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Abstract

We consider the problem of finding the graph on which an epidemic cascade spreads, given only the
times when each node gets infected. While this is a problem of importance in several contexts – offline
and online social networks, e-commerce, epidemiology, vulnerabilities in infrastructure networks – there
has been very little work, analytical or empirical, on finding the graph. Clearly, it is impossible to do
so from just one cascade; our interest is in learning the graph from a small number of cascades.

For the classic and popular “independent cascade” SIR epidemics, we analytically establish the num-
ber of cascades required by both the global maximum-likelihood (ML) estimator, and a natural greedy
algorithm. Both results are based on a key observation: the global graph learning problem decouples
into n local problems – one for each node. For a node of degree d, we show that its neighborhood can be
reliably found once it has been infected O(d2 log n) times (for ML on general graphs) or O(d log n) times
(for greedy on trees). We also provide a corresponding information-theoretic lower bound of Ω(d log n);
thus our bounds are essentially tight. Furthermore, if we are given side-information in the form of a
super-graph of the actual graph (as is often the case), then the number of cascade samples required –
in all cases – becomes independent of the network size n.

Finally, we show that for a very general SIR epidemic cascade model, the Markov graph of infection
times is obtained via the moralization of the network graph.
Keywords: Epidemics, cascades, network inverse problems, structure learning, sample complexity,
Markov random fields

1 Introduction

Cascading, or epidemic, processes are those where the actions, infections or failure of certain nodes increase
the susceptibility of other nodes to the same; this results in the successive spread of infections / failures
/ other phenomena from a small set of initial nodes to a much larger set. Initially developed as a way
to study human disease propagation, cascade or epidemic processes have recently emerged as popular and
useful models in a wide range of application areas. Examples include
(a) social networks: cascading processes provide natural models for understanding both the consumption
of online media (e.g. viral videos, news articles[13]) and spread of ideas and opinions (e.g. trending of
topics and hashtags on Twitter/Facebook[24], keywords on blog networks[7])
(b) e-commerce: understanding epidemic cascades (and, in this case, finding influential nodes) is crucial to
viral marketing [9], and predicting/optimizing uptake on social buying sites like Groupon etc.
(c) security and reliability: epidemic cascades model both the spread of computer worms and malware [10],
and cascading failures in infrastructure networks [11, 23] and complex organizations [18].
(d) peer-to-peer networks: epidemic protocols, where users sending and receiving (pieces of) files in a
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random uncoordinated fashion, form the basis for many popular peer-to-peer content distribution, caching
and streaming networks [14, 3].

Structure Learning: The vast majority of work on cascading processes has focused on understanding
how the graph structure of the network (e.g. power laws, small world, expansion etc.) affects the spread of
cascades. We focus on the inverse problem: if we only observe the states of nodes as the cascades spread,
can we infer the underlying graph ? Structure learning is the crucial first step before we can use network
structure; for example, before we find influential nodes in a network (e.g. for viral marketing) we need to
know the graph. Often however we may only have crude, prior information about what the graph is, or
indeed no information at all.
For example, in online social networks like Twitter or Facebook, we may have access to a nominal graph
of all the friends of a user. However, clearly not all of them have an equal effect on the user’s behavior;
we would like to find the sub-graph of important links. In several other settings, we may have no a-priori
information; examples include information forensics that study the spread of worms, and offline settings
like real-world epidemiology and social science. The standard practice seems to be to use crude/nominal
subgraphs if they exist (e.g. Twitter), or find graphs by other means (e.g. surveys). We propose to take a
data-driven approach, finding graphs from observations of the cascades themselves.

While structure learning from cascades is an important primitive, there has been very little work
investigating it (we summarize below). There are two related issues that need to be addressed: (a)
algorithms: what is the method, and its complexity, and (b) performance: how many observations are
needed for reliable graph recovery? The main intellectual contribution of this paper is characterizing the
performance of two algorithms we develop, and a lower bound showing they perform close to optimal.
To the best of our knowledge, there exists no prior work on performance analysis (i.e. characterizing the
number of observations needed) for learning graphs of epidemic cascades.

1.1 Summary of Our Results

We present two algorithms, and information-theoretic lower bounds, for the problem of learning the graph
of an epidemic cascade when we are given prior information of a super-graph1. It is not possible to learn
the graph from a single cascade; we study the number of cascades required for reliable learning. Key
outcomes of our results are that (i) epidemic graph learning can be done in a fast, distributed fashion, (ii)
with a number of samples that is close to the lower bound. Our results:

(a) Maximum Likelihood: We show that, via a suitable change of variables, the problem of finding
the graph most likely to generate the cascades we observe decouples into n convex problems – one for each
node. Further, for node i, the algorithm requires as input only the infection times of that node’s size-Di

super-neighborhood; it is local both in computation and in the information requirement. Our main result
here is to establish that for this efficient algorithm, if di is the size of the true neighborhood, then node i
needs to be infected O(d2i logDi) times before we learn it, for a general graph.

(b) Greedy algorithm: We show that if the graph is a tree, then a natural greedy algorithm is
able to find the true neighborhood of a node i with only O(di logDi) samples. The greedy algorithm
involves iteratively adding to the neighborhood the node which “explains” (i.e. could be the likely cause
of) the largest number of instances when node i was infected, and removing those infections from further

1Of course if no super-graph is given, it can be taken to be the complete graph.
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consideration.

(c) Lower bounds: We first establish a general information-theoretic lower bound on the number of
cascade samples required for approximate graph recovery, for general (but abstract) notions of approxima-
tion, and for any SIR process. We then derive two corollaries: one for learning a graph upto a specified edit
distance when there is no super-graph information, and another for the case when there is a super-graph,
and specified edit distances for each of the nodes. These bounds show that the ML algorithm is at most a
factor d away from the optimal.

(d) Markov structure of general cascades: Every set of random variables has an associated
Markov graph. In our final result, we show that for a very general SIR epidemic cascade model – essentially
any that is causal with respect to time and the directed network graph – the (undirected) Markov graph
of the (random) infection times is the moralized graph of the true directed network graph on which the
epidemic spreads. This allows for learning graph structure using techniques from Markov Random Fields
/ graphical models, and also illustrates the role of causality.

While here we used the O(·) and Ω(·) notation for compact statement, we emphasize that our results
are non-asymptotic, and thus more general than a merely asymptotic result. Thus for fixed values of
system parameters and probabilities of error, we give precise bounds on the number of cascades we need to
observe. If one is interested in asymptotic results under particular scaling regimes for the parameters, such
results can be derived as corollaries of our algorithms (with union bounds if one is interested in complete
graph recovery).

A nice feature of our results is that both the algorithms work on a node by node basis. Thus for
recovering the neighbors of a node we only need information about its super-neighborhood, and solve
a local problem. We are also able to find the neighborhood of one or a few nodes, without worrying
about finding the neighborhoods of other nodes or the entire graph. Similarly, the number of samples
required to recover the neighborhood of a node depend only on the sizes of its own neighborhood and
super-neighborhood.

1.2 Related Work

Learning graphs of epidemic cascades: While structure learning from cascades is an important prim-
itive, there has been very little work investigating it:
(a) algorithms: A recent paper [22] investigates learning graphs from infection times for the independent
cascade model (similar setting as our paper). However, they take an approach that results in an NP-hard
combinatorial optimization problem, which they show can be approximated. Another paper [16] shows
max-likelihood estimation in the independent cascade model can be cast as a decoupled convex optimiza-
tion problem (albeit a different one from ours).
(b) performance: To the best of our knowledge, there has been no work on the crucial question of how
many cascades one needs to observe to learn the graph; indeed, this question is the main focus of our
paper.

Markov graph structure learning: The ideas in this paper are related to those from Markov Random
Fields (MRFs, aka Graphical Models) in statistics and machine learning, but there are also important
differences. We overview the related work, and contrast it to ours, in Section 6.
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2 System Model

Most of the analytical results of this paper are for the classic and popular independent cascade model
of epidemics; in particular we will consider the simple one-step model first proposed in [6] and recently
popularized by Kempe, Kleinberg and Tardos [9].

