webs considered here are from
different ecosystems (lagoons, marshes, lakes, bays, estuaries and grasses), with a prevalence
of aquatic habitats. The presence of (intrinsically directed) predator–prey relationships implies
that reciprocity is a very important quantity in food webs [12]. Thus, the RCM should fluctuate
less than the DCM. Indeed, this is confirmed by our analysis. The z-scores for the motifs
m = 2, 3, 13 are significantly reduced from the DCM to the RCM. Also, while the motifs
m = 1, 6, 10, 11 display large values of z with opposite signs across different webs under the
DCM, the signs of all statistically surprising motifs (i.e. when |z|& 2) become consistent with
each other under the RCM (except for m = 13).

As a consequence, under the RCM all networks display a very similar pattern, and the
most striking features of real webs become over-representation of motifs m = 2, 10 (plus
m = 6, 11, 13 for the Little Rock Lake web) and under-representation of motifs m = 5, 9, 13
(plus m = 3, 7, 8 for the Little Rock Lake). In particular, under-representation of the motif
m = 9 (the three-loop) is the most common pattern across all webs, and becomes stronger as
the reciprocity of the web increases. Also note that in a network with no reciprocated links, the
number of motifs with at least a pair of reciprocated links is zero. Under the RCM, the expected
number of these motifs remains zero. By contrast, their expected number under the DCM is
always positive. Thus we confirm that the upgrade to the RCM is necessary, as its stricter
constraints allow one to analyze three-vertex motifs once two-vertex motifs (i.e. all possible
dyadic patterns) are correctly accounted for. The possibility to treat the RCM analytically using
our method is therefore an important step forward.

4.4. Weighted networks

Remarkably, our method works equally well for weighted graphs (where the binary adjacency
matrix A is replaced by a non-negative weight matrix W), thanks to recent analytical results
that allow one to characterize maximally random weighted networks with specified properties
in a way that is completely analogous to their binary counterparts [22, 23]. In a particular
weighted network W∗, the local constraints are the strength sequence {si(W∗)} = {

∑
j w∗i j}

(undirected case) or the joint out-strength and in-strength sequence {sout
i (W∗), s in

i (W∗)} =

{
∑

j w∗i j ,
∑

j w∗j i} (directed case). We will only consider undirected weighted networks. The
extension to the directed case is straightforward. The family of randomized weighted graphs
with the same strength sequence as a real weighted network is sometimes denoted as the
weighted configuration model (WCM) [15]. The available microcanonical algorithms regard
each link weight as an integer multiple w of a fundamental unit of weight, transform each edge
of weight w into w edges of unit weight and rewire the latter as in the unweighted case, now
ensuring that the strength (the total number of incoming edges of unit weight) of each vertex
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Figure 5. Application of our method to the analysis of directed motifs involving
three vertices in 8 real food webs. Top panel: z-scores obtained by enforcing
only the in-degree and out-degree sequences (DCM). Bottom panel: z-scores
obtained by enforcing also the reciprocal degree sequence (RCM). Legend:
, Chesapeake Bay; , Little Rock Lake; , Maspalomas Lagoon; , Florida Bay;
, St Marks Seagrass; , Everglades Marshes; , Grassland; , Ythan Estuary.
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is preserved. This means replacing a list of L∗ 6 N (N − 1)/2 weighted links, summing up to
a total weight W ∗ =

∑
i< j w∗i j , with W ∗� N (N − 1)/2 unweighted links. As real networks

have broadly distributed weights summing up to a large W ∗, this procedure becomes very time-
consuming as incredibly many rewiring steps per randomized variant must be performed. As for
the binary case, an alternative procedure makes use of a naive theoretical expectation [15, 41]
for the expected weight of a link in the WCM, in analogy to equation (1):

〈wi j〉 =
si(W∗)s j(W∗)

2W ∗
. (15)

However, the above expression has been shown to have as many limitations as its binary
counterpart, and to be incorrect [22].

By contrast, as we show in the appendix, our method allows us to treat the WCM
analytically as in the unweighted case. Note that choosing the unit of weight in the WCM
(before performing the randomization) is in principle arbitrary, but the resulting ensemble will
be different for different choices. This issue of granularity is an open problem that deserves
future investigations. Our grand canonical alternative to the WCM is not aimed at fixing the
problem, but at providing, for a given choice of the weight unit in the microcanonical ensemble,
the corresponding grand canonical expectation.

Given a real weighted undirected network W∗, our method proceeds by finding the
particular values {x∗i } solving the N coupled equations∑

j 6=i

x∗i x∗j
1− x∗i x∗j

= si(W∗) ∀i. (16)

Note the difference in sign with respect to equation (5). As in the binary case, knowledge of Ex∗

allows one to obtain the expectation value 〈X〉∗ and standard deviation σ ∗[X ] of any weighted
topological property X analytically across the ensemble of weighted graphs with, on average,
the same strength sequence Es(W∗) as the real network W∗. Again, the time required to obtain
〈X〉∗ is as short as that required to measure the empirical value X (W∗), as 〈X〉∗ can be obtained
by replacing w∗i j with the expectation value

〈wi j〉
∗
=

x∗i x∗j
1− x∗i x∗j

(17)

in the definition of X (W∗). Equation (17) corrects the naive expectation (15).
In order to apply our method, we need to choose the weighted topological properties to be

investigated. Generalizing binary properties to weighted graphs is arbitrary, as no unique choice
exists [18, 41–43]. To better highlight the generality of our approach, here we follow [42], since
it introduces a way to always systematically define a weighted counterpart X̃ for every binary
property X . The idea is to define X̃ as an average of X over the ensemble of binary graphs
generated by a convenient connection probability pi j = f (wi j) ∈ [0, 1] which is a function of
the observed weights {wi j}. The functional form of pi j can, in principle, be chosen depending
on the empirical properties one wants to detect; however, our purpose here is to use our
method to make a comparison of the empirical properties with the expected ones, rather than
comparing alternative definitions of the empirical properties themselves. Therefore we make
the simplest choice and, given a real weighted network W∗, we set pi j ≡ w∗i j/W ∗ where
W ∗ ≡

∑
i< j w∗i j =

∑
i si(W∗)/2 is the total weight. This choice yields the following definition
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for the weighted degree [42],

k̃i(W∗)=

∑
j 6=i w∗i j

W ∗
=

si(W∗)

W ∗
, (18)

which is simply proportional to the strength. Similarly, the weighted ANND and clustering are
defined as the counterparts of equations (3) and (4) [42]:

k̃nn
i (W∗)≡

∑
j 6=i

∑
k 6= j w∗i jw

∗

jk

W ∗
∑

j 6=i w∗i j

, (19)

c̃i(W∗)≡

∑
j 6=i

∑
k 6=i, j w∗i jw

∗

jkw
∗

ki

W ∗
∑

j 6=i

∑
k 6=i, j w∗i jw

∗

ki

. (20)

In analogy with the binary case, k̃nn
i and c̃i can be plotted against k̃i (or equivalently si ) in order

to investigate the correlation structure of the weighted network.
In figure 6 we analyze the weighted and undirected (symmetrized) versions of four

networks we have already considered in the previous binary study: the Florida Bay food web,
the Italian interbank network, the C. elegans neural network and the US airport network. We
compare the empirical results with the expected trends (±1 standard deviation) under the WCM
obtained by our method. For simplicity, we show only the results obtained by our method,
and omit the time-consuming microcanonical comparison. Note that since the strengths are
preserved in the WCM, i.e. 〈si〉

∗
= si(W∗) ∀i , the total weight is preserved as well: 〈W 〉∗ =W ∗.

We find that the empirical trends are quite scattered and variable: some are weakly increasing
(the Florida Bay), some others are approximately constant (an interbank web) and the others first
increase and then decrease (an airport network). These diverse trends must be compared with a
null model, which, unlike what was naively expected from equation (15), is not flat and displays
a not easily characterizable increasing behavior. A common feature is that with respect to the
null behavior, real weighted networks are more assortative and clustered for low values of the
strength, whereas they are less assortative and clustered for high values of the strength. These
considerations confirm that even in the weighted case, the empirical trends are uninformative by
themselves and always require a comparison with a null model. Our method allows one to treat
the otherwise problematic WCM in a simple way, in straightforward analogy with the binary
case.

Although we do not explicitly consider this possibility here, for weighted networks one
could also enforce additional constraints on the degree sequence. This amounts to specifying
not only the strength of each vertex, but also its purely topological degree [16, 19, 20]. In this
case, sampling the randomized ensemble by means of computational algorithms becomes even
more difficult. By contrast, our method can still be used efficiently, as the analytical expressions
characterizing the corresponding maximum-entropy ensemble were derived recently [22].
Those results easily allow us to obtain the equations implied by the ML principle, as well as
the expectation values of network properties over the ensemble, in a straightforward fashion.

