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Abstract

Spectral Clustering clusters elements using the top few eigenvectors of their
(possibly normalized) similarity matrix. The quality of Spectral Clustering is
closely tied to the convergence properties of these principal eigenvectors. This
rate of convergence has been shown to be identical for both the normalized
and unnormalized variants ([17]). However normalization for Spectral Clus-
tering is the common practice ([16], [19]). Indeed, our experiments also show
that normalization improves prediction accuracy. In this paper, for the popular
Stochastic Blockmodel, we theoretically show that under spectral embedding,
normalization shrinks the variance of points in a class by a constant fraction.
As a byproduct of our work, we also obtain sharp deviation bounds of empirical
principal eigenvalues of graphs generated from a Stochastic Blockmodel.

1 Introduction

Networks appear in many real-world problems. Any dataset of co-occurrences or
relationships between pairs of entities can be represented as a network. For example,
the Netflix data can be thought of as a giant bipartite network between customers
and movies, where edges are formed via ratings. Facebook is a network of friends,
where edges represent who knows whom. Weblogs link to other blogs and give rise to
blog networks. Networks can also be implicit; for example, in machine learning they
are often built by computing pairwise similarities between entities.

Many problems in machine learning and statistics are centered around community
detection. Viral marketing functions by understanding how information propagates
through friendship networks, and community detection is key to this. Link farms in
the World Wide Web are basically malicious tightly connected clusters of webpages
which exploit web-search algorithms to increase their rank. These need to be identified
and removed so that search results are authentic and do not mislead users.

Spectral Clustering ([5], [7]) is a widely used network clustering algorithm. The
main idea is to represent every entity by its coefficients along the top k eigenvectors of
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a graph, and then cluster this spectral representation. Due to its computational ease
and competitive performance, emerging application areas of Spectral Clustering range
widely from parallel computing [11], CAD (computer aided design) [10], parallel sparse
matrix factorization [18] to image segmentation [20], general clustering problems in
Machine learning [16], and most recently, to fitting and classification using network
block models [19, 21].

A Stochastic Blockmodel is a widely used generative model for networks with
labeled nodes ([12], [19]). It assigns nodes to k different classes and forces all nodes in
the same class to be stochastically equivalent. For example, in a two class Stochastic
Blockmodel, any pair of nodes belonging to different classes link with probability γn

(a deterministic quantity possibly dependent on the size of the graph, i.e. n).
Recently the consistency properties of Spectral Clustering in the context of Stochas-

tic Blockmodels have attracted a significant amount of attention. Rohe et al. [19]
showed that, under general conditions, for a sequence of normalized graphs with
growing size generated from a Stochastic Blockmodel, Spectral Clustering yields the
correct clustering in the limit. In a subsequent paper Sussman et al. [21] showed that
an analogous statement holds for an unnormalized sequence of graphs. For finite k,
the above results can also be obtained using direct applications of results from [17].

This prior theoretical work does not distinguish between normalized and unnormal-
ized Spectral Clustering, and hence cannot be used to support the common practice
of normalizing matrices for Spectral Clustering. Let us elucidate this issue by an ex-
ample. We symmetrize the political blogs network [1], which is a directed network of
hyperlinks connecting nodes representing weblogs about US politics. The nodes are
labeled as “liberal” and “conservative” blogs. Misclassification rates using Spectral
Clustering for the political blogs dataset are 4% for Normalized vs. 37% for Unnor-
malized for this dataset. In this paper, we present both theoretical arguments and
empirical results to give a quantitative argument showing that normalization improves
the quality of clustering.

While existing work [19, 21] bounds the classification accuracy, we do not take
that route, since upper bounds can not be used to compare two methods. Instead,
we focus on the variance within a class under the spectral representation using the
top k eigenvectors. In this representation, by virtue of stochastic equivalence, points
are identically distributed around their respective class centers. Hence the empirical
variance can be computed using the average squared distance of points from their
class center.

We show that for both the normalized and unnormalized methods, the squared
distance between the two cluster centers is an order larger than the within class
variance, thus leading to perfect classification in the limit. However, our results also
indicate that the variance of points in a class increases as the graph gets sparser;
hence methods which reduce the within-class variance are desired. We show that
normalization indeed reduces the variance of points in a class by a constant fraction for
a large parameter regime. Also, in this setting, the distance between the class centers
can be thought of as bias; curiously, this distance approaches the same deterministic
quantity with or without normalization. So, normalization does not change the bias,
but shrinks the variance asymptotically.

2



We first prove that, for the simple case of disconnected clusters (γn = 0), the
within class variance is asymptotically four times less when the matrix is normalized.
While the simple case is on its own uninteresting, the proof idea is heavily used for
the more general case. In the general setting, we derive asymptotic expressions of the
within class variances; then by evaluating them we show that as γn increases, the ratio
of within class variances (with normalization to without normalization) increases. For
sparse graphs, this ratio is less than one for a large regime of γn (in particular, when
γn is less that four fifths of the within class linkage probabilities).

This parameter regime with more within-class edges than across class edges can
seem to be easy to cluster. However in sparse graphs, clustering this case can be
relatively difficult. Of course, as n grows, both methods have enough data to distin-
guish between the clusters and behave similarly. But for small and sparse graphs, it
is indeed an important regime. Sussman et al. [21] present a parameter setting where
normalization is shown to hurt classification accuracy empirically. We show that this
is but a partial picture; and in fact there is a large parameter regime where spectral
clustering with normalized matrices yields tighter and hence better clusters.

Using quantifiable link prediction experiments on real world graphs and classifi-
cations tasks in labeled simulated graphs, we show that normalization leads to better
classification accuracies for the regime dictated by our theory, and yields higher link
prediction accuracy on sparse real world graphs.

2 Preliminaries and Import of Previous Work

In this paper we will only work with two class blockmodels. Given a binary n × 2
class membership matrix Z, the edges in A are simply outcomes of

(
n
2

)
independent

Bernoulli coin flips. The Stochastic Blockmodel ensures stochastic equivalence of
nodes within the same block; i.e. all nodes within the same block have identical
probability of linking with other nodes in the graph.

Thus the conditional expectation matrix P can be described by three probabilities,
namely αn, βn, γn; where αn and βn denote the probabilities of connecting within the
first and second classes (C1 and C2) respectively, and γn denotes the probability
of connecting across two classes. All statements in this paper are conditioned on
αn, βn, γn and Z.

Definition 2.1 (A Stochastic Blockmodel). Let Z ∈ {0, 1}n×2 be a fixed and unknown
matrix of class memberships such that every row has exactly one 1, the first and
second columns have nπ and n(1 − π) ones respectively. A Stochastic Blockmodel
with parameters (αn, βn, γn, Z) generates symmetric graphs with adjacency matrix A
such that, P (A(i, i) = 1) = 0, ∀i. For i > j, Aij = Aji are independent with
P (Aij = 1|Z) = Pij , where P is symmetric with Pij = αn for i, j ∈ C1, γn for
i ∈ C1, j ∈ C2 and βn for i, j ∈ C2.

For ease of exposition we will assume that the rows and columns of A are permuted
such that all elements of the same class are grouped together. We have P := E[A|Z].
Clearly, P is a blockwise constant matrix with zero diagonal by construction.
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We use a similar parametrization as [2] to allow for decaying edge probabilities
as n grows. Formally αn, βn and γn are proportional to a common rate variable ρn

where ρn → 0 as n → ∞, forcing all edge probabilities to decay at the same rate.
Thus it suffices to replace αn, βn or γn by ρn in orders of magnitude, e.g. the expected
degree of nodes in either class is C0nρn. We use “C0” to denote a generic positive
constant. All expectations are conditioned on Z; for notational convenience we write
E[.] instead of E[.|Z].

Since Spectral Clustering uses eigenvectors of A, the eigen-structure of P is of
interest. For two symmetric matrices PB, PD, and P := PB + PD, Weyl’s inequality
tells us that λi(PB) + λn(PD) ≤ λi(P ) ≤ λi(PB) + λ1(PD), where λi(.) is the ith

largest eigenvalue of matrix (.). Let PD be a diagonal matrix with first nπ elements
along the diagonal as −αn and remaining n(1 − π) elements as −βn. Hence PB is a
blockwise constant matrix of rank two. Thus, λi(PB) is O(nρn) for i ∈ {1, 2}, and
zero otherwise. Also λi(PD) is of the form −C0ρn ∀i. Hence we have:

When αnβn 6= γ2
n, λi =

{
OP (nρn) For i ≤ 2

OP (ρn) Otherwise
(1)

Let vi (λi) denote the ith eigenvector (eigenvalue) of matrix P . The ordering is in
decreasing order of λi. We will denote the ith empirical eigenvector (eigenvalue) by

v̂i (λ̂i).
Now we will define the normalized counterparts of the above quantities. Let

Ã := D−1/2AD−1/2, and also let P̃ := D−1/2P D−1/2, where D and D are the di-
agonal matrices of degrees and expected degrees respectively. We denote the first two
eigenvectors by u1 and u2, and the first two eigenvalues by ν1 and ν2. Similar to P ,
u1 and u2 also are piecewise constant vectors, with corresponding coefficients x̃1, ỹ1

and x̃2, ỹ2. The empirical counterparts of the eigenvectors and values are denoted
by ũi, ν̃i. One interesting fact about ũ1 is that the ith entry is proportional to

√
di,

where di is the degree of node i. However, one cannot explicitly obtain the form of
û1(i).

Among the many variants of Spectral Clustering, we consider the algorithm used
by [19]. The idea is to compute n × k matrix Q̂ with the top k eigenvectors of Ã

along its columns, and applies the kmeans algorithm on the rows of Q̂. The kmeans

algorithm searches over different clusterings and returns a local optima of an objective
function that minimizes the squared Euclidian distance of points from their respective
cluster centers.

Probabilistic bounds on misclassification error of Spectral Clustering under the
Stochastic Blockmodel has been obtained in previous work [19, 21]. However, up-
per bounds cannot be used for comparing two algorithms. It should also be noted
that, analysis of misclassification error relies on kmeans achieving the global opti-
mum, which is not guaranteed. Instead, we show that some simple clustering quality
metrics are improved by normalization, and these metrics are computable in terms
of an appropriately defined deviation of empirical eigenvectors from their population
counterparts.
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2.0.1 Quality Metrics

The quality metrics are defined as follows: the algorithm passes the empirical eigenvec-
tors to an oracle who knows the cluster memberships. The oracle computes cluster cen-
ters Kk :=

∑
i∈Ck

Q̂i/|Ck|, for us k ∈ {1, 2}. Let d2
11 denote the mean squared distance

of points in C1 from K1. To be concrete, we can write d̂2
11 =

∑
i∈C1

‖Q̂i − K1‖2/nπ.

Similarly define d̂2
12 as the mean square distance of points in C1 from K2, i.e. d̂2

12 =∑
i∈C1

‖Q̂i − K2‖2/nπ. One can analogously define d̂2
22 and d̂2

21. When the spectral

embedding uses Ã we will denote the distances by d̃2
11 and d̃2

12.
Although d2

11 seems like a simple average of squared distances; it actually has
useful information about the quality of clustering. For definiteness, let us take the
unnormalized case and examine points in C1. By stochastic equivalence, ∀i ∈ C1,
{v̂1(i), v̂2(i)} are identically distributed (albeit dependent) random variables. Now

d̂2
11 essentially is the trace of the 2 × 2 sample variance matrix, and hence measures

the variance of these random variables.
Ideally a good clustering algorithm should satisfy d2

11/d2
12

P→ 0. But we will show
that, this ratio converges to zero at the same rate, with or without normalization, in
consistence with previous work ([17], [19], and [21]). Furthermore, we will show that

d̃2
12/d̂2

12
P→ 1, i.e. the two methods do not distinguish between d2

12.
Interestingly, our results also imply that d2

11 becomes smaller as the graphs become
sparser, i.e. ρn decreases. Hence, if a method can be shown to reduce the variance
of points in a class by a constant fraction it would be preferable for sparse graphs.
Indeed we show that d̃2

11/d̂2
11 converges to a constant which is less than 1 for a broad

range of parameter settings of αn, βn and γn. In the simple disconnected case with
γn = 0, this constant is 1/4.

Another advantage of d2
11 is that, it can be conveniently expressed in terms of

an appropriately defined deviation of empirical eigenvectors from their population
counterpart. For any population and empirical eigenvector pair {v, v̂}, we consider
the following orthogonal decomposition: v = cv̂ + r, where c := vT v̂. The norm of
residual r will measure the deviation of v̂ from v. The deviation of ũ from u can be
measured similarly.

Since we are interested in two class blockmodels, we will mostly use ri, i ∈ {1, 2}
as the residual of the ith empirical eigenvector from its population counterpart, and
cjj := vT

j v̂j . We denote by v(C1) :=
∑

i∈C1
v(i)/nπ. A key fact is that v1, v2 (or

u1, u2) are both piecewise constant.

d2
11 =

1

c2
11

(∑

i∈C1

r1(i)2

nπ
− r1(C1)2

)
+

1

c2
22

(∑

i∈C1

r2(i)2

nπ
− r2(C1)2

)
(2)

d2
12 =

1

nπ

∑

i∈C1

‖Q̂i − K2‖2 = d2
11 + ‖K1 − K2‖2 (3)

We will denote the distances obtained from A by d̂.. and from Ã by d̃... For a wide
regime of (αn, βn, γn), we prove that d̃2

11 is asymptotically a constant factor smaller
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and hence better than d̂2
11. First, using results from [8] we will prove that for γn = 0,

d̃2
11 = 1/4d̂2

11(1 + oP (1)). In this case, the result can be proven using existing results
on Erdős-Rényi graphs [8] and a simple application of Taylor’s theorem. In order to

generalize the result to γn 6= 0, we would need new convergence results for A and Ã
generated from a Stochastic Blockmodel. All results rely on the following assumption
on ρn:

Assumption 2.1. We assume log n/nρn → 0, as n → ∞.

