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Abstract—Community detection algorithms are fundamental
tools that allow us to uncover organizational principles in
networks. When detecting communities, there are two possible
sources of information one can use: the network structure, and the
features and attributes of nodes. Even though communities form
around nodes that have common edges and common attributes,
typically, algorithms have only focused on one of these two data
modalities: community detection algorithms traditionally focus
only on the network structure, while clustering algorithms mostly
consider only node attributes. In this paper, we develop Com-
munities from Edge Structure and Node Attributes (CESNA),
an accurate and scalable algorithm for detecting overlapping
communities in networks with node attributes. CESNA statis-
tically models the interaction between the network structure and
the node attributes, which leads to more accurate community
detection as well as improved robustness in the presence of
noise in the network structure. CESNA has a linear runtime
in the network size and is able to process networks an order
of magnitude larger than comparable approaches. Last, CESNA
also helps with the interpretation of detected communities by
finding relevant node attributes for each community.

I. INTRODUCTION

One of the most important tasks when studying networks
is that of identifying network communities. Fundamentally,
communities allow us to discover groups of interacting objects
(i.e., nodes) and the relations between them. For example,
in social networks, communities correspond to groups of
friends who attended the same school, or who come from
the same hometown [18]; in protein interaction networks,
communities are functional modules of interacting proteins [1];
in co-authorship networks, communities correspond to scien-
tific disciplines [13]. Identifying network communities allows
us to discover functionally related objects [12], [13], [25],
study interactions between modules [2], infer missing attribute
values [3], [7], and predict unobserved connections [6].

Identifying network communities can be viewed as a
problem of clustering a set of nodes into communities, where
a node can belong multiple communities at once. Because
nodes in communities share common properties or attributes,
and because they have many relationships among themselves,
there are two sources of data that can be used to perform
the clustering task. The first is the data about the objects
(i.e., nodes) and their attributes. Known properties of proteins,
users’ social network profiles, or authors’ publication histories
may tell us which objects are similar, and to which communi-
ties or modules they may belong. The second source of data
comes from the network and the set of connections between the
objects. Users form friendships, proteins interact, and authors
collaborate.
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However, clustering methods typically focus only one of
these two data modalities. In terms of attributes, clustering
algorithms [4], [14] identify sets of objects whose attributes
are similar, while ignoring relationships between objects. On
the other hand, community detection algorithms aim to find
communities based on the network structure, e.g., to find
groups of nodes that are densely connected [11], [22], but they
typically ignore node attributes.

By considering only one of these two sources of infor-
mation independently, an algorithm may fail to account for
important structure in the data. For example, attributes might
tell us to which community a node with very few links belongs
to; this would be difficult to determine from the network
structure alone. Conversely, the network might tell us that two
objects belong to the same community, even if one of them
has no attribute information. Thus, it is important to consider
both sources of information together and consider network
communities as sets of nodes that are densely connected, but
which also share some common attributes. Node attributes
can complement the network structure, leading to more pre-
cise detection of communities; additionally, if one source of
information is missing or noisy, the other can make up for
it. However, considering both node attributes and network
topology for community detection is also challenging, as one
has to combine two very different modalities of information.

Only recently have approaches for detecting communities
based on both sources of information been developed [3], [18]
(Table I). Many existing methods that combine network and
node attribute information use single-assignment clustering [9],
[19], [20], [27]; however, the applicability of these methods
is limited, as they cannot detect overlapping communities.
Approaches based on topic models [3], [17], [21], [23] al-
low overlapping communities to be detected. However, they
assume “soft” node-community memberships, which are not
appropriate for modeling communities because they do not
allow a node to have high membership strength to multiple
communities simultaneously [26]. Finally, all existing methods
are only able to handle relatively small networks: the networks
typically analyzed consist only of thousands of nodes [6], [17],
[18], [21].

