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Abstract In this review, we describe applications of the pruned-enriched Rosenbluth
method (PERM), a sequential Monte Carlo algorithm with resampling, to various problems
in polymer physics. PERM produces samples according to any given prescribed weight dis-
tribution, by growing configurations step by step with controlled bias, and correcting “bad”
configurations by “population control”. The latter is implemented, in contrast to other pop-
ulation based algorithms like e.g. genetic algorithms, by depth-first recursion which avoids
storing all members of the population at the same time in computer memory. The prob-
lems we discuss all concern single polymers (with one exception), but under various condi-
tions: Homopolymers in good solvents and at the Θ point, semi-stiff polymers, polymers in
confining geometries, stretched polymers undergoing a forced globule-linear transition, star
polymers, bottle brushes, lattice animals as a model for randomly branched polymers, DNA
melting, and finally—as the only system at low temperatures, lattice heteropolymers as sim-
ple models for protein folding. PERM is for some of these problems the method of choice,
but it can also fail. We discuss how to recognize when a result is reliable, and we discuss
also some types of bias that can be crucial in guiding the growth into the right directions.
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1 Introduction

Research in the field of polymer physics has grown vigorously since the 1950s [1–4]. Re-
cent developments in the techniques for the tools of atomic force microscopy (AFM) [5],
in fabrication of nanoscale devices and in single-chain manipulation techniques [6–8] open
possibilities for a broad range of applications in physical chemistry, biotechnology and ma-
terial science. During this time, much effort has also been put into studying the statistical
properties of polymers by computer simulations [9, 10]. Indeed, due to the richness of the
observed phenomena and the non-triviality of the problems involved, polymer physics has
from the very beginning served as a playground for developing novel Monte Carlo strate-
gies [11–13]. These strategies depend strongly on the problems one is interested in: Linear
versus branched polymers, dilute versus dense systems, scaling laws versus detailed material
properties, classical versus quantum mechanical problems, implicit versus explicit treatment
of solvent, etc.

In this review we shall only deal with one class of algorithms, the pruned-enriched Rosen-
bluth method (PERM) [14]. So far it has been used for classical physics only, although
closely related methods have also been used since long ago for quantum mechanical simula-
tions [15]. Although it is not a panacea and fails miserably in many problems, it still found
applications to several of the above dichotoma, and in some cases it beats the (presently
known) competitors by huge margins.

In the following we shall mostly be concerned with single unbranched molecules moving
freely in a dilute solvent. Later we will also consider branched polymers and polymers at-
tached to surfaces. The basic characteristics of linear polymer chains depend on the solvent
conditions. At high temperatures or in good solvents repulsive interactions (the excluded
volume effect) and entropic effects dominate the conformation, and the polymer chain tends
to swell to a random coil. At low temperatures or in poor solvents, however, attractive in-
teractions between monomers dominate the conformation and the polymer chain tends to
collapse and form a compact dense globule. The coil-globule transition point is called the
Θ-point. Based on field theory [3], the behavior of polymer chains in good solvents is well
understood. In the thermodynamic limit (as the chain length N → ∞), the partition function
scales as

Z ∼ μ−N
∞ Nγ−1 at T > TΘ (1)

where μ∞ is the critical fugacity and γ is the entropic exponent related to the topology.
Below the Θ-point, a collapsed polymer can essentially be viewed as a liquid droplet. Ac-
cording to the Lifshitz mean field theory [2, 4], a surface term should be included in the
partition sum as

Z ∼ aNbNs

Nγ−1 at T < TΘ (2)

with s = (d − 1)/d and b > 1.
Generally speaking, the thermodynamic limit of a polymer system coincides with the

limit when the chain length N tends to infinity. For conventional Monte Carlo (MC) meth-
ods such as the Metropolis algorithm, one can only simulate moderately large systems, the
maximal feasible values of N depending on the temperature and on the degree of reality
of the model. Going from simple lattice-based models at high temperatures to models with
realistic interactions and further to folded proteins with explicitly included solvent, Nmax

might decrease from 104 to � 100. If one is interested mostly in scaling laws (as we shall
be), one simulates at several values of N and uses finite-size scaling (FSS) to extrapolate
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the behavior of the considered thermodynamic quantities to N → ∞. Rather often, either
very large finite-size effects have to be considered or it is too difficult to reach equilibrium
states or to produce sufficiently many independent configurations. For some problems (not
for all!), it was a big breakthrough when (PERM) [14, 16–18] was proposed in 1997. It
is particularly efficient for temperatures near the Θ collapse, where chains of length up to
N = 1,000,000 could be sampled with high statistics, and it was confirmed unambiguously
that the Θ collapse is a tricritical phenomenon with upper critical dimension dc = 3 [3].
Since then, many other applications have also been made. Many other applications have also
been made successfully by PERM [18], which provide in some cases a deep understanding
on the scaling behavior of polymer chains under different solvent conditions, geometrical
confinements, on the phase transition behavior of polymer chains adsorbed onto a wall, on
polymers stretched by a force, etc.

In the next section we give a detailed description of the basic algorithm. This algorithm
can be made substantially more efficient by a suitable bias in the growth direction, and two
biases (including ‘Markovian anticipation’) are discussed in Sect. 3. Applications are treated
in Sects. 4 (Θ-polymers), 5 (stretched polymers in poor solvents), 6 (semiflexible polymers),
7 (polymers in confining geometries), 8 (branched polymers with fixed tree topologies),
9 (lattice animals), 10 (protein folding), and 11 (DNA melting). Finally the paper concludes
with a summary in Sect. 12.

2 Algorithm: Pruned-Enriched Rosenbluth Method (PERM)

In statistical thermodynamics, the partition function for a canonical ensemble in thermal
equilibrium is defined by

Z(β) =
∑

α

Q(α) =
∑

α

exp(−βE(α)) (3)

here β = 1/kBT , E(α) is the corresponding energy for the αth configuration, Q(α)/Z is
the Gibbs-Boltzmann distribution, and Q(α) = exp(−βE(α)) is normally called the Boltz-
mann weight. If each configuration is repeatedly and independently chosen according to a
randomly chosen probability p(α) (a bias), the partition sum is rewritten as

Z = lim
M→∞

Ẑ (4)

where M is the number of trials and

Ẑ = 1

M

M∑

α=1

Q(α)/p(α) = 1

M

M∑

α=1

W(α), (5)

with modified weights

W(α) = Q(α)/p(α). (6)

If we use p(α) ∝ exp(−βE(α)) {Gibbs sampling}, each contribution to ẐM has the same
weight, which is an example of the so called ‘importance sampling’. The estimate for any
observable A is given by

〈A〉 = lim
M→∞

〈A〉M = lim
M→∞

∑M

α=1 A(α)W(α)
∑M

α=1 W(α)
. (7)
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In general, we expect that statistical fluctuations of 〈A〉M are minimal, at given M , if we
use importance sampling and if all trials are independent. In general this is infeasible. The
Metropolis method achieves perfect importance sampling at the cost of highly correlated tri-
als. PERM tries, with a completely different strategy, at a compromise between importance
sampling and independence.

Things are best illustrated by a linear chain of N + 1 monomers in an implicit solvent,
modeled by an interacting self-avoiding walk (ISAW) of N steps on a simple (hyper-)cubic
lattice of dimension d . The interactions in this model are (i) the chain connectivity which en-
forces that adjacent monomers sit on adjacent lattice sites; (ii) self-avoidance that excludes
configurations in which the same lattice site is occupied by two or more monomers; and
attractive interactions (energies ε < 0) between non-bonded monomers occupying neigh-
boring lattice sites. Writing q = exp(−βε) for the Boltzmann factor, the partition sum is

ZN(q) =
∑

walks

qm (8)

where m denotes the total number of non-bonded nearest neighbor pairs. The solvent quality
is varied by changing the temperature T .

In the original Rosenbluth-Rosenbluth (RR) method [11], polymer chains are built like
random walks by adding one monomer at each step. At the 0th step, the first monomer is
placed at an arbitrary lattice site. For this “chain” of length N = 0, the weight is trivially
W0 = 1. For the first step one has 2d possibilities and no interactions yet, giving W1 = 2d .
For subsequent steps one has to take self-avoidance into account. When a monomer is added
to a chain of length N − 1, one scans the neighborhood of the chain end to identify the free
sites on which a monomer could be added. If there are nfree ≥ 1 free neighbors, the next step
is chosen uniformly among them, while the walk is killed if nfree = 0 (“attrition”). After this
step the weight WN is updated by multiplying WN−1 by

wn = qmn/pn, (9)

where pn = 1/nfree and mn is the number of neighbors of the new site already occupied by
non-bonded monomers (notice that m = ∑N

n=0 mn). Therefore, after N steps the total weight
is

WN = wNWN−1 = · · · = wNwN−1 · · ·w0 =
N∏

n=0

wn. (10)

Schematic drawings of building a SAW (the athermal case q = 1) are shown in Fig. 1. When
the chain length N becomes very large, the method fails for two reasons: First of all, attrition
implies that only an exponentially small fraction of trials survive and give any contribution
at all. Secondly, as the weight factors wn are weakly correlated random variables, the full
weight WN will show huge fluctuations. Thus the surviving configurations will finally be
dominated by a single configuration, demonstrating a dramatic lack of importance sampling.

PERM [14] was invented to overcome this shortcoming of the RR method. The main
spirit of PERM is as follows,

• Polymer chains are built like random walks by adding one monomer at each step.
• A Rosenbluth-like bias is used for choosing one of the nearest neighbor free sites for the

next step of the walk, but a wide range of probability distributions can be used depending
on the specific problem at hand, which will be discussed in detail in the following sections.
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Fig. 1 Schematic drawings of building a SAW from the 0th step to the 4th step and the associated weight at
each step. At the 0th step, we set the weight W0 = w0 = 1, and the probability p0 = 1. The Rosenbluth bias
is used here such that pn = 1/nfree at each step, so the total weight Wn = ∏n=4

n=0 nfree

• In order to overcome attrition and to reduce the fluctuations of Wn, one uses “population
control”. This is achieved by pruning some low-weight configurations and cloning (“en-
riching” [12]) all those with high weight, as the chain grows. To define ‘low’ and ‘high’
weights, one uses two thresholds W+

n and W−
n . If at any step n the current weight Wn

according to (10) would be > W+
n , we make k additional copies (typically k = 1) of the

current configuration and give each copy a weight Wn = wnWn−1/(k + 1). On the other
hand, if (10) would give Wn < W−

n , we call a random number r ∈ [0,1]. If r < 1/2 we
kill the configuration. Otherwise, we keep it and double its weight, Wn = 2wnWn−1. It is
easy to see that pruning and cloning leave all averages unchanged. It improves importance
sampling enormously, but it also leads to correlated trials.

For most problems the choice of the thresholds W+
n and W−

n is unproblematic, and
they can be chosen simply as constant multiples of the current estimate of the partition
sum given by (5),

W+
n = C+Ẑn and W−

n = C−Ẑn, (11)

where C+ and C− are constants of order unity. A good choice for the ratio between C+
and C− is found to be C+/C− ∼ 10 in most cases. If (11) does not lead to good results,
chances are that the method would not work with any other choice either. If the method
works well, (11) gives samples where the total number of length n configurations is in-
dependent of n, i.e. attrition is completely eliminated and pruning & cloning compensate
each other exactly (up to statistical fluctuations), for large n. For the first trials (when
there is not yet any estimate Ẑn), we choose normally W−

n = 0 and W+
n = ∞ (a very

large number like 10100), which gives the original RR method.
• The copies made in the enrichments are placed on a stack, and a depth-first implementa-

tion is used for the chain growth: At each time one deals with only a single configuration
until a chain has either grown to the maximum length N or has been killed due to at-
trition. If the first happens or if the stack is empty, a new trial is started. Otherwise, the
configuration on top of the stack is popped and the simulation continues. This is most
easily implemented by recursive function calls. Since only a single configuration has to
be remembered during the run, this requires much less memory than a breadth-first imple-
mentation that uses an explicit “population” of many configurations, as it is traditionally
used e.g. in genetic algorithms.

