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ABSTRACT
We establish the satisfiability threshold for random k-sat
for all k ě k0. That is, there exists a limiting density αspkq
such that a random k-sat formula of clause density α is with
high probability satisfiable for α ă αs, and unsatisfiable for
α ą αs. The satisfiability threshold αspkq is given explicitly
by the one-step replica symmetry breaking (1rsb) prediction
from statistical physics. We believe that our methods may
apply to a range of random constraint satisfaction problems
in the 1rsb class.

Categories and Subject Descriptors
G.2 [Discrete Mathematics]: Graph theory

General Terms
Theory

Keywords
Constraint satisfaction problem, random k-sat, satisfiability
threshold, condensation, replica symmetry breaking, belief
propagation, survey propagation

1. INTRODUCTION
Random k-sat is a natural and well-studied model of a

random constraint satisfaction problem (csp). Advances in
the understanding of random csps have been contributed
by researchers from several different communities, including
computer science, probability, combinatorics, and statistical
physics. Much of this work concerned a sharp satisfiability
transition that was conjectured to occur as the clause density
α is increased past some critical threshold αs. In this work
we prove the conjecture for large k.

˚The full version of this paper is available as an online
preprint at http://arxiv.org/abs/1411.0650.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
STOC ’15, June 14-17, 2015, Portland, Oregon, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3536-2/15/06 ...$15.00.
DOI: http://dx.doi.org/10.1145/2746539.2746619.

An instantiation of random k-sat on n variables at clause
density α is defined by a k-cnf formula φ : t+, -un Ñ t+, -u
(with + ” true, - ” false), consisting of M clauses where
M is a Poissonpnαq random variable, and each clause is the
disjunction of k literals chosen independently and uniformly
at random from t+x1, -x1, . . . , +xn, -xnu. We say φ is sat
if φ´1

p+q ‰ ∅. An example of a 3-cnf formula with n “ 5
and M “ 2 is given by

φpxq “ p+x1 or -x3 or +x4q and p-x1 or -x2 or +x5q.

Write P ” Pαn for probability under the above model. It is
widely conjectured that for each fixed k ě 2, random k-sat
has a sharp satisfiability threshold : that is, there exists a
positive constant αs — depending on k but not on n —
such that for all ε ą 0,

lim
nÑ8

Pαs`ε
n psatq “ 1 “ lim

nÑ8
Pαs`ε
n punsatq. (1)

This is known for k “ 2, with αs “ 1 [11, 19, 25]. For k ě 3,
however, even existence of αs has remained a long-standing
open question. A breakthrough by Friedgut establishes, for
all k, existence of a sharp threshold sequence αspnq [22]. The
sequence may not converge as nÑ8, but is known to be
within εk of 2k ln 2´ p1` ln 2q{2 for n large, where εk Ñ 0
in the limit k Ñ8 [26, 16]. By heuristic methods, physicists
conjecture an explicit value α‹ for αs, the one-step replica
symmetry breaking (1rsb) threshold, which is expected to be
correct for all k ě 3 [29, 33]. The main result of this work
resolves the k-sat threshold conjecture for large k, proving
that αs exists and matches the predicted value α‹:

Theorem 1. There exists an absolute constant k0 such
that for all k ě k0, the satisfiability threshold αs for random
k-sat exists, with explicit value given by α‹.

The explicit characterization α‹ is as follows. We assume
throughout the paper, even when not explicitly stated, that
k ě k0 and 2k ln 2´ 2 ” αlbd ď α ď αubd ” 2k ln 2. Sample
d+, d- independently from the Poissonpαk{2q distribution,
and write d ” pd+, d-q. Write P for the space of probability
measures on r0, 1s, and define a mapping R : P Ñ P as fol-
lows. Given µ P P, generate (independently of d) an array
η ” rpηjqjě1, pη

+
ij , η

-
ijqi,jě1s of i.i.d. samples from µ. Define

Rµ P P to be the law of R ” Rpd, ηq, defined by

R ”
p1´Π-

qΠ+

Π+ `Π- ´Π+Π-
, where Π-+ ”

d-
+

ź

i“1

´

1´
k´1
ź

j“1

η-
+
ij

¯

.
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Proposition 1. Let µ` P P (` ě 0) be the sequence of
probability measures defined by µ0 “ δ1{2, and µ` “ Rµ`´1

for all ` ě 1. For k ě k0 and αlbd ď α ď αubd, this sequence
converges to a limit µ “ µα P P, satisfying Rµ “ µ. Let

Φpαq “ E
„

ln
Π+
`Π-

´Π+Π-

p1´
śk
j“1 ηjq

pk´1qα



,

where E denotes expectation over pd, ηq where entries of d
are i.i.d. from Poissonpαk{2q and entries of η are i.i.d. from
µ. This function is well-defined and strictly decreasing in α,
with a unique zero α‹ “ α‹pkq.

Our proof is heavily guided by insights emerging from
the statistical physics analysis of random k-sat and related
problems. In the remainder of this introductory section we
briefly survey some of this literature, beginning with a dis-
cussion of the main obstacles in determining αs.

1.1 Obstacles in computing the threshold
Let solpφq denote the set φ´1

p+q Ď t+, -un of satisfying
assignments of φ. Clearly, φ is sat if and only if Z ” |solpφq|
is positive. For any non-negative integer random variable X,
we have the first and second moment inequalities:

pEXq2

ErX2s
ď PpX ą 0q ď EX (2)

where E denotes expectation under P. A natural approach
to bounding αs is to apply (2) with X “ Z and P “ Pnα.
For example, EZ “ exptnrln 2´ α{2ksu, giving αs ď 2k ln 2
which is within Op1q of the true threshold. (We have abused
notation somewhat, since a priori a sharp threshold αs may
not exist. Throughout this paper, αs ď α means formally
that limn Ppsatq “ 0 at any fixed density above α. Likewise,
αs ě α means formally that limn Ppsatq “ 1 at any fixed
density below α.) If ErZ2

s À pEZq2 holds at density α, then
the inequality on the left-hand side in (2), combined with
Friedgut’s theorem [22], gives αs ě α.

