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Modeling cellular machinery through 
biological network comparison
Roded Sharan1 & Trey Ideker2

Molecular networks represent the backbone of molecular activity within the cell. Recent studies have taken a comparative approach 
toward interpreting these networks, contrasting networks of different species and molecular types, and under varying conditions. 
In this review, we survey the field of comparative biological network analysis and describe its applications to elucidate cellular 
machinery and to predict protein function and interaction. We highlight the open problems in the field as well as propose some 
initial mathematical formulations for addressing them. Many of the methodological and conceptual advances that were important 
for sequence comparison will likely also be important at the network level, including improved search algorithms, techniques for 
multiple alignment, evolutionary models for similarity scoring and better integration with public databases.

Data on molecular interactions are increasing exponentially. Just five 
years ago, no more than several hundred molecular interactions had been 
measured for any organism. Nowadays, spurred on by advances in tech-
nologies such as mass spectrometry1,2, genome-wide chromatin immuno-
precipation3,4, yeast two-hybrid assays5–8, combinatorial reverse genetic 
screens9 and rapid literature mining techniques10,11, data on thousands 
of interactions in humans and most model species have become avail-
able. This flood of information parallels that seen for genome sequencing 
efforts in the recent past, and presents exciting new opportunities for 
understanding cellular biology and disease in the future.

Given this landscape, the challenge is to develop new strategies and 
theoretical frameworks to filter, interpret and organize interaction data 
into models of cellular function. As with biological sequence analysis, a 
comparative or evolutionary view provides a powerful base from which 
to address this challenge. However, and although sequence comparison 
has long been a staple of biological research, the development of a 
similar toolbox for comparing biological networks is still in its infancy. 
Nonetheless, a number of recent advances have made it possible to 
begin to define this field in terms of the computational methodology 
it requires and the biological questions it may be able to answer.

Conceptually, network comparison is the process of contrasting two 
or more interaction networks, representing different species, conditions, 
interaction types or time points. This process aims to answer a number 
of fundamental biological questions: which proteins, protein interac-
tions and groups of interactions are likely to have equivalent functions 
across species? Based on these similarities, can we predict new functional 
information about proteins and interactions that are poorly character-
ized? What do these relationships tell us about the evolution of proteins, 
networks and whole species?

A final question relates to noise. Given that systematic screens for 
protein interactions may report large numbers of false-positive measure-
ments12, which interactions represent true binding events? On the one 
hand, confidence measures on interactions can and should be taken into 
account before network comparison13–17. On the other hand, because a 
false-positive interaction is unlikely to be reproduced across the inter-
action maps of multiple species, network comparison itself increases 
confidence in the set of molecular interactions found to be conserved.

Such questions have motivated three types, or modes, of comparative 
methods (Table 1). Network alignment is the process of globally com-
paring two networks, identifying regions of similarity and dissimilarity. 
Network alignment is commonly applied to detect subnetworks that are 
conserved across species and, hence, likely to represent true functional 
modules18. Network integration is the process of combining several net-
works, encompassing interactions of different types over the same set of 
elements, to study their interrelations. Network integration can assist in 
predicting protein interactions19 and uncovering protein modules that 
are supported by interactions of different types20,21. The main concep-
tual difference from network alignment is that the integrated networks 
are defined on the same set of elements. The final mode of comparison is 
network querying, in which a given network is searched for subnetworks 
that are similar to a subnetwork query of interest18. This basic database 
search operation is aimed at transferring biological knowledge within 
and across species.

In this review, we survey the key analytical techniques that have served 
to define each mode of analysis along with the open problems they pres-
ent. We then describe one possible road ahead, inspired by analogous 
developments in the history of sequence comparison.