This assumption ascertains with high probability that the sequence of growing
graphs are not too sparse. The expected degree is np = O(nρn), and this is the
most commonly used regime where norm convergence of matrices can be shown
([9], [17], [4]). Note that this is also the sharp threshold for connectivity of Erdős-
Rényi graphs ([3]). We will now define a semi-sparse Stochastic Blockmodel, which is
what we would work with for this paper.

Definition 2.2 (A semi-sparse Stochastic Blockmodel). Define a Stochastic Block-
model with parameters αn, βn, γn and Z (see Definition 2.1). Let αn, βn and γn be
deterministic quantities of the form C0ρn. If ρn satisfies Assumption 2.1, we call the
Stochastic Blockmodel (αn, βn, γn, Z) a semi-sparse Stochastic Blockmodel.

Here is how the paper is organized: we present the main results in Section 3. The
proof of the simple γn = 0 case is in Section 4, whereas the expressions of d̂2

11 and d̂2
12

in the general case appear in Section 5. We derive the expressions of d̃2
11 and d̃2

12 in
Section 6. Experiments on simulated and real data appear in Section 7. The proofs of
accompanying lemmas presented in Sections 5 and 6 are provided in Appendices A, B
respectively. Finally, proofs of all other results used in this paper are presented in
Appendix C.

2.1 Import of Previous Work

By virtue of stochastic equivalence of points belonging to the same class, eigenvectors
of P map the data to k distinct points. This is why consistency of Spectral Clustering
is closely tied to consistency properties of empirical eigenvalues and eigenvectors. We
will show that current theoretical work on eigenvector consistency does not distinguish
between the use of normalized or unnormalized A.

One of the earlier results on consistency of Spectral Clustering can be found in [22],
where weighted graphs generated from a geometric generative model are considered.
While this is an important work, this does not apply to our random network model.

For any symmetric adjacency matrix A with independent entries, one can use re-
sults on random matrix theory from Oliveira [17] to show that the empirical eigenvec-
tors of a semi-sparse Stochastic Blockmodel converge to their population counterpart
at the same rate with or without normalization. If p : [n]2 → [0, 1] denotes the prob-
ability function P (Aij = 1) = 1 − P (Aij = 0) = p(i, j), and dp denotes the expected
degree, then:

Theorem 2.1. (Theorem 3.1 of [17]) For any constant c > 0 there exists another
constant C = C(c) > 0, independent of n or p, such that the following holds. Let

6



d := mini∈[n] dp(i), ∆ := maxi∈[n] dp(i). If ∆ > C log n, then for all n−c ≤ δ ≤ 1/2,

P
(

‖A − P ‖ ≤ 4
√

∆ log(n/δ)
)

≥ 1 − δ.

Moreover, if d ≥ C log n, then for the same range of δ:

P
(

‖Ã − P̃ ‖ ≤ 14
√

log(4n/δ)/d
)

≥ 1 − δ.

Let Πa,b(A) denote the orthogonal projector onto the space spanned by the eigen-
vectors of A corresponding to eigenvalues in [a, b]. A simple consequence of Theo-
rem 2.1 is that for suitably separated population eigenvalues the operator norm of the
difference of the eigenspaces also converges to zero.

Corollary 2.1. (Corollary 3.2 of [17]) Given some x > 0, let Nx(P ) be the set of all
pairs a < b such that a + x < b − x and P has no eigenvalues in (a − x, a + x)

⋃
(b −

x, b + x). Then for x > 4
√

∆ log(n/δ),

‖A − P ‖ ≤ 4
√

∆ log(n/δ)

⇒ ∀(a, b) ∈ Nx(P ), ‖Πa,b(A) − Πa,b(P )‖ ≤
(

4(b − a + 2x)

π(x2 − x
√

∆ log(n/δ))

)
√

∆ log(n/δ)

Similarly define Nx(P̃ ). Then for x > 14
√

log(4n/δ)/d,

‖Ã − P̃ ‖ ≤ 14

√
log(4n/δ)

d

⇒ ∀(a, b) ∈ Nx(P̃ ), ‖Πa,b(Ã) − Πa,b(P̃ )‖ ≤
(

4(b − a + 2x)

π(x2 − x
√

∆ log(n/δ))

)
√

log(n/δ)/d

In particular the R.H.S.’s of the above equations hold with probability ≥ 1 − δ for any
n−c < δ < 1/2.

A straightforward application of this corollary yields that Spectral Clustering for
Stochastic Blockmodel’s with A and Ã lead to OP (

√
log n/nρn) convergence of em-

pirical eigenvectors to their population counterparts. Further analysis shows that the
fraction of misclassified nodes go to zero at the same rate for A and Ã. We defer the
proof to Appendix C.

Corollary 2.2. Let A be generated from a semi-sparse Stochastic Blockmodel (Def-
inition 2.2) with γn > 0 and αnβn 6= γ2

n. Then, for i ∈ {1, 2}, ‖viv
T
i − v̂iv̂

T
i ‖ =

OP (
√

log n/nρn). Furthermore the fraction of misclassified nodes can be bounded by
OP (log n/nρn) for both methods.

Spectral Clustering with Ã derived from a Stochastic Blockmodel with growing
number of blocks has been shown to be asymptotically consistent [19]. Further, the
fraction of mis-clustered nodes is shown to converge to zero under general conditions.
These results are extended to show that Spectral Clustering on unnormalized A also
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enjoys similar asymptotic properties [21] . Sussman et al. [21] also give an example
of parameter setting for a Stochastic Blockmodel where Spectral Clustering using
unnormalized A outperforms that using Ã. We however demonstrate using theory
and experiments that, this is only a partial picture, and there is a large regime of
parameters where normalization indeed improves performance.

For the convenience of the reader, we list the different variables and their orders of
magnitude in Table 1. For deterministic quantities xn and cn, xn ≍ cn, simply means
that xn/cn converges to some constant as n → ∞. For two random variables Xn and
Yn, we use Xn ∼ Yn to denote Xn = Yn(1 + oP (1)). For the scope of this paper ‖.‖
will always mean the L2 norm, unless otherwise specified.
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Table 1: Table of notations.

ρn Edge probability I The n × n identity matrix.

n Number of nodes in the network Z n × 2 binary matrix of class memberships

Ci The ith group, i ∈ {1, 2} π |C1|/n

D Diagonal matrix of degrees D Diagonal matrix of expected degrees,
conditioned on Z

A Adjacency matrix Ã D−1/2AD−1/2

P E[A|Z] P̃ D−1/2P D−1/2

αn P [Aij = 1|i ∈ C1, j ∈ C1] ≍ ρn µ1 Dii/n, i ∈ C1; = παn + (1 − π)γn − αn/n ≍ ρn

βn P [Aij = 1|i ∈ C2, j ∈ C2] ≍ ρn µ2 Dii/n, i ∈ C2; = πγn + (1 − π)βn − βn/n ≍ ρn

γn P [Aij = 1|i ∈ C1, j ∈ C2] ≍ ρn µ
∑
i

Dii/n2 = πµ1 + (1 − π)µ2 ≍ ρn

di Dii, i ∈ {1, . . . n} = OP (nρn) d̄i

∑
j

[Aij − E[Aij |Z]] = OP (
√

nρn)

d̄
(1)
i

∑
j∈C1

[Aij − E[Aij |Z]] = OP (
√

nρn) d̄
(2)
i

∑
j∈C2

[Aij − E[Aij |Z]] = OP (
√

nρn)

E1

∑
i∈C1

di E2

∑
i∈C2

di

E
∑

i di x(C1) The average of x restricted to C1, i.e.
∑

i∈C1

x(i)

λi ith largest eigenvalue of P in magnitude νi ith largest eigenvalue of P̃ in magnitude
≍ nρn, for i ∈ {1, 2} ≍ 1, for i ∈ {1, 2}

vi ith eigenvector of P ui ith eigenvector of P̃

xk vk(i), k ∈ {1, 2}, i ∈ C1 ≍ 1/
√

n x̃k uk(i), k ∈ {1, 2}, i ∈ C1 ≍ 1/
√

n

yk vk(i), k ∈ {1, 2}, i ∈ C2 ≍ 1/
√

n ỹk uk(i), k ∈ {1, 2}, i ∈ C2 ≍ 1/
√

n

λ̂i ith largest eigenvalue of A in magnitude; ν̃i ith largest eigenvalue of Ã in magnitude

v̂i ith eigenvector of A ũi ith eigenvector of Ã

K1

∑
j∈C1

Q̂j/nπ K2

∑
j∈C2

Q̂j/nπ

Q̂ n × 2 matrix of top two empirical Q The population variant of Q̂
eigenvectors (of A) along the columns

d̂2
kℓ

∑
i∈Ck

‖Q̂i − Kℓ‖2/nπ d̃2
kℓ Variant of d̂2

kℓ using eigenvectors of Ã

C Q̂T Q cij Cij := vT
i v̂j

r̂i vi − (vT
i v̂i)v̂i, i ∈ {1, 2} r̃i ui − (uT

i ũi)ũi, i ∈ {1, 2}

9



3 Main Results

For the general case we derive the following asymptotic expressions of d2
11 and d2

12.
We recall that d2

11 measures the variance of points in class one under the spectral
representation, whereas d2

12 basically measures the distance between the class centers,
which can also be thought of as bias. We will show that normalizing A asymptotically
reduces the variance without affecting the bias. The proofs can be found in Sections 5
and 6. In Figure 1(A) we plot the ratio of d̃2

11/d̂2
11 for a case where αn = βn, π = 1/2.

The figure shows that for a large regime of αn, γn, in particular when γn < αn this
ratio is less than one.

Theorem 3.1. Let A be the adjacency matrix generated from a semi-sparse Stochastic
Blockmodel (αn, βn, γn, Z) where γn > 0 and αnβn 6= γ2

n. We define λi, xi, yi, for
i ∈ {1, 2} and π as in Table 1.

d̂2
11 ∼

[(
x2

1

λ2
1

+
x2

2

λ2
2

)
nπαn(1 − αn) +

(
y2

1

λ2
1

+
y2

2

λ2
2

)
n(1 − π)γn(1 − γn)

]
(4)

d̂2
12 ∼ 1/nπ(1 − π) (5)

Theorem 3.2. Let A be the adjacency matrix generated from a semi-sparse Stochastic
Blockmodel (αn, βn, γn, Z) where γn > 0 and αnβn 6= γ2

n.We define µ1, µ2 ν2, and π
as in Table 1.

d̃2
11 ∼

[
nπαn(1 − αn)

n3πµ2
1

(
1

4
+

(1 − π)γn

µ1ν2
2

)
(6)

+
n(1 − π)γn(1 − γn)

n3µ2
1

(
1

4π
+

παn

(1 − π)µ2ν2
2

)]

d̃2
12 ∼ 1

nπ(1 − π)
(7)

While both d2
11 and d2

12 both are approaching zero in probability, d2
11/d2

12 is C0/nρn

for both the normalized and unnormalized cases. In our regime of ρn this translates
to perfect classification as n → ∞. This is not unexpected because existing literature
has established that Spectral Clustering with both A and Ã are consistent in our
regime of ρn. Also, both d̂2

12 and d̃2
12 approach the same constant; however for a large

parameter regime, d̃2
11/d̂2

11 approaches a constant fraction.
While it may seem that a constant fraction is not significant, one should recall

that the d2
11 measures the variance of the points in C1, whereas d2

12 measures the
distance between the two cluster centers. Later we will show that the variance of the
points in a cluster increases as the edge probability ρn decreases. Hence, although in
the limit both methods can differentiate between the clusters, for small sparse graphs
shrinking the variance by a constant factor is indeed desirable.

Finally, in Figure 1(B) we plot the analytic ratio vs. ratios computed using simu-
lations. For n = 1000, we vary αn ∈ [0.4, 0.6], βn ∈ [0.5, 0.9] and γn/αn between zero
and two such that ∀αn, γn ≤ 1, and γ2

n 6= αnβn. We vectorize the three dimensional
array of αn, βn and γn, and plot the ratio on the Y axis; every point on the X axis
stands for a different setting.
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Figure 1: (A) Contour plot for d̃2
11/d̂2

11, for a blockmodel with π = 1/2, αn = βn. Y
axis has varying αn, X axis has varying γn/αn. (B) Analytic (red circle) vs. simulated

ratios (blue dots with errorbars) d̃2
11/d̂2

11. X axis has different settings of (αn, βn, γn)
triples.
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Analytic
Simulation

(A) (B)

For each setting we compare the average d̃2
11/d̂2

11 ratio (R in blue) by simulating
ten Stochastic Blockmodel graphs with the analytic formula (Ranalytic, in red). The
mean, median and maximum of |R(i, j, k) − Ranalytic(i, j, k)|/R(i, j, k) are given by
0.01, 0.008 and 0.03. Each repetition of the sawtooth like pattern corresponds to
increasing (αn, γn) values for a fixed βn value.

