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Abstract

We consider a general statistical estimation prob-
lem wherein binary labels across different obser-
vations are not independent conditioned on their
feature vectors, but dependent, capturing settings
where e.g. these observations are collected on a
spatial domain, a temporal domain, or a social
network, which induce dependencies. We model
these dependencies in the language of Markov
Random Fields and, importantly, allow these de-
pendencies to be substantial, i.e. do not assume
that the Markov Random Field capturing these
dependencies is in high temperature. As our main
contribution we provide algorithms and statisti-
cally efficient estimation rates for this model, giv-
ing several instantiations of our bounds in logistic
regression, sparse logistic regression, and neu-
ral network settings with dependent data. Our
estimation guarantees follow from novel results
for estimating the parameters (i.e. external fields
and interaction strengths) of Ising models from
a single sample. We evaluate our estimation ap-
proach on real networked data, showing that it
outperforms standard regression approaches that
ignore dependencies, across three text classifica-
tion datasets: Cora, Citeseer and Pubmed.

1. Introduction
The standard supervised learning framework assumes access
to a collection (xi, yi)

n
i=1 of observations, where the labels

y1, . . . , yn ∈ Y are independent conditioning on the feature
vectors x1, . . . , xn ∈ X . Further, it is common to assume
that each label yi is independent of {xj}j 6=i conditioning
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on xi, i.e. that

P[y1...n | x1...n] =

n∏
i=1

P[yi | xi],

and, moreover, that the observations share the same gener-
ative process P[y | x] sampling a label conditioning on a
feature vector. Under these assumptions, a common goal is
to identify a model Pθ[y | x] from some parametric class,
which approximates the true generative process P[y | x] in
some precise sense, or, under realizability assumptions, to
estimate the parameter θ of the true generative process. A
special case of this problem is the familiar logistic regres-
sion problem, where each label lies in Y = {±1}, each
feature vector lies in Rd and for some θ ∈ Rd it is assumed
that

P[y1...n | x1...n] =

n∏
i=1

1

1 + exp(−2(θ>xi)yi)
. (1)

The standard assumptions outlined above are, however, too
strong and almost never truly hold in practice. Indeed, they
become especially prominent when it comes to observations
collected in a temporal domain, a spatial domain or a social
network, which naturally induce dependencies among the
observations. Such dependencies could arise from physical
constraints, causal relationships among observations, or
peer effects in a social network. They have been studied
extensively in many practical fields, and from a theoretical
standpoint in econometrics and statistical learning theory.
See section 1.2 for further discussion.

In this paper we study such dependencies conforming to the
following general class of models:

P[y1...n | x1...n] ∝ exp(−β ·H(~y)) ·
n∏
i=1

exp(fθ(xi, yi))

≡ exp

(
−β ·H(~y) +

n∑
i=1

fθ(xi, yi)

)
, (2)

where fθ is an (unknown) function from some parametric
class, H is a (known) function that captures the dependency
structure and β is an (unknown) parameter that captures
the strengths of dependencies. It should be appreciated
that Model (2) is more general than the standard supervised
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learning problem without dependencies, which results from
setting β = 0. Once we allow β 6= 0, Model (2) becomes
more expressive in capturing the dependencies among the
observations, which become stronger with higher values of
β. The challenging estimation problem that arises, which
motivates our work, is whether the model parameters θ
and/or β can be identified, and at what rates, in the presence
of the intricate dependencies arising from this model. Im-
portantly, while the labels are intricately dependent, we do
not have access to multiple independent samples from the
conditional distribution (2), but a single sample from that
distribution!

We focus here on a special case of Model (2) wherein the
labels are binary and the function H is pairwise separable,
studying models of the following form:

Pθ,β [y1...n | x1...n] =
exp(βyTAy)

∏n
i=1 exp(yifθ(xi))

Zθ,β

≡ 1

Zθ,β
exp

(
βyTAy +

∑
i

yifθ(xi)

)
, (3)

where fθ is an unknown function from some parametric
class F = {fθ : X → R | θ ∈ Θ}, A is a known, symmet-
ric interaction matrix with zeros on the diagonal, β is an
unknown parameter, and Zθ,β is the normalizing constant.
In other words, under (3), the labels y1, . . . , yn are sampled
from an n-variable Ising model with external field fθ(xi)
on variable i, interaction strength Aij ≡ Aji between vari-
ables i and j, and inverse temperature β. Notice that Aij
encourages yi and yj to have the same or opposite values,
depending on its sign, however, this “local encouragement”
can be overwritten by indirect interactions through other
values of yk. Such indirect interactions make this model
rich in spite of the simple form of H(y) = y>Ay and as a
consequence, it has found profound applications in a range
of disciplines, including Statistical Physics, Computer Vi-
sion, Computational Biology, and the Social Sciences; see
e.g. (Geman & Graffigne, 1986; Ellison, 1993; Felsenstein,
2004; Chatterjee, 2005; Daskalakis et al., 2011; 2017).