Present work: Community detection in networks with node
attributes. Here, we develop a high-performance (accurate
and scalable) overlapping community detection method for
networks with node attribute information. We present Com-
munities from Edge Structure and Node Attributes (CESNA),
which is based on a generative model for networks with node
attributes. Our model advances existing approaches (summa-
rized in Table I) by making several innovations that ulti-
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Method class O H D N
Heuristics [9], [19], [20], [27] X v X 100,000
LDA-based [3], [6], [17], [21],[23] ¢V X / 85,000
Social circles [18] v /X 5,000
CESNA v v /v 1,000,000
TABLE L METHODS FOR COMMUNITY DETECTION IN NETWORKS

WITH NODE ATTRIBUTES. O: DETECTS OVERLAPPING COMMUNITIES?, H:
ASSIGNS HARD NODE-COMMUNITY MEMBERSHIPS?, D: ALLOWS FOR
DEPENDENCE BETWEEN THE NETWORK AND THE NODE ATTRIBUTES ?

(FIG. 1), N: LARGEST NETWORK THAT CAN BE PROCESSED IN 10 HOURS.

mately lead to better performance both in terms of accuracy
as well as scalability. First, our model allows us to detect
overlapping communities by employing hard node-community
memberships. This way, we can avoid the assumption of soft-
membership methods that nodes sharing multiple common
communities are less likely to be connected [26]. Second, in
contrast to a line of previous work [18], which assumed that
communities and attributes are conditionally independent given
the graph, we assume that communities “generate” both the
network as well as attributes (Figure 1). This way we allow
for dependence between the network and the attributes. Third,
to fit the model and thus discover communities, we develop
a block-coordinate ascent method where we can update all
model parameters in time /inear in the number of edges in the
network [25]. This makes our method scale to networks an
order of magnitude larger than what was possible by previous
methods.

To the best our knowledge, CESNA is the first overlapping
community detection method that models both hard node-
community memberships and the dependency between the
communities and attributes. Moreover, CESNA can detect
overlapping, non-overlapping, as well as hierarchically nested
communities in networks, while considering both node at-
tributes and graph structure.

We evaluate CESNA on six online social, information,
and content-sharing networks: Facebook, Google+, Twitter,
Wikipedia, and Flickr. We quantify CESNA’s accuracy in
detecting communities by comparing its predictions to hand-
labeled ground-truth communities. We compare CESNA to
state-of-the-art community detection methods, including those
that detect communities based only on the network structure,
methods based only on node attributes, and methods that
model both network structure and attributes jointly. Overall,
CESNA achieves a 47% improvement in the accuracy of
detected communities over the baselines we consider. We also
examine whether node attributes can boost the performance of
community detection algorithms in cases where the network
is noisy or not fully observed. We add noise to the network
and we find that the performance gap between CESNA over
competing methods increases as the network structure becomes
noisier and therefore less reliable. This means that CESNA is
able to successfully leverage node attributes to compensate for
missing or noisy information in the network structure.

To quantify the scalability of CESNA we measure its
running time on synthetic networks of increasing size. (See
the extended version [24].) Compared to existing methods,
the size of networks that CESNA can process far exceeds the
current state-of-the-art: CESNA can handle networks 100 times
larger than LDA-based methods [3] given the same runtime
budget. Even when compared to methods that consider only the
network structure (i.e., which handle strictly less information),
CESNA is faster than most baselines.
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Fig. 1. Two ways of modeling the statistical relationship between a graph
G, attributes X, and communities F'. Circles represent latent variables that
need to be inferred and squares represent manifest (observed) variables.

Last, we also inspect communities detected by CESNA on
Facebook networks, and on a network of Wikipedia articles
about famous philosophers. (See the extended version [24].)
We find that, on Facebook data, CESNA automatically learns
that education-based attributes (“School name” or “Major”)
are very highly correlated with a communities, whereas other
people’s attributes, such as “Work start date” and “Work end
date” are not related to community structure. On philosophers
data, CESNA learns natural attributes for communities: e.g.,
subjects about Islamic culture are associated with a com-
munity of Islamic philosophers. While methods that ignore
node attributes assign very influential philosophers (e.g., Aris-
totle) to most communities, CESNA circumvents this issue
by modeling attributes, and discovering that Aristotle, while
well connected to many philosophers, does not share common
attributes with all of them.