Standard independent cascade epidemic model [9]: The network is assumed to be a directed
graph G = (V,E); for every directed edge (i, j) we say i is a parent and j is a child of the corresponding
other node. Parent may infect child along an edge, but the reverse cannot happen; we allow bi-directed
edges (i.e. it is possible that (i, j) and (j, i) are in E). Let Vi := {j : (j, i) ∈ E} denote the set of parents
of each node i, and for convenience we also include i ∈ Vi. Epidemics proceed in discrete time; all nodes
are initially in the susceptible state. At time 0, each node tosses a coin and independently becomes active,
with probability pinit. This set of initially active nodes are called seeds. In every time step each active
node probabilistically tries to infect its susceptible children; if node i is active at time t, it will infect each
susceptible child j with probability pij , independently. Correspondingly, a node j that is susceptible at
time t will become active in the next time step, i.e. t+1, if any one of its parents infects it. Finally, a node
remains active for only one time slot, after which it becomes inactive: it does not spread the infection, and
cannot be infected again. Thus this is an “SIR” epidemic, where some nodes remain forever susceptible
because the epidemic never reaches them, while others transition according to:
susceptible → active for one time step → inactive. A sample path of the independent cascade model
is illustrated in Figure 1.
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Figure 1: Illustration of the independent cascade model: This figure illustrates a sample path of
the evolution of the independent cascade model. The four figures above represent the state of the system
at time steps 0, 1, 2 and 3 respectively. A node with no box around it means that it is in susceptible state,
a node with a square around it means that it is active and a node with a star around it means that it is
inactive. At time step 0, nodes b and c are chosen as seeds. They infect d and f respectively and turn
inactive. In time step 1, d infects a where as f fails to infect any of its children. In time step 2, a does not
have any children to infect. Once a turns inactive in time step 3, the epidemic stops.

Note thus that the set parental set is Vi = {j : pji > 0}, i.e. the set of all nodes that have a non-zero
probability of infecting i.

Observation model: For an epidemic cascade u that spreads over a graph, we observe for each node
i the time tui when i became active. If i is one of the seed nodes of cascade u then tui = 0, and for nodes
that are never infected in u we set tui = ∞. Let tu denote the vector of infection times for cascade u.
We observe more than one cascade on the same graph; let U be the set of cascades, and m = |U| be the
number, which we will often refer to as the sample complexity. Each cascade is assumed to be generated
and observed as above, independent of all others.
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(possible) Super-graph information: In several applications, we (may) also have prior knowledge
about the network, in the form of a directed super-graph2 of G. We find it convenient to represent super-
graph information as follows: for each node i, we are given a set Si ⊂ V of nodes that contain its true
parents; i.e. Vi ⊂ Si for all i. In terms of edge probabilities, this means that pji > 0 (strictly) for j ∈ Vi,
and pji = 0 for j ∈ Si\Vi. Of course if no super-graph is available we can set Si = V , the set of all nodes;
so from now on we assume a Si is always available.

Problem description: Using the vectors of infection times {tu} we are interested in finding the
parental neighborhood Vi, for some or all of the nodes i. That is, we want to find the set of nodes that can
infect i. This is not possible when we only observe a single cascade; we will thus be interested in learning
the graph from as few cascades as possible.

Note that multiple seeds begin each cascade u ∈ U ; thus, for a single cascade even at time step 1 we
will not be able to say with surety which seed infected which individual.

Correlation decay: Loosely speaking, random processes on graphs are said to have “correlation
decay” if far away nodes have negligible effects. For our problem, this means that the cascade from each
seed does not travel too far. Formally, all the results in this paper assume that there exists a number α > 0
such that for every node i, the sum of all probabilities of incoming edges satisfies

∑
k pki < 1 − α. The

following lemma clarifies what this assumption means for the infection times of a node.

Lemma 1. For any node i and time t, we have

P [Ti = t] ≤ (1− α)t−1 pinit

Thus, the probability P[Ti < ∞] that a node is infected satisfies pinit < P[Ti < ∞] < pinit
α . Also, the

average distance from a node to any seed that infected it is at most 1
α . We discuss the case where there is

no correlation decay in the Discussion section.

Interpreting the results: Each cascade we observe provides some information about the graph.
Suppose we want to infer the presence, or absence, of the directed edge (i, j) (i.e. if pij > 0 or not). Note
that if the parent i is not infected in a cascade, then that cascade provides no information about (i, j):
since the parent was never infected, no infection attempt was made using that edge; the “edge activation
variable” was never sampled. While our theorems are in terms of the total number m of cascades needed
for graph estimation, for a meaningful interpretation of this number one needs to realize that the expected
number of times we get useful information about any edge is, on average, between mpinit and mpinit/α.
These are also the bounds on the average number of times a particular node is infected in a particular
cascade.

We provide both upper bounds (via two learning algorithms), and (information theoretic) lower bounds
on the sample complexity. Note that the execution of our algorithms does not require knowledge of these
parameters like pinit, α etc.; these are defined only for the analysis.

2For example, on social networks like Facebook or Twitter, we may know the set of all friends of a user, and from these we
want to find the ones that most influence the user.
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3 Maximum Likelihood

The graph learning problem can be interpreted as a parameter estimation problem: for each cascade, the
vector T of infection times is a set of random variables that has a joint distribution which is determined by
a set of parameters pji ≥ 0 for every i and j ∈ Si. We want to find these parameters, or more specifically
the identities of the edges where they are non-zero, from samples tu, u ∈ U . Each choice of parameters
has an associated probability, or likelihood, of generating the infection times we observe. The classical
Maximum-likelihood (ML) estimator advocates picking the parameter values that maximize this likelihood.

Our crucial insight in this section is that, with an appropriate change of variables the likelihood
function has a particularly nice (decoupled, convex) form, enabling both efficient implementation and
analysis. In particular, define θij := − log(1− pij) ; note that pij = 0⇔ θij = 0.

Further, for each node i let θ∗i := {θji ; j ∈ Si} be the set of parameters corresponding to the possible
parents Si of node i. Let θ be the set of all parameters of the graph. Note that θ ≥ 0 (i.e. every parameter
is positive or zero). Finally, we define the log-likelihood of a vector t of samples to be

L(t; θ) := log (Prθ[T = t])

The proposition below shows how L decouples into convex functions with this change of variables.

Proposition 1 (convexity & decoupling). For any vector of parameters θ, and infection time vector t, the
log-likelihood is given by

L(t; θ) = log(psinit(1− pinit)n−s) +
∑
i

Li(tSi ; θ∗i)

where s is the number of seeds (i.e. nodes with ti = 0), and the node-based term

Li(tSi ; θ∗i) := −
∑

j:tj≤ti−2
θji + log

1− exp

− ∑
j:tj=ti−1

θji


Furthermore, Li(tSi ; θ∗i) is a concave function of θ∗i, for any fixed tSi.

Proof: Please see appendix.

Remark: The overall log-likelihood L(t; θ) has now decoupled because it is the sum of n terms of the
form Li(t; θ∗i), each of which depend on a different set of variables θ∗i. Thus each one can be optimized,
and analyzed, in isolation.

The algorithmic implications of this proposition are:
(a) if we are only interested in a small subset of nodes, we can find their parental neighborhood by solving
a separate |Si|-variable convex program for each one,
(b) even if we want to find the entire graph, the decoupling allows for parallelization, and speedup: solving
n convex programs with n variables each is much faster than solving one program with n2 variables.
(c) The function Li is fully determined by the times tSi of the node’s super-neighborhood; it does not need
knowledge of the infection times of other nodes.
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Proposition 1 is equally crucial analytically, as it enables us to derive bounds on the number of cascades
required for us to reliably select the neighborhood, via analysis of the first-order optimality conditions of
the convex program. In particular, we will see that complementary slackness conditions from convex
programming, and concentration results, are key to proving our results on the sample complexity of the
ML procedure.

The ML algorithm for finding the parental neighborhood of node i is formally stated below. it involves
solving the convex program corresponding to the max-likelihood, and setting small values of θji to 0. The
threshold for this cut-off is η, which is an input to the procedure.

Algorithm 1 ML Algorithm for Node i

1: Find the optimizer of the empirical likelihood, i.e. find

θ̂∗i := arg max
θ∗i

∑
u

Li(tuSi ; θ∗i)

where Li(tSi ; θ∗i) is as defined in Prop. 1.
2: Estimate the parental neighborhood by thresholding:

V̂i := {j : θ̂ji ≥ η}

3: Output V̂i.

Our main analytical result of this section is a characterization of the performance of this ML algorithm,
in terms of the number of cascades it needs to reliably estimate the parental neighborhood of any node i.

Theorem 1. Consider a node i with true parental degree di := |Vi|, and super-graph degree Di := |Si|. Let
pi,min := minj∈Vi pji be the strength of the edge from the weakest parent. Assume dipinit <

1
2 . Then, for

any δ > 0, if the number of cascades m = |U| satisfies

m >
c

pinit

(
1

α7η2p2i,min

)
d2i log

(
Di

δ

)
(1)

Then, with probability greater than 1− δ, the estimate V̂i from the ML algorithm with threshold η will have
(a) no false neighbors, i.e. V̂i ⊂ Vi, and
(b) all strong enough neighbors: if j ∈ Vi and pji >

8
α(e2η − 1), then j ∈ V̂i as well.

Here c is a number independent of any other system parameter.