Pairwise network alignment
In basic pairwise network alignment, homologous pairs of interactions, 
one from each of two molecular interaction networks, are identified. 
Studies by Matthews et al.22 and Yu et al.23 compared protein-protein 
interaction networks and regulatory networks across species, identi-
fying pairs of interactions, called interologs and regulogs respectively, 
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involving either two genes or two proteins in one species and their best 
sequence matches in another species. Beyond alignment of single inter-
actions, it is possible to envisage a whole array of network structures 
that might be conserved between two protein networks. For instance, 
conserved linear paths may correspond to signaling pathways, and con-
served clusters of interactions may be indicative of protein complexes. 
In certain cases, for example, when the two networks being compared 
represent linear chains of interactions24, the network alignment problem 
admits efficient algorithmic solutions. In general, the problem is com-
putationally hard (generalizing subgraph isomorphism under certain 
formulations), but heuristic approaches have been devised for it (e.g., 
Berg & Lassig25).

One heuristic approach creates a merged representation of the two 
networks being compared, called a network alignment graph, and then 
applies a greedy algorithm for identifying the conserved subnetworks 
embedded in the merged representation. In a network alignment graph, 
the nodes represent sets of molecules, one from each network, and the 
links represent conserved molecular interactions across the different net-
works (Fig. 1). The alignment is particularly simple when there exists a 
one-to-one correspondence between molecules across the two networks, 
but in general there may be a complex many-to-many correspondence.

A network alignment graph facilitates the search for conserved 
network regions, as these will appear as subnetworks with specific 

structure. For instance, conserved protein complexes might appear as 
clusters of densely interacting nodes. This technique was first used by 
Ogata et al.26, who searched for correspondences between the reactions 
of specific metabolic pathways and the genomic locations of the genes 
encoding the enzymes catalyzing those reactions. Their network align-
ment graph combined the genome ordering information, represented 
as a network of genes arranged in a linear (or circular) path, with a 
network of successive enzymes in metabolic pathways. Single-linkage 
clustering was applied to this graph to identify pathways for which the 
enzymes clustered along the genome (Fig. 2a).

Kelley et al.18 applied the concept of network alignment to the study 
of protein interaction networks. They translated the problem of find-
ing conserved pathways to that of finding high-scoring paths in the 
alignment graph. Their algorithm, PathBLAST, identified five regions 
that were conserved across the protein networks of Saccharomyces 
cerevisiae and Helicobacter pylori. This comparison was later extended 
to detect conserved protein clusters rather than paths27, employing a 
likelihood-based scoring scheme that weighs the denseness of a given 
subnetwork versus the chance of observing such topology at random 
(Box 1). The latter approach was recently used by Suthram et al.28 to 
show that the protein-protein interaction network of Plasmodium fal-
ciparum differs substantially from those of other eukaryotes. Finally, 
Koyuturk et al.29 developed an evolution-based scoring scheme to 

detect conserved protein clusters, which takes 
into account interaction insertion/deletion 
and protein duplication events (Box 1). Their 
MaWish algorithm was applied to detect 
human-mouse conserved subnetworks.

The methodology of network align-
ment can also be applied to predict vari-
ous properties of genes and proteins on a 
global scale. First and foremost, a conserved 
subnetwork that contains many proteins of 
the same known function suggests that the 
remaining proteins also have that function. 
We have recently used this concept to pre-
dict thousands of new protein functions for 
yeast, worm (Caenorhabditis elegans) and fly 
(Drosophila melanogaster), with an estimated 
success rate of 58–63% (ref. 13). More com-
plex relationships, such as protein interac-
tions, functional orthology and links between 
cellular processes, can also be inferred from 
the network alignment13,30,31.

Multiple network alignment
The generalization of the network alignment 
process to more than two networks entails 
devising an appropriate scoring scheme and 

Table 1  Modes of network comparison
Mode Common application Main goals Some current limitations

Alignment At least two networks of the same type across 
species

Identification of functional (conserved) protein 
modules; study of network evolution; interaction 
prediction

Limited to few (five or fewer) species; nonevolu-
tion-based scores

Integration At least two networks of different types for the 
same species

Identification of modules (supported by several 
networks); study of interrelations between data 
types; interaction prediction

No agreed-upon way to combine scores over dif-
ferent networks

Querying Subnetwork module versus a network Identification of duplicated/conserved instances 
of the module; knowledge transfer

Query is limited to a tree topology; nonevolution-
based scores

Conserved
interactions

Matched
protein pairs

High-scoring
conserved subnetworks

Search
algorithm

Matched proteins
Match protein pairs that are
sequence-similar

Species 1
(Condition/type 1)