II. RELATED WORK

We summarize the related work in Table I and group it
along two dimensions. First, we consider how the methods
model statistical dependency between communities, node at-
tributes, and the underlying network (column D of Table I).
Figure 1 shows the two paradigms that are typically used.
In Figure 1(a), community memberships F' generate both the
graph G and attributes X, while in Figure 1(b), F’ and X
are given independently, and then the graph G is generated
by the interaction between F and X. Second, we focus
on how the methods model the community memberships of
individual nodes (columns O and H). Soft-membership models
associate a probability distribution with the node’s membership
to communities, which means the more communities a node
belongs to, the less it belongs to each individual community
(simply because probabilities have to sum to one). On the
other hand, hard-membership models associate an independent
binary variable for each node and community pair and, thus,
do not suffer from the assumptions made by soft-membership
models.

As shown in Table I, heuristic single-assignment clustering
methods for networks with node attributes [9], [20], [27] detect
hard node-community memberships, however, because each
node can belong to exactly one community, these methods
cannot detect overlapping communities.

LDA-based methods [3], [6], [17] aim to find sets of
nodes that have similar “topics” of attributes and link among
each other. These topic models are based on the paradigm
in Figure 1(a) where community memberships nodes generate
links and node attributes. However, these methods assume soft
community memberships, which leads to unrealistic assump-
tions about the structure of community overlaps [26]. We note
that recently developed methods [21], [23] also assume soft-
membership and the paradigm in Fig. 1(a).



III. CESNA MODEL DESCRIPTION

Here, we develop a probabilistic model that combines
community memberships, the network topology, and node at-
tributes. We present the Communities from Edge Structure and
Node Attributes (CESNA), a probabilistic generative model
for networks and node attributes that satisfies the desiderata
mentioned above. Our model is based on the following intuitive
properties:

e  Nodes that belong to the same communities are likely

to be connected to each other.

Communities can overlap, as individual nodes may
belong to multiple communities.

If two nodes belong to multiple common communities,
they are more likely to be connected than if they share
only a single common community (i.e., overlapping
communities are denser [10], [26]).

Nodes in the same community are likely to share com-
mon attributes — for example, a community might
consist of friends attending a same school.

We formally describe the generative process of CESNA as
follows. We assume that there are N nodes in the network G,
each node has K attributes, and there are C' communities in
total. We denote the network by G, the node attributes by X
(Xyg 18 k-th attribute of node u), and community memberships
by F. For community memberships F', we assume that each
node w has a non-negative affiliation weight F;,. € [0, 00) to
community c. (F,. = 0 means that node u does not belong to
community c.)

We shall now proceed by describing these components of
the model in further detail.

Modeling the links of the network. To model how the
network structure depends on node community memberships,
we aim to capture the following three intuitions:

1) node community affiliations influence the likelihood
that a pair of nodes is connected,

2) the degree of influence (the probability that nodes
belonging to the same community are connected)
differs per community, and

3) each community influences this connection probabil-

ity independently.

To achieve these goals, we build on Affiliation Network
Models [5], [10], [16], [26], where the graph G(V, E) arises
from node community memberships F'. To generate the adja-
cency matrix A € {0, 1}¥* of network G, we employ the
probabilistic generative process of the BigCLAM overlapping
community detection algorithm [25]. In particular, we assume
that two member nodes u, v belonging to a community ¢ are
connected with the following probability:

Puy(c) =1 —exp(—Fuc - Fye).

Note that if either v or v does not belong to ¢ (£, = 0 or
F,. = 0), these nodes would not be connected (P, (c) = 0).

