Computer Science > Machine Learning
[Submitted on 2 Oct 2023 (v1), last revised 27 Nov 2023 (this version, v2)]
Title:The Map Equation Goes Neural
Download PDFAbstract:Community detection and graph clustering are essential for unsupervised data exploration and understanding the high-level organisation of networked systems. Recently, graph clustering has received attention as a primary task for graph neural networks. Although hierarchical graph pooling has been shown to improve performance in graph and node classification tasks, it performs poorly in identifying meaningful clusters. Community detection has a long history in network science, but typically relies on optimising objective functions with custom-tailored search algorithms, not leveraging recent advances in deep learning, particularly from graph neural networks. In this paper, we narrow this gap between the deep learning and network science communities. We consider the map equation, an information-theoretic objective function for unsupervised community detection. Expressing it in a fully differentiable tensor form that produces soft cluster assignments, we optimise the map equation with deep learning through gradient descent. More specifically, the reformulated map equation is a loss function compatible with any graph neural network architecture, enabling flexible clustering and graph pooling that clusters both graph structure and data features in an end-to-end way, automatically finding an optimum number of clusters without explicit regularisation by following the minimum description length principle. We evaluate our approach experimentally using different neural network architectures for unsupervised clustering in synthetic and real data. Our results show that our approach achieves competitive performance against baselines, naturally detects overlapping communities, and avoids over-partitioning sparse graphs.
Submission history
From: Christopher Blöcker [view email][v1] Mon, 2 Oct 2023 12:32:18 UTC (2,200 KB)
[v2] Mon, 27 Nov 2023 11:54:55 UTC (2,201 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)