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Causal network reconstruction from time series is an emerging topic in many fields of science.
Beyond inferring directionality between two time series, the goal of causal network reconstruction or
causal discovery is to distinguish direct from indirect dependencies and common drivers among mul-
tiple time series. Here, the problem of inferring causal networks including time lags from multivariate
time series is recapitulated from the underlying causal assumptions to practical estimation problems.
Each aspect is illustrated with simple examples including unobserved variables, sampling issues,
determinism, stationarity, nonlinearity, measurement error, and significance testing. The effects of
dynamical noise, autocorrelation, and high dimensionality are highlighted in comparison studies of
common causal reconstruction methods. Finally, method performance evaluation approaches and cri-
teria are suggested. The article is intended to briefly review and accessibly illustrate the foundations
and practical problems of time series-based causal discovery and stimulate further methodological
developments. © 2018 Author(s). All article content, except where otherwise noted, is licensed under
a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1063/1.5025050

Reconstructing interaction networks from observed time
series is a common problem in fields where active exper-
iments are impossible, unethical, or expensive. Pairwise
association networks, for example based on correlations,
cannot be interpreted causally. The goal of causal net-
work reconstruction or causal discovery is to distinguish
direct from indirect dependencies and common drivers
among multiple time series. Here, we briefly recapitulate
the theoretical assumptions underlying causal discovery
from time series, discuss practical estimation problems,
and illustrate each aspect with accessible examples.

I. INTRODUCTION

Reconstructing the causal relations behind the phenom-
ena we observe is a fundamental problem in all fields of
science. The traditional approach is to conduct active exper-
iments, but in many fields such as Earth system science or
neuroscience, manipulations of the complex system under
study are either impossible, unethical, or very expensive. On
the other hand, modern science generates an ever-growing
amount of data from these systems, in particular time series
data. Concurrently, novel computing hardware today allows
efficient processing of massive amounts of data. These devel-
opments have led to emerging interest in the problem of
reconstructing causal networks or causal discovery from
observational time series.

In the past few decades, a number of original causal-
ity concepts have been developed, such as Granger causality
(Granger, 1969) or transfer entropy (Schreiber, 2000). Since
the 1990s, computer scientists, statisticians, and philosophers
have grounded causal reasoning and inference in a robust
mathematical framework (Pearl, 2000; Spirtes et al., 2000).

The (quite natural) definition of causality underlying this
framework is that X → Y if and only if an intervention or
manipulation in X has an effect on Y (Pearl, 2000; Spirtes
et al., 2000). This effect may be in changing Y ’s mean
or any change in its post-interventional distribution denoted
P[Y | do(X = x)] which is different from the conditional dis-
tribution P(Y | X = x). Unfortunately, all we can measure
from observational data are statistical dependencies. These
can be visualized in a graphical model (Lauritzen, 1996) or
time series graph (Eichler, 2011) that represents the condi-
tional independence relations among the variables and their
time lags (Fig. 1). The theory of causal discovery lays out the
assumptions under which the underlying causal dependencies
can be inferred from observational data.

There are different sets of assumptions that allow us to
identify a causal graph. Here, we focus on time-lagged causal
discovery in the framework of conditional independence test-
ing using the assumptions of time-order, Causal Sufficiency,
the Causal Markov Condition, and Faithfulness, among oth-
ers, which are all discussed thoroughly in this paper. But some
of these assumptions can be replaced. Recent work (Peters
et al., 2017) shows ways to use assumptions on the noise
structure and dependency types in the framework of structural
causal models which can complement the approach studied
here and we will include references to recent work from this
framework throughout the sections.

The paper is organized as follows: In Sec. II, we
relate Granger causality and similar concepts to the condi-
tional independence-framework (Spirtes et al., 2000). Section
III provides the necessary definitions and notation and in
Sec. IV we recapitulate the assumptions underlying time-
lagged causal discovery from time series alongside illustrative
examples. The practical estimation aspect from introducing
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FIG. 1. Causal network reconstruction. Consider a time series dataset (panel A) from a complex system of which we try to reconstruct the underlying causal
dependencies (panel B), accounting for linear and nonlinear dependencies and including their time lags (link labels). Causal discovery aims to unveil spurious
associations (gray arrows) which necessarily emerge due to common drivers (e.g., X 1 ← X 2 → X 4) or transitive indirect paths (e.g., X 3 → X 2 → X 1). Corre-
lation matrices are, therefore, often very dense, while causal networks are typically sparse. (C) The time series graph defined in Definition 1 resolves also the
time-dependence structure up to some maximum time lag τmax. A link X i

t−τ → X j
t (black edge) exists if X i

t−τ and Y j
t are not independent conditionally on the

past of the whole process (gray boxes).

some causal discovery algorithms to significance testing is
presented in Sec. V, while Sec. VI discusses suggestions
for performance evaluation. In Sec. VII, we present some
comparison studies of common causal methods and con-
clude the paper with a brief discussion (Sec. VIII). The
paper is accompanied by a python jupyter notebook on
https://github.com/jakobrunge/tigramite to reproduce some of
the examples.