For completeness, in figure 7 we show the ratios of the constraints standard deviations,
σ EC , to the constraints expected values, µ EC (a quantity known in statistics as the coefficient of
variation), plotted versus the expected values. For small values of the constraints, σ EC/µ EC ∼

(µ EC)−1/2 (an approximation valid for both binary and weighted networks); the higher the
constraints expected values, the more important becomes a correction factor whose entity (and
sign) depends on the particular type of network considered (for details of the calculations see
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Figure 6. Application of our method to weighted undirected networks. Red
points are the empirical data and the blue dashed curves are the exact
expectations obtained using our method (±1 standard deviation). Green dashed
curves are the flat expectations under the weighted random graph model [23].
The panels report k̃nn

i versus si (left) and c̃i versus si (right) for: (a, b) the Florida
Bay food web (N = 128) (http://vlado.fmf.uni-lj.si/pub/networks/data/bio/
foodweb/foodweb.htm), (c, d) the Italian interbank network (N = 215) [33],
(e, f) the C. elegans neural network (N = 265) [32] and (g, h) a snapshot of
the US airport network (N = 332) [31].
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Figure 7. (a) The ratios σ ∗[ki ]/ki plotted versus the degrees ki for the binary
undirected networks of figure 2; (b) the ratios σ ∗[kout

i ]/kout
i and σ ∗[k in

i ]/k in
i

plotted versus the degrees kout
i and k in

i , respectively, for the binary directed
networks of figure 3; (c) the ratios σ ∗[si ]/si plotted versus the strengths si for
the weighted undirected networks of figure 6. The food webs are indicated by
means of symbols. The black dashed line is the function f (x)= x−1/2, which is
expected to reproduce well the coefficients of variation for small values of the
constraints.

the appendix): in the food webs (panel (b)) the presence of in-degree hubs implies the correction
to be important even for small out-degree vertices.

5. Discussion

Our method makes use of the correct expressions (6) and (17) for the connection probability
and expected weight, respectively, in place of the incorrect naive expressions (1) and (15).
While the latter depend only on the properties (ki or si ) of the end-point vertices i and j , the
former depend on the entire degree or strength sequence through equations (5) and (16). We have
shown that this has a dramatic effect on the properties of the randomized ensemble. In particular,
we have found that enforcing the same set of constraints in different networks can yield very
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different trends for the randomized properties, whose behavior is therefore highly unpredictable
a priori. The general expectation that randomized higher-order properties (such as 〈knn

i 〉 and 〈ci〉

in unweighted networks or 〈k̃i〉 and 〈c̃i〉 in weighted networks) are independent of the local ones
(ki or si ) turns out to be only a very rare possibility among the possible scenarios. Indeed, we
have also found increasing and decreasing trends for the randomized quantities and shown that
the particular behavior displayed by the null model strongly depends on the particular values of
the constraints in the original real-world network. This makes the comparison with the particular
null model even more important than expected previously and underlines the importance of a
tractable description enabled by our analytical method.

The incorrectness of equations (1) and (15), as well as of their directed counterparts,
has another series of undesired effects, as those expressions have been explicitly used to
define important structural quantities involved in network analysis. Indeed, even when not
explicitly used to randomize a network, null models unavoidably enter into the analytical
expressions defining many properties of interest. For instance, many popular community
detection algorithms make use of the concept of modularity to evaluate the quality of a partition
of the network against a null case [44]. A partition into communities can be represented by
the matrix {δi j}, where δi j = 1 if vertices i and j are assigned the same community and δi j = 0
otherwise. For a binary undirected network A∗, the modularity Q of the partition {δi j} has been
defined as

Q ≡
1

2L∗
∑
i 6= j

δi j

(
a∗i j − pi j

)
, (21)

where pi j is the probability that i and j are connected in a suitable null model, and the most
frequent choice is the CM. Similarly, for a weighted undirected network W∗, the modularity of
the partition {δi j} is [41]

Q ≡
1

2W ∗
∑
i 6= j

δi j

(
w∗i j −〈wi j〉

)
, (22)

where 〈wi j〉 is the expected weight of the link joining i and j in the WCM. Unfortunately,
the expressions for pi j and 〈wi j〉 are always taken to be equations (1) and (15), respectively.
To the best of our knowledge, no rigorous assessment of the consequences of using these
approximations has been provided. Therefore the problems described in the present paper
affect any modularity-based community detection problem in an uncontrolled way. Our method
provides previously unavailable exact expressions (6) and (17), whose values can be inserted
into equations (21) and (22) to have the correct modularity. A straightforward analysis of
how the correct expressions change the detected community structure of real networks is an
important open point to address in the future.

6. Conclusions

We have presented a fast and exact method for obtaining analytical results on the grand
canonical ensemble of randomized variants of a particular real-world network that preserve
its average local properties. The method works for both weighted and unweighted networks and
for both directed and undirected graphs. In any case, it requires as the input only the strength
or degree sequence(s), which represent the sufficient statistics of the problem. Our approach
can be extended to enforce different or additional constraints, such as the reciprocity structure
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in directed networks or the simultaneous specification of strengths and degrees in weighted
networks. Notably, our results show that maximally random networks exhibit a diverse range
of behavior that is sensitive to the particular values of the constraints displayed by the real
network, making a case-by-case comparison of the observed properties with the randomized
ones necessary. This diversity of outcomes is in any case not captured by widely used but
incorrect expressions for the expected properties. Unfortunately, important network properties
such as the modularity completely rely on such expressions, a problem that may have therefore
biased previous analyses of community structure in networks. We believe that our contribution
represents a promising step towards the identification of relevant information in real networks.
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Appendix A. The general maximum-likelihood method

Here we describe our maximum-likelihood method in its general formulation. Our approach
combines previous analytical results (obtained by one of us [11, 22, 23] and other authors
[9, 14, 21]) on the properties of maximum-entropy graph ensembles and previous results (by one
of us [30]) on the maximum-likelihood estimation of free parameters in such ensembles, and
adds to them a new technique for obtaining analytical expressions for the expectation value and
standard deviation of any topological property of interest across the ensemble. After describing
the method in general terms, we derive the explicit expressions that apply in the particular
cases of local constraints (for undirected, directed and weighted networks). We then consider
an extension to nonlocal constraints and finally compare our analytical method with alternative
computational techniques.

A.1. Maximum-entropy probability distribution

Our method aims at characterizing analytically the properties of families of randomized variants
of a particular real network. In more rigorous terms, a family of randomized network variants
is a statistical ensemble of graphs where a set of structural constraints has been specified,
and the rest of the topology is completely random. Let us denote by G a generic network in
the ensemble, and by G∗ the particular real-world network that we need to randomize. The
ensemble will consist of all possible networks {G} of the same type as G∗ (binary/weighted,
directed/undirected), and will include G∗ itself. For binary (either directed or undirected)
networks, each graph G is completely specified by its adjacency matrix A, i.e. G≡ A. Similarly,
for weighted (either directed or undirected) networks, each graph G is completely specified by
its weight matrix W, i.e. G≡W. We will keep our discussion completely general and use G
to indicate a graph of any type (directed/undirected, binary/weighted). Thus G can always be
thought of as a matrix with entries {gi j}, where gi j represents the (either binary or non-negative)
weight of the edge (i, j). Any topological property X evaluates to X (G) when measured on the
particular network G, i.e. it is an (arbitrarily complicated) function of the entries {gi j}.

Each graph G in the ensemble has an occurrence probability P(G) whose form is
determined by the particular constraints enforced. This probability must always be such
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that ∑
G

P(G)= 1, (A.1)

where the sum runs over all graphs in the ensemble. The expectation value of a topological
property X across the ensemble is the mean value (ensemble average)

〈X〉 ≡
∑

G

X (G)P(G). (A.2)

Let us denote the set of constraints {Ca} by the vector EC , where each Ca is a topological property
that, unlike any other generic property X , we need to tune to the particular value displayed by
the real network G∗. Enforcing the constraints exactly, i.e. allowing only the graphs G such that
EC(G)= EC(G∗), results in a so-called microcanonical ensemble characterized by the uniform
probability

P(G)=

{
1/N [ EC(G∗)] if EC(G)= EC(G∗),

0 otherwise,
(A.3)

where N [ EC(G∗)] denotes the number of graphs in the ensemble for which the value of each
constraint Ca equals the value Ca(G∗). Microcanonical graph ensembles are hard to deal with
analytically, and they are most often sampled computationally by generating many randomized
networks explicitly, using probabilistic rules that ensure that the constraints are matched exactly.
Currently, such computational techniques are the only available methods to randomize a real
network. Unfortunately, the need to sample the ensemble explicitly and generate a large number
of randomized graphs makes this approach computationally demanding, time-consuming and
beyond analytic control.

In order to develop a randomization method that is fast and analytically tractable, we
exploit the results of [14] and consider the alternative possibility to enforce the constraints
on average, i.e. by only specifying their expectation values 〈 EC〉. The resulting ensemble is a
(grand) canonical one where each graph G is assigned a probability P(G) that maximizes the
Shannon–Gibbs entropy

S ≡−
∑

G

P(G) lnP(G) (A.4)

subject to the constraints
∑

G P(G)= 1 and 〈 EC〉 = EC . Maximizing the entropy subject to
constraints is widely used in statistical mechanics and in general for problems with incomplete
information [45, 46]. The desired maximum-entropy graph probability can be found by
introducing a set of Lagrange multipliers Eθ = {θa} enforcing the constraints EC = {Ca}. The
resulting conditional (on the value of Eθ ) probability reads [14]

P(G|Eθ)=
e−H(G,Eθ)

Z(Eθ)
, (A.5)

where H(G, Eθ) is the graph Hamiltonian defined as the linear combination

H(G, Eθ)≡
∑

a

θaCa(G)= Eθ · EC(G) (A.6)
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and the normalizing quantity Z(Eθ) is the partition function, defined by

Z(Eθ)≡
∑

G

e−H(G,Eθ). (A.7)

The above results show that the graph probability P(G|Eθ) always depends on the value Eθ , which
in turn depends on the constraints considered. As a consequence, we can rewrite equation (A.2)
more explicitly as a function of Eθ :

〈X〉Eθ ≡
∑

G

X (G)P(G|Eθ), (A.8)

where 〈·〉Eθ denotes that the ensemble average is evaluated at the particular parameter choice
Eθ . The above expression clarifies that the expectation value of any topological property X
depends on the specific enforced constraints through Eθ . Different choices of the constraints
imply different values of Eθ , P(G|Eθ) and 〈X〉Eθ .

