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1 Introduction 

The quadratic assignment problem (QAP) was introduced by Koopmans 
and Beckmann in 1957 as a mathematical model for the location of a set of 
indivisible economical activities [113]. Consider the problem of allocating a 
set of facilities to a set of locations, with the cost being a function of the 
distance and flow between the facilities, plus costs associated with a facility 
being placed at a certain location. The objective is to assign each facility to 
a location such that the total cost is minimized. Specifically, we are given 
three n x n input matrices with real elements F = (Jij) , D = (dkl) and 
B = (bik ), where lij is the flow between the facility i and facility j, dkl is 
the distance between the location k and location l, and bik is the cost of 
placing facility i at location k. The Koopmans-Beckmann version of the 
QAP can be formulated as follows: Let n be the number of facilities and 
locations and denote by N the set N = {I, 2, ... ,n}. 

(1) 

where Sn is the set of all permutations 4>: N --t N. Each individual product 
/ijdrP(i)rPU) is the cost of assigning facility i to location 4>(i) and facility j to 
location 4>(j). In the context of facility location the matrices F and D are 
symmetric with zeros in the diagonal, and all the matrices are nonnegative. 
An instance of a QAP with input matrices F, D and B will be denoted by 
QAP(F, D, B), while we will denote an instance by QAP(F, D), if there is 
no linear term (i.e., B = 0). 
A more general version of the QAP was introduced by Lawler [118]. In 
this version we are given a four-dimensional array G = (Cijkl) of coefficients 
instead of the two matrices F and D and the problem can be stated as 

n n n 

min L L CijrP(i)rPU) + L birP(i) 
rPESn i=l j=l i=l 

(2) 

Clearly, a Koopmans-Beckmann problem QAP(F, D, B) can be formulated 
as a Lawler QAP by setting Cijkl := lijdkl for all i,j, k, 1 with i =I j or k =ll 
and Ciikk := liidkk + bik' otherwise. 

Although extensive research has been done for more than three decades, 
the QAP, in contrast with its linear counterpart the linear assignment prob
lem (LAP), remains one of the hardest optimization problems and no exact 
algorithm can solve problems of size n > 20 in reasonable computational 
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time. In fact, Sahni and Gonzalez [164] have shown that the QAP is NP
hard and that even finding an approximate solution within some constant 
factor from the optimal solution cannot be done in polynomial time unless 
P=NP. These results hold even for the Koopmans-Beckmann QAP with co
efficient matrices fulfilling the triangle inequality (see Queyranne [152]). So 
far only for a very special case of the Koopmans-Beckmann QAP, the dense 
linear arrangement problem a polynomial time approximation scheme has 
been found, due to Arora, Frieze, and Kaplan [7]. Complexity aspects of 
the QAP will be discussed in more detail in Section 3. 

Let us conclude this section with a brief review of some of the many 
applications of the QAP. In addition to facility layout problems, the QAP 
appears in applications such as backboard wiring, computer manufacturing, 
scheduling, process communications, turbine balancing, and many others. 

One of the earlier applications goes back to Steinberg [168] and concerns 
backboard wiring. Different devices such as controls and displays have to 
be placed on a panel, where they have to be connected to each other by 
wires. The problem is to find a positioning of the devices so as to minimize 
the total wire length. Let n be the number of devices to be placed and let 
dkl denote the wire length from position k to position I. The flow matrix 
F = (fij) is given by 

h; = { 
1 if device i is connected to device j, 
o otherwise. 

Then the solution to the corresponding QAP will minimize the total wire 
length. Another application in the context of location theory is a campus 
planning problem due to Dickey and Hopkins [58]. The problem consists 
of planning the sites of n buildings in a campus, where dkl is the distance 
from site k to site 1, and lij is the traffic intensity between building i and 
building j The objective is to minimize the total walking distance between 
the buildings. 

In the field of ergonomics Burkard and Offermann [36] showed that QAPs 
can be applied to typewriter keyboard design. The problem is to arrange the 
keys in a keyboard such as to minimize the time needed to write some text. 
Let the set of integers N = {I, 2, ... ,n} denote the set of symbols to be 
arranged. Then lij denotes the frequency of the appearance of the pair of 
symbols i and j. The entries of the distance matrix D = dkl are the times 
needed to press the key in position 1 after pressing the key in position k 
for all the keys to be assigned. Then a permutation cp E Sn describes an 
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assignment of symbols to keys An optimal solution if>* for the QAP mini
mizes the average time for writing a text. A similar application related to 
ergonomic design, is the development of control boards in order to minimize 
eye fatigue by McCormick [126]. There are also numerous other applications 
of the QAP in different fields e.g. hospital lay-out (Elshafei [63]), ranking 
of archeological data (Krarup and Pruzan [114]), ranking of a team in a 
relay race (Heffley [93]), scheduling parallel production lines (Geoffrion and 
Graves [76]), and analyzing chemical reactions for organic compounds (Ugi, 
Bauer, Friedrich, Gasteiger, Jochum, and Schubert [173]). 

2 Formulations 

For many combinatorial optimization problems there exist different, but 
equivalent mathematical formulations, which stress different structural char
acteristics of the problem, which may lead to different solution approaches. 
Let us start with the observation that every permutation if> of the set N = 
{I, 2, ... , n} can be represented by an n x n matrix X = (xii), such that 

{ I if if>{i) = j, 
Xii = 0 otherwise. 

Matrix X is called a permutation matrix and is characterized by following 
assignment constraints 

n 

L:Xii = 1, 
i=l 

n 

LXii = 1, 
i=l 

Xii E {O, I}, 

j = 1,2, ... ,n, 

i = 1,2, ... ,n, 

i, j = 1,2, ... ,n. 
We denote the set of all permutation matrices by X n . Due to a famous 
theorem of Birkhoff the permutation matrices correspond in a unique way to 
the vertices of the assignment polytope ( the Birkhoff polytope, the perfect 
matching polytope of Kn,n etc.). This leads to the following description of 
a QAP as quadratic integer program. 

2.1 Quadratic Integer Program Formulation 

Using permutation matrices instead of permutations, the QAP ((2) can be 
formulated as the following integer program with quadratic objective func-



246 R.E. Burkard, E. Qela, P.M. Pardalos, and L.S. Pitsoulis 

tion (hence the name Quadratic Assignment Problem by Koopmans and 
Beckmann [113]). 

n n n n n 

min 2: 2: 2: 2: Ci;klXikX;l + 2: bi;Xi; (3) 
i=1 ;=1 k=ll=1 i,;=1 
n 

s.t. 2: Xi; = 1, j = 1,2, ... ,n, (4) 
i=1 
n 

2: x;; = 1, i = 1,2, ... ,n, (5) 
;=1 
Xi; E {O, I}, i,j = 1,2, ... ,n. (6) 

l.From now on, whenever we write (Xi;) E Xn , it will be implied that the Xi; 

satisfy the assignment constraints (4), (5) and (6). 
Many authors have proposed methods for linearizing the quadratic form 

of the objective function (3) by introducing additional variables; some of 
these of linearizations will be discussed in Section 4. 

A QAP in Koopmans-Beckmann form can be formulated in a more com
pact way if we define an inner product between matrices. Let the inner 
product of two real n x n matrices A, B be defined by 

n n 

(A, B) := L L aijbij. 
i=I;=1 

Given some n X n matrix A, a permutation cf> E Sn and the associated 
permutation matrix X E Xn , then AXT and XA permute the columns and 
rows of A, respectively, according to the permutation cf> and therefore 

Thus we can formulate a Koopmans-Beckmann QAP alternatively as 

min (Jl,XDXT) + (B,X) (7) 
s.t. X E Xn • 

2.2 Concave Quadratic Formulation 

In the objective function of (3), let the coefficients Cijkl be the entries of an 
n2 X n2 matrix S, such that Ci;kl is on row (i-l)n+k and column (j -1)n+l. 
Now let Q := S - aI, where I is the (n2 xn2 ) unit matrix and a is greater 
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than the row norm IISlloo of matrix S. The subtraction of a constant from the 
entries on the main diagonal of S does not change the optimal solutions of 
the corresponding QAP, it simply adds a constant to the objective function. 
Hence we can consider a QAP with coefficient array Q instead of S. Let 
x = (Xn,X12, ... ,Xln,X21, ... ,Xnn )t = (Xl, ... ,Xnn)t. Then we can rewrite 
the objective function of the QAP with array of coefficients Q as a quadratic 
form xTQx, where: 

n 2 n 2 -1 n 2 

= L qiix; + 2 L L qijXiXj 
i=l i=l j=i+l 

n2 n2 n 2-1 n2 

= L(qii + L qij)X; - L L qij(Xi - Xj)2 
i=l j=l 

#i 
i=l j=i+l 

n2 n2 n 2 -1 n2 

=L(-o+LSij)X;- L L Sij(Xi- Xj)2 
i=l j=l i=l j=i+l 

n2 n2 

:$ L( -0 + L Sij)X;. 
i=l j=l 

Since xT[I/2(Q+QT)]x = 1/2xTQx, we can assume that Q is symmetric 
and negative definite. Therefore we have a quadratic concave minimization 
problem and can formulate the QAP as 

mm xTQx 

s.t. 
n 

LXij = 1, j = 1,2, ... ,n, 
i=l 

n 

LXij = 1, i = 1,2, ... ,n, 
j=l 

Xij ~ 0, i, j = 1,2, ... ,n. 

(8) 

Bazaraa and Sherali [16] introduced the above formulation, and used it to 
derive cutting plane procedures. Although their exact methods were com
putationally not efficient, heuristics derived from these procedures produced 
suboptimal solutions of good quality. 

By adding the term oJ to the matrix Q instead of subtracting it, we 
could always assume that the objective function of the QAP is convex. This 
leads to the formulation of the QAP as a quadratic convex minimization 
problem. 
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2.3 Trace Formulation 

The trace of an n x n matrix B is defined to be the sum of its diagonal 
elements, i.e.: 

n 

trB:= Lbii . 

i=l 

Consider a Koopmans-Beckmann QAP instance with input matrices F, D 
and B. Letting D = X DT XT, then 

n n n n 

tr(F D) = L L !ijdji = L L fijdcp{i)cp{j), 
i=lj=l i=lj=l 

since dji = dcp{i)cp{j), i, j = 1, ... , n, where ¢ E Sn is the permutation associ
ated with X (see 2.1). Since tr(BXT) = L:~=1 bicp{i), the QAP in (7) can be 
formulated as 

min tr(FXDT + B)XT (9) 
s.t. X E X n . 

The trace formulation of the QAP first appeared in Edwards [61, 62], and 
was used by Finke, Burkard, and Rendl [67] to introduce the eigenvalue lower 
bounding techniques for symmetric QAPs (see Section 7.1). Given any two 
real n x n matrices A, B, recall the well known properties tr(AB) = tr(BA), 
(AB)T = BT AT and trA = trAT. For F = FT we can then write the 
quadratic term in (9) as 

where D is not necessarily symmetric. Therefore, given a QAP instance 
where only one of the matrices is symmetric (say F), we can transform it 
into a QAP instance where both matrices are symmetric. This is done by 
introducing a new symmetric matrix E = ~(D + DT): 
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2.4 Kronecker Product 

Let A be a real m x n matrix and let B be a real p x q matrix. Then the 
Kronecker product of matrices A and B is defined as 

al~B ~:: al~B). 
am2B ... amnB 

That is, A ® B is the mp x nq matrix formed from all possible pairwise 
2 

element products of A and B. If we let vec(X) E lRn be the vector formed 
by the columns of a permutation matrix X, the QAP can be formulated as 

min vec(X)T (F ® D)vec(X) + vec(B)T vec(X), (10) 

s.t. X E X n . 

Operations using the Kronecker product and its properties have been studied 
in detail by Graham [84]. However, the above formulation is rarely used in 
investigations of the QAP. Based on that formulation Lawler [118] gave an 
alternative formulation of the QAP as a linear assignment problem (LAP) of 
size n with the additional constraint that only (n2 xn2) permutation matrices 
which are Kronecker products of n x n permutation matrices are feasible. If 
as before the (n2 X n2 ) cost matrix C contains the n4 costs Cijkl' such that 
the (ijkl)-th element corresponds to the element in the ((i -l)n + k)-th row 
and ((j - l)n + l)-th column of C, the QAP can be written as 

mIll (C,Y) 

s.t. Y=X®X, 
XEXn · 

(11) 

Because of the additional constraint to be fulfilled by the feasible solutions 
the resulting LAP cannot be solved efficiently. 

3 Computational complexity 

The results described in this section bring evidence to the fact that the QAP 
is a "very hard" problem from the theoretical point of view. Not only that 
the QAP cannot be solved efficiently but it even cannot be approximated 
efficiently within some constant approximation ratio. Furthermore, finding 



250 R.E. Burkard, E. vela, P.M. Pardalos, and L.S. Pitsoulis 

local optima is not a trivial task even for simply structured neighborhoods 
like the 2-opt neighborhood. 

Two early results obtained by Sahni and Gonzalez [164] in 1976 settled 
the complexity of solving and approximating the QAP. It was shown that 
the QAP is NP-hard and that even finding an €-approximate solution for the 
QAP is a hard problem, in the sense that the existence of a polynomial €
approximation algorithm implies P = N P. In the following, let Z (F, D, ¢» 
denote the objective function value of a solution ¢> for a QAP with flow 
matrix F and distance matrix D. 

Definition 3.1 Given a real number € > 0, an algorithm T for the QAP is 
said to be an €-approximation algorithm if 

Z(F, D, 1fT) - Z(F, D, 1f opt) 
< €, 

Z(F,D,1fopt) -
(12) 

holds for every instance QAP(F, D), where 1fT is the solution of QAP(F, D) 
computed by algorithm T and 1fopt is an optimal solution of QAP(F,D). 
The solution of QAP(F, D) produced by an €-approximation algorithm is 
called an €-approximate solution. 

Theorem 3.2 (Sahni and Gonzalez [164], 1976) 
The quadratic assignment problem is strongly NP-hard. 
For an arbitrary € > 0, the existence of a polynomial time €-approximation 
algorithm for the QAP implies 'P = N'P. 

The proof is done by a reduction from the Hamiltonian cycle problem: Given 
a graph G, does G contain a cycle which visits each vertex exactly once (see 
[73])? 

Queyranne [152] derives an even stronger result which further confirms 
the widely spread" belief on the inherent difficulty of the QAP in comparison 
with other difficult combinatorial optimization problems. It it well known 
and very easy to see that the traveling salesman problem (TSP) is a special 
case of the QAP. The TSP on n cities can be formulated as a QAP(F, D) 
where F is the distance matrix of the TSP instance and D is the adjacence 
matrix of a Hamiltonian cycle on n vertices. In the case that the distance 
matrix is symmetric and satisfies the triangle inequality, the TSP is ap
proximable in polynomial time within 3/2 as shown by Christofides [46]. 
Queyranne [152] showed that, unless P = NP, QAP(A,B) is not approx
imable in polynomial time within some finite approximation ratio, even if A 
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is the distance matrix of some set of points on a line and B is a symmetric 
block diagonal matrix. 

A more recent result of Arora, Frieze and Kaplan [7] answers partially 
one of the open questions stated by Queyranne in [152]. What happens if 
matrix A is the distance matrix of n points which are regularly spaced on a 
line, i.e., points with abscissae given by xp = p, p = 1, ... , n? This special 
case of the QAP is termed linear arrangement problem and is a well stud
ied NP-hard problem. In the linear arrangement problem the matrix B is 
not restricted to have the block diagonal structure mentioned above, but is 
simply a symmetric 0-1 matrix. Arora et al. give a polynomial time approxi
mation scheme (PTAS) for the linear arrangement problem in the case that 
the 0-1 matrix B is dense, i.e., the number of 1 entries in B is in O(n2), 

where n is the size of the problem. They show that for each f > 0 there 
exists an f-approximation algorithm for the dense linear arrangement prob
lem with time complexity depending polynomially on n and exponentially 
on 1if, hence polynomial for each fixed f > O. 

Recently it has been shown that even finding a locally optimal solution 
of the QAP can be prohibitively hard, i.e., even local search is hard in the 
case of the QAP. Below we formalize this idea to some extent. 

Assume that an optimization problem P is given by specifying a ground 
set &, a set :F ~ 2e of feasible solutions and a cost function c: & ~ lR. 
This cost function c implies an objective function I::F ~ lR defined by 
I(S) = Lxes c(x), for all S E:F. The goal is to find a feasible solution 
which minimizes the objective function. For every feasible solution S E :F 
let a neighborhood N(S) C :F of S be given. This neighborhood consists of 
feasible solutions which are somehow "close" to S. Now, instead of looking 
for a globally optimal solution S* E :F of the problem P, that is 

I(S*) = minj(S),· 
SeF 

we look for a locally optimal solution or a local minimum of P, that is an 
8 E :F such that 

1(8) = min_ I(S). 
SeN(S) 

An algorithm which produces a locally optimal solution, is frequently called 
a local search algorithm. Some local search algorithms for the QAP are 
described in Section 8. 

Let us consider the intriguing question "Is it easy to find a locally op
timal solution for the QAP?". Clearly the answer depends on the involved 
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neighborhood structure. If the neighborhoods N(S) are replaced by new 
neighborhoods N'(S), one would generally expect changes in the local op
timality status of a solution. The theoretical basis for facing this kind of 
problems was introduced by Johnson, Papadimitriou and Yannakakis in [97]. 
They define the so-called polynomial-time local search problems, shortly PLS 
problems. A pair (P,N), where P is a (combinatorial) optimization problem 
P and N is an associated neighborhood structure, defines a local search prob
lem which consists of finding a locally optimal solution of P with respect to 
the neighborhood structure N. Without going into technical details a PLS 
problem is a local search problem for which local optimality can be checked 
in polynomial time. In analogy with decision problems, there exist complete 
problems in the class of PLS problems. The PLS-complete problems, are -
in the usual complexity sense - the most difficult among the PLS problems. 

Murthy, Pardalos and Li [138] introduce a neighborhood structure for the 
QAP which is similar to the neighborhood structure proposed by Kernighan 
and Lin [109] for the graph partitioning problem. For this reason we will 
call it a K-L type neighborhood structure for the QAP. Murthy et al. show 
that the corresponding local search problem is PLS-complete. 

A K-L type neighborhood structure for the QAP. Consider a 
permutation 4>0 E Sn. A swap of 4>0 is a permutation 4> E Sn obtained from 
CPo by applying a transposition (i,j) to it, cP = cpoo(i,j). A transposition (i,j) 
is defined as a permutation which maps i to j, j to i, and k to k for all k (j. 
{ i, j}. In the facility location context a swap is obtained by interchanging 
the facilities assigned to two locations i and j. A greedy swap of permutation 
4>0 is a swap 4>1 which minimizes the difference Z(F, D, cp) - Z(F, D, cpo) over 
all swaps 4> of 4>0' Let 4>0,4>1, ... ,4>1 be a set of permutations in Sn, each of 
them being a greedy swap of the preceding one. Such a sequence is called 
monotone if for each pair of permutations 4>k, 4>t in the sequence, {ik,jk} n 
{it,jt} = 0, where 4>k (7rd is obtained by applying transposition (ik,jk) 
( (it, jt)) to the preceding permutation in the sequence. The neighborhood 
of 4>0 consists of all permutations which occur in the (unique) maximal 
monotone sequence of greedy swaps starting with permutation 4>0. Let us 
denote this neighborhood structure for the QAP by NK-L' It is not difficult 
to see that, given a QAP(F, D) of size n and a permutation 4> E Sn, the 
cardinality of NK_d7r) does not exceed In/2J + 1. 

It is easily seen that the local search problem (QAP,NK_d is a PLS 
problem. Pardalos, Rendl, and Wolkowicz [147] have shown that a PLS-
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complete problem, namely the graph partitioning problem with the neigh
borhood structure defined by Kernighan and Lin [109] is PLS-reducible to 
(QAP,N'K-L). This implies the following result. 