It is known however that the distribution of Z is highly
non-concentrated, such that ErZ2

s� pEZq2 at any positive
α, meaning the second moment inequality fails to give any
non-trivial lower bound on αs. It is also known that the first
moment upper bound is not sharp. The central difficulty of
random k-sat is that this non-concentration has two distinct
sources, as we now explain:

Clustering and condensation
A key insight from the statistical physics research on random
k-sat is that the non-concentration of Z ” |sol| is caused in
part by a peculiarity in the (typical) geometry of the random
set sol: for α in a non-trivial condensation regime pαc, αsq,
a dominating contribution to EZ comes from the rare event
of seeing an atypically large cluster of very similar solutions
[27, 35]. This results in non-concentration with Z � EZ on
the rare event, versus Z � EZ in the typical picture.

The condensation phenomenon is one aspect of a detailed
phase diagram which is conjectured for a class of random
csps that includes random k-sat, as well as the coloring and
independent set problems on sparse random graphs. We re-
fer the reader to [27] for details and further references, sum-
marizing here only some salient features: up to some density
αd, almost all of the mass in sol lies within a single well-
connected subset of the Hamming cube t+, -un. The geom-
etry changes abruptly at αd, above which most of the mass

in sol is roughly equidistributed among exponentially many
clusters. The clustering threshold αd empirically matches
the density above which most algorithms fail; there is some
rigorous support for this link [2, 24, 38]. A further transition
occurs at the condensation threshold αc P pαd, αsq, above
which EZ becomes dominated by rare large clusters — this
has been rigorously confirmed in the coloring model, with
explicit αc [6].

This conjectural phase diagram is derived largely on the
basis of an analogy between random csps and spin glasses,
classical models of disordered magnets [32]. Physicists have
observed this analogy since the 1980s [31], and the study of
random csps within the spin glass framework has yielded
rich insights. Given a random k-sat instance, let ν be the
uniform measure on its solution space sol. Since sol is a
random set, ν is a random measure on t+, -un, and is what
is termed a dilute spin glass [21], where dilute refers to the
sparsity (bounded density) of constraints.

The measure ν exhibits replica symmetry breaking (rsb)
if two independent samples x, x1 from ν (two replicas) have
non-trivial overlap structure. For sparse random csps, it
is conjectured [27, 35] that the condensation threshold αc

marks the onset of rsb. Indeed, below condensation, sol
consists of either a single large cluster, or else exponentially
many well-separated clusters of roughly equal size. In either
case the (normalized) overlap n´1

xx, x1y is expected to be
concentrated near zero. In contrast, in the condensation
regime α P pαc, αsq, it is believed that a bounded number of
clusters carry most of the mass of sol. The two replicas may
still lie in distinct clusters (with trivial overlap), but now
they lie with non-negligible probability in the same cluster,
corresponding to a large overlap.

It is believed that in the replica symmetric (rs) regime
below αc, the measure ν has correlation decay, and is well-
approximated by rs heuristic methods (belief propagation).
It is further conjectured that random k-sat in the rsb regime
pαc, αsq exhibits one-step replica symmetry breaking (1rsb):
this means that the overlap distribution is supported on two
values, or alternatively that clusters are replica symmetric.
Writing Ω for the number of clusters in sol,1 a heuristic rs
calculation yields the prediction

Ω « exptnΦpαqu (3)

with Φ as in the statement of Thm. 1. The 1rsb threshold
α‹, defined as the root of Φ, is thus the predicted threshold
for the existence of clusters.

Graphical fluctuations
Throughout the following, a k-cnf formula will be repre-
sented by a bipartite factor graph G “ pV, F,Eq with vertex
set V Y F partitioned into variables V and clauses F , and
with (undirected) edges E joining variable to clauses. Write
n ” |V | and m ” |F |; we generically denote variables u, v, w,
clauses a, b, c, and edges e “ pavq “ pvaq. Edge e “ pavq is
equipped with a sign Le “ Lav P t+, -u indicating whether
the inclusion of variable v in clause a is affirmative (Lav “ +)
or negative (Lav “ -). We will take all edge lengths to be
1{2, so two variables are within unit distance if they partic-
ipate in the same clause.

We have already explained above that for α P pαc, αsq, the
rare event of an atypically large cluster is a source of non-
1For the moment, take Ω to be the number of connected
components of sol.
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concentration for Z. For the random k-sat model, however,
it is well known that at any positive α, there is already non-
concentration caused by fluctuations in the graph structure.
We refer the reader to [3, 4, 15, 16] for further discussions of
this issue. To give a simple example, for a variable v let Bvp-+q
denote the set of clauses in which v appears with sign -+. The
degree distribution D of G is the empirical distribution of
pairs p|Bvp+q|, |Bvp-q|q: for each pair pd+, d-q of non-negative
integers, Dpd+, d-q records the fraction of variables v with
|Bvp-+q| “ d-

+
. Then D fluctuates across different samples of

G , so we can decompose

EZ “
ÿ

D

PpDqErZ|Ds. (4)

In the limit of large n, D is concentrated near the typical
degree distribution, a product of Poissonpαk{2q:

Dtyp
pd+, d-q “

e´kαpkα{2qd
+`d-

pd+q!pd-q!
,

with gaussian fluctuations: PpDq « expt´n}D ´Dtyp
}
2
u.2

In contrast, ErZ|Ds has no reason to be stationary at Dtyp,
and in fact we expect behavior of the form

ErZ|Ds « ErZ|Dtyp
s exptnxc,D ´Dtyp

yu.

Comparing these approximations, we see that it is always
advantageous to pay a large deviations cost in PpDq to gain
in ErZ|Ds, and as a result the first moment (4) will be dom-
inated by an atypical degree distribution D‹

‰ Dtyp, where
PpD‹

q is exponentially small but ErZ|D‹
s is exponentially

large compared with EZ.
In fact this issue goes far beyond the degree fluctuations:

for any R, we can define DR to be the empirical distribu-
tion of R-neighborhood types in the graph (recalling that
we set edge lengths to be 1{2, the degree distribution cor-
responds to R “ 1{2). Under the random k-sat probability
measure P “ Pαn, G is a sparse random graph with few short
cycles, that is to say, it locally has the structure of a tree.
In fact we can explicitly describe the local structure by the
PGWα (Poisson Galton–Watson) random tree: this tree is
rooted at a variable, and has alternating layers of variables
and clauses generated in a random manner: each variable in-
dependently produces Poissonpαkq child clauses; each clause
produces k ´ 1 child variables; and each edge is labelled with
a random sign L P t+, -u. In the limit nÑ8, G converges
locally in distribution, in the formal sense defined by [5, 7], to
the PGWα tree. This means equivalently that for each fixed
R, as nÑ8, DR concentrates near Dtyp

R which is the law
of the first R levels of PGWα (the tree can be finite, but it
is infinite with positive probability). However, by analogous
considerations as above, the first moment EZ is dominated
by atypical DR for any depth R. Further, for ` ą R we can
decompose

ErZ|DRs “
ÿ

D`

PpD`|DRqErZ|D`s,

where the sum is taken over all D` compatible with DR.
Even if we condition on DR near Dtyp

R , ErZ|DRs is dominated
by atypical D` for all ` ą R, meaning Z � ErZ|Dtyp

R s with
high probability for all R.