It is clear that Model (3) generalizes (1), which can be
obtained by setting β = 0, X = Rd, and fθ(x) = θTx.
It also generalizes the model studied by Daskalakis et al.
(2019), which results from setting fθ(x) = θTx and
0 ≤ β ≤ O(1), as well as the model studied by Ghosal
& Mukherjee (2018); Bhattacharya & Mukherjee (2018);
Chatterjee (2007), which results from taking fθ(x) to be a
constant function.

We study under what conditions on the function class F , the
interaction matrix A, and the feature vectors (xi)

n
i=1, and

at what rates can the parameters θ and/or β of Model (3)
be estimated given a collection (xi, yi)

n
i=1 of observations,

where the labels y1, . . . , yn are sampled from (3) condition-

ing on the feature vectors x1, . . . , xn. As explained earlier,
in comparison to the standard supervised learning setting
without dependencies, the statistical challenge that arises
here is that, while the labels y1, . . . , yn are intricately depen-
dent, we do not have access to multiple independent samples
from the conditional distribution (3), but a single sample
from that distribution. Thus, it is not clear how to extract
good estimates of the parameters from our observations and
where to find statistical power to bound the error of these
estimates from the true parameters. As a consequence, only
limited theoretical results in this area are known.

1.1. Overview of Results

We provide a general algorithmic approach which yields
efficient statistical rates for the estimation of θ and/or β of
Model (3) for general function classes F , in terms of the
metric entropy of F . We also prove information theoretic
lower bounds, which combined with our upper bounds char-
acterize the min-max estimation rate of the problem up to a
certain factor, discussed below. Before stating our general
result as Theorem 6, we present some corollaries of this the-
orem in more familiar settings. All the theorems that follow
are also presented and proved in more detail in the Supple-
mentary Material. Finally, in all statements below we use
the following notation and assumptions, which summarize
the already described setting.

Assumptions 1 (and useful Notation). We are given obser-
vations (xi, yi)

n
i=1, where y1, . . . , yn are sampled from (3)

conditioning on x1, . . . , xn, using some unknown param-
eters θ∗ ∈ Θ and β∗ ∈ [−B,B], and some known A,
normalized such that ‖A‖∞ = 1. We further assume that
|fθ(xi)| ≤M , for all i and θ ∈ Θ. In all statements below,
θ̂ and β̂ refer to the estimates produced by the algorithm de-
scribed in Section 2, i.e. the Maximum Pseudo-Likelihood
Estimator (MPLE). Moreover, we let . denote an inequal-
ity up to factors that are singly-exponential in M and B, a
necessary dependence on those parameters when . is used,
and are independent of all other parameters. In particular,
when M,B = O(1), . denotes inequality up to a constant.

Under the assumptions on our observations, and notation
introduced above, we consider two settings to illustrate our
general result (Theorem 6), namely linear classes (Setting 1)
and neural network classes (Setting 2).

Setting 1 (Linear Classes). Make Assumptions 1, suppose
xi ∈ Rd and ‖xi‖2 ≤ M , for all i, and suppose that fθ is
linear, i.e. fθ(xi) = x>i θ, for some θ ∈ Rd and ‖θ‖2 ≤ 1.
Denote byX the matrix whose rows are x1, . . . , xn and by κ
the minimum eigenvalue of X

TX
n , or its minimum restricted

eigenvalue in the sparse setting of Theorem 2. We suppress
from our bounds of Theorems 1 and 2 a factor of 1/κ.

Theorem 1 (Linear Class). Suppose Setting 1. Then, with
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probability ≥ 1− δ,

‖θ̂ − θ∗‖22 + |β̂ − β∗|2 .
d log n+ log(1/δ)

‖A‖2F
.

Theorem 2 (Sparse Linear Class). Suppose Setting 1 and
additionally that ‖θ‖1 ≤ s. Then, w.pr. ≥ 1− δ,

‖θ̂ − θ∗‖22 + |β̂ − β∗|2 .
(n2s log(d))1/3 + log(1/δ)

‖A‖2F
.

Both bounds above are obtained by minimizing a convex
function over a convex domain, which can be performed in
polynomial time. We note that the bound of Theorem 1 gen-
eralizes the main result of Daskalakis et al. (2019), which
makes the additional assumption that ‖A‖F = Ω(

√
n). We

need no such assumption and our bound gracefully degrades
as ‖A‖F decreases. Theorem 2 extends these results to the
sparse linear model, for which no prior results exist. Note
that our bound is non-vacuous as long as ‖A‖F = Ω(n1/3),
which is a reasonable expectation, given that A is n × n.
Moreover, it is possible to remove the appearance of n2

from the bound of this theorem, if our model class satisfies
|θ|0 ≤ s. Finally, we note that the factor 1/‖A‖2F which
appears in our error bounds is tight, as per the following.

Theorem 3 (Lower bound). For any n and r ∈ [1, n] there
exists an instance of a d = 1-dimensional linear class that
satisfies the assumptions of Theorems 1 and 2 and further
‖A‖2F = r, such that any estimator (θ′, β′) satisfies with
probability ≥ 0.49,

|θ′ − θ∗|2 &
1

‖A‖2F
, |β′ − β∗|2 &

1

‖A‖2F
.