Theorem 3.3 (Pardalos, Rendl and Wolkowicz [147], 1994) 
The local search problem (QAP,N'K_d, where N'K-L is the Kernighan-Lin 
type neighborhood structure for the QAP, is PLS-complete. 

The PLS-completeness of (QAP,N'K-d implies that, in the worst case, a 
general local search algorithm as described above involving the Kernighan
Lin type neighborhood finds a local minimum only after a time which is 
exponential on the problem size. Numerical results, however, show that 
such local search algorithms perform quite well when applied to QAP test 
instances, as reported in [138]. 

Another simple and frequently used neighborhood structure in Sn is 
the so-called pair-exchange (or 2-opt) neighborhood N'2. The pair-exchange 
neighborhood of a permutation 4>0 E Sn consists of all permutations 4> E Sn 
obtained from 4>0 by applying some transposition (i,j) to it. Thus, N'2(4)) = 
{4> 0 (i, j): 1 ~ i,j ~ n, i # j,}. 
It can also be shown that (QAP,N'2) is PLS-complete. Schaffer and Yan
nakakis [165] have proven that the graph partitioning problem with a neigh
borhood structure analogous to N'2 is PLS-complete. A similar PLS-reduc
tion as in [147] implies that the local search problem (QAP,N'2), where N'2 
is the pair-exchange neighborhood, is PLS-complete. This implies that the 
time complexity of a general local search algorithm for the QAP involving 
the pair-exchange neighborhood is also exponential in the worst case. 

Finally, let us mention that no local criteria are known for deciding how 
good a locally optimal solution is as compared to a global one. l.From 
the complexity point of view, deciding whether a given local optimum is a 
globally optimal solution to a given instance of the QAP, is a hard problem, 
see Papadimitriou and Wolfe [145]. 

4 Linearizations 

The first attempts to solve the QAP eliminated the quadratic term in the 
objective function of (2), in order to transform the problem into a (mixed) 
0-1 linear program. The linearization of the objective function is usually 
achieved by introducing new variables and new linear (and binary) con
straints. Then existing methods for (mixed) linear integer programming 
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(MILP) can be applied. The very large number of new variables and con
straints, however, usually poses an obstacle for efficiently solving the result
ing linear integer programs. 
MILP formulations provide moreover LP relaxations of the problem which 
can be used to compute lower bounds. In this context the "tightness" of the 
continuous relaxation of the resulting linear integer program is a desirable 
property . 

. In this section we present four linearizations of the QAP: Lawler's lin
earization [118], which was the first, Kaufmann and Broeckx's lineariza
tion [108], which has the smallest number of variables and constraints, Frieze 
and Yadegar's linearization [70] and the linearization of Adams and John
son [3]. The last linearization which is a slight but relevant modification of 
the linearization proposed by Frieze and Yadegar [70], unifies most of the 
previous linearizations and is important for getting lower bounds. 

4.1 Lawler's Linearization 

Lawler [118] replaces the quadratic terms XijXkl in the objective function of 
(2) by n4 variables 

Yijkl := XijXkl, i, j, k, 1 = 1,2, ... ,n, (13) 

and obtains in this way a 0-1 linear program with n4 + n2 binary variables 
and n4 + 2n2 + 1 constraints. Thus the QAP can be written as the following 
0-1 linear program (see [118, 23]) 

n n 

min L L CijklYijkl 
i,j=l k,l=l 

s.t. (Xij) E X n , 
n n 

L L Yijkl = n 2, (14) 
i,j=l k,l=l 

Xij + xkl - 2Yijkl ~ 0, i,j, k, 1 = 1,2, ... ,n, 

Yijkl E {O, I}, i,j, k, 1 = 1,2, ... , n. 

4.2 Kaufmann and Broeckx Linearization 

By adding a large enough constant to the cost coefficients, which does not 
change the optimal solution, we may assume that all cost coefficients Cijkl are 
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nonnegative. By rearranging terms in the objective function (2) we obtain 

n n 

L Xij L CijktXkl· 
iJ=1 k,I=1 

Kaufmann and Broeckx [108] define n2 new real variables 

n 

Wij := Xij L CijklXkl, i,j = 1, ... , n, 

k,t=1 

(15) 

(16) 

and plug them in the objective function of (15) to obtain a linear objective 
function of the form 

n 

L Wij· 
iJ=1 

(17) 

Then they introduce n 2 constants aij := L:~,'=1 Cijkl for i,j = 1, ... , n, 

and show that the QAP (2) is equivalent to the following mixed 0-1 linear 
program 

n 

min L Wij 
i,j=1 

n 

aijXij + L CijklXkl - Wij $ aij, i,j = 1, ... ,n, (18) 
k,I=1 

Wij ~ 0, i,j = 1,2, ... ,no 

This formulation employs n2 real variables, n2 binary variables and n2 + 2n 
constraints. The proof of equivalence of the QAP to the mixed integer linear 
program (18) can be found in [23, 108]. The above linearization, as well as 
others that appeared in the literature (see e.g. [24, 29]), are obtained by 
applying the general linearization strategy proposed by Glover [78]. 

4.3 Frieze and Yadegar Linearization 

Frieze and Yadegar [70] replace the products XijXkl of the binary variables 
by continuous variables Yijkl (Yijkl := XijXkt) and get the following mixed 
integer linear programming formulation for the QAP (2) 

n n 
min L L CijklYijkl (19) 

iJ=1k,I=1 
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s.t. (Xij) E X n , (20) 
n 

2: Yijkl = Xkl, j, k, 1 = 1, ... ,n, (21) 
i=1 
n 

2: Yijkl = Xkl, i, k, 1 = 1,2, ... ,n, (22) 
j=1 

n 

2: Yijkl = Xij, i, j, 1 = 1, ... ,n, (23) 
k=1 
n 

2: Yijkl = Xij, i, j, k = 1,2, ... ,n, (24) 
1=1 

Yijij = Xij, i, j = 1,2, ... ,n, (25) 

o ~ Yijkl ~ 1, i, j, k, 1 = 1,2, ... ,n. (26) 

This mixed integer program has n4 real variables, n2 binary variables and 
n4 + 4n3 + n2 + 2n constraints. For obtaining a lower bound Frieze and 
Yadegar considered a Lagrangean relaxation of this mixed integer program 
by relaxing the constraints (23) and (26) and solved it approximately by ap
plying subgradient optimization techniques. They showed that the solution 
of the Lagrangean relaxation is larger than all lower bounds derived from 
reduction techniques applied to the Gilmore-Lawler bound for the QAP (see 
Section 7.1). l.From a result of Geoffrion [75] follows that the solution of 
the Lagrangean relaxation equals the solution of the continuous relaxation 
of the mixed integer program (19)-(26). 

It is interesting to notice here that the gap between the optimal value of this 
continuous relaxation and the optimal value of the QAP can be enormous. 
Dyer, Frieze, and McDiarmid [60] showed for QAPs whose coefficients Cijkl 

are independent random variables uniformly distributed on [0,1] that the 
expected optimal value of the above mentioned linearization has a size of 
O(n). On the other hand the expected optimal value of such QAPs increases 
with high probability as O(n2), as shown by Burkard and Fincke [32]. Con
sequences of this asymptotic behavior will be discussed in some detail in 
Section 12. No similar asymptotic result is known for the continuous relax
ation of the linearization due to Adams and Johnson [3] which is presented 

. in the following section. 
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4.4 Adams and Johnson Linearization 

Adams and Johnson presented in [3] a new 0-1 linear integer programming 
formulation for the QAP, which resembles to a certain extent the lineariza
tion of Frieze and Yadegar. It is based on the linearization technique for 
general 0-1 polynomial programs introduced by Adams and Sherali in [4, 5]. 
The QAP with array of coefficients C = (Cijkl) is proved to be equivalent to 
the following mixed 0-1 linear program 

n n 
min L: L: CijklYijkl 

i,;=1 k,l=1 

s.t. (Xij) E X n , 

n 

L: Yijkl = Xkl, j, k, 1 = 1, ... ,n, 
;=1 

n 

L: Yijkl = Xkh i, k, 1 = 1,2, ... ,n, 
j=1 

Yijkl = Yklij, i,j, k, 1 = 1, ... ,n, 
Yijkl 2:: 0, i,j, k, 1 = 1,2, ... ,n, 

(27) 

(28) 

where each Yijkl represents the product XijXkl. The above formulation con
tains n2 binary variables Xij, n4 continuous variables Yijkl, and n4 +2n3 +2n 
constraints excluding the nonnegativity constraints on the continuous vari
ables. Although as noted by Adams and Johnson [3] a significant smaller 
formulation in terms of both the variables and constraints could be obtained, 
the structure of the continuous relaxation of the above formulation is favor
able for solving it approximately by means of the Lagrangean dual. (See 
Section 6.2 for more information.) 
The theoretical strength of the linearization (27) lies in the fact that the 
constraints of the continuous relaxations of previous linearizations can be 
expressed as linear combinations of the constraints of the continuous re
laxation of (27), see [3, 98]. Moreover, many of the previously published 
lower-bounding techniques can be explained based on the Lagrangean dual 
of this relaxation. For more details on this topic we refer to Section 6.2. 

As noted by the Adams et al. [3], the constraint set of (27) describes 
a solution matrix Y which is the Kronecker product of two permutation 
matrices (Le., Y = X ® X where X E Sn), and hence this formulation of 
the QAP is equivalent to (11). 
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5 QAP Polytopes 

A polyhedral description of the QAP and of some of his relatives have 
been recently investigated by Barvinok [12], Jiinger and Kaibel [100, 101], 
Kaibel [102], and Padberg and Rijal [142, 161]. Although in an early stage 
yet, the existing polyhedral theory around the QAP counts already a num
ber of results concerning basic features like dimensions, affine hulls, and 
valid and facet defining inequalities for the general QAP polytope and the 
symmetric QAP polytope. 

The linearization of Frieze and Yadegar introduced in the previous sec
tion can be used as a starting point for the definition of the QAP polytope. 
The QAP polytope is defined as a convex hull of all 0-1 vectors (Xij, Yijkl) , 

1 :::; i, j, k, 1 :::; n, which are feasible solutions of the MILP formulation of 
Frieze and Yadegar [70]. 

Another possibility to introduce the QAP polytope is the formulation of 
the QAP as a graph problem as proposed by Jiinger and Kaibel [100]. This 
formulation provides some additional insight in the problem and allows an 
easier use of some technical tools e.g. projections and affine transformations. 
The latter lead to a better understanding of the relationship between the 
general QAP polytope and related polytopes, e.g. the symmetric QAP poly
tope, or well studied polytopes of other combinatorial optimization problems 
like the traveling salesman polytope or the cut polytope (see [102]). 

For each n E IN consider a graph Gn = (Vn, En) with vertex set Vn = 
{(i,j): 1 :::; i,j :::; n} and edge set En = {((i,j), (k, I)): i =J k,j =J I}. Clearly, 
the maximal cliques in Gn have cardinality n and correspond to the per
mutation matrices. Given an instance of the Lawler QAP with coefficients 
Cijkl and linear term coefficients bij, we introduce bij as vertex weights and 
Cijkl as weight of the edge ((i,j), (k, l)). Solving the above QAP instance 
is equivalent to finding a maximal clique with minimum total vertex- and 
edge-weight. For each clique 0 in Gn with n vertices we denote its incidence 

2 n 2(n_l)2 
vector by (xC,yC), where xC E lRn , yC E lR 2 

X ,, _ {I if (i,j) EO, 
'3 - o otherwise 

{
I if (i,j),(k,l) EO, 

Yijkl = o otherwise 

The QAP polytope denoted by QAPn is then given by 

QAPn := conv{(xc , yC): 0 is a clique with n vertices in Gn }. 
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It turns out that the traveling salesman polytope and the linear ordering 
polytope are projections of QAPn , and that QAPn is a face of the Boolean 
quadric polytope, see [102]. 

Barvinok [12], Padberg and Rijal [142], and Junger and Kaibel [100] 
have independently computed the dimension of QAPn , and have shown that 
the inequalities Yijkl ~ 0, i =I k, j =I I, are facet defining. (These are usu
ally called trivial facets of QAPn .) Moreover, Padberg and Rijal [142], and 
Junger and Kaibel [100] have independently shown that the affine hull of 
QAPn is described by the following equations which are linearly indepen
dent: 

k-l n 

n 

LXij = 1, 
i=1 
n 

LXij = 1, 
j=1 

-Xkl + L Yijkl + L Yklij o 
i=l i=k+l 

j-l n 

-Xij + L Yijkl + L Yijkl = 0 
1=1 l=j+l 

jl n 

-Xkj + L Yilkj + L Yilkj = 0 
11 l=j+l 

1~j~n-1 (29) 

1 ~ i ~ n, (30) 

1 ~ j =I 1 ~ n, 1 ~ k ~ n - 1{31) 
or 1 ~ I < j ~ n, k = n 

1 ~ j ~ n, 1 ~ i ~ n - 3, 
i < k ~ n -lor 
1 ~ j ~ n -1, i = n - 2, 
k=n-1 

(32) 

~ ~ j ~ n - 1, 1 ~ i ~ n - 3'(33) 
z<k~n-1 

Summarizing we get the following theorem: 

Theorem 5.1 (Barvinok [12], 1992, Junger and Kaibel [100], 1996, Pad
berg and Rijal [142], 1996) 

(i) The affine hull of the QAP polytope QAPn is given by the linear equa
tions (29)-(33). These equations are linearly independent and the rank 
of the system is 2n(n - 1)2 - (n - l)(n - 2), for n ~ 3. 

(ii) The dimension ofQAPn is equal to 1+(n-1)2+n(n-1)(n-2)(n-3)j2, 
for n ~ 3. 

(iii) The inequalities Yijkl ~ 0, i < k, j =II, define facets of QAPn . 
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Padberg and Rijal [142] identified additionally two classes of valid inequal
ities for QAPn , the clique inequalities and the cut inequalities, where the 
terminology is related to the graph Gn • The authors identify some condi
tions under which the cut inequalities are not facet defining. It is an open 
problem, however, to identify facet defining inequalities within these classes. 
A larger class of valid inequalities, the so-called box inequalities have been 
described by Kaibel [102]. Those inequalities are obtained by exploiting the 
relationship between the Boolean quadric polytope and the QAP polytope. 
A nice feature of the box inequalities is that it can be decided efficiently 
whether they are facet defining or not, and in the latter case some facet 
defining inequality which dominates the corresponding box inequality can 
be derived. 

Similar results have been obtained for the symmetric QAP polytope, 
SQAPn , arising in the case that at least one of the coefficient matrices 
of the given QAP (matrices F, D in (1)) is symmetric. The definition of 
SQAPn is given by means of a hypergraph Hn = (Vn' Fn), where Vn is 
the same set of vertices as in graph Gn and Fn is the set of hyperedges 
{(i,j), (k,l), (i,l), (k,j)} for all i # k, j # l. A set G c Vn is called a clique 
in Hn if it is a clique in Gn. Again, the incidence vector (xC, yC) of a clique 
G is introduced by 

X .. _ {I if (i,j) E G 
tJ - o otherwise 

{
I ifi < k, I #j, (i,j), (k,l) E G 

Yijkl = o otherwise 

2 n 2(n_l)2 
Here, xC E IRn and yC E IR 4 • The polytope SQAPn is then defined 
as 

SQAPn := conv{(xC, yC): G is a clique with n vertices in Gn} 

Padberg and Rijal [142] and Junger and Kaibel [101] showed that the fol
lowing system of equations (34)-(37) offers a minimal linear description of 
the affine hull of SQAPn. 

n 

LXij 1 1 $ i $ n (34) 
j=l 

n 

LXij = 1 l$j$n-l (35) 
i=l 
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j-l n 

-Xij - Xkj + LYilkj + L Yijkl = 0 
1=1 I=j+l 

k-l n 

-Xkj - Xkl + LYijkl + L Ykjil - 0 
i=1 i=k+l 

l~i<k~n 

1 ~ j ~ n, 

l~k~n 
1 ~ j ~ n - 3, 
1~j<l~n-1 
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(36) 

(37) 

Junger and Kaibel [101] proved a conjecture of Pad berg and Rijal concerning 
the dimension of SQAPn . They also introduced a class of facet defining 
inequalities, so-called curtain inequalities. The separation problem for these 
inequalities has been shown to be NP-hard. 
By summarizing these results we get the following theorem 

Theorem 5.2 (Junger and Kaibel [101], 1996, Padberg and Rijal [142], 
1996) 

{i} The affine hull of the symmetric QAP polytope SQAPn is described by 
the linear equations {34}-{37}. These equations are linearly indepen
dent and the rank of the system is n2(n - 2) + 2n - 1. 

{ii} The dimension of SQAPn is equal to (n - 1)2 + n2(n - 3)2/4. 

{iii} The inequalities Yijkl ~ () for i < k, j < I, and Xij ~ 0 for 1 ~ i,j ~ n, 
define facets of QAPn . 

{ivy For each i < k and for all J ~ {1, 2, ... ,n} the row curtain inequalities 

- L Xij + L Yijkl ~ 0 
jeJ j,leJ 

j<1 

are valid for SQAPn . For each j < I and for all I ~ {1, 2, ... ,n} the 
column curtain inequalities 

- L Xij + L Yijkl ~ 0 
ieI i,ke1 

i<k 

are valid for SQAPn . 

All curtain inequalities with 3 ~ IJI, IJI ~ n-3 define facets of SQAPn . 

The other curtain inequalities define faces which are contained in triv
ial facets of SQAPn . 
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Finally, there are some additional results concerning the affine descrip
tion and the facial structure of polytopes of special versions of sparse QAPs, 
e.g. sparse Koopmans-Beckmann QAPs, see Kaibel [102]. The idea is to 
take advantage of the sparsity for a better analysis and description of the 
related polytopes. These investigations, however, are still in their infancy. 

6 Lower Bounds 

Lower bounding techniques are used within implicit enumeration algorithms, 
such as branch and bound, to perform a limited search of the feasible region 
of a minimization problem, until an optimal solution is found. A more lim
ited use of lower bounding techniques concerns the evaluation of the perfor
mance of heuristic algorithms by providing a relative measure of proximity 
of the suboptimal solution to the optimum. In comparing lower bounding 
techniques, the following criteria should be taken into consideration: 

• Complexity of computing the lower bound. 

• Tightness of the lower bound (Le., "small" gap between the bound and 
the optimum solution). 

• Efficiency in computing lower bounds for subsets of the original feasible 
set. 

Since there is no clear ranking of the performance of the lower bounds that 
will be discussed below, all of the above criteria should be kept in mind while 
reading the following paragraphs. Considering the asymptotic behavior of 
the QAP (see Section 12) it should be fair to assume that the tightness 
of the lower bound probably dominates all of the above criteria. In other 
words, if there is a large number of feasible solutions close to the optimum, 
then a lower bound which is not tight enough, will fail to eliminate a large 
number of subproblems in the branching process. 

6.1 Gilmore-Lawler Type Lower Bounds 

Based on the formulation of the general QAP as an LAP of dimension n2 

stated in formulation (11), Gilmore [77] and Lawler [118] derived lower 
bounds for the QAP, by constructing a solution matrix Y in the process 
of solving a series of LAPs. If the resulting matrix Y is a permutation ma
trix, then the objective function value yielded by Y is optimal, otherwise 
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it is bounded from below by (C, Y). In this section we briefly describe a 
number of bounding procedures which exploit this basic idea. 

The Gilmore-Lawler bound 

Consider an instance of the Lawler QAP (2) with coefficients C = (Cijkl), and 
partition the array C into n2 matrices of dimension n x n, C(i,j) = (Cijkl), 

for each fixed pair (i,j), i,j = 1,2, ... ,n. Each matrix C(i,j) essentially 
contains the costs associated with the assignment Xij = 1. Partition the 
solution array Y = (Yijkl) also into n2 matrices, y(i,j) = (Yijkl), for fixed 
i,j = 1,2, ... , n. 