We assume that each community ¢ connects nodes u,v
independently with probability 1 —exp(—F,.- Fy.). From this,
we can derive the edge probability P,,,, between nodes u and v.
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In order for u, v to be unconnected, the nodes u and v should
not be connected in any community c:

1-— RM; = H(l - Rw(c)) = eXp(— Z -Fuc . E}c)'
c

C

In summary, we assume the following generative process for
each entry A, € {0,1} of the network’s adjacency matrix:

Puv =1- eXP(— Z -Fu(: : E/C)7
c

Ay ~ Bernoulli( Py, ).

()]

Note that the above generative process satisfies our three
aforementioned requirements. The network edges are created
due to shared community memberships (Requirement (1)).
Furthermore, each membership F,. of a node w is regarded as
an independent variable to allow a node to belong to multiple
communities simultaneously (Requirement (2)). This is in stark
contrast to “soft-membership” models (such as mixed mem-
bership stochastic block models [2]), which add constraints
> Fue = 1 s0 that F,. is a probability that a node u belongs
to a particular community. Finally, because each community
¢ generates connections between its members independently,
nodes belonging to multiple common communities have a
higher probability of connecting than if they share just a single
community (Requirement (3)).

Modeling node attributes. Just as community affiliations can
be used to model network edges, they can also be used to
model node attributes. We next describe how node attributes
are generated from community memberships.

We assume binary-valued attributes where for each attribute
Xy, of a node u, we consider a separate logistic model.
Our intuition is that, based on a node’s community member-
ships, we should be able to predict the value of each of the
node’s attribute values. Thus, we regard group memberships
Fu1, ..., Fuc as input features of the logistic model with the
associated logistic weight factor Wy, (for each attribute k& and
community c). We also add an intercept term F,(c4q) = 1 to
the input feature of each node u:

Qui = 1
kT T exp(— >, Wie - Fue)’

Xuk ~ Bernoulli(Q.x)

where Wy, is a real-valued logistic model parameter for
community c¢ to the k-th node attribute and Wy,(c1) is a bias
term. The value of W, represents the relevance of each group
membership ¢ to the presence of a particular node attribute k.

Figure 2 illustrates the CESNA model. Rectangles (X,
Ay are the node attributes and the network adjacency matrix
that we observe. Circles denote latent variables: community
memberships F' and logistic weights W. We explain how to
estimate community memberships from node attributes and the
network structure (i.e., how we infer F' from X and A) in the
following section.

(@)

Last, we also note that depending on the type of attribute,
there are also other choices for modeling attributes X based
on F. For example, for real-valued attributes linear regression
could be used. Also, note that we assume that the number of
attributes is relatively small compared to the number of nodes;
as such, we can use a separate logistic model for each attribute.
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Fig. 2. Plate representation of CESNA. X, ;: k-th attribute of node u; W:
Logistic weight vector for attribute k; @Q,x: Probability that X, = 1; Fyc:
Membership strength of node w to community ¢; Ay, : Indicator for whether
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In the case of many attributes, one could consider methods that
group attributes as well as nodes [15].

IV. INFERRING COMMUNITIES WITH CESNA

Given an undirected graph G(V,E) with binary node
attributes X, we detect community memberships F' as well
as the relation factors W between communities and attributes.
We formulate a maximum-likelihood estimation problem and
solve it by a block coordinate descent approach. Refer to the
extended version [24] for the details.

V. EXPERIMENTAL EVALUATION

We quantify the performance of CESNA by comparing it to
state-of-the-art community detection methods in various social
and information networks. We evaluate the performance of
the methods by evaluating the accuracy of the detected com-
munities when compared to the gold-standard, ground-truth
communities. We also evaluate the scalability by measuring
the running time as the network size grows. (See the extended
version [24].)

Dataset description. For our evaluation, we consider five
datasets where we have network information as well as node
attributes. In addition to networks and attributes, we also have
access to explicit ground-truth community labels. The avail-
ability of such ground-truth allows us to evaluate community
detection methods by quantifying the degree of agreement
between the detect and the ground-truth communities [20].
Table II lists the networks and their properties.