Species 2
(Condition/type 2)

Network alignment
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Figure 1  Network alignment. Network alignment combines protein interaction data that are available 
for each of at least two species with orthology information based on the corresponding protein 
sequences. A detailed probabilistic model is used to identify protein subnetworks within the aligned 
network that are conserved across the species. Each node in this aligned network represents a set of 
sequence-similar proteins (one from each species) and each link represents a conserved interaction. 
Other than species, the networks being compared can also be sampled across different biological 
conditions or interaction types.
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extending the notion of a network alignment 
graph. Stuart et al.32 tackled the latter problem 
in the context of cross-species coexpression 
networks by forcing a consistent one-to-one 
mapping across all the networks, obtaining an 
alignment graph in which each gene is a mem-
ber of at most one node. Another relatively 
simple scenario occurs when the compared 
networks are linear paths. The network align-
ment problem then becomes completely analo-
gous to the sequence case, and one could adapt 
multiple sequence alignment techniques, such 
as progressive alignment, for its solution24.

Recently, we have described a framework for 
multiple network alignment, which handles 
general correspondence relationships across 
networks13. The scoring scheme extends the 
likelihood approach described in Box 1. The 
search problem is handled by extending the 
notion of a network alignment graph to mul-
tiple networks, albeit with an increased com-
putational complexity, which scales as nhk–1 for 
k networks of size n with an average number 
of h possible orthologs per protein per spe-
cies. This method was applied to systematically 
identify conserved protein subnetworks across 
yeast, worm and fly, uncovering 71 conserved 
network regions that fell into well-defined 
functional categories. Two representative align-
ments are shown in Figure 2b. Such graphical 
layouts can be automatically generated using a 
variant of the spring-embedder algorithm for 
graph drawing13.

Network integration
Far from being homogenous, molecular inter-
actions come in an assortment of different 
types, including protein-protein, transcrip-
tional, coexpression and genetic interactions. 
Together, they have populated molecular inter-
action databases for a large number of spe-
cies (e.g., Biomolecular Interaction Network 
Database (BIND)33, Database of Interacting 
Proteins (DIP)34, Molecular Interactions 
Database (MINT)35 and General Repository 
for Interaction Datasets (GRID)36).

Because each type of network lends insight 
into a different slice of biological informa-
tion, integrating different network types 
may paint a more comprehensive picture of 
the overall biological system under study. 
Commonly, networks to be integrated are 
defined over the same set of elements (e.g., 
the set of proteins of a certain species), and 
the integration is achieved by merging them 
into a single network with multiple types of 
interactions, each drawn from one of the 
original networks. A fundamental problem is 
to identify in the merged network functional 
modules that are supported by interactions 
of multiple types.

Genome ordering versus biomedical reaction networks
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Figure 2  A gamut of network comparative approaches. Four recent examples of biological network 
comparisons are shown. (a) Ogata et al.26, (b) Sharan et al.13, (c) Kelley et al.20 and (d) Pinter et al.44 
(figures reproduced with permission). These examples span the three modes of comparison described 
in the text: alignment (a+b), integration (c) and querying (d). Comparisons have involved networks 
of metabolic reactions (a+d), protein interactions (b), genetic interactions (that is, synthetic lethals) 
(c) and gene linkages on the chromosome (a). The networks being compared can be of the same type 
(b+d) or of different types (a+c). In a, a contiguous region of the E. coli genome is aligned against a 
contiguous pathway of peptidoglycan biosynthesis in its metabolic network. In b, matching proteins are 
linked by dotted lines, and yellow, green or blue links represent measured protein-protein interactions 
between yeast, worm or fly proteins, respectively. In c, blue versus dotted-red links correspond to 
protein-protein versus genetic interactions. In d, each alignment position groups matching enzyme 
commission numbers vertically.
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As one example of network integration, Kelley et al.20 studied the 
interrelations between protein-protein and genetic (synthetic lethal) 
interactions in yeast. They searched for two structures in the integrated 
network: pairs of subnetworks of protein-protein interactions intercon-
nected to each other by a dense pattern of genetic interactions (Fig. 2c); 
and clusters enriched for both physical and genetic interactions. The first 
structure was found to be more prevalent, suggesting that genetic inter-
actions tend to bridge genes operating in two pathways with redundant 
or complementary functions, rather than occurring between protein 
subunits within a single pathway. Gunsalus et al.37 combined protein 
interaction, coexpression and phenotypic similarity networks to predict 
protein complexes in worm, modeled as dense clusters of interactions. 
This work was based on a ‘reinforcement’ principle: a cluster of interac-
tions supported by several networks is more likely to represent a true 
protein complex than a cluster arising in one network only.