• As we said, configurations obtained from different clones of the same ancestor will not be
uncorrelated. The set of all such configurations is called a “tour”. Different tours are un-
correlated. Depending on the amount of cloning/pruning, however, the correlations within
a tour could be so strong as to render the method obsolete. In that case the distributions
P (ln(W)) of logarithms of tour weights W is very broad, so that we are basically back to
the problem of the RR method (with single trials replaced by tours): Averages might be
dominated, in extreme cases, by a single tour. For checking against this, we simply look
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Fig. 2 Histograms of logarithms of tour weights P(lnW) normalized as tours per bin, and weighted his-
tograms WP(lnW) are shown as indicated. Weights W are only fixed up to a β-dependent multiplicative con-
stant. The simulation shown in panel (a) is reliable, while that in panel (b) is not. Adapted from Refs. [19, 20]

at P (ln(W)) (see Fig. 2), and compare it with the weighted distribution WP (ln W). If
WP (ln W) has its maximum at a value of ln W where the distribution P (ln W) is well
sampled, we are on the safe side. If not, then the results can still be correct, but we have no
guarantee for it. An illustration of these two cases is shown in Fig. 2 [19, 20]. Figure 2(a)
shows that the sampling is sufficient and the statistical weight distribution is reliable, but
Fig. 2(b) shows the opposite situation where the result might be completely wrong.

3 Biased Growth

An important aspect of the method is that in general, for high efficiency, one should choose
judiciously a bias in the growth, in order to reduce as much as possible the fluctuations
of the weight factors wn. The optimal choice of bias is often a result of trial and error, as
there exists no general theory for it. The two choices discussed in the following subsections
are often useful, but by no means in all cases—and other choices may be useful in other
applications.

One aspect of PERM that often decides the success or failure is that any bias that im-
proves the growth at an intermediate stage should also be helpful later, i.e. it should not lead
the growth into a dead end. One application where this is violated dramatically is e.g. the
problem of random walkers in a medium with randomly placed traps (the “Wiener sausage”
problem, leading to the famous Donsker-Varadhan stretched exponential survival probabil-
ity [21]). In this problem walkers should, to maximize their survival chance at very long
times, stay very close to their starting point. On the other hand, for short times the path
integral (partition sum) is dominated by walkers who venture out to explore a larger area,
even if that might mean they get killed by a trap. Since this system can be mapped onto
a polymer problem, one can apply PERM to it [22]. These PERM simulations gave indeed
the first unambiguous numerical verification of the Donsker-Varadhan law, nevertheless they
completely failed for very long times, because both bias and population control conspired to
“mislead” the walkers [22] to venture too far out.
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3.1 Global Directional Bias

Assume you want to simulate a polymer whose one end is held fixed at x = 0, and the other
end is pulled away by a constant force F. In Sect. 5 we shall discuss in detail the case of a
poor solvent where the stretching might unfold the dense globule into which the unstretched
polymer would collapse. Here we just discuss qualitatively a polymer in a good solvent, i.e.
a stretched SAW.

This system could of course be simulated by an unbiased SAW, and the stretching could
be taken into account by reweighing each obtained configurations with a Boltzmann weight
∝ exp(−βx · F). But this would be extremely inefficient for large F , since weights would
be very uneven, and “correct” configurations would be very rare and would have very high
weight.

A much better strategy is to use a bias in the direction of the next step of the walk in the
direction of F. The amount of the optimal bias cannot be determined a priori, but depends
also on the excluded volume effect which helps to push the end further away in the direction
of the bias. We do not show any data here, but we just mention that the simulations get easier
with increasing F , since the walk resembles more and more an ordinary biased walk in this
limit, and pruning/cloning events get more and more rare.

3.2 PERM with k-Step Markovian Anticipation

A less trivial bias is suggested by the fact that a growing polymer will predominantly grow
away from the already existing part of the chain. This could be modeled crudely by deter-
mining the center of mass of that part, and biasing the growth away from it. A better strategy
is to learn on the fly how a typical short existing chain (of k monomers, say) would bias the
further growth in detail, and to remember at any time the previous k steps. This is called
Markovian anticipation [16, 23–25].

The crucial point of the k-step Markovian anticipation is that the (k + 1)th step of walk is
biased by the history of the previous k steps, i.e., the bias depends on the last k steps. Let’s
consider the general case of a walk on a d-dimensional hypercubic lattice. At each step i,
a walk can move towards to one of the 2d directions denoted by si = 0, . . . ,2d − 1. All
possible configurations of (k + 1) steps (i = −k, −k + 1, . . . ,−1, and 0), which are in total
(2d)k+1 configurations, are labeled by

S = (s−k, . . . , s−1, s0) = (s, s0) (12)

here s and s0 denote the configurations of the previous k steps and the (k + 1)th step. Either
during a separate auxiliary run or during the first part of a long run we build a histogram
Hm(S) with (2d)k+1 entries. For any S, the value of Hm(S) is the sum of all contributions
to Ẑn+m of configurations that had coincided with S during the steps n − k, n − k + 1, . . . ,
and n, summed over all n in some suitable range excluding transients. Typical values for 3-d
SAWs might be k = 10,m = 100, n > 300. Then Hm(S)/H0(S) measures how successful
configurations ending with S were in contributing to the partition sum m steps later. The
bias in k-step Markovian anticipation for the next step is thus defined by

P (s0|s) = Hm(s, s0)/H0(s, s0)∑2d−1
s′
0=0 Hm(s, s ′

0)/H0(s, s ′
0)

. (13)
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Fig. 3 The mean square end-to-end distance R2
N

plotted against N in a log-log scale (a) and against 1/ lnN

in the normal scale (b) [14]. R2/N ∝ 1 − 37/(363 lnN) is indicated by the straight line. Adapted from
Ref. [14]

4 Θ-Polymers

The first application of PERM was to Θ-polymers in three dimensions [14]. As we said, the
upper critical dimension for the Θ collapse is d = 3, whence we expect ordinary random
walk behavior with logarithmic corrections. These corrections have been calculated to lead-
ing [26] and next-to-leading [27] orders. The experimental verification of these corrections
is highly non-trivial, because one has to use extremely diluted solutions in order to avoid
coagulation of different chains, and thus the signals are very weak. Nevertheless, they have
been observed in small-angle neutron scattering [28].

4.1 A Single Θ-Polymer

It is for this problem that PERM shows the biggest improvement over all other Monte Carlo
methods. The reason is that at the Θ point entropic and energetic (Boltzmann-) effects cancel
exactly in the limit N → ∞. For finite N they do not cancel exactly (this gives rise to the
logarithmic corrections), but it is still true that the weight factors wn are very close to 1. Thus
hardly any pruning/cloning is needed, and to a first approximation the simulation reduces
simply to a straightforward simulation of random walks with small weight corrections. Full
PERM simulations for very long chains (the longest chains in [14] had N = 106) do require
in average one pruning/cloning step for every 2,000 ordinary random walk steps. Therefore,
in chain length n the algorithm effectively performs a random walk with diffusion coefficient
D ≈ 2,000. Asymptotically for N → ∞ the algorithm still needs O(N2) steps to create one
independent configuration of full length, but the coefficient is tiny.

Indeed, since a growing polymer with endpoint in a locally denser region might feel an
elevated Boltzmann factor at step n, but feels the compensating entropic disadvantage only
one step later, the optimal algorithm that produced these results was a slight modification of
the algorithm described in the previous section, where the population control was based on
a modified weight with incremental weight factors

w′
n = qmn/pn+1 (14)

instead of (9). Results are shown in Fig. 3. Theory [26] predicts leading logarithmic correc-
tions to be R2

N/N ∝ 1 − 37/(363 lnN), which would be a straight line in Fig. 3(b) with very
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small negative slope. Compared to that, the corrections to random walk behavior seen in
Fig. 3(b) are much larger, although they are clearly smaller than one would expect for, say,
a power law correction. It was indeed shown in [27] that the next-to-leading term increases
the deviation from mean field behavior and improves thus the agreement between theory
and simulation, but a fully quantitative verification remains elusive.

Far below the TΘ , PERM becomes inefficient, and it is instructive to see why: In strongly
collapsed globules, polymer configurations are locally similar to those in a dense melt, and
are well approximated by simple random walks without any correlations [3]. But this implies
that a collapsed chain with N = 1,000 has a configuration that is completely different from
the first 1,000 monomers of, say, a collapsed chain of 8,000 monomers. The former would
form a compact globule, while the latter would form a rather dilute structure. Thus, similar
to the problem discussed at the end of the last section, bias and population control during the
early stages of growth would be completely misleading as far as late stages of growth are
concerned. Otherwise said, by effectively disallowing configurations that are initially dilute
and fill the interior only during the later growth, the entropy is severely underestimated.

4.2 Unmixing Transition of Semidilute Solutions of Very Long Polymers

Let us now consider a semidilute solution of polymers of common length N slightly below
the TΘ temperature. The “unmixing” transition at which these polymers coagulate and phase
separate from the solute is, for any finite chain length N , in the Ising universality class
[29]. As N → ∞, the transition temperature Tc should approach TΘ from below. Since the
Ising model has upper critical dimension dc = 4, but the Θ-point has upper critical dc =
3, all critical exponents referring to collective properties (correlation length, specific heat)
should be that of the Ising model, while properties characterizing the N -dependence (e.g.
radii of gyration, critical concentration, TΘ − Tc) should be mean field like with logarithmic
corrections. In particular, the monomer density at the critical point should scale as

Φc ∼ N−1/2, (15)

up to logarithms of N .
A long standing problem in the 1990’s was that all experiments showed Φc ∼ N−xc with

xc = 0.38 ± 0.01 [29], which was considered as incompatible with theory—in particular,
since experimenters viewed any prediction of logarithmic corrections with great skepticism.

PERM can be easily modified for multi-chain systems, simply by placing the first
monomer of a new chain not near the end of the last chain, and by applying the correct
combinatorial factors that take into account the identities of different chains [30]. Such sim-
ulations are very inefficient for short chains, since then Tc � TΘ , but they become more and
more efficient as N → ∞. They showed clearly that the deviations from (15) are not due to
a different critical exponent, as was believed at this time, but due to logarithmic corrections
[30]. These are much larger than predicted by theory [31], but this was to be expected in
view of the results for single isolated chains.

5 Stretching Collapsed Polymers in a Poor Solvent

As a collapsed polymer chain of chain length N is stretched by an external force under poor
solvent conditions, one observes from a collapsed globule phase to a stretched phase, as the
stretching force is increased beyond a critical value [32]. This phase transition is first order
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in d = 3 dimensions, as is also suggested by the analogy of the Rayleigh instability of a
falling stream of fluid, but it seems to be second order in d = 2 [32]. Here we shall only
discuss the 3-d case.