For each pair (i,j), 1 ~ i,j ~ n, solve the LAP with cost matrix C(i,j) 

and denote its optimal value by Ii;: 

n n 

Iij = min ~ ~ CijklYijkl (38) 
k=11=1 

n 
s.t. ~ Yijkl = 1, I = 1,2, ... ,n, 

k=1 
n 

~Yijkl = 1, k = 1,2, ... ,n, 
1=1 

Yijij = 1 (39) 

Yijkl E {0,1}, i,j = 1,2, ... ,no (40) 

Observe that constraint (39) essentially reduces the problem into an LAP of 
dimension (n - 1) with cost matrix obtained from C(i,j) by deleting its i-th 
row and j-th column. For each i,j, denote by y(i,j) the optimal solution 
matrix of the above LAP. 

The Gilmore-Lawler lower bound GLB(C) for the Lawler QAP with co
efficient array C is given by the optimal value of the LAP of size n with cost 
matrix (Iij) 

n n 
GLB(C) = min ~~lijxij (41) 

i=1 j=1 

s.t. (Xij) E X n . 

Denote by X* = (xij) the optimal solution matrix of this last LAP. If 
~ L:ij xijy(ij ) E X n , then the array y* = (Yijkl) with matrices y(i,j)* = 

xijy(ij ) for all i,j, 1 ~ i,j ~ n, is a Kronecker product of two permutation 
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matrices of dimension n, and hence an optimal solution of the considered 
QAP. Since each LAP can be solved in O(n3) time, the above lower bound 
for the Lawler QAP (2) of dimension n can be computed in O(n5 ) time. 

For the more special Koopmans-Beckmann QAP (1), where the quadratic 
costs Cijkl are given as entry-wise products of two matrices F = (lij) and 
D = (dij) , Cijkl = fijdkl for all i,j, k, I, the computational effort can be 
reduced to O(n3 ). This is due to the following well known result of Hardy, 
Littlewood, and P6lya [92]: 

Proposition 6.1 (Hardy, Littlewood and P6lya [92], 1952) 
Given two n-dimensional real vectors a = (ai), b = (bi) such that 0 ~ al ~ 
a2 ~ ... ~ an and bl ~ ~ ~ ... ~ bn ~ 0, the following inequalities hold for 
any permutation 4J of 1,2, ... ,n: 

n n n 

L aibi ~ L aibtf>(i) ~ L aibn-i+1 
i=l i=l i 

Given two arbitrary nonnegative vectors a, b E rn.n , let 4J be a permu
tation which sorts a non-decreasingly and 'I/J a permutation which sorts 
a non-increasingly. Moreover, let 1(" be a permutation which sorts b non
increasingly. We denote 

n 

(a,b)- := L atf>(i)b7r(i) 
i=l 

n 

(a, b) + := L a,p(i)b7r(i) 
i=l 

(42) 

Consider now an instance (1) of the Koopmans-Beckmann QAP. This can 
be written as a Lawler QAP of the form (2) by setting 

{ 
fikdjl, 

Cijkl := 
liidjj + bij, for i = k,j = l. 

for i =1= k, j =1= 1 

Each matrix a(i,j) of the array a is then given by a(i,j) = (likdjl). There
fore, instead of solving n2 LAPs we can easily compute the values lij by 
applying Proposition 6.1, as 

(43) 

where i(i,.}' dU,.) E rn.n - 1 are (n -I)-dimensional vectors obtained from the 
i-th and the j-th row of F and D by deleting the i-th and the j-th element, 
respectively. Finally, by solving the LAP with cost matrix (lij) as in (4I), we 
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obtain the Gilmore-Lawler lower bound for the Koopmans-Beckman QAP. 
The appropriate sorting of the rows and columns of F and D can be done 
in O(n2 10gn) time. Then the computation of alllij takes O(n3 ) time and 
the same amount of time is needed to solve the last LAP. 

Similar bounds have been proposed by Christofides and Gerrard [48]. 
The basic idea relies again on decomposing the given QAP into a number 
of subproblems which can be solved efficiently. First solve each subproblem, 
then build a matrix with the optimal values of the subproblems, and solve an 
LAP with that matrix as cost matrix to obtain a lower bound for the given 
QAP. Christofides et al. decompose the Koopmans-Beckmann QAP(F, D) 
based on isomorphic-subgraphs of graphs whose weighted adjacency matrices 
are F and D. The GLB is obtained as a special case, if these subgraphs are 
stars, and it generally outperforms the bounds obtained by employing other 
subgraphs, like single edges, or double stars (see also [74]). 

The Gilmore-Lawler bound is simple to compute, but it deteriorates fast 
as n increases. The quality of this lower bound can be improved if the given 
problem is transformed such that the contribution of the quadratic term in 
the objective function is decreased by moving costs to the linear term. This 
is the aim of the so-called reduction methods. 

Reduction methods 

Consider a Lawler QAP as in (2), and assume that bij = 0 for all i,j. By 
the above discussion the GLB will be given as solution of the following LAP 

n n 
mIn 2: 2: (lij + Cijij )Xij 

i=1 j=1 

s.t. (Xij) E X n . (44) 

We want to decompose the cost coefficients in the quadratic term of (2) and 
transfer some of their value into the linear term such that Cijij » Iij' This 
would yield a tighter lower bound because the LAP can be solved exactly. 
This procedure is known as reduction and was introduced by Conrad [54]. 
Reductions have been investigated by many researchers (see [21, 162, 62, 
70]). The general idea is to decompose each quadratic cost coefficient into 
several terms so as to guarantee that some of them end up in being linear cost 
coefficients and can be moved in the linear term of the objective function. 
Consider the following general decomposition scheme: 

D-1: Cijkl = Cijkl + eijk + 9ijl + hikl + tjkl, i =P k, j =P l, 
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where e, g, h, t E rn.n3 • Substituting the above in the objective function of 
(2) we obtain a new QAP which is equivalent with the given one and whose 
objective function has a quadratic and a linear part. (Formulas for the 
coefficients of this new QAP can be found in the literature, e.g. [70].) For 
the quadratic term we can compute the Gilmore-Lawler bound. Then we 
add it to the optimal value of the linear part in order to obtain a lower 
bound for the QAP. 
In the case of the Koopmans-Beckman QAP the general decomposition 
scheme is 

D-2: Iii = hi + Ai + I-'i' i -:F j, 
dkl = dkl + 11k + ¢l, k -:F I, 

where A, 1-', 11, ¢ E rn.n . 

Frieze and Yadegar [70] have shown that the inclusion of vectors hand t in 
D-l, or similarly the inclusion of vectors I-' and ¢ in D-2, does not affect 
the value of the lower bound. Therefore these vectors are redundant. 

As mentioned also in Section 4.3, Frieze and Yadegar derived lower 
bounds for the QAP based on a Lagrangean relaxation of the mixed inte
ger linear programming formulation (19)-(26). By including the constraints 
(21) and (22) in the objective function (19) and using vectors e and 9 as 
Lagrangean multipliers, we get the following Lagrangean problem 

£(e,g) = 

min {2:ijkl CijklYijkl + 2:j kl ejkl (Xkl - 2:i Yijkl) + 2:ikl gikl (Xkl - 2:j Yijkl) } = 

2:ijkl (Cijkl - ejkl - gikl)Yijkl + 2:ij (2:k ekij + 2:, g,ij) Xij 

s.t. constraints (20), (23), ... ,(26). 

As proved in [70], for any choice of e and g, the solution to the above La
grangean problem equals the value of the GLB obtained after the decompo
sition of the coefficient Cijkl by using only vectors e and 9 in D-l. Therefore, 
maxe,g C( e, g) constitutes a lower bound for the QAP which is larger (Le., 
better) than all GLBs obtained after applying reduction methods according 
to D-l (D-2). Frieze and Yadegar propose two subgradient algorithms to 
approximately solve maxe,g C( e, g), and obtain two lower bounds, denoted 
by FYI and FY2. These bounds seem to be sharper than the previously 
reported Gilmore-Lawler bounds obtained after applying reductions. 
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Bounding techniques based on reformulations 

Consider the Lawler QAP with a linear term in the objective function: 

n n n 
min E E CijklXikXjl + E bikXik 

i,k=1 j,I=1 i,k=1 

s.t. 
n 
E Xik = 1, 1:5 k :5 n, 
i=1 

n 
E Xik = 1, 1 $ i :5 n, 

k=1 
XikE{O,I}, l:5i,k:5n. 
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As already mentioned in Section 1, we assume without loss of generality 
that the coefficients Cijkl' 1 :5 i,j, k, 1 :5 n are nonnegative. 

A reformulation of this QAP is another QAP of the same form with new 
coefficients <jkl' 1 :5 i,j,k,l :5 n, and b~k' 1 :5 i,k :5 n, such that for all 
permutation matrices (Xij) 

n n n n n n 

L L CijklXikXjl + L bikXik = L L C~jklXikXjl + L b~kXik' 
i,k=1 j,I=1 i,k=1 i,k=1 j,I=1 i,k=1 

holds. The basic idea is to derive a sequence of reformulations of the given 
problem by applying some "appropriate" reformulation rule. When we com
pute the GLB for each reformulation in the sequence, the best among these 
bounds is a valid bound for the original QAP. The reformulation rule is 
"appropriate" if the sequence of GLBs computed for the reformulations is 
monotonically nondecreasing. Usually, the construction of a new reformula
tion exploits the previous reformulations and the bounds obtained for them. 
Carraresi and Malucelli in [40] have proposed the following scheme to derive 
the coefficients of the reformulation 

C~jkl = Cijkl + Tijkl - aijl - /3jkl + ()ik, 1:5 i,j, k, I :5 n, 

n n 

b~k = bik + L aijk + L /3ikl - (n - 1)()ik, 1:5 i, k :5 n. 
j=1 l=1 

This type of bounding strategies has been proposed by Carraresi and Malu
celli [39] and Assad and Xu [8]. The parameters a, /3, T and () are updated 
in each reformulation step. Their values are determined by making use of 
the lower bound obtained for the last reformulation and the optimal values 
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and the dual variables of the linear assignment problems solved during the 
last GLB computation. Clearly, not all choices of the parameters T, i}, {3 
and () in the above formulas produce a reformulation but there are settings 
of those parameters which do so, as shown in [8, 39]. 
To illustrate the idea consider the reformulation formulas proposed by Car
raresi and Malucelli in [40]: 

(H1) (t) (t) (45) Tijkl - cijkl - cji1k ' 

(t+1) (t) (46) i}ijl - uijl' 

{3(t+1) (t) (47) jkl - vjkl' 

()(t+1) 1 (t) + (t) + (t») (48) ik - --1 cik ui vk , n-

for all 1 ~ i, j, k, l ~ n. Here t is an index which counts the reformulations, 
u~~L 1 ~ i ~ n, and V)~" 1 ~ k ~ n, are the optimal values of the dual 

variables of the LAP with cost matrix (C~~~, + bW), for 1 ~ j, l ~ n. Let l!r 
be the optimal values of these LAPs, 1 ~ i, k ~ n. Then u~t), 1 ~ i ~ n, 

and vit ) , 1 ~ k ~ n, are optimal values of the dual variables for the LAP 

with costs matrix (l~r + bW) (i.e., the last LAP solved to compute the GLB 
of the t-th reformulation). The bound produced with these settings is often 
denoted by CMB in the literature. Clearly, the computation of CMB (as 
well as the computation of the bounds obtained by applying the reformula
tion schemes proposed in [8, 39]) involves O(n5) elementary operations per 
iteration. 

The reformulation schemes generally produce bounds of good quality. 
However, these bounding techniques are quite time-consuming, as n2 + 1 
linear assignment problems per iteration have to be solved. Finally it has 
been shown in [39] that in the case that Cijkl = Cjilk, for alII ~ i, j, k, l ~ n, 

the general reformulation scheme cannot produce lower bounds which are 
better than the optimal value of the continuous relaxation of the mixed 
integer programming formulation of Frieze and Yadegar. 

Lower bounds for the QAP based on a dual formulation 

More recently another bounding procedure which shares the basic idea of 
the GLB has been proposed by Hahn and Grant [90, 91]. This procedure 
combines GLB ideas with reduction steps in a general framework which 
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works also for the Lawler QAP (2). The resulting bound is denoted by 
HGB. Recall that we assume w.l.o.g. that all Cijkl in (2) are nonnegative. 
As described in 2.4 the four dimensional array C = (Ci.i.k~) is thought as 
being an n2 x n2 matrix composed of n2 submatrices Cll,J), I :5 i,j :5 n, 
where each C(i,j) is an n x n matrix given by C(i,j) = (Cijkl). This structure 
of C complies with the structure of the Kronecker product X ® X, where X 
is an n x n permutation matrix. The entries Cijij are called leaders. Clearly, 
there is only one leader in each matrix C(i,j). The objective function value 
corresponding to permutation <p consists of the sum of those entries Cijkl 

which correspond to I-entries in the Kronecker product Xrp ® Xrp, where Xrp 
is the permutation matrix corresponding to permutation <p. Hence, entries 
of the form Cijil, j f. I, or Cijkj, if. k, do not contribute to the value of the 
objective function. Such entries are called disallowed entries. Entries which 
are not disallowed are said to be allowed. 

The bounding procedure uses the following classes of operations acting 
on the matrix (Cijkl): 

(RI) Add a constant to all allowed entries of some row (column) of some 
submatrix C(ij) and either subtract the same constant from the allowed 
entries of another row (column) of the same submatrix, or subtract it 
from the leader in that submatrix. 

(R2) Add a constant to all allowed entries of some row (column) of the 
n2 x n2 matrix (Cijkl). 

Clearly, operations of class RI do not change the objective function; They 
just redistribute the entries of the submatrices C(ik). Operations of class R2 
add a constant to the objective function, and hence they maintain the order 
of permutations with respect to the corresponding values of the objective 
function. The main idea is then to transform C by applying operations of the 
classes RI and R2 so as to decrease the objective function by some amount, 
say R, and to preserve the nonnegativity of entries of the transformed array 
C'. Then, clearly, R is a lower bound for the optimal solution of the given 
QAP. If, moreover, the O-entries in the transformed matrix C' comply with 
the pattern of zeros in the Kronecker product Xrp®Xrp for some permutation 
matrix Xrp, then R is the optimal value of the original QAP and permutation 
¢ is an optimal solution. 

The procedure developed to find such a lower bound R, or possibly, to 
optimally solve the problem, is essentially similar to the Hungarian method 
for the linear assignment problem. It uses operations of classes RI and R2 
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to redistribute the entries of C so as to obtain a pattern of zeros which 
complies with the pattern of zeros of the Kronecker product X ® X for 
some permutation matrix X. The whole process is a repeated computation 
of Gilmore-Lawler bounds on iteratively transformed problem data, where 
the transformations generalize the ideas of reduction methods. The time 
complexity of each iteration is basically that of the GLB computation for a 
Lawler QAP (i.e. O(n5 )). 

A deeper investigation of this bounding procedure reveals that it is an 
iterative approach in which the dual of some LP relaxation of the original 
problem is solved and reformulated iteratively (see Karisch, Qela, Clausen 
and Espersen [104]). The reformulation step makes use of the information 
furnished by the preceding solution step. Some more details of this inter
pretation are given in Section 6.2. 

As reported in [90] this bounding procedure has been tested on small and 
middle sized QAP instances from QAPLIB [34]. The computational results 
show an improved trade-off between quality of bounds and computation 
time, when compared to other bounding techniques. Other computational 
results of Hahn et al. [91] show that it is promising to involve the HGB in 
branch and bound approaches. 

6.2 Bounds Based on Linear Programming Relaxations 

As we saw in Section 4 several mixed integer linear programming (MILP) 
formulations have been proposed for the QAP. Clearly, the optimal solution 
of the continuous relaxation of an MILP formulation is a lower bound for 
the optimal value of the corresponding QAP. Moreover, each feasible solu
tion of the dual of this relaxation is also a lower bound. The identification 
of appropriate continuous relaxations of MILP formulations, and the devel
opment of solution methods to solve these relaxations or their duals, have 
been important aspects of research on the QAP. 
In the context of lower bound computation two MILP formulations of the 
QAP playa special role: The formulation of Frieze and Yadegar [70] de
scribed in Section 4.3 and that of Adams and Johnson [3] described in Sec
tion 4.4. 
As we have already mentioned Frieze and Yadegar consider a Lagrangean 
relaxation of their MILP formulation and develop two subgradient opti
mization based algorithms to approximately solve the latter. The resulting 
bounds denoted by FYI and FY2, respectively, perform better than the 
Gilmore-Lawerbound. 
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Adams and Johnson build upon the MILP formulation of Frieze and Yade
gar and propose a slightly different MILP formulation. As shown in [3] the 
continuous relaxation of this formulation is tighter than the continuous re
laxation of the formulation of Frieze et al. in the sense that the optimal value 
of the former may be strictly larger than that of the latter. Moreover, the 
constraints of the continuous relaxation of the formulations of Frieze et al. 
can be obtained as a linear combination of the constraints of the continuous 
relaxation of the formulation of Adams and Johnson. 
Adams et al. consider a Lagrangean relaxation of (27) obtained by adding 
the so-called complementary constraints (28) to the objective function with 
Lagrangean multipliers O:ijkl. This Lagrangean relaxation denoted by AJ(o:) 
is given below 

n n n n 
mm L L L L (Cijkl - O:ikjl)Yikjl-

s.t. 

(AJ(o:)) 

i=1 j=1 k=1 1=1 
j>i 1# 

n n n n n n 
L L L L (Cijkl - O:jlik)Yikjl + L L aikbikXik 
i=lj=lk=II=1 i=lk=1 

j<i 1# 

n 
L Xik = 1, 1 ::; k ::; n, 
i=1 

n 
L Xik = 1, 1 ::; i ::; n, 

k=1 
n 
L Yijkl = Xik, 1::; i, k, I ::; n, 

j=1 
n 
L Yijkl = Xik, 1::; i, j, k ::; n, 
1=1 
Xik E {O, I}, 1 ::; i, k ::; n, 

0::; Yijkl ::; 1, 1 ::; i,j, k, I ::; n. 

Let 8(0:) denote the the optimal value of AJ(o:). Then maxQ 8(0:) equals 
the optimal value of the continuous relaxation of (27). Adams and John
son [3] show that for each fixed set of the multipliers 0: the problem AJ(o:) 
can be solved efficiently by solving n2 + 1 LAPs, where n is the size of the 
considered QAP. Moreover they develop an iterative dual ascent procedure 
to approximately solve the above maximization problem. In each iteration 
problem AJ(o:) is solved to optimality and the optimal value 8(0:) is com
puted. Clearly, 8(0:) is a lower bound for the considered QAP. Then the 
multipliers O:ijkl are updated by using the information contained in the dual 
variables of the LAPs solved during the previous iteration. The algorithm 
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stops after having performed a prespecified number of iterations, and then 
clearly, the solution it outputs gives a lower for the original QAP. These 
bounds are denoted by AJB. Adams and Johnson propose two updating 
rules for the multipliers, one of them leading to a non-decreasing sequence 
of lower bounds 9(a). In both cases the time complexity of this bounding 
procedure is dominated by the solution of n2 + 1 LAPs in each iteration and 
amounts to O(n5 ) per iteration. 

The strength of AJB relies on the fact that it generalizes and unifies 
all Gilmore-Lawler-like bounds (see Section 6.1) but the HGB. Adams et 
a1. have shown that 9(0) equals the Gilmore-Lawler bound whereas GLBs 
obtained after applying reductions as well as the bounds of Carraresi and 
Malucelli [39] and Assad and Xu [8] equal 9(a) for special settings of the 
Lagrangean multipliers aijkl. l.From a practical point of view numerical 
experiments with instances from QAPLIB show that AJB generally outper
forms the above mentioned bounds. However, according to the numerical 
results reported in [3, 90], HGB outperforms AJB in terms of quality, while 
having higher computation time requirements. 