We note that the ratio increases for large (αn, γn) pairs. The simulated experiment
used by [21] where unnormalized performed better than normalized was with αn =
0.42, βn = 0.50, γn = 0.42 (and π = 0.60), where the analytic ratio also is larger than
one, and the graph is very close to an Erdős-Rényi graph. The mean, median and
maximum absolute relative error for d̃2

12 (d̂2
12) from 1/nπ(1 − π) are 0.01, 0.003 and

0.15 (0.01, 0.004 and 0.17) respectively. In both cases the maximum happens for the
{αn, βn, γn} combination where |αnβn−γ2

n| is the smallest, leading to most instability.
Since all our oP (1) terms are OP (1/

√
nρn), for this experiment these errors are indeed

justifiable.
A special case. When γn = 0, we have λ1 = nµ1, and x1 = 1/

√
nπ, which imme-

diately shows that normalization shrinks d2
11 by a factor of four. We call this simple

case the zero communication case, which can be thought of as two disconnected Erdős-
Rényi graphs. Under Assumption 2.1 each of the smaller graphs will be connected
with probability tending to one. Luxburg [15] already established that Spectral Clus-
tering achieves perfect classification in this scenario. We merely present this simple
setting because the ideas and proof techniques used here will be carried over to the
following sections where γn 6= 0.

Corollary 3.1. Let A be the adjacency matrix generated from a semi-sparse Stochastic
Blockmodel (αn, βn, γn, Z) (see Definition 2.2) where γn = 0 and αnβn 6= γ2

n . We

11



have:

d̂2
11

d̃2
11

∼ 4 (8)

d̂2
12

d̃2
12

∼ 1 (9)

d̂2
11

d̂2
12

= OP

(
1

nρn

)
(10)

d̃2
11

d̃2
12

= OP

(
1

nρn

)
(11)

The same holds for normalized and unnormalized versions of d2
22 and d2

21.

4 The Zero Communication Case

In this section we will present our result for two class block models (see Definition 2.2)
where γn = 0. We will heavily use the following orthogonal decomposition of the
population eigenvectors:

vk := ckkv̂k + rk for k ∈ {1, 2}, where ckk = vT
k v̂k.

Since γn = 0, A can be thought of as two disconnected Erdős-Rényi graphs of size nπ
and n(1 − π) (let the two adjacency matrices be denoted by A1 and A2 respectively.
W.L.O.G we assume παn > (1 − π)βn so that λ1 = nπαn + O(ρn) and λ2 = n(1 −
π)βn + O(ρn). We also assume that rows and columns of A are permuted so that
the first nπ entries are from C1 (we will not use this in our proofs, it only helps the
exposition).

Füredi and Komlós [8] show that for i ∈ {1, 2}, λ̂i = λi+OP (1), and maxi>2 |λi| =
OP (

√
nρn). Hence for large n, the second largest eigenvalue will come from A2, and

will have zeros along the first class, similar to the second population eigenvector.
Thus, r̂1(i) = 0 for i ∈ C2, and vice-versa.

Further, little algebra reveals that K1 = {ĉ11/
√

nπ, 0} and K2 = {0, ĉ22/
√

n(1 − π)}.

Computing d̂2
11 or d̃2

11 requires one to compute the norm and average of r̂k and r̃k

restricted to C1 (see Equation 2). For γn = 0, this reduces to examining r̂ and r̃ for
two Erdős-Rényi graphs.

Let us consider an Erdős-Rényi graph Gn,p. Since self loops are prohibited, the
conditional expectation matrix P is simply p(11T − I), which has n eigenvalues, the
largest of which is λ := (n − 1)p, and the rest are all −p. We denote by di the degree
of node i, and d̄i := di − (n − 1)p.

Let λ, v be respectively the principal eigenvalue and eigenvector pair whose em-
pirical counterparts are given by λ̂, v̂. Also let λ̃, ṽ be the corresponding quantities
for Ã. We require that all of v̂, v and ṽ are unit-length. We denote by 〈xi〉 the
a n length vector with the ith entry equaling xi. We note that v = 〈1/

√
n〉, and

ṽ =
〈√

di/
∑

j dj

〉
. Let ĉ := v̂T v and c̃ := ṽT v. We will prove that ‖r̂‖2 ∼ 4‖r̃‖2,

which will help us prove Corollary 3.1.
Before proceeding with the result, for ease of exposition we recall the orders of

magnitudes of some random variables used in the proof. Let E denote
∑

i di. We

12



have
∑

i d̄i = OP (n
√

ρn) (this is simply twice the sum of
(

n
2

)
centered Bernoulli(p)

variables) and
∑

i d̄2
i = n2p(1 + oP (1)). The later result can be obtained by showing

that the expectation is n(n − 1)p and the standard deviation is of a smaller order. A
detailed proof can be found in [8].

Lemma 4.1. Write the first population eigenvector v of an Erdős-Rényi (n, p) graph
adjacency matrix A as v = ĉv̂ + r̂. If p = O(ρn) satisfies Assumption 2.1, we have:

‖r̂‖2 ∼ 1

((n − 1)p)2

∑
i d̄2

i

n

Proof. Before delving into the proof, we state the main result from [8]. For an

Erdős-Rényi graph, λ̂1 = 1
T A1
n + (1 − p) + OP (1/

√
n). Since 1

T A1
n − (n − 1)p =

OP

(√
p(1 − p)

)
, we have: λ̂1 − (n − 1)p = OP (1). As the explicit form of v̂ is not

known, the following step is used to compute the norm of r̂.

(A − λ̂1I)r̂ =
〈

(di − λ̂1)
/√

n
〉

(12)

The proof is straight-forward. First we see that,

Av − λ̂1v = A(ĉv̂ + r̂) − λ̂1v = (A − λ̂1I)r̂.

Using v = 〈1/
√

n〉, Av − λ̂1v =
〈

(di − λ̂1)
/√

n
〉

, thus proving Equation 12. Now

Equation 12 and standard norm-inequalities yields ‖A − λ̂1I‖ ≤ (λ̂1 + max(λ̂2, |λ̂n|)),
where λ̂i is the ith largest eigenvalue of A.

Now, using results from [6] we have max(λ̂2, |λ̂n|) = OP (
√

np), and hence ‖A −
λ̂1I‖ ∼ np. Interestingly, note that r̂ ⊥ v̂, and hence ‖Ar̂‖/‖r̂‖ = OP (

√
np). Hence

‖(A − λ̂1I)r̂| ≥ λ̂1(1 + oP (1))‖r̂‖. Combining this with the former upper bound, we
have

‖(A − λ̂1I)r̂| ∼ λ̂1‖r̂‖.

Since, d̄i/
√

n = OP (
√

p(1 − p)), and E[di] = (n − 1)p, we have:

∑

i

(di − λ̂1)2

n
=
∑

i

d̄2
i

n
+ (λ̂1 − (n − 1)p)2 − 2(λ̂1 − (n − 1)p)

∑
i
d̄i

n
∼
∑

i

d̄2
i

n

The last step is true because
∑

i
d̄2

i

n = OP (np(1 − p)), whereas both λ̂1 − (n − 1)p

and
∑

i d̄i/n are OP (1). Simple application of the Cauchy Schwartz inequality shows
that the cross term is also OP (1). Now we have:

r̂T r̂ =
1

λ̂2
1

∑

i

(di − λ̂1)2

n
∼ 1

((n − 1)p)2

∑
i d̄2

i

n
(13)
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Since the form of ũ is known, r̃T r̃ can be obtained by using element-wise Taylor
expansion. The only complication arises because we often approximate the norm of
a length n vector by the norm of its first or second order Taylor expansion, where
n is growing to infinity. Hence we present the following helping lemma, where we
formalize sufficient conditions for neglecting lower order terms in such an expansion.

Lemma 4.2. Consider length n vector xn := cn + x1
n + Rn where cn is a vector of

constants c. If both ‖Rn‖ = oP (‖x1
n‖) and |∑i x1

n(i)/n| = oP (‖x1
n‖/

√
n), as n → ∞,∑

i(xn(i) −∑i xn(i)/n)2 ∼ ‖x1
n‖2.

The following lemma has the asymptotic form of ‖r̃‖2.

Lemma 4.3. Write the first population eigenvector v of an Erdős-Rényi (n, p) graph

normalized adjacency matrix Ã as u = c̃ũ + r̃. If p = O(ρn) satisfies Assumption 2.1,

‖r̃‖2 ∼ 1

4n(n − 1)p2

∑

i

d̄2
i

n

Proof Sketch. We will use the fact that ‖r̃‖2 = 1− c̃2 =
∑

i(ũi −
∑

i ũi/n)2. Since one
can explicitly obtain the expression of ui, the basic idea is to use term by term Taylor
approximation to obtain the norm. However, the issue is that we are summing over
n elements where n is going to infinity, and extra care is required for the remainder
terms; in particular, we will bound them uniformly over n.

It is easy to check that the vector
〈√

di/E
〉

is an eigenvector of Ã with eigenvalue

one. By virtue of Assumption 2.1 we know that A is connected with high probability,
and so the principal eigenvalue has multiplicity one. Thus ũ(i) =

√
di/E. Now

termwise Taylor approximation gives:

ũi =
1√
n

+
d̄i

2
√

n(n − 1)2p2
+ R, (14)

where R is a length n vector of remainder terms. We will now invoke Lemma 4.2.

Let cn be the vector of constants 1/
√

n, and x1
n := d̄i

2
√

d0E0
. Hence ‖x1

n‖ ∼ C0/
√

nρn,

and the mean of x1
n is is OP (1/

√
n3ρn) = oP (‖x1

n‖/
√

n). Using standard proba-
bilistic arguments and the form of R we show that ‖R‖ = oP (‖1/

√
nρn‖) (details in

Appendix C). Hence we have:

‖r̃‖2 =
∑

i

(ũi −
∑

i

ũi/n)2 ∼ 1

4n(n − 1)p2

∑

i

d̄2
i

n
.

Proof of Corollary 3.1. In order to compute d̃2
11 and d̂2

11, we need to compute
the norms and averages of r̂k and r̃k, k ∈ {1, 2} restricted to class C1. First note that
r̂1(C1) = r̂T

1 v1/
√

nπ = ‖r̂1‖2/
√

nπ by construction, and r̂2(i) = 0, for i ∈ C1. Hence∑
i∈C1

r̂1(i)2 = ‖r̂1‖2.
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Using Equation 2, d̂2
11 = (‖r̂1‖2/nπ − ‖r̂1‖4/nπ)/ĉ2

11 = ‖r̂1‖2/nπ. But ‖r̂1‖2

is the norm-square of the residual of the principal eigenvector from A1 which is a
Erdős-Rényi (nπ, αn) graph (see Lemma 4.1).

Now we consider the corresponding quantities from Ã. The only issue is that A
has two disconnected components (each of which are connected w.h.p, via Assump-

tion 2.1), and hence Ã will have two eigenvalues equal to one; hence the first two
eigenvectors can be any two orthogonal vectors spanning this eigenspace. Since Eu-
clidean distances (e.g. d̃2

11, d̃2
12 etc.) are preserved under rotation, any such pair of

vectors yield the same answer.
We will construct u1 and ũ1 as follows. u2 and ũ2 are defined analogously.

u1(i) =

{
1/

√
nπ For i ∈ C1

0 Otherwise
ũ1(i) =

{√
di/E For i ∈ C1

0 Otherwise

Since u and v are identical in the zero communication case, we have d̃2
11 =

‖r̃1‖2/nπ. However, r̃1 is simply the residual of the principal eigenvector from Ã1.
Now an application of Lemmas 4.1 and 4.3 proves Equation 8.

As for d̂2
12, note that v̂(C1) = vT

1 v̂/
√

nπ = ĉ11/
√

nπ. Hence, K1 = {ĉ11/
√

nπ, 0}
and K2 = {ĉ22/

√
n(1 − π), 0}. Thus ‖K1 − K2‖2 = (1 − oP (1))/nπ(1 − π), since both

ĉ2
11 = 1 − r̂T r̂ and ĉ2

22 = 1 − r̃T r̃ are 1 − oP (1) (Lemma 4.1). Since d̂2
11 = OP (1/n2ρn)

is of smaller order than ‖K1 − K2‖2, using Equation 3 we see that d̂2
12 ∼ 1/nπ(1 − π).

An identical argument shows that d̃2
12 ∼ 1/nπ(1 − π) yielding Equation 9. With or

without normalization, we have d2
11 = OP (1/n2ρn), whereas d2

12 ∼ 1/nπ(1 − π); this
yields Equations 10 and 11. Finally, an identical argument proves the result for the
normalized and unnormalized versions of d2

22 and d2
21.

5 The General Case: Unnormalized A

In this section we obtain expressions for d2
11 and d2

12 when γn 6= 0 for A. First we give
a simple lemma describing the eigen-structure of the conditional probability matrix
P . The proof is simple and is deferred to the appendix.

Lemma 5.1. Define a stochastic blockmodel (see Definition 2.2) with parameters
(αn, βn, γn, Z), where γn > 0 and αnβn 6= γ2

n. The two population eigenvectors of P
are piecewise constant with first nπ coefficients x1 and x2 respectively, and the second
n(1−π) coefficients y1 and y2 respectively. These coefficients are of the form C0/

√
n,

and they satisfy the following:

x2
1 + x2

2 = 1/nπ; y2
1 + y2

2 = 1/n(1 − π); x1y1 + x2y2 = 0 (15)

The two population eigenvalues λ1 and λ2 are of the form C′nρn and C′′nρn, where
C′ and C′′ are deterministic constants asymptotically independent of n; also, |λ1 −λ2|
is of the form C′′′nρn for some arbitrary constant C′′′, when γn > 0.

