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Singapore experienced its first known Zika outbreak in 2016. Given the lack of

herd immunity, the suitability of the climate for pathogen transmission, and

the year-round presence of the vector—Aedes aegypti—Zika had the potential

to become endemic, like dengue. Guillain–Barré syndrome and microcephaly

are severe complications associated elsewhere with Zika and the risk of these

complications makes understanding its spread imperative. We investigated

the spatio-temporal spread of locally transmitted Zika in Singapore and

assessed the relevance of non-residential transmission of Zika virus infections,

by inferring the possible infection tree (i.e. who-infected-whom-where) and com-

paring inferences using geographically resolved data on cases’ home, their

work, or their home and work. We developed a spatio-temporal model

using time of onset and both addresses of the Zika-confirmed cases between

July and September 2016 to estimate the infection tree using Bayesian data

augmentation. Workplaces were involved in a considerable fraction (64.2%)

of infections, and homes and workplaces may be distant relative to the scale

of transmission, allowing ambulant infected persons may act as the

‘vector’ infecting distant parts of the country. Contact tracing is a challenge

for mosquito-borne diseases, but inferring the geographically structured trans-

mission tree sheds light on the spatial transmission of Zika to immunologically

naive regions of the country.
1. Introduction
The tropical city-state of Singapore is home to the Aedes mosquitoes, Ae. aegypti
and Ae. albopictus, has local transmission of arboviruses such as dengue [1–5]

and chikungunya [2,6,7] and is at risk of outbreaks of Zika virus (ZIKV) [8].

The anthropophilic Ae. aegypti, in particular, is found—at low densities—in

close proximity to the human population, despite sustained elimination efforts,

including source reduction, traps that remove gravid mosquitoes, outbreak

investigations around clusters of cases, and public health education campaigns

[9,10]. The continued presence of Ae. aegypti has led to dengue being endemic in

Singapore, with substantial impacts on health and the economy [11].

As in many other metropolises, it is commonplace for residents to live and

work in different parts of the city. As a result, although vector-borne diseases

are geographically clustered, because of the localized presence of infected mos-

quitoes, humans may act as a conduit facilitating longer distance spread to seed

new foci of infection [12–14]. It is therefore vital to understand the contribution
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of both human mobility and the length of mosquito ranges to

arbovirus dissemination.

The Zika outbreak that was first identified in Singapore in

August 2016 provided a unique opportunity to illuminate the

geographical spread of a nascent arbovirus outbreak across

the city-state. Within several weeks of its first identification

within and around a construction site in the southeast of the

country, the outbreak had spread to multiple secondary loci

across many parts of the island [8]. Over the next month,

there were approximately 100 confirmed cases a week, of the

same order of magnitude as the four serotypes of dengue

[15]. Like the dengue viruses, Zika is transmitted primarily by

Ae. aegypti, and in consequence, there was, and remains, the

potential that the ZIKV could become similarly endemic. Auto-

chthonous ZIKV transmission is concerning, because of the risk

of severe complications including Guillain–Barré syndrome

and microcephaly [16–18], which, although not reported to

date in relation with ZIKV infection in Singapore, makes

successful control imperative.

As a legally notifiable disease in Singapore, the residential

and workplace addresses of confirmed cases of ZIKV disease

were collected by the Ministry of Health under the proviso of

the Infectious Diseases Act [8]. Despite the ongoing baseline

vector control programme that targets Aedes mosquitoes in resi-

dential areas, the outbreak demonstrates the possibility that

human movement may allow the virus to break the ‘cordon’

of vector control and lead to cross-island transmission. In con-

trast to dengue, which has been endemic in Singapore since at

least the 1960s [10,19], the 2016 Zika outbreak spread from

one initial locus and across a population that has heretofore

not experienced recorded Zika outbreaks; like dengue, it is

expected that there be relatively little seasonal forcing on trans-

mission risk [20]. Together, these characteristics make Singapore

an ideal model system to understand Zika transmission.