A.2. Maximum-likelihood parameter estimation

As we mentioned, maximum-entropy graph ensembles generated by equation (A.5) have
been used extensively to characterize mathematically networks with specified properties
[9, 11, 14, 21, 22]. However, previous studies did not focus on the randomization of a particular
real network (which is our main interest here), but rather on the effects that the specification
of certain structural properties has on other aspects of network topology. As a consequence,
the Lagrange multipliers {θa} have been considered as free parameters, generally drawn from
carefully chosen probability densities [14, 21, 22] that allow analytical results, in terms of which
the properties of the network model have been investigated. In most cases, the aim has been to
explore the topological properties in the thermodynamic limit N →∞, where N is the number
of vertices of the network. This means that only generic statistical properties of real networks,
such as a power-law degree distribution, were used to generate the ensemble. However, this
implies that the specific properties of a particular real network (such as deviations of individual
vertices from the fitted degree distribution, the intrinsic finiteness of the system, etc) are ignored
and, more importantly, that there is no correspondence between the vertices of the real network
and those of the model. Thus this approach allows one to inspect the properties of maximum-
entropy graph ensembles, but does not allow the latter to be considered as null models of
a particular real network. As a consequence, it cannot be used to detect empirical topological
patterns consisting of statistically significant deviations from a null network model.

Here we make one step forward and construct, for a given choice of the constraints, the
particular maximum-entropy graph ensemble representing the family of correctly randomized
counterparts of a given real network G∗. Explicitly, we consider a grand canonical ensemble of
graphs with the same number N of vertices as the real network and for a given choice of the
constraints we fit the model defined by equation (A.5) to the empirical network G∗. To this end,
we exploit previous results [30] showing that maximum-entropy graph ensembles defined by
equation (A.5) are a particular class of models for which the maximum-likelihood principle
provides an excellent method of parameter estimation, since they are free from problems
of bias afflicting other network models. In particular, it can be easily shown [30] that the
log-likelihood

L(Eθ)≡ lnP(G∗|Eθ)=−H(G∗, Eθ)− ln Z(Eθ) (A.9)
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to obtain the real network G∗ is maximized by the particular parameter choice Eθ∗ such that the
ensemble average 〈Ca〉Eθ∗ of each constraint Ca equals the empirical value Ca(G∗) measured on
the real network:

〈 EC〉∗ ≡ 〈EC〉Eθ∗ =
∑

G

EC(G)P(G|Eθ∗)= EC(G∗), (A.10)

where we have used 〈·〉∗ as shorthand notation to indicate the ensemble average 〈·〉Eθ∗ evaluated
at the particular value Eθ∗. The above results mean that the maximum likelihood principle
indicates, for maximum-entropy graph ensembles, precisely the parameter choice that ensures
that the desired constraints are met. This is not true in general: in other network models,
tuning the average values of the topological properties of interest to their empirical values
requires a parameter choice that in general does not maximize the likelihood to obtain the real
network [30], thus introducing a bias in the analysis.

The idea to take the observed constraints EC(A∗) as the input and find the ‘hidden’ values
Eθ∗ that generate those constraints as the most probable ones has already been proposed in [30]
with the purpose of checking whether Eθ∗ correlates with some external set of empirical non-
topological quantities, thus unveiling possible mechanisms shaping the network topology. Here
we make progress, noting that finding the values Eθ∗ represents a preliminary step in order to
generate the randomized ensemble we are looking for and to have complete analytic control over
it. This is completely independent of whether there are external empirical quantities correlating
with Eθ∗.

Note that in equations (A.8) and (A.10) the expectation values and the model parameters
play inverted roles: whereas in equation (A.8) the expectation values are obtained as a function
of the parameters Eθ that can be varied arbitrarily, in equation (A.10) the observed constraints,
which are measured on the particular real network and are therefore given as the input, are
used to fix the model parameters to the values Eθ∗. Interestingly, this opposite line of research
has been used quite extensively in traditional social network analysis (where maximum-
entropy ensembles of networks are widely used under the names of p∗, logit or exponential
random graph models [47–49]), but has not yet been transferred to the randomization problem
frequently occurring in complex networks theory. As we show below, the maximum-likelihood
parameter choice is exactly what we need in order to obtain statistically correct expectations
over ensembles of randomized variants of any particular real-world network. This allows to
understand which properties of a real-world network can be simply traced back to the enforced
constraints, and which require more complicated explanations. Another important difference
with respect to the main approach followed in social network analysis is that our method allows
us to analyze weighted networks in exactly the same way as binary graphs, which are instead
usually not studied within the p∗ framework. As a consequence, some of the analytical results
we derive and use represent previously unavailable tools for the study of weighted networks (and
maximum-entropy ensembles of them) through a straightforward analogy with binary networks.
Finally, in all the applications we consider, it is always possible to find the maximum-likelihood
parameter values Eθ∗ exactly even for large networks, without resorting to the approximate
techniques traditionally used in social network analysis [49] (for a detailed analysis on the
existence of the MLE, see also [50]). Therefore our approach extends in many directions the
connection between exponential random graphs and maximum-entropy network ensembles, and
strengthens considerably the existing relation between social science and network theory.
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A.3. Expectation values of topological properties

Equation (A.10) provides an implicit expression for the value Eθ∗, and solving it is equivalent to
maximizing equation (A.9). The numerical value of the solution Eθ∗ is the key ingredient we are
looking for in order to detect topological patterns in the real network G∗ analytically, without
performing any time-consuming computational randomization. Indeed, if we insert the value Eθ∗

into equation (A.8), we obtain

〈X〉∗ ≡ 〈X〉Eθ∗ =
∑

G

X (G)P(G|Eθ∗), (A.11)

which provides the exact expected value of any topological property X across the maximum-
entropy graph ensemble where the expected values 〈 EC〉 of the topological properties EC chosen
as constraints are set equal to the empirical values EC(G∗) measured on the real network G∗, as
ensured by equation (A.10). For simplicity, given a real network G∗ and a set of constraints
EC , we shall sometimes call 〈X〉∗ the randomized value of the topological property X . The
comparison of 〈X〉∗ with the empirical value X (G∗) allows us to assess whether, in the real
network G∗, the topological property X requires additional information apart from that provided
by the properties EC . If X (G∗) is sufficiently close to 〈X〉∗ (within a statistical error that we
determine in appendix A.4), one can conclude that the enforced constraints EC fully explain the
property X . By contrast, if X (G∗) is significantly different from 〈X〉∗, then the properties EC
do not explain the property X , which means that the structure of G∗ is determined by other
factors besides those determining EC . This allows us to assess which topological properties can
be traced back to (i.e. explained by) the chosen constraints in any real network and which cannot.
Trivially, if X is one of the properties among the enforced constraints (i.e. if X = Ca for some
a), then equation (A.10) implies X (G∗)= 〈X〉∗ by construction.

Note that any other parameter choice Eθ 6= Eθ∗ would not enforce the chosen constraints and
would yield an expectation value 〈X〉Eθ different from the desired one, i.e. not corresponding to
the correct randomized value 〈X〉∗ for that particular network and for that particular choice of the
constraints. This clarifies why previous results [9, 11, 14, 21, 22] on the properties of maximum-
entropy ensembles, which were obtained using Eθ as a free parameter unrelated to the empirical
values EC(G∗) and to the real network G∗ itself, cannot be used to solve the pattern detection
problem considered here. Also note that EC(G∗) is the sufficient statistics of our problem, which
completely determines θ∗ through equation (A.10) and consequently any randomized property
〈X〉∗. Knowledge of the other topological properties of the real network G∗ is useless. This
means that two real networks G∗1 and G∗2 with exactly the same values EC(G∗1)= EC(G∗2) of the
constraints generate the same maximum-entropy ensemble, and give rise to the same value of
θ∗ and 〈X〉∗, as should be.

Clearly, the possibility of solving equation (A.10) and obtaining the randomized properties
through equation (A.11) both depend on whether one manages to rewrite the formal expression
for 〈X〉Eθ in equation (A.8) in a simplified form that avoids the unfeasible actual enumeration
of all graphs {G} in the ensemble. In practical terms, this means that not all specifications
of the constraints EC allow solution of equation (A.10) and the obtaining of Eθ∗, and not all
topological properties X can be averaged exactly through equation (A.11). However, as we
describe in appendix B, the first step can always be carried out successfully whenever one
considers local constraints as the ones of interest to us. Similarly, as we now show in general
and then restate more explicitly in each particular case, the expectation value 〈X〉∗ of any higher-
order topological property X of interest can be rewritten, either exactly or approximately, in a
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way that is only as complicated as measuring X (G∗) on a single network, rather than on all
graphs {G} in the ensemble. This represents a major advantage of our method: the computation
of an expectation value across the entire ensemble of graphs is only as time-consuming as the
computation of the corresponding observed value on the empirical network G∗. Thus, if the
observed value can be computed in reasonable time, the same is true for the expectation value.
To see this, we write down an approximated expression for 〈X〉∗ as a Taylor expansion. Note
that any property X (G) depends in general on all the entries {gi j} of the matrix G, which are
the fundamental degrees of freedom of the problem. The ensemble average of gi j reads

〈gi j〉 =

∑
G

gi j P(G|Eθ) (A.12)

If we define the gradient matrix of any topological property X (G) as

∇X (G)≡


∂ X (G)

∂g11
. . . ∂ X (G)

∂g1N
...