We will now lay the groundwork for our result on d̂2
11 and d̂2

12. In order to extend
the simple zero-communication case to the general case, we will need some key results.
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In this section, we first list those results, and then state the formal lemmas which show
that such a result can actually be proved. The proofs are deferred to Appendix A.
Recall the following decomposition of the population eigenvector:

vk = ckkv̂k + r̂k (16)

We would need the following three key components in order to use the same technique
as in Lemma 4.1:

1. Sharp deviation of empirical eigenvalues. For γn = 0, we have λ̂k = λk + OP (1).

2. Upper bound on ‖Ar̂k‖. For γn = 0, we have ‖Ar̂k‖ = OP (1).

3. Bound on the average of r̂k restricted to C1. For γn = 0 we have r̂k(C1) =
OP (1/n3/2ρn).

In Section A we will provide detailed proofs of the following theorems, which show
that the above results are also true when γn 6= 0.

In the following lemma we establish a sharp eigenvalue deviation result for block-
models similar to the one for Erdős-Rényi graphs presented in [8]. Füredi and Komlós
[8] use the Von Mises iteration (also popularly known as power iteration), which intu-
itively returns a good approximation of the principal eigenvalue in a few iterations if
the second eigenvalue is much smaller than the first. In [8] the second largest eigen-
value of the adjacency matrix is shown to be an order smaller than the first; hence
two steps of power iteration can be shown to give a OP (1) close approximation of λ̂1.
On the other hand, this approximation can also be shown to be OP (1) close to the
population eigenvalue λ1, thus giving the sharp deviation bound.

In a Stochastic Blockmodel the second largest eigenvalue is of the same order as
the first, which is problematic. However the third largest eigenvalue can be shown to
be OP (

√
nρn log n). Therefore we design a two-dimensional Von-Mises style iteration

argument, so that at any step, the residual vector is orthogonal to the first two
empirical eigenvectors and thus a OP (1) deviation of the empirical eigenvalues from
their population counterparts can be proved. While we prove this result only for the
two class blockmodels, the proof can be extended easily to k-class blockmodels.

Lemma 5.2. Consider a n node network generated from a semi-sparse Stochastic
Blockmodel (αn, βn, γn, Z) with γn > 0. We have,

For i ∈ {1, 2}, λ̂i = λi + OP (1)

Next we need to show that ‖Ar̂k‖ = OP (1), k ∈ {1, 2}, even when γn 6= 0. For
definiteness let k = 1. We want to emphasize that proving ‖r̂1‖ = OP (1/

√
nρn) is not

enough to get the above. By construction r̂1 is orthogonal to v̂1, and hence ‖Ar̂1‖ can

be upper bounded by |λ̂2|‖r̂‖. For an Erdős-Rényi graph, λ̂2 = OP (
√

nρn) leading to

an OP (1) bound, whereas for a Stochastic Blockmodel, λ̂2 = OP (nρn) leading to a
OP (

√
nρn) bound. We show the required result by proving that v̂T

2 r̂1 = OP (1/nρn).
Since v̂1 is orthogonal to v̂2, v̂T

2 r̂1 = v̂T
2 v1, which we prove to be OP (1/nρn) in the

following lemma.
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Lemma 5.3. For a Stochastic Blockmodel (αn, βn, γn, Z) with γn > 0, define vi =
ciiv̂i + r̂i, i ∈ {1, 2}. Also define c12 := vT

1 v̂2 and c21 := vT
2 v̂1. We have

‖r̂1‖2 = 1 − c2
11 = OP (1/nρn) ‖r̂2‖2 = 1 − c2

22 = OP (1/nρn)

c12 := vT
1 v̂2 = OP (1/nρn) c21 := vT

2 v̂1 = OP (1/nρn)

The final task is to show that r̂k(C1) and r̂k(C2) are small. The Cauchy-Schwarz
inequality gives |r̂k(C1)| ≤ ‖r̂k‖/

√
n = OP (1/n

√
ρn). However, for a Stochastic

Blockmodel, by virtue of stochastic equivalence, vk for k ∈ {1, 2} is piecewise constant,
i.e. all entries in C1 have value xk, whereas all in C2 have value yk. Now, entries of v̂k

in C1 (C2) constitute a noisy estimate of xk (yk). However, one should be able to get
an even better estimate by considering v̂k(C1) and v̂k(C2). Since r̂k(C1) reflects the
error of v̂k(C1) around xk, it is plausible that r̂k(C1) is an order smaller than ‖r̂k‖,
which is what we prove in the following lemma.

Lemma 5.4. Write vi := ciiv̂i + r̂i for i ∈ {1, 2}. Now we have,

For i, j ∈ {1, 2}, r̂i(Cj) = Op(1/n3/2ρn).

Before proceeding to prove our main result, we present the following simple con-
centration results, which are derived in the appendix.

Lemma 5.5. Denote d̄
(1)
i and d̄

(2)
i as the centered degree of node i restricted to blocks

C1 and C2 respectively. We have:

∑

i∈C1

(d̄
(1)
i )2 ∼ (nπ)2αn(1 − αn);

∑

i∈C1

(d̄
(2)
i )2 ∼ n2π(1 − π)γn(1 − γn) (17)

∑

i∈C1

(x1d̄
(1)
i + y1d̄

(2)
i )2 ∼

(
x2

1

∑

i∈C1

(d̄
(1)
i )2 + y2

1

∑

i∈C1

(d̄
(2)
i )2

)
. (18)

Now we prove Theorem 3.1. Surprisingly, d̂2
12 can be shown to be (1+oP (1))/nπ(1−

π), which does not depend on the parameters αn, βn or γn.

5.1 Proof of Theorem 3.1

Proof. We will first prove Equation 4 and then Equation 5.
Proof of Equation 4. Define r̂i as in Equation 16. First note that ‖r̂i‖2 =

OP (1/nρn) by Lemma 5.3. An argument similar to Lemma 4.1 gives:

For i ∈ {1, 2} (A − λ̂iI)r̂i = (A − P )vi + (λi − λ̂i)vi (19)

As discussed earlier, we have r̂T
1 v̂2 = vT

1 v̂2 since v̂1 ⊥ v̂2. But from Lemma 5.3, we
know that c12 = OP (1/nρn), and hence the projection of r̂1 on the second eigen-space

v̂2v̂T
2 only contributes ‖λ̂2c12v̂2‖ = OP (1). As λ̂3 = OP (

√
nρn log n), ‖Ar̂1‖ = OP (1).

We compute d̂2
11 by deriving asymptotic expressions of 1/nπ

∑
i∈C1

r̂k(i)2−r̂k(C1)2,
k ∈ {1, 2}. First we show that the second term is of lower order than the first. This
is because

∑
i∈C1

r̂1(i)2/nπ ≤ ‖r̂1‖2/nπ = OP (1/n2ρn), but r̂1(C1)2 = OP (1/n3ρ2
n)
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using Lemma 5.4. We will now focus on the elements of r̂1 belonging to C1. We also
denote by r̂1(1) the subset of r̂1 indexed by nodes in C1, and thus by [Ar̂1](1) the
subset of vector Ar̂1 indexed by C1. Also note that, ‖[Ar̂1](1)‖2 ≤ ‖Ar̂1‖2 = OP (1).

[Ar̂1](1) − λ̂1r̂1(1) = [(A − P )v1](1) + (λ1 − λ̂1)v1(1)

∑

i∈C1

r̂1(i)2 ∼

∑
i∈C1

(x1d̄
(1)
i + y1d̄

(2)
i )2

λ2
1

The last step is valid because, ‖(A − P )v1‖ can be shown to be OP (
√

nρn) (see

Appendix A) whereas ‖[Ar̂1](1)‖ = OP (1) and ‖(λ1 − λ̂1)v1(1)‖ = OP (1) using

Lemma 5.2. Similarly,
∑

i∈C1
r̂2(i)2 ∼ ∑

i∈C1

(x2d̄
(1)
i +y2d̄

(2)
i )2/λ2

2. Hence using Lemma 5.5,

Equation 18 we have:

d̂2
11 ∼ 1

nπ

[(
x2

1

λ2
1

+
x2

2

λ2
2

) ∑

i∈C1

(d̄
(1)
i )2 +

(
y2

1

λ2
1

+
y2

2

λ2
2

) ∑

i∈C1

(d̄
(2)
i )2

]
.

Now Lemma 5.5, Equation 17 yields Equation 4.

Proof of Equation 5.

We recall that Equation 3 gives: d̂2
12 = d̂2

11+‖K1−K2‖2, where Kk = {v̂1(Ck), v̂2(Ck)}, k ∈
{1, 2}. From Equation 16, we see that v̂i(C1) = (vi(C1) − ri(C1))/cii, and hence we
have:

v̂i(C1) − v̂i(C2) =

(
xi − yi

cii

)
−
(

ri(C1) − ri(C2)

cii

)
i ∈ {1, 2}

We will simply show that ‖K1 − K2‖2 =
(
(x1 − y1)2 + (x2 − y2)2

)
(1 + oP (1)),

which is = 1 + oP (1)/nπ(1 − π) using Lemma 5.1 (Equation 15). Since x1, y1, x2, y2

are of the form C0/
√

n and c2
ii = 1 − r2

ii, we can show that

2∑

i=1

(
xi − yi

cii

)2

=
1

nπ(1 − π)
+ OP (1/n2ρn).

Also, Lemma 5.4 shows that for i ∈ {1, 2}, ri(C1) = Op(1/n3/2ρn), and hence we have
Equation 5.

6 The General Case: Normalized A

As discussed in Section 4, both ν1 and ν̃1 (see Table 1) equal one, and ũ1(i) =
√

di/E.
In our analysis what naturally appears is the following notion of density, defined by
expected degree over n. All expectations are conditioned on Z. Let µ1 and µ2

the E[di|Z]/n for i in C1 and C2 respectively. Also let µ =
∑

ij Pij/n2. Hence
µ1 := παn+(1−π)γn−αn/n, and µ2 = (1−π)βn+πγn−βn/n, and µ = πµ1+(1−π)µ2.
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Also, we recall that d̄
(1)
i is the centered d

(1)
i , i.e. d

(1)
i − nπαn when i ∈ C1 and

d
(1)
i − nπγn when i ∈ C2.

The eigenvalues of P̃ can be obtained easily by applying Weyl’s inequality to
its rank two version, which does not have the restriction of zero diagonals. The
argument is analogous to that for eigenvalues of P , and follows in a manner similar to
that appearing in the paragraph preceding Equation 1. The expressions for the two
principal eigenvalues and eigenvectors of P̃ are stated below. Its proof is deferred to
Appendix B.

Lemma 6.1. Define a semi-sparse Stochastic Blockmodel (see Definition 2.2) with
parameters (αn, βn, γn, Z), where αnβn 6= γ2

n. The principal eigenvalues ν1 and ν2,

and the blockwise entries x̃1, ỹ1, x̃2 and ỹ2 of the principal eigenvectors of P̃ are given
by:

ν1 = 1 x̃1 =

√
µ1

nµ
ỹ1 =

√
µ2

nµ

ν2 = 1 − γnµ

µ1µ2
x̃2 =

√
(1 − π)µ2

nπµ
ỹ2 = −

√
πµ1

n(1 − π)µ

For all other eigenvalues of P̃ we have |νi| = O(1/n).

In order to obtain d̃2
11 (Equation 2), we need

∑
i∈C1

(ũ1(i)− ũ1(C1))2. Using ũ(C1) =
∑

i∈C1

ũ(i)/nπ and arguing as in Lemma 4.3, we see that:

∑

i∈C1

(ũ1(i) − ũ1(C1))2 ∼ 1

4n3µµ1

∑

i∈C1

d̄2
i . (20)

Computing
∑

i∈C1

(ũ2(i) − ũ2(C1))2 requires more in-depth analysis, since ũ2 cannot be

expressed in closed form as ũ1. Instead we look at a “good” approximation of ũ2,
such that the approximation error cannot mask its OP (1/

√
nρn) deviation from the

population counterpart u2. The very first guess is to construct a vector orthogonal
to ũ1. In that effect we present u0

g as in Equation 21. Define E1 :=
∑

i∈C1

di, and

E2 :=
∑

i∈C2

di.

u0
g(i) =





√
di

E1
For i ∈ C1

−
√

di

E2
For i ∈ C2

(21)

In spite of being a fair guess, u0
g masks the OP (1/

√
nρn) error. So we take a Von-Mises

iteration step starting with u0
g, and get a finer approximation, namely ug. We now

present element-wise Taylor expansions of ug similar to Section 4.
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Lemma 6.2. Define u0
g as in Equation 21. We have:

[Ãu0
g]i =





ν2

nπ
√

nµ1

(
1 − d̄i

2nµ1
+

d̄
(1)
i

nµ1ν2
− d̄

(2)
i

nµ2ν2

π

1 − π
+ Mi

)
i ∈ C1

− ν2

n(1 − π)
√

nµ2

(
1 − d̄i

2nµ2
− d̄

(1)
i

nµ1ν2

1 − π

π
+

d̄
(2)
i

nµ2ν2
+ M ′

i

)
i ∈ C2

The remainder vectors M and M ′ are of norm oP (C0/
√

ρn)

‖Ãu0
g‖ ∼ ν2

√
µ

n2π(1 − π)µ1µ2

The next lemma shows that ug has an approximation error of OP (
√

log n/n2ρ2
n).

The proof again is deferred to Appendix B.