The objective of this study was to assess the contribution of

workplaces to the transmission of ZIKV infections during

the first wave of ZIKV in Singapore. To this end, we used

spatio-temporal models built using Bayesian methods to

comprehensively analyse the autochthonous spread of Zika,

exploiting the home and work addresses and date of symptom

onset of 323 Zika-confirmed cases. To quantify the role of

workplaces to the transmission of ZIKV, we explored the

space of possible infection trees (i.e. who-infected-whom-where)

to infer how much infection, and how much transmission,

occurs around the home and workplace of cases. This may pro-

vide valuable information to guide vector control efforts for

future outbreaks both in Singapore and elsewhere.
2. Material and methods
2.1. Zika case data
The Zika outbreak in Singapore resulted in 323 Zika-confirmed cases

between July and September 2016 [8]. As Zika had been made a noti-

fiable disease, attending physicians were required to notify the

Ministry of Health for all cases. Under the auspices of the Infectious

Diseases Act, the residential and workplace addresses, and date of

symptom onset, were recorded for these confirmed cases.

2.2. Public transport data
Public transportation is the most common mode of transport of the

residents of Singapore [21]. There are three main modes of public

transportation in Singapore: the Mass Rapid Transit (MRT), the

Light Rail Transit (LRT) and public buses. To pay the public
transport fares, most commuters use an EZ-link contactless card:

a smart card that is read when entering or leaving the MRT or

LRT network or when boarding or alighting a bus. Using data

on all users of EZ-link cards over one month from the Land Trans-

port Authority of Singapore, which captures the time and location

of commuters’ intersecting with the public transport system, we

identified individuals who visited within a 1 km square centered

on the initial focus, and for each inferred a plausible home address

and a plausible work address too using the algorithm described in

the electronic supplementary materials. We then discarded those

with neither an inferred home nor work address within that

1 km square and summarized the distribution of distances

between the addresses of those remaining.

2.3. Spatio-temporal model
We developed a spatio-temporal model using the residential and

workplace addresses, and date of symptom onset (as a proxy for

time of infection), of the 323 Zika-confirmed cases between July

and September 2016 to estimate the source of infection for each

case using Bayesian data augmentation.

While contact tracing is possible for diseases like severe acute

respiratory syndrome (SARS) [22], it is a challenge for vector-

borne disease as we are, obviously, unable to contact trace the

mosquitoes, and as a result we do not know the source of infection

for each case, i.e. the case infecting the mosquito infecting that case.

The location where the individual is infected is unobserved and

may often be their home or other places they spend significant

amounts of time, such as their place of work. In addition, there is

very little information available on those individuals who escape

infection altogether. Calculating the likelihood of the parameters

becomes challenging without knowing the extra information.

To address this uncertainty, we developed a Bayesian data aug-

mentation framework which considers the source of infection as

augmented data or nuisance parameters [23–25]. In this analysis,

the parameter space includes the unknown nature, location and

time of infection. Flat prior distributions were assumed for all

parameters (details in the electronic supplementary materials).

Assuming that Ij is the individual who infects individual j,
we denote hij to be the hazard of infection from a potential infect-

ing individual i to individual j, which is parameterized as

follows. The probability that i is the individual infecting j is:

Pr (Ij ¼ i) ¼
hijP

k:tk,tj
hkj

,

where the time dependence of hij is suppressed for brevity and tk is

the day that individual k had the onset of symptoms. The hazard of

infection is assumed to be additive across sources and multiplica-

tive in time and space and, hence, the hazard can be written in

terms of the following spatial and temporal kernels:

hij / fT(tj � ti)[ fDkHi, Hjkþ fDkHi, Wjkþ fDkWi, Hjk
þ fDkWi, Wjk ],

where fT(d) ¼ 1=ds
ffiffiffiffiffiffi
2p
p

exp {�ððlog (d)� mÞ2Þ=ð2s2Þ} (for d . 0

and 0 otherwise) is a time and fD(d) ¼ lexp(2ld) a spatial kernel

representing host and mosquito movement (for space) and incu-

bation (for time). It is worth noting that the temporal kernel

represents the convolution of extrinsic and intrinsic incubation,

and these are not inferred or modelled separately. We assume

that the hazard for the time between infections is proportional to

the lognormal density with mean m and standard deviation s on

the log scale, set to be consistent with the 10–23 days serial interval

range for Zika fever [26] as there was insufficient information to

directly estimate the temporal kernel from the data. Three fixed

temporal density were considered: lognormal(12,3), lognor-

mal(14,3) and lognormal(16,3); in addition a distribution with

free parameters, lognormal(m,s), was also considered. We

assume that the distances between infections have kernels
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Figure 1. Notation and model of host and vector generation distances. Individ-
ual 1 (red dots) resides at H1 and works at W1. She was infected in the vicinity of
her home and she seeds an infection (or a cluster, S2) near her workplace; this
represents the host generation distance. This cluster then infects individual 2
(blue dots) near his home, H2. This typically shorter distance is the vector gen-
eration distance. The host generation distance is typically longer than the vector
generation distance because humans may act as a conduit to longer distance
spread to seed new foci of infection. (Online version in colour.)
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proportional to the exponential density with rate l estimated from

the data. In this model, ti is time i had onset of symptoms, Hi and

Wi are coordinates of i’s home and workplace addresses, respect-

ively. The individual can be infected at home or work and can

infect others near his or her home or workplace. Lj [ fHj, Wjg is

the vicinity individual j was infected at and Sj [ {HIj , WIj } the

vicinity Ij infects j. Here, we also defined kLIj , Sj k to be the host

generation distance, namely the distance from where Ij was

infected to the location closest to where s/he infected j, and

kSj, Ljk to be vector generation distance, namely the distance

from the location Ij exposed j at to where j was infected. The

notation and terminology are represented in figure 1.

A custom-designed Markov chain Monte Carlo algorithm

[23,24] was developed to allow for rapid mixing through the

joint posterior distribution of the parameters, which governs

both the spatial and temporal aspects, and the augmented

data. A standard Metropolis–Hastings step was implemented

to update the parameters [27,28] using a standard Gaussian pro-

posal distribution with bandwidth determined from pilot tests.

A Gibbs step was implemented to update the source of infection

for case i. The source (individual) must precede the new case and

is sampled with the proposal distribution with mass:
80604
wi, j ¼
b fT(ti � tj) [ fDkHi, Hjkþ fDkHi, Wjkþ fDkWi, Hjkþ fDkWi, Wjk]P

k:tk,tj
b fT(tj � tk)[ fDkHk, Hjkþ fDkHk, Wjkþ fDkWk, Hjkþ fDkWk, Wjk]

:

Here, fT and fD are taken to be proportional to lognormal and

exponential distributions, respectively, while b is a constant of

proportionality that cancels in the Gibbs step.

2.4. Estimation of infection tree—who-infected-
whom-where

From the spatio-temporal model, we inferred (i) Lj the location

where individual j was infected and (ii) Sj the potential source

which was seeded by individual Ij (i.e. Ij is the ‘human donor’

who infected the Aedes mosquitoes in the vicinity of j which

then went on to infect j ). With this, we estimated an infection

tree (i.e. who-infected-whom-where).

The majority of the ZIKV infections were not severe resulting

in ambulant infected individuals who may act as the ‘vector’ infect-

ing distant parts of the country. Given the infection tree, we

identify several individuals who may be responsible for spreading

Zika to immune-naive regions of Singapore. These individuals, or

super-dispersers, were the most probable donors who resulted in

the infection of other individuals at a relatively far distance

(beyond an arbitrary threshold u ¼ 15 km, corresponding roughly

to the 95th percentile of the cumulative distribution function

(CDF)) from where they were infected. Again, assuming Ij to be

the human donor responsible for infecting individual j, Ij was

responsible for seeding the source location of infection of individ-

ual j, Sj. The distance between Sj and the location at which j was

infected at, Lj, is given by kSj, Ljk and the distance between the

location where Ij was infected at, LIj , and the location at which j
was infected, Lj, is kLIj , Ljk. Individual Ij is identified as a super-

disperser if kLIj , Ljk � kSj, Ljk.u. For example, an individual

infected at work could infect mosquito(es) in his residential area

(formerly without an outbreak and distant from other potential

sources) which after several days results in the infection in other

individuals around that area. This individual would be flagged

as a super-disperser if his home and work were sufficiently distant.