Remarks:

(a) This is a non-asymptotic result that holds for all values of the system variables di, pinit, α, pi,min, η
and δ. Appropriate asymptotic results can be derived as corollaries, if required. Note that this result on
finding the nodes that influence node i does not depend on n.

(b) We can learn the entire neighborhood, i.e. V̂i = Vi, by choosing the threshold η ≤ 1
2 log(1+

αpi,min
8 )

low enough, and the corresponding number of cascade samples m according to (1). Thus, the number of
times node i needs to be infected before we can reliably (i.e. with a fixed small error probability) learn
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its neighborhood scales as O(d2i logDi) (for fixed values of other system variables). Our result allows for
learning stronger edges with fewer samples.

(c) If we want to learn the structure of the entire graph with probability greater than ε, we can set
δ = ε/n and then take a union bound over all the nodes. So, for example, if every node has true degree
at most |Vi| ≤ d, and super-graph degree |Si| ≤ D, then the number of samples needed to learn the entire
graph (with probability at least 1− ε) scales as O(d2 log Dn

ε ) (for fixed values of other system variables).

(d) The average number of parents of i that are seeds is dipinit. If this is large, then in every cascade
there will be a reasonable probability of one of them being seeds, and infecting i in the next time slot. This
makes it hard to discern the neighborhood of i; the (mild) assumption dipinit <

1
2 is required to counter

this effect. Indeed, in most applications pinit is likely to be quite small.

(e) Note that our results depend on the in-degree of nodes, not the out-degree. So for example it is
possible to have high out-degree nodes (as e.g. in power-law graphs), and still be able to learn the graph
with small number of samples.

3.1 Generalized Independent Cascade Model

In this paper, for ease of analysis, we restrict our sample-complexity analysis to one-step independent
cascade epidemics, where a node is active for only one time slot after it is infected. However, our algorithmic
and bounding approaches apply to a more general class of independent cascade models. Specifically, we
consider an extension where each parent now has a probability distribution of the amount of time it waits
before infecting a child, and prove a generalization of Proposition 1, which was the key result enabling
both the implementation and analysis of the ML algorithm.

Formally, let pτji denote the probability that an active node j infects a susceptible child i, τ time steps
after j was infected. The time taken for j to infect i is bounded by a parameter t i.e., pτji = 0 for τ > t.
Note that if we have t = 1, we recover the standard independent cascade model. The total probability that
j infects i is given by

∑
τ∈[t] p

τ
ji (which can be strictly less than 1) where [t] denotes the set of integers

between 1 and t (including the end points).

Following in the steps of Proposition 1, define θτji : = − log
(

1−
∑
r∈[τ ] p

r
ji

1−
∑
r∈[τ−1] p

r
ji

)
. Note that given any

parameter vector pτji we obtain the corresponding θτji and vice versa. Moreover θτji = 0⇔ pτji = 0. Suppose
each node is seeded with the infection with probability pinit and let L(t, θ) denote the log-likelihood of the
infection time vector t when the parameters of the model are given by θ. We have the following version of
Proposition 1 for the generalized independent cascade model.

Proposition 2. For any vector of parameters θ, and infection time vector t, the log-likelihood is given by

L(t; θ) = log(psinit(1− pinit)n−s) +
∑
i

Li(tSi ; θ∗i)

where s is the number of seeds (i.e. nodes with ti = 0), and the node-based term

Li(tSi ; θ∗i) := −
∑

j:tj≤ti−2

∑
τ∈[ti−tj−1]

θτji + log

1− exp

− ∑
j:tj<ti

θ
ti−tj
ji


8



Furthermore, Li(tSi ; θ∗i) is a concave function of θ∗i, for any fixed tSi.

Proof: Please see appendix.

4 Greedy Algorithm

We now analyze the sample complexity of a simple iterative greedy algorithm – for the case when the graph
is a tree3. The algorithm is of course defined for general graphs.

The idea is as follows: suppose we want to find the parents of node i from a given set of cascades U . In
each cascade u, the set of nodes that could have possibly infected i is the set of nodes j for which tuj = tui −1.
In the first step, the algorithm thus picks the j which has tuj = tui − 1 for the largest number of observed
cascades. It then removes those cascades from further consideration (since they have been “accounted for”)
and proceeds as before on the remaining cascades, stopping when all cascades are exhausted.

Algorithm 2 Greedy Algorithm for Node i

1: Initialize unaccounted cascades U = U
2: Initialize V̂i = ∅
3: while U 6= ∅ do
4: Find k = arg maxj∈Si |{u ∈ U : tuj = tui − 1}|
5: Add it : V̂i ← V̂i ∪ k
6: Remove cascades : U ← U \ {u : tuk = tui − 1}
7: end while
8: Output V̂i

Our main result for this section is below.

Theorem 2. Suppose the graph G is a tree, and the degree of node i is di := |Vi|. Suppose also that

pinit <
α2pmin

16ed . If Algorithm 2 is given a super-neighbhorhood of size Di := |Si|, then for any δ > 0 if the
number of samples satisfies

m >
c

pinit

(
1

pmin

)
di log

Di

δ

then with probability at least 1 − δ the estimate from the greedy algorithm will be the same as the true
neighborhood, i.e. V̂i = Vi. Here c is a constant independent of any other system parameter.

5 Lower Bounds

We now turn our attention to establishing lower bounds on the number of cascades that need to be observed
for even approximately learning graph structure, using any algorithm. Clearly, we now cannot focus on
learning just one graph, since in that case we could come up with an “algorithm” tailored to find precisely

3We believe (especially since we have correlation decay) that our results can be easily extended to the case of “locally
tree-like” graphs; e.g. random graphs from the Erdos-Renyi, random regular or several other popular models.
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that one graph. Instead, as is standard practice in information-theoretic lower bounds, we need to consider
a collection (or “ensemble”) of graphs, and study how many cascades are needed to (approximately) find
any one graph from this collection.

We first state a lower bound in a general setting, for any pre-defined ensemble and notion of approxi-
mate recovery. We then provide two corollaries specializing it to our independent cascade epidemic model,
edit distance approximation, and two natural graph ensembles.

General Setting: Consider any general cascading process generating infection times {Ti}. Let G be
a fixed collection of graphs and corresponding edge probabilities, and let G be a graph chosen uniformly
at random from this collection. We then generate a set U , with |U| = m, of independent cascades, and
observe infection times TU . Let Ĝ(TU ) be a graph estimator that takes the observations as an input and
outputs a graph. Finally, we say that a graph G′ approximately recovers graph G if G ∈ B(G′), where
B(G′) ⊆ G is any pre-defined set of graphs, with one such set defined for every G′.

So for example, if we are interested in exact recovery, we would have B(G′) = {G′}, i.e. the singleton.
If we were interested in edit distance of s, we would have B(G′) be the set of all graphs within edit distance
s of G′.

We define the probability of error of a graph estimator Ĝ(·) to be

Pe(Ĝ) := P[G /∈ B(Ĝ(TU ))]

where the probability is calculated over the randomness in the choice of G itself, and the generation of
infection times in this G. Note that the definition defines error to be when approximate recovery (as
defined by the sets B) fails.

Theorem 3. In the general setting above, for any graph estimator to have a probability of error of Pe, we
need

m ≥
(1− Pe) log |G|

supG′ |B(G′)|
− 1∑

i∈V H(Ti)

where H(·) is the entropy function.

Proof. To shorten notation, we will denote Ĝ(TU ) simply by Ĝ. The proof uses several basic information-
theoretic inequalities, which can be found e.g. in [5]. In the following H(·) denotes entropy and I(·; ·)
denotes mutual information.

We can see that the following diagram forms a Markov chain

G←→ TU ←→ Ĝ

10



We have the following series of inequalities:

H(G) = I(G; Ĝ) +H(G | Ĝ)

(ς1)

≤ I(G;TU ) +H(G | Ĝ)

(ς2)

≤ H(TU ) +H(G | Ĝ)

(ς3)

≤ mH(T ) +H(G | Ĝ)

(ς4)

≤ m
∑
i∈V

H(Ti) +H(G | Ĝ)

where (ς1) follows from the data processing inequality, (ς2) follows from the fact that the mutual information
between two random variables is less than the entropy of either of them, (ς3) and (ς4) follows from the
subadditivity of entropy. Since G is sampled uniformly at random from G, we have that H(G) = log |G|.
We now use Fano’s inequality to bound H(G | Ĝ).