The theoretical relationship between AJB and HGB has been investi
gated recently by Karisch, Qela, Clausen and Espersen [104]. It turns out 
that unlike other Gilmore-Lawler-like bounds, HGB cannot be obtained by 
applying the algorithm of Adams and Johnson to solve the Lagrangean re
laxation. However, both AJB and HGB can be obtained as feasible solu
tions of the dual of the continuous relaxation of the MILP formulation (27) 
proposed by Adams and Johnson. Karisch et a1. propose an iterative al
gorithm to approximately solve this dual, and show that AJB, HGB, and 
all other Gilmore-Lawler-like bounds can be obtained by applying this algo
rithm with specific settings for the control parameters. Moreover, the same 
authors identify a setting of parameters which seems to produce a bound 
which is competitive with HGB in terms of quality and provides a better 
time/quality trade-off. This bound denoted by KCCEB seems to be espe
cially suitable for use within branch and bound algorithms (see [104] for 
more details). 

Concerning the solution to optimality of the continuous relaxation of 
(27), Adams and Johnson point out that the resulting linear program (LP) is 
highly degenerated, and degeneracy poses a problem for primal approaches. 
An effort to solve this LP relaxation has been done by Resende, Ramakr
ishnan and Drezner [158]. These authors use an interior point approach to 
solve the LP relaxation for QAP instances of size smaller than or equal to 
30 taken from QAPLIB [34]. For larger instances the memory requirements 
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become prohibitive. The bounds of Resende et al., frequently denoted by 
IPLP, turn out to be the best existing bounds for a large number of test 
instances from QAPLIB. However, the computation of the IPLP bounds 
requires very high computation times (see [158]) and therefore, the IPLP 
bounds cannot be used within branch and bound algorithms, despite their 
good quality. 

The HGB bound of Hahn et al. [90] and the KCCEB bound of Karisch et 
al. [104] seem to be the only linearization bounds comparable with IPLP, in 
terms of tightness. Moreover, generally, HGB can be computed much faster 
than IPLP, whereas KCCEB seems to be computable at least one order of 
magnitude faster than IPLP (see [104]). 

6.3 Variance Reduction Lower Bounds 

The variance reduction lower bounds were introduced by Li, Pardalos, Ra
makrishnan and Resende in [123]. Consider an instance of the Koopmans
Beckmann QAP of size n, with flow and distance matrices F = (fij) and 
D = (dij). Partition both matrices as F = Fl +F2 and D = Dl +D2, where 

(1) (2) (1) (2) Fl = (fij ), F2 = (fij ) and Dl = (dij ), D2 = (dij ), and define a new 
n x n matrix L = (Iij), by solving the following n2 LAPs 

(49) 

It has been shown in [123] that the solution of the LAP with cost matrix L 
constitutes a lower bound for the considered QAP. The problem of concern 
now is to choose F1, F2 and Dl, D2 such that the resulting lower bound is 
maximized. Notice that by setting Fl = F and Dl = D we obtain the GLB. 

Given an m x n matrix M, denote its rows and columns m(i.), and 
m(.j), i,j = 1, ... ,n, respectively. Think of M as a data set of mn elements 
mij, and define an average 'Y(M) and a variance V(M) as 

1 m n 
'Y(M):= -LLmij, 

mn i=1 j=1 

m n 
V(M) := L Lb(M) - mij)2. 

i=1 j=1 

Also define the total variance 

m 

T(M, A) := A L V(m(i.)) + (1 - A)V(M), AE[O,I]. 
i=1 
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The term V (m( i.)) stands for the variance of m( i.)' treated as an 1 x n matrix. 
Li et a1. observed that as the variances of the matrices F and D decrease, 
the GLB increases. Moreover, GLB becomes maximum if the variances of 
the rows of the matrices equal zero. The partition scheme considered is of 
the form FI = F + t1F, F2 = -t1F' and DI = D + t1D, D2 = -t1D. We 
will only describe how t1F is obtained; t1D is then obtained in an analogous 
way. Thus, the problem is to find a matrix t1F, such that the variances of 
FI and F2 and the sum of the variances of the rows for each FI and F2 are 
minimized. This problem can be stated mathematically as 

min OT(F + t1F,,\) + (1 - O)T( -t1~, ,\), (50) 

where t1F = (Oij) is an n x n matrix and 0 E [0,1] is a parameter. Two 
approximate solutions 

R-l: Oij = O(fnn - lij) + Onn, i,j = 1, ... , n, 
R-2: Oij = O("((f(.n») - 'Y(f(.j») i, j = 1, ... ,n, 

where onn is arbitrary, were proposed in [123], The matrix t1D is constructed 
in the same way. After the partitioning of the matrices F and D according 
to R-l or R-2, the solution to the LAP with cost matrix L = (lij) (where 
lij are defined in (49)) yields the bounds LB1(O) or LB2(O), respectively. 
Notice that R-2 is obtained under the assumption that the columns of the 
matrix t::..F (t::..D) are constant. This fact can be used to speed the compu
tation of LB2(O) by applying Proposition 6.1. 
In the case of computing LB1(O), the direct approach would be to solve n2 

LAPs defined in (49), and this would require O(n5 ) elementary operations. 
A different approach is to calculate lower bounds ~j for the values lij, i,j = 

1, ... , n, and to solve than the LAP with cost matrix (iij) 

It takes O(n3 ) time to compute all iij and the same time to solve the final 
LAP. Thus, the variance reduction lower bound can be computed in O(n3 ) 

time. These lower bounds perform well on QAPs with input matrices that 
have high variances, but their performance reduces to that of the GLB when 
the variance of the matrices is small. 

It is worth noting that there is also a closed form solution to problem 
(50) given by Jansen [96]. However, as reported in [123], using that closed 
form to compute the lower bounds, poses implementation obstacles. 
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6.4 Eigenvalue Based Lower Bounds 

These bounds were introduced by Finke, Burkard, and Rendl [67], and can 
be applied to the Koopmans-Beckmann QAP in (1). They are based on the 
relationship between the objective function value of the QAP in the trace 
formulation (9) and the eigenvalues of its coefficient matrices. When de
signed and implemented carefully, these techniques produce bounds of good 
quality in comparison with Gilmore-Lawler-like bounds or, more generally, 
with bounds based on linear relaxations. However, these bounds are quite 
expensive in terms of computation time requirements and therefore are not 
appropriate for use within branch and bound algorithms. Moreover, these 
bounds deteriorate quickly when lower levels of the branch and bound tree 
are searched, as shown by Karisch, Clausen, Perregaard, and Rendl [49]. 

Upon the introduction of the method in [67], many improvements and 
generalizations have appeared [86, 87, 88, 89, 154, 155]. There is a resem
blance with the Gilmore-Lawler based lower bounds in the sense that, based 
upon a general eigenvalue bound, reduction techniques are applied to the 
quadratic terms of the objective function in order to improve its quality. In 
this case the reduction techniques yield a significant improvement, which is 
not really the case with the GLB. 

Bound EV 

Consider the trace formulation of the QAP in (9), with F and D being real 
symmetric matrices (see Section 2.3), and hence having only real eigenvalues. 
The following theorem describes the relations between the eigenvalues of 
matrices F and D and the objective function of QAP(F, D) : 

Theorem 6.1 (Finke, Burkard, and Rendl [67], 1987) 
Let D, F be symmetric n x n matrices with real entries. Denote by A = 

(AI, ... ,An)T and Xl, ... ,Xn the eigenvalues and eigenvectors of F, and by 
f-L = (f-Ll,"" f-Ln)T and Yl, .. · ,Yn the eigenvalues and eigenvectors of D, 
respectively. Then the following two relations are true for all X E X n , 

where S(X) = ((Xi,XYj)2) is a doubly stochastic matrix, 

(ii) 
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By using part (ii) of Theorem 6.1 we obtain a lower bound (EVB) for the 
considered QAP 

The second term is the optimal value of an LAP and can be computed 
efficiently. 
EVB is not a strong bound. It often takes a negative value for QAP instances 
with nonnegative coefficients. According to Theorem 6.1 the smaller the 
intervaf[(A,J.L)-,(A,J.L)+] is, the closer is (A,J.L)- to tr{FXDXT). Thus, 
trying to equivalently transform the given QAP so as to decrease the length 
of that interval is one possibility to improve EVB. 

Reduction methods and bound EVI 

One possibility to make the interval [(A, J.L) -, (A, J.L)+] smaller, and hence to 
improve EVB, is to decompose the matrices F and D such that some amount 
will be transferred to the linear term, and the eigenvalues of the matrices 
resulting in the quadratic term are as uniform in value as possible. Define 
the spread of the matrix F as 

spread{F) := max { I Ai - Aj I : i, j = 1, ... ,n} . 

Our goal is to minimize the spreads of the matrices that compose the 
quadratic term. There is no simple closed form for expressing spread{F) 
in terms of fij, however there is a closed formula for an upper bound m{F) 
due to Mirsky [136] 

n n 2 
[ ]

1/2 

spread{F) ~ m{F) = 2t1f;fi~ - ;;,{trF)2 (51) 

Finke, Burkard, and Rendl [67] have proposed the following decomposition 
scheme 

lij = hj + ei + ej + rij, 

dkl = dkl + gk + gl + Ski, 

(52) 
(53) 

where Tij = Sij = 0, for i f j. Denote F = (hj) and iJ = (dij ). The 
values of ei and rii (gj and Sjj) which minimize the function f(e,r) = m{F) 
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(h(g, r) = m(D)) obtained by substituting the values of iij (dij) in (51) are 
given by closed formula, see [67]. 

By replacing F and D in (9) we obtain 

tr(FXD + B)XT = tr(FXD + B)XT, 

where bij bij + fiidjj + 2ei E~=l djk' Let X = (Xl, .. " Xn) and Ji = 
kh 

(Jil,'" ,Jin) be the eigenvalues of matrices F and D, respectively. Byap-
plying EVB to the QAP with transformed coefficient matrices we obtain a 
new eigenvalue bound EVBl 

Bound EV2 

EVBl := (X,p,)- + min trBXT, 
XEXn 

If we restrict ourselves only to purely quadratic, symmetric QAPs (fii = 
dii = 0, for all i, B = 0), the matrix B in the above decomposition be
comes B = cwT, where c = 2(el, ... , en)T and w = (Ej dlj,'" ,Ej dnj)T. 
Therefore minxExn tr(BXT) = (c, w)-, and 

One can, however, obtain a further improvement as suggested by Rendl [154] 
as follows. Let Sk := {Xl,'" ,Xk} ~ X n, and 

Thus, for any integer k ~ 1 we have L(Xt} ::;; L(X2) ::;; ••• ::;; L(Xk). In 
other words the set Sk contains the k best solutions (permutation matrices) 
of the problem minxExn(c,Xiw). 

Z(F, D, Xi) is the value of the objective function of QAP(F, D) yielded 
by solution Xi, i.e., 

- - - - - T 
Z(F,D,Xi) =tr(FXiD+B)Xi' 

Further define Z(k) := min {Z(F, D, Xi): i = 1, ... , k}. Then the following 
inequalities hold (see [154]) 
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where the equality Z(i) = (X, J1)- + L(Xi) for some i implies that Xi is 
an optimal solution of QAP(F, D). Thus, essentially, we try to reduce the 
gap between the optimal value of the QAP and the lower bound EVBl, 
by increasing the value of the linear term (c, w)- in the bound in k steps, 
where k is specified as a parameter. The generation of the set Sk is a 
special case of the problem of finding the k best solutions of an assignment 
problem. Murty [139] has given an O(kn3) algorithm to solve this problem. 
Rendl [154] presents an O(nlogn + (n + logk)k) algorithm for the special 
case where the cost matrix of the assignment problem is given as a product 
matrix (CiWj). 
Rendl [154] addresses two issues regarding the effectiveness of the above 
ranking procedure in improving the lower bound. First, if the vectors c 
and W have m ~ n equal elements, then there are at least m! permutation 
matrices {Xi} such that the values (c,Xiw) are equal. This implies in turn 
that there will be none or small improvement in the lower bound while 
generating Sk for quite some number of iterations. It can be shown that c 
and W will have equal elements if the row sums of F and D are equal (see 
[67]). Hence, the ranking procedure could give good results in the case that 
most of the row sums of F and D are not equal. Secondly, Rendl defines a 
ratio A called the degree of linearity based on the ranges of the quadratic 
and linear terms that compose the lower bound 

The influence of the linear term on the lower bound is inversely propor
tional to the value of A. A small value of A suggests that the ranking 
procedure would be beneficial for the improvement of EVBl for symmet
ric, pure quadratic QAPs. For large values of A, we can expect that the 
quadratic term dominates the linear term in the objective function. In this 
case Finke et al. [67] suggest the following improvement of EVBl. Consider 
part (i) of Theorem 6.1 applied to the reduced matrices F and D, and de
note the elements of the matrix S(X) by Sij, Sij = (Xi,XYj)2. It is easy to 
see that lij ~ Sij ~ Uij, where 
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Recalling the fact that the Sij are the elements of a doubly stochastic 
matrix, we can then form the capacitated transportation problem 

CTP* = min 

s.t. 

n n 

L L ).iJ1j Sij 
i=l j=l 
n 

L Sij = 1, j = 1, ... , n, 
i=l 

n 

L Sij = 1, i = 1, ... , n, 
j=l 

lij ~ Sij ~ Uij' 

Then, a new lower bound would be 

EVB2 = CTP* + (c,w)-. 

Other eigenvalue related bounds 

Rendl and Wolkowicz [155] derive a new lower bound similar to EVB2. 
Notice that the decomposition scheme in (52) and (53) is uniquely deter
mined by the 4n-dimensional vector d := (eT,gT,rT,sT) E JR4n , where 
r = (rn, ... , rnn)T and S = (sn, ... , snnf. EVBl is then a function of 
d. Maximizing this function with respect to d will result in a lower bound 
with the best possible decomposition with respect to both the linear and the 
quadratic term. Maximizing EVB 1 as a function of d leads to a nonlinear, 
nonsmooth, nonconcave maximization problem which is hard to solve to op
timality. Rendl et al. propose a steepest ascent algorithm to approximately 
solve this problem (see [155]). The new bound, denoted EVB3, produces 
the best lower bounds for a number of QAP instances from QAPLIB, with 
the expense, however, of high computational time requirements. 

A more general approach to eigenvalue based lower bounding techniques, 
was employed by Hadley, Rendl and Wolkowicz [87]. Consider the following 
sets ofnxn matrices, where I is the nxn identity matrix and u := (1, ... ,1)T 
is the n-dimensional vector of all ones: 

0:= {X : XT X = I}, set of orthogonal matrices, 

e:= {X: Xu = XTu = u}, set of matrices with row 

and column sums equal to one, 
(54) 

N := {X : X ~ O}, set of nonnegative matrices. 
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It is a well known result that Xn = 0 n e n N, while the set n of doubly 
stochastic matrices is given as n = e nN. Moreover, by Birkhoff's theorem 
[17] we know that n is a convex polyhedron with vertex set Xn , i.e., n = 
conv{X : X E Xn}. The above characterization of Xn implies that we get a 
relaxation of the QAP, if we delete one or two of the matrix sets 0, e and N 
in the intersection Xn = OnenN. Obviously, the relaxation, and therefore 
the lower bound, will be tighter if only one of the matrix sets is excluded. 
In relation to Theorem 6.1, Rendl and Wolkowicz [155] have shown that 

min tr(FXDXT) = tr(FAFAbDADA~) = (>",1')-, 
XeO 

maxtr(FXDXT ) = tr(FAFAbDADA~) = (.\,1')+, 
XeO 

where AF, AD are matrices whose columns consist of the eigenvectors of F 
and D, respectively, in the order specified by their minimal (maximal) inner 
product. In other words, the lower bound on the quadratic part of the QAP 
as obtained in EVB, is derived by relaxing the feasible set to the set of 
orthogonal matrices. 

All eigenvalue bounds discussed above relax the set of permutation ma
trices to O. A tighter relaxation was proposed in [86, 88], where the set 
of permutation matrices was relaxed to 0 n e. The authors incorporate e 
in the objective function by exploiting the fact that the vector of ones u is 
both a left and right eigenvector with eigenvalue 1, for any X E Xn . More 
specifically, define 

P := [u/liull : V], where VT u = 0, VTV = In-I' 

Then, V is an orthonormal basis for {u}.l, while Q := VVT is the orthogo
nal projection on {u }.l. The following characterization of the permutation 
matrices is given in [88]. 

Lemma 6.1 (Hadley [86], 1989, Hadley, Rendl, Wolkowicz [88], 1992) 
Let X be a real n x n matrix and Y be a real (n -1) x (n - 1) matrix. If 

X=p[10jpT o Y , (55) 

then 

X E e, X EN¢:}. VYVT ~ -uuT IIIull2 , and X EO¢:} Y E On-I. 

Conversely, if X E e, there exists a Y such that (55) holds. 



The Quadratic Assignment Problem 281 

Note that the above characterization of permutation matrices preserves 
the orthogonality and the trace structure of the problem. By substitut
ing X = -uu.T IIIull 2 + VYVT in the trace formulation of the QAP (9) as 
suggested by (55), we obtain an equivalent projected problem (PQAP) of 
dimension n - 1 with variable matrix Y. The new lower bound, often called 
elimination bound and denoted by ELI, is obtained by dropping the require
ment VYVT ~ -uut IIIull2 and simply requiring Y E On-I' In this way we 
derive a lower bound for the quadratic part of the PQAP. The linear part 
can be solved exactly as an LAP. 

Concluding this section notice that there is a possibility to apply eigen
value bounds to non-symmetric QAPs, i.e., QAPs with both coefficient ma
trices being non-symmetric. Hadley [86] and Rendl and WoIkowicz [89] show 
that analogous eigenvalue bounds to those for QAPs with at least one sym
metric coefficient matrix can be derived for QAPs with Hermitian coefficient 
matrices. Moreover, these authors show that each QAP can be equivalently 
transformed into a QAP with Hermitian coefficient matrices. 

6.5 Bounds Based on Semidefinite Relaxations 

Semidefinite programming (SDP) is a generalization of linear programming 
where the variables are taken from the Euclidean space of matrices with the 
trace operator acting as an inner product. The non-negativity constraints 
are replaced by semidefiniteness constraints and the linear constraints are 
formulated in terms of linear operators on the above mentioned Euclidean 
space of matrices. Successful applications of semidefinite programming in 
discrete optimization are presented in Goemans and Williamson [82], and 
Lovasz and Schrijver [125]. 
Recently, semidefinite programming relaxations for the QAP were consid
ered by Karisch [103], Zhao [176], and Zhao, Karisch, Rendl and Wolkow
icz [177]. The SDP relaxations considered in these papers are solved by 
interior point methods or cutting plane methods, and the obtained solu
tions are valid lower bounds for the QAP. 
In terms of quality the bounds obtained in this way are competitive with 
the best existing lower bounds for the QAP. For many test instances from 
QAPLIB, such as some instances of Hadley, Roucairol, Nugent et a1. and 
Taillard, they are the best existing bounds. However, due to prohibitively 
high computation time requirements, the use of such approaches as basic 
bounding procedures within branch and bound algorithms is up to now not 
feasible. 
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We refer to [103, 177] for a detailed description of SDP approaches to the 
QAP and illustrate the idea by describing just one semidefinite programming 
relaxation for the QAP. 

The set of n x n permutation matrices Xn is the intersection of the set 
of n x n 0-1 matrices, denoted by Zn, and the set en of n x n matrices with 
row and column sums equal to 1. Moreover, Xn is also the intersection of 
Zn with the set of n x n orthogonal matrices, denoted by On. Hence 

Xn = Zn n en = Zn nOn· 

Recall that 

On = {X E IRnxn:XXT = XTX = I} and 

en = {X E IRnxn : Xu = XT u = u} , 

where I is the n x n identity matrix and u is the n-dimensional vector of 
all ones. Then, the trace formulation of the QAP (2.3) with the additional 
linear term 

n n 

-22:2:bij X ij, 
i=l j=l 

can be represented equivalently as follows: 

s.t. 
(QAPe) XXT =XTX =1, 

Xu=XTu=u, 
xlj - Xij = O. 