2This approximation holds with an appropriate choice of
} ¨ }, comparable with the standard `2 norm for fixed k, α.

In the condensation regime, the 1rsb heuristic asserts that
if we replace Z with the number Ω of clusters, then we
will remove the non-concentration caused by atypically large
clusters. The graphical fluctuations remain, causing

Ω� ErΩ|Dtyp
R s for all R (5)

(with high probability). Let us remark briefly that the non-
concentration (5), as caused by graphical fluctuations, is not
an issue in the physicists’ prediction of α‹. Indeed, according
to the 1rsb heuristic, the uniform measure on clusters ex-
hibits correlation decay. Physicists therefore estimate Ω by
assuming this correlation decay, and directly working with
an analogous model of clusters defined on the PGWα tree.
Of course, this completely circumvents (nonrigorously) the
issue of atypical neighborhood profiles DR in the random
graph G . The tree-based cluster model is characterized by
the distributional fixed point Rµ “ µ of Propn. 1, and the
corresponding exponent that governs the growth rate of Ω
(see (3)) is Φpαq.

1.2 Prior rigorous results
As noted above, the k-sat threshold for k “ 2 was rigor-

ously determined in a few independent works [11, 19, 25];
even finer results characterizing the scaling window were
subsequently obtained [8]. The case k “ 2 is unique in that
there is no condensation regime, which is believed to appear
for all k ě 3; as a result the mechanisms governing the k “ 2
satisfiability transition are quite different. Until recently, all
exact satisfiability transitions obtained for sparse random
csps have been obtained for models without condensation
regimes, such as xor-sat [34, 37] and 1-in-k-sat [1].

For k ě 3, the first moment method has long been known
to yield fairly accurate upper bounds [20]. A more subtle
first moment calculation, restricted to “locally maximal” so-
lutions, achieved a more accurate upper bound of

αs ď 2k ln 2´ 1
2
p1` ln 2q ` εk r26s

with limkÑ8 εk “ 0. This bound is correct up to the second-
order asymptotic term. By contrast, the early lower bounds
for k-sat, which were generally algorithmic, missed the true
threshold by a large factor. Indeed, the best algorithmic
lower bounds to date give

αs ě maxt1.817, p1´ εkq ln ku ¨ 2k{k r23, 12s,

which is off from the true threshold by a factor of order
k{pln kq when k is large.

In a major breakthrough, Friedgut [22] applied methods
of discrete Fourier analysis to show that random k-sat has
a sharp threshold sequence αspnq: for all ε ą 0,

lim
nÑ8

Pαspnq´ε
n psatq “ 1 “ lim

nÑ8
Pαspnq`ε
n punsatq.

Friedgut’s result leaves open the possibility that one needs
to take αspnq non-convergent with n. In contrast, the con-
jecture (1) states that the above holds with αspnq “ αs in-
dependent of n.

Subsequent advances in lower bounding the satisfiability
transition have all followed the same basic approach, which
we also take in this paper. First, the second moment bound
(left-hand side of (2)) is used to prove satisfiability with pos-
itive probability: lim infnÑ8 Ppsatq ą 0 at some density α.
Friedgut’s theorem immediately implies limnÑ8 Ppsatq “ 1
at any density less than α, therefore αs ě α.
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As discussed above, applying the second moment bound
from (2) with the most obvious choice X “ Z fails to give
any non-trivial lower bound on αs. Improved lower bounds
have been obtained by increasingly sophisticated choices for
the random variable X. Achlioptas and Moore obtained the
first satisfiability lower bound to achieve the correct asymp-
totic order (asymptotic in the limit k Ñ8),

αs ě 2k´1 ln 2´Op1q r3s.

This was proved by taking X to be Znae, the number of
nae-sat solutions for the random k-cnf. This restriction
symmetrizes the sat problem, thereby eliminating the local
fluctuations issue from the second moment calculation. On
the other hand, being nae-sat is roughly “twice as difficult”
as being sat, so the restriction is quite prohibitive, costing
roughly a factor 2 in the lower bound.

Achlioptas and Peres applied the second moment method
with a more subtle symmetrization technique which is much
less prohibitive, yielding the greatly improved lower bound

αs ě 2k ln 2´Opkq r4s.

In the limit of large k, this is correct in the leading term.
In random k-sat, the non-stationarity of ErZ|Ds at Dtyp is
closely tied to the fact that variables lean towards majority:
conditioned on the random k-cnf, if x is sampled uniformly
at random from sol, it is typically the case that xv is pos-
itively correlated with |Bvp+q| ´ |Bvp-q| for each variable v.
The major innovation of Achlioptas–Peres was to apply the
second moment method on a weighted number of solutions,
where the weighting penalizes for the total number of satis-
fied literal occurrences. This effectively balances the variable
spins xv, decoupling them from the degree fluctuations and
allowing the second moment approach to succeed. The im-
proved lower bound [4] results because the weighted count
captures a much larger slice of solcompared with the nae-
sat solutions.

Coja-Oghlan and Panagiotou subsequently improved this
approach by introducing a step of conditioning on the degree
distribution. This makes it possible to incorporate the typ-
ical correlation between xv and |Bvp-+q|, capturing an even
greater slice of sol: they proved

αs ě 2k ln 2´ 3
2

ln 2´ εk r15s,

within Op1q of the true threshold. A key idea was to identify
a subset sol Ď sol of judicious configurations, where the
variable spins xv are non-trivially correlated with |Bvp-+q|,
but are decoupled from the neighborhood structure beyond
the degrees. Thus the judicious condition [15] is a significant
generalization of the Achlioptas–Peres weighting scheme [4].