Three variants of the basic model were developed—home-alone,
work-alone and home-and-work. The first two models consider only

home or work address, respectively, as a source of infection while

the third model considers both home and workplace as potential

sources of infection. Using the deviance information criterion
(DIC) [23], we chose the model variant that best fits the data. To dis-

play uncertainty in the source of infection, we derive spatial

posterior density plots of the location of the source of infection for

each case, separately, using bivariate kernel density estimation on

the posterior samples of sources of infection. These posterior density

maps aggregate cases located close to each other in space, thereby

providing a fairer depiction of the uncertainty in infection locations

than an individual-based metric. The posterior distribution of the

CDF for the distance between where the inferred donor was inferred

to have infected the recipient and where the recipient was inferred to

have been infected was derived by calculating the empirical CDF for

each iteration of the algorithm and aggregating over iterations to

obtain the posterior mean and an equal-tailed 95% credible interval.

This was separately calculated for each temporal kernel, and for the

home-alone and work-alone variants of the model.

For each model, we ran the algorithm for 100 000 iterations

with every 10th iteration retained following a burn-in period of

5000 iterations. Convergence was assessed visually with trace

plots. The average computational time of a run with 100 000

iterations is approximately 3 h on a desktop computer.

We created a simulated outbreak on a spatial domain of radius

20 km, i.e. of approximately the surface area of Singapore’s main

island, Pulau Ujong, and we also built an individual-based simu-

lation model in which each member of the resident population is

represented by a line-listing, with home addresses assigned to resi-

dential addresses extracted from a geographical information

system (GIS) in-line with the number of residents by age and

gender in each subzone, an administrative division of Singapore

(described in the electronic supplementary materials).

The analyses and model building were performed in R [29]

and the geographical visualizations were done in R [29] and

QGIS [30]. Ethical approval was obtained from the National

University of Singapore Institutional Review Board.
3. Results
The spatio-temporal evolution of the outbreak depicted in

figure 2 shows how the initial focus within and around a
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Figure 2. Spatial-temporal transmission of ZIKV infections in the first six weeks. Home (red and orange dots) and workplace addresses (light and dark blue dots) of
Zika-confirmed cases are geographically represented across Singapore. Recent weekly incident infections are enumerated for each week and emphasized by the
darker shades of red and blue. The cumulative number of infections each week is also presented. (Online version in colour.)
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construction site in the Aljunied neighbourhood (in the South-

east of the country and on the periphery of the downtown core

of Singapore) rapidly proliferated across the island over four

weeks [8]. This rapid dissemination coincided with the rela-

tively large distances between the homes and workplaces of

cases, with 25.4% of cases working at least 10 km from their

home (on an island that spans 50 km at its greatest extent);

this mirrors the relatively long distances travelled by commu-

ters working or living in the Aljunied area (figure 3), of

whom 14.0% travel more than 10 km to get to and from

work. A permutation test of median differences showed

some evidence that cases on average travelled further than

the reference group of people living or working in Aljunied

( p ¼ 0.01). Despite this, the distributions are qualitatively simi-

lar, which indicates that even if the initial focus had not been at

a construction site—leading to a substantial number of cases

being construction workers mostly living in foreign worker
dormitories on the other side of the island—there would still

have been considerable risk of secondary foci being seeded

far from the initial outbreak.

The posterior mean half-life distances between infections—

which represents a combination of human movement in the

vicinity of their home or workplace and of mosquito move-

ment over the incubation period—of the different models

fitted ranged from 430 to 560 m (figure 4). Some cases were

infected relatively far from where extant cases were

(figure 5d). Thus the inferred infection tree suggests that

several ambulant cases acted like long-distance vectors, or

super-dispersers, as they exposed distant and as-yet unaffected

neighbourhoods to ZIKV transmission.