...
∂ X (G)

∂gN1
. . . ∂ X (G)

∂gN N

 (A.13)

and if we denote by 〈G〉 the matrix whose entries 〈G〉i j are the expectation values 〈gi j〉,
it is possible to expand 〈X〉 around 〈G〉 and write the multidimensional first-order Taylor
expansion

X (G)= X (〈G〉) +
∑
i, j

(gi j −〈gi j〉)

(
∂ X

∂gi j

)
G=〈G〉

+ · · ·

= X (〈G〉) + (G−〈G〉) ∗∇X (〈G〉) + · · · . (A.14)

In the above expression, (·)G=〈G〉 means that we are evaluating the quantity in parentheses by
replacing each gi j with 〈gi j〉, and

A ∗B≡
∑
i, j

ai j bi j (A.15)

denotes the scalar product of two matrices A and B, and the double sum runs over all N (N − 1)

ordered pairs of vertices (with i 6= j). Note that for an undirected network, where gi j = g j i by
construction, half of the terms in the sum in equation (A.14) will be equal to zero, since one
has either ∂ X/∂g j i = 0 or ∂ X/∂gi j = 0, depending on whether gi j or g j i appears in the formal
definition of X . With the above approximation, the expectation value of X reads

〈X〉 = X (〈G〉) + · · · (A.16)

since the first-order terms vanish. The above formula shows that, if one evaluates 〈X〉 by simply
replacing G with 〈G〉 into X (G) (linear approximation), the difference with respect to the exact
expectation value is only in the second- and higher-order terms. This is true for any value of Eθ
on which all expectation values depend. As already explained, our method consists in choosing
the particular value Eθ∗ solving equation (A.10), which yields an expectation value

〈X〉∗ = X (〈G〉∗) + · · · . (A.17)

Among all possible parameter values Eθ , the choice of Eθ∗ ensures that the deviation of the
approximate value X (〈G〉) from the exact one X (G) in equation (A.14) is minimal, since
〈G〉∗ is as close as possible to G if the constraints EC are chosen as a reference to measure
the difference between 〈G〉 and G. In particular, when X coincides with one of the enforced
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constraints Ca, equation (A.17) becomes an exact expression, as we mentioned. Moreover, as
we show later in appendix B, most topological properties of interest in our analysis are either
multilinear functions of statistically independent matrix elements {gi j} or ratios of multilinear
functions. In the former case, the expectation value 〈X〉∗ is exactly X (〈G〉∗). In the latter case,
the numerator and the denominator will be separately evaluated exactly, and the approximation
will only affect the ratio. In general, ratios of averages can be very different from averages
of ratios. However, we confirmed (see figures 2 and 3) that our estimates for the ratios are in
very good agreement with what is obtained in the microcanonical case using the LRA, where
averages of ratios are evaluated exactly. Moreover, recall that we are interested in determining
an interval of statistically significant values around 〈X〉∗, rather than 〈X〉∗ alone. Our results
(figures 2 and 3) also show that the difference between the microcanonical and the (approximate)
grand canonical value of 〈X〉∗ is typically much smaller than the standard deviation of X (that
we obtain below), so using equation (A.17) is in any case a very good way to proceed.

The above discussion clarifies that a good approximation to the randomized value 〈X〉∗

of any topological property of interest is given by simply replacing each gi j with 〈gi j〉
∗ in the

definition of the property X (G), in the same way that the empirical value X (G∗) is obtained
by replacing each gi j with the observed entry g∗i j of G∗ in the definition of X (G). This means
that the empirical value X (G∗) (if the full adjacency matrix is used, see the main text) and the
approximate randomized value X (〈G〉∗) require exactly the same computational time, which
makes our method faster than any other available alternative approach (and in general as fast as
possible). Clearly, in order to evaluate equation (A.17), complete knowledge of the values

〈gi j〉
∗
=

∑
G

gi j P(G|Eθ∗) (A.18)

is required. While for generic choices of EC it may be impossible to obtain the formal expression
for 〈gi j〉Eθ and/or the particular parameter value Eθ∗, in appendix B we show that local constraints
always allow us to obtain 〈gi j〉

∗ exactly. This makes the problem analytically solvable and
implies that our method becomes very simple in all the applications of interest.

A.4. Variances of topological properties

As we have mentioned, another important advantage of our method is the possibility to obtain,
in addition to the expectation value, the analytical expression for the standard deviation of
any topological property of interest. This provides a statistical error allowing the detection
of significant deviations of any empirically observed topological quantity X (G∗) from its
randomized value 〈X〉∗. To this end, we employ the fundamental expression relating the variance
of a function of many random variables to the variances of the latter, whose most popular
consequence is the general formula for the propagation of errors in experimental measurements.
In our notation, the variance of a topological property X across the ensemble is defined as

σ 2[X ]≡ 〈X 2
〉− 〈X〉2 = 〈(X −〈X〉)2

〉 (A.19)

(which depends on Eθ ). Using the linear approximation in equation (A.14), we can write

σ 2[X ]= 〈[X (G)− X (〈G〉)]2
〉

=

∑
i, j

∑
t,s

σ [gi j , gts]

(
∂ X

∂gi j

∂ X

∂gts

)
G=〈G〉

+ · · · , (A.20)
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where

σ [gi j , gts]≡ 〈(gi j −〈gi j〉)(gts −〈gts〉)〉

= 〈gi j gts〉− 〈gi j〉〈gts〉 (A.21)

is the covariance of gi j and gts , and

〈gi j gts〉 =

∑
G

gi j gts P(G|Eθ) (A.22)

For the ‘diagonal’ terms given by i = t and j = s, the covariance σ [gi j , gts] equals the
variance

σ 2[gi j ]≡ 〈g
2
i j〉− 〈gi j〉

2
= σ [gi j , gi j ] (A.23)

(again, both σ [gi j , gts] and σ 2[gi j ] depend on Eθ ). In a different context where X is a function
of many experimental quantities {gi j}, equation (A.21) provides the general formula for the
propagation of errors (from {gi j} to X ) if the measured value of gi j is used as the best estimate for
〈gi j〉 and if its experimental error is used in place of σ [gi j ]. Here, we do not need approximate
estimates for 〈gi j〉 and σ [gi j ], since both quantities can be completely specified: even when
there is always a single observation, i.e. the real network G∗, the latter generates the entire
ensemble of graph that is described by the probability P(G|Eθ∗), as we have discussed in detail in
appendix A.2.

As for the expectation value 〈X〉∗, our approach proceeds by evaluating the standard
deviation σ [X ]∗ at the particular parameter value Eθ∗ solving equation (A.10):

σ ∗[X ]=

√√√√∑
i, j

∑
t,s

σ ∗[gi j , gts]

(
∂ X

∂gi j

∂ X

∂gts

)
G=〈G〉∗

+ · · ·, (A.24)

where

σ ∗[gi j , gts]= 〈gi j gts〉
∗
−〈gi j〉

∗
〈gts〉

∗. (A.25)

Note that, as for the expected values, the above standard deviation makes use of the linear
approximation and is therefore not exact. However, when we measured also the microcanonical
standard deviations, we found excellent agreement with our grand canonical ones (see
figures 3(a) and (b)), showing that the errors on the estimates of our standard deviations are
small.

Equations (A.24) and (A.25) show that the values

〈gi j gts〉
∗
=

∑
G

gi j gts P(G|Eθ∗) (A.26)

are the fundamental quantities, besides the averages 〈gi j〉
∗ given by equation (A.18), required in

order to obtain the standard deviation σ ∗[X ] of any topological property X . For generic choices
of the constraints EC , obtaining the value of 〈gi j gts〉

∗ can be very complicated or even impossible,
as we already discussed for 〈gi j〉

∗. However, as we will show, local constraints always allow
us to evaluate analytically all the covariances and hence the standard deviation σ ∗[X ] of any
property X .

Equation (A.24) is the key expression providing the statistical error associated with 〈X〉∗.
For any topological quantity X , our method allows us to assess whether the empirical value
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X (G∗) is consistent with the randomized value 〈X〉∗ within z standard deviations (where z is a
conveniently chosen threshold value), i.e. whether

|X (G∗)−〈X〉∗|6 zσ ∗[X ]. (A.27)

As long as the above inequality holds, it is legitimate to say that the particular property
X evidences no significant deviation of the real network G∗ from a null model where the
constraints EC are specified. This means that the observed value X (G∗) requires no explanation
besides those accounting for the observed values EC(G∗) of the constraints. By contrast, if the
above inequality is violated, then one has a signature that the observed network G∗ is not
completely a result of the specification of the constraints EC . Additional mechanisms, apart from
those determining the values of the constraints, are at work. In other words, higher-order patterns
that cannot be traced to low-level constraints are present, and our method is able to detect them.
In practice, in order to discriminate between the two possibilities, it is useful to compute the
two values

〈X〉∗± zσ ∗[X ] (A.28)

which delimit the region within which an observed value X (G∗) would imply the acceptance
of the null model from the one where an observed value X (G∗) would imply the rejection of
the null model. As an alternative, rather than fixing a threshold value for z, one can directly
compute the number of standard deviations by which the expected and the empirical values of
X differ, i.e. the z-score

z[X ]≡
X (G∗)−〈X〉∗

σ ∗[X ]
. (A.29)

Large positive (negative) values of z[X ] indicate that X (G∗) is substantially larger (smaller)
than expected, while small values signal no significant deviation from the null model (note,
however, as mentioned in the main text, that z-scores are easily interpretable only for normally
distributed properties).

This concludes the description of our method in its general form. In what follows, we
consider the particular case of interest for the present analysis, i.e. when the constraints EC are
(either binary or weighted) local topological properties or when they are nonlocal but simple
enough to preserve the analytical character of the method.