Lemma 6.3. Define ug := Ãu0
g/‖Ãu0

g‖. Let cg := (ũ2)T ug, i.e. the projection of ug

on ũ2 and rg := ug − cgũ2. We have,

‖rg‖ = OP

(√
log n

n2ρ2
n

)
; cg = 1 − oP (1)

Now we are ready to derive the expressions of d̃2
11 and d̃2

12 (Theorem 3.2).

6.1 Proof of Theorem 3.2

Proof. We will first prove Equation 6 and then Equation 7.
Proof of Equation 6. Computing d̃2

11 only involves the entries of ũ2 indexed by

nodes in C1; hence we will apply Lemma 4.2 on ũ2(i), i ∈ C1. Using our construction:

ũ2 = (ug − rg)/cg where cg = 1 − oP (1). (22)

Using Lemma 6.2, for i ∈ C1, we can write each term of ug as:

ug(i) = χn(1 + x1
n(i) + Mi),

where x1
n and M are the first and remainder terms in the Taylor expansion of ug(i)/χn.

We have:

χn :=
ν2

nπ
√

nµ1‖Ãu0
g‖

∼
√

(1 − π)µ2

nπµ

x1
n(i) :=

d̄i

2nµ1
+

d̄
(1)
i

nµ1ν2
− d̄

(2)
i

nµ2ν2

π

1 − π
, i ∈ C1

We have:

∑

i∈C1

(
ug(i) − ug(C1)

χn

)2

=
∑

i∈C1

(
(x1

n(i) − x1
n(C1)) + (Mi − M(C1))

)2
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While ‖x1
n‖ = C0/

√
ρn (Lemma 5.5, Equation 18), x1

n(C1) = OP (1/
√

n2ρn), since
it involves averages of O(n2) independent Bernoulli’s. Also ‖M‖ = oP (1/

√
ρn), and

hence using a simple application of Cauchy-Schwarz inequality, one has:
∑

i∈C1

(ug(i) − ug(C1))
2 ∼ χ2

n

∑

i∈C1

x1
n(i)2. (23)

Finally, since ‖rg‖2 = OP (log n/(nρn)2) and
∑

i∈C1

(ug(i) − ug(C1))
2

= C0/nρn, from

Equations 22 and 23 we have:

1

nπ

∑

i∈C1

(ũ2(i) − ũ2(C1))2 ∼ χ2
n

nπ

∑

i∈C1

x1
n(i)2 (24)

With a little algebra Equations 20 and 24 give:

d̃2
11 ∼ 1

nπ

∑

i∈C1


 µ1

nµ

d̄2
i

4n2µ2
1

+
(1 − π)µ2

nπµ

(
− d̄i

2nµ1
+

d̄
(1)
i

nµ1ν2
− d̄

(2)
i

nµ2ν2

π

1 − π

)2



∼ 1

nπ

∑

i∈C1

[
(d̄

(1)
i )2

n3πµ2
1

(
1

4
+

(1 − π)γn

µ1ν2
2

)
+

(d̄
(2)
i )2

n3µ2
1

(
1

4π
+

παn − αn/n

(1 − π)µ2ν2
2

)]

The last step uses Lemma 5.5 (Equation 18).

Proof of Equation 7. Equation 3 gives, d̃2
12 = d̃2

11+‖K1−K2‖. Ki := {ũ1(Ci), ũ2(Ci)}
for i ∈ {1, 2}. The Taylor expansion used in Lemma 4.3 shows that the second order
terms are oP (1/n) whereas the first is of the form C0/n. For µ1 6= µ2, neglecting
second order terms gives:

(ũ1(C1) − ũ1(C2))2 ∼ (
√

µ1 − √
µ2)2

nµ
(25)

For the second part, Equation 22 and an argument shown earlier gives:

(ũ2(C1) − ũ2(C2))2 ∼ (ug(C1) − ug(C2))2

∼
(√

(1 − π)µ2

nπµ
+

√
πµ1

n(1 − π)µ

)2

(26)

Putting Equations 25 and 26 together yields Equation 7. When µ1 = µ2, the whole
contribution comes from the second eigenvector, and ũ1 only contributes oP (1/n)
terms.

7 Experiments

First, using simulations we demonstrate that normalization improves classification
accuracy in the regime surmised by our theoretical results. Next, link prediction
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experiments on real world co-authorship networks are presented to show the advan-
tage of normalization. We carry out two simulations; we investigate the behavior
of misclassification error with a fixed parameter setting and increasing n and chang-
ing parameter settings for a fixed n. For all simulations, a pair of training and test
graphs are generated from a Stochastic Blockmodel with a given parameter setting.
The model is fitted using Spectral Clustering (with or without normalization) using
the training graph whereas misclassification error is computed using the test graph.

7.1 Simulated Networks

Figure 2: For a fixed γn/αn ratio miss-classification error is plotted on the Y axis with
increasing αn on the X axis. (A) γn/αn = 0.025, (B) γn/αn = 0.125, (C) γn/αn = 0.4
and (D) γn/αn = 1.2.
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For a Stochastic Blockmodel with n = 1000, βn = αn and π = 1/2, we focus on
the semi-sparse regime, where expected degree is varied from 10-20. We vary αn ∈
[0.01, 0.018] (y axis) and γn/αn ∈ [0.005, 1.2] \ {1} (x axis). The γn/αn = 1 case
causes instability because it reduces the Stochastic Blockmodel to an Erdős-Rényi
graph, and hence is excluded. Since kmeans can return a local optimum, we run
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kmeans five times and pick the most balanced clustering, in particular the one whose
smallest cluster size is largest among the five runs.

For each of the parameter settings average results from twenty random runs are
reported with errorbars. In order to ensure that our parameter settings reflect the
regime of sparseness required for our theory to hold, we find the connected components
of the graph, and only work with those settings where the size of largest connected
component is at least 95% of the size of the whole graph. All computations are carried
out on the largest connected component. Therefore we never consider the simple case
of disconnected clusters. We also assume that k = 2 is known.

In each subfigure of Figure 2 we hold γn/αn fixed and plot the classification errors
of the two algorithms along the Y axis against increasing αn values on the X axis.
Across the subfigures γn/αn is increased. Our goal is to turn two knobs to adjust the
hardness of the classification problem. If one increases αn for a fixed value of γn/αn,
then the problem becomes easier as the expected degree increases with increasing αn.
On the other hand, increasing γn/αn makes it hard to distinguish between clusters.

According to our theoretical results, for small γn/αn ratios, normalization performs
better clustering under sparsity. In Figures 2 (A) and (B), we see that normalization
always has a smaller average error, although the difference is more striking for small
αn (average degree about 10). As αn is increased, both methods start to perform
equally well. In Figures 2(C) and (D), γn/αn is larger and thus the error rates are
also larger. In Figure 2(C) both methods behave similarly, and show improvement
with increasing αn. Finally in Figure 2(D) both misclassify about half of the nodes,
since the networks become close to Erdős-Rényi graphs; possibly with more data both
methods would perform better.

Figure 3: Miss-classification error with γn/αn on the x axis and increasing n on the
y axis.
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For the second simulation we fix αn = βn = 0.01, γn = 0.002, π = 0.40. Now in
Figure 3 we plot the errorbars on classification error from twenty random runs along
the Y axis and n is varied from 1000 to 2000 in the X axis. One can see that the
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normalized method consistently outperforms the unnormalized method; the margin
of improvement being more for small n (smaller average degree and hence sparser
graphs).

7.2 Real World Networks

Table 2: Table of AUC scores for Real data

AUC scores with AUC scores with
Dataset n Avg. Training Links Training Links

Degree Included Excluded

Unnorm. Norm. Katz Unnorm. Norm. Katz
HepTH 4795 4.6 .67 .82 .87 .59 .79 .79

NIPS 986 4.4 .75 .89 .75 .71 .90 .69

Citeseer 3857 5.6 .79 .96 .97 .65 .93 .90

For real world datasets we use co-authorship networks over T timesteps. The
nodes represent authors and edges arise if two authors have co-authored a paper
together. Since these networks are unlabeled, we cannot use classification accuracy
to measure the quality of Spectral Clustering. Instead, we choose the task of link
prediction to quantitatively assess the goodness of clustering. Since the number of
clusters is unknown, we learn k via cross validation. We obtain the training graph
(A1) by merging the first T-2 datasets, use the T-1th step (A2) for cross-validating k
and use the last timestep (A3) as the test graph.

We use a subset of the High Energy Physics (HepTH) co-authorship dataset (T =
6), the NIPS data (T = 9) and the Citeseer data (T = 11). Each timestep considers
1-2 years of papers (so that the median degree of the test graph is at least 1). In
order to match the degree regime of our theory, we remove all nodes with only one
neighbor from the training graph, and work with the largest connected component
of the resulting network. Cross validation and testing are done on the corresponding
subgraphs of T − 1 and T th timesteps respectively. The number of nodes and average
degrees are reported in Table 2.

In Section 1 we present the misclassification error on the the political blogs net-
work. This is possible because the entities are labeled as democratic and republican.
We preprocess the network as discussed above, and used k = 2.

7.2.1 Link Prediction Task

First, we learn the k ×k matrix P̂ of within and across class probabilities by counting
edges between (or across) two clusters. For testing we pick a hundred nodes at random
from nodes with at least one neighbor in the test graph. For node i we construct a
prediction vector of length n, whose jth entry is the linkage probability P̂ab learnt
using Spectral Clustering; here node i belongs to the ath cluster and node j belongs
to the bth cluster. For ground truth we compute the zero one vector representing
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presence or absence of an edge between nodes i and j from A3. These vectors are
concatenated to give one prediction vector and the corresponding ground truth.

Now the AUC score of the prediction vector is computed using the ground truth.
This is simply the area under the ROC curve obtained by plotting the false positive
rate along the x axis and the true positive rate along the y axis. In order to learn k,
we vary k from ten to a hundred. For each value of k we estimate Ẑ using Spectral
Clustering with k eigenvectors of A1 (or its normalized counterpart) and then estimate
the k × k conditional probability matrix; now AUC scores are computed using these
estimated quantities from A2. The k with the largest AUC score is picked and mean
AUC scores of five random runs on the test graph using this k is reported.

Since in a co-authorship network, same edges tend to reappear over time, it is often
possible to achieve high scores simply by predicting the edges which are already present
in the training data. This is why we examine AUC scores from two experiments:

1. Training links included in the test graph.

2. Training links excluded from the test graph.

The second task is harder. We compare our methods with the Katz similarity measure
between pairs of nodes ([13]). This measure simply computes a weighted sum of
number of paths between two nodes, the weights decreasing exponentially as the
length of the path grows. It has been shown to give competitive prediction accuracy
for link prediction tasks ([14]). In both panels Normalized performs close to or better
than the Katz score, and it outperforms Unnormalized consistently.

8 Summary and Discussion

Normalizing data matrices prior to Spectral Clustering is a common practice. In this
paper we propose a theoretical framework to justify this seemingly heuristic choice.
With a series of theoretical arguments, we show that for a large parameter regime,
in the context of network block models, normalization reduces the variance of points
in a given class under the spectral representation. We also present quantifiable clas-
sification tasks on simulated networks and link prediction tasks on real networks to
demonstrate that normalization indeed leads to better prediction accuracy. In order to
develop our theoretical argument, we also derive sharp deviation results on principal
empirical eigenvalues of graphs generated from a Stochastic Blockmodel.

For the scope of this paper we consider two class blockmodels. Our proof technique
for empirical eigenvalues of A can easily be generalized to more than two classes,
provided k is a constant. However for Ã we construct a guess for the second eigenvector
which is also orthogonal to the first. For k > 2, one would need to construct k
eigenvectors which are orthogonal to each other. This bookkeeping may be quite
cumbersome; and hence it is not obvious that the proof technique used for Ã can be
extended to more than two blocks. However we believe that the final result holds
for a fixed k > 2. In fact, for the real world graphs we learn k by cross validation,
and it often exceeds two; our results show that normalization improves link prediction
accuracy in those cases as well.

25



We conclude this paper with a note on some practical disadvantages of normal-
ization. For example, all disconnected components contribute eigenvalue one to the
eigen-spectrum of Ã. Thus, some of the top eigenvectors may be uninteresting. Un-
normalized Spectral Clustering does not have this issue. Another example is a small
well connected subgraph weakly connected to the rest of the graph. Here, the entries
of Ã corresponding to edges in the subgraph may end up having relatively larger val-
ues than the rest of the matrix. Hence the second empirical eigenvector may have
high values along this subgraph. If the subgraph is too small, this may again lead to
poor clustering.