Several groups have integrated multiple networks for the purpose 
of predicting protein function38 and interaction19,39–42. In all cases, 
supporting data from multiple sources, ranging from coexpression 
relationships to similarity of phylogenetic profiles, were used to cor-
roborate each of the predictions. The occurrence of composite network 
motifs, built of several interaction types, has also been studied. Yeger-
Lotem et al.43 investigated the overrepresentation of network motifs in a 
combined network of protein-protein and transcriptional interactions. 
Most of the identified motifs combined both types of interactions, 
exhibiting a tendency toward coregulation and complex formation. 
Zhang et al.21 integrated coexpression, transcriptional, protein-protein 
and genetic interactions in yeast and studied motifs in the combined 
network. Their findings support the ‘redundant pathway’ interpretation 
of genetic interactions (see above) and highlight a tendency of protein 
complexes to exhibit coregulation of their members.

a

b

Figure 3  Evolutionary processes shaping protein interaction networks. 
The progression of time is symbolized by arrows. (a) Link attachment 
and detachment occur through mutations in a gene encoding an existing 
protein. These processes affect the connectivity of the protein whose coding 
sequence undergoes mutation (shown in black) and of one of its binding 
partners (shown in white). Empirical data shows that attachment occurs 
preferentially towards partners of high connectivity. (b) Gene duplication 
produces a new protein (black square) with initially identical binding 
partners (gray square). Empirical data suggest that duplications occur at a 
much lower rate than link attachment/detachment and that redundant links 
are lost subsequently (often in an asymmetric fashion), which affects the 
connectivities of the duplicate pair and of all its binding partners. Modified 
with permission from Berg et al.47.

Identifying conserved subnetworks within a given pair of networks 
relies on two important algorithmic components: a scoring 
function and a search procedure. The scoring function measures 
the similarity of each subnetwork to a predefined structure of 
interest and the level of conservation of this structure across 
the subnetworks being scored. Koyuturk et al.29 suggested an 
evolution-based scoring scheme for the alignment of protein 
interaction networks of two species. Define M to be the set of 
interologs (matches) among the two subnetworks being compared 
(that is, two pairs of interacting proteins, one in each subnetwork, 
with orthology relations between them). Define N to be the 
set of mismatched interactions (that is, two pairs of proteins 
with orthology relations between them, such that only one pair 
interacts). Define D to be the union of the sets of duplicated 
protein pairs within each subnetwork. Given scoring functions for 
a match (m), mismatch (n) and duplication (d), Koyuturk et al. 
define the overall score as:

Thus, conservation is awarded on matches and penalized on 
mismatches and duplications. Statistical significance is estimated 
by assuming that the score is approximately normally distributed.

Another proposed solution to the scoring problem is based on 
maximum likelihood27. For each of the two aligned subnetworks, 
one computes a log likelihood ratio that measures the fit of the 
subnetwork to the desired structure (subnetwork model) versus the 

chance that the subnetwork is observed at random (null model). 
One can assume, for instance, that as a simple model of a protein 
complex, each protein pair within a complex interacts with high 
probability β, independently of other protein pairs. The null model 
assumes that every two proteins u,v interact with probability 
p(u,v) that depends on their node degrees (numbers of network 
connections). (More precisely, p(u,v) is the fraction of networks 
with the same node degrees that link u and v.) The likelihood that 
a set of proteins C with a set of interactions E(C) forms a complex 
is thus:

These log likelihood ratios are summed over the aligned 
subnetworks to yield the overall score, which can be further extended 
to include information on the reliabilities of the reported interactions. 
To assess the significance level of the score, it is compared to those 
obtained under randomized versions of the input networks (that is, 
shuffling their edges while maintaining node degrees).