H(G | Ĝ)
(ς1)

≤ H(G,Err | Ĝ)

(ς2)

≤ H(Err | Ĝ) +H(G | Err, Ĝ)

(ς3)

≤ H(Err) +H(G | E, Ĝ)

(ς4)

≤ 1 + Pe log |G|+ (1− Pe) log sup
Ĝ

|Bs(Ĝ)|

where Err is the error indicator random variable (i.e., is 1 if G /∈ B(Ĝ) and 0 otherwise), so that Pe =
E [Err]. (ς1) follows from the monotonicity of entropy, (ς2) follows from the chain rule of entropy, (ς3) follows
from the monotonicity of entropy with respect to conditioning and (ς4) follows from Fano’s inequality.
Combining the above two results, we obtain

m
∑
i∈V

H(Ti) ≥ (1− Pe) log
|G|

sup
Ĝ
|B(Ĝ)|

− 1

⇒ m ≥
(1− Pe) log |G|

sup
Ĝ
|B(Ĝ)|

− 1∑
i∈V H(Ti)

(2)

To apply this result to a particular ensemble G and notion of approximation B, we need to find a lower
bound on |G|, and upper bounds on |B(G′)| for all G′ and H(Ti) for all i. The following lemma states an
upper bound on H(Ti) for our independent cascade model when we have correlation decay coefficient α.
Both our corollaries assume this is the case for all graphs in their respective ensembles.

Lemma 2. For any graph with correlation decay coefficient α, for any node i, and when pinit <
1
e , we
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have that

H(Ti) ≤ pinit
1− α

(
log

1

pinit
+

(
1− α
α

)2

log
1

1− α

)
−
(

1− pinit
α

)
log
(

1− pinit
α

)
=: pinitH(α, pinit)

Note that the edit distance between two graphs is the number of edges present in only one of the two
graphs but not the other (i.e. the number of edges in the symmetric difference of the two graphs). Our
first corollary is for the case when there is no super-graph information, and we want to approximate in
global edit distance.

Corollary 1. Let Gd denote the set of all graphs with in-degrees bounded by d, and Bγ(G′) be the set of all
graphs within edit distance γ of G′. Let pinit <

1
e . Then for any algorithm to have a probability of error of

Pe, we need

m >
(1− Pe)
pinit

1− α
H(α, pinit)

(
d log

n

d
− γ

n
log

n2

γ

)
− 1

Proof. We have that

log |Gd| = log

(
n

d

)n
= (1 + o(1))nd log

n

d

log |Bγ(G′)| ≤ log

((n
2

)
γ

)
≤ γ log

n2

γ

Using the above two equations along with Theorem 3 and Lemma 2 gives us the result.

Note that the number of times a node is infected thus needs to be Ω((d− 2γ
n ) log n) (since it is of the

same order as mpinit). For exact recovery, i.e. γ = 0, we see that our result on the performance of our ML
algorithm – specialized to the no prior information case D = n – is off by just a factor d in terms of the
number of samples required.

The second corollary is for the case when we do have prior supergraph information. In particular, we
assume that we are given sets Si, of size |Si| = D, for each node i. We consider the ensemble GD,d of all
in-degree-d subgraphs of this fixed supergraph. Thus for each node, we need to learn the d parents it has,
from a given super-set of size D. Finally, for each node i we allow si errors; let Bs(G′) be the corresponding
set of all subgraphs of the given supergraph.

Corollary 2. For any estimator to have a probability of error of Pe in the setting above, the number of
samples m must be bigger than

(1− Pe)
pinit

1− α
H(α, pinit)

(
d log

D

d
− 1

n

∑
i

si log
eD

si
+ log max(si, 1)

)
− 1

Remark: Specializing this result to exact recovery (i.e. si = 0) removes dependence on n, and again
shows us that the ML algorithm is within a factor d of optimal for the case when we have a super-graph.
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Proof. We have the following bound on the size of the ensemble:

log |Gd| = log

(
D

d

)n
= (1 + o(1))nd log

D

d

Similarly,

log |Bs(Ĝ)| ≤ log
∏
i∈V

(
si∑
l=0

(
D

l

))

≤ log
∏
i∈V

(
max(1, si)

(
D

si

))
≤
∑
i∈V

log

(
max(1, si)

(
De

si

)si)
=
∑
i∈V

log max(1, si) +
∑
i∈V

si log
De

si
(3)

where

Bs(Ĝ) = {G̃ ∈ Gd : Ṽi M V̂i ≤ si ∀ i ∈ V }

Note that in the second inequality we assume si ≤ D
2 because otherwise if d < D

2 , we can choose V̂i = Φ

and if d ≥ D
2 , we can choose V̂i = Vi. Using Theorem 3, (3) and Lemma 2 gives us the first part of the

result.

6 General SIR Epidemics: Markov Graphs and Causality

In this section we consider a much more general model for SIR epidemics/cascades on a directed graph,
and establish a connection to the classic formalism of Markov Random Fields (MRFs) – see e.g. [12] for
a formal introduction. Specifically, we show that the (undirected) Markov graph of infection times of an
SIR epidemic is obtained via the moralization of the true (directed) network graph on which the cascade
spreads. A moralized graph, as defined below, is obtained by adding edges between all parents of a node
(i.e. “marrying” them), and removing all directions from all edges. Graph moralization also arises in
Bayesian networks, and we comment on the relationship, and the role of causality, after we present our
result.

We first briefly describe our general model for SIR epidemics, then define its Markov graph, and finally
present our result.

General SIR epidemics: We now describe a general model for SIR epidemics propagating on a
directed graph. Nodes can be in one of three states: 0 for susceptible, 1 for infected and active, and 2 for
resistant and inactive; we restrict our attention to discrete time in this paper. Let Xi(t) be the state of
node i at time t, and X(t) to be the vector corresponding to the states of all nodes. We require that this
process be causal, and governed by the true directed graph G, in the sense that for any time step t,

P[X(t) = x(t) |x(0 : t− 1)] =
∏
i

P[Xi(t) = xi(t) |xVi(0 : t− 1)] (4)
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where the notation x(1 : t) = {x(s), 1 ≤ s ≤ t} is the entire history upto time t, and as before Vi is the set
of parents of node i, and includes i ∈ Vi as well. Note the above encodes that the probability distribution of
each node’s next state depends only on the history of itself and its neighbors, but is otherwise independent
of the history or current state of the other nodes. We assume that the cascade is initially seeded arbitrarily,
i.e. x(0) can be any fixed initial condition.

For each node i, let T
(1)
i be the (random) time when its state transitioned from 0 to 1, and T

(2)
i for

the time from 1 to 2 (of course, if neither happened then we can take them to be∞). Let Ti = (T
(1)
i , T

(2)
i )

be the summary for node i’s participation in the cascade.

Markov Graphs: Markov random fields (MRFs, also known as Graphical Models) are a classic
formalism, enabling the use of graph algorithms for tasks in statistics, physics and machine learning.
The central notion therein is that of the Markov graph of a probability distribution; in particular, every
collection of random variables has an associated graph. Every variable is a node in the graph, and the
edges encode conditional independence: conditioned on the neighbors, the variable is independent of all
the other variables. For our purposes here, the random variables are the T := {Ti, i ∈ V }. We say that an
undirected graph G′ is the Markov graph of the variables T if their joint probability distribution, for all t,
factors as follows

P[T = t] =
∏
c∈C′

fc(tc)

for some functions fc; here C′ is the set of cliques of G′, and for a clique c ∈ C′, tc := {ti, i ∈ c} is the
vector of node times for nodes in c.

We need one more definition before we state our result.

Moralization: Given a directed graph G, its moralized graph G is the undirected graph where two
nodes are connected if and only if they either have a parent-child relationship in G, or if they have a
common child, or both. Formally, undirected edge (i, j) is present in G if and only if at least one of the
following is true
(a) directed edges (i, j) or (j, i) are present in G, or
(b) there is some node k such that (i, k) and (j, k) are present in G (i.e. k is a common child).
Figure 2 illustrates the process of moralization with an example.

(a) Directed graph G (b) Moralized graph G of G

Figure 2: An example of moralization
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Theorem 4. Suppose infection times T are generated from a general SIR epidemic, as above, propagating
on a directed network graph G. Let G be the (undirected) moralized graph of G. Then, G is the Markov
graph of T .

Remarks: The main appeal of this result arises from the generality of the model; indeed, it may be
possible to learn the moralized graph even when we may not know what the precise epidemic evolution
model is, as long as it satisfies (4). In particular, related to the focus of this paper, there has been
substantial work on learning the Markov graph structure of random variables from samples. In our setting,
each cascade is a sample from the joint distribution of T , and hence one can imagine using some of these
techniques. Markov graph learning techniques can generally be divided into
(a) those that assume a specific class of probability distributions: see e.g. [15, 21] for Gaussian MRFs,
[20, 2] for Ising models, [8] for general discrete pairwise distributions. These typically require knowledge of
the precise parametric form of the dependence, but then enable learning with a smaller number of samples.
(b) distribution-free algorithms, usually for discrete distributions and based on conditional independence
tests [1, 4, 17]. These do not need to know the parametric form a-priori, but typically have higher
computational and sample complexity.