For the political blogs network, if one does not remove degree-one nodes prior
to finding the largest connected component, then misclassification error rate is 50%
for normalized Spectral Clustering and 40% for unnormalized Spectral Clustering.
On the other hand, removing degree-one nodes drastically improves the error rate of
the normalized method to 4%, while not affecting the unnormalized method’s per-
formance. We also carried out the link prediction experiments without removing the
degree-one nodes; the relative behavior of the different algorithms remained essen-
tially unchanged. Thus, for the normalized method, sparse data artifacts may rank
uninteresting eigenvectors high, but the discriminating eigenvectors of Ã are often
more useful than those of A.
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A Supplementary Material for Analysis of A

Let A be generated from a (αn, βn, γn, Z) blockmodel defined in Definition 2.2. In this
section we will prove the lemmas on deviation of principal eigenvalues and eigenvectors
presented in Section 5. Theorem 2.1 ([17]) translates to the following:

Corollary A.1. Define a semi-sparse stochastic blockmodel (see Definition 2.2) with
parameters (αn, βn, γn, π). Assume W.L.O.G that παn > (1 − π)βn. Let A be the

adjacency matrix of a n node graph generated from this model. Let λ̂1, λ̂2 and λ̂3 be
the first, second and third largest eigenvalues (in magnitude) of A. Also, let λ1 and
λ2 be the population versions respectively. For the principal eigenvalues, we have, for
i ∈ {1, 2}, λ̂i = λi(1 + OP (

√
log n/nρn). For λ̂3 we have:

λ̂3 = OP (
√

nρn log n). (27)

Proof. The first result is a straightforward application of Corollary A.1, since d, ∆
and λi (see Lemma 5.1) are both of the form C0nρn. Also Assumption 2.1 guarantees

the condition on ∆. For the second result, Corollary A.1 gives us maxi≤n |λ̂i − λi| ≤
‖A − P ‖ = Op(

√
nρn log n). But this is an upper bound on |λ̂3 − λ3|, where we have

− max(αn, βn) ≤ λ3 ≤ − min(αn, βn); which readily gives the result.
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Now we present our sharp deviation bound on the principal empirical eigenvalues.
Let Q := [v1 v2] be the matrix with column vectors as the eigenvectors of the

population matrix. Also let Q̂ := [v̂1 v̂2] be the empirical version of Q. Let C be a

2 × 2 matrix with C = Q̂T Q. We write

Q = Q̂C + R (28)

It is important to note that Q̂T R is the 2 × 2 zero matrix. First we prove that the

norm of R is small. Let Λ̂ be the 2 × 2 diagonal matrix with the top two eigenvalues
(in magnitude) of A along its diagonals. Left multiplying Equation (28) by A, and

noting that AQ̂ = Q̂Λ̂ we get:

(A − P )Q = Q̂Λ̂C + AR − P Q = Q̂(Λ̂C − CΛ) + (AR − RΛ) (29)

By left multiplying each side of Equation 28 with its transpose we also have

CT C = I2×2 − RT R (30)

The above equation only means that C is close to an unitary matrix. In Lemma 5.3
we show that C is indeed close to an identity matrix as well.

First we will state a few lemmas which would be required to prove the concentra-
tion results. The proofs are deferred to the appendix.

Lemma A.1. Define a stochastic blockmodel (see Definition 2.2) with parameters
(αn, βn, γn, π). Assume W.L.O.G that παn > (1 − π)βn. We have

‖QT (A − P )Q‖ = OP (1) (31)

‖QT (A − P )2Q‖ = OP (nρn) (32)

‖(A − P )Q‖ = OP (
√

nρn) (33)

‖RΛ‖ ≥ min(|Λ11|, |Λ22|)‖R‖/
√

2 (34)

‖RT AR‖ ≤ ‖R‖2|λ̂3| (35)

‖RT A2R‖ ≤ ‖R‖2λ̂2
3 (36)

Lemma A.2. Let C be defined as in Table 1. For a real diagonal 2 × 2 matrix L, let
Γ be the 2 × 2 matrix of eigenvalues of CT LC. If Lii, i ∈ {1, 2} and |L11 − L22| are
all of the same order, we have:

Γii = Lii

(
1 + Op

(
1

nρn

))
For i ∈ {1, 2}

Lemma A.3. We have ‖R‖ = OP ( 1√
nρn

).

Proof. In Equation 29 we see that the two components are orthogonal in the sense that(
Q̂(Λ̂C − CΛ)

)T

(AR − RΛ) is the 2 × 2 zero matrix. Therefore by pre multiplying

each side of Equation 29 with its transpose we have

QT (A − P )2Q =
(

Q̂(Λ̂C − CΛ)
)T (

Q̂(Λ̂C − CΛ)
)

+ (AR − RΛ)
T

(AR − RΛ)
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Hence via Weyl’s identity and positive semi-definiteness of the first component on the
R.H.S we have,

‖(A − P )Q‖2 ≥ ‖AR − RΛ‖2 (37)

Since ‖RΛ‖ ≥ λ2‖R‖/
√

2, and ‖AR‖ ≤ λ̂3‖R‖, using Lemma A.1 (Equation 34) we

have ‖AR − RΛ‖ ≥ (λ2/
√

2 − λ̂3)‖R‖ = λ2(1 + oP (1))‖R‖. From Equation 37 and
Lemma A.1 (Equation 34 shows that ‖(A − P )Q‖ = OP (

√
nρn)) we get the following:

‖R‖ ≤ ‖(A − P )Q‖(1 + oP (1))

λ2
= OP (1/

√
nρn)

Proof of Lemma 5.2. We have QT AQ = CT Λ̂C + RT AR. Lemma A.2 shows that

‖Eig(CT Λ̂C) − Λ̂‖ = OP (1). Using Corollary A.1 and Lemma 5.1 we see that λ̂1,

λ̂2, λ̂1 + λ̂2 and λ̂1 − λ̂2 are of the form C0nρn(1 + OP (
√

log n/nρn), thus satis-
fying the condition of Lemma A.2. Using Lemma A.1 (Equation 35) and Corol-

lary A.1(Equation 27), we have ‖RT AR‖ ≤ ‖R‖2|λ̂3| = OP (
√

log n/nρn).
Thus for i ∈ {1, 2} we have:

|Eigi(Q
T AQ) − Λ̂ii| ≤ |Eigi(C

T Λ̂C) − Λ̂ii| + ‖RT AR‖ = OP (1).

On the other hand, since QT AQ = QT P Q + QT (A − P )Q = Λ + QT (A − P )Q, using
Weyl’s identity and Lemma A.1 (Equation 31), we also have

For i ∈ {1, 2} |Eigi(Q
T AQ) − Λii| = OP (1)

The above two equations prove that for i ∈ {1, 2}, λ̂i = λi + OP (1).

Previously we have shown that C is close to an unitary matrix; now we will prove
that when γn > 0, C is actually close to the identity matrix.

Proof of Lemma 5.3. Since Avi = ciiλ̂iv̂i + Ari = λ̂i(vi − ri) + Ari,

For i ∈ {1, 2} (A − λ̂iI)ri = (A − P )vi + (λi − λ̂i)vi (38)

Since ri is orthogonal to v̂i, the R.H.S of the above equation is also orthogonal to v̂i.
For definiteness, let i = 1. We define the pseudo-inverse of A − λ̂1I as

(A − λ̂1I)+ :=
∑

j 6=1

v̂j v̂T
j

λ̂j − λ̂1

; ‖(A − λ̂1I)+‖ ≤ 1

min
j 6=1

|λ̂j − λ̂1|
.

Since (A − λ̂1I)+(A − λ̂1I) = I − v̂1v̂T
1 , and rT

1 v̂1 = 0, left multiplying Equation 38

by (A − λ̂1I)+ we have:

r1 = (A − λ̂1I)+
(

(A − P )v1 + (λ1 − λ̂1)v1

)
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Using Lemma A.1 (Equation 33)

‖r1‖ ≤ 1

min
j 6=1

|λ̂j − λ̂1|
OP (

√
nρn) (39)

For j > 2, we have minj>2 |λ̂1 − λ̂j | ≥ |λ̂1| − maxj>2 |λ̂j | ≥ C0nρn(1 + oP (1)). Also,

|λ̂1 − λ̂2| = C0nρn(1 + oP (1)). Hence 1/ min
j 6=1

|λ̂j − λ̂1| = OP (1/nρn). This along with

Equation 39 gives the required bound on ‖r1‖. An identical argument works for ‖r2‖.
Now, c2

ii = 1 − ‖ri‖2 and hence we have:

1 − c2
ii = Op(1/nρn), for i ∈ {1, 2}.

Let us recall that c21 = vT
2 v̂1. Now

vT
2 (A − P )v̂1 = λ̂1c21 − λ2c21 = (λ̂1 − λ2)c21 (40)

We also have: vT
2 (A − P )v̂1 = (vT

2 (A − P )v1 − vT
2 (A − P )r1)/c11.Now, vT

2 (A − P )v1

is the off diagonal term of QT (A − P )Q, and from Lemma A.1 (Equation 31), we can
see that |vT

2 (A − P )v1| ≤ ‖QT (A − P )Q‖ = OP (1). Also, since ‖r1‖ = OP (1/
√

nρn),
and ‖(A − P )v2‖ = OP (

√
nρn) (Lemma A.1 Equation 33), by the Cauchy-Schwarz

inequality we have |vT
2 (A − P )r1| = OP (1). Since 1 − c2

11 = OP (1/nρn), |vT
2 (A −

P )v̂1| = OP (1). We also have λ̂1 = λ1 + OP (1), and hence (λ̂1 − λ2) ∼ (λ1 − λ2). We
can evaluate λ1 − λ2 exactly as C0nρn, and hence the result.

c21 = vT
2 (A − P )v̂1/(λ̂1 − λ2) = OP (1/nρn)

A similar argument yields the result for c12.

We now know that the norm of the residuals (r1 and r2) are small. But in order
to compute the distances in Equations 2 and 3, we would also need r1(C1), r2(C1)
etc. We now present the proof of Lemma 5.4.

Proof of Lemma 5.4. Note that r1 = c12v̂2 + R1, and r2 = c21v̂1 + R2, where each
of R1 and R2 are orthogonal to both v̂1 and v̂2. Hence, vT

2 R1 = RT
2 R1 = OP (1/nρn)

using the Cauchy-Schwarz inequality and Lemma A.3.
Because, r1 is orthogonal to v̂1, vT

1 r1 = rT
1 r1 = OP (1/nρn). Also, vT

2 r1 =
vT

2 (c12v̂2 + R1) = c12c22 + RT
2 R1. Lemma 5.3 shows that c12 = OP (1/nρn), and

hence vT
2 r1 is OP (1/nρn).

nπx1r1(C1) + n(1 − π)y1r1(C2) = rT
1 r1 =: W1

nπx2r1(C1) + n(1 − π)y2r1(C2) = vT
2 r1 =: W2

Solving for r1(C1) and r1(C2) we see that, r1(C1) = y2W1−y1W2

(x1y2−x2y1)nπ , and r1(C2) =
x2W1−x1W2

(x2y1−x1y2)n(1−π) . Using Lemma 5.1 we see that x1y2 − x2y1 6= 0 for γn > 0. In

particular, it is of the form C0/n. Hence we have:

r1(C1) = Op(1/n3/2ρn) r1(C2) = Op(1/n3/2ρn)

The result for r2(C1) and r2(C2) can be obtained analogously.
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B Supplementary Material for Analysis of Ã

Proof of Lemma 6.1. Since the graph defined with adjacency matrix P̃ is con-
nected for αn, βn, γn > 0, there is only one principal eigenvalue. The first eigenvalue
and vector are obtained by algebra. For the second eigenvector, we construct a vector
orthogonal to the first eigenvector and see that it is an eigenvector with eigenvalue
1 − γnµ/µ1µ2. This must be the second largest eigenvalue since we have shown that
|ν̃i| = O(1/n) for i > 2. It can be shown that ν2 = −1 iff αn = 0, βn = 0, γn > 0. The
condition αnβn 6= γ2

n ensures that ν2 is bounded away from zero by a constant.

Let us recall that we approximate ũ2 in two steps. First we construct a guess u0
g

orthogonal to ũ1 and then take a power iteration step from it to compute the second
guess ug. The next lemma computes term by term Taylor expansion of u0

g. This will
be used later in computing the error of ug.

Proof of Lemma 6.2. We have (Ãu0
g)i =

d
(1)

i√
diE1

− d
(2)

i√
diE2

. We recall that for i ∈ C1,

E[di] = nµ1, and for i ∈ C2, E[di] = nµ2. In the following Taylor series expansions
for i ∈ C1, S1 and Ri are the remainder terms.

1

E1
=

1

n2πµ1

(
1 − E1 − n2πµ1

n2πµ1
(1 + S1)

)

1√
di

=
1√
nµ1

(
1 − di − nµ1

2nµ1
(1 + Ri)

)
,

Simple applications of the Chernoff bound (Lemmas C.2 and C.4) show that maxi |Ri| =

oP (1) and |S| = oP (1). Let X̄ := X − E[X ]. Thus for i ∈ C1, and Ti = T
(1)
i + T

(2)
i +

T
(3)
i ,

d
(1)
i√

diE1

=
d

(1)
i√
nµ1

1

n2πµ1




1 − d̄i

2nµ1
− d̄iRi

2nµ1︸ ︷︷ ︸
T

(1)
i

− Ē1(1 + S1)

n2πµ1︸ ︷︷ ︸
T

(2)
i

+
d̄i(1 + Ri)

2nµ1

Ē1(1 + S1)

n2πµ1︸ ︷︷ ︸
T

(3)
i




=
(nπ − 1)αn√

nµ1

1

n2πµ1


1 +

d̄
(1)
i

(nπ − 1)αn︸ ︷︷ ︸
Gi

− d̄i

2nµ1︸ ︷︷ ︸
Hi

+T ′
i




T ′
i = Ti + TiGi − GiHi

We note that Gi − Hi is of the form c1
d̄

(1)
i

nρn
− c2

d̄
(2)
i

nρn
for constants c1, c2, and using an

argument similar to Lemma 5.5 (Equation 18) we see that ‖G − H‖ as well as ‖G‖
and ‖H‖ are of the form C0/

√
ρn(1 + oP (1)). We will show that ‖T ′‖ is oP (1/

√
ρn).