The networks come from 3 different domains: information
network among Wikipedia articles (philosophers) [1], content-
sharing network (Flickr) [20], and ego-networks from online
social network services (Facebook, Google+, and Twitter) [18].
We next describe each of these networks in further detail.

The philosophers network [1] consists of Wikipedia articles
about famous philosophers. Nodes represent Wikipedia articles
about philosophers, and undirected edges indicate whether one
article links to another. For the attributes of each node w,
we use a binary indicator vector of out-links from node u
to other non-philosopher Wikipedia articles. For example, we
regard a link to a Wikipedia article “Edinburgh” as a binary
attribute “Edinburgh.” We consider 5,770 attributes, to which
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Dataset N E C K S A
Facebook 4,089 170,174 193 175 28,76 1.36
Google+ 250,469 30,230,905 437 690  143.51 0.25
Twitter 125,120 2,248,406 3,140 33,569 15.54 0.39
Philosophers 1,218 5972 1,220 5,770 6.86 6.87
Flickr 16,710 716,063 100,624 1,156 28.91 174.08
TABLE 1II. DATASET STATISTICS. N: NUMBER OF NODES, E: NUMBER

OF EDGES, C': NUMBER OF COMMUNITIES, K : NUMBER OF NODE
ATTRIBUTES, S: AVERAGE COMMUNITY SIZE, A: COMMUNITY
MEMBERSHIPS PER NODE.

at least five philosophers have a link. Moreover, Wikipedia also
provides categories (e.g., “Muslim philosophers”, or “Early
modern philosophers”) for each article. We regard each cat-
egory with more than five philosophers as a ground-truth
community.

The Flickr image sharing network [20] consists of nodes
which represent Flickr users, and edges indicate follow rela-
tions between users. We use tags of images uploaded by a
given user as her attributes. In this network, the ground-truth
communities are defined as user-created interest-based groups
that have more than five members.

The last three networks (Facebook, Google+, and Twitter)
are ego-networks that are available from the Stanford Large
Network Dataset Collection (http://snap.stanford.edu/data). To
obtain ground-truth communities and node attributes, we use
the same protocol as in [18]. Ground-truth communities are
defined by social circles (or “lists” in Twitter), which are man-
ually labeled by the owner of the ego-network. In Facebook
and Google+, node attributes come from user profiles, such
as gender, job titles, institutions, and so on. In Twitter, node
attributes are defined by hashtags used by the user in her
tweets. To reduce the dimensionality of the node attributes,
we discard any attribute which the owner of the ego-network
does not possess.

Baselines for comparison. We consider the three classes of
baseline community detection methods: (1) methods that use
only the network structure, (2) methods that user only node
attributes, and (3) methods that combine both.

The first class of baselines considers only the network,
ignoring node attributes altogether: Demon [7] and Big-
CLAM [25] are state-of-the-art overlapping community detec-
tion methods.

Second is a class of baselines that focuses on node at-
tributes without considering the network structure. Here, we
use Multi Assignment Clustering (MAC) [12], which detects
overlapping communities based on node attributes alone.

The third class of baselines we consider combines the
network structure with node attributes. For this class, we
choose three state-of-the-art methods. Based on Table I we
select one algorithm from each model type: Block-LDA [3] rep-
resents soft-membership approaches, while the CODICIL [20]
represents non-overlapping hard-membership approaches. Fi-
nally, we consider the Circles [18] method, which represents
overlapping hard-membership approaches.

For all baselines, we use implementations provided by
the authors. All baselines except CODICIL require a user
to specify the number of communities to detect. We set
this parameter so that each model detects the same number
of communities as CESNA. CODICIL also has other input
parameters, for which we used default values provided by the
authors.