Causality: It is interesting to contrast Theorem 4 with the other results in this paper. In particular,
on the one hand, Theorems 1 and 2 utilize the fact precise causal process that generates T to find the exact
true directed network graph. On the other hand, applying a Markov graph learning technique directly to
the samples of T , without leveraging the process that generated them, only allows us to get to the moralized
graph. It thus serves as a motivating example to extend the study of graph learning from samples to causal
phenomena, in a way that explicitly takes into account time dynamics.

Moralization also arises in Bayesian networks; this is an alternative formulation that associates an
acyclic directed graph with a probability distribution. In that setting, the undirected Markov graph is also
the moralization of this directed graph. We note however that our original true network graph G can have
directed cycles; in our setting the moralization arises from (ignoring the) causality in time.

7 Experiments

As an initial empirical illustration of our results, in this section, we present – via Figures 3, 4, 5 and 6 –
empirical evaluations of both the ML and Greedy algorithms on synthetic graphs, and sub-graphs of the
Twitter graph. In all cases, for the ML algorithm the threshold η was picked via cross-validation.

8 Summary and Discussion

This paper studies the problem of learning the graph on which epidemic cascades spread, given only the
times when nodes get infected, and possibly a super-graph. We studied the sample complexity – i.e. the
number of cascade samples required – for two natural algorithms for graph recovery, and also established
a corresponding information-theoretic lower bound. To our knowledge, this is the first paper to study
the sample complexity of learning graphs of epidemic cascades. Several extensions suggest themselves; we
discuss some below.
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Figure 3: Interpreting sample complexity: As mentioned in Section 2, and re-inforced by our theorems,
consistent structure recovery is governed not so much by the total number of infections m in the network,
as by the number of times a node is infected (which is approx. pinitm). This figure provides some empirical
validation of this claim; the plots on the left and right are from the same set of experiments using the ML
algorithm (and no super-graph information). On the left we plot the probability of successful recovery of
the entire graph as a function of m, while on the right we plot it as a function of the average number of
times a node was infected; for several different sizes of 2-d grids. On the left, we see that the total number
of cascades varies noticeably with grid size, but the average number of infections does not. This squares
with Theorem 1, since in all these graphs the d is the same, and log n does not vary much either.

Observation Model: In this paper it is assumed that we have access to the times when nodes get
infected. However, this may not always be possible. Indeed a weaker assumption is to only know the
infected set in each cascade. To us this seems like a much harder problem, e.g. it is now not clear that
there is a decoupling of the global graph learning problem.

Decoupling: A key step in our ML results is to show that the global graph finding problem decouples
into n local problems. Our proof of this fact can be extended to any causal network process – i.e. any
process where the state xi(t) depends only on xVi(t− 1) – under the assumption that we can reconstruct
the entire process trajectory from our observations (so e.g. the weaker observation model above would not
fall into this class). In particular, it holds for more general models of epidemic cascade propagation as
well; we focused on the discrete-time one-step model as a first step.

Correlation decay: Our results are for the case of correlation decay, i.e. when the cascade from one
seed reaches a constant depth of nodes before extinguishing. Equally interesting and relevant is the case
without correlation decay, when the cascade from each seed can reach as much as a constant fraction of
the network. We suspect, based on experiments, that our algorithms would be efficient in this case as well;
however, a proof would be technically quite different, and interesting.

Greedy algorithms: As can be seen in our experiments, the greedy algorithm performs quite well
even when the graph is far from being a tree (i.e. has several small cycles). It would be interesting to
develop an alternate and more general proof of the performance of the greedy algorithm. We also note that
one can easily formulate greedy algorithms in more general epidemic settings; this would involve iteratively
choosing the parameter that gives the biggest change in the corresponding likelihood function.
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Figure 4: Effect of super-graph information: The presence of super-graph information can reduce the
number of node infections (and hence cascades) required to learn the graph. Here we plot the probability
of successful recovery for a 200-node random 4-regular graph, for the ML and Greedy algorithms, for two
scenarios: when we are given a super-graph of regular degree 8 that contains the true graph, and when we
are not given such information. We can see that the extent of reduction in sample complexity is moderate,
reflecting the fact that the effect of super-graph information is logarithmic (i.e. logD vs log n).
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A Correlation decay

Proof of Lemma 1. We establish this by an induction on the number of nodes n in the graph. If n = 1,
the statement above is obvious. Suppose the statement above is true for all graphs which have upto n− 1
nodes. Consider now a graph G that has n nodes. Consider any node i. The statement of the proposition
is clearly true for t = 1. For t > 1, consider the probability that i is infected by a parent k ∈ Si at time
step t. This can be upper bounded as follows:

PG [k infects i at time t] ≤ P
G̃

[Tk = t− 1] pki

≤ (1− α)t−2 pinitpki

where G̃ := G\i is the graph without node i, PG denotes the probability when the graph is G, and similarly
for P

G̃
. The second inequality follows from the induction assumption, and the fact that if α is the decay

coefficient for G, it is also for G̃. Taking a union bound over k ∈ Si now gives us the statement of the
theorem for G:

PG [Ti = t] =
∑
k∈Si

PG [k infects i at time t]

≤ (1− α)t−2 pinit
∑
k∈Si

pki

≤ (1− α)t−1 pinit

The bounds on P[Ti <∞] follow simply from summing this geometric series.

B Maximum Likelihood

B.1 Proof of Prop. 1

Let Xi(τ) = 0 if i is susceptible at time τ , 1 if i is active at time τ and 2 if i is inactive at time τ . Let
X(τ), τ = 0, · · · , n be the corresponding vector process. Note that X(τ) is a Markov process, and there
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is a one to one correspondence between the set of infection times t and sample path x(τ) of the process
X(τ).

Given t, let x0(τ) be the corresponding vector process. In particular,

x0i (τ) =


0 if τ < ti

1 if τ = ti

2 if τ > ti

Then,

Pθ [T = t] = Pθ
[
X(τ) = x0(τ) for τ = 0, · · · , n

]
= Pθ

[
X(0) = x0(0)

]
×

n∏
τ=1

Pθ
[
X(τ) = x0(τ)

∣∣X(τ − 1) = x0(τ − 1)
]

Now, Pθ
[
X(0) = x0(0)

]
= psinit (1− pinit)n−s. Also,

Pθ
[
X(τ) = x0(τ)

∣∣X(τ − 1) = x0(τ − 1)
]

=
∏
i∈V

Pθ
[
Xi(τ) = x0i (τ)

∣∣X(τ − 1) = x0(τ − 1)
]

because each node gets infected independently from each of its currently active neighbors. Thus we have
that

P [T = t] = psinit (1− pinit)n−s
∏
i∈V

(
n∏
τ=1

ai(τ)

)
(5)

where ai(τ) = Pθ
[
Xi(τ) = x0i (τ)

∣∣X(τ − 1) = x0(τ − 1)
]
. It is clear that for τ > ti, ai(τ) = 1. For τ = ti,

ai(τ) is the probability that at least one of its active nodes at time ti − 1 infected node i. Thus,

ai(ti) = 1−
∏

j:tj=ti−1
exp (−θji) (6)

Finally, for each τ < ti, ai(τ) is the probability that active nodes at time τ − 1 failed to infect node i. The
set of all nodes that were active but failed to infect susceptible node i is {j : tj ≤ ti − 2}. So we have∏

τ<ti

ai(τ) =
∏

j:tj≤ti−2
exp (−θji) (7)

Putting (5), (6) and (7) together and taking log gives the result.

Concavity follows from the fact that log(1− exp(−x)) is a concave function of x, and the fact that if
any function f(x) is a concave function of x then f(

∑
i θi) is jointly concave in θ. �
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B.2 Proof of Theorem 1

We focus on the recovery of the neighborhood of node i. For brevity, we will drop i from sub-scripts; thus
we denote θ∗i by θ, Vi by V and Si by S, and di, Di by d,D. Let θ∗ be the true parameter values. Define
the empirical log-likelihood function by

L̂(θ) : =
1

m

∑
u

Li(tu; θ)

Note that the ML algorithm finds θ̂ = argmaxθ L̂(θ). Also let L(θ) : = Eθ∗ [Li(T, θ)].

Idea: Note that as the number of samples m increases, L̂→ L. Also, we know that θ∗ = arg minθ L(θ);
this is just stating that the expected value of the likelihood function is maximized by the true parameter
values, a simple classical result from ML estimation [19]. Thus when L̂ ' L, their minimizers will also
be close; i.e. θ∗ ' θ̂. However, they will not be exactly equal; hence hope then is to have subsequent
thresholding find the significant edges. The challenge is in establishing non-asymptotic bounds that show
that m scales much slower than n (the network size) or D (the size of the super-neighborhood).