30



First we note that using applications of Chernoff bound (details in Lemmas C.2, C.4),
we have:

max
i

Ri = oP (1); ‖T (1)‖ = ‖H‖oP (1); (41)

‖T (2)‖ = OP

(
1

n

)
; ‖T (3)‖ = ‖H‖oP (1)

Since, ‖H‖ and ‖G − H‖ are of the same order, we have ‖T ‖ = ‖G − H‖oP (1). For

the GiHi term, since d̄i = d
(1)
i + d

(2)
i , this can be written as:

GiHi =
(d̄

(1)
i )2

2nµ1(nπ − 1)αn
+

d̄
(1)
i d̄

(2)
i

2nµ1(nπ − 1)αn
.

Using Lemma C.5 we see that the vectors formed by the two summands on the R.H.S
of the above equation are of norm OP (1/nρ2

n). Hence using the Cauchy-Schwarz
inequality one can bound the norm of 〈GiHi〉 by OP (1/

√
nρ2

n), which is again ‖G −
H‖oP (1) . Finally for Yi, we have

TiGi = GiHiRi + GiT
(2)
i + GiHi(1 + Ri)T

(2)
i .

Using Equation 41 and the bound on 〈GiHi〉 we have ‖Y ‖ = oP (G − H).
Similarly we can show that:

d
(2)
i√

diE2

=
γn√
nµ1

1

nµ2

(
1 − d̄i

2nµ1
+

d̄
(2)
i

n(1 − π)γn
+ T ′′

i

)

‖T ′′
i ‖ = oP

∥∥∥
〈

−d̄i/2nµ1 + d̄
(2)
i /n(1 − π)γn

〉∥∥∥ = oP (1/
√

ρn)

Thus, for the ith entry of Ãu0
g we have:

[Ãu0
g]i =





ν2

nπ
√

nµ1

(
1 − d̄i

2nµ1
+

d̄
(1)
i

nµ1ν2
− d̄

(2)
i

nµ2ν2

π

1 − π
+ Mi

)
i ∈ C1

− ν2

n(1 − π)
√

nµ2

(
1 − d̄i

2nµ2
− d̄

(1)
i

nµ1ν2

1 − π

π
+

d̄
(2)
i

nµ2ν2
+ M ′

i

)
i ∈ C2

‖M‖, ‖M ′‖ = oP (1/
√

ρn)

‖Ãu0
g‖ ∼ ν2

√
µ

n2π(1 − π)µ1µ2

Proof of Lemma 6.3. We have:

√
di =

√
nµ1 +

d̄i(1 + Si)

2
√

nµ1
;

1

E1
=

1

n2πµ1

(
1 − E1 − n2πµ1

n2πµ1
(1 + S1)

)
,
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Using arguments similar to Lemma 4.3 one can show that maxi |Si| and |S1| = oP (1).
This gives the following entrywise Taylor expansion for u0

g.

u0
g(i) =





1

nπ
√

nµ1

(
1 +

d̄i

2nµ1
+ Ti

)
i ∈ C1

−1

n(1 − π)
√

nµ2

(
1 +

d̄i

2nµ2
+ T ′

i

)
i ∈ C2

‖T ‖, ‖T ′‖ = oP (1/
√

ρn) (42)

It immediately follows that

‖u0
g‖2 ∼ µ

n2π(1 − π)µ1µ2
. (43)

Now we represent u0
g as

u0
g/‖u0

g‖ = c0
gũ2 + r0

g (44)

where c0
g = ũT

2 u0
g. Since u0

g is orthogonal to ũ1 (by construction), and ũ2 is orthogonal
to ũ1 by definition, r0

g is orthogonal to both ũ1 and ũ2.

Ãu0
g − ν2u0

g

‖u0
g‖ = c0

gũ2(ν̃2 − ν2) + (Ã − ν2I)r0
g

Now taking the squared norm of both sides yields,

‖Ãu0
g − ν2u0

g‖2

‖u0
g‖2

≥ ‖(Ã − ν2I)r0
g‖2 ≥ (ν2 − ν̃3)2‖r0

g‖2 (45)

since ‖(Ã − ν2I)r0
g‖ ≥ ‖ν2r0

g‖ − ‖Ãr0
g‖ ≥ (ν2 − ν̃3)‖r0

g‖. With ν̃3 = maxi>2 |ν̃i|, we

have ‖Ãr0
g‖ ≤ ν̃3‖r0

g‖, since r0
g is orthogonal to both the first and second eigenvectors

of Ã.
In order to compute ‖Ãu0

g − ν2u0
g‖2, we note that the leading term vanishes,

and the first order term dominates the remainder term. Now using Lemma 6.2 and
Equation 18, for some deterministic constants τk,1 and τk,2 (k ∈ {1, 2}) (which are
non-zero for γn > 0), we have:

‖Ãu0
g − ν2u0

g‖2 ∼ ν2
2

n3ρn

2∑

k=1

∑

i∈Ck

(
τk,1

d̄
(1)
i

nµ1
+ τk,2

d̄
(2)
i

nµ2

)2

= OP

(
1

n3ρ2
n

)
(46)

Using Theorem 2.1 and Lemma 6.1 we know that ν̃3 = OP (
√

log n/nρn) and hence
|ν2 − ν̃3| ∼ ν2, where ν2 is a deterministic constant independent of n. Plugging these
into equation 45, and using Equation 43 we have:

(ν2 − ν̃3)2‖r0
g‖2 = OP

(
1

nρn

)
→ ‖r0

g‖2 = OP

(
1√
nρn

)
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From equation 44 we have the following ortho-normal decomposition of ug:

ug =
c0

g ν̃2

‖Ãu0
g‖/‖u0

g‖
ũ2 +

Ãr0
g

‖Ãu0
g‖/‖u0

g‖
= cgũ2 + rg

where cg := (ũ2)T ug and rg :=
Ãr

0
g

‖Ãu0
g‖/‖u0

g‖
. From Lemma 6.2 we have ‖Au0

g‖ ∼
‖ν2u0

g‖. This shows that the residual rg has norm of the following order:

‖rg‖ =
‖Ãr0

g‖
‖Ãu0

g‖/‖u0
g‖

= OP

(
ν̃3‖r0

g‖
‖Ãu0

g‖/‖u0
g‖

)
= OP

(√
log n

n2ρ2
n

)

But c2
g = 1 − ‖rg‖2 = 1 − oP (1).

C Proofs of Ancillary Results

Proof of Corollary 2.2. Theorem 2.1 shows that indeed ‖A−P ‖ ≤ 4
√

∆ log(n/δ)
for A generated from a semi-sparse Stochastic Blockmodel. In fact, for γn > 0,
and αnβn 6= γ2

n, Lemma 5.1 shows that |λ1 − λ2| = C0nρn. Let x := |λ1 − λ2|/4,
ai := λi − 2x, and bi := λi + 2x, for i ∈ {1, 2}; there are no eigenvalues in (ai −
x, ai + x)

⋃
(bi − x, bi + x). Now, an application of Corollary 2.2 proves the result for

eigenvectors of A.
In spirit of the analysis of misclassification error in [19], we construct a matrix

Ψ such that the ith row is the center of the cluster assigned to node i, also denoted
by Ψi. Let O denote a 2 × 2 diagonal matrix with Oii = 1/v̂T

i vi. Then a node i is
correctly classified if for some j 6= i, ‖ΨiO − Qj‖ > ‖ΨiO − Qi‖.

We have ‖Qi − Qj‖ = 1√
nπ(1−π)

:= s. We will first show that ‖ΨiO − Qi‖ < s/2

is a sufficient condition for correct classification. So for i and j belonging to different
clusters, if ‖ΨiO − Qi‖ < s/2 we have:

‖ΨiO − Qj‖ ≥ ‖Qi − Qj‖ − ‖ΨiO − Qi‖ > s/2 > ‖ΨiO − Qi‖,

which implies that i is correctly classified. Now let M := {i : ‖ΨiO − Qi‖ ≥ s/2}.
The set of misclassified nodes is a subset of this set. We have:

|M| =
∑

i∈M
1 ≤ 1

4s2

∑

i∈M
‖ΨiO − Qi‖2 ≤ nπ(1 − π)

‖Ψ − QO−1‖2
F ‖O‖2

F

4

The kmeans algorithm minimizes ‖Ψ− Q̂‖F over all n×k dimensional real matrices Ψ

with at most two unique rows, we have ‖Ψ − Q̂‖F ≤ ‖Q̂ − QO−1‖F , which also gives

‖Ψ−QO−1‖F ≤ 2‖Q̂−QO−1‖F . However Corollary 2.2 shows that, the operator norm
‖viv

T
i − v̂iv̂

T
i ‖ = OP (

√
log n/nρn). Now, ‖vi − (vT

i v̂i)v̂i‖ = ‖(viv
T
i − v̂iv̂

T
i )vi‖ =

OP (
√

log n/nρn) for i ∈ {1, 2}; hence ‖Q̂ − QO−1‖F = OP (
√

log n/nρn). Moreover,

|1 − (vT
i v̂i)

2| = |vT
i (vi − (vT

i v̂i)v̂i)| = OP (
√

log n/nρn), giving ‖O‖F = 1 + oP (1).
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Hence we have, |M|/n = OP (log n/nρn), which upper bounds the fraction of misclas-

sified nodes. In order to analyze misclassification error of Ã, one can use Lemma 6.1
and Corollary 2.2 to first show that the eigenvectors of Ã converge in the appropriate
sense. Then, an identical argument yields the same rate for Ã.

Proof of Lemma 4.2. We have, xn(i)−∑i xn(i)/n = yn(i)+zn(i), where yn and zn

are the centered x1
n and Rn vectors respectively. Now, ‖zn‖2 ≤ ‖Rn‖2 = oP (‖x1

n‖2)
and ‖yn‖2 = ‖x1

n‖2(1 + oP (1)) by assumption |
∑

i x1
n(i)/n| = oP (‖x1

n‖/
√

n). In
fact, this assumption is stronger than one obtained by applying the Cauchy-Schwarz
inequality; it implies that the average is actually of a smaller order. Hence, ‖zn‖ =
oP (‖yn‖) and an application of the Cauchy-Schwarz inequality yields the result.

Proof of Lemma 4.3. We will use the fact that ‖r̃‖2 = 1−c̃2
11 =

∑
i(ũi−

∑
i ũi/n)2.

Since one can explicitly obtain the expression of ui, the basic idea is to use term by
term Taylor approximation to obtain the norm. However, the issue is that we are
summing over n elements where n is going to infinity, and extra care is required for
the remainder terms; in particular, we will bound them uniformly over n.

It is easy to check that the vector
〈√

di/E
〉

is an eigenvector of Ã with eigenvalue

one. Assumption 2.1 guarantees that A is connected with high probability, and so the
principal eigenvalue has multiplicity one. Thus ũ(i) =

√
di/E. We have

√
x =

√
x0 +

x − x0

2
√

x0
(1 + S)

1√
y

=
1√
y0

− y − y0

2y
3/2
0

(1 + S′). (47)

where S =
√

x0

∫ 1

0

(
(x0 + τ(x − x0))−1/2 − x

−1/2
0

)
dτ . For τ ∈ [0, 1], |(x0 + τ(x −

x0))−1/2 − x
−1/2
0 | ≤ |x−1/2 − x

−1/2
0 |, and hence |S| ≤ |(x0/x)1/2 − 1|. Similarly |S′| ≤

|(E0/E)3/2 − 1| = OP (
√

log n/n2ρn) applying the Chernoff bound (Lemma C.3).
Setting x = di, x0 = d0, where d0 := (n − 1)p y = E, y0 = E0 where E0 := n(n − 1)p
we get:

ũi =

√
d0√
E0

+
d̄i

2
√

d0E0

+ R

R =
d̄i

2
√

d0E0

Si − E − E0

2

√
d0

E3
0

(1 + S′) − E − E0

2
√

d0E3
0

d̄i(1 + Si)(1 + S′)

|S′| = oP (1), max
i

|Si| = oP (1)

We will now invoke Lemma 4.2. Let cn be the vector of constants 1/
√

n, and

x1
n := d̄i

2
√

d0E0
. Hence ‖x1

n‖ ∼ C0/
√

nρn, and the mean of x1
n is OP (1/

√
n3ρn) =

oP (‖x1
n/n‖/

√
n). Now an application of Chernoff bound (details in lemmas C.1, C.3

and C.4) we can show that ‖R‖ = oP (‖1/
√

nρn‖).

Lemma C.1. Let do := (n − 1)p, maxi

∣∣∣∣
(

di

d0

)−1/2

− 1

∣∣∣∣ = OP (
√

log n
np )
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Proof. Since (di − d0)−1/2 is well defined w.h.p and Lipschitz continuous, one can

show that for ǫ :=
√

6 log n
np , for large enough n, P (U

−1/2
i ∈ [1 − ǫ, 1 + ǫ]) ≥ 1 − 1/n2.

Now a simple union bound yields the result.

The following three lemmas can be proven in an analogous way.

Lemma C.2. maxi

∣∣∣∣
(

di

(n−1)p

)−3/2

− 1

∣∣∣∣ = OP (
√

log n
np )

Lemma C.3. Let E :=
∑

j dj, E0 := n(n − 1)p.

∣∣∣∣
(

E
E0

)−3/2

− 1

∣∣∣∣ = OP (
√

log n
n2ρn

)

Lemma C.4. We have 1
E ∼ 1

n(n−1)p .

Lemma C.5. Define d̄i := di − (n − 1)p, we have
∑

i d̄4
i = OP (n3ρ2

n).

Proof. First we compute
∑
i

E[d̄4
i ]. Let Āij := Aij − p, where A is the adjacency

matrix.