II. FROM GRANGER CAUSALITY TO CONDITIONAL
INDEPENDENCE

Granger (1969), based on work by Wiener (1956), was
the first to propose a practical, operational definition of causal-
ity based on prediction improvement. The underlying idea of
measuring whether X Granger causes Y is that there is some
unique information in X relevant for Y that is not contained in
Y ’s past as well as the past of “all the information in the uni-
verse” (Granger, 1969). In practice, typically only Y ’s past
is used (bivariate Granger causality). Measuring prediction
improvement can be operationalized in different ways. The
most common framework are vector autoregressive models
(VAR),

Xt =
τmax∑
τ=1

�(τ)Xt−τ + ηt , (1)

where Xt = (X 1
t , . . . , X N

t ), �(τ) is the N × N coefficient
matrix at lag τ , τmax some maximum time lag, and η denotes
an independent noise term. Here, X i Granger-causes X j if any
of the coefficients �ji(τ ) at lag τ is non-zero. A non-zero
�ji(τ ) can then be denoted as a causal link X i

t−τ → X j
t at lag

τ . Another option is to compare the residual variances of the
VAR fitted with and without including the variable X i. The
use of VARs restricts this notion of causality to a causality
in mean (Granger, 1969). A more general definition is that of
(bivariate) transfer entropy (Schreiber, 2000; Barnett et al.,
2009)

ITEbiv
X→Y = I(X−t ; Yt | Y−t ), (2)

where I(X ; Y | Z) denotes the conditional mutual informa-
tion (CMI). Bivariate TE is a common term, another naming
option would be bivariable TE since X and Y could also be
multivariate variables. Transfer entropy can also be phrased in
a multivariate (or multi-variable) lag-specific version (Runge
et al., 2012a). Many current methods are advancements of the
concept of transfer entropy (Wibral et al., 2013; Staniek and
Lehnertz, 2008; Vejmelka and Palus, 2008), in particular in its
multivariate version (Sun and Bollt, 2014; Sun et al., 2015;
Runge et al., 2012b; 2012a; Runge, 2015).

Tests for causality are then based on testing whether a
particular CMI is greater than zero. Looking at the definition
of CMI,

I(X ; Y | Z) =
∫∫∫

p(x, y, z) log
p(x, y|z)

p(x|z) · p(y|z) dx dy dz.

(3)
TEbiv and its advancements essentially test for conditional
independence of X and Y given Z, denoted X ⊥⊥ Y |Z since

X ⊥⊥ Y |Z ⇐⇒ p(x, y|z) = p(x|z)p(y|z) ∀ x, y, z (4)

⇐⇒ I(X ; Y | Z) = 0. (5)

Z then represents Y ’s past and other included variables. The
lag-specific generalization of the VAR model (1) then is the
full conditional independence (FullCI) approach

IFullCI
i→j (τ ) = I(X i

t−τ ; X j
t | X(t−1,...,t−τmax)

t \{X i
t−τ }), (6)

where X(t−1,...,t−τmax)
t = (Xt−1, . . . , Xt−τmax). I can be CMI or

any other conditional dependence measure. In the case of
partial correlation, a non-zero entry �ji(τ ) corresponds to
a non-zero IFullCI

i→j (τ ). A general concept to represent condi-
tional independence relations among multiple variables and
their time lags is that of time series graphical models (Eichler,
2011).

III. DEFINITIONS AND NOTATION

A. Definition of time series graphs

Consider a multivariate process X of dimension N . We
define the time series graph G = (V × Z, E) of X as follows
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[Fig. 1(c)]: The set of nodes in that graph consists of the set of
components V at each time t ∈ Z. That is, the graph is actu-
ally infinite, but in practice defined up to some maximum time
lag τmax. Compared to the general concept of graphical mod-
els (Lauritzen, 1996) for data without time-ordering, for time
series graphs the time-dependence is explicitly used to define
directional links in the set of edges E (Eichler, 2011). For con-
venience, we treat X, Xt, and X−t as sets of random variables
here and use the difference symbol “\” for sets.