While Theorem 3 shows that a dependence in 1
‖A‖2F

is un-
avoidable in the worst case, under favorable assumptions we
can remove such dependence as per the following theorem.

Theorem 4 (Linear Class, Random Features). In the same
setting as Theorem 1, remove all assumptions involving the
feature vectors and suppose instead that x1, . . . , xn

i.i.d.∼
N (0, Id). Then, with probability ≥ 1− δ,

‖θ̂−θ∗‖22 . ξ(n, 1/δ)
d+ log(1/δ)

n

(
1 +

d+ log(1/δ)

‖A‖2F /‖A‖22

)
,

where ξ(n, 1
δ ) is linear in log log( 1

δ ) and sub-polynomial
(i.e. asymptotically smaller than any polynomial) in n.

Noticing that ‖A‖2F /‖A‖22 ≥ 1, Theorem 4 shows that no
lower bound on ‖A‖F is necessary at all, if we are only
looking to estimate θ∗, which answers a main problem
left open by Daskalakis et al. (2019). Moreover, when
‖A‖2F /‖A‖22 ≥ d, which is a reasonable expectation in our

setting since ‖A‖2 ≤ 1 and A is n × n, our bound here
essentially matches the estimation rates known for the fa-
miliar logistic regression problem, which corresponds to the
case β = 0, even though we make no such assumption, and
hence our labels are dependent.

Beyond linear and sparse linear function classes, our main
result (Theorem 6) provides estimation rates for neural net-
work regression, as in the following setting.
Setting 2 (Neural Networks). Make Assumptions 1 and
suppose that the function fθ in (3) is a neural network pa-
rameterized by θ. We adopt the setting and terminology
of (Bartlett et al., 2017). In particular, we assume that the
neural network takes the form:

fθ(x) = σL(WLσL−1(WL−1 · · ·σ1(W1x) · · · )), (4)

where the depthL of the network is fixed, σ1, . . . , σL : R→
R are some fixed non-linearities, and W1, . . . ,WL are (un-
known) weight matrices. In particular, θ = (W1, . . . ,WL).

We denote by ρ1, . . . , ρL the Lipschitz constants of the non-
linearities, and when, abusing notation, we apply some non-
linearity σi to a vector v, the result σi(v) is a vector whose
j-th coordinate is σi(vj). We also adopt from (Bartlett et al.,
2017) the notion of spectral complexity Rθ of a neural net-
work fθ with respect to reference matrices M1, . . . ,ML (of
the same dimensions as W1, . . . ,WL respectively), defined
in terms of different matrix norms as follows:

Rθ =

(
L∏
i=1

ρi‖Wi‖2

)(
L∑
i=1

‖WT
i −MT

i ‖
2/3
2,1

‖Wi‖2/32

)3/2

,

where ‖M‖2,1 =
∑n
j=1

√∑n
i=1M

2
ij . Assuming a fixed

bound on each matrix norm involved in the above expression,
we take F = {fθ : θ ∈ Θ} to be the collection of all neural
networks of Form (4), whose weight matrices satisfy those
bounds. Suppose R is the resulting bound on the spectral
norm of all networks in our family, implied by our assumed
bounds on the various matrix norms. Finally, we assume
that the widths of all networks fθ ∈ F are bounded by d.

Theorem 5. Suppose Setting 2, and let K2 = 1
n

∑
i ‖xi‖22.

Then, with probability ≥ 1− δ,

1

n

n∑
i=1

(fθ̂(xi)− fθ∗(xi))
2 + |β̂ − β∗|2

.
(n2K2R2 log d)1/3 + log

(
n
δ

)
‖A‖2F

.

Notice that, in this case, we do not provide guarantees for
the estimation of θ. Since these networks are often over-
parametrized, it might be impossible to recover θ.

All estimation results above, namely Theorems 1–5, are
corollaries of our general estimation result given below.
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Theorem 6 (General Estimation Result). Make Assump-
tions 1, where fθ∗ lies in some general class F = {fθ}θ.
Then, w.pr. ≥ 1− δ,

1

n

n∑
i=1

(fθ̂(xi)− fθ∗(xi))
2

. C1(F , X, β∗, θ∗) inf
ε≥0

(
log

n

δ
+ εn+ logN(F , X, ε)

)
,

(5)

where X denotes the collection of feature vectors,
N (F , X, ε) is the ε-covering number of F under dis-
tance d(f, f ′) =

√∑n
i=1(f(xi)− f ′(xi))2/n and C1 ≤

1/‖A‖2F is a quantity that has a simple formula (both quan-
tities are formally defined in Section 3.2). Further, if F
is convex and closed under negation,1 for any estimator
(θ′, β′) there exists (θ∗, β∗), s.t. w.pr. ≥ 0.49,

1

n

n∑
i=1

(fθ′(xi)− fθ∗(xi))2 & C1(F , X, β∗, θ∗).

Similar upper and lower bounds hold for estimating β∗,
with C1 replaced with a different quantity C2 ≤ 1/‖A‖2F .