Appendix B. Local constraints

The most important case is when the constraints EC are local (or first-order) topological
properties, i.e. properties determined by moving only one step away from a vertex, thus reaching
only its first neighbours. In binary undirected networks the fundamental local property is the
degree ki =

∑
j 6=i ai j , while in weighted undirected networks the corresponding quantity is the

strength si =
∑

j 6=i wi j . In directed networks, a pair of inward and outward variants of the same
quantities (i.e. the in-degree k in

i and out-degree kout
i or the in-strength s in

i and out-strength sout
i )

characterizes the local properties of each vertex. Choosing local constraints is the natural option
when one is interested in understanding the effects that the specification of low-order properties,
involving only direct interactions, has on higher-order properties involving longer chains of
interactions. In what follows, we therefore discuss our method in detail in the particular case of
local constraints. We will consider both binary and weighted networks and both undirected and
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directed links. Importantly, we will show that in all these cases the graph probability P(G|Eθ)

factorizes as

P(G|Eθ)=
∏
i< j

Di j(gi j , g j i |Eθ), (B.1)

where the product runs over all unordered pairs of vertices (i, j) (with i < j) and Di j(g, g′|Eθ)

is the dyadic probability that the pair (gi j , g j i) takes the particular value (g, g′), i.e. the joint
probability that gi j = g and simultaneously g j i = g′. Clearly,

Di j(g, g′|Eθ)= D j i(g
′, g|Eθ). (B.2)

Note that Di j(g, g′|Eθ) is normalized such that∑
g,g′

Di j(g, g′|Eθ)= 1, (B.3)

where g and g′ run over all the allowed values for gi j and g j i (g = 0, 1 for binary networks,
whereas g = 0, 1 . . . +∞ for weighted networks; the same for g′). The marginal probability that
gi j takes the particular value g, independently of the value of g j i , is

Pi j(g|Eθ)=
∑

g′

Di j(g, g′|Eθ) (B.4)

and, consistent with equation (B.3), is normalized such that∑
g

Pi j(g|Eθ)= 1. (B.5)

Note that for undirected networks, where gi j = g j i by construction, we have

Di j(g, g′|Eθ)= δg,g′Pi j(g|Eθ) (B.6)

where δg,g′ = 1 if g = g′ and δg,g′ = 0 if g 6= g′.
The factorization of P(G|Eθ) according to equation (B.1) implies that equation (A.12) can

be rewritten as

〈gi j〉 =

∑
g

g Pi j(g|Eθ), (B.7)

which can always be obtained analytically. Using the latter, equation (A.10) can be simply
rewritten exactly as

EC(〈G〉∗)= EC(G∗), (B.8)

which allows the maximum-likelihood parameter values Eθ∗ appearing in 〈G〉∗ to be easily
calculated numerically. Alternatively (e.g. depending on the software used) one can calculate
Eθ∗ by directly maximizing the log-likelihood defined in equation (A.9), which in this case takes
the simpler form

L(Eθ)≡ lnP(G∗|Eθ)=
∑
i< j

lnDi j(g
∗

i j , g∗j i |Eθ) (B.9)

(we always adopted the maximization of the log-likelihood). In both cases, even for very
large networks, this preliminary parameter estimation takes negligible time with respect to the
calculation of any nontrivial topological property. This implies that equation (B.7) can always
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be evaluated exactly at the particular parameter choice Eθ∗, providing the correct value 〈gi j〉
∗

in terms of which the ensemble average 〈X〉∗ of any topological property X can be obtained
analytically through equation (A.17). Thus, as we discussed, the time required to obtain 〈X〉∗

(which formally is an average over all possible graphs in the ensemble) is just the same as that
required in order to measure X (G∗) on the real network G∗. This makes our method incredibly
faster than other randomization procedures that require the actual computational generation
of many randomized variants (necessarily sampling only a part of the ensemble) of the real
network, on each of which X must be computed explicitly before performing a final average
approximating 〈X〉∗.

The standard deviation σ ∗[X ] of any property X can be evaluated very easily as well.
Equation (B.1) implies that if (i, j) and (t, s) are two distinct pairs of vertices then

〈gi j gts〉 = 〈gi j〉〈gts〉, (B.10)

σ [gi j , gts]= 0. (B.11)

By contrast, if i = t and j = s, then

〈gi j gi j〉 = 〈g
2
i j〉 =

∑
g

g2 Pi j(g|Eθ), (B.12)

σ [gi j , gi j ]= 〈g
2
i j〉− 〈gi j〉

2
= σ 2[gi j ]. (B.13)

Finally, if i = s and j = t , we have

〈gi j g j i〉 =

∑
g,g′

gg′Di j(g, g′|Eθ), (B.14)

σ [gi j , g j i ]= 〈gi j g j i〉− 〈gi j〉〈g j i〉. (B.15)

Again, all the above quantities can be obtained analytically and evaluated exactly at the
particular value Eθ∗ solving equation (B.8). As a consequence, if equations (B.11), (B.13) and
(B.15) are inserted into equation (A.21), we find that the expression for the variance σ 2[X ] of
any topological property X reduces from equation (A.24) to the simpler formula

(σ ∗[X ])2
=

∑
i, j

[(
σ ∗[gi j ]

∂ X

∂gi j

)2

G=〈G〉∗
+ σ ∗[gi j , g j i ]

(
∂ X

∂gi j

∂ X

∂g j i

)
G=〈G〉∗

]
+ · · · (B.16)

involving only a single sum over pairs of vertices. In the above expression, we have kept our
convention to let the sum run always over all possible ordered pairs of vertices, thus considering
the pairs (i, j) and ( j, i) as distinct terms in the summation. For ensembles of directed networks,
gi j and g j i are different random variables that may or may not be dependent on each other
(depending on the enforced constraints, as we show in detail below). Equation (B.16) takes
care of both possibilities by including the covariance σ ∗[gi j , g j i ]. For ensembles of undirected
networks, gi j and g j i are actually the same random variable and are thus perfectly correlated,
which means that

√
σ ∗[gi j , g j i ]=

√
σ ∗[gi j , gi j ]= σ ∗[gi j ]. Again, equation (B.16) takes care of

this by compensating for the summation over a doubled number of terms with the presence of
the covariances, which exactly restore the correct expression. In this way, one does not have to
bother whether the network is undirected when using equation (B.16), which therefore applies
without modifications to all the cases we will consider below. Different cases only differ by
the specific expression of σ ∗[gi j , g j i ]. This is very convenient when implementing the formula
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computationally. Another desirable consequence of formally treating gi j and g j i as different
variables even in undirected networks is that in equation (B.16) the derivative ∂ X/∂gts of any
function X (G) of (a subset of) the entries {gi j} can always be computed by repeatedly applying
the elementary rule

∂gi j

∂gts
= δi tδ js (B.17)

(where δi j = 1 if i = j and δi j = 0 if i 6= j) for both directed and undirected graphs.
Summarizing the results discussed so far, we showed that for local constraints our method

allows 〈gi j〉
∗, 〈g2

i j〉
∗ and 〈gi j g j i〉

∗ to be computed exactly and to use them in order to obtain the
expected randomized value 〈X〉∗ and standard deviation σ ∗[X ] of any topological property X
through equations (A.17) and (B.16), respectively. Unlike alternative computational methods,
our approach is completely analytical and allows one to evaluate the randomized value 〈X〉∗

in just the same time as that required to measure X on the original real network G∗, plus
a negligible preliminary time required to find the parameter values Eθ∗ numerically through
equation (B.8). The simple steps through which our method proceeds in the case of local
constraints can be summarized as follows:

1. Choose the desired representation for the real network G∗ (directed/undirected,
binary/weighted) and the corresponding grand canonical ensemble of graphs {G}.

2. Specify the local constraints EC(G) and use them to write the Hamiltonian H(G, Eθ)=
Eθ · EC(G) and the probability P(G|Eθ)= e−H(G,Eθ)/Z(Eθ) according to equations (A.5)–(A.7).

3. Rewrite the graph probability analytically in the factorized form P(G|Eθ)=∏
i< j Di j(gi j , g j i |Eθ) according to equation (B.1).

4. Use Di j(g, g′|Eθ) to determine the basic quantities 〈gi j〉, 〈g2
i j〉 and 〈gi j g j i〉 according to

equations (B.7), (B.13) and (B.15), respectively.

5. Numerically determine the maximum-likelihood parameters Eθ∗ by solving equation (B.8)
or alternatively maximizing equation (B.9).

6. Use Eθ∗ to compute the ensemble average 〈X〉∗ and standard deviation σ ∗[X ] of any desired
topological property X , according to equations (A.17) and (B.16).

7. Assess whether the empirical value X (G∗) is consistent with the randomized one 〈X〉∗

using either the interval in equation (A.28) or the z-score in equation (A.29).

For completeness, in the above list we have included all the logical steps involving also the
initial derivation of the required analytical expressions. However, since those expressions have
already been derived in the literature for all the constraints we will consider in what follows, in
practice our method reduces to a straightforward application of the last three steps. For clarity,
in what follows we illustrate the method explicitly for a range of useful specific cases, i.e. for
various choices of the constraints EC and of the topological properties X . We will also highlight
in more detail the advantages with respect to alternative methods.

B.1. Undirected configuration model

For unweighted undirected networks, each graph G in the ensemble is uniquely specified by
its binary symmetric adjacency matrix A with entries ai j = a j i = 1 if vertices i and j are
connected, and ai j = a j i = 0 otherwise. Generally, one considers loop-less graphs with ai i = 0
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unless otherwise specified. This fixes the first step of our method according to the list shown
above. Thus we can replace G→ A and gi j → ai j in our general notation used so far.