In order to obtain a semidefinite relaxation for the QAP from the for
mulation QAPe above, we introduce first an n2-dimensional vector vec(X). 
vec(X) is obtained as a column-wise ordering of the entries of matrix X. 
Then the vector vec(X) is lifted into the space of (n2 + 1) x (n2 + 1) matrices 
by introducing a matrix Yx, 

y _ (xo vec(X)T) 
X - vec(X) vec(X)vec(X)T . 

Thus, Yx has some entry Xo in the left-upper corner followed by the vector 
vec(X) in its first row (column). The remaining terms are those of the 
matrix 

vec(X)vec(X? 
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sitting on the right lower n2 x n2 block of Yx. 
Secondly, the coefficients of the problem are collected in an (n2+1) x (n2+1) 
matrix K given as 

K _ ( 0 -vec(B)T ) 
- vee(B) D ® F ' 

where the operator vee is defined as above and D ® F is the Kronecker 
product of D and F. 
It is easy to see that with these notations the objective function of QAPe 
equals tr(KYx). By setting Yoo := Xo = 1 as done in Zhao et al. [177], 
one obtains two additional constraints to be fulfilled by the matrix Yx: Yx 
is positive semidefinite and matrix Yx is a rank-one matrix. Whereas the 
semidefiniteness and the equality Yoo = 1 can be immediately included in an 
SDP relaxation, the rank-one condition is hard to handle and is discarded 
in an SDP relaxation. In order to assure that the rank-one positive semidef
inite matrix Yx is obtained by an n x n permutation matrix as described 
above, other constraints should be imposed to Y x . Such conditions can 
be formulated as valid constraints of an SDP formulation for the QAP by 
means of some new operators, acting on matrices or vectors as introduced 
below. 
diag(A) produces a vector containing the diagonal entries of matrix A in 
their natural order, i.e., from top-left to bottom-right. The adjoint operator 
Diag acts on a vector V and produces a square matrix Diag(V) with off
diagonal entries equal to 0 and the components of V on the main diagonal. 
Clearly, for an n dimensional vector V, Diag(V) is an n x n matrix. 
arrow acts on an (n2 + 1) x (n2 + 1) matrix Y and produces an n2 + 1 
dimensional vector arrow(Y) = diag(Y) - (0, YO,I:n2), where (0, Y{O,I:n2» is 
an n2 + 1 dimensional vector with first entry equal to 0 and other entries co
inciding with the entries of Y lying on the O-th row and in columns between 
1 and n2, in their natural orderl. The adjoint operator Arrow acts on an 
n2 + 1 dimensional vector Wand produces an (n2 + 1) x (n2 + 1) matrix 
Arrow(W) 

Arrow(W) = (wo 1/2W[n2 ) 

1/2W(1:n2) Diag(Wl:n2) , 

lNote here that the rows and columns of an (n2 + 1) x (n2 + 1) matrix are indexed by 
0,1, ... ,n2 • 
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where W(1:n2) is the n2 dimensional vector obtained from W by removing 
its first entry WOo 

Further, we are going to consider an (n2 + 1) x (n2 + 1) matrix Y as composed 
of its first row 1'(0,.), of its first column 1'(.,0), and of n2 submatrices of size 
n x n each, which are arranged in an n x n array of n x n matrices and 
produce its remaining n2 x n2 block. (This is similar to the structure of a 
Kronecker product of two nxn matrices, see Section 2.4 and 6.1.) The entry 
Yaj3, 1 ~ ex,{3 ~ n2, will be also denoted by Y(ij)(kl), with 1 ~ i,j,k,l ~ n, 
where ex = (i - 1)n + j and {3 = (k - 1)n + 1. Hence, Y(ij)(kl) is the element 
with coordinates (j,l) within the n x n block with coordinates (i, k). 
With these formal conventions let us define the so-called block-a-diagonal 
and off-a-diagonal operators, acting on an (n2 + 1) x (n2 + 1) matrix Y, and 
denoted by bOdiag and oOdiag, respectively. bOdiag(Y) and oOdiag(Y) are 
n x n matrices given as follows: 

n n 

bOdiag(Y) = 2: 1'(k,.)(k,.) , oOdiag(Y) = 2: Y(.,k),(.,k) , 

k=l k=l 

where, for 1 ~ k ~ n, y(k,.)(k,.) is the k-th n x n matrix on the diagonal of the 
n x n array of matrices, defined as described above. Analogously, 1'(.,k),(.,k) 

is an n x n matrix consisting of the diagonal elements sitting on the position 
(k, k) of the n x n matrices (n2 matrices altogether) which form the n2 x n2 

lower right block of matrix Y. The corresponding adjoint operators BO Diag 
and 0° Diag act on an n x n matrix 8 and produce (n2 + 1) x (n2 + 1) 
matrices as follows: 

Finally, let us denote by eo the n2 + 1 dimensional unit vector with first 
component equal to 1 and all other components equal to 0, and let R be the 
(n2 + 1) x (n2 + 1) matrix given by 

where E is the n x n matrix of all ones. 
With these notations, a semidefinite relaxation for QAPe is given as 

follows 
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min tr(KY) 
s.t. 

bOdiag(Y) = I, 
oOdiag(Y) = I, 
arrow(Y) = eo, 
tr(RY) = 0, 
YtO. 
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where ~ is the so-called Lowner partial order, i.e., A ~ B if and only if 
B - A t 0, that is B - A is positive semidefinite. 

Zhao et al. [177] have shown that an equivalent formulation for the con
sidered QAP is obtained from QAPRO by imposing one additional condition 
on the matrix Y, namely, the rank-one condition. 

6.6 Improving Bounds by Means of Decompositions 

The idea of applying so-called decompositions to improve lower bounds for 
specially structured QAPs was initially proposed by Chakrapani and Skorin
Kapov [44], and then further elaborated by Karisch and Rendl [105]. The 
applicability of this approach seems to be restricted to QAPs with a very 
special structure, the so-called grid QAPs (or rectilinear QAPs) to be intro
duced below. This procedure yields the best existing bounds for many grid 
QAP instances from QAPLIB and a good trade off between computation 
time and bound quality. 

A grid QAP is a Koopmans-Beckmann QAP with flow matrix F and 
distance matrix D = (dij) being the distance matrix of a uniform rectangular 
grid. If dij = dik + dkj, we say that k is on the shortest path connecting 
i and j. The triple u = (i,j,k) is then called a shortest path triple. The 
shortest path triple v = (i,j, k) for which dik = dkj = 1 is called a shortest 
triangle. 

We associate a matrix Ru = (r~)) to each shortest path triple u = 
(k,m,l), and a matrix Tv = (t~j)) to each shortest triangle v = (k',m',l'), 
where Ru and Tv are defined by 

r(u) - r(u) - r(u) - r(u) - 1 r(u) - r(u) - 1 kl - Ik - ml - 1m - , km - mk - - , 

(v) _ (v) _ (v) _ (v) _ (v) _ (v) _ 
tk'm' - t"m' - tm'l' - tl'k' - tk'ml - tm'k' - 1, 

r~) = 0 and t~j) = 0 if {i,j} ~ {k,l,m}. 
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The set of all shortest path triples is denoted by 'R, and the set of all shortest 
triangles is denoted by I. 
The key observation is that, for each Ru. E 'R, and for each T" E I, the iden
tity permutation is an optimal solution of QAP(Ru., D) and QAP(T" , D). 
The optimal values for these QAPs are ° and 8, respectively, and these 
simple QAPs can be used to improve the quality of lower bounds for an 
arbitrary grid QAP. Let us decompose the distance matrix F as 

F = L auRu. + L {3"T" + Fr , (56) 
uE'R. "ET 

where Fr is the residual matrix given as 

Fr := F - L auRu. + L {3"T". 
uE'R. "ET 

For every choice of the parameters au 2: 0, 'U E 'R" and (3" 2: 0, v E I, and 
for any permutation </> we have 

Z(F, D, </» = L auZ(Ru., D, </» + L (3"Z(T" , D, </» + Z(Fr' D, </». (57) 
uE'R. "ET 

Equality (57) implies 

minZ(F, D, </» 2: 8 L (3" + minZ(Fr, D, </» 2: 
tP "ET tP 

8 L (3" + LB(Fr, D) , 
"ET 

where LB(Fr' D) is any lower bound for the QAP with How matrix Fr and 
distance matrix D. Clearly, the expression on the right hand side of (57) is 
a lower bound for the original QAP. This lower bound, which depends on 
the vectors a = (au), {3 = ((3,,), is denoted by h(a, (3). Then, h(O,O) equals 
LB(F, D)), and therefore, 

max h(a,{3) 2: LB(F, D) , 
Q~O,.B~O 

where a vector is said to be nonnegative if all its components are non
negative. Hence, maxQ~o,.B~o h( a, (3) is an improvement upon the bound 
LB( QAP(F, D)). 

Chakrapani et al. [44] improve the Gilmore-Lawler bound (GLB), and 
the elimination bound (ELI), by using only the matrices Ru., 'U E 'R" for the 
decomposition. Karisch et al. [105] use the decomposition scheme (56) to 
improve the elimination bound (ELI) (introduced in [88]). 
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7 Exact Solution Methods 

An exact algorithm for a combinatorial optimization problem provides the 
global optimal solution to the problem. In this section we will briefly discuss 
several exact algorithms that have been used for solving the QAP, like branch 
and bound, cutting plane and branch and cut algorithms. 

7.1 Branch and Bound 

Branch and bound algorithms have been applied successfully to many hard 
combinatorial optimization problems, and they appear to be the most effi
cient exact algorithms for solving the QAP. 
The basic ingredients of branch and bound algorithms are bounding, branch
ing, and the selection rule. Although many bounding techniques have been 
developed for the QAP the most efficient branch and bound algorithms for 
this problem employ the Gilmore-Lawler bound (GLB). The reason is that 
other bounds which outperform GLB in terms of bound quality are simply 
to expensive in terms of computation time. However, more recently some ef
forts have been made to employ other Gilmore-Lawler-like bounds in branch 
and bound algorithms. The bound of Hahn and Grant (HGB) [90], has been 
used in a branch and bound algorithm by Hahn, Grant, and Hall [91], and the 
results are promising. Pardalos, Ramakrishnan, Resende and Li [150] solve 
some previously unsolved instances from QAPLIB by applying a branch and 
bound algorithm which employs the variance reduction lower bound. 

Three types of branching strategies are mostly used for the QAP: single as
signment branching, see Gilmore [77], Lawler [118], pair assignment branch
ing see Gavett and Plyter [74], Land [116], Nugent et al. [141], and branch
ing based on relative positioning see Mirchandani and Obata [135]. The 
single assignment branching which is the most efficient assigns a facility to a 
location in each branching step, i.e., each problem is divided into subprob
lems by fixing the location of one of the facilities which are not assigned 
yet. Several rules for the choice of the facility-location pair to determine the 
subproblems of a new level of the search tree have been proposed by different 
authors. The appropriate rule usually depends on the bounding technique. 
If the GLB is employed the above mentioned rule is frequently formulated in 
terms of the reduced costs of the last assignment problem solved to bound 
the subproblem which is currently being branched [14, 23, 131]. 
The pair assignment algorithms assign a pair of facilities to a pair of lo
cations at a branching step, whereas in relative positioning algorithms the 
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levels of the search tree do not correspond to the number of facilities already 
assigned to locations. Here the fixed assignments within each subproblem 
are determined in terms of distances between facilities, i.e., their relative po
sitions. Numerical results show that pair assignment or relative positioning 
algorithms are outperformed by single-assignment algorithms. 
Roucairol [163] developed another branching rule which does not belong to 
any of the above groups, the so-called polytomic or k-partite branching rule. 
The search tree produced by this algorithm is not binary as in most of the 
other approaches. In this case the GLB is employed and the branching rule 
is based on the solution <jJ of the last linear assignment problem solved to 
compute the lower bound at the current node of the search tree. Let X~) 
be the subset of Xn (the set of permutations of {1, 2, ... ,n}) consisting 
of those permutations 7r such that 7r(i) = <jJ(i). Analogously, X~) is the 
set of permutations 7r E X n , such that 7r(i) :f: <jJ(i). The current node 
is branched into n + 1 new nodes with sets of feasible solutions given by 
X~l), X~l) nx~2), ... ,X~l) nx~2)n ... nx~n-l)nx~n),X~l) nx~2) n ... nx~n). 

Another issue in the implementation of branch and bound algorithms 
concerns the so-called selection rule which determines the choice of the sub
problem to be branched, i.e., the vertex of the search tree to be branched. 
Several strategies, ranging from problem-independent depth or breadth first 
search to instance dependent criteria related to the maximization of lower 
bounds or reduced costs, have been tested by different authors. There seems 
to be no clear winner among the tested strategies. 
Better results on solving large size problems have been achieved lately 
by parallel implementations, see Pardalos and Crouse [146], Bruengger, 
Clausen, Marzetta, and Perregaard [19], and Clausen and Perregaard [50]. 
The Nugent et al. test instances [141] are widely considered as "stubborn" 
QAP instances and has become an obvious challenge for every new algo
rithm designed for solving the QAP to optimality. The largest Nugent et 
a1. test instance which has ever been solved to optimality has size equal to 
25 and has been solved by a parallel branch and bound algorithm which 
employs a special implementation of the GLB, see Marzetta [130]. 

7.2 Traditional Cutting Plane Methods 

Traditional cutting plane algorithms for the QAP have been developed by a 
different authors, Bazaraa and Sherali [15,16], Balas and Mazzola [9, 10, 11], 
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and Kaufmann and Broeckx [108]. These algorithms make use of mixed inte
ger linear programming (MILP) formulations for the QAP which are suitable 
for Benders' decomposition. In the vein of Benders, the MILP formulation 
is decomposed into a master problem and a subproblem, called also slave 
problem, where the master problem contains the original assignment vari· 
abIes and constraints. For a fixed assignment the slave problem is usually a 
linear program and hence, solvable in polynomial time. The master problem 
is a linear program formulated in terms of the original assignment variables 
and of the dual variables of the slave problem, and is solvable in polynomial 
time for fixed values of those dual variables. The algorithms work typically 
as follows. First, a heuristic is applied to generate a starting assignment. 
Then the slave problem is solved for fixed values of the assignment vari· 
abIes implied by that assignment, and optimal values of the primal and dual 
variables are computed. If the dual solution of the slave problem satisfies 
all constraints of the master problem, we have an optimal solution for the 
original MILP formulation of the QAP. Otherwise, at least one of the con· 
straints of the master problem is violated. In this case, the master problem 
is solved with fixed values for the dual variables of the slave problem and 
the obtained solution is given as input to the slave problem. The procedure 
is then repeated until the solution of the slave problem fulfills all constraints 
of the master problem. 

Clearly any solution of the master problem obtained by fixing the dual 
variables of the slave problem to some feasible values, is a lower bound for the 
considered QAP. On the other side, the objective function value of the QAP 
corresponding to any feasible setting of the assignment variables is an upper 
bound. The algorithm terminates when the lower and the upper bounds 
coincide. Generally, the time needed for the upper and the lower bounds 
to converge to a common value is too large, and hence these methods may 
solve to optimality only very small QAPs. However, heuristics derived from 
cutting plane approaches produce good suboptimal solutions in early stages 
of the search, e.g. Burkard and Bonniger [24] and Bazaraa and Sherali [16]. 

7.3 Polyhedral Cutting Planes 

Similarly to traditional cutting plane methods also polyhedral cutting planes 
or branch and cut algorithms2 make use of an LP or MILP relaxation of the 
combinatorial optimization problem to be solved, in our case the QAP. Addi-

2This term was originally used by Padberg and Rinaldi [143]. 
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tionally, polyhedral cutting plane methods make use of a class of (nontrivial) 
valid or facet defining inequalities known to be fulfilled by all feasible solu
tions of the original problem. If the solution of the relaxation is feasible for 
the original problem, we are done. Otherwise, some of the above mentioned 
valid inequalities are probably violated. In this case a "cut" is performed, 
that is, one or more of the violated inequalities are added to the LP or MILP 
relaxation of our problem. The latter is resolved and the whole process is 
repeated. In the case that none of the valid inequalities is violated, but 
some integrality constraint is violated, the algorithm performs a branching 
step by fixing (feasible) integer values for the corresponding variable. The 
branching steps produce the search tree like in branch and bound algorithms. 
Each node of this tree is processed as described above by performing cuts 
and then by branching it, if necessary. Clearly, related elements of branch 
and bound algorithms like upper bounds, selection and branching rules play 
a role in branch and cut algorithms. Hence, such an approach combines 
elements of cutting plane and branch and bound methods. 

The main advantage of polyhedral cutting plane algorithms with respect to 
traditional cutting planes relies on the use of cuts which are valid for the 
whole polytope of the feasible solutions, and possibly facet defining. Tradi
tional cutting planes instead rely frequently on cuts which are not valid for 
the whole polytope of the feasible solutions. In this case the whole computa
tion has to be done from scratch for different variable fixings. This requires 
additional running time and additional amounts of memory. Another and 
not less important drawback of traditional cutting plane algorithms is due to 
the "weakness" of the cuts they involve. In contrast with cuts produced by 
facet defining inequalities, the weak cuts cannot avoid the slow convergence. 

As we saw in Section 5 some properties and few facet defining inequal
ities of the QAP polytope are already known. But still polyhedral cutting 
plane methods for the QAP are not yet backed by a strong theory. How
ever, some efforts to design branch and cut algorithms for the QAP have 
been made by Padberg and Rijal [142] and Kaibel [102]. Padberg and Ri
jal [142] have tested their algorithm on sparse QAP instances from QAPLIB. 
The numerical results are encouraging, although the developed software is 
of preliminary nature, as claimed by the authors. Kaibel [102] has used 
branch and cut to compute lower bounds for QAP instances from QAPLIB. 
His results are promising especially in the case where box inequalities are 
involved. 
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8 Heuristics 

Although substantial improvements have been done in the development of 
exact algorithms for the QAP, problems of dimension n > 20 are still not 
practical to solve because of very high computer time requirements. This 
makes the development of heuristics indispensable as algorithms which pro
vide good quality solutions in a reasonable time. Much research has been 
devoted to the development of such approaches. We distinguish the following 
types of heuristic algorithms: 

• Construction methods (CM) 

• Limited enumeration methods (LEM) 

• Improvement methods (1M) 

• Tabu search (TS) 

• Simulated annealing (SA) 

• Genetic algorithms (GA) 

• Greedy randomized adaptive search procedures (GRASP) 

• Ant systems (AS) 

8.1 Construction Methods 

Construction methods were introduced by Gilmore [77]. They are iterative 
approaches which usually start with an empty permutation, and iteratively 
complete a partial permutation into a solution of the QAP by assigning some 
facility which has not been assigned yet to some free location. The algorithm 
is presented in pseudocode in Figure 1. Here <Po, <Pb .•. , <Pn-I are partial 
permutations, and heur(i) is some heuristic procedure that assigns facility 
i to some location j, and returns j. r is the set of already assigned pairs 
of facilities to locations. The procedure update constructs a permutation 
<Pi by adding the assignment (i,j) to <Pi-I. The heuristic heur(i) employed 
by update could be any heuristic which chooses a location j for facility i, 
(i,j) rt r, in a greedy fashion or by applying local search. 