This is modeled as a biased interacting self-avoiding random walk (BISAW) on a simple
cubic lattice in three dimensions. Assuming that a chain is stretched in the x-direction by
the stretching force F = F êx (êx is the unit vector in the x-direction), an additional bias term
bx is incorporated into the partition sum given by (8), where b = exp(βaF ) is the stretching
factor (a is the lattice constant) and x is the distance (in units of lattice constants) between
the two end points of the chain in the direction of F. The partition sum is therefore

ZN(q, b) =
∑

walks

qmbx. (16)

The poor solvent condition is indicated by q > qΘ where qΘ = e−ε/kTΘ ≈ 1.3087(3) [14].
According to the scaling law (2), in the thermodynamic limit N → ∞, the partition sum for
polymers in a poor solvent scales as

− lnZN(q, b = 1) ≈ μ∞(q)N + σ̃ (q)N2/3 − (γ − 1) lnN (17)

with μ∞ being the chemical potential per monomer in an infinite chain, and σ̃ is related to
the surface tension σ .

Choosing q = 1.5 which is deep in the collapsed region, we performed simulations of
BISAW with PERM. In order to improve the efficiency, each step of a walk is guided to
the stretching direction with a higher probability. The nth step of walk (adding the (n + 1)th

monomer) is toward one of the free nearest neighbor sites of the nth monomer in the parallel,
antiparallel, and transverse direction to F with probability: p+ : p− : p⊥ = √

b : √
1/b : 1.

Thus we have

pi =

⎧
⎪⎪⎨

⎪⎪⎩

0 if the step of the walk toward to

the i-direction is forbidden
p

(0)
i∑

allowed j p
(0)
j

otherwise
(18)

The corresponding weight factor at the nth step is then

win = qmnbΔxi

pi

, (19)

where mn is the number of non-bonded nearest neighboring pairs of the (n + 1)th monomer.
Δxi = 0, 1 or −1 if the displacement (rn+1 − rn) between the (n+ 1)th and nth monomers is
in the direction perpendicular, parallel, and antiparallel to F, respectively. The total weight
of a chain of length n is then

Wn =
n∏

n′=0

win′ . (20)

Using (5) and (11), chains are cloned and pruned if their weight is above 3Ẑn and below
Ẑn/3, respectively.

Results of lnZN(q, b)+μ∞N plotted against N are shown in Fig. 4(a) for various values
of b. For small b the curves are close to the curve for b = 1. As b increases, the initial
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Fig. 4 (a) lnZN(q, b) + μ∞N for d = 3, q = 1.5, and for various values of b. The value μ∞ =
−1.7530 ± 0.0003 used in this plot was obtained from dense limit simulations on finite lattices [32]. (b) His-
tograms of the end point distance P(x) versus x/N for q = 1.5. Biases were adjusted so that both peaks
have equal height: b = 1.4040 (N = 500), 1.4925 (N = 1,000), 1.5386 (N = 1,500), 1.5658 (N = 2,000),
1.5855 (N = 2,500). Normalization is arbitrary. The peak at x/N ≈ 0 corresponds to the collapsed phase,
the other one to the stretched phase. Adapted from Ref. [32]

(small-N ) parts of these curves are straight lines with less and less negative slopes. In this
regime the polymer is stretched. As long as these slopes are negative, the straight lines will
intersect the curve for b = 1 at some finite value of N , say Nc(b), i.e. for the finite system
of chain length Nc(b) the corresponding effective transition point is b. For N > Nc(b), the
values of lnZN(q, b) + μ∞N must deviate from the straight lines {see Refs. [22] and [32]}
for the detailed explanations. Since the curve for b = 1 becomes horizontal for N → ∞, the
true phase transition occurs at that value of b for which the straight line in Fig. 4(a) is also
horizontal. This can be estimated very easily and with high precision, giving for q = 1.5 our
final estimate bc ≈ 1.856(1).

To clarify that the transition is indeed a first-order phase transition, one can study the
histograms of x and m since PERM gives direct estimates of the partition sum and of the
properly normalized histograms. The general formula of the histogram is

Pq,b(m,x) =
∑

walks

qm′
bx′

δm,m′δx,x′ . (21)

Reweighting histograms obtained with runs performed nominally at q ′ and b′ is trivially
done by

Pq,b(m,x) = Pq ′,b′(m,x)(q/q ′)m(b/b′)x. (22)

Combining results from different runs can then be either done by selecting for each (m,x)

just the run which produced the least noisy data (which was done here in most cases), or
by assuming that the statistical weights of different runs are proportional to the number of
“tours” [14] which contributed to Pq,b(m,x). Note that for conventional Metropolis-type
Monte Carlo algorithms, it is not trivial to combine MC results from different temperatures
since the absolute normalization is unknown [33, 34].

An example of histograms P (x) for fixed q = 1.5 and b, plotted against x/N are shown
in Fig. 4(b) for N = 500, 1,000, 1,500, 2,000, and 2,500. The value of b is determined such
that the two peaks have the same height for each N , i.e., bc(N) = b is the effective transition
point for the finite system of size N . In addition the normalization factor is chosen arbitrarily
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to make all peaks having similar height for convenience. Using (22), each curve in Fig. 4(b)
contributed by the properly reweighting data from different runs for various values of b.
Obviously, with increasing N , we see that the distance between two peaks increases and the
minimum between the peaks shrinks to zero. This gives a strong evidence for the first-order
transition. Notice that a double peak structure with decreasing minimum alone would not be
a conclusive proof, as shown e.g. by the Θ-point in dimensions d ≥ 4 [35–38] and by some
non-standard percolation models [39].

6 Semiflexible Polymer Chains

Based on a Flory-like treatment [1, 40], for a chain with n units of the Kuhn length �K , and
diameter d randomly linked together such that the contour length L = N�b = n�K (there
are (N + 1) monomers in the chain and connected by the bond length �b), the effective free
energy of such a semiflexible chain contains two terms as follows,

ΔF ≈ R2
e /(�KL) + v2R

3
e

[
(L/�K)/R3

e

]2
. (23)

The first term is the elastic energy which is obtained by treating the chain as a free Gaussian
chain, hence one can immediately write down the probability of the end-to-end distance Re

which agrees with the Gaussian distribution. Therefore, the elastic energy is simply the log-
arithm of this distribution. The second term is the repulsive energy due to pairwise contacts
where the second virial coefficient v2 = �2

Kd , the density of monomers ρ = n/R3
e = LR3

e /�K

and the volume V = R3
e . Minimizing ΔF with respect to Re, one obtains the Flory-type re-

sult for self-avoiding walks as L → ∞ (N → ∞)

Re ≈ (v2/�K)1/5L3/5 = (�Kd)1/5(N�b)
3/5. (24)

The minimum contour length L where the exclusive volume is effective, i.e. the second term
in (23) is negligible in comparison with the first one if N < N∗, and using the scaling law of
the square for the end-to-end distance of a Gaussian chain, R2

e = �KL = �K�bN , the upper
bound of the chain length for describing the Gaussian chain is obtained with

N∗ = �3
K/(�bd

2). (25)

As L ≤ �K , the chain shows a rod-like behavior, the lower bound of the chain length for
the Gaussian chain is given by �k/�b . Therefore, the intermediate Gaussian behavior should
only exist for

�k/�b ≤ N ≤ N∗. (26)

For a linear semiflexible polymer chain (d = �b) under good solvent conditions, one would
expect to observe both a crossover from rigid rod-like behavior to almost Gaussian random
coils, then a crossover to self-avoiding walks when the chain stiffness varies.

In order to verify the prediction, it requires an efficient algorithm to generate sufficient
samples for very long semiflexible chains since the results should cover the linear length
scales in the three different regimes. PERM was first applied to this in [41]. The model
described below had indeed been studied by means of PERM already in [42], where however
most emphasis was put on the question whether the collapse transition changes from second
to first order as the stiffness is increased. This was predicted by mean field theories [43]. The
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Fig. 5 Rescaled mean square
end-to-end distance
〈R2

e 〉/(2�bN2ν) plotted against
the chain length N for
semiflexible chains with �b = 1
and various values of qb on a
log-log scale. Here ν ≈ 0.588 is
the Flory exponent for SAWs in
d = 3. Adapted from Ref. [41]

simulations in [42] supported the prediction, but were dangerously close to the significance
limit discussed in Sect. 2.

The above scaling relations for chains without self attraction were studied in [41]. Semi-
flexible polymers were there modeled by SAWs on the simple cubic lattice, with a bending
energy εb(1 − cos θ). Here θ is the angle between the new and the previous bonds (only
θ = 0 and θ = ±π/2 are possible on a simple cubic lattice). The partition function of the
SAWs of N steps with Nbend local bends (where θ = ±π/2) is

ZN,Nbend(qb) =
∑

config.

C(N,Nbend)q
Nbend
b (27)

where qb = exp(βεb) is the appropriate Boltzmann factor (qb = 1 for ordinary SAWs), and
C(N,Nbend) is the total number of chain configurations containing (N + 1) monomers and
Nbend local bends.

In the simulation, the walk of length n − 1 at the nth step can be guided to either walk
straight ahead in any direction, or make an L-turn. Of course, it is only allowed to walk
to the free nearest neighbor sites of the nth monomer. The ratio of probabilities between the
former case and the latter case is chosen as 1/qb . Since the stiffness of the chain is controlled
by qb , we give less probability to make an L-turn as qb becomes smaller which corresponds
to the case that the chain is stiffer. Results of the rescaled mean square end-to-end distance
〈R2

e 〉/(2�bN
2ν) plotted against the chain length N up to N = 50,000 for 0.005 ≤ qb ≤ 1.0

are shown in Fig. 5. For stiffer chains, namely for smaller values of qb , we do see a rod-like
regime at the beginning for not very long chains then a cross-over to a Gaussian regime, and
then finally the excluded volume effect becomes more important for very long chains, and
a horizontal plateau is developed. For very small qb , although the maximum chain length
is up to 50,000, it does still not yet reach the SAW regime. However, this is the first time
that one can give evidence for the existence of the intermediate Gaussian coil regime (26)
by using computer simulations.

7 Polymers in Confining Geometries

7.1 Polymers Confined Between Two Parallel Hard Walls

It is a challenge to verify the theoretical scaling predictions for single polymer chains of
length N confined between two parallel hard walls with distance D away from each other
(Fig. 6) due to the difficulty of producing long polymer chains by MC simulations and the
existence of very large finite-size corrections. For unconstrained SAWs, it is well know that
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Fig. 6 Schematic drawing of a
polymer chain confined between
two walls located at z = 0 and
z = D + 1. For our simulations,
chains are grown from the
starting point (x0, y0, z0). Here
x0 and y0 are fixed but
z0 = 1,2, . . . ,D

the asymptotic scaling behavior is reached rather slowly with correction terms decreasing
only as N−0.5 [44–46]. Therefore, in addition to SAWs, we studied also the Domb-Joyce
(DJ) model [47] with v = 0.6 (where convergence to asymptotia is much faster [45, 46]).