Theorem 6 is used to derive Theorems 1, 2, 4, and 5 by
bounding the covering numbers of linear, sparse linear and
neural network classes. It is also used to derive Theorem 3
in a straight-forward way. It is worth emphasizing that we
obtain separate general estimation rates for β and θ, which
are tight or near-tight in a variety of settings.

1.2. Related Work

Data dependencies are pervasive in many applications of
Statistics and Machine Learning, e.g. in financial, meteo-
rological, epidemiological, and geographical applications,
as well as social-network analyses, where peer effects have
been studied in topics as diverse as criminal activity (Glaeser
et al., 1996), welfare participation (Bertrand et al., 2000),
school achievement (Sacerdote, 2001), retirement plan par-
ticipation (Duflo & Saez, 2003), and obesity (Christakis
& Fowler, 2013; Trogdon et al., 2008). These applica-
tions have motivated substantial work in Econometrics
(see e.g. Manski (1993); Bramoullé et al. (2009) and their
references), where identification results have been pursued
and debated, mostly in linear auto-regressive models; see
also Daskalakis et al. (2019). In Statistical Learning The-
ory, learnability and uniform convergence bounds have been
shown in the presence of sample dependencies; see e.g. Yu
(1994); Gamarnik (2003); Berti et al. (2009); Mohri & Ros-
tamizadeh (2009); Pestov (2010); Mohri & Rostamizadeh

1We say that F is convex if for any f, f ′ ∈ F and any λ ∈
[0, 1] the function f̃(x) = (1 − λ)f(x) + λf ′(x) belongs to F .
We say that F is closed under negation if −f ∈ F for all f ∈ F .

(2010); Shalizi & Kontorovich (2013); London et al. (2013);
Kuznetsov & Mohri (2015); London et al. (2016); McDon-
ald & Shalizi (2017); Dagan et al. (2019). Those learn-
ability frameworks are not applicable to our setting due to
exchangeability, fast-mixing, or weak-dependence proper-
ties that they are exploiting.

Close to our setting, recent work of Daskalakis et al. (2019)
considers a special case of our problem, where function fθ
in Model (3) is assumed linear. We obtain stronger estima-
tion bounds, under weaker assumptions, our bounds grace-
fully degrading with ‖A‖F , as we have already discussed.
Similarly, earlier work by Chatterjee (2007); Bhattacharya
& Mukherjee (2018); Ghosal & Mukherjee (2018); Dagan
et al. (2020), motivated by single-sample estimation of Ising
models, considers a special case of our problem where func-
tion fθ in Model (3) is assumed constant. Our bounds in
this simple setting are as tight as the tightest bounds in
that line of work. Overall, in comparison to these works,
our general estimation result (Theorem 6) covers arbitrary
classes F , characterizing the estimation rate up to a factor
that depends on the metric entropy of F . We thus obtain
rates for sparse linear classes (Theorem 2), neural network
classes (Theorem 5), and Lipschitz classes (discussed in the
Supplementary Material), which had not been shown before.
Finally, our bounds disentangle our ability of estimating
θ and β, allowing for the estimation of θ even when the
estimation of β is impossible, as shown in Theorem 4 for
linear classes, answering a main open problem left open
by (Daskalakis et al., 2019).

At a higher level, single-sample statistical estimation is both
a classical and an emerging field (Besag, 1974; Bresler &
Nagaraj, 2018; Chen et al., 2019; Dagan et al., 2020) with
intimate connections to Statistical Physics, Combinatorics,
and High-Dimensional Probability.

Roadmap. We present the estimator used to derive all our
upper bounds in Section 2. We present a sketch of our proof
of Theorem 6 in Section 3. We do this in two steps. First we
present a sketch for the toy case of Theorem 1, i.e. the single-
dimensional case. This illustrates some of the main ideas of
the proof. We then provide the modifications necessary for
the multi-dimensional case, which naturally lead us to the
formulation of Theorem 6. While the main technical ideas
are already illustrated in Section 3 in sufficient detail, the
complete details can be found in the supplementary material.
We conclude with experiments in Section 4, where we apply
our estimator on citation datasets and compare its prediction
accuracy to supervised learning approaches that do not take
into account label dependencies.
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2. The Estimation Algorithm
In all our theorems, the estimator we use is the Maximum
Pseudo-Likelihood Estimator (MPLE), first proposed by
Besag (1974) and defined as follows

(θ̂, β̂) := arg max
θ,β

n∏
i=1

Pθ,β [yi|x, y−i]

≡
n∏
i=1

exp
(
yi

(
fθ(xi) + β

∑n
j=1Aijyj

))
2 cosh

(
fθ(xi) + β

∑n
j=1Aijyj

) , (6)

where Pθ,β is defined in (3), x = (x1, . . . , xn) and y−i =
(y1, . . . , yi−1, yi+1, . . . , yn). We optimize the MPLE over
θ ∈ Θ and β ∈ [−B,B], for Θ, B as per Assumption 1.