One of the oldest heuristics used in practice, the CRAFT heuristic de
veloped by Buffa, Armour and Vollmann [20], is a construction method. 
Another construction method which yields good results has been proposed 
by Miiller-Merbach [140]. 
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procedure construction(4Jo, r} 
1 4J = Uj 
2 
3 
4 
5 
6 
7 
8 

do i = 1, ... ,n - 1 -+ 

9 od; 

if (i,i) ¢ r -+ 
i =heur(i}j 
update (4Ji, (i,i))j 
r = r U (i,i}j 

10 return(4J) 
end construction; 

Figure 1: Pseudo-code for a construction method 

8.2 Limited Enumeration Methods 

Limited enumeration methods rely on the observation that often enumer
ation methods (e.g. branch and bound algorithms) find good solutions in 
early stages of the search, and employ then a lot of time to marginally im
prove that solution or prove its optimality. This behavior of enumeration 
methods suggests a way to save time in the case that we are interested in 
a good but not necessarily optimal solution: impose some limit to the enu
meration process. This limit could be a time limit, or a limit on the number 
of iterations the algorithm may perform. 
Another strategy which serves the same goal is to manipulate the lower 
bound. This can be done by increasing the lower bound if no improvement 
in the solution is achieved during a large number of iterations, and would 
yield deeper cuts in the search tree to speed up the process. Clearly, such an 
approach may cut off the optimal solution and hence should be used care
fully, possibly in conjunction with certain heuristics that perform elaborate 
searches in the feasible space. 

8.3 Improvement methods 

These methods belong to the larger class of local search algorithms. A local 
search procedure starts with an initial feasible solution and iteratively tries 
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to improve the current solution. This is done by substituting the latter 
with a (better) feasible solution from its neighborhood. This iterative step is 
repeated until no further improvement can be found. Improvement methods 
are local search algorithm which allow only improvements of the current 
solution in each iteration. For a comprehensive discussion of theoretical and 
practical aspects of local search in combinatorial optimization the reader is 
referred to the book edited by Aarts and Lenstra [2]. 

Basic ingredients of improvement methods (and of local search in gen
eral) are the neighborhood and the order in which the neighborhood is 
scanned. Frequently used neighborhoods for QAPs are the pair-exchange 
neighborhood and the cyclic triple-exchange neighborhood. In the case of 
pair-exchanges the neighborhood of a given solution (permutation) consists 
of all permutations which can be obtained from the given one by applying 
a transposition to it. In this case, scanning the whole neighborhood, i.e., 
computing the objective function values for all neighbors of a given per
mutation, takes 0(n3) time. (The size of the neighborhood is (;), and it 
takes O(n) steps to compute the difference of the objective function values 
of a permutation 71" and a permutation 71"' in the neighborhood of 71".) If the 
neighborhood of 71" is already scanned and 71"' is a neighbor of 71", then the 
neighborhood of 71"' can be scanned in 0(n2), see Frieze et al. [71]. 
In the case of cyclic triple-exchanges, the neighborhood of a solution (permu
tation) 71" consists of all permutations obtained from 71" by a cyclic exchange 
of some triple of indices. The size of this neighborhood is 0«(;)). Cyclic 
triple-exchanges do not really lead to better results when compared with 
pair-exchanges. 

Another important ingredient of improvement methods is the order in 
which the neighborhood is scanned. This order can be either fixed previously 
or chosen at random. Given a neighborhood structure and a scanning order, 
a rule for the update of the current solution (from the current iteration to the 
subsequent one) should be chosen. The following update rules are frequently 
used: 

• First improvement 

• Best improvement 

• Heider's rule [94] 

In the case of first improvement the current solution is updated as soon as 
the first improving neighbor solution is found. Best improvement scans the 
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whole neighborhood and chooses the best improving neighbor solution (if 
such a solution exists at all). Heider's rule starts by scanning the neigh
borhood of the initial solution in a prespecified cyclic order. The current 
solution is updated as soon as an improving neighbor solution is found. 
The scanning of the neighborhood of the new solution starts there where 
the scanning of the previous one was interrupted (in the prespecified cyclic 
order). 
In order to get better results, improvement methods and local search algo
rithms in general are performed several times starting with different initial 
solutions. 

8.4 Tabu Search 

Tabu search is a local search method introduced by Glover [79, SO] as a tech
nique to overcome local optimality. One way to overcome local optimality 
would be to allow also the deterioration of the current solution when mov
ing from one iteration to the subsequent one, in contrast to improvement 
methods. In the case of tabu search the basic idea is to "remember" which 
solutions have been visited in the course of the algorithm, in order to derive 
the promising directions for further search. Thus, the memory and not only 
the local investigation of the neighborhood of the current solution drives 
the search. The reader is referred to the book edited by Glover, Laguna, 
Taillard, and De Werra [S1] for a comprehensive introduction to tabu search 
algorithms. 
The main ingredients of tabu search are the neighborhood structure, the 
moves, the tabu list and the aspiration criterion. A move is an operation 
which, when applied to a certain solution 11", generates a neighbor 11"' of it. 
In the case of QAPs the neighborhood is the pair-exchange neighborhood 
and the moves are usually transpositions. A tabu list is a list of forbidden or 
tabu moves, Le., moves which are not allowed to be applied to the current 
solution. The tabu status of the moves changes along with the search and 
the tabu list is updated during the search. An aspiration criterion is a 
condition which, when fulfilled by a tabu move, cancels its tabu status. 
A generic tabu search procedure starts with an initial feasible solution S 
and selects a best-quality solution among (a part of) the neighbors of S 
obtained by non-tabu moves. Note that this neighboring solution does not 
necessarily improve the value of the objective function. Then the current 
solution is updated, i.e., it is substituted by the selected solution. Obviously, 
this procedure can cycle, Le., visit some solution more than once. In an 
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effort to avoid this phenomenon a tabu criterion is introduced in order to 
identify moves which are expected to lead to cycles. Such moves are then 
declared tabu and are added to the tabu list. As, however, forbidding certain 
moves could prohibit visiting "interesting" solutions, an aspiration criterion 
distinguishes the potentially interesting moves among the forbidden ones. 
The search stops when a stop criterion (running time limit, limited number 
of iterations) is fulfilled. 
There is a lot of freedom in the implementation of different elements of a tabu 
search algorithms, e.g. the tabu list (length and maintenance), the aspiration 
criterion, the tabu criterion. The performance of tabu search algorithms 
depends very much on the implementation chosen for its basic ingredients, 
and there is no general agreement about the best implementation of any of 
those. 

Different implementations of tabu search have been proposed for the 
QAP, e.g. a tabu search with fixed tabu list (Skorin-Kapov [166]), the robust 
tabu search (Taillard [171]), where the size of the tabu list is randomly chosen 
between a maximum and a minimum value, and the reactive tabu search 
(Battiti and Tecchiolli [13]) which involves a mechanism for adopting the 
size of the tabu list. Reactive tabu search aims at improving the robustness 
of the algorithm. The algorithm notices when a cycle occurs, i.e., when a 
certain solution is revisited, and increases the tabu list size according to the 
length of the detect.ed cycle. The numerical results show that generally the 
reactive tabu search outperforms other tabu search algorithms for the QAP 
(see [13]). 
More recently, also parallel implementations of tabu search have been pro
posed, see e.g. Chakrapani and Skorin-Kapov [43]. Tabu search algorithms 
allow a natural parallel implementation by dividing the burden of the search 
in the neighborhood among several processors. 

8.5 Simulated Annealing 

Simulated annealing is a local search approach which exploits the analogy 
between combinatorial optimization problems and problems from statistical 
mechanics. Kirkpatrick, Gelatt and Vecchi [110] and Cerny [42] were among 
the first authors who recognized this analogy, and showed how the Metropo
lis algorithm (Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller [133]) 
used to simulate the behavior of a physical many-particle system can be 
applied as a heuristic for the traveling salesman problem. 

The analogy between a combinatorial optimization problem and a many-
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particle physical system basically relies on two facts: 

• Feasible solutions of the combinatorial optimization problem corre
spond to states of the physical system . 

• The objective function values corresponds to the energy of the the 
states of the physical system. 

In condensed matter physics annealing is known as a cooling process which 
produces low energy thermal equilibrium states of a solid in a heat bath. 
The aim is to reach the so-called ground state which is characterized by a 
minimum of energy. 
Burkard and Rendl [37] showed that a simulated cooling process yields a 
general heuristic which can be applied to any combinatorial optimization 
problem, as soon as a neighborhood structure has been introduced in the 
set of its feasible solutions. In particular Burkard et al. applied simulated 
annealing to the QAP. Other simulated annealing (SA) algorithms for the 
QAP have been proposed by different authors, e.g. Wilhelm and Ward [175] 
and Connolly [53]. All these algorithms employ the pair-exchange neighbor
hood. They differ on the way the cooling process or the thermal equilibrium 
is implemented. The numerical experiments show that the performance of 
SA algorithms strongly depends on the values of the control parameters, 
and especially on the choice of the cooling schedule. 

Simulated annealing (SA) can be modeled mathematically by an inho
mogeneous ergodic Markov chain, and this model has been used for the 
probabilistic analysis of the convergence of simulated annealing algorithms. 
Under natural conditions on the involved neighborhood structure and non 
very restrictive conditions on the slowness of the cooling process it can be 
shown that SA asymptotically converges to an optimal solution of the con
sidered problem. The investigation of the speed of this convergence remains 
an (apparently difficult) open problem. For a detailed discussion on the con
vergence and other theoretical aspects of simulated annealing the reader is 
referred to the books by Aarts and Korst [1] and Laarhoven and Aarts [115]. 

8.6 Genetic Algorithms 

The so-called genetic algorithms (GA) are a nature inspired approach for 
combinatorial optimization problems. The basic idea is to adapt the evo
lutionary mechanisms acting in the selection process in nature to combina
torial optimization problems. The first genetic algorithm for optimization 
problems was proposed by Holland [95] in 1975. 
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A genetic algorithm starts with a set of initial feasible solutions (gener
ated randomly or by using some heuristic) called the initial population. The 
elements of a population are usually termed "individuals". The algorithm 
selects a number of pairs of individuals or parents from the current popula
tion and uses so-called cross-over rules to produce some feasible solution or 
child out of each pair of individuals. Further, a number of "bad" solutions, 
i.e., solutions yielding to high values of the objective function, is thrown out 
of the current population. This process is repeated until a stop criterion, e.g. 
a time limit, a limit on the number of iterations, a measure of convergence, 
is fulfilled. In the course of the algorithm, mutations or immigrations are 
applied periodically to the current population to improve its overall quality 
by modifying some of the individuals or replacing them by better ones, re
spectively. Often local optimization tools are periodically used within GAs 
resulting in so-called hybrid algorithms. The search is diversified by means 
of so-called tournaments. A tournament consists of applying several runs 
of a GA starting from different initial populations and stopping them be
fore they converge. A "better" population is derived as a union of the final 
populations of these different runs, and then a new run of the GA is started 
over this population. For a good coverage of theoretical and practical issues 
on genetic algorithms the reader is referred to Davis [56] and Goldberg [83]. 

A number of authors have proposed genetic algorithms for the QAP. 
Standard algorithms e.g. the one developed by Tate and Smith [172], have 
difficulties to generate the best known solutions even for QAPs of small 
or moderate size. Hybrid approaches, e.g. combinations of GA techniques 
with tabu search as the one developed by Fleurent and Ferland [68] seem to 
be more promising. More recently another hybrid algorithm, the so-called 
greedy genetic algorithm proposed by Ahuja, Orlin, and Tivari [6] produced 
very good results on large scale QAPs from QAPLIB. 

8.7 Greedy Randomized Adaptive Search Procedure 

The greedy randomized adaptive search procedure (GRASP) was introduced 
by Feo and Resende [66] and has been applied successfully to different hard 
combinatorial optimization problems [65, 111, 112, 157] and among them to 
the QAP [124, 148] and the BiQAP [132]. The reader is referred to [66] for 
a survey and tutorial on GRASP. 
GRASP is a combination of greedy elements with random search elements 
in a two phase heuristic. It consists of a construction phase and a local im
provement phase. In the construction phase good solutions from the avail-
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able feasible space are constructed, whereas in the local improvement phase 
the neighborhood of the solution constructed in the first phase is searched 
for possible improvements. A pseudocode of GRASP is shown in Figure 2. 
The input parameters are the size RC Lsize of the restricted candidate list 
(RCL), a maximum number of iterations, and a random seed. RCL con
tains the candidates upon which the sampling related to the construction of 
a solution in the first phase will be performed. 

procedureGRASP(RCLSize,Maxlter,RandomSeed) 
1 Inputlnstance(); 
2 do k = 1, ... , Maxlter --+ 
3 
ConstructGreedyRandomizedSolution(RCLSize,RandomSeed); 
4 LocalSearch (BestSolutionFound); 
5 UpdateSolution(BestSolutionFound); 
6 od; 
7 returnBestSolutionFound 
end GRASP; 

Figure 2: Pseudo-code for a generic GRASP 

For the QAP the construction phase consists of two stages. The RCL con
tains tuples of partial permutations and values associated to them. Each of 
these partial permutations fixes the location of facilities 1 and 2. Such partial 
permutations are called 2-permutations. In the first stage a 2-permutation 
is chosen randomly from the restricted candidate list (RCL). 
Given a QAP instance of size n with flow matrix F = (fij) and distance ma
trix D = (dij), the value CtfJ,'I/J associated with a pair (4),1/J) of2-permutations 
is given as 

2 2 

CtfJ,'I/J = L L dtfJ(i)tfJU) i'I/J (i)'I/J U) • 
i=l j=l 

Clearly, the 2-permutations 4>, 1/J can be seen as elements of the set K = 
{(i,i) : i,i = 1,2, ... ,n,i "I i}, and since IKI = n(n -1), there are 
n2(n - 1)2 pairs (4),1/J) of 2-permutations. If we have a symmetric QAP 
instance with zeros in the diagonal, the above cost simplifies to 

CtfJ,'I/J = 2dtfJ(1)tfJ(2)f'I/J(1)'I/J(2) . 
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The RCL contains a number of pairs (¢, 'l/J) - this number equals the RCL 
size and is denoted by RG Lsize - having the smallest associated costs. In 
the case of an asymmetric QAP, we compute the costs Gcp,'I/J for all (¢, 'l/J) 
and keep the RGLsize smallest among them. In the symmetric case, we 
sort the m = n2 - n off-diagonal entries of matrix D in ascending order, and 
the off-diagonal entries of F in descending order, i.e., 

f · . > f· . > ... > f· . '1}1 - 1232 - - Im3m' 

Then, the products dk.l.li.i. are the costs associated to pairs of 2-permuta
tions (ks,ls), (is,js), 1 ~ s ~ m, respectively. These costs are sorted in 
ascending order and the RG Lsize smallest among them are put in RCL. 
Finally, one pair of 2-permutations from RCL is chosen at random, and these 
determines the locations of two facilities which are kept fixed in the second 
stage of the construction phase. Notice that the RCL is constructed only 
once, and hence, in constant time with regard to the number of iterations. 
In the second stage the remaining n - 2 facilities are assigned to locations. 
Let the set r r be the set of assignments made prior to the r - th assignment: 

Note that at the start of stage 2, !f31 = 2, since two assignments are made 
in the first stage, and r = Ir r I + 1 throughout the second stage. In stage 2 
we also construct an RCL which contains the single assignments m -7 s, 
(m, s) ¢ rr, and their associated costs em,s defined as 

where 

em,s:= L dl/>(i)l/>(j)I'I/J(i)'I/J(j) , 
(i,j)ETr 

Tr := {(i,j) : i,j = 1,2, ... , r, {i,j} n {r} # 0}, 

and ¢, 'l/J are partial permutations resulting from the r - 1 assignment which 
are already fixed and the assignment (m, s). In the case of a symmetric 
QAP the cost Gm,s is given by the simpler formula 

r-l 

ems = 2 L dml/>(i)ls'I/J(i)' (58) 
i=l 
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Among the U = (n - r + 1) 2 possible assignments (m, s), those with the 
RLSsize smallest associated costs are included in RCL. One assignment is 
then selected at random from RCL and the set r r is updated 

rr = rr U {(m,s)}. 

This process is repeated until a permutation of {I, 2, ... , n}, i.e., a fea
sible solution of the considered QAP, results. Stage 2 of the construc
tion phase of GRASP in pseudocode is shown in Figure 3. Procedure 

procedure ConstructionStage2(a, (jt,Pl), (h,P2)) 
1 r = {(jl,pd, (h,P2)); 
2 do r = 2, ... , n - 1 -+ 
3 U=O; 
4 do m = 1, ... , n -+ 
5 do s = 1, ... , n -+ 
6 if (m,s) ¢ r -+ 
7 Oms = E(i,j)ETr ap(i)p(j)bq(i)q(j); 
8 inheap(Cms); 

9 U= U+1; 
10 H; 
11 od; 
12 od; 
13 t =random[l, laUJ]; 
14 do i = 1, ... , t -+ 
15 Oms =outheap () ; 
16 od; 
17 r = r U {(m, s)}; 
18 od; 
19 return r 
end ConstructStage2; 

Figure 3: Stage 2 of Construction Phase of GRASP 

ConstructionStage2 returns the set r with n - 1 assignments, the last 
assignment being then trivial. The inheap 0 and outheap 0 procedures 
are used for sorting and choosing the smallest among the computed Om,s 
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costs, respectively. The procedure random generates a random number in 
the interval [1, RLSsize]. 

Finally, the second phase of the algorithm completes a GRASP iteration 
by applying an improvement method starting from the solution constructed 
in the first phase and employing the 2-exchange neighborhood (see also 
Section 8.3). 

8.8 Ant Systems 

Ant system (AS) are recently developed heuristic techniques for combina
torial optimization which try to imitate the behavior of an ant colony in 
search for food. Initially the ants search for food in the vicinity of their 
nest in a random way. As soon as an ant finds a source of food, it takes 
some food from the source and carries it back to the nest. During this trip 
back the ant leaves a trail of a substance called pheromone on the ground. 
The pheromone trail serves to guide the future search of ants towards the 
already found source of food. The intensity of the pheromone on the trail 
is proportional to the amount of food found in the source. Thus, the ways 
to rich sources of food visited frequently (by a large number of ants) will 
be indicated by stronger pheromone trails. In an attempt to imitate the 
behavior of ants to derive algorithms for combinatorial optimization prob
lems, the following analogies can be exploited: a) the area searched by the 
ants resembles the set of feasible solutions, b) the amount of food at food 
sources resembles the value of the objective function, and c) the pheromone 
trail resembles a component of adaptive memory. 
AS were originally introduced by Dorigo [59] and Colorni, Dorigo, and 
Maniezzo [51] and have already produced good results for well known prob
lems like the traveling salesman problem (TSP) and the QAP [52, 72]. 

In the case of the QAP the pheromone trail which is also the key element 
of an AS, is implemented by a matrix T = (Tij). Tij is a measure for the 
desirability of locating facility i at location j in the solutions generated 
by the ants (the algorithm). To illustrate the idea we briefly describe the 
algorithm of Gambardella, Taillard and Dorigo [72]. 
The algorithm is iterative and constructs a fixed number, say m, of solutions 
in each iteration. (This number is a control parameter and is also thought 
as number of ants.) In the first iteration these solutions are generated ran
domly, whereas in the subsequent iteration they are updated by exploit
ing the information contained in the pheromone trail matrix T. Initially 
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the pheromone trail matrix is a constant matrix; the constant is inverse
proportional to the best value of the objective function found so far. This 
is in compliance with the behavior of ants whose search directions are ini
tially chosen at random. Let us denote the best solution found so far by 
<f>* and its corresponding value of the objective function by f(<f>*}. In the 
further iterations the entries Ti</>"(i} of T are increased by the same value 
which is proportional to f(<f>*}. The update of the m solutions in each it
eration is done first by means of the pheromone trail matrix, and then by 
applying some improvement method. In both cases the update consists of 
swapping the locations for a sequence of facility pairs. First, the current 
solution is updated by swapping the locations of pairs of facilities chosen so 
as to maximize the (normalized) sum of the corresponding pheromone trail 
entries. Then, the solution obtained after this update is improved by ap
plying some improvement methods, e.g. first or best improvement (see also 
Section 8.3). As soon as an improvement of the best known solution is de
tected an intensification component "forces the ants" to further explore the 
part of the solution space where the improvement was found. If after a large 
number of iterations there is no improvement of the best known solution, a 
diversification - which is basically a new random start - is performed. 
Numerical results presented in [52, 72] show that ant systems are competitive 
heuristics especially for real life instances of the QAP with a few very good 
solutions clustered together. For randomly generated instances which have 
many good solutions distributed somehow uniformly in the search space, AS 
are outperformed by other heuristics, e.g. genetic algorithms or tabu search 
approaches. 