Evaluation metrics. We quantify the performance in terms
of the agreement between the ground-truth communities and
the detected communities. To compare a set of ground-truth
communities C* to a set of detected communities C, we
adopt an evaluation procedure previously used in [25]: Every
detected community is matched with its most similar ground-
truth community. Given this matching, we then compute the
performance. We also then take every ground-truth community
and match it with a detected community and again compute
the performance. Our final performance is the average of these
two metrics. We average the two scores because matching only
from one side leads to degenerate optimal performance (for
example, outputting all possible subsets of nodes as detected
communities would achieve perfect matching ground-truth
communities to the detected ones).

More formally, our evaluation function is:

50°] CEE:C max 5(Cr,Cy) + 30| CEG:C max 6(C;,C;)

Crec+

3
where 6(C;f,C;) is some similarity measure between the
communities C; and C;. We consider two standard metrics
5(+) for quantifying the similarity between a pair of sets,
namely the F'1 score and the Jaccard similarity. Thus, for each
method, we obtain a score between 0 and 1, where 1 indicates
the perfect recovery of ground-truth communities.

Experiments on recovering ground-truth communities. We
evaluate the performance of CESNA and baselines on our five
datasets. Table III shows the results where “N/A” means that
the method cannot scale to a given network. We make several
observations.

Comparing CESNA to methods without the node attributes
(Demon and BigCLAM), we notice that CESNA achieves
better performance, as it combines the information from the
node attributes as well as the network. Similarly, CESNA also
outperforms MAC, which only focuses on node attributes. In
particular, CESNA never performs worse than state-of-the-art
methods that use only a single source of data. The strong
performance of CESNA is not obvious, as it would be entirely
possible that combining two sources of data would confuse
the algorithm and degrade the overall performance (in fact,
notice that BigCLAM, which uses only the network structure,
indeed outperforms most of the methods that use both sources
of information). Thus, we believe that the strong performance
of CESNA as an indication that CESNA combines the best
ingredients from both worlds.

When comparing the performance of CESNA to methods
that consider both the network structure and node attributes
(CODICIL, Block-LDA, and Circles), we again observe the
strong performance of CESNA. On average, CESNA gives
47% relative improvement in the accuracy of detected commu-
nities over methods that consider both sources of information.

We also note that CESNA shows a bigger margin in per-
formance against the baselines in an information network such
as the philosophers dataset, or a content-sharing network like
Flickr than in social networks. In the philosophers network,
for example, CESNA achieves a 14% relative gain in the
F'1 score and 15% in the Jaccard similarity compared to the
best baseline. A possible explanation for this phenomenon is
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that in content-sharing and information networks, the prop-
erties/content of the nodes plays a much bigger role in link
formation.

Overall, we note that across all datasets and evaluation
metrics, CESNA yields the best performance in 8 out of 10
cases. In terms of average performance, CESNA outperforms
Demon by 20%, BigCLAM by 6%, MAC by 112%, Block-
LDA by 58%, CODICIL by 29%, and Circles by 59%.

Last, we also measure the statistical significance of per-
formance differences of CESNA and the baselines. For each
baseline’s performance on each data set, we compute the statis-
tical significance of CESNA outperforming the baseline using a
one-sided Z-test. We use the symbol * in Table III to indicate a
95% statistical significance level. On the philosophers, Flickr,
and Twitter datasets, CESNA outperforms every baseline at
a 95% significance level. On Facebook, CESNA outperforms
all baselines, at a 95% significance level in all but one case.
On Google+, CESNA performs the second best compared to
Circles.

Experiments on partially observed networks. Combining
network and attribute information into a single method should,
in principle, lead to the development of a more robust commu-
nity detection algorithm. In particular, when networks may be
incomplete or partially observed, the performance of CESNA
should degrade gently, as it should be able to rely on the node
attribute information; this way, it should compensate for the
noise in the network structure.