All lower bounds up to this point essentially applied the
second moment method to restricted versions of sol, and
all remained slightly below the (conjectural) condensation
threshold [27]. The 1rsb heuristic suggests that the count of
clusters is well-concentrated while the count of assignments
is not, indicating that one should instead apply the second
moment method on the number of clusters. Among sparse
csps expected to exhibit a non-trivial condensation regime,
the first satisfiability lower bound to surpass the condensa-
tion barrier was obtained for random k-nae-sat [14], by the
second moment method applied to a certain (rough) proxy
for the number of clusters.

More recent work established exact satisfiability thresh-
olds in random regular versions of k-nae-sat [18] and max-

ind-set [17], as well as a quasi-satisfiability threshold in
symmetrized random regular k-sat [13]. All these models
exhibit non-trivial condensation regimes, but do not have
the problem of graphical fluctuations, as the neighborhood
of every variable looks like the (same) regular tree. These re-
sults relied on combinatorial models that that give extremely
precise, yet reasonably tractable, encodings of clusters.

Coja-Oghlan and Panagiotou subsequently obtained the
best random k-sat lower bound prior to our work,

αs ě 2k ln 2´ p1` ln 2q{2´ εk r16s,

matching the upper bound [26] up to εk error. This advance
was significant in implementing the idea of counting clusters
while accounting for degree fluctuations, which was done by
extending the judicious condition [15] to the combinatorially
encoded k-sat clusters. Below we will review their program
and explain the obstacles in attaining a sharp lower bound.

1.3 Proof overview
Recall Propn. 1 that the 1rsb threshold prediction α‹ is

defined as a certain root of an explicit function Φpαq. Our
proof of Propn. 1 entails a rather involved recursive analysis,
and we only prove α‹ is well-defined provided k ě k0.

Upper bound
Having established that α‹ is well-defined, the sharp upper
bound αs ď α‹ is a straightforward consequence of interpola-
tive free energy bounds [21, 36] for dilute spin-glass models
(where “dilute” essentially means sparse). These results con-
cern the positive-temperature version of sat, where violated
clauses are penalized rather than forbidden: each variable
assignment x P t-+u

n is assigned weight expt´βHpxqu where
Hpxq counts the number of clauses unsatisfied by x. Let

Zpβq ”
ÿ

xPt-+un

expt´βHpxqu

denote the total mass of the binary cube t-+u
n under this

weighting, so that clearly Z “ |sol| ď Zpβq for any β ě 0.
For any fixed β ă 8, lnZpβq is well-defined, and is well-
concentrated about its mean by a standard argument (take
the Doob martingale of lnZpβq with respect to the clause-
revealing filtration, and apply the Azuma–Hoeffding bound).
For a class of models including positive-temperature k-sat,
it is shown [21, 36] that

lim sup
nÑ8

n´1E lnZpβq ď inftΦβpζq : ζ P Pu

for a functional Φβ defined on the space P of probability
measures on r0, 1s. For α ą α‹, guided by the 1rsb predic-
tions one can choose a particular ζ “ ζβ and show

lim
βÑ8

Φβpζβq “ ´8.

Take β sufficiently large (depending on α) so that Φβpζβq
is negative. Since lnZpβq is well-concentrated, it follows
that Zpβq ă 1 with high probability. Since Z ď Zpβq and Z
is integer-valued, we conclude Z “ 0 with high probability,
proving αs ď α‹.

Lower bound
The main content of this paper is the matching lower bound
αs ě α‹. As the 1rsb heuristic suggests, we apply the sec-
ond moment method on clusters of k-sat solutions. We use a
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particularly concise combinatorial encoding [16] which repre-
sents clusters as tred, yellow, green, blueu colorings on the
edges of G “ pV, F,Eq, subject to certain local rules that we
review below. The set of all clusters is then represented by
the set col Ď tred, yellow, blue, greenuE of valid colorings.

As mentioned above, a key step of [15, 16] is to condition
on the degree sequence of a random k-sat instance. This
makes it possible to incorporate the correlation between the
variables and degrees. In fact, variables are typically corre-
lated not only with their degrees, but also with their neigh-
borhood structures to arbitrary depths.3 However, for the
second moment method to go through, one must restrict to
a particular subset col Ď col of judicious configurations,
where the dependence on any local structure beyond the de-
grees is forcibly removed. This lack of dependence is highly
atypical, meaning col captures only a tiny fraction of col.
This eventually incurs an εk loss in the lower bound on αs.

In this work we condition on the empirical distribution of
depth-R neighborhood types, which we regard as a general-
ized degree distribution. This type of conditioning was pre-
viously implemented in work of Bordenave and Caputo [9].
The plan is to identify, for each fixed R, a subset

colR Ď col

which captures the correlation between variables and their
neighborhood structures up to depth R, but eliminates the
dependence beyond depth R (judicious). The idea is that as
R grows, we incorporate more and more of the correlation,
thereby capturing larger and larger slices of col. For each
fixed R, we apply the second moment method on |colR| to
establish a satisfiability lower bound αs ě αlbdpRq. We then
show that αlbdpRq Ñ α‹ in the limit RÑ8, concluding the
proof of Thm. 1.

The analysis of Coja-Oghlan and Panagiotou [16] is greatly
simplified by an initial preprocessing step which removes an
εk fraction of the most “atypical” variables from the graph.
Note that as k grows, the k-sat graph in the relevant regime
α — 2k becomes more and more regular. By removing an εk
fraction of variables, one can easily ensure that all remaining
variables v have degrees |Bvp-+q| very near to average:

ˇ

ˇ

ˇ

ˇ

|Bvp-+q|

kα{2
´ 1

ˇ

ˇ

ˇ

ˇ

ď
kOp1q

2k{2
for all v P V.

Many estimates in [16] rely on this explicit control. Clearly,
in order to achieve a sharp threshold, we must remove a
fraction of vertices tending to zero as RÑ8 — meaning
we cannot hope to avoid including increasingly “bad” ver-
tices as R grows. Instead, we carry out a preprocessing step
where the goal is only to ensure that bad vertices are sur-
rounded by a sufficient buffer of nice vertices which will help
to enforce the desired behavior in the second moment. This
preprocessing step is rather involved, and will be described
in more detail below.

3In random k-sat, variables are correlated with neighbor-
hood structures to arbitrary depth in both the original
model and the cluster model, as can be seen in [15] and
[16] respectively. In random k-nae-sat, thanks to the addi-
tional symmetry, variables are uncorrelated with neighbor-
hood structures under the original model [3]. However, the
nae-sat cluster model will exhibit correlations to arbitrary
depth, similarly as in sat. We expect that the methods of
this paper can be applied to obtain the sharp satisfiability
threshold in random k-nae-sat.