Definition 1. (Definition of links).
Variables X i

t−τ and X j
t are connected by a lag-specific

directed link “X i
t−τ → X j

t ” ∈ G [Fig. 1(c)] for τ > 0 if and
only if

X i
t−τ ��⊥⊥ X j

t | X−t \ {X i
t−τ }, (7)

i.e., if they are not independent conditionally on the past of
the whole process denoted by X−t = (Xt−1, Xt−2, . . .), which
implies a lag-specific conditional dependence with respect
to X.

For i = j, we call links autodependencies. For τ = 0, the
same definition can also be used to define undirected con-
temporaneous links (see Eichler, 2011; Runge, 2015), which
would lead to the time series graph being a mixed graph
instead of a directed acyclic graph. The arrow of time is a
convenient way to disambiguate independence relationships:
If we do not have access to the time ordering of the vari-
ables (or there is none) and observe as the only conditional
independence relation X ⊥⊥ Y | Z while all other relations are
dependent, then this relation can be generated by any of the
three causal motifs X → Z → Y , Y → Z → X , or X ← Z →
Y which form a Markov equivalence class.

Here, we define links with lags t − τ relative to some
time point t, but throughout this paper we assume stationar-
ity (discussed in Sec. IV E). Then a link is repeated for every
t′ < t if a link exists at time t. Alternatively, the links can
be estimated from different realizations at time t. In practice,
however, the links will mostly be estimated from single time
series realizations requiring stationarity.

The parents of a node X j
t are defined as

P(X j
t ) = {X k

t−τ : X k ∈ X, τ > 0, X k
t−τ → X j

t }. (8)

In the following, A, B, S denote nodes or sets of nodes in the
graph and Xt−τ , Yt, Zt−τ , Ut−τ , Z random variables of the pro-
cess X, sometimes dropping the subscript. We will denote a
general conditional dependence measure as I(X ; Y |Z) which
can be CMI or also some other measure such as partial
correlation, depending on the context.

B. Separation

When considering the dependency between two variables
X , Y given a set of conditions Z as in I(X ; Y |Z), the idea of
open and blocked paths or separation between the correspond-
ing nodes in the time series graph G [Fig. 1(c)] is important.
A directed path is a sequence of linked nodes containing only
motifs→ •→. But there are also other paths on which infor-
mation is shared even though no causal interventions could
“travel” along these. In general (Eichler, 2011), in the above
defined time series graph, a path between two single nodes

A and B is called open if it contains only the motifs→ •→
or ← •→. For notational convenience, we will sometimes
use left-pointing arrows, while still in the time series graph
all directed links are forward in time. For example, • ← • →
• → • is an open path. On the other hand, if any motif on a
path is → •←, the path is blocked. Nodes in such motifs
are also called colliders. If we now consider a separating
or conditioning set S, openness and blockedness of motifs
reverse, i.e., denoting a conditioned node by �, the motifs
→ �→ and ← �→, are blocked and the motif → �←
becomes open. For example, the path • ← �→ •→ • is
blocked, while • ← • → �← • is open. Note that paths can
also traverse links repeatedly, e.g., forward and backward.

Definition 2. (Separation).
Two nodes A and B are separated given a conditioning set

S with A, B /∈ S (S may also be empty) if all paths between A
and B are blocked, denoted

A 
� B | S. (9)

Conversely, two nodes are connected given a set S if at least
one path between the two is open.

Intuitively, if two nodes are separated, no information
is shared between the two. For example, in Fig. 1(c) X 1

t
and X 4

t−1 are separated by S = {X 2
t−2, X 4

t−2} or also by S =
{X 1

t−1, X 2
t−2}. Then I(X 4

t−1; X 1
t |S) = 0. Conversely, X 1

t and
X 3

t−3 are still connected given S = {X 2
t−2} since the “back

door”-path X 3
t−3 ← X 3

t−4 → X 2
t−3 → X 1

t−1 → X 1
t is still open.

These definitions are important for the relations between the
graph and the underlying process.

IV. ASSUMPTIONS OF CAUSAL DISCOVERY FROM
OBSERVATIONAL TIME SERIES

Causal information cannot be obtained from associations
of measured variables without some assumptions. A variety of
different assumptions have been shown to be sufficient to esti-
mate the true causal graph (Spirtes et al., 2000; Peters et al.,
2017). Here, we focus on three main assumptions under which
the time series graph represents causal relations: Causal Suf-
ficiency, the Causal Markov Condition, and Faithfulness. For
time-lagged causal discovery from observational time series,
we also need the assumptions of no instantaneous effects
and stationarity. Further added to these are dependence type
assumptions (e.g., linear or nonlinear) and no measurement
error, and we will also assume that the joint distribution of
the process has a positive density. All of these are discussed
in the following.