Once the scoring function is set, one can use an array of 
methods for searching the network alignment graph for conserved 
subnetworks of interest. The most commonly used method is a 
greedy search13,31, which starts from promising seeds and refines 
them using a local search. The local search iteratively performs 
a modification (addition or deletion of a protein) that contributes 
most to the score, until no such modification is possible. There are 
also efficient detection methods for certain graph classes, such as 
paths or trees70, which rely on color coding71 or similar techniques.

Box 1  Algorithmics of network alignment

Σ m(   ) – Σ n(  ) –Σ d(  )α
α

β
∈M β ∈N χ

χ
∈D

β β
L(C) = Σ Σ

(u,v)∈E(C) (u,v)∉E(C)
log log

p(u,v) 1 – p(u,v)
+

1 – 
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Network querying
Network alignment and integration are focused 
on de novo discovery of biologically significant 
regions embedded in a network, based on the 
assumption that regions supported by multiple 
networks are functional. In contrast, a super-
vised approach to the module detection problem 
relies on a query subnetwork that is previously 
known to be functional. The goal is to identify 
subnetworks in a given network that are similar 
to the query. Kelley et al.18 approached the query 
problem in the context of the PathBLAST net-
work alignment algorithm, by designating one 
of the networks as the query. When PathBLAST 
is applied in this setting, it identifies all matches 
to the query in the network under study. As in 
the comparison case, the treatment here is only 
in queries that take the form of a linear path of 
interacting proteins.

Recently, Pinter et al.44 devised an algorithm 
for querying metabolic networks. Their algo-
rithm allows querying metabolic pathways that 
take the form of a tree within a collection of 
such pathways. Figure 2d shows an example of 
their approach: here, a query of a core pathway 
revealed an allantoin degradation pathway in E. 
coli and a ureide degradation pathway in yeast.

Network querying tools are still at an early 
stage and are currently limited to sparse topolo-
gies, such as paths and trees. Approaches to handle more general queries 
could benefit from the rich literature on graph mining techniques in the 
data mining community31,45.

Network evolution
Understanding how networks evolve is a fundamental issue, which affects 
each of the above analysis modes as well as the study of networks in gen-
eral. Two kinds of processes have been invoked to explain network evolu-
tion. The first consists of sequence mutations in a gene, which result in 
modifications of the interface between interacting proteins46 (Fig. 3a). 
Consequently, the corresponding protein may gain new connections 
(attachment) or lose (detachment) some of the existing connections to 
other proteins. The second type of evolutionary process consists of gene 
duplication, followed by either silencing of one of the duplicated genes 
or by functional divergence of the duplicates (Fig. 3b). In terms of the 
network, a gene duplication corresponds to the addition of a node with 
links identical to the original node, followed by the divergence of some 
of the redundant links between the two duplicate nodes.

Berg et al.47 referred to link attachment and detachment processes 
collectively as link dynamics. They estimated the empirical rates of link 
dynamics and gene duplication in the yeast protein network, finding the 
former to be at least one order of magnitude higher than the latter. Based 
on this observation, they proposed a model for the evolution of pro-
tein networks in which link dynamics are the major evolutionary forces 
shaping the topology of the network, whereas slower gene duplication 
processes mainly affect its size. Rzhetsky & Gomez48 formulated a model 
that uses these two evolutionary processes, but whose underlying basic 
elements are domains rather than whole proteins. Barabasi & Albert49 
suggested gene duplication as the major mechanism for generating the 
scale-free topology of protein interaction networks. Their network 
growth model predicts that molecules that appeared early in the network 
are the most connected ones. Several lines of empirical evidence sup-

port this hypothesis: metabolites of some of the most ancient pathways, 
such as glycolysis and the tricarboxylic acid cycle, are among the most 
connected substrates in metabolic networks50; for protein interaction 
networks, one observes a positive correlation between the evolutionary 
age of a protein and its degree of connectivity51.