Having completed the preprocessing, we condition on the
empirical distribution D of depth-R neighborhood types in
the processed graph. We then identify a subset colR Ď col
of good colorings of the processed graph, and perform second
moment method on the random variable Z “ |colR|: with
ED denoting expectation conditional on D , we will show

EDrZ
2
s À pEDZq2. (6)

The second moment can be cast as an optimization problem
over a vector ω that represents the empirical distribution of
edge colors for a typical pair pσ1, σ2

q of independent uniform
samples from colR. The entries of ω are indexed by edge
types; and each entry of ω is a probability distribution over
tred, yellow, green, blueu2 which gives the empirical distri-
bution of colors for that edge type. The second moment
bound (6) amounts to showing that the optimal ω has each
entry equal to product measure.

A central idea in this paper is to update ω in blocks that
correspond to trees of bounded (though growing with R)
depth. More precisely, the block will correspond to all in-
duced subgraphs of the (processed) k-sat graph that are
isomorphic to a given tree T of depth ď R. We consider the
optimization problem over the entries of ω corresponding to
the internal edges of the tree, keeping all other entries fixed.
This reduces an optimization problem on large finite graphs
to an optimization problem on finite trees subject to certain
boundary conditions. We then carry out the tree optimiza-
tion by a system of weights that act as Lagrange multipliers
for the boundary constraints. The preprocessing step was
specifically tailored for this tree optimization problem.

In the remainder of this extended abstract we describe in
further detail some of the main innovations in our proof.
The full version of the paper has been made available online
at http://arxiv.org/abs/1411.0650.

2. FROZEN MODEL AND COLOR MODEL
We first describe the combinatorial encoding of clusters.

Recall G ” pV, F,Eq is the bipartite factor graph represent-
ing the k-sat instance. Write B for the neighbors of a vertex
with multiplicity, and δ for the incident edges. For a variable
v P V we regard Bv, δv as unordered multisets, while for a
clause a P F we regard Ba, δa as ordered tuples: that is, each
edge pavq P E comes with a label jpv; aq P rks, indicating the
position of v in Ba.

2.1 Frozen model
Recall a k-sat solution is a configuration x P t+, -uV such

that every clause a P F is satisfied, meaning pLavxvqvPBa is
not identically -. We now introduce a new spin f ” free to
encode the k-sat solution clusters:

Definition 1. On a given k-sat instance G “ pV, F,Eq, a
frozen configuration is a vector x P t+, -, fuV such that

(i) each clause a P F is satisfied, meaning pLavxvqvPBa is
not identically -; and

(ii) for each variable v P V , xv ‰ f if and only if v is forced,
meaning that for some a P Bv, the product of Lau and
xu is - for all u P Bazv.

In the above definition and throughout what follows, we
adopt the convention that the product of + with f, or the
product of - with f, is f.
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2.2 Tree recursions for frozen model
Let T be a bipartite factor graph which is a finite tree, such

that the leaf vertices BT are variables. (Eventually we will
take T to be a subgraph of G , given by the r-neighborhood
Brpvq of a variable v P V .) We shall often consider the frozen
model on finite trees of this form with i.i.d. rigid balanced
input at the boundary. Roughly speaking, this will be the
measure on frozen configurations of T induced by setting all
leaf variables to be forced (“rigid”) to + or -, independently
and uniformly (“i.i.d. balanced”).

More formally, for any variable v P T with neighboring
clause a P T , let Tva be the component of T za contain-
ing v (Tva includes the half-edge in δv that was previously
matched to a half-edge in δa). Define likewise Tav to be the
component of T zv containing a. We shall write

ηva ” “probability for v to negate Lav, under
the frozen model on Tva with i.i.d.
rigid balanced input on Tva X BT .”

Explicitly, the ηva are defined as follows. For a leaf variable
v P BT with (unique) neighboring clause a P T , set ηva “ 1{2.
The interpretation is that T is a subgraph of some large
graph G , and the rest of the graph G zT forces v to -+ or -.
The forcing is independent of the sign Lav, and so ηva “ 1{2.
We then calculate ηva at internal edges by recursing up the
tree, treating the “branches” pTbvqbPBvza as independent in-
puts. For variable v with neighboring clause a, write

Bvp+aq ” tb P Bvza : Lbv “ +Lavu,
Bvp-aq ” tb P Bvza : Lbv “ -Lavu.

On the finite tree, ηva is expressed in terms of the ηwb
(b P Bvza, w P Bbzv) by the recursive relation

ηva “
Π+
vap1´Π-

vaq

Π+
va `Π-

va ´Π+
vaΠ-

va

, where

Π-+
va ”

ź

bPBvp-+aq

´

1´
ź

uPBvzb

ηub
¯

— note the clear resemblance with the recursion of §1.

2.3 Color model (warning propagation)
It is known that the frozen model can be conveniently

re-expressed as a Gibbs measure (also termed factor model
or Markov random field) with spins on variable-clause edges,
subject to constraints defined by clauses and variables. This
sometimes goes by the name of the “warning propagation”
model; the reader is referred to [33, 10, 28, 29, 30] for more
background. We use the “color model” [16], which is an effi-
cient projection of the standard warning propagation model.
In this model, an edge e “ pavq (a P F , v P V ) is colored

red if v is forced to satisfy a;
blue if v satisfies a but is not forced by it;

yellow if v is forced to negate a
(by some other clause b P Bvza);

green if v is free.

Given G “ pV, F,Eq there is a bijective correspondence

tfrozen configurations x P t+, -, fuV u ÐÑ
tvalid colorings σ P tred, yellow, green, blueuEu.

(7)

The uniform measure ν on valid colorings of G can be written
as a Gibbs measure

νpσq “
1

Z

ź

vPV

ϕvpσδvq
ź

aPF

ϕapσδaq

where ϕx (x P V Y F ) is an indicator function whose defi-
nition involves only δx. If we define tree recursions for this
model analogously to the frozen model recursions (§2.2), we
arrive precisely at the standard belief propagation (bp) recur-
sions for this Gibbs measure. These recursions are expressed
in terms of messages 9q, q̂ which are probability measures over
the set tred, yellow, blue, greenu of edge spins:

9qva “ message v to a, “law of σav in absence of a”;
q̂av “ message a to v, “law of σav in absence of v”.