In comparison to MPLE, the more common Maximum Like-
lihood Estimator (MLE) optimizes Pθ,β [y1...n | x1...n]. No-
tice that the MPLE coincides with the MLE in the case
β = 0, which corresponds to y1, . . . , yn being independent
conditioned on x1...n. When β 6= 0, this conditional inde-
pendence ceases to hold and the two methods target differ-
ent objectives. In this case, the objective function of MLE,
which is (3), involves the normalizing factor Zθ,β , which is
in general computationally hard to approximate (Sly & Sun,
2014). In contrast, the MPLE is efficiently computable
in many cases. For example, in the linear case where
fθ(xi) = x>i θ, the logarithm of (6) is a convex function
of θ and β. Hence, we can use a variety of convex optimiza-
tion algorithms to find the optimal solution. Even in cases
where it is not a convex function, we can always use generic
optimization techniques such as gradient-based methods to
find a local optimum fast, since the derivative is easy to
compute. Thus, the MPLE is a very appealing choice for
various models. In all the results that follow, both theoretical
and practical, the algorithm used will be the MPLE.

3. Proof overview
In this section, we will briefly describe the most important
contributions of this work at the technical level. We start
by discussing the case where fθ is linear and θ is a one-
dimensional parameter. We describe in detail the obstacles
that had to be overcome to obtain tight rates for the estima-
tion of θ and β in this case and highlight some of the most
important features of the proof. In particular, we use the
mean field approximation, a tool from statistical physics, to
derive the bounds. Later, we sketch the proof of the general
Theorem 6.

Notation: Matrix Norms. We use the Forbenius
norm ‖A‖F , the spectral norm ‖A‖2 and the infinity-
to-infinity norm ‖A‖∞, which is defined as ‖A‖∞ :=
max1≤i≤n

∑n
j=1 |Aij |. In our setting A is symmetric, so

one has ‖A‖2 ≤ ‖A‖∞ = 1 and ‖A‖F ≤
√
n‖A‖2 ≤

√
n.

3.1. Single-dimensional linear classes

We consider the setting of Theorem 1, when the dimension
is d = 1. We denote x = (x1, . . . xn) and y = (y1, . . . , yn).
To simplify the presentation, we assume κ ≥ Ω(1), which
implies that ‖x‖2 ≥ Ω(

√
n), and further thatM,B = O(1).

In this sketch we focus on estimating θ while the bound on
β is similarly obtained, and our goal is to show the special
case of Theorem 1 for dimension d = 1, namely, that with
probability ≥ 1− δ:

|θ̂ − θ∗| .
√

log n
δ

‖A‖F
. (7)

In fact, we will show the tighter bound of:

|θ̂ − θ∗| . sup
λ∈R

√
log n

δ

‖λA‖F +
∥∥∥x− λAtanh(β∗xλ + θ∗x

)∥∥∥
2

(8)

where tanh(z1, . . . , zn) = (tanh(z1), . . . , tanh(zn)). We
note that this bound is tight up to the factor of

√
log n

δ (after
a small tweak to these bounds that we omit for simplicity),
and it can be obtained from our general bound of Theorem 6
with respect to the quantity C1 (see Section 3.2.

Before establishing (8), we note that it is stronger than the
right hand side of (7). This follows from a simple exercise,
considering cases for λ and utilizing the fact that under the
assumptions stated above, ‖λAtanh((β∗/λ)x+ θ∗x)‖2 ≤
O(λ
√
n), while ‖x‖2 ≥ Ω(

√
n).

We proceed with sketching the proof of (8). Let ϕ(θ, β)
be the negative pseudo log-likelihood for the pair (θ, β),
namely, minus the log of the quantity in (6). This is a
convex function whose minimum equals (θ̂, β̂) and our goal
is to show that (θ∗, β∗) lies in proximity to this minimum.
In order to show this, it suffices to prove that the gradient
of ϕ at (θ∗, β∗) is small, while the function is strongly
convex in its neighborhood. For a more rigorous proof, we
write ϕ(θ̂, β̂) using a Taylor sum around (θ∗, β∗). Denoting
v = (vθ, vβ) = (θ̂ − θ∗, β̂ − β∗), we get:

ϕ(θ̂, β̂) = ϕ(θ∗, β∗)+v>∇ϕ(θ∗, β∗)+
1

2
v>∇2ϕ(θ′, β′)v,

for some (θ′, β′) in the segment connecting (θ∗, β∗) and
(θ̂, β̂). Since (θ̂, β̂) is the minimizer of the MPLE, one has
ϕ(θ̂, β̂) ≤ ϕ(θ∗, β∗), which implies that

1

2
v>∇2ϕ(θ′, β′)v ≤ −v>∇ϕ(θ∗, β∗) ≤ |v>∇ϕ(θ∗, β∗)|.

(9)
Using concentration inequalities from (Dagan et al., 2020),
we can show that w.pr. ≥ 1− δ (w.r.t. the randomness of the
y1, . . . , yn which are implicit arguments of ϕ), any u ∈ R2
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satisfies

|u>∇ϕ(θ∗, β∗)|
u>∇2ϕ(θ′, β′)u

.