Network comparison: the next ten years?
Notwithstanding the recent advances, the field of network comparison 
is still very young. However, by exploiting the close analogy to sequence 
comparison, one can envision some of the key milestones  on the road 
ahead (Fig. 4). Methods for sequence comparison have been the main 
focus of bioinformatics for most of its history, starting in 1970 with 
the publication of the first comparison algorithm by Needleman & 
Wunsch52. Since that initial work, major advances have included bet-
ter alignment score functions to more accurately reflect evolutionary 
distance, methods for multiple sequence alignment and numerous opti-
mizations to the search algorithm (Fig. 4). In recent years, the develop-
ment of sequence analysis tools has been largely driven by the immense 
amounts of data emerging from the human genome53,54 and other 
sequencing projects.

Unlike the more mature field of sequence alignment, network 
alignment has a conceptual framework and several proof-of-prin-
ciple studies, but relatively little in terms of advanced computational 
methodology. Nevertheless, it is exciting that virtually all of the major 
advances that occurred for sequence alignment can be envisioned 
for network alignment. For instance, a clear parallel goal is to prog-
ress from pairwise to multiple alignment of networks. At present, 
a method for three-species network alignment has been described 
(see above discussion of Sharan et al.13), but this algorithm scales 
poorly with the number of networks/species and may reach a practi-
cal limit at four or five. As yet another example, save perhaps a single 
study29, the score functions for assessing network similarity are not 

Biological sequence comparison

58

59

55

60
61

62

63

64

65

66

67

68

69

26
13

Figure 4  Parallels between sequence and network comparison on a timeline. The recent and possibly 
future developments in methods for network comparison are shown in the context of the analogous 
developments as they occurred in the field of sequence comparison. General milestones for both fields 
are shown in the middle (gray box), with the specific instances for sequence versus network comparison 
appearing directly above or below, respectively.
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yet strongly rooted in an evolutionary model of how networks evolve. 
Innovations similar to the Jukes/Cantor model of nucleotide substi-
tution55 may therefore also prove fruitful for the study of networks. 
Just as the genome projects spurred on bioinformatics over the past 
decade, it is clear that high-quality interactome mapping projects will 
be essential to the development of these new comparison techniques 
and to opening new research frontiers, such as the association of net-
work features with disease56,57.

The analogy between sequence and network comparison is not per-
fect, and in fact reveals some interesting differences. For sequences, align-
ment methods were proposed long before large sequence databases were 
widely available. In contrast, large network and interaction databases 
have been available from the late 1990s onwards, three to four years 
before the first network comparisons were performed. On the other 
hand, computational searches for motifs and systematic characteriza-
tion of global properties (e.g., amino acid content for sequences, degree 
distribution for networks) arose relatively late in the history of sequence 
analysis, but occurred early in the field of network comparison. The two 
problems also have crucial computational differences that stem from the 
linearity of sequences as opposed to the nonlinearity of networks. In 
particular, the problem of local sequence alignment can be solved effi-
ciently, whereas the analogous problem of identifying conserved protein 
modules is computationally hard. Moreover, certain data types, such as 
metabolic reactions and protein complexes, are best modeled as hyper-
graphs, in which hyperedges link multiple (more than two) molecules 
together, presenting even harder computational challenges.

Finally, the possibility to integrate networks across a wide variety of 
biological origins appears distinct to the field of network comparison. 
Biological sequences are based on either nucleotides or amino acids; 
owing to the well-understood interdependency between these data types, 
integrating them has not posed a major problem. In contrast, in network 
space we are just beginning to understand how the different data types 
interrelate. For instance, it is well known that protein-protein interac-
tions can transmit signaling events, genetic interactions can connect 
parallel pathways and protein-DNA interactions are the scaffold of gene 
regulatory control; however, the rules and configurations by which the 
cell integrates all of these data types to form a coordinated response are 
almost completely unexplored. In this regard, the growing abundance 
of interaction data will enable models combining different types to be 
systematically formulated and tested.

In summary, network comparison techniques promise to take a lead-
ing role in bioinformatics research by providing the means to contrast 
and query complex biological systems. Recent advances in the field, 
inspired by developments in sequence comparison, demonstrate the 
power of network comparison in elucidating network organization, 
function and evolution.
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