We omit the recursions here as their derivation is standard.
Thanks to the bijection (7), the frozen model tree recursions
can be retrieved as a special case of the color model belief
propagation recursions. This is detailed in the appendix; we
summarize here that on a finite tree T as in §2.2, there is a
set of messages 9qva, q̂va that are given by a simple transfor-
mation of the ηva, and solve the bp recursions on T . It turns
out that these particular messages 9qva and q̂av are functions
respectively of Tva and Tav, so we will denote

9qva ” 9qpTvaq, q̂av ” q̂pTavq.

3. PREPROCESSING
We present here a simplified version of our preprocessing

step that highlights the key features.

3.1 Simple types and niceness
Our basic definitions of neighborhood types are as follows.

Fix a large integer R, and condition on the event that the
graph has girth ě 2R (which occurs with probability —R 1).

Definition 2. In a graph G “ pV, F,Eq, the simple type
te of a clause-variable edge e ” pavq ” pvaq P E is the iso-
morphism class of pBRpvq, eq, the R-neighborhood around v
rooted at edge e.4 We write jpteq ” jpv; aq to indicate the
position of the variable in the clause.

The simple type of a vertex x P V Y F is the multi-set
of all incident edge types tte : e P δxu. This has a slightly
different representation according to whether x is a clause
or a variable:

1. If x P F , its simple type Lx has no repeated elements,
since each edge e P δx has a distinct index jpteq P rks.
Thus Lx is equivalently represented as the ordered k-
tuple pLxp1q, . . . , Lxpkqq where Lxpjq is the type of the
j-th edge in δx.

2. If x P V , its simple type Tx may have repeated elements.
It is equivalently represented as the isomorphism class of
BRpvq regarded as a graph rooted at v.

In what follows, it will be convenient to denote

R ” 102R1 ” 104r. (8)

We can assume that r is a large positive integer.

4The edge-rooted graphs pTi, eiq, i “ 1, 2, are isomorphic if
there is a bijective graph homomorphism ι : T1 Ñ T2 with
e1 ÞÑ e2, preserving edge labels Lav P t+, -u and jpv; aq P rks.
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Definition 3. For v P V let T “ Brpvq. For each a P Bv,
the canonical messages on edge e “ pavq are defined by

‹ 9qva ” 9qpTvaq, ‹q̂av ” q̂pTavq for each a P Bv.

The canonical marginal on e is defined by

‹πavpσq “
‹ 9qvapσq‹q̂avpσq

ř

τ ‹ 9qvapτq‹q̂avpτq
.

Each of ‹πav, ‹ 9qva, ‹q̂av is a probability distribution over the
colors tred, yellow, blue, greenu.

For α near αs, each cluster has only a small number of
free variables. It is reasonable to expect that as R increases,

‹π will be an increasingly good approximation of the true
edge marginals, provided the marginal does not depend too
sensitively on the structure of the faraway (beyond R) levels.
We quantify this by a stability property which is explained
in the appendix.

Definition 4. A variable v is nice if it is stable (appendix),
has degrees satisfying ||Bv-

+
| ´ 2k´1k ln 2| ď 22k{3, and has

canonical messages ‹ 9q, ‹q̂ satisfying
$

’

’

&

’

’

%

|‹q̂avpyellowq ´
1
3
r1´ 2

3
p 1
2
q
k
s| ď 2´k{8,

|‹ 9qvapyellowq ´
1
3
r1´ 2

3
p 1
2
q
k
s| ď 2´k{8,

2k|‹q̂avpredq ´
1
3
p 1
2
q
k´1
| ď 2´k{8,

2k|‹ 9qvapgreenq ´
1
3
p 1
2
q
k
| ď 2´k{8.

,

/

/

.

/

/

-

for all a P Bv.

(The values specified above are roughly typical for 9q, q̂.)

3.2 Bootstrap percolation of defects
In a general bipartite factor graph G “ pV, F,Eq, given

some subset of variables D0 Ď V , for t ě 1 set Dt Ě Dt´1 to
be the union of Dt´1 together with all variables having at
least two neighboring variables in Dt´1 X V . The set

BSPpD0; G q ” D8 “ union of pDtqtě0 (9)

will be termed the bootstrap percolation of D0 in G . We
identify defective regions of the graph by a certain“localized”
bootstrap percolation:

Definition 5. Let D˚ ” tv P V : v is not niceu. Let κ be
a large absolute constant, and let D0 be the κ-neighborhood
of D˚ (the union of κ-neighborhoods of all variables in D˚).
A variable v is defective if v P BSPpD0 XBR1{2pvq, BR1{2pvqq.

Importantly, whether a variable is defective is determined
by its R1-neighborhood — that is, being defective is a local
property. By construction, each defect has at its boundary
a buffer of nice variables of depth at least κ. A clause is
considered part of a defect if and only if all its incident
variables belong to the defect — otherwise, it will follow
from our preprocessing procedure that for each remaining
clause in the processed graph at most one incident variable
can belong to a defect, and in this case the clause is not
considered part of any defect.

3.3 Containment and enclosures
For variables u, v P V , let Bpu, vq count the defective vari-

ables on the shortest path from u to v (inclusive), while
Hpu, vq counts the non-defective variables. The following
definition is at the heart of our second moment analysis.

Definition 6. Let δ˚ be a small absolute constant. Define
the containment radius of variable v to be

radpvq ” min

"

t ě 0 :
ÿ

sďtă2R1

Rspvq

*

ď 1{4, where (10)

Rspvq ”
ÿ

u:dpu,vq“s

exptkpδ˚q´1Bpu, vqu

exptpk ln 2qp1` δ˚qHpu, vqu

In particular, if v is defective then radpvq ą 0. We say v is
self-contained if

radpuq ď dpu, vq for all u with dpu, vq ď R1;

this is a local property that can be determined from the
4R1-neighborhood of the variable.

The central aim of preprocessing is to ensure that it is
possible to carve up the graph into “enclosures”: the formal
definition is given below, but roughly speaking these will be
regions of diameter at most R1 such that every variable in a
given enclosure has containment radius less than or equal to
its minimal distance from the enclosure boundary (in par-
ticular, all the boundary variables must be self-contained).
The following definitions are used to carve up the graph:

Definition 7. We say that a variable v is perfect if it is
orderly and self-contained. We say v is fair if it is stable;
its 5R1-neighborhood contains no more than exptk2p5R1qu
variables; and lastly it does not belong in any length-R1 path
that fails to contain at least one perfect variable. Whether a
variable is fair can be determined from its 5R1-neighborhood.