In the DJ model, polymers are described by lattice walks where monomers sit at sites,
connected by bonds of length one, and multiple visits to the same site are allowed (i.e. the
polymer chain is allowed to cross itself), but the weight is punished by a repulsive energy
ε > 0 for any pair of monomers occupying the same site. Each pair contributes a Boltzmann
factor v = exp(−βε) to the partition sum. Thus, the partition sum of a linear chain consisting
of N + 1 monomers is given by

ZN(v) =
∑

configs.

vm, (28)

where the sum extends over all random walk (RW) configurations with N steps, 0 ≤ v ≤ 1,
and m is the total number of monomer pairs occupying a common site, m = ∑

i<j δxixj

(xi denotes the position of the monomer i). For v = 1, it corresponds to the ordinary RW.
For v = 0 it is just the SAW model. In the thermodynamic limit where N → ∞, the DJ
model is in the same universality class of SAW for all v < 1. There is a “magic” value of
the interaction strength v = v∗ ∼= 0.6 where corrections to scaling are minimal and asymp-
totic scaling is reached fastest [45, 46]. In the renormalization group language, the flow
speed of the effective Hamiltonian approaching its fixed point depends on v. Moreover, it is
approached from opposite sides when v < v∗ and when v > v∗, with v∗ ∼= 0.6.

There exist important theoretical predictions for the monomer density profile ρ(z) and
the end monomer density profile ρe(z) near the wall given by Eisenriegler et al. [51, 52] as
follows:

ρ(z) ∼ z1/ν3 (29)

and

ρend(z) ∼ z(γ−γ (1))/ν ∼ z0.814(6) (30)

where z is the distance from the wall and γ (1) is the entropic exponent for 3D SAW with one
end grafted on an impenetrable wall. One should also expect that the density near the walls
is proportional to the force per monomer f . Indeed it was shown by Eisenriegler [51] that

lim
z→0

k
ρ(z)

z1/ν3
= B

f

kBT
= B

a

ν3μ∞
D−1−1/ν3 (31)

with B being a universal amplitude ratio. For ideal chains one has B = 2, while for chains
with excluded volume in 4 − ε dimensions one has B ≈ 2(1 − b1ε) with b1 = 0.075 [53]. In
three dimensions this gives the prediction B ≈ 1.85.
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Fig. 7 Results of the monomer density profiles ρ(z) obtained for the DJ model. (a) Rescaled values of
monomer density (D + 1)ρ(z) plotted against ξ = z/(D + 1). The function f0(ξ) = 18.74(ξ(1 − ξ))1/ν3 .
(b) The same data as in (a), divided by f0(ξ), plotted against a modified scaling variable, ξδ =
(z + δ)/(D + 1 + 2δ) with δ = 0.04. The prefactor in (31) for z = 0 and z = (D + 1) → ∞ is 0.71(3).
Adapted from Ref. [25]

In order to check the above mentioned theoretical predictions, we simulate the SAW
model and the DJ model on the simple cubic lattice with the confinement of a slab with width
D by using PERM with 6-step Markovian anticipation. For estimating the monomer density
profiles ρ(z) we only count those monomers in the central part of the chain, excluding 10%
on either side to avoid errors from the fact that (29) should hold only far away from the
chain ends, for monomer indices n satisfying D2 � n � N − D2 (we should mention that
N/D2 > 10 for all data sets). Results of ρ(z) obtained from the simulations are normalized
such that

∑D

z=1 ρ(z) = 1. Since we simulate single polymer chains between two walls at
z = 0 and z = D + 1, we can assume that

ρ(z) ≈ 1

D + 1
f0

(
z

D + 1

)
with f0(ξ) = A [ξ(1 − ξ)]1/ν3 , (32)

where the constant A = 18.74 is determined by normalization. We plot the rescaled values
of the monomer density (D + 1)ρ(z) against ξ in Fig. 7(a) for the DJ model. It looks like
that the scaling law (29) is satisfied and our data are described by the function f0(ξ) quite
well for z ∈ [0,D+1]. But, we actually miss the important information near the two walls in
such a plot. A prefactor on the right hand side of (32) is probably not a constant. In order to
give a precise estimate of the amplitude B (31) we introduce here an “extrapolation length”
δ as suggested in [49, 50] so that the scaling variable ξ is replaced by

ξδ = z + δ

D + 1 + 2δ
. (33)

Using the same data of ρ(z) but divided by f0(ξδ), the best data collapse shown in Fig. 7(b) is
obtained by taking δ = 0.04. It leads to limz→0,D→∞ D1+1/ν3z−1/ν3ρ(z)/A = 0.71(3). Since
the extrapolation length δ = 0.04 for the DJ model is much smaller than δ = 0.15 for SAWs
{see Fig. 7 in Ref. [25]}, it gives a first indication that corrections to scaling are indeed
smaller in the DJ model. Using (31), it gives B = 1.70 ± 0.08. This is only 2 standard devi-
ations away from the renormalization group expansion prediction or εc = 4 − d expansion
prediction B = 1.85 of Eisenriegler [51], which we consider as good agreement.
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Fig. 8 Schematic drawings of a flexible polymer chain of length N grafted to the inner wall of a tube
of length L and diameter D at the transition point. (a) As the chain is fully confined in the tube (in an
imprisoned state), it forms a sequence of nb = ND−1/ν blobs in a cigar-like shape, here ν = ν3 is the
Flory exponent in d = 3. (b) As one part of the chain escapes from the tube (in an escaped state), it forms
a flower-like configuration which consists of a “stem” containing Ntr monomers and a “crown” containing
N − Ntr monomers

7.2 Escape Transition of a Polymer Chain from a Nanotube

The confinement or escape problem of polymer chains in cylindrical tubes of finite length
has the merit that it is potentially very relevant to experiments and applications such as
the problem of polymer translocation through pores in membranes and the study of DNA
confined in artificial nanochannels [6–8]. The following treatment is based on [54–56].

Considering a polymer chain of length N with one end grafted to the inner wall of a
cylindrical nanotube with finite length L and diameter D under good solvent conditions,
the chain configuration is compressed uniformly as D decreases or N increases, but L is
fixed. Beyond a certain compression force, the chain configuration changes abruptly from a
homogeneously stretched and confined state (imprisoned state) to an inhomogeneous state
(escaped state) where polymer chains form a flower-like configuration with one stem con-
fined in the tube and a coiled crown outside the tube (see Fig. 8). This abrupt change implies
a first order transition. Since the theory based on the blob picture failed to predict the tran-
sition from a homogeneous state to an inhomogeneous state, the Landau theory approach
is used for describing such a first order transition including the metastable states. In the
Landau theory approach, all configurations are subdivided into subsets associated with a
given value of an appropriately chosen order parameter s that allows to distinguish between
different states or phases. The full partition function of the system is therefore obtained by
integrating over the order parameter:

Z = exp(−F) =
∫

ds exp[−Φ(s)], (34)

where Φ(s) is the free energy of a given set, and is therefore a function of the order param-
eter. Here the order parameter s is defined by the stretching degree, i.e. the ratio between
the end-to-end distance of monomer segments which are still confined in the tube, Rimp, and
the number of monomers confined in the tube, Nimp. As shown in Fig. 9, we see that near
the transition point the Landau free energy function has two minima, the lower minimum
is associated with the thermodynamically stable state, which corresponds to the equilibrium
free energy (either Fimp or Fesc) of the system, while the other minimum corresponds to the
metastable state [55, 56]. At the transition point, both minima are of equal depth.

In our simulations, we describe the grafted single polymer chain confined in a tube by
SAWs of N steps on a simple cubic lattice with cylindrical confinement {0 ≤ x ≤ L, y2 +
z2 = D2/4}, and the first monomer is attached to the center of the inner wall of the tube.
Taking the advantage of PERM that the associated weight of each generated configuration
is exactly known, we introduce a new strategy in order to obtain sufficient samplings of
the flower-like configurations in the phase space as follows: We first apply a constant force
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along the tube to pull the free end of a grafted chain outward to the open end of the tube as
long as the chain is still confined in a tube, and release the chain once one part of monomer
segments of it is outside the tube. Varying the strength of the force, we obtain flower-like
configurations containing stems with various stretching degree of monomer segments which
are still confined in a tube if the length N is long enough. The contributions for the escaped
states are therefore given by properly reweighting these configurations to the situation where
no extra force is applied. This is done by using biased SAWs (BSAWs) on a simple cubic
lattice with finite cylindrical geometry confinement, similar to the model in (16), but we use
here q = 1 to describe the good solvent condition.

With PERM, the total weight of a BSAW of N steps (N +1 monomers) is Wb(N,L,D) =∏N

n=0 wn with wn = b(xn+1−xn)/pn for n ≥ 1 and w0(N,L,D) = 1. pn is chosen as in (18).
The estimate of the partition sum is given by

Ẑb(N,L,D) = 1

Mb

∑

configs.∈Cb

Wb(Cb) (35)

where a set of configurations is denoted by Cb . Thus, each configuration of BSAWs with the
stretching factor bk contributes a weight W(k)(N,L,D) for a BSAW of N steps with b = 1
confined in a finite tube of length L and diameter D:

W(k)(N,L,D) =
{

Wbk
(N,L,D)/b

xN+1−x1
k , xN ≤ L,

Wbk
(N,L,D)/bL

k , xN > L ,
(36)

where index k labels runs with different values of the stretching factor b. Combining data
runs with different values of b, the final estimate of the partition sum is

Z(N,L,D) = 1

M

∑

k

∑

configs.∈Cbk

W (k)(N,L,D) (37)

here M is the total number of trial configurations.
The distribution of the order parameter, P (N,L,D, s) ∝ H(N,L,D, s), is obtained by

accumulating the histograms H(N,L,D, s) of s, where H(N,L,D, s) is given by,

H(N,L,D, s) = 1

M

∑

k

H (k)(N,L,D, s)

= 1

M

∑

k

∑

configs.

∈ Cbk
W (k)(N,L,D, s ′)δs,s′ (38)

and the partition sum of polymer chains confined in a finite tube can be written as

Z(N,L,D) =
∑

s

H(N,L,D, s) (39)

in accordance with (37). Thus, one can also double check the results of the partition sum.
The Landau free energy Φ(N,L,D, s) here is the excess free energy related to the poly-

mer chains with one end tethered to an impenetrable flat surface, i.e. φ(N,L,D, s) =
− ln[P (N,L,D, s)/Z1(N)] (Z1(N) ∼ μNNγ1−1 [57]). Results shown in Fig. 9 are for
L = 1,600, D = 17, and for N/L = 5.5, 5.7, 5.9. This shows that the information about
metastable states can also be extracted from the simulations with PERM.
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Fig. 9 The Landau free energy
per monomer, Φ(N,L,D, s)/N

plotted against the order
parameter s near the transition
point for the tube of length
L = 1,600 and diameter D = 17

Fig. 10 Schematic drawings of a star polymer consisting of three arms (f = 3) of length N = 3 each. The
center is singly occupied in (a) and f -folded occupied in (b). Those numbers show the order of monomers
which is added into the star polymer by using a chain growth algorithm

8 PERM for Branched Polymers with Fixed Tree Topologies

In this section we shall discuss two types of branched tree-like polymers: Star polymers
(where all branches emanate from one single point) and “bottle brushes” where side chains
of common lengths are attached to a backbone at regularly spaced points.

To be concrete, let us consider the simplest case of a branched polymer, a star polymer
where f arms are grafted to a single branch point, and all arms have the same length N .

As a linear chain is built by using PERM, at each step one monomer is added to the built
chain until the chain has reached its maximum length N or it has been killed in between. For
growing a star polymer we have to be aware that not only the interactions between monomers
in the same arm have to be considered but also the interactions between monomers on dif-
ferent arms have to be taken into account. If one arm is grown entirely before the next arm is
started, it will lead to a completely “wrong” direction of generating the configurations of a
star. However, it is straightforward to modify the basic PERM algorithm such that all f arms
of a star polymer are grown simultaneously [48, 58]. The multi-arm method is explained as
follows:

• A star polymer is grown from its branching point (center).
• f growth sites {x1, . . . ,xf } are considered at the same time. A monomer is added to each

arm step by step until all arms have the same length, then the next round of monomers
is added. As all the monomers in a star are numbered, it is similar as growing one linear
chain from the 1st monomer to the N th

max monomer (see Fig. 10). Nmax = Nf + 1 if the
center is singly occupied or Nmax = Nf + f if the center is f -folded occupied.