Roadmap to the proof:

(a) In Proposition 3 we provide an expression for the gradient 5jL(θ∗) of the expected log-likelihood
evaluated at the true parameters θ∗. This can be used to show that 5jL(θ∗) = 0 for the true neighbors
j ∈ V, and for the others we can show that 5jL(θ∗) < 0 for j /∈ V.

(b) Note that if we had similar relationships hold for the empirical likelihood, i.e. if 5jL̂(θ̂) = 0 for

j ∈ V and 5jL̂(θ̂) < 0 for j /∈ V, then we would be done; this is because by complementary slackness

conditions we would have that θ̂j > 0 for j ∈ V and θ̂j = 0 otherwise: the non-zero θ̂j would then
correspond to the true neighborhood. Of course, these relationships do not hold exactly; the rest of the
proof is showing they hold approximately, and the neighborhood can be found by thresholding.

(c) As a first step to analyzing 5jL̂(θ̂), in Lemma 3 we establish concentration results showing that

an intermediate quantity 5jL̂(θ∗) is close to 5jL(θ∗), and hence we can show that | 5j L̂(θ∗)| < a for

j ∈ V (i.e. the gradient is small for the true neighbors), and 5jL̂(θ∗) < −b for j /∈ V (i.e. the gradient is
negative for the others). Here a and b depend on the system parameters, and a depends on the threshold
η as well, with a→ 0 as η → 0. This latter dependence is important as it shows that once the number of
samples m becomes large, we can choose η small and get exact recovery.

(d) In Lemma 4, we provide an upper bound on the value of θ̂j for j ∈ V. We need this to not be too
large for the next step.

(e) In Lemma 5 we derive an upper bound on the total value
∑

j /∈V θ̂j of the non-neighbor parameters

in θ̂. This upper bound implies that no non-neighbors will be selected after thresholding at η, completing
the proof of the first claim of the theorem.

(f) Finally, in Lemma 6 we show that, for true neighbors j ∈ V, if the true p∗ji >
8
α(e2η − 1) then

θ̂j > η, and will thus be estimated to be in the true neighborhood. This completes the proof of the second
claim of the theorem.
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Proposition 3.

5jL(θ∗) = −P [Ti > Tj ; Tk 6= Tj ∀ k ∈ V] (8)

Proof. Taking the derivative of L(·) with respect to θj , we obtain

5jL(θ) = E

−1{Tj≤Ti−2} +
1{Tj=Ti−1}

exp
(∑

k : Tk=Ti−1 θk

)
− 1


Let FTj be the sigma algebra with information up to the (random) time Tj . By iterated conditioning, we
obtain

5jL(θ∗) = −E

E
1{Tj≤Ti−2} − 1{Tj=Ti−1}

exp
(∑

k : Tk=Ti−1 θ
∗
ki

)
− 1

∣∣∣∣∣∣ FTj
 (9)

Since the event {Ti ≤ Tj} is measurable in FTj , we have

E

1{Tj≤Ti−2} − 1{Tj=Ti−1}

exp
(∑

k : Tk=Ti−1 θ
∗
ki

)
− 1

∣∣∣∣∣∣ FTj
 = 0 if Ti ≤ Tj (10)

On the other hand, if {Ti > Tj}, we have

E

1{Tj≤Ti−2} − 1{Tj=Ti−1}

exp
(∑

k : Tk=Ti−1 θ
∗
si

)
− 1

∣∣∣∣∣∣ FTj


= P
[
Ti ≥ Tj + 2

∣∣ FTj]− E

 1{Tj=Ti−1}

exp
(∑

k : Tk=Ti−1 θ
∗
ki

)
− 1

∣∣∣∣∣∣ FTj


Considering the two terms above separately, we see that

P
[
Ti ≥ Tj + 2

∣∣ FTj] = exp

− ∑
k : Tk=Tj

θ∗ki


which follows from the fact that the probability that (active) j failed to infect (susceptible) i is equal to
the probability that all the nodes that were active at Tj failed to infect i. For the second term, we have

E

 1{Tj=Ti−1}

exp
(∑

k : Tk=Ti−1 θ
∗
ki

)
− 1

∣∣∣∣∣∣ FTj
 = E

 1{Tj=Ti−1}

exp
(∑

k : Tk=Tj
θ∗ki

)
− 1

∣∣∣∣∣∣ FTj


(ς1)
=

1

exp
(∑

k : Tk=Tj
θ∗ki

)
− 1

E
[
1{Tj=Ti−1}

∣∣∣ FTj]

(ς2)
=

(
1− exp

(
−
∑

k : Tk=Tj
θ∗ki

))
1{∃k∈V s.t. Tk=Tj}

exp
(∑

k : Tk=Tj
θ∗ki

)
− 1

= exp

− ∑
k : Tk=Tj

θ∗ki

1{∃k∈V s.t. Tk=Tj}
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where (ς1) follows from the fact that {k : Tk = Tj} is measurable in FTj and (ς2) follows from the fact that
Ti = Tj + 1 if and only if at least one of the parents of i were active at Tj and succeeded in infecting i.
Combining the above two equations, we obtain

E

1{Tj≤Ti−2} − 1{Tj=Ti−1}

exp
(∑

k : Tk=Ti−1 θ
∗
si

)
− 1

∣∣∣∣∣∣ FTj
 = 1{Tk 6=Tj ∀ k∈V} if Ti > Tj (11)

Combining (9), (10) and (11)

5jL(θ∗) = −P [Ti > Tj ;Tk 6= Tk∀k ∈ V] (12)

An easy corollary of Proposition 3 is that if j is a parent of i, then the gradient with respect to θj is
zero since the probability above needs none of the parents of i to be infected at the same time as j. On
the other hand, if j is not a parent of i, the gradient is strictly negative since the probability on the right
hand side is strictly positive.

5jL(θ∗) = 0 if j ∈ V (13)

5jL(θ∗) < 0 if j /∈ V (14)

We now state our concentration results. For any j, let 5jL̂(θ) be the partial derivative of L̂(θ) with respect
to θj . For j ∈ V, let

m1,j : =
∣∣{u : tuj = tui − 1 & tuk 6= tui − 1 ∀ k ∈ V \ j}

∣∣
be the number of cascades where j is the sole infector of node i and

m2,j : =
∣∣{u : tuj ≤ tui − 2}

∣∣
be the number of cascades where j is infected at least two time units before i.

Lemma 3. For m > c
pinit

(
1

α7η2p2i,min

)
d2i log

(
Di
δ

)
, we have that

(a)
∣∣∣5jL̂(θ∗)

∣∣∣ < a for j ∈ V where a := α3ηpinit
144d

(b) 5jL̂(θ∗) < −b for j /∈ V where b := αpinit
16

(c) ξ1p
∗
j < m1,j < ξ1 for j ∈ V where ξ1 : = c

4 log D
δ , ξ1 : = 2c

α log D
δ and p∗j : = 1− exp(−θ∗j )

(d) ξ2 < m2,j < ξ2 for j ∈ V where ξ2 : = cα
4 log D

δ and ξ2 : = 2c
α log D

δ

with probability greater than 1− δ.
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Proof. For simplicity of notation we denote the number of samples as m =
C log D

δ
pinit

where C =
cd2i

α7η2p2i,min

and D = Di. We will first prove (c). First, we note the following bounds for independent Bernoulli random
variables Xl where µ is the mean of the sum of Xl.

P

[∑
l

Xl < (1− κ)µ

]
<

(
exp(−κ)

(1− κ)(1−κ)

)µ
(15)

P

[∑
l

Xl > (1 + κ)µ

]
<

(
e

κ
1+κ

1 + κ

)(1+κ)µ

(16)

So as to be able to use the above inequalities, we first establish bounds on the expected value of m1,j .

E [m1,j ] ≥ mpinit(1− pinit)dp∗j ≥ 2ξ1p
∗
j

where the bound uses the probability that j is infected at time 0 and neither i nor any of its other neighbors
are infected at time 0 and j infects i at time 1. Similarly, we have

E [m1,j ] ≤ mP [Tj <∞] ≤ ξ1
2

where we use Lemma 1. Now applying (15) to m1,j we obtain

P
[
m1,j < (1− 1

2
)2ξ1p

∗
j

]
<

exp
(
−1

2

)(
1
2

) 1
2

2ξ1p∗j

<
δ

8D

Similarly applying (16) to m1,j gives us

P
[
m1,j > (1 + 1)

ξ1
2

]
<

(√
e

2

)ξ1
<

δ

8D

This proves (c). The proof of (d) is similar.