√
log n/δ

‖uβA‖F + ‖uθx+ uβAy‖
. (10)

After substituting u = v, it follows from (9) that the left
hand side of (10) is lower bounded by 1/2. We derive that

1 .

√
log n/δ

‖vβA‖F + ‖vθx+ vβAy‖
.

Multiplying by vθ, and writing λ = −vβ/vθ, we have

|θ̂ − θ∗| = |vθ| ≤
√

log n/δ

‖λA‖F + ‖x− λAy‖

≤ sup
λ∈R

√
log n/δ

‖λA‖F + ‖x− λAy‖
. (11)

At this point, we have bounded the rate by the solution to an
optimization problem. However, notice that the right hand
side contains y which is a random variable. We would like to
show that the whole expression is bounded by a nonrandom
quantity and, in particular, by (8). This statement requires
new insights and, as a result, a significant part of the proof
is devoted to it. Here, we first sketch the main idea and then
give a more technical explanation for it.

We would like to bound the optimization problem in (11) by
that in (8), which corresponds to showing

‖λA‖F + ‖x−λAy‖ & ‖x−λAtanh((β∗/λ)x+ θ∗x)‖.
(12)

We start by describing a rough and informal intuition for
proving (12), and later proceed with a more formal deriva-
tion. We use an approach from statistical physics that is
called mean-field approximation: we can substitute each yi
with E[yi | x, y−i] = tanh(β∗

∑
j Aijyj + θ∗x). Applying

this substitution for all i, we obtain that

y ≈ tanh(β∗Ay + θ∗x). (13)

We assume towards contradiction that (12) does not hold,
and in this case we make the (false) substitution ‖x −
λAy‖2 ≈ 0, which implies that Ay ≈ x/λ. Substi-
tuting this in the right hand side of (13), we obtain that
y ≈ tanh(β∗x/λ + θ∗x). Making this substitution in
‖x− λAy‖, we obtain (12).

Now, we will argue more formally about the previous claims
to derive (12). Using the triangle inequality, we get

‖x− λAtanh(β∗x/λ+ θ∗x)‖ ≤
‖x− λAy‖+ ‖λAy − λAtanh(β∗Ay + θ∗x)‖

+‖λAtanh(β∗Ay+ θ∗x)−λAtanh(β∗x/λ+ θ∗x)‖.
(14)

We would like to bound each of the three terms on the right
hand side by a constant times the left hand side of (12). For
the first term, this is trivial. Further, we can show that the
third term on the right hand side of (14) is bounded by the
first term, using the Lipschitzness of tanh:

‖λAtanh(β∗Ay + θ∗x)− λAtanh((β∗/λ)x+ θ∗x)‖
≤ ‖λAβ∗Ay −Aβ∗x‖ ≤ ‖β∗A‖2‖x− λAy‖

≤ O(‖x− λAy‖),

where ‖β∗A‖2 ≤ O(1) using the assumptions of this pa-
per. As for the second term, it represents the error of
the mean field approximation for y, which corresponds
to the substitution in (13). In order to bound this error
term, we use the method of exchangeable pairs developed
in (Chatterjee, 2005), which provides a strong and general
concentration inequality for non-independent random vari-
ables. We can show that with high probability, this term
will be O(‖λβ∗A‖2) ≤ O(λ‖A‖2) ≤ O(λ‖A‖F ), since
B = O(1). Combining the above bounds we derive (12), as
required.

3.2. Definitions of the terms in Theorem 6

We now sketch the proof of our general upper bound of
Theorem 6. We first define the notions of covering numbers
and the quantities C1 and C2 in the theorem statement.

Definition 1. Given a metric space (Ω, d) and ε > 0, a
subset Ω′ ⊆ Ω is an ε-net for Ω if for any ω ∈ Ω there exists
ω′ ∈ ω such that d(ω, ω′) ≤ ε. The covering number at
scale ε, N(Ω, ε), is the smallest size of an ε-net.

For a function class F and collection of feature vectors
X = (x1, . . . , xn), we denote by N(F , X, ε) the cover-
ing number at scale ε of F w.r.t. the distance d(f, g) =√
‖f(X)− g(X)‖22/n, where we use the convenient nota-

tion f(X) = (f(x1), . . . , f(xn)) and similarly for g(X).

Next, we define the quantities C1 and C2. We start by defin-
ing the following as a function of β, β′ ∈ R and h, h′ ∈ Rn:

ψ(h, β;h′, β′) = (β − β′)2‖A‖2F+∥∥∥∥h− h′ + (β − β′)Atanh
(

β′

β − β′
(h′ − h) + h′

)∥∥∥∥2

2

where tanh((z1, . . . , zn)) = (tanh(z1), . . . , tanh(zn)).
Now, for some universal constant c ≥ 0, we define

C1(F , X, θ∗, β∗) :=

sup
(θ,β)∈Θ×[−B,B]

min

(
Uf

ψ(fθ(X), β; fθ∗(X), β∗)
, Uf

)
,

(15)
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where
Uf := ‖fθ(X)− fθ∗(X)‖22/n.