Given a real binary undirected network A∗ with entries {a∗i j} and degree sequence Ek(A∗),
our method allows us to compare the properties of A∗ with those displayed by a randomized
ensemble of binary undirected graphs having, on average, the same degree sequence as A∗.
As we mentioned in section 2, the available methods have severe limitations. In particular, as
noted in [9] and [30], the incorrectness of equation (1) is a consequence of the fact that it is
not a proper maximum-entropy probability over the ensemble of binary graphs, i.e. it cannot
be traced back to a Hamiltonian model as the ones described in appendix A.1. By contrast, our
method provides the correct solution. The appropriate choice is to include the constraint EC = Ek
into equation (A.6) and obtain the corresponding correct probability [14]. This is precisely what
steps 2–4 of our method prescribe. For the sake of completeness, we briefly sketch the main
results. If EC(A)= Ek(A), the Hamiltonian reads

H(A, Eθ)=
∑

i

θi ki(A)=
∑
i< j

(θi + θ j)ai j . (B.18)

The partition function can be calculated exactly [14] as

Z(Eθ)=
∑

A

e−H(A,Eθ)
=

∏
i< j

(1 + e−θi−θ j ). (B.19)

Therefore the graph probability can be written in the factorized form (B.1) as follows:

P(A|Eθ)=
∏
i< j

Di j(ai j , a j i |Eθ)=
∏
i< j

Pi j(ai j |Eθ), (B.20)

where

Pi j(ai j |Eθ)= p
ai j

i j (1− pi j)
(1−ai j ) (B.21)

is the mass probability function of a Bernoulli-distributed binary random variable ai j , with
success probability

pi j =
e−θi−θ j

1 + e−θi−θ j
(B.22)

representing the probability that a link between i and j is present. Introducing the new variable
xi ≡ e−θ i , not to be confused with the symbol X used so far, and changing the notation from Eθ
to Ex , the expectation value of ai j is simply given by

〈ai j〉Ex = pi j =
xi x j

1 + xi x j
. (B.23)

Also, since a2
i j = ai j , the second moment is

〈a2
i j〉Ex = 〈ai j〉Ex . (B.24)

Finally, if (i, j) and (t, s) are two distinct pairs of vertices, then ai j and ats are independent
random variables and

〈ai jats〉Ex = 〈ai j〉Ex〈ats〉Ex . (B.25)

This completes the fourth step in our method.
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The fifth step consists in finding the particular parameter values Ex∗ that maximize equation
(B.9), which in this case reads

L(Ex)≡ lnP(A∗|Ex)=
∑

i

ki(A∗) ln xi −

∑
i< j

ln(1 + xi x j) (B.26)

Equivalently [30], the parameters Ex∗ can be found by solving the following N coupled equations
enforcing the desired constraints as in equation (B.8):∑

j 6=i

x∗i x∗j
1 + x∗i x∗j

= ki(A∗) ∀i. (B.27)

Importantly, since xi ≡ e−θ i and θi is a real number, the solution we are looking for is the
one where x∗i > 0 ∀i . This solution is unique. Even for large networks, the above parameter
estimation ranges from seconds to tens of seconds even on an ordinary laptop.

Once the parameters Ex∗ are found, we can proceed to the sixth step and exploit equation
(A.17) to obtain the expectation values of the properties X of interest:

〈X〉∗ =
∑

A

X (A)P(A|Ex∗)= X (〈A〉∗) + · · · . (B.28)

In particular, the expectation value of the ANND defined in equation (3) is

〈knn
i 〉
∗
=

∑
j 6=i

∑
k 6= j〈ai j〉

∗
〈a jk〉

∗∑
j 6=i〈ai j〉

∗
(B.29)

and the expectation value of the clustering coefficient defined in equation (4) is

〈ci〉
∗
=

∑
j 6=i

∑
k 6=i, j〈ai j〉

∗
〈a jk〉

∗
〈aki〉

∗∑
j 6=i

∑
k 6=i, j〈ai j〉

∗〈aki〉
∗

, (B.30)

where 〈ai j〉
∗
= x∗i x∗j /(1 + x∗i x∗j ). Similarly, the standard deviation σ ∗[X ] can be evaluated using

equation (B.16), which here reads

σ ∗[X ]=

√√√√∑
i, j

(
σ ∗[ai j ]

∂ X

∂ai j

)2

A=〈A〉∗
+ · · ·, (B.31)

where σ ∗[ai j ]=
√
〈ai j〉

∗(1−〈ai j〉
∗)=

√
x∗i x∗j /(1 + x∗i x∗j ). It is straightforward to obtain σ ∗[X ]

in terms of Ex∗ alone, by using the derivation rule (B.17):

∂ai j

∂ats
= δi tδ js. (B.32)

This can also be implemented symbolically in adequate software. Let us calculate explicitly the
standard deviations of the constraints:

σ ∗[ki ]=
√∑

j 6=i

(σ ∗[ai j ])2 =

√∑
j 6=i

p∗i j(1− p∗i j), (B.33)

which in turn imply that

σ ∗[ki ]

ki
=

√
1

ki
−

∑
j 6=i(p∗i j)

2

k2
i

. (B.34)
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Given the vertex i , if p∗i j � 1, j = 1, . . . , N and j 6= i , the trend decreases as k−1/2
i (which also

represents an upper bound for the ratio). The more this condition is violated (the vertex i has
a high degree, there are hubs in the network, etc), the more important the correction becomes,
lowering the ratio to eventually reach zero.

B.2. Directed configuration model (DCM)

Binary directed networks have an asymmetric adjacency matrix A with entries ai j = 1 if
a directed link from i to j is there, and ai j = 0 otherwise. Given a real binary directed
network A∗ with out-degree sequence Ekout(A∗) and in-degree sequence Ek in(A∗), our method
provides analytical expressions for the expectation values and standard deviations of topological
properties across the maximum-entropy ensemble of binary directed graphs with out-degree
sequence Ekout(A∗) and in-degree sequence Ek in(A∗). The Hamiltonian is now

H(A, Eα, Eβ)=
∑

i

[αi k
out
i (A) + βi k

in
i (A)]

=

∑
i 6= j

(αi + β j)ai j . (B.35)

The partition function can be calculated exactly [14] as

Z(Eα, Eβ)=
∑

A

e−H(A,Eα,Eβ)
=

∏
i 6= j

(1 + e−αi−β j ). (B.36)

The graph probability is now

P(A|Eα, Eβ)=
∏
i< j

Di j(ai j , a j i |Eα, Eβ)=
∏
i 6= j

Pi j(ai j |Eα, Eβ), (B.37)

where

Pi j(ai j |Eα, Eβ)= p
ai j

i j (1− pi j)
(1−ai j ), (B.38)

and

pi j =
e−αi−β j

1 + e−αi−β j
. (B.39)

Setting xi ≡ e−αi and yi ≡ e−β i , the expectation value of ai j is

〈ai j〉Ex,Ey = pi j =
xi y j

1 + xi y j
. (B.40)

The second moment is

〈a2
i j〉Ex,Ey = 〈ai j〉Ex,Ey. (B.41)

Finally, if (i, j) and (t, s) are two distinct pairs of vertices, now including the case (t, s)= ( j, i),
then

〈ai jats〉Ex,Ey = 〈ai j〉Ex,Ey〈ats〉Ex,Ey. (B.42)

The log-likelihood (B.9) to maximize is

L(Ex, Ey)=
∑

i

[
kout

i (A∗) ln xi + k in
i (A∗) ln yi

]
−

∑
i 6= j

ln(1 + xi y j), (B.43)
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and the values Ex∗ and Ey∗ that realize the maximum can alternatively be found by solving the 2N
coupled equations∑

j 6=i

x∗i y∗j
1 + x∗i y∗j

= kout
i (A∗) ∀i, (B.44)

∑
j 6=i

x∗j y∗i
1 + x∗j y∗i

= k in
i (A∗) ∀i, (B.45)

corresponding to equation (B.8). Again, we are looking for the solution where x∗i > 0 and y∗i > 0
∀i . Expectation values can still be obtained using equation (B.28). In particular, the directed
ANNDs defined in equations (9) and (10) have expectation values

〈knn,out
i 〉

∗
=

∑
j 6=i

∑
k 6= j〈ai j〉

∗
〈a jk〉

∗∑
j 6=i〈ai j〉

∗
, (B.46)

〈knn,in
i 〉

∗
=

∑
j 6=i

∑
k 6= j〈a j i〉

∗
〈ak j〉

∗∑
j 6=i〈a j i〉

∗
, (B.47)

where 〈ai j〉
∗
= x∗i y∗j /(1 + x∗i y∗j ). Similarly, the standard deviation σ ∗[X ] can still be evaluated

through equations (B.31) and (B.32), now using σ ∗[ai j ]=
√

x∗i y∗j /(1 + x∗i y∗j ). Let us calculate
explicitly the standard deviations of the constraints:

σ ∗[kout
i ]=

√∑
j 6=i

p∗i j(1− p∗i j), (B.48)

σ ∗[k in
i ]=

√∑
j 6=i

p∗j i(1− p∗j i), (B.49)

which in turn imply that

σ ∗[kout
i ]

kout
i

=

√
1

kout
i

−

∑
j 6=i(p∗i j)

2

(kout
i )2

, (B.50)

σ ∗[k in
i ]

k in
i

=

√
1

k in
i

−

∑
j 6=i(p∗j i)

2

(k in
i )2

. (B.51)

Given the vertex i , if p∗i j � 1, j = 1, . . . , N and j 6= i , the trend decreases as (kout
i )−1/2 (which

also represents an upper bound for the ratio). The more this condition is violated (the vertex i has
a high out-degree, there are in-degree hubs in the network, etc), the more important becomes
the correction, lowering the ratio to eventually reach zero. Similar observations hold for the
in-degrees.