We will now prove (a). Fix any j ∈ V. Let Uj = {u ∈ U : T uj <∞}. Since E [|Uj |] ≥ pinitm = C log D
δ ,

using (15), we obtain

P

[
|Uj | <

C log D
δ

2

]
<

δ

16D
(17)

Similarly since E [|Uj |] ≤ pinit
α m = C

α log D
δ , using (16), we obtain

P

[
|Uj | >

2C log D
δ

α

]
<

δ

16D
(18)

Define the random variable

Zj = −1{Tj≤Ti−2} +
1{Tj=Ti−1}

exp
(∑

k:Tk=Ti−1 θ
∗
k

)
− 1
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Note that we have the following absolute bound on Zj

|Zj | < 1 +
1

exp(θ∗j )− 1
=

1

p∗j
(19)

where p∗j = 1− exp (−θj) and also

5jL̂(θ∗) =
1

m

∑
u∈U

Zuj =
1

m

∑
u∈Uj

Zuj

where Zuj is the realization of Zj on infection u.

P
[∣∣∣5jL̂(θ∗)

∣∣∣ ≥ a] = P

[
1

m

∣∣∣∣∣∑
u∈U

Zuj

∣∣∣∣∣ ≥ a
]

= P

[∣∣∣∣∣∑
u∈U

Zuj

∣∣∣∣∣ ≥ ma
]

At this point we could apply Azuma-Hoeffding inequality to bound the above probability. However, the
scaling factor in the exponent will be ma2 which gives us an extra pinit. To avoid this, we bound the above
quantity as follows:

P

[∣∣∣∣∣∑
u∈U

Zuj

∣∣∣∣∣ ≥ ma
]

≤ P

[
|Uj | >

2C log D
δ

α
or |Uj | <

C log D
δ

2

]
+

2C log D
δ

α∑
s=

C log D
δ

2

P

[
|Uj | = s;

∣∣∣∣∣∑
u∈U

Zuj

∣∣∣∣∣ ≥ ma
]

(ς1)

≤ δ

8D
+

2C log D
δ

α∑
s=

C log D
δ

2

∑
Uj :|Uj |=s

P [Uj = Uj ]P

∣∣∣∣∣∣
∑
u∈Uj

Zuj

∣∣∣∣∣∣ ≥ ma
∣∣∣∣∣∣ Uj = Uj

 (20)

where Uj varies over all the subsets of U and (ς1) follows from (17) and (18). Focusing on the last term,
we first note that Zuj are still independent random variables for u ∈ Uj . Since E [Zj ] = 0 from (13), we can
apply Azuma-Hoeffding inequality and using (19) we obtain

P

∣∣∣∣∣∣
∑
u∈Uj

Zuj

∣∣∣∣∣∣ ≥ ma
∣∣∣∣∣∣ Uj = Uj , |Uj | = s

 ≤ 2 exp

 −(ma)2

2s
(

1
p∗j

)2
 <

δ

16D
(21)

where (ς1) follows from the fact that s ≤ 2C log D
δ

α . The proof of (b) is on the same lines after noting that
for any j /∈ V,

E [Zj ] = 5jL(θ∗)
(ς1)
= −P [Ti > Tj ;Tj 6= Tk ∀ k ∈ V]

(ς2)
< −pinit (1− pinit)d+1

(ς3)
< −pinit

2
(22)

where (ς1) follows from Proposition 3, (ς2) follows from the fact that the probability when j is infected
before i and none of the parents of i are infected at the same time can be lower bounded by the case where
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j is infected at time 0 and neither i nor any of its parents are infected at time 0. (ς3) follows from the
assumption that pinit <

1
2d and hence (1− pinit)d+1 > 1

2 . Using (22) and Lemma 1, we obtain

E [Zj | Tj <∞] =
E [Zj ]− E

[
Zj1{Tj=∞}

]
P [Tj <∞]

<=
−α
2

(23)

Using (20) it suffices to show that

P

∑
u∈Uj

Zuj ≥ −mb

∣∣∣∣∣∣ Uj = Uj , |Uj | = s

 < δ

16D

for
C log D

δ
2 ≤ s ≤ 2C log D

δ
α . An application of Azuma-Hoeffding inequality gives us the required bound as

follows.

P

∑
u∈Uj

Zuj ≥ −mb

∣∣∣∣∣∣ Uj = Uj , |Uj | = s


(ς1)
= P

∑
u∈Uj

Zuj − sE [Zj ] ≥
−Cα log D

δ

16
− sE [Zj ]

∣∣∣∣∣∣ Uj = Uj , |Uj | = s


(ς2)

≤ P

∑
u∈Uj

Zuj − sE [Zj ] ≥
Cα log D

δ

8

∣∣∣∣∣∣ Uj = Uj , |Uj | = s


(ς3)

≤ exp


(
Cα log D

δ
8

)2

2

(
2C log D

δ
α

)(
1
p∗j

)2
 ≤ δ

16D

where (ς1) follows by subtracting sE [Zj ] from both sides of the inequality for which we are bounding

the probability, (ς2) follows from the fact that s ≥ C log D
δ

2 and (23) and (ς3) is an application of the

Azuma-Hoeffding inequality using (19) and the fact that s ≤ 2C log D
δ

α .

Lemma 4. When (a)-(d) in Lemma 3 hold, maxj∈V θ̂j <
ξ1
ξ2

Proof. Let k = argmaxj∈V θ̂j . If θ̂k = 0, we are done. So assume θ̂k > 0. By the optimality of θ̂, we see
that

5k L̂(θ̂) = 0 (24)
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On the other hand, we have

5kL̂(θ̂) =
1

m

−m2,k +
∑
u

1{tui <∞}

exp

 ∑
j:tuj=t

u
i −1

θ̂j

− 1

−1
(ς1)

≤ 1

m

(
−m2,k +

1

exp(θ̂k)− 1
m1,k

)
(ς2)

≤ 1

m

(
−ξ2 +

1

exp(θ̂k)− 1
ξ1

)
≤ 1

m

(
−ξ2 +

1

θ̂k
ξ1

)
(25)

where (ς1) follows from the definition of m1,k and the fact that on the infections corresponding to m1,k, we
have ∑

j:tuj=t
u
i −1

θ̂j ≥ θ̂k

and (ς2) follows from Lemma 3. Putting (24) and (25) together, we obtain the result.

Lemma 5. When (a)-(d) in Lemma 3 hold,
∑

j /∈V θ̂j ≤
ad
b

(
ξ1
ξ2

+ log 1
α

)
< η

Proof. Since L̂(θ) is concave, the subgradient condition at θ∗ gives us the following

L̂(θ̂)− L̂(θ∗) ≤
〈
5L̂(θ∗), θ̂ − θ∗

〉
(ς1)
=
〈
5VcL̂(θ∗), θ̂Vc

〉
+
〈
5V L̂(θ∗), θ̂V − θ∗V

〉
(ς2)

≤ −b||θ̂Vc ||1 + a||θ̂V − θ∗V ||1

≤ −b||θ̂Vc ||1 + ad
(
||θ̂V ||∞ + ||θ∗V ||∞

)
(26)

where (ς1) follows from the fact that θ∗Vc = 0 and (ς2) follows from the fact that θ̂ > 0 and Lemma 3. The

optimality of θ̂ gives us

L̂(θ̂)− L̂(θ∗) ≥ 0 (27)

Finally we have the following bound on ||θ∗V ||∞:

θ∗j = − log
(
1− p∗j

)
≤ log

1

α
(28)

Using (26), (27), (28) and Lemma 4 proves the first inequality, that
∑

j /∈V θ̂j ≤
ad
b

(
ξ1
ξ2

+ log 1
α

)
. The

second inequality, that ad
b

(
ξ1
ξ2

+ log 1
α

)
< η, is easy to see.
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Lemma 6. When (a)-(d) in Lemma 3 hold, for every j ∈ V we have that θ̂j > log
(

1 +
p∗j ξ1

ξ2

)
− η where

p∗j = 1− exp(θ∗j ).

Proof. Since θ̂j ≥ 0, by the optimality of θ̂ we have

5jL̂(θ̂) ≤ 0 (29)

On the other hand, we have the following bound on the gradient

5jL̂(θ̂) =
1

m

−m2,j −
∑
u

1{tui <∞}

exp

 ∑
k:tuk=t

u
i −1

θ̂k

− 1

−1
(ς1)

≥ 1

m

−m2,j +
1

exp
(
θ̂j + ||θ̂Vc ||1

)
− 1

m1,k


(ς2)

≥ 1

m

−ξ2 +
1

exp
(
θ̂j + ||θ̂Vc ||1

)
− 1

p∗jξ1

 (30)

where (ς1) follows from the fact that on the infections corresponding to m1,k, we have∑
k:tuk=t

u
i −1

θ̂k ≤ θ̂j + ||θ̂Vc ||1

and (ς2) follows from Lemma 3. Combining (29), (30) and Lemma 5 gives us the result.