A substantial proportion (64.2%) of ZIKV infections

occurred at workplaces (of the donor or recipient case, or

both), as seen from the estimated infection tree (figure 5a,b),

signifying the importance of not limiting control efforts to
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the vicinity of residences of cases. The number of secondary

cases that resulted from the initial few cases was large but

as the outbreak progressed, the data suggested that the trans-

missibility had reduced (figure 5c). When we excluded

infections linked to the construction site at the initial epicen-

tre, 51.0% of infections occurred at either the donor or

recipient’s workplace.

Although the generation time distribution could not be

reliably estimated from the spatio-temporal data due to the

multiple overlapping transmission events, results were robust

to the generation time distributions assumed (the electronic

supplementary materials present alternative results). When

we considered a variant of the model in which only one address

type was used, there was strong support in favour of the model



Table 1. Deviance information criterion (DIC) of the models.

model
deviance information
criterion (DIC)

T � logN(12,3) home-and-work 6002

home-alone 6214

work-alone 6213

T � logN(14,3) home-and-work 6136

home-alone 6414

work-alone 6413

T � logN(16,3) home-and-work 6286

home-alone 6577

work-alone 6577

T � logN(m,s) home-and-work 5158
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which considered both home-and-work addresses compared to

the home-alone or work-alone models (DIC tabulated in table 1),

thus indicating the role both locations play and the importance

of considering both location types for vector control efforts.

All variants of the model support the finding that the reproduc-

tion number reduced from 5 or more in the early period of the

epidemic to below unity for cases with onset after mid- to late-

August, i.e. that secondary cases fell a few weeks thereafter.

Although the cause of the reduction cannot be determined by

the model structure, this coincided with the beginning of

vector control targeting the outbreak site around the end of

August 2016. Although the models in which the parameters

of the time kernel were fixed led to similar numbers of second-

ary cases, that of the model in which the time kernel’s

parameters were left as free parameters exhibited a profile

that was qualitatively different.

The posterior density of the estimated location of infection

for each case for the models with various temporal kernels is

presented in the electronic supplementary materials. These

demonstrate, as with the number of secondary cases against

time and general network topology, that the source of infection

is relatively robust to the specification of the temporal kernel

within the range of kernels considered. These spatial figures

also demonstrate that for most cases, the source of infection

can be inferred to a relatively limited set of potential foci. The

fraction of infections attributable to transmission events at

each combination of the donor’s and the recipient’s home

and work was consistent across the parameters considered

for the temporal kernel (electronic supplementary materials).

In the early phase of the outbreak, most infections were esti-

mated to have occurred near the case’s workplace, with

approximately equal numbers of infections at home and at

work in the second half of the outbreak (electronic supplemen-

tary materials). These results were robust to the temporal kernel

considered. The posterior CDF between infections is presented

in the electronic supplementary materials for different temporal

kernels and the model variants in which transmission is

allowed to occur only near homes or only near workplaces.

This shows that the inferences on the spatial signature are

robust to the time kernels and that substantially more longer

distance infection events are required to explain the outbreak

if it is assumed that only homes or only workplaces are

responsible for transmission.

Despite knowing approximately 20% of the actual infec-

tions in the simulation exercise, the inference performed

well to infer the location of infection of the infected cases

(electronic supplementary materials).
4. Discussion
Shoe-leather epidemiology to trace the route of transmission

between cases of a mosquito-borne disease is challenging, as

there may be no discernible links between cases separated

by one human–mosquito cycle of transmission. Statistical

methods first developed during the SARS epidemic [31] are

capable of inferring transmission trees but need to account

for geographical structure for vector-borne diseases, in which

the vector has a considerably shorter range than does the

host. The method presented in this paper is an extension of

the transmission tree reconstruction methods as described by

Wallinga & Teunis [31] that extends their temporal kernel, rep-

resented by fT(d) in our paper, to account for space, through a
spatial kernel fD(d), and by considering two main location

types for each case, namely their home and workplace.

Although the locations of cases by themselves make a convin-

cing case for the role of humans as a ‘vector’ transmitting the

virus to naive regions of the city, this extension to the Wallinga

and Teunis method allows the degree of such long-distance

spread, and the importance of the workplace in transmission,

to possibly be quantified. Although applied to a specific out-

break, the method could potentially be useful in other

settings, in particular, when the amount of genetic variability

is insufficient to allow transmission trees to be inferred using

phylogenetic methods.