• A bias is given to guide the growth of arms into outward direction with higher probability.
The strength of this bias is adjusted in the way that it increases with f but decreases as the
length of arms becomes longer since there is more space in a dilute solvent for adding the
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next monomer. For example, we can choose the bias as a function of n, g(n), for n ≥ 0,

g(n) =
{

(n + 4.0)/(n + 1.3), outward direction,

(n + 0.6)/(n + 3.9), otherwise.
(40)

However, the strength of this bias can be adjusted by trial and error.
• The population control (pruning/cloning) is done in the same way as explained in Sect. 2

that at the step n, two thresholds W+
n and W−

n are proportional to the current estimate
weight Ẑn, e.g., W+

n = 3Ẑn and W−
n = 0.5Ẑn.

8.1 Star Polymers

For single star polymers composed of f arms of length N each in a good solvent, the parti-
tion sum and the rms center-to-end distance scale as follows:

Z
(1)
N,f ∼ μ−f N

∞ Nγf −1 (41)

and

R2
N,f ≈ Af N2ν (42)

where the critical fugacity μ∞ and the Flory exponent ν are the same for all topologies
but the entropic exponent γf depends on each topology [59]. In two dimensions, γf can be
calculated exactly by using conformal invariance [59], but there are no exact results for the
f -dependent power law for γf , and also not for the swelling factor Af . Therefore, computer
simulations are needed for a deep understanding of star polymers. Due to the difficulty of
simulating the star polymers with many arms f and of long arm length N by both MC
simulations [60–65] and molecular dynamics [66, 67], and because of the lack of precise
estimates of the exponents given in (41) and (42), PERM with multi-arm growth method
as explained above was developed [48]. With this algorithm, high statistics simulations are
obtained for star polymer with arm number up to f = 80 and arm length up to N = 4,000
for small values of f .

For our simulations of single star polymers in a good solvent, we use the Domb-Joyce
model with the interaction strength v∗ = 0.6 on the simple cubic lattice (see Sect. 7.1). It
allows us to attach a larger number of arms to a point-like center of stars, and thus additional
considerations of the corrections to scaling terms when a finite size core is used are avoided.
Two variants for studying star polymers are used in our simulations. In one variant the center
is occupied by one monomer, and in the other variant the center is occupied by f monomers
as shown in Fig. 10. Since the partition sum is estimated directly by PERM, the exponents
γf can also be determined easily according to (41).

In Fig. 11, we present results of γf from our simulations and from previous studies [61,
62, 68] for comparison. The theoretical prediction for the scaling law of γf for large f by
the cone approximation [64, 69] is

γf − 1 ∼ f −3/2. (43)

For small f , our results are in good agreement with the previous studies. For large f the
best fit with a power law γf − 1 ∼ −(f − 1.5)z would be obtained with z ≈ 1.68, which is
not too far off the theoretical prediction (43) but the prediction is also not exact.

After we have obtained quite reliable estimates of μ∞, ν, and γf for single star poly-
mer in a good solvent, we extend our study to a more complicated system where two star
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Fig. 11 Exponents γf plotted
against f . The solid line is just a
polygon connecting the points,
and the dashed line is a fit with
the large-f behavior as predicted
by the cone approximation (43).
Results obtained in
Refs. [61, 62, 68] are shown for
comparison. In the inset, we
show those results for small f .
Adapted from Ref. [48]

polymers interact with each other [58] by using the same model and the same algorithm. It
is well understood that interactions between both linear and branched polymers are soft in
the sense that they can penetrate each other and the effective potential is a rather smooth
function of their distance. For star polymers, there are some contradictions between results
in the literatures. Is the potential between two central monomers at large distance a Gaussian
potential or has it a Yukawa tail? Since we were able to simulate star polymers up to f = 80
arms, we expected that we would give a clear answer. This was the main motivation to study
the effective potential between two star polymers [58].

Witten and Pincus [69] point out that the scaling of the partition sum of a star with f

arms and arm length N each (41), together with the assumption that Z
(2)
N,f (r)/[Z(1)

N,f ]2 is a
function of x ≡ r/Rg only for any fixed f , i.e.

Z
(2)
N,f (r)

[Z(1)
N,f ]2

= ψf (r/Rg), (44)

implies that

V (r) ≈ VWP(r) ≡ bf ln(af Rg/r) (45)

where r is the distance between the two central monomers, and

bf = (2γf − γ2f − 1)/ν for 1 � r � Rg. (46)

According to our results shown in Fig. 11, instead of the scaling bf ∼ f 3/2, a power law
gives bf ≈ 0.27f 1.58. However, both af and bf should be universal and should not depend
on the specific microscopic realization.

There are two methods for estimating Z(2)(r) in our simulations:

(a) Two independent star polymers are grown simultaneously, and Z(2)(r) is computed by
counting their overlaps at different distance r . Here Z(2)(r) and Z(1)(r) are estimated in
the same run, which gives rather accurate results for the potential V (r) for very large
distances r and large N . For small distances r , the ratio Z(2)(r)/[Z(1)(r)]2 would be
indistinguishable from zero.

(b) Two star polymers are grown at fixed distance r with the mutual interactions taken
into account during the growth. This allows us to measure Z(2)(r) down to very small
distances r and large N . For large distances r , it gives very bad results of the potential
V (r) since it is obtained by subtracting the (nearly equal) free energies obtained in two
different runs.
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Fig. 12 (a) The effective potential V (r) for f = 18, plotted against Rg in a semi-log scale. The solid curve
shows (45), and the dotted curve is a Gaussian. (b) Rescaled radial Mayer functions against r/Rg for several
values of f . Curves are obtained from (49), with fitted parameters af , cf , df and τf . Adapted from Ref. [58]

For the data analysis, we use the data either from the first method or the second method, or
use the combination from both.

We present the effective potential V (r) between two star polymers of f = 18 arms in
Fig. 12(a). For r � Rg , V (r) follows the prediction given in (45), which is shown by the
solid curve. For r � Rg the MC data can be approximated by a parabola, i.e. V (r) is roughly
Gaussian

V (r) ≈ VGauss(r) ≡ cf edf r2/R2
g . (47)

Here we conjecture that cf and df are universal. In order to describe the effective potential
V (r) for the whole region of r , we propose that

V (r) = 1

τf

ln
[
eτf VWP(r)−df r2/R2

g + eτf VGauss(r)
]
, (48)

where τf is an additional parameter for every f , and V (r) > 0 for all r . As r → ∞, V (r) =
VGauss(r)[1 + O(r−bf )] (47), while V (r) = VWP(r)[1 + O(r2)] (45) as r → 0. In Fig. 12(b),
we plotted the rescaled radial Mayer function,

(r/R2
g)

2fM(r) = (r/Rg)
2(a − exp[−V (r)]), (49)

against the rescaled distance r/Rg . Our results are in good agreement with the simulations
of [70] but do not agree with the results in [71].

8.2 Bottle-Brush Polymers

The so-called bottle-brush polymer consists of one long molecule serving as a backbone
on which many side chains are densely grafted. As the grafting density σ increases, the
persistence length of the backbone increases. The bottle-brush polymer has the form of a
rather stiff cylindrical-like object. If the backbone is very short but side chains are very long,
it should behave like a star polymer. If the backbone is very long, the structure becomes more
complicated. One would expect that those side chains in the interior of the bottle-brush are
all stretched and show the same behavior, but those at the two ends behave as a star. In order
to understand the structure of bottle-brush polymers and check the scaling behavior of long
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Fig. 13 (a) A schematic drawing
of growing a bottle-brush
polymer step by step.
(b) A snapshot of the
configurations of bottle-brush
polymers consisting of Nb = 128
backbone monomers, N = 2,000
monomers in each side chain,
and the grafting density σ = 1/4
under a very good solvent
condition generated by PERM

side chains in comparison with theoretical predictions [72], we focus here the bottle-brush
polymers of a rigid backbone and flexible side chains.

For our simulations, we use a simple coarse-grained model. The backbone is treated as
a completely rigid rod, and side chains are described by SAWs with nearest neighbor non-
bonded attractive interactions between the same type of monomers and repulsive interactions
between the different type of monomers. A general formula for the partition function for
bottle-brush polymers consisting of one or two chemically different monomers is therefore
given by

Z =
∑

config.

qmAA+mBBq
mAB
AB (50)

where q = exp(−βε) (we assume that the attractive interaction εAA = εBB = ε), qAB =
exp(−βεAB) (εAB is the repulsive interaction between monomer A and monomer B), and
mAA, mBB, mAB are the numbers of non-bonded occupied nearest neighbor monomer pairs
AA, BB and AB, respectively. For q = 1, all side chains behave as SAWs. For q < qΘ it
corresponds to the good solvent condition, where qΘ = exp(−ε/kBTΘ) ≈ 1.3087 at the Θ

point [14]. For q > qΘ , it corresponds to the poor solvent condition. As qAB = 0, it cor-
responds to a very strong repulsion between A and B , while for qAB = q the chemical in-
compatibility vanishes {recall that [3] χAB ∝ εAB − (εAA + εBB)/2}. The grafting density σ

is defined by σ = nc/Nb where nc is the number of side chains and Nb is the number of
monomers in a backbone. Here only the results of bottle-brush polymers consisting of one
kind of monomers under a very good solvent condition are presented in order to show the
performance of the algorithm. Other applications can be found in [72–75].

We extend the algorithm for simulating star polymers to bottle-brush polymers. As shown
in Fig. 13(a), a bottle-brush polymer is built by adding one monomer to each side chain at
each step until all side chains have the same number of monomers. Then we start to add
the second run of monomers, i.e, all side chains are grown simultaneously. The bias of
growing side chains was used by giving higher probabilities in the direction where there are
more free next neighbor sites and in the outward directions perpendicular to the backbone,
where the second part of bias decreases with the length of side chains and increases with the
grafting density. A typical configuration of bottle-brush polymers consisting of Nb = 128
backbone monomers, N = 2,000 side chain monomers, and with grafting density σ = 1/4
under a good solvent condition is shown in Fig. 13(b) where the total number of monomers
is Ntot = 128 + 2,000 × 32 = 64,128 monomers.