Similarly, C2 is defined in an analogous way, by replacing
‖fθ(X)− fθ∗(X)‖22/n with (β − β∗)2. Conveniently, we
can use the following upper bound on C1:

C′1(F , X, θ∗, β∗) :=

sup
(θ,β)∈Θ×[−B,B]

‖fθ(X)− fθ∗(X)‖22/n
ψ(fθ(X), β; fθ∗(X), β∗)

. (16)

At this point, we can explain how the rate in (8) for d =
1 is derived from the bound of Theorem 6. In this case,
(x1, . . . , xn) is simply a vector x ∈ Rn and fθ(xi) = θxi.
Substituting C1 ≤ C′1 into (5), substituting fθ(xi) = θxi
and substituting λ = −(β − β∗)/(θ − θ∗), (8) follows.

3.3. Sketch of the upper bound in Theorem 6

Here, we sketch the proof of the upper bound in Theorem 6,
but a weaker one where C1 is replaced by its upper bound C′1
defined in (15). In particular, we sketch that w.pr. ≥ 1− δ,

1

n
‖fθ̂(X)− fθ∗(X)‖22

. C′1(F , X, β∗, θ∗) inf
ε≥0

(
log

n

δ
+ εn+ logN(F , X, ε)

)
.

(17)

It is possible to prove that C′1 ≤ O(1/‖A‖2F ), similarly to
the corresponding argument in Section 3.1 and we focus
below on proving (17).

Notice that in the definition of C1 and C′1, we do not need
the set F itself, but only the vectors fθ(X) for every θ in
the class F . Hence, if we define the setH = {fθ(X) : fθ ∈
F}, we immediately observe that C1 is in fact a function
ofH. In this setting, we can similarly define h∗ = fθ∗(X)

and ĥ = fθ̂(X) and define the covering numbers N(H, ε)
with respect to the distance d(h, h′) =

√
‖h− h′‖22/n. In

this language, (17) translates to

1

n
‖ĥ−h∗‖22 . C′1(H, h∗, β∗) inf

ε≥0

(
log

n

δ
+ εn+ logN(H, ε)

)
.

(18)
In the remainder of the proof, we will focus on proving (18),
dividing the proof to multiple steps.

Step 1: A single dimensional H. In this case, H is a
single dimensional subspace of Rn, namely, there exists v ∈
Rn such that H = {h∗ + tv : t ∈ T ⊆ R}. This is clearly
reminiscent of the setting on a one-dimensional function-
class discussed in Section 3.1. Hence, using the exact same
approach and using the calculation of Section 3.2, we can
prove that w.pr. 1− δ′

1

n
‖ĥ− h∗‖22 . C′1(H, h∗, β∗) log

n

δ′
.

Step 2: A union of single-dimensional classes. Now,
suppose that we have a finite set of directions (unit vectors)
v1, . . . , vN and denoteHi = {h∗+ tvi : h∗+ tvi ∈ H}. In
other words,Hi is the restriction ofH on a specific line pass-
ing through h∗ with direction vi. Suppose we run MPLE on
each direction, producing an output ĥi for each direction.
The calculations of Step 1 suggest that for all i ∈ [N ], w.pr.
1− δ′:

1

n
‖ĥi − h∗‖22 . C′1(H, h∗, β∗) log

n

δ′
.

With a simple union bound over these N events, we can set
δ′ = δ/N and obtain that w.pr. ≥ 1− δ, for all i ∈ [N ],

1

n
‖ĥi − h∗‖22 . C′1(H, h∗, β∗)

(
log

n

δ
+ logN

)
. (19)

This essentially means that, if we run MPLE on the original
setH and it ends up lying in any of theHi’s, it will lie close
to the optimal point h∗.

Since we don’t know in which direction the MPLE will lie,
we have to establish a statement like (19) for all directions in
H. The problem is that usually there are infinity directions,
so the union bound approach doesn’t automatically work.

However, we can approximate the set of directions by a
finite subset of directions that form an ε-net. Since any
point h ∈ H defines a direction h−h∗, we can take an ε-net
U with respect to H, which has size N = N(H, ε), which
corresponds to the covering number defined in Definition 1
of Section 3.2. Due to Lipschitzness of the optimization
target, one can prove that the MPLE over U is close to the
MPLE overH. By selecting ε appropriately and substituting
N = N(H, ε) in (19), we derive (18).

4. Experiments
When there is network information about dependencies be-
tween samples, we can use it to significantly boost the perfor-
mance of supervised learning approaches. We demonstrate
such improvements of MPLE-β from including the depen-
dency structure compared to assuming the data is i.i.d. We
call this MPLE-0 (i.e. setting β = 0). This is tantamount
to not having an underlying influence network between the
nodes. We observe that MPLE-β consistently outperforms
MPLE-0 by a significant margin.

Datasets. We utilize three public citation datasets - Cora,
Citeseer and Pubmed (Yang et al., 2016). These datasets
consist of a network where each node corresponds to a pub-
lication and the edges correspond to citation links. Each
node contains a bag-of-words representation of the publi-
cation and a corresponding label indicating the area of the
publication. The adjacency information Aij between two
nodes is given as a real-value between 0 and 1 in all 3 of the
these datasets. Table 1 gives the statistics of the datasets.
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Figure 1. From Left to Right: Plots of the accuracy of MPLE-β (blue) vs MPLE-0 (orange) for Cora, Citeseer, Pubmed respectively as we
increase the training data size gradually while maintaining the class probabilities.