Thus we see that if the true parameter p∗ji >
8
α(e2η − 1), then θ̂j > η and thus will be in the estimated

neighborhood N̂i. This completes the proof of Theorem 1.

C Greedy algorithm

C.1 Proof of Theorem 2

To simplify notation, we again denote Vi by V, Si by S and so on. From Lemma 1, we have that for every
node j,

P [Tj <∞] <
pinit
α

Since the graph is a tree, for every node j there exists a unique (undirected) path between i and j. All the
nodes on this path are said to be ancestors of j. Consider a node j ∈ S \ V. Let k ∈ V be the ancestor of
j on this path. Then we have that

P [Tj 6= Tk;Tk = Ti − 1] ≥ pinit (1− pinit)2 pmin
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If l ∈ V but is not an ancestor of j then

P [Tj = Tl = Ti − 1] < P [Tj <∞]P[Tl <∞] <
(pinit
α

)2
since Tj and Tl are independent conditioned on Tj , Tl < Ti. For any event A that depends on the infection
times, let N(A) denote the number of cascades in U in which event A has occurred. Using (15) and (16),
we have the following bounds on probabilities of error events:

P
[
N (Tk = Ti − 1) ≤

(
1− 1

2

)
mpminpinit (1− pinit)

]
<
(
2
e

)mpminpinit(1−pinit)
2

P
[
N (Tk = Tl = Ti − 1) ≥ mpinitpmin

8d

]
<

(
em( pinitα )

2

(mpinitpmin
8d )

)mpinitpmin
8d

P
[
N (Tj = Tl = Ti − 1) ≥ mpinitpmin

8d

]
<

(
em( pinitα )

2

(mpinitpmin
8d )

)mpinitpmin
8d

P
[
N (Tj 6= Tk;Tk = Ti − 1) ≤

(
1− 1

2

)
mpinitpmin (1− pinit)2

]
<
(
2
e

)mpinitpmin(1−pinit)2 (31)

where k, l ∈ V and j /∈ V such that k is an ancestor of j. Substituting the value of m from the statement of
Theorem 2 and recalling the assumption on pinit, we see that with probability greater than 1− δ, we have

N (Tk = Ti − 1) >
cd (1− pinit) log D

δ

2
(32)

N (Tk = Tl = Ti − 1) <
c log D

δ

8
(33)

N (Tj = Tl = Ti − 1) <
c log D

δ

8
(34)

N (Tj 6= Tk;Tk = Ti − 1) >
cd (1− pinit)2 log D

δ

2
(35)

Note that the assumption on pinit also yields an upper bound of 1
16 on pinit. Now we will show that

under the above conditions, Algorithm 2 recovers the original graph exactly. Suppose in iteration s, the
neighborhood is s−1 of the correct parents and there is atleast one k ∈ V, not in the current neighborhood.
Let the current set of infections be U . Then from (32) and (33), we see that

NU (Tk = Ti − 1) >
cd (1− pinit) log D

δ

2
− d

c log D
δ

8

=
cd log D

δ

8
(4 (1− pinit)− 1) > 0

So there is atleast one node that will be added to the neighborhood. Now consider any j /∈ V. If the
ancestor of j that is a parent of i has already been added to the neighborhood list, then from (34)

NU (Tj = Ti − 1) < d
c log D

δ

8

< (4 (1− pinit)− 1)
cd log D

δ

8
< NU (Tk = Ti − 1)
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Suppose the ancestor of j that is a parent of i has not yet been added to the neighborhood of i. Without
loss of generality, let k be the ancestor of j. Then,

NU (Tk = Ti − 1)−NU (Tj = Ti − 1)

= NU (Tj 6= Tk;Tk = Ti − 1)

−NU (Tj = Tl = Ti − 1: l 6= k, l ∈ S)

>
cd (1− pinit)2 log D

δ

2
− 2d

c log D
δ

8

=
cd log D

δ

4

(
2 (1− pinit)2 − 1

)
> 0

Applying union bound over all nodes in the superneighborhood, we can conclude that all nodes in
the superneighborhood satisfy (32), (33), (34) and (35) with probability greater than 1 − δ. This proves
Theorem 2.

D Lower Bounds

D.1 Proof of Lemma 2

Recall from Lemma 1 that P [Ti = t] ≤ (1− α)t−1 pinit. The proof just involves using this to bound H(Ti).
Since pinit <

1
e , we have the following

H(Ti) = −
n∑
t=1

P [Ti = t] logP [Ti = t]

−P [Ti =∞] logP [Ti =∞]

≤ −
n∑
t=1

(1− α)t−1 pinit log (1− α)t−1 pinit

−
(

1− pinit
α

)
log
(

1− pinit
α

)
(ς1)

≤ pinit
1− α

(
log

1

pinit
+

(
1− α
α

)2

log
1

1− α

)
−
(

1− pinit
α

)
log
(

1− pinit
α

)
where (ς1) follows from some algebraic manipulations.
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E Generalized Independent Cascade Model

E.1 Proof of Prop. 2

Defining

x0i (τ) =

{
0 if τ < ti

1 if τ ≥ ti

and proceeding as in the proof of Proposition 1, we obtain

Pθ [T = t] = Pθ
[
X(0) = x0(0)

]
×

n∏
τ=1

Pθ
[
X(τ) = x0(τ)

∣∣X(0 : τ − 1) = x0(0 : τ − 1)
]

where X(0 : τ) denotes the (joint) values of the vectors X(0), · · · , X(τ). Now, Pθ
[
X(0) = x0(0)

]
=

psinit (1− pinit)n−s. Also,

Pθ
[
X(τ) = x0(τ)

∣∣X(0 : τ − 1) = x0(0 : τ − 1)
]

=
∏
i∈V

Pθ
[
Xi(τ) = x0i (τ)

∣∣X(0 : τ − 1) = x0(0 : τ − 1)
]

because each node gets infected independently from each of its currently active neighbors. Thus we have
that

P [T = t] = psinit (1− pinit)n−s
∏
i∈V

(
n∏
τ=1

bi(τ)

)
(36)

where bi(τ) = Pθ
[
Xi(τ) = x0i (τ)

∣∣X(0 : τ − 1) = x0(0 : τ − 1)
]
. It is clear that for τ > ti, bi(τ) = 1. For

τ = ti, bi(τ) is the probability that at least one of the parents j of i infected before ti infected node i at
time ti given that j did not infect i before ti. Thus,

bi(ti) = 1−
∏

j:tj<ti

1−
∑

r∈[ti] p
r
ji

1−
∑

r∈[ti−1] p
r
ji

= 1−
∏

j:tj<ti

exp
(
−θti−tjji

)
(37)

Finally, for each τ < ti, bi(τ) is the probability that active nodes at time τ − 1 failed to infect node i. The
set of all nodes that were active but failed to infect susceptible node i is {j : tj ≤ ti − 2}. Each such node
j failed to infect i for ti − tj − 1 time slots. So we have

∏
τ<ti

bi(τ) =
∏

j:tj≤ti−2

1−
∑

r∈[ti−tj−1]

prji


=

∏
j:tj≤ti−2

∏
r∈[ti−tj−1]

exp
(
−θrji

)
(38)

Putting (36), (37) and (38) together and taking log gives the result.

Concavity again follows from the fact that log(1 − exp(−x)) is a concave function of x, and the fact
that if any function f(x) is a concave function of x then f(

∑
i θi) is jointly concave in θ. �
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F.1 Proof of Theorem 4

We will show that P [T = t] can be written as a product of various factors where each factor depends only
on tVi for some i ∈ V . Given any vector t, for every i ∈ V define the infection vectors

xi(τ) =


0 if 0 ≤ τ < t

(1)
i

1 if t
(1)
i ≤ τ < t

(2)
i

2 if τ ≥ t(2)i

We can see that there is a one to one correspondence between valid time vectors t and valid infection
vectors x. Using the above transformation, we can calculate the probability of a given time vector t as
follows:

P [T = t] = P [X = x]

= P [X(0) = x(0)]×
∞∏
s=1

P [X(s) = x(s) | x(0 : s− 1)]

=

(∏
i∈V

P [Xi(0) = xi(0)]

)
×
∞∏
s=1

∏
i∈V

P [Xi(s) = xi(s) | xVi(0 : s− 1)]

=

(∏
i∈V

P [Xi(0) = xi(0)]

)
×
∏
i∈V

∞∏
s=1

P [Xi(s) = xi(s) | xVi(0 : s− 1)]

=
∏
i∈V

fi (tVi)

where fi(tVi) = P [Xi(0) = xi(0)]×
∏∞
s=1 P [Xi(s) = xi(s) | xVi(0 : s− 1)].

�
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