For checking the scaling law of side chains, we introduce the periodic boundary con-
dition along the direction of the backbone (+z-direction) to avoid end effects associated
with a finite backbone length. The square of the average height of a bottle-brush polymer,
R2

h(N,σ ) = 〈R2
ex(N,σ )+R2

ey(N,σ )〉 is estimated by taking the average of the mean square
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Fig. 14 (a) Log-log plot of rescaled mean square height R2
h
(N,σ)/N2ν versus N (a) and η = σNν (b)

with ν ≈ 0.588. Results are obtained for three choices of Nb and several choices of the grafting density σ as
indicated. Those unphysical data (Rh > 0.5Nb) due to the artifact of using periodic boundary condition are
removed. The slope of the straight line corresponds to the scaling prediction. Adapted from Ref. [72]

backbone-to-end distance in the radial direction for all side chains. In Fig. 14(a) we plot
R2

h(N,σ ) divided by N2ν versus N for Nb = 32, 64, and 128, for various values of grafting
densities σ . The value of ν is given by the best estimate for 3d SAW by PERM [48]. We
see that those curves of the same grafting density σ coincide with each other. Increasing the
grafting density σ , it enhances the stretching of side chains. As σ → 0, we should expect
a mushroom regime where no interaction between side chains appears. As σ is very high,
the scaling prediction obtained by extending the Daoud-Cotton [76] “blob picture” [77–80]
from star polymers to bottle-brush polymers is R2

h(N,σ ) ∝ σ 2(1−ν)/(1+ν)N4ν/(1+ν). Thus, we
can give the cross-over scaling ansatz as follows for N → ∞,

R2
h(N,σ ) = N2νR̃2(η) (51)

with

R̃2(η) =
{

1, η → 0,

η2(1−ν)/(1+ν), η → ∞ (52)

where η = σNν .
After removing those unphysical data due to the artifact of using periodic boundary con-

dition in the regime where Rh(N,σ) > Nb/2, we plot the same data of R2
h(N,σ )/N2ν but

rescaled the x-axis from N to η = σNν according to the scaling law (51). We see the nice
data collapse in Fig. 14(b). In this log-log plot, the straight line gives the asymptotic behav-
iors of the scaling prediction (51) for very large η. As η increases, we see a cross-over from
a 3D SAWs to a stretched side chain regime but only rather weak stretching of side chains
is realized, which is different from the scaling prediction. However, this is the first time one
can see the cross-over behavior by computer simulations. This cross-over regime is far from
reachable by experiments.

9 PERM with Cluster Growth Method

It is generally believed that lattice animals, lattice trees, and subcritical percolation are good
models for studying randomly branched polymers and they are in the same universality
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Fig. 15 A still growing cluster
with N = 7 sites, b = 6 boundary
sites and g = 6 growth sites on a
square lattice

class. There exist several efficient algorithms, e.g., Leath algorithm [81], Swendsen-Wang
algorithm [82], etc. for studying the growth of percolation clusters near the critical point, but
they all become inefficient far below it, because the chance for growing a large subcritical
cluster by a straightforward algorithm decreases rapidly with N . Obviously we need some
sort of cloning, and since this will probably lead also to fluctuating weights, one might need
some pruning.

Cloning and pruning needs first some estimate for the weight of a cluster that is still grow-
ing. Moreover, it will turn out that growing clusters can have, depending on their detailed
configurations, very different probabilities to grow further. Thus, in addition to a weight we
might to need also a “fitness” that should depend on the weight but is not entirely determined
by it.

In the following discussion the algorithm is explained by considering the relationship
between the site percolation and site lattice animals [83].

In any cluster growth algorithm [81], a finished cluster with N sites and b boundary sites
on a lattice is generated with probability

PNb = pN(1 − p)b, (53)

if each lattice site is occupied with the probability p. By definition of lattice animals all
the clusters of same size N carry the same weight. Since the obtained percolation cluster
is biased by the probability PNb , its contribution to the animal ensemble is corrected by a
factor 1/PNb . Taking an average over the percolation ensemble, the partition sum of lattice
animals consisting of N sites is given by

ZN =
〈

1

PNb

〉
= p−N 〈(1 − p)−b〉. (54)

As shown in Fig. 15, now we consider a cluster with N sites, g growth sites and b

boundary sites. At each of the growth sites the cluster can either grow further, or it can
stop growing with the probability 1 − p. Thus, this still growing cluster gives a weight to a
percolation cluster with N sites and (b+g) boundary sites as pN(1−p)b+g/[pN(1−p)b] =
(1 − p)g . Taking an average over all clusters, we have

ZN =
〈

(1 − p)g

pN(1 − p)b+g

〉
= p−N 〈(1 − p)−b〉. (55)

This is the same formula as given by (54), but note that now we have included also those
clusters which are still growing.

Let us first point out this new variant of PERM:

• The percolation cluster growth algorithm with storing the growth sites into a queue in a
first-in first-out list (the scheme of breadth-first) is used.
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Fig. 16 Growing clusters generated in the (a) depth-first and (b) breadth-first implementations. In both cases,
p = pc = 0.5927 and N = 4,000. Occupied sites and growth sites are depicted by small red points and big
black points, respectively. Adapted from Ref. [83]

• The population control is done by introducing a fitness function

fn = Wn/(1 − p)αg = p−n(1 − p)−b−αg (56)

with a parameter α to be determined empirically, and used

fn > c+〈fn〉, fn < c−〈fn〉 (57)

as criteria for cloning and pruning.
• The depth-first implementation in PERM is still used here. Namely, at each time one deals

with only a single configuration of a cluster until a cluster has been grown either to the
end of the maximum size N or has been killed in between, and handles the copies by
recursion.

• The optimal value of the probability p is p < pc , and p → pc as N → ∞.

This algorithm was developed more or less by trial and error, guided by the following
considerations:

We first test the two common ways for growing the percolation clusters. (a) Depth-first:
growth sites are written into a first-in last out list (a stack). (b) Breadth-first: growth sites
are written into a first-in first-out list (a queue). In order to avoid the mix up with the depth
implementation in PERM, we use stack and queue to distinguish these two methods. Two
typical 2-d clusters of size N = 4,000 and at the critical point of percolation p = pc =
0.5925, growing according to these two methods are shown in Fig. 16. At first glance, one
would expect that the cluster growing by storing growth sites in a stack might be more
efficient than that the growth sites stored in a queue, because the number of growing sites
was about 3 times larger than that for the latter case. But the truth is, after a few generations
the descendents generated from the former case will die. On the other hand, the fluctuations
in the number of growth sites are much bigger in the former case, the weights in (55) will
also fluctuate much more, and we expect much worse behavior. This is indeed what we found
numerically: Results obtained when using a stack for the growth sites were dramatically
worse than results obtained with a queue.

Second, we check whether the efficiency is affected by the chosen order of writing the
neighbors of a growth site into the list. Studying the percolation cluster in two dimensions,
one can use the preferences east-south-west-north, or east-west-north-south, or a different
random sequence at every point. We found no big differences in efficiency.
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Fig. 17 Statistical errors of lnZN for lattice animals in d = 2 (a) and d = 8 (b) for various values of p.
To make the different runs comparable, errors are multiplied by the square root of the CPU time measured
in seconds. The cluster size N is up to 4,000 in (a) and up to 8,000 in (b). The percolation thresholds are
pc = 0.5927 in d = 2, and pc = 0.0752 in d = 8. Adapted from Ref. [83]

Third, it would be far from optimal to do the population control as explained in Sect. 2,
i.e. by using two thresholds W± on the current weights Wn ≡ p−n(1 − p)−b . This would
strongly favor clusters with few growth sites, since they tend to have larger values of b, for
the same n, and have thus large weights. But such clusters would die soon, and would thus
contribute little to the growth of much larger clusters. Therefore a proper fitness function fn

is needed.
Finally, we have to decide the optimal values of p empirically. It is clear that we should

not use p > pc , because it is subcritical percolation that is in the same universality class of
lattice animal. One might expect p � pc to be optimal because only minimal reweighting
is needed for small p. This is indeed true for small N , but not for large N . In order to reach
large N , it is more important that clusters grown with p � pc have to be cloned exces-
sively. otherwise, they would die rapidly in view of their few growth sites. In Fig. 17 we
present the errors of free energies FN = − lnZN for various values of p in d = 2 and d = 8.
The statistical errors always eventually decrease as 1/[CPU time]1/2, hence we show there
one standard deviation multiplied by [CPU time]1/2 (measured in seconds), for different val-
ues of p. Thus, we can compare the accuracy between those runs on different computers.
For d = 2 (Fig. 17(a)), each simulation was done for Nmax = 4,000 (although we plotted
some curves only up to smaller N , omitting data which might not have been converged).
We see clearly that small values of p are good only for small N . As N increases, the best
results were obtained for p → pc . The same behavior was observed also in all other dimen-
sions, and also for animals on the bcc and fcc lattices in 3 dimensions (data not shown). In
Fig. 17(b), we see the analogous results for d = 8 and for Nmax = 8,000, showing the errors
are much smaller than those in Fig. 17(a). Indeed, the errors decreased monotonically with
d , being largest for d = 2. Using p slightly smaller than pc we can obtain easily very high
statistics samples of animals with several thousand sites for dimensions ≥ 2. Another quan-
tity which can help to check the reliability of our data is the tour weight distribution (see
Sect. 2). In Fig. 18, we show the two tour weight distributions for two-dimensional animals
with 4,000 sites, for p = 0.57 and for p = 0.47. We see that the simulation with p = 0.57
is distinctly on the safe side, while that for p = 0.47 is marginal. In the log-log plot, it is
seen that the tail of the distribution P (ln W) for p = 0.57 decays faster than 1/W , thus the
product WP (ln W) has its maximum where the distribution is well sampled.

Error bars quoted in the following on raw data (partition sums, gyration radii, and av-
erage numbers of perimeter sites or bonds) are straightforwardly obtained single standard
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Fig. 18 Log-log plot of
distributions of tour weights
P(lnW) of 2d animals with
N = 4,000, for p = 0.57 and
p = 0.47, together with a straight
line representing the function
y = const/W . Adapted from
Ref. [83]

Fig. 19 (a) A site animal with 8 sites. (b) A site tree (“strongly embeddable tree”). (c) A bond animal which
is not a tree. (d) A bond tree (“weakly embeddable tree”)

deviations. Their estimate is easy since clusters generated in different tours are independent,
and therefore errors can be obtained from the fluctuations of the contributions of entire tours
(notice that clusters within one tour are not independent, and estimating errors from their
individual values would be wrong).

In addition to site animals, this algorithm can also be applied to bond animals and lattice
trees for studying randomly branched polymers. A bond animal is a cluster where bonds
can be established between neighboring sites (just as in SAWs), and connectivity is defined
via these bonds: if there is no path between any two sites consisting entirely of established
bonds, these sites are considered as not connected, even if they are nearest neighbors. Dif-
ferent configurations of bonds are considered as different clusters, and clusters with the
same number of bonds (irrespective of their number of sites) have the same weight [84].
Weakly embeddable trees are bond animals with tree topology, i.e. the set of weakly em-
beddable trees is a subset of bond animals, each with the same statistical weight. Strongly
embeddable trees are, in contrast, the subset of site animals with tree-like structure. All these
definitions are illustrated in Fig. 19.

9.1 Non-interacting Lattice Animals in the Bulk

The basic problem of lattice animals (site animals) is how to count the number of different
animals of N sites precisely, i.e. the estimate of the corresponding partition sum. Two an-
imals are considered as identical if they differ just by a translation, but they considered as
different if a rotation or reflection is needed to make them coincide. Two typical site animals
consisting of N = 12,000 sites on the square lattice in d = 2 and with N = 16,000 sites on
the body centered cubic (bcc) lattice in d = 3 are shown in Fig. 20.