9 Available Computer Codes for the QAP 

Burkard, Karisch, and Rendl [34] have compiled a library of QAP instances 
(QAPLIB) which is widely used to test bounds, exact algorithms, and heuris
tics for the QAP. The instances collected in QAPLIB are due to different 
authors and range from instances arising in real life applications to instances 
generated randomly only for test purposes. Many of these instances have not 
been solved to optimality yet, the most celebrated among them being the in
stances of Nugent, Vollmann, and Ruml [141] of size larger than 25. QAPLIB 
can be found at http://www.opt.math.tu-graz.ac.at/.ltarisch/qaplib. 

A number of codes to compute lower bounds are available. A FORTRAN 
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code which computes the GLB is due to Burkard and Derigs [29], and is able 
to compute the bound for instances of size up to 256. The source code can be 
downloaded from the QAPLIB web page. Another FORTRAN code which 
can be downloaded from the QAPLIB web page computes the elimination 
bound (ELI) for symmetric QAP instances of size up to 256. 

Recently, Espersen, Karisch, Qela, and Clausen [64] have developed QAPpack 
which is a JAVA package containing a branch and bound algorithm to solve 
the QAP. In QAppack a number of bounds based on linearization are imple
mented: the Gilmore-Lawler bound [77, 118], the bound of Carraresi and 
Malucelli [40], the bound of Adams and Johnson [3], the bound of Hahn and 
Grant [90], and the bound of Karisch, Qela, Clausen, and Espersen [104]. 
The implementation is based on the dual framework provided by Karisch et 
a1. [104]. QAPpack can be found at http://wvv.imm.dtu.dk/-te/QAPpack. 

Besides QAPpack, a FORTRAN code of the branch and bound algorithm 
developed by Burkard and Derigs [29] can be downloaded from the QAPLIB 
web page. 

There are also some codes of heuristics available. The (compressed) 
FORTRAN source file - 608.Z - of a heuristic due to West [174], can be 
downloaded at ftp: I Inetlib. att. com in Inetlib/toms. 

The source files (compressed tar-files) of two FORTRAN implementations of 
GRASP for dense QAPs by Resende, Pardalos and Li [156] and sparse QAPs 
by Pardalos, Pitsoulis and Resende [149] can be downloaded from Resende's 
web page at http://wvv.research.att.com/-mgcr I srcl index. html. 

The source file of a FORTRAN implementation of the simulated annealing 
algorithm of Burkard and Rendl [37] can be downloaded from the QAPLIB 
web page. 

The source file of a C++ implementation of the simulated annealing algo
rithm of Connolly [53], due to Taillard, can be downloaded from Taillard's 
web page at http://wvv.idsia.ch/-eric/codes .dirlsa...qap.c. 
Also a source file of a PASCAL implementation of Taillard's robust tabu 
search [171] can be found at Taillard's web page. 

Finally, the source file of a FORTRAN implementation of Li and Parda
los' generator for QAP instances with known optimal solution [122] can be 
obtained by sending an email to coapbath. ufl. edu with subject line send 
92006. 
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10 Polynomially Solvable Cases 

Since the QAP is NP-hard, restricted versions which can be solved in poly
nomial time are an interesting aspect of the problem. A basic question 
arising with respect to polynomially solvable versions is the identification 
of those versions and the investigation of the border line between hard and 
easy versions of the problem. There are two ways to approach this topic: 
first, find structural conditions to be imposed on the coefficient matrices of 
the QAP so as to obtain polynomially solvable versions, and secondly, inves
tigate other combinatorial optimization or graph-theoretical problems which 
can be formulated as QAPs, and embed the polynomially solvable versions 
of the former into special cases of the later. These two approaches yield two 
groups of restricted QAPs which are briefly reviewed in this section. For a 
detailed information on this topic the reader is referred to [41]. 

Most of the restricted versions of the QAP with specially structured 
matrices involve Monge matrices or other matrices having analogous prop
erties. A matrix A = (aij) is a Monge matrix iff the following inequalities 
are fulfilled for each 4-tuples of indices i, j, k, I, i < k, j < I: 

aij + akl :5 ail + akj, (Monge inequalities). 

A matrix A = (aij) is an Anti-Monge matrix iff the following inequalities 
are fulfilled for each 4-tuples of indices i,j, k, I, i < k, j < I: 

(Anti-Monge inequalities). 

A simple example of Monge and Anti-Monge matrices are the sum matrices; 
the entries of a sum matrix matrix A = (aij) are given as aij = ai + {3j, 
where (ai) and ({3j) are the generating row and column vector, respectively. 
A product matrix A is defined in an analogous way: its entries are given 
as aij = ai{3j, where (ai), ({3j) are the generating vectors. If the row 
generating vector (ai) and the column generating vectors ({3i) are sorted 
non-decreasingly, then the product matrix (ai{3j) is an Anti-Monge matrix. 

In contrast with the traveling salesman problem, it turns out that the 
QAP with both coefficient matrices being Monge or Anti-Monge is NP-hard, 
whereas the complexity of a QAP with one coefficient matrix being Monge 
and the other one being Anti-Monge is still open, see Burkard, Qela, Demi
denim, Metelski, and Woeginger [26] and Qela [41]. However, some polyno
mially solvable special cases can be obtained by imposing additional con
ditions on the coefficient matrices. These special cases involve very simple 
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matrices like product matrices or so-called chess-board matrices. A matrix 
A = (aij) is a chess-board matrix if its entries are given by aij = (-1)i+j. 

These QAPs can either be formulated as equivalent LAPs, or they are con
stant permutation QAPs (see [26, 41]), i.e., their optimal solution can be 
given before hand, without knowing the entries of their coefficient matrices. 
A few other versions of the QAP involving Monge and Anti-Monge matrices 
with additional structural properties can be solved by dynamic program
ming. 

Other restricted versions of the QAP involve matrices with a specific 
diagonal structure e.g. circulant and Toeplitz matrices. An n x n matrix 
A = (aij) is called a Toeplitz matrix if there exist numbers C-n+l, ... , C_l, 

CO, CI, ... , Cn-l such that aij = Cj-i, for all i,j. 
A matrix A is called a circulant matrix if it is a Toeplitz matrix and the 
generating numbers Ci fulfill the conditions Ci = Cn-i, for 0 ~ i ~ n - 1. In 
other words, a Toeplitz matrix has constant entries along lines parallel to 
the diagonal, whereas a circulant is given by its first row and the entries of 
the i-th row resembles the first row shifted by i-I places to the right. 

QAPs with one Anti-Monge (Monge) matrix and one Toeplitz 
(circulant) matrix. In general these versions of the QAP remain NP
hard unless additional conditions, e.g. monotonicity, are imposed on the 
coefficient matrices. A well studied problem is the so called Anti-Monge-
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Toeplitz QAP where the rows and columns of the Anti-Monge matrix are 
non-decreasing, investigated by Burkard, vela, Rote and Woeginger [28]. It 
has been shown that this problem is NP-hard and contains as a special case 
the so called turbine problem introduced by Mosewich [137] and formulated 
as a QAP by Laporte and Mercure [117]. In the turbine problem weare given 
a number of blades to be welded in regular spacing around the c)'linder of 
the turbine. Due to inaccuracies in the manufacturing process the weights of 
the blades differ slightly and consequently the gravity center of the system 
does not lie on the rotation axis of the cylinder, leading to instabilities. In 
an effort to make the system as stable as possible, it is desirable to locate 
the blades so as to minimize the distance between the center of gravity and 
the rotation axis. The mathematical formulation of this problem leads to 
an NP-hard Anti-Monge-Toeplitz QAP. (For more details and for a proof 
of NP-hardness see Burkard et al. [28].) It is probably interesting that 
the maximization version of this problem is polynomially solvable. Further 
polynomially solvable special cases of the Anti-Monge-Toeplitz QAP arise 
if additional constraints e.g. benevolence or k-benevolence are imposed on 
the Toeplitz matrix. These conditions are expressed in terms of properties 
of the generating function of these matrices, see Burkard et a!. [28]. 
The polynomially solvable QAPs with one Anti-Monge (Monge) matrix and 
the other one Toeplitz (circulant) matrix described above, are all constant 
permutation QAPs. The techniques used to prove this fact and to identify 
the optimal permutation is called reduction to extremal rays. This tech
nique exploits two facts: first, the involved matrix classes form cones, and 
secondly, the objective function of the QAP is linear with respect to each 
of the coefficient matrices. These two facts allow us to restrict the inves
tigations to instances of the QAP with 0-1 coefficient matrices which are 
extremal rays of the above mentioned cones. Such instances can then be 
handled by elementary means (exchange arguments, bounding techniques) 
more easily that the general given QAP. The identification of polynomially 
solvable special cases of the QAP which are not constant permutation QAPs 
and can be solved algorithmically remains a challenging open question. 

Another class of matrices similar to the Monge matrices are the Kalmanson 
matrices. A matrix A = (aij) is a Kalmanson matrix if it is symmetric and 
its elements satisfy the following inequalities for all indices i,j, k, I, i < j < 
k < l: 

For more information on Monge, Anti-Monge and Kalmanson matrices, and 
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their properties the reader is referred to the survey article of Burkard, Klinz 
and Rudolf [35]. The Koopmans-Beckmann QAP with one coefficient matrix 
being is a Kalmanson matrix and the other one a Toeplitz matrix, has been 
investigated by De'lneko and Woeginger [57]. The computational complexity 
of this problem is an open question, but analogously as in the case of the 
Anti-Monge-Toeplitz QAP, polynomially solvable versions of the problem 
are obtained by imposing additional constraints to the Toeplitz matrix. 

Further polynomially solvable cases arise as QAP formulations of other 
problems, like the linear arrangement problem, minimum feedback arc set 
problem, packing problems in graphs and subgraph isomorphism, see [26, 
41]. Polynomially solvable versions of these problems lead to polynomially 
solvable cases of the QAP. The coefficient matrices of these QAPs are the 
(weighted) adjacency matrices of the underlying graphs, and the special 
structure of these matrices is imposed by properties of these graphs. The 
methods used to solve these QAPs range from graph theoretical algorithms 
(in the case of the linear arrangement problem and the feedback arc set 
problem), to dynamic programming (in the case of subgraph isomorphism). 

11 QAP Instances with Known Optimal Solution 

[QAPs with known solution] Since the QAP is a very hard problem from a 
practical point of view, often heuristics are the only reasonable approach to 
solve it, and so far there exists no performance guarantees for any of the algo
rithms developed for the QAP. One possibility to evaluate the performance 
of heuristics and to compare different heuristics is given by QAP instances 
with known optimal solution. Heuristics are applied to these instances and 
the heuristic solution is compared to the optimal one known before hand. 
The instances with known optimal solution should ideally have two prop
erties: first, they should be representative in terms of their hardness, and 
secondly, they should not be especially easy for any of the heuristics. 

Two generators of QAP instances with known optimal solution have been 
proposed so far: Palubeckis' generator [144] and the generator proposed by 
Li and Pardalos [122]. 

The first method for generating QAP instances with a known opti
mal solution was proposed by Palubeckis [144] in 1988. The input of the 
Palubeckis' algorithm consists of the size n of the instance to be generated, 
the optimal solution (permutation) 11' of the output instance, two control 
parameters wand z, wh~re z < w, and the distance matrix A of an r x s 
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grid with rs = n. A contains rectilinear distances also called Manhattan 
distances, i.e., the distance aij between two given knots i, j lying in rows ri, 
rj and in columns Ci, Cj, respectively, is given by aij = Iri - rjl + ICi - cjl. 
The output of the algorithm is a second matrix B such that 7r is an op
timal solution of QAP(A, B). The idea is to start with a matrix B such 
that QAP(A, B) is a trivial instance with optimal solution 7r. Then B is 
transformed such that QAP(A, B) is not any more trivial, but 7r continues 
to be its optimal solution. 
Palubeckis starts with a constant matrix B = (bij) with bij = w. QAP(A, B) 
is a trivial problem because all permutations yield the same value of the 
objective function and thus, are optimal solutions. Hence, also the identity 
permutation id is an optimal solution of QAP(A, B). Then matrix B is 
iteratively transformed so that it is not a constant matrix any more and 
the identity permutation remains an optimal solution of QAP(A, B). In the 
last iteration the algorithm constructs an instance QAP(A', B) with optimal 
solution 7r with the help of QAP(A, B) with optimal solution id, by setting 
A' = (a1T(i)1T(j»)' The optimal value of QAP(A', B) equals w Ei=l Ej=l aij' 

Cyganski, Vaz and Virball [55] have observed that the QAP instances 
generated by Palubeckis' generator are "easy" in the sense that their optimal 
value can be computed in polynomial time by solving a linear program. 
(For an accessible proof of this result the reader is referred to [41].) Notice, 
however, that nothing is known about the computational complexity of QAP 
instances generated by Palubeckis' generator. We believe that finding an 
optimal solution for these QAPs is NP-hard, although the corresponding 
decision problem is polynomially solvable. 

Another generator of QAP instances with known solution has been pro
posed by Li and Pardalos [122]. As Palubeckis' generator, Li and Pardalos 
starts with a trivial instance QAP(A, B) with the identity permutation id 
as optimal solution and iteratively transforms A and B so that the resulting 
QAP instance still has the optimal solution id but is not trivial any more. 
The transformations are such that for all i, j, i', j', aij ~ ai' j' is equivalent 
to bij ~ b~j at the end of each iteration. 

If the coefficient matrices are considered as weighted adjacency matrices 
of graphs, each iteration transforms entries corresponding to some specific 
subgraph equipped with signs on the edges and hence called sign-subgraphs. 
The application of Li and Pardalos' algorithm with different sign-subgraphs 
yields different QAP generators. A number of generators involving different 
sign-subgraphs, e.g. subgraphs consisting of a single edge, signed triangles 
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and signed spanning trees have been tested. It is perhaps interesting and 
surprising that QAP instances generated by involving more complex sign
subgraphs are generally "easier" than those generated by involving sub
graphs consisting of single edges. Here a QAP instance is considered to be 
"easy", if most heuristics applied to it find a solution near to the optimal 
one in a relatively short time. Nothing is known about the complexity of 
QAP instances generated by the generator of Li and Pardalos, since the 
arguments used to analyze Palubeckis' generator do not apply in this case. 

12 Asymptotic Behavior 

The QAP shows an interesting asymptotic behavior: under certain prob
abilistic conditions on the coefficient matrices the QAP, the ratio between 
its "best" and "worst" values of the objective function approaches 1, as the 
size of the problem approaches infinity. This asymptotic behavior suggests 
that the relative error of every heuristic method vanishes as the size of the 
problem tends to infinity, i.e., every heuristic finds almost always an almost 
optimal solution when applied to QAP instances which are large enough. In 
other words the QAP becomes in some sense trivial as the size of the problem 
tends to infinity. Burkard and Fincke [32] identify a common combinatorial 
property of a number of problems which, under natural probabilistic condi
tions on the problem data, behave as described above. This property seems 
to be also the key for the specific asymptotic behavior of the QAP. 

In an early work Burkard and Fincke [31] investigate the relative dif
ference between the worst and the best value of the objective function for 
Koopmans-Beckmann QAPs. They first consider the case where the co
efficient matrix D is the matrix of pairwise distances of points chosen in
dependently and uniformly from the unit square in the plane. Then the 
general case where entries of the flow and distance matrices F and D are 
independent random variables taken from a uniform distribution on [0, 1] is 
considered. In both cases it is shown that the relative difference mentioned 
above approaches 0 with probability tending to 1 as the size of the problem 
tends to infinity. 
Later Burkard and Fincke [32] consider the ratio between the objective func
tion values corresponding to an optimal (or best) and a worst solution of a 
generic combinatorial optimization problem described below. 
Consider a sequence Pn , n E IN, of combinatorial optimization (minimiza
tion) problems with sum objective function as described in Section 3. Let 
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en and:Fn be the ground set and the set of feasible solutions of problem Pn, 
respectively. Moreover, let en: en -+ 1R+ and f::F -+ 1R+ be the nonnegative 
cost function and the objective function for problem Pn, respectively, For 
n E 1N, an optimal solution Xopt minimizes the objective function, whereas 
a worst solution Xwor E :Fn maximizes the objective function and is defined 
as follows: 

f{Xwor) = 2: en{x) = maxf{X) = max 2: en{x). 
zexwor Xe~ Xe~ zex 

It is shown in [32] that the behavior ofthe ratio f{Xopt )/ f{Xwor) is strongly 
related to the ratio In l:Fnl/IXnl between the cardinality of the set of feasible 
solutions :Fn and the cardinality of an arbitrary feasible solution X n , under 
the assumption that all feasible solutions have the same cardinality. 

Theorem 12.1 (Burkard and Fincke [32], 1985) 
Let Pn be a sequence of combinatorial minimization problems with sum 

objective function as described above. Assume that the following conditions 
are fulfilled: 

(BF1) For all X E :Fn , IXI = Ix(n)l, where x(n) is some feasible solution 
in :Fn . 

(BF2) The costs en{x), x E X, X E :Fn , n E 1N, are random variables 
identically distributed on [0,1]. The expected value E = E{en{x)) and 
the variance u2 = u2(en(x» > 0 oj the common distribution are finite. 
Moreover, for all X E :Fn , n E 1N, the variables en{x), x E X, are 
independently distributed. 

(BFS) l:Fnl and Ix(n)1 tend to infinity as n tends to infinity and moreover, 

lim .\oIX(n)I-In l:Fnl-+ +00 
n~oo 

where .\0 is defined by .\0 := {fOU/{fO + 2(2))2 and fO fulfills 

o < fO < (12 and 0 < ~ + fO :5 1 + f, (59) 
- fO 

for a given f > O. 

Then, as n -+ 00 
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The combinatorial condition represented by the limit in (BF3) says that 
the cardinality of the feasible solutions is large enough with respect to the 
cardinality of the set of feasible solutions. Namely, the result of the theorem 
is true if the following equality holds: 

lim In IFni = 0 
n-+oo Ix(n) I 

The other conditions of Theorem 12.1 are natural probabilistic require
ments on the coefficients of the problem. Theorem 12.1 states that for each 
€ > 0, the ratio between the best and the worst value of the objective func
tion lies on (1 - €, 1 + €), with probability tending to 1, as the "size" of the 
problem approaches infinity. Thus, we have convergence with probability. 
Under one additional natural (combinatorial) assumption (condition (83) of 
the theorem below), 8zpankowski strengthens this result and improves the 
range of the convergence to almost surely. In the almost sure convergence 
the probability that the above mentioned ratio tends to 1 is equal to 1. (De
tailed explanations on the probabilistic notions used in every text book on 
probability theory.) 

Theorem 12.2 (8zpankowski [170], 1995) 
Let Pn be a sequence of combinatorial minimization problems with sum ob
jective function as above. Assume that the following conditions are fulfilled: 

(SI) For all X E Fn , IXI = Ix(n)l, where x(n) is some feasible solution in 

Fn· 

(82) The costs en(x), x E X, X E Fn , n E IN, are random variables 
identically and independently distributed on [0,1]. The expected value 
E = E(en(x»), the variance, and the third moment of the common 
distribution are finite. 

(S3) The worst values of the objective junction, max E en(x), form a 
XEFn xEX 

nondecreasing sequence for increasing n. 

(S4) IFni and Ix(n)1 tend to infinity as n tends to infinity and moreover, 
In IFni = o(lx(n)l). 