E[d̄4
i ] =

∑

j1,j2,j3,j4

E[Āij1 Āij2 Āij3 Āij4 ] = O(n2ρ2
n)

Since E[Āij ] = 0, and Āij and Āik are independent for j 6= k, all terms with exactly
one occurrence of Āij will contribute zero. Thus the above is obtained by setting
j1 = j2 and j3 = j4 6= j1 and considering different permutations to achieve similar
settings. We have:

var(d̄4
i ) ≤ E[d̄8

i ] =
∑

j1,j2,j3,j4,ℓ1,ℓ2,ℓ3,ℓ4

E[Āij1 Āij2 Āij3 Āij4 Āiℓ1 Āiℓ2 Āiℓ3 Āiℓ4 ] = O(nρn)4.

As for cov[d̄4
i , d̄4

k] = E[d̄4
i d̄4

k] − E[d̄4
i ]E[d̄4

k], we will first compute E[d̄4
i d̄4

k] which upper
bounds the covariance.

∑

j1,j2,j3,j4,ℓ1,ℓ2,ℓ3,ℓ4

E[Āij1 Āij2 Āij3 Āij4 Ākℓ1 Ākℓ2 Ākℓ3 Ākℓ4 ] = O(nρn)4

Thus var(
∑

i d̄4
i ) = O(n6ρ4

n) and E[
∑

i d̄4
i ] = O(n3ρ2

n) leading to the result.

Proof of Lemma A.1. In order to prove this lemma, we will first state a simple
result which will be used heavily. Let B be a symmetric 2 × 2 matrix with B11 = a,

B12 = c and B22 = b. The two eigenvalues of B are given by
a+b+

√
(a−b)2+4c2

2 and
a+b−

√
(a−b)2+4c2

2 . If a, b ≥ 0, we have:

‖B‖ =
a + b +

√
(a − b)2 + 4c2

2
. (48)

Now we present the proofs of Equations 31 to 36.
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Proof of Equation 31: . Let B := QT (A − P )Q. We see that the entries of B are

of the form

a
∑

i∈C1

(d
(1)
i − nπαn) + b

∑

i∈C2

(d
(2)
i − n(1 − π)βn) + c

∑

i∈C1

(d
(2)
i − n(1 − π)γn).

For B11, a = x2
1, b = y2

1 and c = 2x1y1; for B22, a = x2
2, b = y2

2 and c = 2x2y2 and

for B12 a = x1x2, b = y1y2, and c = (x2y1 + x1y2). Now
∑

i∈C1
(d

(1)
i − nπαn) is the

sum of
(

nπ
2

)
centered Bernoulli random variables, and hence is OP (n

√
ρn). One can

show that
∑

i∈C2
(d

(2)
i −n(1−π)βn) and

∑
i∈C1

(d
(2)
i −n(1−π)γn) are also OP (n

√
ρn).

From Lemma 5.1 x1, x2, y1 and y2 are all of the form C0/
√

n. Hence B11, B12 and
B22 are all OP (1). Hence ‖B‖ ≤

√
2B∞ = OP (1).

Proof of Equation 32: . Let B := QT (A − P )2Q; we have:

B11 = ‖(A − P )v1‖2 B22 = ‖(A − P )v2‖2 B12 = B21 ≤
√

B11B22

Hence, Equation 48 gives ‖B‖ ≤ B11 + B22, where we have:

B11 =
∑

i∈C1

(x1(d
(1)
i − nπαn) + y1(d

(2)
i − n(1 − π)γn))2 +

∑

i∈C2

(x1(d
(1)
i − nπγn) + y1(d

(2)
i − n(1 − π)βn))2

B22 =
∑

i∈C1

(x2(d
(1)
i − nπαn) + y2(d

(2)
i − n(1 − π)γn))2 +

∑

i∈C2

(x2(d
(1)
i − nπγn) + y2(d

(2)
i − n(1 − π)βn))2

We note that we have E[
∑

i∈C1

(d
(1)
i − nπαn)2] = (nπ)2αn(1 − αn), and var(

∑
i∈C1

(d
(1)
i −

nπαn)2) = O((nπ)3α2
n(1−αn)2) [8]. But the coefficients x1, x2, y1 and y2 are all of the

form C0/
√

n; now the Cauchy-Schwarz inequality gives: B11 and B22 are OP (nρn),
and hence Equation (32) is proven.

Proof of Equation 33. Note that ‖(A − P )Q‖ =
√

‖QT (A − P )2Q‖. This along

with Equation 32 gives Equation 33.

Proof of Equation 34. ‖RΛ‖ =
√

‖ΛRT RΛ‖. Let B := ΛRT RΛ. Let λ1 and λ2

be the diagonal elements of Λ. Also WLOG let |λ1| ≥ |λ2|. If the columns of R are
denoted by r1 and r2, then we have:

B11 = λ2
1rT

1 r1 B12 = λ1λ2rT
1 r2 B22 = λ2

2rT
2 r2

From Equation 48 we have, ‖B‖ ≥ (B11 + B22)/2 ≥ λ2
2(rT

1 r1 + rT
2 r2)/2. Also, using

the Cauchy-Schwarz inequality and Equation 48 we have: ‖RT R‖ ≤ (rT
1 r1 + rT

2 r2).
Hence ‖RΛ‖ ≥

√
λ2

2‖RT R‖/2, which gives us the result in Equation 34.

Proof of Equation 35. Let the eigenvalues of A be ordered as |λ̂1| ≥ |λ̂2| ≥

· · · ≥ |λ̂n|. The adjacency matrix A can be written as Q̂Λ̂Q̂T + Q̂′Λ̂′Q̂′T , where Q̂′ is
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the n × n − 2 matrix with columns as eigenvectors corresponding to the eigenvalues

i > 2. Λ̂′ is the n − 2 by n − 2 diagonal matrices with eigenvalues λ̂3, . . . , λ̂n along the

diagonal. We have ‖Λ̂′‖ = ‖λ3‖. Hence, ‖RT AR‖ = ‖RT Q̂′Λ̂′Q̂′T R‖ ≤ ‖R‖2|λ̂3|.

Proof of Equation 36. This is a simple consequence of the proof of Equation 35.

Lemma C.6. Let C be defined as in section A. ‖CCT − I2×2‖ = Op(1/nρn).

Proof. Equation 30 gives CT C = I2×2 − RT R. The eigenvalues of CCT and CT C are
the same; let us denote them by c1 and c2 (|c1| ≥ |c2|). Since ‖RT R‖ = Op(1/nρn)
(Lemma A.3), Weyl’s inequality yields ci ≤ 1 ≤ ci +‖RT R‖, i.e. ci ∈ (1−Op(1/n(1−
π)βn), 1), thus proving the result.

Proof of Lemma A.2. Let det(.) be the determinant of the square matrix (.), and
let trace(.) denote the trace of the square matrix (.). The product of the eigenvalues
of CT LC is given by Γ11Γ22 = det(CT LC). The sum of the eigenvalues is given
by Γ11 + Γ22 = trace(CT LC). Let M := CCT − I2×2. From Lemma C.6 we have
‖M‖ = Op(1/nρn). Every element of M is also Op(1/nρn) (using |Mij | ≤ ‖M‖F ≤√

2‖M‖). Hence for the sum we have: Γ11 + Γ22 = trace(CT LC) = trace(CCT L) =
trace(L + ML) = trace(L) + R, where |R| = ‖L‖OP (1/nρn). Also, for the product,

Γ11Γ22 = det(CT LC) = det(CT C) det(L) = det(I2×2 − RT R) det(L)

= ((1 − rT
1 r1)(1 − rT

2 r2) − (rT
1 r2)2) det(L) = det(L) (1 + S) ,

where S is OP (1/nρn). Now, Γii for i ∈ {1, 2} are solutions to the quadratic equation
x2 − (L11 + L22 + R)x + L11L22(1 + S). The solutions are given by

x =
L11 + L22 + R ±

√
(L11 + L22 + R)2 − 4L11L22(1 + S)

2

=
L11 + L22 + R ±

√
(L11 − L22)2 + R′

2
where |R′| = ‖L‖2OP (1/nρn)

If L11 − L22 is the same order as Lii, i ∈ {1, 2}, then a little algebra yields the
result.

Proof of Lemma 5.5. First we prove Equation 17.

Proof of Equation 17. We see that var[d̄
(1)
i ] = (nπ − 1)αn(1 − αn). Also

var((d̄
(1)
i )2) = E[(d̄

(1)
i )4] − E[(d̄

(1)
i )2]2. Now E[(d̄

(1)
i )4] =

∑
j1,j2,j3,j4

Āij1 Āij2 Āij3 Āij4 ,

where j1, j2j3, j4 ∈ C1. Because of pairwise independence we have,

E[
∑

j1,j2,j3,j4

Āij1 Āij2 Āij3 Āij4 ] = C0

∑

j1 6=j2

E[Ā2
ij1

]E[Ā2
ij2

] +
∑

j

E[Ā4
ij ]

= C0

(
nπ

2

)
α2

n(1 − αn)2 + nπE[Ā4
ij ] = OP (n2ρ2

n)
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As for the covariance terms we have for i 6= k ∈ C1,

E[(d̄
(1)
i )2(d

(1)
k )2] = E[

∑

j1,j2,ℓ1,ℓ2

Āij1 Āij2 Ākℓ1 Ākℓ2 ] =
∑

j1,ℓ1

E[Ā2
ij1

]E[Ā2
kℓ1

] + E[Ā4
ik]

= (
∑

j1∈C1

E[Ā2
ij1

])2 + E[Ā4
ik]

Hence cov((d̄
(1)
i )2, (d

(1)
k )2) = E[Ā4

ik]. Thus var(
∑

i∈C1
d̄2

i ) = OP (n3ρ2
n), and

∑
i∈C1

(d̄
(1)
i )2 ∼

∑
i∈C1

E[(d̄
(1)
i )2], proving the first result.

The second result is very similar, with the only difference that, i ∈ C1 and we are

dealing with
∑

j Āij with j ∈ C2. Thus, E[(d̄
(2)
i )2] = n(1 − π)γn(1 − γn). As before

var(d̄
(2)
i )2 = OP (n2ρ2

n). The difference is in the covariance terms; for i 6= k ∈ C1 we

see that (d̄
(2)
i )2 and (d

(2)
k )2 are independent, since none of the edges considered in the

two can be the same; this leads to zero covariance and gives the result.

Proof of Equation 18.

∑

i∈C1

(x1d̄
(1)
i + y1d̄

(2)
i )2 =

∑

i∈C1

(x2
1(d̄

(1)
i )2 + y2

1(d̄
(2)
i )2 + 2x1y1d̄

(1)
i d̄

(2)
i )

We will show that
∑

i∈C1

(d̄
(1)
i )2 and

∑
i∈C1

(d̄
(1)
i )2 are a larger order than

∑
i∈C1

d̄
(1)
i d̄

(2)
i .

Lemma 5.5 shows that
∑

i∈C1

(d̄
(1)
i )2 is C0n2ρn(1 + oP (1)). Using similar arguments

as in Lemma 5.5, one can show that
∑

i∈C1

(d̄
(1)
i )2 is of the same order. Now, for i ∈ C1,

E[d̄
(1)
i d̄

(2)
i ] = 0, since d̄

(1)
i and d̄

(2)
i are independent and have zero expectation. As for

var(d̄
(1)
i d̄

(2)
i ) = E[(d̄

(1)
i )2]E[(d̄

(2)
i )2] = OP (n2ρ2

n). For i 6= k ∈ C1,

cov(d̄
(1)
i d̄

(2)
i , d

(1)
k d

(2)
k ) =

∑

j1,ℓ1∈C1,j2,ℓ2∈C2

E[Āij1 Āij2 Ākℓ1 Ākℓ2 ] = 0

The last step is true because i 6= k ∈ C1, j1, ℓ1 ∈ C1, whereas j2, ℓ2 ∈ C2. Hence
Āij2 and Ākℓ2 will always be unpaired and hence contribute zero to the expectation.

Thus
∑

i∈C1
var(d̄

(1)
i d̄

(2)
i ) = OP (n3ρ2

n). This is of smaller order than
∑

i∈C1

(d̄
(1)
i )2 and

∑
i∈C1

(d̄
(1)
i )2, and hence we have our result.

Proof of Lemma 5.1. Let x and y be v(i) for i ∈ C1 and i ∈ C2 respectively. The
coefficients (x, y, λ) satisfy the following set of equations:

(nπαn − αn)x + n(1 − π)γny = λx; nπγnx + (n(1 − π)βn − βn)y = λy

If x or y is zero, then γn = 0, and we get the zero communication setting. When
γn > 0, x, y are nonzero and writing ξ = x/y and eliminating λ gives the following
quadratic equation.

πγnξ2 − (παn − (1 − π)βn − (αn − βn)/n)ξ − (1 − π)γn = 0 (49)
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Also, we have λ = n(πγnξ + (1 − π)βn − βn/n). If αnβn = γ2
n, then some algebra

shows that λ2 = OP (1); since this is not of the form C0nρn, our subsequent results
will not hold. An example of this is the case where αn = βn = γn, because then we
just have a Erdős-Rényi graph on hand.

For i ∈ {1, 2}, xi = ξi√
n(πξ2

i
+(1−π))

and yi = 1√
n(πξ2

i
+(1−π))

. Some algebraic

manipulation gives the first two expressions in Equation 15. From Equation 49, we
also have:

πγnx2 − (παn − (1 − π)βn − (αn − βn)/n)xy − (1 − π)γny2 = 0,

which gives x1y1 + x2y2 = (π(x2
1 + x2

2) − (1 − π)(y2
1 + y2

2)) γn

παn−(1−π)βn
= 0.
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