B.3. Weighted configuration model (WCM)

When weighted undirected networks are considered, each graph G in the ensemble is specified
by its non-negative symmetric matrix W whose integer entry wi j represents the weight of the
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link between vertices i and j (including wi j = 0 if no link is there). Thus, we can replace
G→W and gi j → wi j in the general notation. As we mentioned in the main text, in the WCM a
real weighted undirected network W∗ with entries {w∗i j} is compared with a maximum-entropy
ensemble of weighted undirected graphs having the same strength sequence Es(W∗). In our
method, by setting EC = Es into equation (A.6), we obtain the Hamiltonian

H(W, Eθ)=
∑

i

θi si(W)=
∑
i< j

(θi + θ j)wi j . (B.52)

The partition function is [22]

Z(Eθ)=
∑

W

e−H(W,Eθ)
=

∏
i< j

1

1− e−θi−θ j
(B.53)

and is only defined if θi > 0 ∀i . The graph probability is [22]

P(W|Eθ)=
∏
i< j

Di j(wi j , w j i |Eθ)=
∏
i< j

Pi j(wi j |Eθ), (B.54)

where

Pi j(wi j |Eθ)= p
wi j

i j (1− pi j) (B.55)

is the mass probability function of a geometrically distributed [23] integer random variable wi j ,
with success probability

pi j = e−θi−θ j (B.56)

representing the probability that a link between i and j is present. Introducing xi ≡ e−θ i ∈ [0, 1),
the expectation value of wi j is

〈wi j〉Ex =
pi j

1− pi j
=

xi x j

1− xi x j
. (B.57)

Now in general w2
i j 6= wi j , and the second moment is

〈w2
i j〉Ex =

pi j(1 + pi j)

(1− pi j)2
=

(xi x j)(1 + xi x j)

(1− xi x j)2
. (B.58)

Finally, if (i, j) and (t, s) are two distinct pairs of vertices, then

〈wi jwts〉Ex = 〈wi j〉Ex〈wts〉Ex . (B.59)

The log-likelihood (B.9) reads

L(Ex)≡ lnP(W∗
|Ex)=

∑
i

si(A∗) ln xi +
∑
i< j

ln(1− xi x j) (B.60)

and the parameters Ex∗ maximizing it solve the following N coupled equations,∑
j 6=i

x∗i x∗j
1− x∗i x∗j

= si(A∗) ∀i, (B.61)

enforcing the desired constraints as in equation (B.8). Now the solution must be looked for in
the region 06 xi < 1 ∀i .
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Through the parameters Ex∗, we obtain the expectation values of the properties X of
interest:

〈X〉∗ =
∑

W

X (W)P(W|Ex∗)= X (〈W〉∗) + · · · . (B.62)

For instance, the expectation value of the weighted ANND defined in equation (19) is

〈k̃nn
i 〉
∗
=

∑
j 6=i

∑
k 6= j〈wi j〉

∗
〈w jk〉

∗

W ∗
∑

j 6=i〈wi j〉
∗

, (B.63)

where we have used 〈W 〉∗ =W ∗ (see the main text). Similarly, the weighted clustering
coefficient defined in equation (20) has the expectation value

〈c̃i〉
∗
=

∑
j 6=i

∑
k 6=i, j〈wi j〉

∗
〈w jk〉

∗
〈wki〉

∗

W ∗
∑

j 6=i

∑
k 6=i, j〈wi j〉

∗〈wki〉
∗

, (B.64)

where 〈wi j〉
∗
= x∗i x∗j /(1− x∗i x∗j ). Similarly, according to equation (B.16) the standard deviation

σ ∗[X ] is

σ ∗[X ]=

√√√√∑
i, j

(
σ ∗[wi j ]

∂ X

∂wi j

)2

W=〈W〉∗
+ · · ·, (B.65)

where σ ∗[wi j ]=
√

x∗i x∗j /(1− x∗i x∗j ). The rule (B.17) here reads

∂wi j

∂wts
= δi tδ js (B.66)

and allows us to obtain σ ∗[X ] in terms of Ex∗ alone. Let us calculate explicitly the standard
deviations of the constraints:

σ ∗[si ]=
√∑

j 6=i

(σ ∗[wi j ])2 =

√∑
j 6=i

〈wi j〉
∗(1 + 〈wi j〉

∗), (B.67)

which in turn imply that

σ ∗[si ]

si
=

√
1

si
+

∑
j 6=i(〈wi j〉

∗)2

s2
i

. (B.68)

Given the vertex i , if 〈wi j〉
∗
� 1, j = 1, . . . , N and j 6= i , the trend decreases as s−1/2

i . The
more this condition is violated (the vertex i has a high strength, there are ‘strength-hubs’ in
the network, etc), the more important the correction becomes. Note that for weighted networks
the second term has a positive sign. This means that the correction ‘increases’ the s−1/2

i trend,
which now represents a lower bound for the coefficient of variation.

Appendix C. Non-local constraints

Our model can also be applied to more complicated cases where the constraints are no longer
local. However, a necessary condition for our method to work with non-local constraints is that
equation (A.8) can still be expressed exactly in a form that does not require the enumeration of
all possible graphs (in other words, the partition function can be calculated analytically). In such
a case, equation (A.10) can still be used to calculate the parameters Eθ∗ exactly as in the local
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case, and at the same time those parameters can be used to obtain the analytical expressions for
the expected value and standard deviation of the topological properties of interest. Therefore,
only a limited number of non-local constraints lend themselves to an analytical treatment.
However, since the philosophy of randomization algorithms is always to enforce the simplest
constraints in order to detect higher-order patterns, it turns out that the mathematically tractable
constraints are also the ones of major interest. We now provide an explicit example of a choice
of non-local constraints that is often used in empirical studies and at that the same time both
preserves the analytical character of our method and yields exact results.

C.1. Reciprocal configuration model (RCM)

As discussed in the main text, a more constrained null model for a binary directed network A∗

is one where the three reciprocal degree sequences Ek→(A∗), Ek←(A∗) and Ek↔(A∗) are specified,
where

k→i (A∗)≡
∑
j 6=i

a∗i j(1− a∗j i), (C.1)

k←i (A∗)≡
∑
j 6=i

a∗j i(1− a∗i j), (C.2)

k↔i (A∗)≡
∑
j 6=i

a∗i ja
∗

j i . (C.3)

The Hamiltonian for this model is

H(A, Eα, Eβ, Eγ )=
∑

i

[αi k
→

i (A) + βi k
←

i (A) + γi k
↔

i (A)].

The nonlocality is manifest in the fact that, unlike the previous examples, now the (second-
order) constraints involve products of two adjacency matrix entries. Despite this complication,
the partition function can still be calculated exactly [11] as

Z(Eα, Eβ, Eγ )=
∏
i< j

(1 + e−αi−β j + e−α j−βi + e−γi−γ j ). (C.4)

The graph probability can still be expressed in the form (B.1), i.e.

P(A|Eα, Eβ, Eγ )=
∏
i< j

Di j(ai j , a j i |Eα, Eβ, Eγ ). (C.5)

In the above expression,

Di j(ai j , a j i |Eα, Eβ, Eγ )= (p→i j )a→i j (p←i j )a←i j (p↔i j )a↔i j (p=i j )a=i j

is the dyadic probability defined in terms of

a→i j ≡ ai j(1− a j i), (C.6)

a←i j ≡ a j i(1− ai j), (C.7)

a↔i j ≡ ai ja j i , (C.8)

a=i j ≡ (1− ai j)(1− a j i) (C.9)
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and

p→i j ≡ 〈a
→

i j 〉Ex,Ey,Ez =
xi y j

1 + xi y j + x j yi + zi z j
, (C.10)

p←i j ≡ 〈a
←

i j 〉Ex,Ey,Ez =
x j yi

1 + xi y j + x j yi + zi z j
, (C.11)

p↔i j ≡ 〈a
↔

i j 〉Ex,Ey,Ez =
zi z j

1 + xi y j + x j yi + zi z j
, (C.12)

p=i j ≡ 〈a
=
i j 〉Ex,Ey,Ez =

1

1 + xi y j + x j yi + zi z j
, (C.13)

where we have set xi ≡ e−αi , yi ≡ e−β i and zi ≡ e−γ i [22]. The above expressions represent the
dyadic expectation values.

A little algebra leads to the log-likelihood

L(Ex, Ey, Ez)=−
∑
i< j

ln(1 + xi y j + x j yi + zi z j) +
∑

i

[
k→i (A∗) ln xi + k←i (A∗) ln yi + k↔i (A∗) ln zi

]
(C.14)

and the values Ex∗, Ey∗ and Ez∗ that realize the maximum can alternatively [30] be found by solving
the 3N coupled equations

∑
j 6=i

x∗i y∗j
1 + x∗i y∗j + x∗j y∗i + z∗i z∗j

= k→i (A∗) ∀i,

∑
j 6=i

x∗j y∗i
1 + x∗i y∗j + x∗j y∗i + z∗i z∗j

= k←i (A∗) ∀i,

∑
j 6=i

z∗i z∗j
1 + x∗i y∗j + x∗j y∗i + z∗i z∗j

= k↔i (A∗) ∀i,

corresponding to an example when equation (A.10) can be written explicitly even if the
constraints are non-local. We are looking for the solution where x∗i > 0, y∗i > 0 and z∗i > 0 ∀i .