Because ZIKV infections, in common with other arbo-

viruses such as dengue, are predominantly clinically mild

[8], infected hosts may not be isolated from the vector, and

through their continued mobility may disseminate infection

far from their home, or from the location they were infected.

The potentially high fraction of such ambulant, subclinical

infections may lead to delays in the identification of new

foci of infection. Moreover, in an urban outbreak like this,

the distance from home to work may be large relative to

the scale of transmission and, as a result, ambulant infected

persons may act as the ‘vector’ infecting distant parts of the

country [12–14], further complicating control. In this

analysis, we identified some individuals who could be

super-dispersers—or long-distance human vectors—for

ZIKV infection, and a key priority in future outbreaks

should be to identify such individuals early and ideally

isolate or protect them from being bitten by mosquitoes.

Such individuals are not unusual, as seen in the long tail

for commuting distances for people living or working near

the initial focus of the outbreak.

Conventionally, the residential address is the usual proxy

for the location of infection in spatial analyses [32], but this

study identified workplaces as a substantial source location

for transmission. Across all the models presented, the pro-

portion of infections occurring around workplaces was

substantial. The results represented in figure 5b,c provide

some empirical evidence that the national vector control pro-

gramme should consider both types of location (home and

workplaces) when defining clusters for interventions. As a

substantial proportion of infection occurs at workplaces, con-

trol measures targeted at residential regions of the city-state
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may be ineffective to contain the spread of an arbovirus out-

break. In the past, vector control measures concentrated on

residential areas, although the national vector control pro-

gramme now considers both types of location in defining

clusters for interventions. Substantial amounts of infection

occurring at workplaces will make a control programme

that focuses on the home less effective, and as a result, the

method developed in this study may potentially better

inform vector control measures. Given the endemicity of

dengue in Singapore, it would be of some interest to investi-

gate the degree to which dengue infections occur away from

the home, especially in the light of previous research which

showed infection risk varying over a weekly cycle [33].

The methods described in this study met with several

challenges. Neither the exact location nor the time of infection

of the cases was known, and to overcome this, we used the

residential and workplace addresses and date of symptom

onset as proxies of place and time of infection. Transmission

in the neighbourhood of the home or workplace is implicitly

captured through the dispersal kernel, but it is a limitation

that other locations frequented by cases (such as eating

houses or places of worship [34]) could not be recorded.

Owing to the non-negligible asymptomatic rate of ZIKV infec-

tions, we may have incomplete information on potentially

infectious individuals despite the good surveillance system in

Singapore. A previous analysis of this outbreak sought to

infer the phylogeny of a fraction of the cases, but the low

mutation rate led to a lack of variation in the genetic data [8],

and as such, the epidemiological data provide greater infor-

mation on the transmission dynamics. Over a longer time

period, more mutations would be expected, and a marriage

of field and molecular epidemiological information may be

warranted for a longer outbreak [35–37]. Cross-immunological

effects have been demonstrated [38,39] between dengue and

zika, and it is not clear what effects this might have had on

transmission potential in Singapore, given the high prevalence

of dengue. In initial model building, we sought to specify
non-informative priors for the parameters of the temporal

kernel, but there was insufficient information to allow these

to be estimated together with the other estimands. We therefore

set biologically plausible values of these parameters and

assessed the sensitivity of the results to the values chosen.

The main findings—in particular, the role of workplaces in

transmission and the inferred locations of infection—were

robust to this choice.

This study is both important epidemiologically—indicat-

ing the importance of considering both residential and

workplace addresses to inform the vector control measures

for diseases like Zika and dengue—and involved new meth-

odological development to tease out the multiple spatial

patterns driving this urban outbreak. Incorporating spatial

data in the model allows us to study the geographical-related

exposures for these vector-borne diseases. Singapore’s out-

break appears qualitatively different from those in less

urbanized environments [40–42], in that infected Aedes
mosquitoes played a less significant role in the long-distance

transmission of Zika than did ambulant cases, which may

have implications for control of subsequent arbovirus

outbreaks in urban settings like Singapore.
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