3.4 Preprocessing algorithm
The following is a variant of the bootstrap percolation

process defined in (9). Recall from (8) that R “ 102R1.

Definition 8. In a graph G “ pV, F,Eq, let

A pG q ”

$

&

%

v P V such that B3R{10pvq contains
ě 2 clauses of degree k ´ 1, or
ě 1 clause of degree ď k ´ 2.

,

.

-

.

Given an initial subset of variables A Ď V , let

0GA ” G
I!

BRpvq : v P A
)

, then

t`1GA ” tGA
I!

tBRpvq : v P A ptGAq
)

for t ě 0,

where tBRpvq is the R-neighborhood of v with respect to the
graph tGA. When A ptGAq “ ∅ the process has reached the
final graph tGA ” 8GA. Let BSP1pA; G q denote the set of all
variables removed by this procedure.

Preprocessing algorithm on G :
Let A Ď V be the non-fair variables (Defn. 7).
Delete BSP1pA; G q and output prG ” 8GA.

Definition 9. Any perfect variable v P prV constitutes a
singleton enclosure. A compound enclosure is a subgraph of

prG induced by a subset of variables U˝ Y UB Ď prV , where
U˝ is a (nonempty, maximal) connected component of non-
perfect variables, and UB ” tu P prV : dpu, U˝q “ 1u is its ex-
ternal boundary consisting of perfect variables.

A connected component in prG of non-perfect variables
must have diameter at most R1, which means that every
compound enclosure must be a tree. In fact a vast majority
of variables will be singleton enclosures.
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Definition 10. For each element (variable, clause, or edge)
in G , the simple total type records the simple type (Defn. 2)
of that element both before and after preprocessing.

Definition 11. For each element (variable, clause, or edge)
in a compound enclosure U , its compound type records the
graph structure of U with the position of the element marked,
together with the simple total type of every element in U .
In particular, different elements appearing in the same com-
pound enclosure must have different compound types, even
if their simple total types match.

Definition 12. The total type of an element in G is defined
to be its simple total type if the element does not lie in a
compound enclosure. If the element lies in a compound en-
closure, its total type is defined to be its simple type (defined
with respect to the initial graph) together with its compound
type (defined with respect to the processed graph). We use
T , L, and t to denote the total types of variables, clauses,
and edges respectively.

With some abuse of notation, we write G ” pV, F,Eq from
now on for the processed graph labelled with all total types.
We denote n ” |V | and m ” |F | (where these can be smaller
than the original values of n,m).

Definition 13. The processed degree distribution D is the
empirical profile of total types in the graph G : D ” p 9D , D̂q
with 9D (resp. D̂) the empirical distribution of variable (resp.
clause) total types. The empirical distribution D of edge
total types can be computed as a marginal of both 9D , D̂ .

The main result of our preprocessing analysis is as follows:

Proposition 2. The processed graph conditional on D
is uniformly distributed over the set of all graphs consistent
with D. The following hold with high probability:

(a) Preprocessing removes ď n{ expt2ckRu variables, for an
absolute constant c ą 0.

(b) Every total type present in the processed graph appears
ě nc1 times, for a constant c1pk,Rq ą 0.

Our definition of total type was chosen to guarantee the
uniformity — it allows us now to sample G conditional on
D using a generalization ([9]) of the standard configuration
model for graphs with given degree sequence. For expository
purposes, we have omitted from this abstract some more
technical components of the preprocessing, including steps
taken to ensure Propn. 2b.

4. PROOF OUTLINE
We can now supply a more detailed overview of our proof.

First we analyze the distributional recursion and establish
Propn. 1. Some of the estimates obtained in this analysis are
applied to study the preprocessing algorithm and to prove
Propn. 2. These estimates are technically rather challenging,
and relied on the assumption of large k.

We show moreover that valid colorings of the processed
graph can be mapped to valid k-sat solutions on the original
graph. Therefore, to prove our main result it suffices to es-
tablish the existence with high probability of valid colorings
of the processed graph. Further, by Friedgut’s theorem [22]
it suffices to show existence with probability non-vanishing
in the limit nÑ8. This will be done by the second moment
method applied to a particular subset of good colorings, as
we now define.

4.1 Separable judicious colorings
Recall G ” pV, F,Eq now refers to the processed graph,

with n “ |V |, m “ |F |, and degree distribution (Defn. 13).
Given a valid coloring σ, let π, ω be defined by

nDptqπtpσq ” |tpavq P E : tav “ t, σav “ σu|;

mD̂pLqωL,jpσq ”

ˇ

ˇ

ˇ

ˇ

"

pavq P E : La “ L,
jpv; aq “ j, σav “ σ

* ˇ

ˇ

ˇ

ˇ

.
(11)

Both π and ω are functions of the given coloring σ; moreover,
π is a linear function of ω. The following two definitions are
adapted from [15, 16]:

Definition 14. A valid coloring σ on a processed graph G
is self-judicious if ωL,j depends only on Lpjq, that is to say,

ωL,j “ πLpjq for all L, j.

The coloring σ is termed judicious if furthermore π agrees
(up to rounding) with the canonical edge marginal ‹π based
on the variable r-neighborhood (Defn. 3). Note judicious is
a stronger condition than self-judicious.

Definition 15. For a judicious coloring σ, let x be the
frozen configuration corresponding via (7) to σ. We say σ is
separable if there are ď exptplnnq5u judicious configurations
σ1 such that the Hamming distance between x and x1 lies
outside the interval rp1´ k42´k{2qn{2, p1` k42´k{2qn{2s.

Recalling the discussion of §1.3, we now set

colR ” tjudicious separable colorings σu.

We will perform the second moment method on Z ” |colR|,
conditional on D :

Theorem 2. There is a constant Cpk,Rq such that

EDrZ
2
s ď CpEDZq2 ` eopnqEDZ (12)

with high probability over the random degree sequence D.

The rightmost term in (12) is the contribution from pairs
of colorings σ, σ1 with high correlation, which is directly con-
trolled by the separability condition (Defn 15). By Thm. 2,
if EDZ is exponentially large in n, then we have the bound
(6). This implies Z ą 0 with non-vanishing probability as
nÑ8, which in turn implies a satisfiability lower bound as
explained above: αs ě αlbdpRq where

αlbdpRq “ suptα : lim inf n´1 lnEDZ ą 0u.