The expectation values of topological properties involving products of dyadic terms can be
obtained exactly without resorting to the linear approximation in equation (A.17). For instance,
the number of occurrences of a particular motif m, where m labels one of the possible 13 non-
isomorphic connected motifs with three vertices, is

Nm ≡

∑
i 6= j 6=k

am,1
i j am,2

jk am,3
ki , (C.15)

where am,l
i j is one of the four possible dyadic relations a→i j , a←i j , a↔i j , a=i j , and {am,1

i j , am,2
jk , am,3

ki }

indicates the specific triplet of dyadic relations defining the motif m. The exact expectation
value of Nm is

〈Nm〉
∗
≡

∑
i 6= j 6=k

〈am,1
i j 〉

∗
〈am,2

jk 〉
∗
〈am,3

ki 〉
∗ (C.16)
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where 〈am,1
i j 〉

∗ is given by evaluating equations (C.10)–(C.13) at the particular values Ex∗, Ey∗, Ez∗.
The standard deviation of Nm , and in general of a topological property X , can still be obtained
using equation (B.16), i.e.

(σ ∗[X ])2
=

∑
i, j

[(
σ ∗[ai j ]

∂ X

∂ai j

)2

A=〈A〉∗
+ σ ∗[ai j , a j i ]

(
∂ X

∂ai j

∂ X

∂a j i

)
A=〈A〉∗

]
+ · · · , (C.17)

where now

(σ ∗[ai j ])
2
= 〈ai j〉

∗(1−〈ai j〉
∗)

= 〈a↔i j + a→i j 〉
∗(1−〈a↔i j + a→i j 〉

∗)

and

σ ∗[ai j , a j i ]= 〈ai ja j i〉
∗
−〈ai j〉

∗
〈a j i〉

∗

= 〈a↔i j 〉
∗
−〈a↔i j + a→i j 〉

∗
〈a↔j i + a→j i 〉

∗,

which are both known exactly in terms of equations (C.10)–(C.13). The calculations for the
standard deviations of the constraints are similar to the directed configuration model case:

σ ∗[ka
i ]=

√∑
j 6=i

(pa
i j)
∗(1− (pa

i j)
∗), (C.18)

which in turn implies that

σ ∗[ka
i ]

ka
i

=

√
1

ka
i

−

∑
j 6=i((pa

i j)
∗)2

(ka
i )

2
(C.19)

(where a =→,←,↔) and similar observations hold.

Appendix D. Comparison with computational microcanonical algorithms

The LRA-based microcanonical approach [4, 5] and our likelihood-based grand canonical
approach are in general not equivalent for finite networks. Let D( EC) be the set of all graphs
G that realize the enforced constraints EC = {Cα} exactly. Both approaches assign equal
probabilities to all graphs that realize the constraints, i.e. P(G1)= P(G2) if G1 ∈ D( EC) and
G2 ∈ D( EC). Also, in both approaches these graphs are the most likely to occur, i.e. P(G1) >

P(G2) for any G1 ∈ D( EC) and G2 /∈ D( EC). However, the two approaches are different, the
microcanonical one being very severe in assigning zero probability to any graph where the
degrees are not matched exactly, i.e. P(G)= 0 if G /∈ D( EC). By contrast, in the grand canonical
approach all possible graphs can occur, even though with very different probabilities, in such
a way that the ensemble average of the desired constraints over all graphs coincides with the
observed values (see figure D.1 for an illustration of this difference).

The above key and elegant property places grand canonical ensembles at the basis of
information theory. Notably, they are more robust to errors in the original data such as missing
or overrepresented links. In the presence of even a small percentage of such errors, the ‘true’
graph (the unobserved one affected by errors) will never appear in the microcanonical ensemble,
whereas it will appear with nonzero probability in the grand canonical ensemble. As is desirable,
for small deviations from the observed graph the true graph will have a slightly decreased
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Figure D.1. Difference between the LRA-based microcanonical approach
and our likelihood-based grand canonical approach. Top: the microcanonical
approach assigns nonzero probability only to the subset D( EC) of graphs that
realize the enforced constraints EC (in the example shown, a given value of
the number of links L) exactly. Bottom: by contrast, our grand canonical
approach assigns non-zero probability to all graphs, but this probability reaches
its maximum value for the graphs belonging to D( EC). In so doing, it is more
robust to potential errors in the original network data (such as missing links).

probability with respect to that assigned by our method to the observed graph, whereas for
larger errors the probabilities will differ to a larger extent.

Therefore, whereas in infinite systems the microcanonical and grand canonical ensembles
become equivalent since fluctuations about the average values become negligible, in finite
systems the use of grand canonical ensembles is preferable. What is of interest to us here is the
impact of the two methods on the topological properties induced on the randomized networks.
To this end, we now show explicitly the relationship between the two approaches when applied
to particular networks. We shall only consider unweighted networks for simplicity.

In the unweighted (either directed or undirected) case, our method directly provides ‘from
the beginning’ the explicit values of the probability pG

i j that a link from i to j exists. The
superscript G stands for ‘grand canonical’, and the probability is evaluated at the parameter
values that maximize the likelihood, as described above. By contrast, the microcanonical
approach samples the configuration space iteratively, and the microcanonical probability pM

i j
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Figure D.2. Convergence of the microcanonical connection probability pM
i j

(measured using the LRA) to the grand canonical probability pG
i j (obtained by

our maximum-entropy method) as the number R of local rewiring moves per
network increases.

that there is a link from i to j can only be evaluated as the frequency of occurrence of the link
over many randomizations. As the number of randomized networks increases, this frequency
will converge to pM

i j . However, this asymptotic value will also depend on the number R of
elementary rewiring steps used to obtain a single randomized network.

To see this, consider the trivial case R = 0. As no rewiring takes place, all the ‘randomized’
networks will in fact coincide with the original network. If the adjacency matrix of the latter
has elements {ai j}, this means that pM

i j = ai j . If R is nonzero but still very small, pM
i j will not

change substantially. Only if R is large enough will pM
i j approach pG

i j . This is shown explicitly
in figure D.2, where we plot pG

i j as a function of pM
i j for all directed pairs of vertices (i, j) by

taking the Little Rock Lake food web as the starting network. As R increases from R = 0 to
R = 10 000, the double-peaked shape (corresponding to pM

i j = ai j independently of pG
i j ) evolves

towards the identity pM
i j = pG

i j . Similar evolution patterns are observed for all the networks we
have analyzed. This clearly shows that in our method we obtain ‘from the beginning’ the values
pG

i j to which the microcanonical pM
i j will converge only after several iterations. Notably, the

number R of rewiring steps required for pM
i j to converge to pG

i j acceptably is not known a priori
and without the knowledge of pG

i j itself. This problematic aspect of the microcanonical approach
highlights another advantage of the grand canonical one.
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Figure D.3. The Kullback–Leibler information distance (1KL, green squares)
and the distance l2 (1l2 , blue circles) between microcanonical (pM

i j ) and
grand canonical (pG

i j ) marginal connection probabilities, plotted versus the link
density d .

The two approaches are, in general, not equivalent for finite networks. We can now state
this more rigorously, and indicate at least two ways in which they may differ.

First of all, pM
i j represent marginal probabilities, so the information about the correlations

between links connecting different pairs of vertices has been lost. While in the grand canonical
approach these correlations are absent, and different pairs of vertices are always statistically
independent, in the microcanonical approach some weak correlations will be preserved even
after many rewiring steps. These correlations arise from the microcanonical constraint of
matching the degree sequence (or other constraints) exactly. Thus, while our grand canonical
method enables us to compute the expected topological properties exactly, in the microcanonical
approach this is not possible.

Secondly, the final ‘convergence’ of pM
i j to pG

i j for R→∞will, in general, not hold exactly.
This means that the asymptotic plot of pG

i j versus pM
i j will not be a strict identity, but a narrow

scatter of points close to the identity. In other words, increasing R beyond a certain value will
not make the quantities converge further. For some networks (such as the Little Rock Lake food
web shown above) one may attain a better convergence than for others.

It is of interest to find out whether the degree of convergence between the two approaches
depends on some property of the network. To this end, we first define two measures of
discrepancy between {pG

i j } and {pM
i j } and then study how they behave on well-controlled,

artificially generated networks. As measures of discrepancy, we consider the l2 distance

1l2 ≡

√∑
i 6= j |p

G
i j − pM

i j |
2

N (N − 1)
(D.1)
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and the Kullback–Leibler information distance

1KL ≡

∑
i 6= j pM

i j (log2 pM
i j − log2 pG

i j )

N (N − 1)
+

∑
i 6= j(1− pM

i j )[log2(1− pM
i j )− log2(1− pG

i j )]

N (N − 1)
(D.2)

(note that we have normalized the above distances in such a way that both lie in the range [0,1]).
It is instructive to use these distances to compare the two methods on a family of artificially
generated networks. We considered N = 100 vertices, assigned each vertex a real value xi drawn
randomly in the interval [0,1] and established an edge between each pair of vertices i and j with
probability pi j = zx i x j/(1 + zx i x j).

This choice generates maximally random networks with degree distribution controlled
by {xi} as in equation (B.23), but has an additional parameter z that tunes the overall link
density d ≡ 2L/N (N − 1), representing the fraction of realized links. With {xi} kept constant,
we considered various choices of z and, for each of them, adopted both the microcanonical
randomization and our grand canonical method.

In figure D.3, we show the resulting difference between the marginal probabilities {pG
i j } and

{pM
i j }, as a function of link densities. The two methods yield very similar results for both small

and large link density, whereas for intermediate density values they display a greater difference.
Even in this case, however, the distances between them are 1l2 ≈ 0.05 and 1KL ≈ 0.12, both
small considering their possible range of variation.
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