To investigate the robustness of performance under an
unreliable network structure, we next explore the problem of
detecting communities from partially observed networks where
some fraction of edges are missing while the node attributes are
fully available. For the sake of evaluation, we remove a fraction
v of edges in the network uniformly at random. Note that we
regard a removed edge in the same way as an unobserved edge,
because in practice we cannot distinguish between edges that
do not exist (e.g., users who aren’t friends) and edges that are
unobserved (e.g., users who haven’t gotten around to declaring
their friendship yet).

Rather than examining performance of all 6 baselines, we
focus on making a comparison over the three top baselines
that use either the network or the node attributes: BigCLAM,
which considers the network only and is the best baseline
in our experiments; MAC, which only considers the node
attributes; and CODICIL, which is the best performing baseline
that considers both the network and the attributes. For each
baseline, we measure the relative performance that CESNA
achieves over the baseline:

F17(CESNA) — F'17(Baseline)
F17(Baseline)

where F'17 is the F'1 score in Eq. 3 for the network with ~y
fraction of edges removed.

In Figure 3, we display experimental results (with standard
deviation) as we vary from v = 0 to 7 = 0.8. We consider
all datasets except philosophers (for which, results are too
noisy due to the small network size). For Flickr, we omit
performance of MAC, as the algorithm was not able to process
it due to too high time and space complexity.



F'1 score Jaccard similarity
Method Info Phil Flickr ~ Facebook  Google+ Twitter Phil Flickr  Facebook Google+ Twitter | Avg.
Demon Net | 0.244"  0.1717 0.386" 0.323" 0.280" | 0.143"  0.098™ 0.283" 0.234 0.186" | 0.235%
BigCLAM Net | 0.276" 0.166" 0.455 0.341 0.359* | 0.156" 0.092" 0.347 0.231 0.246™ | 0.267"
MAC Attr | 0.117F N/A 0.297* 0.159" 0.246™ | 0.069" N/A 0.190" 0.101" 0.154* | 0.133"
Block-LDA | Both | 0.146" N/A 0.356" 0.307 0.273* | 0.082* N/A 0.241~ 0.204" 0.173* | 0.178"
CODICIL Both | 0.277* 0.132* 0.378~ 0.247* 0.279* | 0.167"  0.079* 0.263* 0.166" 0.190" | 0.218~
Circles Both | N/A N/A 0.401~ 0.365 0.319" N/A N/A 0.265 0.254 0.211* | 0.183"
CESNA Both | 0.314  0.183 0.462 0.352 0.362 0.192  0.106 0.347 0.249 0.249 0.282
TABLE IIL PERFORMANCE OF METHODS ON FIVE DATASETS. [nfo INDICATES THE INFORMATION USED BY A GIVEN METHOD (NETWORK,

ATTRIBUTES, OR BOTH). BEST PERFORMING MODELS ARE BOLDED. SYMBOL * INDICATES THAT CESNA OUTPERFORMS A GIVEN BASELINE BY 95%
STATISTICAL CONFIDENCE. OVERALL, CESNA STATISTICALLY SIGNIFICANTLY OUTPERFORMS ALL CONSIDERED METHODS.
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Fig. 3. Relative gain in F1 over the best method with network information
only (BigCLAM) and with node attributes only (MAC) when edges are
randomly removed.

In all cases, we note similar behavior (Figure 3). As the
network becomes more unreliable, the improvement of CESNA
over BigClam increases. On the other hand, for methods that
use node attributes (and the network structure), we note that
in Google+, the performance improvement of CESNA remains
constant, while in Facebook and Twitter, the performance
improvement of CESNA slowly shrinks as more and more of
the network structure gets removed.

The results are intuitive: Even though the network contains
many missing edges, CESNA still outperforms other methods
by better leveraging the information present in the node
attributes. The results with MAC and CODICIL, which are
decreasing functions of -, nicely shows that the performance
gain from the network structure diminishes as we remove more
edges.

Last, we also briefly note that similar results are observed
with the relative improvement in Jaccard similarity, and that
CESNA consistently outperforms the other four baselines not
shown in Figure 3 for every value of 7.
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