To prove αlbdpRq Ñ α‹, we show that most judicious con-
figurations are separable in the sense that, with high prob-
ability over D , we have EDZ “ r1´ onp1qsEDZ where

Z ď Z ” # judicious colorings σ.

The advantage of working with Z rather than Z is that Z is
amenable to moment calculations under the generalized con-
figuration model mentioned above. We can express EDZ as
a sum over products of multinomial coefficients, and thereby
show that with high probability (using also Propn. 2a),

EDZ ě exptnrΦpαq ´ εRsu

for limR εR “ 0. Since Φ is decreasing (Propn. 1), it follows
that limRÑ8 αlbdpRq “ α‹ as required.

Outside of the highly-correlated regime captured by the
second term on the right-hand side of (12), we shall drop the
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separability condition and work with judicious colorings. We
decompose

ErZ2
s “

ÿ

ω

ErZ2
pωqs

with Z2
pωq the contribution to Z2 from pairs σ ” pσ1, σ2

q

with edge empirical measure ω — ω is defined analogously
as before, but now each entry is a probability measure over
tred, yellow, green, blueu2.

For each edge e “ pavq with La “ L and jpv; aq “ j, write
ωe ” ωL,j . For a measure p on tred, yellow, blue, greenu2,
write pi (i “ 1, 2) for its single-copy marginals. As Z counts
only judicious colorings, any empirical measure ω giving a
positive contribution to Z2 must satisfy

ω1
e “ ‹πe “ ω2

e for all e P E, (13)

where ‹πe is the canonical edge marginal defined according
to the r-neighborhood of the incident variable v (Defn. 3).
We refer to measures with property (13) as judicious. From
the preceding discussion, we are interested in the second
moment contribution outside the highly-correlated regime,
that is, we wish to estimate

EZ2
pIq “

ÿ

ωPI

EZ2
pωq

where I is a certain neighborhood of ωb ” ‹π b ‹π. We show
that ErZ2

pωqs is uniquely maximized over all ω P I precisely
at ωb, which immediately gives (with 9ď meaning ď up to
factors polynomial in n)

ErZ2
pIqs 9ď pEZq2.

We subsequently remove the polynomial factor by proving
that ErZ2

pωqs has the appropriate decay in a neighborhood
of ωb to yield ErZ2

pIqs À pEZq2, thereby concluding the
proof of Thm. 2.

4.2 Single-site and block updates
To prove ωopt

“ ωb, assume not. We will take the entry of
ωopt furthest (by some metric) from the corresponding entry
of ωb, and re-optimize in this entry to obtain ω1 which (i) is
closer to ωb than ωopt, and (ii) gives a larger contribution
to the partition function than ωopt. This contradicts the
optimality of ωopt, proving our claim.

The main work of implementing this strategy is in defining
and analyzing our update procedure. A single-site update
re-optimizes the marginal for a single edge type, keeping all
the other edge marginals fixed. For nice types this update
does indeed contract towards the product measure, but for
non-nice types it may not. We therefore supplement the
single-site updates with block updates where we re-optimize
over the edge marginals for all types appearing within a
compound enclosure, while keeping fixed the marginals in
the rest of the graph. The definition of enclosure was tailored
to ensure that these block updates contract towards ωb.

4.3 Reduction to optimization on trees
The block update is more complicated than the single-

site update, but a key observation is that the optimization
factorizes in a simple manner due to our notion (Defn. 11) of
compound types. Fix a tree T that is fully contained within
some compound enclosure. There are N disjoint copies of the
enclosure in the graph, hence N disjoint copies of T (where N

is large by Propn. 2b). Let

ω “

¨

˝

ωδT
ωint

ωext

˛

‚“

¨

˝

ωL,j : Lj appears in leaves δT of T
ωL,j : Lj appears in T ˝ “ T zδT
ωL,j : Lj does not appear in T

˛

‚

where δT denotes the leaf edges of T . Given ωδT , the config-
uration model within the copies of T is independent of the
configuration model in the remainder of the graph: that is
to say, we have the factorization

ErZ2
pωqs “ ErZ2

intpωint, ωδT qsErZ2
extpωδT , ωextqs (14)

where Z2
intpωint, ωδT q is the partition function on N disjoint

copies of T subject to empirical measure pωint, ωδT q, and
Z2

extpωδT , ωextq is the partition function on the graph with
all the copies of T removed (leaving behind dangling edges).
Let us emphasize again that the above factorization relies
crucially on our definition of compound types. Then, with
.
“ denoting equality up to polynomial factors,

max
ωint

ErZ2
pωint, ωδT , ωextqs

.
“

ÿ

ωint

ErZ2
pωint, ωδT , ωextqs

.
“

´

ÿ

ωint

ErZ2
intpωint, ωδT qs

¯

ErZ2
extpωδT , ωextqs

.
“

´

max
ωint

ErZ2
intpωint, ωδT qs

¯

ErZ2
extpωδT , ωextqs.

That is to say, optimizing the partition function on the graph
subject to fixed empirical measures outside a tree T can be
reduced to optimizing the partition function on the graph
on N disjoint copies of the tree T subject to fixed empirical
measures at the leaves BT . As we now proceed to explain,
the latter optimization problem can be analyzed by belief
propagation in weighted models.

To solve the constrained optimization problem of maxi-
mizing the tree partition function subject to given marginals
at the leaves, we introduce a system of Lagrange multipliers
to arrive at an unconstrained optimization problem. The
Lagrange multipliers are implemented by adding weights to
our original unweighted model of judicious colorings on trees.
We give a direct construction of these weights which allow
us to estimate their sizes. It is well understood how to use
belief propagation to solve the unconstrained optimization
in the weighted tree model. We analyze the bp solution to
show that the root marginal contracts towards the desired
product measure.

This gives Thm. 2 with nOp1q in place of the constant
C. Another key result of our reweighting approach is that
the contraction can be used to deduce that n´1 lnErZ2

pωqs
has uniformly negative-definite Hessian at ωopt, simplifying
a step that is often very technically challenging. This allows
us to improve the nOp1q to the required constant C, yielding
Thm. 2. The main result Thm. 1 then follows by combining
with Friedgut’s sharp threshold theorem [22].
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