Table 1. Datasets: Cora and Citeseer have probability vectors as
features. Pubmed has TF-IDF frequencies as features.

DATASET CLASSES NODES EDGES FEATURES

CORA 7 2708 5429 1433
CITESEER 6 3327 4732 3703
PUBMED 3 19717 44338 500

Experimental Setup. The datasets we use are common
benchmarks used for semi-supervised and fully-supervised
learning on graph structured data. The state of the art for a
lot of these datasets is graph neural network (GNN) (Chen
et al., 2020) based approaches. The setups considered in
prior literature on these datasets differ from ours in the fol-
lowing sense: these works consider the transductive setting,
that is, they assume access to the adjacency matrix of the
entire graph as well as the features of the entire dataset
(including those in the test set) at train time. In contrast,
we work in the inductive setting, where we do not assume
access to any information about the test set. However, at
test time, our hypothesis uses the labels in the validation set
(not the features).

We perform three different experiments on each dataset
where we measure the accuracy of prediction on the test
labels. We run each experiment with 10 fixed random seeds
and report the average and standard deviation.

1. Sparse-data: Following the semi-supervised setup of
(Kipf & Welling, 2016; Feng et al., 2020) and others, we
compare performance of MPLE-0 and MPLE-β over a pub-
lic split which includes only 20 nodes per class as training,
500 nodes for validation and 1000 nodes for testing.

2. Increasing training data: We compare the gap in perfor-
mance of the two methods when training data is gradually
increased from the semi-supervised setting towards the full-
supervised setting.

3. Full-supervised: We consider the fully-supervised setup
from (Pei et al., 2020). In this setup, we consider 10 ran-

dom splits of the entire dataset. Each split maintains class
distribution by splitting the set of nodes of each class into
60%(train)-20%(val)-20%(test). For this experiment, we
compare against an inductive variant of GCNII we denote
GCNII-In. We disable access to the test set features during
training in order to have a fair comparison with our inductive
setting.

Model Details. Since our classification task is multi-class,
we extend the MPLE-β algorithm for Ising models to its
natural Pott’s model generalization. For number of classes
K, the probability of label yi = k∗ conditioned on the other
data and labels is computed as follows:

Pθ,β [yi = k∗|x, y−i]

=
exp

(
fθ(xi)k∗ + β

∑n
j=1Aij1[yj = k∗]

)
∑K
k=1 exp

(
fθ(xi)k + β

∑n
j=1Aij1[yj = k]

) .
Note that this extension is a strict generalization of the
model we used in our theory (which only deals with bi-
nary classification). Even in this more general setting, we
observe significant empirical benefits which attests to the
applicability of our approach in more general settings than
those considered in our theory. Using this we compute the
MPLE-β objective.

For both MPLE-0 and MPLE-β, our underlying model fθ :
R#features → R#classes is a 2-layer neural network with
32 units in the hidden layer and ReLU activations. The
difference between the two models is just the use of β. For
comparison with the graph neural networks (GNNs), we use
the GCNII (Chen et al., 2020) model which is a state-of-the-
art GNN with depth 64 and hidden layer size of 64. We run
our code on a GPU and use Adam to train all our models.
We use the tuned hyper-parameters for GCNII however for
our algorithms we do not perform a hyper-parameter search
but use the parameters used in prior work (Feng et al., 2020).

Results. On the sparse-data experiment, for Cora MPLE-
β gives an accuracy of 65.8 ± 0.09% vs 60 ± 0.4% given
by MPLE-0. For Citeseer, MPLE-β gets 60.9 ± 0.7% vs
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Table 2. Accuracy comparison between MPLE-0, MLPE-β and
GCNII-In for full-supervised experiment.

DATASET MPLE-0 MPLE-β GCNII-IN

CORA 74.5± 1.8 85.3 ± 1.7 85.3 ± 1.3
CITESEER 72.3± 1.7 76.3 ± 1.0 68.6± 0.3
PUBMED 87.3± 0.2 89.0 ± 0.2 83.3± 0.6

MPLE-0 which gets 60.2 ± 0.3%. For Pubmed, both ap-
proaches get 73.3 ± 0.2%. As we increase the train data
size as shown in Figure 1 our gains also tend to increase.
Finally for the fully-supervised setting we again outperform
MPLE-0 and GCNII-In. On Pubmed, our gains are smaller
as the TF-IDF feature vector already implicitly encodes
some network information from the neighbors. Moreover,
MPLE-β runs much faster than any of the GNN approaches
and is simpler with a low overhead of a scalar parameter
on any given model, while remaining competitive in perfor-
mance. However, it should be noted that we do not compare
performance in the transductive setting, in which GCNII
was probably intended to run. Finally, our experiments are
based on an approach with provable end-to-end guarantees,
in contrast with the GNN approaches.
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