In the thermodynamic limit as N → ∞, the number of animals (i.e. the microcanonical
partition sum) should scale as [85–87]

ZN ∼ μNN−θ (1 + bzN
−Δ + · · ·), (58)
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Fig. 20 Typical site lattice animals with N = 12,000 on the square lattice in d = 2 (a), with N = 16,000 on
the bcc lattice in d = 3 (b)

Fig. 21 (a) Results of lnZN − aN + θ lnN plotted against N−Δ, and against N (in the inset), and
(b) results of R2

N
/N2ν plotted against N−Δ, and against N (in the inset). The best estimates of a =

lnμ = 1.4018155(30), ν = 0.6412(5) and Δ = 0.9(1) are given by the best straight lines. All data are for
site lattice animals in d = 2. Adapted from Ref. [83]

and the gyration radius as

RN ∼ Nν(a + bRN−Δ + · · ·). (59)

Here μ is the growth constant (or inverse critical fugacity), and is not universal, while the
Flory exponent ν, the entropic exponent θ , and the correction exponent Δ [88] should be
universal. bz and bR are non-universal amplitudes, and the dots stand for higher order terms
in 1/N .

Results of the partition sum ZN and the mean square end-to-end distance R2
N for site

lattice animals in d = 2 are shown in Fig. 21. By taking the predicted value of θ = 1 and
plotting lnZN − aN + lnN against N , we should expect a curve which becomes horizontal
for large N by adjusting values of a = lnμ suitably. This is indeed seen for the central curve
with error bar in the inset of Fig. 21(a), but a precise estimate of μ is difficult because of
corrections to scaling. Considering the first correction term in (58) and (59), the correction
exponent Δ, and the estimate of the growth constant μ and their error bars are all determined
by the best straight line as N−Δ → 0 in Fig. 21. Our estimate of a = lnμ = 1.4018155(30)

with Δ = 0.9(1) is in perfect agreement with the exact enumeration result [89]. The Flory
exponent ν is determined by the same way and our estimate ν = 0.6412(5) is also in good
agreement with the previous estimate by Monte Carlo simulations [90].
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Fig. 22 The critical exponents ν

and (θ − 1)/(d − 2) against d .
Adapted from Ref. [83]

It is trivial to generalize the algorithm PERM with cluster growth method to lattice ani-
mals in higher dimensions 2 < d ≤ 9. Using the similar method of data analyses as shown
in Fig. 21 for those results obtained in d = 3 to d = 7 (dc = 8 is the upper critical dimension
of lattice animals, where large corrections have to be taken into account). The relationship
between the entropic exponent θ and the Flory exponent ν for the animal problem in d

dimensions is predicted by using supersymmetry [91],

θ = (d − 2)ν + 1. (60)

By plotting our data of the exponent ν and (θ − 1)/(d − 2) against d in Fig. 22, we see that
these two curves coincide with each other. It shows that the Parisi-Sourlas prediction (60) is
verified.

9.2 Lattice Animals Grafted to Surfaces

For a-thermal walls (which represent only a geometric barrier, without any other interac-
tions) the leading behavior for N → ∞ does not involve any new critical exponent [83].
This is no longer true, however, if the wall is attractive. In that case we expect a phase tran-
sition at a critical attractive energy beyond which the animal gets adsorbed to the surface,
similar to the adsorption transition observed also for linear polymers [57].

As in that problem, at the transition point there are new critical exponents. More pre-
cisely, the Flory exponent ν is the same as for non-grafted animals, but the entropic exponent
θ is changed [83]. Since this exponent could not be measured by any previous simulation
algorithm and since there exits no field-theoretic predictions for it, there exist no literature
values to compare to our measurements. This is different for a second new exponent spe-
cific for the transition point, the cross-over exponent φ. If q is the Boltzmann factor for the
monomer-wall interaction and qc is its critical value, then the scaling ansatz for the partition
sum of a grafted animal near the adsorption transition is

Z
(1)
N (q) ∼ μ(q)NN−θs �[(q − qc)N

φ]. (61)

The most interesting prediction for φ was that is superuniversal, i.e. its value is independent
of the dimension and φ = 1/2 for all dimensions [92]. While this was verified by the simu-
lations for d = 3,4 and 5, it was slightly violated (by 5 standard deviations) in d = 2 [83].
Obviously further investigations would be needed to settle this problem.
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Fig. 23 Entropic critical
exponents θ(α) for 2-d lattice
animals grafted to the tips of
wedges resp. cones with
angles α. Adapted from Ref. [94]

9.3 Conformal Invariance and Animals Grafted to Wedges

The critical exponents for animals in d = 2 dimensions can be calculated exactly, as for
many other critical phenomena in d = 2 dimensions. But while this is due to conformal
invariance in these other cases, 2-d animals are not conformally invariant [93].

For conformally invariant problems of cluster growth, the entropic critical exponents of
clusters grafted to the tips of wedges and cones (wedges with identified edges) can be cal-
culated exactly for any wedge angle, by mapping the wedge onto the half plane. Due to lack
of conformal invariance, this is no longer true for 2-d lattice animals. In [94], the exponents
θ(α) were measured carefully not only for wedges and cones with angles up to α = 2π . By
grafting them to branch points of Riemann sheets, angles up to 10π were studied. Results
are shown in Fig. 23. The simulations were made with the hope that someone might produce
a fit to these data that could suggest an alternative to conformal invariance. So far this hope
has not materialized, in contrast to what happened 111 years ago to some obscure black
body radiation data [95].

9.4 Collapsing Lattice Animals and Lattice Trees in d = 2

A coil-globule transition similar to that for linear polymers is also expected to occur for ran-
domly branched polymers as the solvent quality becomes worse, but the situation is much
more complicated. To describe the possible collapse transitions for self-interacting lattice
animals, we need two different types of interactions between nearest-neighbor monomer-
monomer pairs: (covalent) bonds that are needed for the connectedness of the cluster but
that can also form loops when present in excess, and weak interactions between non-bonded
pairs (“contacts”). Associated to these are two different control parameters [96]. The parti-
tion sum is therefore written as follows [97]

ZN(y, τ ) =
∑

b,k

CNbky
b−N+1τ k (62)

where CNbk is just the number of configurations (up to translations and rotations) of con-
nected clusters with N sites, b bonds, and k contacts. y and τ are fugacities for monomer-
monomer bonds and for non-bonded monomer-monomer contacts, respectively. As for un-
branched polymers, there is no need to introduce a separate monomer-solvent interaction,
since the number s of monomer-solvent contacts is not independent, but is given by

N N = 2b + 2k + s, (63)
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Fig. 24 A schematic drawing of
an interacting lattice animals
which contain a cluster with
b = 11 bonds and N = 12 sites,
and k = 2 non-bonded
monomer-monomer contacts, and
s = 22. It leads to
4N = 2b + 2k + s

Fig. 25 Phase diagram for interacting animals in d = 2. The solid curve separates an extended phase (below)
from a collapsed phase (above). At y = 0 the clusters are trees (minimal number of bonds), while at τ = 0
they have no contacts but only bonds. The dashed line corresponds to bond percolation, with the critical
point being at y = τ = 2. The short dashed-dotted line is a rough estimate for a possible transition between
a contact-rich and a bond-rich collapsed phase. The critical exponents ν and θ are also shown for different
universality classes. Adapted from Ref. [97]

where N is the lattice coordination number (N = 2d on a simple hypercubic lattice in d = 2
dimensions). A schematic drawing of an interacting lattice animal is shown in Fig. 24. This
model includes the following special cases:

• Unweighted animals: y = τ = 1.
• Bond percolation: y = p/(1 − p)2 and τ = 1/(1 − p) where 0 ≤ p ≤ 1. The critical

percolation point is at y = 2 and τ = 2 as p = pc = 1/2.
• Collapsing trees: y = 0 where b = N − 1.
• ‘Strongly embeddable’ animals with τ = 0, which have no contacts (k = 0). This model

was first studied by Derrida and Herrmann by transfer matrix methods [98].

The transition points are determined by the scaling laws of the partition sum:

ZN(y, τ = τc) ∼ μ(y)NN−θ (64)

and the gyration radius

RN ∼ Nν (65)

where μ(y) should depend continuously on y, but θ should take discrete values depending
on the respective universality. ν is the Flory exponent. A phase diagram for interacting
animals in d = 2 is shown in Fig. 25. Lattice animals are in the extended phase below the full
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line, but they are in the collapsed phase above the full line. The bond percolation is described
by the dashed curve. The percolation critical point at y = 2 and τ = 2 divides the transition
line into two different universality classes. On the left-hand side, the collapse transitions
are dominated by non-bonded contacts. In this region PERM simulations are very easy and
yield very precise values for the transition curve (which seems to be exactly horizontal)
and for the critical exponents. These results have been fully confirmed by field theoretic
methods [99]. For the Derrida-Herrmann model at the far right end of the transition curve,
PERM simulations are least efficient, and they could not improve on the results of [98]. It is
not entirely clear whether there exists a further (multi-)critical point between this end point
and the percolation point. Such a point, together with an additional phase separation line
emanating from it, was suggested by earlier exact enumeration studies (cited in [97]). PERM
simulations also weakly suggested such an addition phase separation line, indicated by the
short dashed-dotted line in Fig. 25, but these simulations were not easy and interpreting
their results was not unambiguous. Indeed, a completely different scenario for the behavior
along the transition line between the percolation and Derrida-Herrmann points is suggested
in [99].

10 Protein Folding

In this section we shall only describe applications of a variant of PERM [100, 101] to simple
lattice models, where it seems one of the most efficient algorithms for finding low energy
states. PERM was also applied to continuum models [102] and was there more efficient than
previous Monte Carlo algorithms [103, 104], but has been rendered later obsolete in this
application [105].

10.1 New Version of PERM (nPERM)

The main improvement of nPERM is that we no longer make identical clones as imple-
mented in old PERM, in order to avoid the loss of diversity which limited the success of old
PERM.

When we have a configuration of polymer chains with n− 1 monomers, we first estimate
a predicted weight W

pred
n for the next step (the nth step), and we count the number kfree of free

sites where the nth monomer can be placed. If W
pred
n > W+

n and kfree > 1, we make k (2 ≤
k ≤ kfree) clones with the request that k different sites are chosen for the nth step. Therefore,
k configurations with n monomers are forced to be different. If W

pred
n < W−

n , a random
number r is chosen uniformly in [0,1]. If r < 1/2, the chain is discarded, otherwise it is
kept and its weight is doubled. We tried several strategies for selecting k which all gave
similar results. Typically, we used k = min{kfree, [W pred

n /W+
n ]}.

It is still important to keep the right weight of each configuration with n monomers. When
selecting a k-tuple A = {α1, . . . , αk} of mutually different continuations αj with probability
pA, the corresponding weights Wn,α1, . . . ,Wn,αk

are

Wn,αj
= Wn−1qαj

kfree

k
(
kfree

k

)
pA

, j = 1,2, . . . , k. (66)

Here, the importance

qαj
= exp(−βEn,αj

) (67)
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of choice αj is the Boltzmann-Gibbs factor associated with the energy En,αj
of the nth

placed monomer in the potential created by all previous monomers. The other terms arise
from correcting bias and normalization.