Then, the following equalities hold almost surely: 
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Theorems 12.1 and 12.2 can be applied to the QAP. The reason is that 
the QAP fulfills the combinatorial condition (84) in Theorem 12.2 (and 
therefore, also condition (BF3) in Theorem 12.1). Thus, we immediately 
get the following corollary: 

Corollary 12.3 Consider a sequence of problems QAP(A (n), B(n») for n E 

IN, with n x n coefficient matrices A(n) = (a~j») and B = (b~j»). Assume 

that a~j) and b~j), n E IN, 1 :5 i, j :5 n, are independently distributed random 
variables on [0, M], where M is a positive constant. Moreover, assume that 
entries a~j), n E IN, 1 :5 i, j :5 n, have the same distribution, and entries 

b~j), n E IN, 1 :5 i,j :5 n, have also the same distribution (which does not 

necessarily coincide with that of a~j)}. Furthermore, assume that these vari
ables have finite expected values, variances and third moments. 
Let 1I"i:~ and 1I"t~ denote an optimal and a worst solution of QAP(A(n) , B(n»), 
respectively, i.e., 

Z (A(n) B(n) 1I"(n») = min Z (A(n) B(n) 11") , ,- ~~ " 

and 
Z (A(n) B(n) 1I"(n») = max Z (A(n) B(n) 11") 

, 'wor 'lrESn " 

Then the following equality holds almost surely: 

Z (A (n) B(n) 1I"(n») 
lim "opt =1 

n-+oo Z (A(n) , B(n) , 1I"~J,.) 

The above result suggests that the value of the objective function of the 
problem QAP(A(n),B(n») (corresponding to an arbitrary feasible solution) 
gets somehow close to its expected value n2 E(A)E(B), as the size of the 

problem increases, where E(A) and E(B) are the expected values of a~j) and 

b~j), n E IN, 1 :5 i,j :5 n, respectively. Frenk, Houweninge, and Rinnooy 
Kan [69] and Rhee [159, 160] provide different analytical evaluations for this 
"getting close", by imposing different probabilistic conditions on the data. 
The following theorem states two important results proved in [69] and [160]. 
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Theorem 12.4 (Frenk et al. [69), 1986, Rhee [160], 1991) 
Consider the sequence of QAP(A(n),B(n), n E IN, as in Corollary 12.3. 
Assume that the following conditions are fulfilled: 

(C1) a~j), b~j), n E IN, 1 :$ i,j :$ n, are random variables independently 
distributed on [0, M]. 

(C2) a~j), n E IN, 1 :$ i,j :$ n, have the same distribution on [0, M]. b~j), 
n E IN, 1 :$ i, j :$ n, have also the same distribution on [0, M]. 

Let E(A), E(B) be the expected values of the variables a~j) and b~j), respec
tively. Then, there exists a constant Kl (which does not depend on nY, such 
that the following inequality holds almost surely, for 7r E Sn, n E IN 

. .,fii Z(A(n), B(n), 7r) 
h~1!P y'logn n2E(A)E(B) -1 :$ Kl 

Moreover, let Y be a random variable defined by 

Y = Z (A(n) , B(n), 7r~:n - n2 E(A)E(B) , 

where 7r~:/ is an optimal solution of QAP(A(n) , B(n). Then there exists 
another constant K2, also independent of the size of the problem, such that 

1 
K2 n3/ 2(logn)1/2 :$ E(Y) :$ K2n3/2(logn)1/2 

P{IY - E(Y)I ~ t}:<:; 2exp ( 4n2 I1AllrIlBII;,) 
for each t ;::: 0, where E(Y) denotes the expected value of variable Y and 
IIAlloo ~IBlloo) is the so-called row sum norm of matrix A (B) defined by 
IIAlloo = maxl~i~n Ej=llaijl· 

These results on the asymptotic behavior of the QAP have been ex
ploited by Dyer, Frieze, and McDiarmid [60] to analyze the performance 
of branch and bound algorithms for QAPs with coefficients generated ran
domly as described above. Dyer et al. have shown that for such QAPs the 
optimal value of the continuous relaxation of Frieze and Yadegar's lineariza
tion (19)-(26) is in O(n) with probability tending to 1 as the size n of the 
QAP tends to infinity. Hence the gap between the optimal value of this 
continuous relaxation and the optimal value of the QAP grows like O(n) 
with probability tending to 1 as n tends to infinity. This result leads to the 
following theorem. 
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Theorem 12.5 (Dyer, Frieze, and McDiarmid [60], 1986) 
Consider any branch and bound algorithm lor solving a QAP with ran
domly generated coefficients as in Corollary 12.9, that uses single assignment 
branching and employs a bound obtained by solving the continuous relaxation 
01 the linearization {19}-{26}. The number 01 branched nodes explored is at 
least n(l-o(l»n/4 with probability tending to 1 as the size n 01 the QAP tends 
to infinity. 

13 Related Problems 

One possibility to obtain generalizations of the QAP is to consider objec
tive functions of higher degree and obtain in this way cubic, biquadratic 
and generally N -adic assignment problems (see e.g. [118]). For the cubic 
assignment problem for example, we have n6 cost coefficients Cijklmp where 
i,j, k, " m,p = 1, ... , n, and the problem is given as follows: 

n n n 

min L L L CijklmpXijXklXmp 
i,j=l k,l=l m,p=l 

s.t (Xij) e Xn • 

As it is noted in [118], we can construct an n3 x n3 matrix S containing 
the cost coefficients, such that the cubic assignment problem is equivalent 
to the LAP 

min (S,Jr) 
s.t. Jr = X ®X ®X, 

XeXn • 

In an analogous way the LAP can be extended to any N -adic assignment 
problem, by considering the solution matrix Jr to be the Kronecker Nth 

power of a permutation matrix in X n. 

Another modification of the objective function which yields a problem 
related tothe QAP, the bottleneck quadratic assignment problem (BQAP), is 
the substitution of the sum by a max operation. The first occurrence of the 
BQAP is due to Steinberg [168] and arises as an application in backboard 
wiring while trying to minimize the maximum length of the involved wires 
(see also Section 1). 

In this section several of generalizations and problems related to the QAP 
are presented, for which real applications have been found that initiated an 
interest in analyzing them and proposing solution techniques. 
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13.1 The Bottleneck QAP 

In the bottleneck quadratic assignment problem (BQAP) of size n we are 
given an n x n flow matrix F and an n x n distance matrix D, and wish to 
find a permutation 4> E Sn which minimizes the objective function 

max{fijdq,(i)q,(j): 1 ~ i,j ~ n}. 

A more general BQAP analogous to the QAP in (2) is obtained if the coef
ficients of the problem are of the form Cijkl' 1 ~ i,j, k, 1 ~ n: 

min ~~ Cijq,(i)q,(j). 
q,ESn l$',J$n 

Besides the application in backboard wiring mentioned above, the BQAP 
has many other applications. Basically, all QAP applications give raise to 
applications of the BQAP because it often makes sense to minimize the 
largest cost instead of the overall cost incurred by some decision. A well 
studied problem in graph theory which can be modeled as a BQAP is the 
bandwidth problem. In the bandwidth problem we are given an undirected 
graph G = (V, E) with vertex set V and edge set E, and seek a labeling 
of the vertices of G by the numbers 1,2, ... , n, where IVI = n, such that 
the minimum absolute value of differences of labels of vertices which are 
connected by an edge is minimized. In other words, we seek a labeling 
of vertices such that the maximum distance of I-entries of the resulting 
adjacency matrix from the diagonal is minimized, i.e., the bandwidth of the 
adjacency matrix is minimized. It is easy to see that this problem can be 
modeled as a special BQAP with flow matrix equal to the adjacency matrix 
of G for some arbitrary labeling of vertices, and distance matrix D = (Ii - j I). 

The BQAP is NP-hard since it contains the bottleneck TSP as a special case. 
(This is analogous to the fact that the QAP contains the TSP as a special 
case, as it is shown in Section 13.4). Some enumeration algorithms to solve 
BQAP to optimality have been proposed by Burkard [22]. These algorithms 
employ a Gilmore-Lawler-like bound for the BQAP which involves in turn 
the solution of bottleneck linear assignment problems. The algorithm for 
the general BQAP involves also a threshold procedure useful to reduce to 0 
as many coefficients as possible. 

Burkard and Fincke [30] investigated the asymptotic behavior of the BQAP 
and proved results analogous to those obtained for the QAP: If the coeffi
cients are independent random variables taken from a uniform distribution 
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on [0,1], then the relative difference between the worst and the best value 
of the objective function approaches 0 with probability tending to 0 as the 
size of the problem approaches infinity. 
The BQAP and the QAP are special cases of a more general quadratic 
assignment problem which can be called the algebraic QAP (in analogy 
to the algebraic linear assignment problem (LAP) introduced by Burkard, 
Hahn, and Zimmermann [33]). If (H, *,~) is a totally ordered commutative 
semigroup with composition * and order relation ~, the algebraic QAP with 
cost coefficients Cijkl E H is formulated as 

min CU4>(l)4>(l) * C124>(l)4>(2) * ... * Cln4>(l)4>(n) * ... * Cnn4>(n)4>(n) • 4>eSn 

The study of the bottleneck QAP and more generally the algebraic QAP 
was the starting point for the investigation of a number of algebraic combi
natorial optimization problem with coefficients taken from linearly ordered 
semimodules e.g. linear assignment and transportation problems, flow prob
lems etc. The reader is referred to Burkard and Zimmermann [38] for a 
detailed discussion on this topic. 

13.2 The BiQuadratic Assignment Problem 

A generalization of the QAP is the BiQuadratic Assignment Problem, de
noted BiQAP, which is essentially a quartic assignment problem with cost 
coefficients formed by the products of two four-dimensional arrays. More 
specifically, consider two n4 x n4 arrays F = (fijkl) and D = (dmpst ). The 
BiQAP can then be stated as: 

n n n n 

min L L L L fijkldmpstXimXjpXksXlt 
i,j=l k,l=l m,p=l B,t=l 

n 
s.t. LXij = 1, j = 1,2, ... ,n, 

i=l 
n 

LXij = 1, i = 1,2, ... ,n, 
j=l 

Xij E {0,1}, i,j = 1,2, ... ,n. 

The major application of the BiQAP arises in Very Large Scale Inte
grated (VLSI) circuit design. The majority of VLSI circuits are sequential 
circuits, and their design process consists of two steps: first, translate the 
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circuit specifications into a state transition table by modeling the system 
using finite state machines, and secondly, try to find an encoding of the 
states such that the actual implementation is of minimum size. A detailed 
description of the mathematical modeling of the VLSI problem to a BiQAP 
is given by Burkard, Qela and Klinz [27]. Equivalently, the BiQAP can be 
stated as: 

n n n n 

r~n L L L L fijkldt/J(i)t/J(j)t/J(k)t/J(l), 
E n i=l j=l k=ll=l 

where Sn denotes the set of all permutations of N = {1, 2, ... ,n}. All 
different formulations for the QAP can be extended to the BiQAP, as well 
as most of the linearizations that have appeared for the QAP. 

Burkard et al. [27] compute lower bounds for the BiQAP derived from 
lower bounds of the QAP. The computational results showed that these 
bounds are weak and deteriorate as the dimension of the problem increases. 
This observation suggests that branch and bound methods will only be ef
fective on very small instances. For larger instances, efficient heuristics, that 
find good-quality approximate solutions, are needed. Several heuristics for 
the BiQAP have been developed by Burkard and Qela [25], in particular de
terministic improvement methods and variants of simulated annealing and 
tabu search algorithms. Computational experiments on test problems of size 
up to n = 32, with known optimal solutions (a test problem generator is 
presented in [27]), suggest that one version of simulated annealing is best 
among those tested. The GRASP heuristic has also been applied to the 
BiQAP by Mavridou, Pardalos, Pitsoulis and Resende [132]' and produced 
the optimal solution for all the test problems generated in [27]. 

13.3 The Quadratic Semi-Assignment Problem 

In the quadratic semi-assignment problem (QSAP) we are given again two 
coefficient matrices, a flow matrix F = (lij) and a distance matrix D = (dij), 

but in this case we have n "objects" and m "locations", n > m. We want to 
assing all objects to locations and at least one object to each location so as 
to minimize the overall distance covered by the flow of materials (or people) 
moving between different objects. Thus the objective function is the same 
as that of the QAP, and the only different concerns the feasible solutions 
which are not one-to-one mappings (or bijections) between the set of objects 
and locations but arbitrary functions mapping the set of objects to the set 
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of locations. Thus SQAP can be formulated as follows: 

min 

s.t. 

n n n n n 

E E E E fijdklXileXjl + E bijXij 
i=lj=lk=ll=l iJ=l 
n 

EXij = 1, i = 1,2, ... ,n, 
j=l 

Xij E {O, I}, i, j = 1,2, ... ,n. 

(60) 

(61) 

(62) 

SQAP unifies some interesting combinatorial optimization problems like 
clustering, m-coloring. In a clustering problem we are given n objects and 
a dissimilarity matrix F = (lij). The goal is to find a partition of these 
objects into m classes so as to minimize the sum of dissimilarities of ob
jects belonging to the same class. Obviously this problem is a QSAP with 
coefficient matrices F and D, where D is an m x m identity matrix. In 
the m-coloring problem we are given a graph with n vertices and want to 
check whether its vertices can be colored by m different colors such that 
~ecb. two vertices which are joined by an edge receive different colors. This 
pi 'JiJ:;:>m can be modeled as a SQAP with F equal to the adjacency matrix 
of tJ~: given graph and D the m x m identity matrix. The m-coloring has 
an fillswer "yes" if and only if the above SQAP has optimal value equal to 
O. Practical applications of the SQAP include distributed computing [169] 
and scheduling [45]. 

SQAP was originally introduced by Greenberg [85]. As pointed out by 
Malucelli [128] this problem is NP-hard. Milis and Magirou [134] propose a 
Lagrangean relaxation algorithm for this problem, and show that similarly 
as for for the QAP, it is very hard to provide optimal solutions even for 
SQAPs of small size. Lower bounds for the SQAP have been provided by 
Malucelli and Pretolani [129], and polynomially solvable special cases have 
been discussed by Malucelli [128]. 

13.4 Other Problems Which Can Be Formulated as QAPs 

There are a number of other well known combinatorial optimization prob
lems which can be formulated as QAPs with specific coefficient matrices. Of 
course, since QAP is not a well tractable problem, it does not make sense 
to use algorithms developed for the QAP to solve these other problems. All 
known solution methods for the QAP are far inferior compared to any of 
the specialized algorithms developed for solving these problems. However, 
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the relationship between the QAP and these problems might be of benefit 
for a better understanding of the QAP and its inherent complexity. 

Graph Partitioning and Maximum Clique 

Two well studied NP-hard combinatorial optimization problems which are 
special cases of the QAP, are the graph partitioning problem (GPP) and the 
maximum clique problem (MCP). In GP we are given an (edge) weighted 
graph G = (V, E) with n vertices and a number k which divides n. We 
want to partition the set V into k sets of equal cardinality such that the 
total weight of the edges cut by the partition is minimized. This problem 
can be formulated as a QAP with distance matrix D equal to the weighted 
adjacency matrix of G, and flow matrix F obtained by multiplying with -1 
the adjacency matrix of the union of k disjoint complete subgraphs with 
njk vertices each. For more informations on graph partitioning problems 
the reader is referred to Lengauer [120]. 

In the maximum clique problem we are again given a graph G = (V, E) 
with n vertices and wish to find the maximum k :5 n such that there exists 
a subset VI ~ V which induces a clique in G, i.e. all vertices of VI are 
connected by edges of G. In this case consider a QAP with distance matrix 
D equal to the adjacency matrix of G and flow matrix F given as adjacency 
matrix of a graph consisting of a clique of size k and n - k isolated vertices, 
multiplied by -1. A clique of size k in G exists only if the optimal value 
of the corresponding QAP is _k2• For a review on the maximum clique 
problem the reader is referred to [151]. 

The Traveling Salesman Problem 

In the traveling salesman problem (TSP) we are given a set of cities and 
the pairwise distances between them, and our task is to find a tour which 
visits each city exactly once and has minimal length. Let the set of integers 
N = {I, 2, ... , n} represent the n cities and let the symmetric n x n matrix 
D = (dij) represent the distances between the cities, where dij is the distance 
between city i and city j (dii = 0 Vi = 1,2, ... , n). The TSP can be 
formulated as 

n-l 

min L dt/>(i)t/>(i+1) + dt/>(n)t/>(l) (63) 
i=l 

s.t. if> E Sn' 
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The TSP can be formulated as a QAP with the given distance matrix and a 
flow matrix F being equal to the adjacency matrix of a cycle on n vertices. 

The traveling salesman problem (TSP) is a notorious NP-hard combina
torial optimization problem. Among the abounding literature on the TSP we 
select the book edited by Lawler, Lenstra, Rinnooy Kan and Schmoys [119] 
as a comprehensive reference. 

The linear arrangement problem 

In the linear arrangement problem we are given a graph G = (V, E) and wish 
to place its vertices at the points 1, 2, ... , n on the line so as to minimize the 
sum of pairwise distances between vertices of G which are joined by some 
edge. If we consider the more general version of weighted graphs than we 
obtain the backboard wiring problem (see Section 1). This is an NP-hard 
problem as mentioned by Garey and Johnson [73]. It can be formulated as 
a QAP with distance matrix the (weighted) adjacency matrix of the given 
graph, and flow matrix F = (fij) given by lij = Ii - jl, for all i,j. 

The minimum weight feedback arc set problem 

In the minimum weight feedback arc set problem (FASP) a weighted digraph 
G = (V, E) with vertex set V and arc set E is given. The goal is to remove 
a set of arcs from E with minimum overall weight, such that all directed 
cycles, so-called dicycles, in G are destroyed and an acyclic directed sub
graph remains. Clearly, the minimum weight feedback arc set problem is 
equivalent to the problem of finding an acyclic subgraph of G with maxi
mum weight. The unweighted version of the FASP, that is a FASP where 
the edge weights of the underlying digraph equal 0 or 1, is called the acyclic 
subdigraph problem and is treated extensively by Junger [99]. 
An interesting application of the FASP is the so-called triangulation of input
output tables which arises along with input-output analysis in economics 
used to forecast the development of industries, see Leontief [121]. For de
tails and a concrete description of the application of triangulation results in 
economics the reader is referred to Conrad [54] and Reinelt [153]. 

Since the vertices of an acyclic subdigraph can be labeled topologically, 
i.e. such that in each arc the label of its head is larger than that of its tail, 
the FASP can be formulated as a QAP. The distance matrix of the QAP is 
the weighted adjacency matrix of G and the flow matrix F = (fij) is a lower 
triangular matrix, i.e., hj = -1 if i ::; j and hj = 0, otherwise. 
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The FASP is well known to be NP-hard (see Karp [107], Garey and 
Johnson [73]). 

Packing problems in graphs 

Another well known NP-hard problem which can be formulated as a QAP 
is the graph packing problem cf. Bollobas [18]. In a graph packing problem 
we are given graphs GI = (VI,Ed, G2 = (V2,E2) with n vertices each and 
edge sets EI and E2. A permutation 7r of {I, 2, ... ,n} is called a packing of 
G2 into GI , if (i,j) EEl implies (7r(i), 7r(j)) ¢ E2, for 1 ~ i,j ~ n. In other 
words, a packing of G2 into GI is an embedding of the vertices of G2 into 
the vertices of G I such that no pair of edges coincide. The graph packing 
problem consists of finding a packing of G2 into G I, if one exists, or proving 
that no packing exists. 

The graph packing problem can be formulated as a QAP with distance 
matrix equal to the adjacency matrix of G2 and flow matrix equal to the 
adjacency matrix of GI . A packing of G2 into GI exists if and only if the 
optimal value of this QAP is equal to O. In the positive case the optimal 
solution of the QAP determines a packing. 
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