Two strategies for the choice of k continuations among kfree are described as follows:

(i) New PERM with simple sampling (nPERMss):
k different free sites are chosen randomly and uniformly. The predicted weight is given
by,

W pred
n = Wn−1kfree, (68)

and the corresponding weight for each continuation αj is

Wn,αj
= Wn−1qαj

kfree/k (69)

since there are
(
kfree

k

)
different ways to select a k-tuple with equal probability, the prob-

ability pA is therefore

pA =
(

kfree

k

)−1

. (70)

Here the tuples related by permutations are considered as identical.
(ii) New PERM with importance sampling (nPERMis):

k different free sites are chosen according to the modified Boltzmann weight q̃αj
defined

by

q̃αj
= (k

(αj )

free + 1/2) exp(−βEn,αj
) (71)

where k
(αj )

free is the number of free neighbors when the nth monomer is placed at αj ,
and En,αj

is its energy gain. The idea of replacing qαj
by q̃αj

is that we anticipate
continuations with fewer free neighbors which will contribute less on the long run than
continuations with more free neighbors. This is similar to “Markovian anticipation”
within the framework of old PERM, described in Sect. 3.2, where the bias for placing a
monomer at the next step different from the short-sighted optimal importance sampling
was found to be preferable. The predicted weight is now

W pred
n = Wn−1

kfree∑

j=1

q̃αj
. (72)

Using the requirement that the variance of the weights Wn is minimal, the proper choice
of the probability pA to select a tuple A = {αi, . . . , αk} is found to be

pA =
∑

αj ∈A q̃αj∑
A′

∑
α′

j
∈A′ q̃α′

j

, j = 1,2, . . . , kfree. (73)

If qαj
had not been replaced by q̃αj

, the variance of Wn for fixed Wn−1 would be
zero. For k = 1, it corresponds to the standard importance sampling, i.e. pA = pαj

=
q̃αj

/
∑kfree

i=1 q̃αi
. The weight at the nth step is thus Wn,αj

= Wn−1qαj
/pαj

. For k > 1, Wn,αj

is given by (66).
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A noteworthy feature of both nPERMss and nPERMis is that they cross over to complete
enumeration when W+

n and W−
n tend to zero. In this limit, all possible branches are followed

and none is pruned as long as its weight is not strictly zero. In contrast to this, with the
use of the original PERM as explained in Sect. 2, exponentially many copies of the same
configuration would be made. It suggests that one can be more lenient in choosing W+

n and
W−

n when applying nPERM.

10.2 HP Model

For testing the efficiency of the new PERM, we applied it to the HP model [106] since this
model is well simulated for bench-marking. In this model, a protein is simplified by replac-
ing amino acids by only two types of monomers, H (hydrophobic) and P (polar) monomers.
Therefore a protein (a polymer) of length n is modeled as a self-avoiding chain of n steps
on a regular (square or simple cubic) lattice with repulsive or attractive interactions between
neighboring non-bonded monomers such that εHH = −1, εHP = εPP = 0. The partition sum
is

Zn =
∑

walks

qm (74)

where q = exp(−βεHH) and m is the total number of non-bonded H–H pairs.
In our simulations, we chose the two thresholds Wn− = 0 and W+

n ≤ ∞, i.e. we neither
pruned nor branched, for the first configuration hitting length n. For the following configu-
rations we used W+

n = CẐn/Ẑ0(cn/c0)
2 and W−

n = 0.2W+
n . Here, cn is the total number of

configurations of length n already created during the run, Ẑn is the partition sum estimated
from these configurations, and C is some positive number ≤ 1. The idea of incorporating
the term (cn/c0)

2 is that we can reduce the upper threshold W+
n in order to make more

cloning in possible branches as a lower energy state is hit but only few configurations of
length n have been obtained. The following results were all obtained with C = 1, though
substantial speed-ups (up to a factor 2) could be obtained by choosing C much smaller, typ-
ically as small as 10−15 to 10−24. The latter is easily understandable: with such small C, the
algorithm performs essentially exact enumeration for short chains, giving thus maximal di-
versity, and becomes stochastic only later when following all possible configurations would
become unfeasible.

For presenting the efficiency of nPERMss and nPERMis, we applied them to find the
ground state of the HP model with blind search. Special comparison is made with the core-
directed growth method (CG) of Beutler and Dill [107]. This is the only method we found
to be still competitive with nPERM but it works only for the HP model and relies heavily on
heuristics. Two examples are shown here.

(a) Ten sequences of 48-mers in d = 3 from Ref. [108] are tested. In Table 1, we list the re-
quired CPU time (measured in minutes) per independent ground state hit on a 167 MHz
Sun ULTRA I workstation. As with the original PERM [14], we could also reach low-
est energy states by using nPERM, but the required CPU time is within one order of
magnitude shorter than that needed for PERM. For all ten sequences we use the same
temperature, exp(1/T ) = 18, although we could have optimized CPU times by using
different temperatures for each chain. Results obtained in Refs. [100, 101] are carried
out on a SPARC 1 machine which is slower by a factor ≈ 10 than the Sun worksta-
tion. Therefore, in Table 1 we multiplied their results by 10 for comparison. We see that
nPERM gave comparable speeds as CG. But, one has to note that the lowest energy of
the sequence No. 9 was not hit by CG [107].
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Table 1 Performances for the 3-d binary (HP)-sequences of 48-mers from [108], presented by the CPU time
(minutes) per independent ground state hit. The ground state energy is denoted by Emin. Results obtained by
using PERM [110], nPERMss and nPERMis [100, 101] are carried out on a 167 MHz Sun Ultra I workstation.
Results quoted from Ref. [107] obtained by CG are multiplied by 10 for the comparison

Sequence No. −Emin PERM nPERMss nPERMis CG

1 32 6.9 0.66 0.63 0.94

2 34 40.5 4.79 3.89 3.50

3 34 100.2 3.94 1.99 6.20

4 33 284.0 19.51 13.45 2.90

5 32 74.7 6.88 5.08 1.20

6 32 59.2 9.48 6.60 46.00

7 32 144.7 7.65 5.37 6.40

8 31 26.6 2.92 2.17 3.80

9 34 1,420.0 378.64 41.41 –

10 33 18.3 0.89 0.47 0.11

Fig. 26 (a) One of the ground state configurations for a N = 64 chain in 2D from [109]. Other states with the
same energy differ in the detailed folding of the tails in the interior, but have identical outer shapes. (b) When
about 3/4 of the chain is grown, one has to pass through a very unstable configuration which is stabilized
only later, when the hydrophobic core is filled. Adapted from Refs. [100, 101]

(b) There exists one HP sequence of 64-mers introduced in Ref. [109], for which it is par-
ticularly difficult to find its ground state energy Emin = −42 by any chain growth al-
gorithm. One of the ground state configuration is shown in Fig. 26(a). Its degeneracies
of Emin = −42 differ in the detailed folding of the tails in the interior. As one uses a
chain growth algorithm, it seems very unnatural that the chain has to grow first along
an arc Fig. 26(b), only until much later that the structure of the chain will be stabilized.
It shows the difficulty of folding this HP sequence into its ground state. With nPERM,
the ground state was reached with blind search. The average CPU time per ground state
hit was about 30 h on the DEC21264, which seems to be roughly comparable to the
CPU time needed in Refs. [111–113], but slower than Ref. [107] where CG was used.
In a previous application of (old) PERM [110], the configuration wirh Emin = −42 was
found only by means of some special tricks (non-blind search) together with the original
PERM.
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11 DNA Melting

At physiological temperatures, DNA forms the famous double helix. When the temperature
is elevated, a point Tm is reached where the covalent bonds along the backbone are still
strong enough to keep the two strands intact, but the hydrogen bonds between the strands
no longer can keep them together. The ensuing separation at temperatures > Tm is known as
DNA denaturation or DNA melting.

Since the strengths of the hydrogen bonds between pairs A-T and C-G are different,
also the melting temperatures Tm are different for homogeneous DNA, with Tm(A − T ) <

Tm(C − G). For natural DNA, the effective melting temperature depends on the A/C com-
position, and precise measurements of melting curves for short pieces of DNA can give
detailed information about the base composition. This has been used for a long time as one
of the easiest and fastest methods to obtain genetic information, and modern developments
have made high resolution DNA melting one of the most simple, cheap and fast techniques
for genotyping, sequence matching, and mutation scanning [115].

The sharpness of the transition in case of long homogeneous DNA has suggested since
long ago that DNA melting is a first order phase transition [114]. But the earliest models
[116, 117] by Poland and Scheraga could only give rise to a second order transition, which
was seen as a severe problem. These models of course lacked many aspects of the real
DNA melting problem, such as the helical structure of DNA. This was done in view of the
universality of second order phase transitions, and later models that did include the helix
structure indeed did not do better.

On the other hand, it was already speculated early on that the excluded volume effect—
that was neglected in [116, 117]—could be responsible for the change into a first order
transition. The first model that treated the excluded volume effect correctly was published
by Coluzzi et al. [118] and simulated by means of PERM. The model treated each DNA
strand as a SAW on the simple cubic lattice. But the two strands were mutually self avoiding
only to the extent that bases that were not supposed to be bound by hydrogen bonds were
not allowed to occupy the same lattice site. Base pairs that were bound in the native (non-
molten) configuration were not only allowed to occupy the same site, but would also gain
an energy ε if they did, mimicking thereby the binding between the two strands. In addition,
variants were studied where either the excluded volume effect within each strand and/or
between the strands was neglected.

The results were as expected: While all variants that did not incorporate the full excluded
volume effect showed second order transitions, the version with full excluded volume inter-
actions showed a first order transition. Later studies, both by simulations (using PERM and
other methods) and by analytic arguments confirmed these results (see [119] for references).

12 Summary

In this review we have concentrated on applications of PERM to problems in polymer
physics. But PERM can also be applied to other problems where it is important not only to
find rare events, but also to estimate the probabilities with which they occur. This includes
various reaction-diffusion problems such as the long time tails in the Donsker-Varadhan
problem (see Sect. 3) and in the annihilation reaction A+A → 0 [120], but also to more ex-
otic problems like that of multiple spanning clusters in percolation [18]. These are all prob-
lems where theory makes clear predictions that were very hard to verify numerically with
other algorithms. But there are also some other applications of PERM to polymer problems
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that we have not discussed here, such as polymers grafted to porous [121] and non-porous
[57] membranes, adsorption of copolymers to surfaces [122], scaling corrections for SAWs
on Manhattan lattices [123], and 2-d ISAWs with orientation dependent interactions [124].

PERM belongs to a class of Monte Carlo algorithms called sometimes “sequential al-
gorithms with resampling” [125]. In contrast to most other algorithms in this class, it is
implemented depth-first which leads to very compact codes and minimal memory require-
ments. In principle, it can be applied to any problem where instances are built sequentially
by repeating small steps. Its main ideas are that these steps can be biased in order to shear
the evolution towards the wanted (in general rare but highly weighted) configurations. If
this is not deemed successful, the further evolution can be pruned, while very successful tri-
als can be cloned, with each clone evolving further independently. Notice that pruning and
cloning are done on partially constructed configurations, with the hope that configurations
that are successful at an early stage will also continue to be successful later. When this is
true, efficiency can be spectacular (such as for Θ polymers, Sect. 4). But when it is not true,
the method simply fails. Examples of the latter were also discussed in Sects. 3, 4 and 11.

In most applications, the criterion for success is simply the weight of the configuration,
based on a combination of Boltzmann, entropic, and bias compensating factors. But in some
cases—illustrated in Sect. 9 for lattice animals—the weight itself would be a very poor
“fitness” indicator. For lattice animals, a much better fitness function was found empirically.

In addition to the versions of PERM that we have discussed in this review, there exist also
“flat” [126] and “multicanonical” [127] versions of it. Their main advantage is that data over
a wide range of energies can be obtained in one single run, while ordinary PERM would need
several runs, each covering the energy range that dominates at one particular temperature.
This is certainly an attractive feature, but it is not as important as in Markov Chain Monte
Carlo algorithms. While it is there highly non-trivial to combine results obtained at different
temperatures [33, 34], this is much easier for PERM where the algorithm provides very
precise estimates of the partition sum.
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