For illustrating some of the assumptions in this paper,
we will estimate the time series graphs by directly testing
Definition 1 via Eq. (6) [Fig. 1(c)], mostly in the partial
correlation version.

A. Causal sufficiency

As Granger (1969) already notes, “[t]he one completely
unreal aspect of the above definitions is the use of the series
U−t representing all available information [in the universe].”
This definition makes sure that the measured variables include
all of the common causes of X and Y . However, we do not
always need the whole universe. If we have available only
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FIG. 2. The problem of latent (unobserved) variables. Here, U is a latent
confounder and leads to spurious links between (X , Y , Z).

a limited number of measured variables, we only need to
assume that there exist no other unobserved (or latent) vari-
ables that directly or indirectly influence any other pair of our
set of variables which is the assumption of Causal Sufficiency
(Spirtes et al., 2000).

Definition 3. (Causal Sufficiency).
A set W ⊂ V × Z of variables is causally sufficient for a

process X if and only if in the process every common cause of
any two or more variables in W is in W or has the same value
for all units in the population.

Example 1. (Unobserved variables)
What happens if such an unobserved (latent) confounder

exists? Consider the example depicted in Fig. 2 where we
assume no autodependencies. Here, U is an unobserved
variable and drives both X and Z. With the time lags consid-
ered, this common driver leads to an association between X

FIG. 3. Sub-sampled time series. If the time series of the true underlying
process shown in the top panels (time series graph on the left, aggregated
process graph on the right) is sampled at �t = 2, the time series graph of
the sub-sampled process (bottom left panel, note that t here refers to the sub-
sampled time) here even has a reversed causal loop.

and Z. The estimated time series graph [via Eq. (6)] among the
observed variables (X , Y , Z) will then contain a link Xt−1 →
Zt even though it is a spurious association and any manipula-
tion of X would not have any effect on Z. Here, U acts as a
direct common driver leading to an induced association. But
the estimated time series graph additionally contains a link
Yt−2 → Zt even though there is no direct confounder between
Y and Z. The reason is that Yt−2 ��⊥⊥ Zt | X−t because the path
Yt−2 → Xt−1 ← Ut−2 → Zt is open through the condition on
Xt−1 ∈ X−t (see Definition 2).

The Fast Causal Discovery (FCI) algorithm (Spirtes et
al., 2000; Zhang, 2008) does not assume causal sufficiency
and allows us to partially identify which links are spuri-
ous due to unobserved confounders and also for which links
confoundedness cannot be determined. The underlying idea is
that if conditional independence holds between two variables
for any subset (including the empty set) of W , then these vari-
ables are not linked. In the example above, this idea can be
used to remove the link Yt−2 → Zt since Yt−2 ⊥⊥ Zt, i.e., Yt−2

and Zt are unconditionally independent. Latent causal discov-
ery is further addressed, for example, in Entner and Hoyer
(2010), Eichler (2013), Ramb et al. (2013), Smirnov (2013),
Hyttinen et al. (2014), and Geiger et al. (2015).

Example 2. (Sub-sampled time series)
Causal sufficiency can also be violated if all variables

are observed, but they are sampled at too coarse time inter-
vals relative to the causal links. Consider a process with
time series graph depicted in the top panel of Fig. 3 featur-
ing a causal loop X → Y → Z → X with all causal links at
lag τ = 1. If we sub-sample the time series with an orig-
inal resolution of �t = 1 at �t = 2, we would estimate
the causal graph from (X̃ , Ỹ , Z̃) as shown in the bottom
panel of Fig. 3 that has a completely reversed causal loop.
Looking at the top panel time series graph again, this spu-
rious reversal can be understood: For example, in the path
Zt−2 → Xt−1 → Yt the node Xt−1 is not sampled and, thus,
unobserved, leading to a spurious link Z̃t−1 → Ỹt in the
sub-sampled time series graph in the bottom panel (note
that t is measured with twice the sampling rate then). Sub-
sampled time series are an active area of research (Smirnov,
2013; Barnett and Seth, 2015; Spirtes and Zhang, 2016), to
some extent sub-sampled time series graphs can be identi-
fied as addressed in Gong et al. (2015) and Hyttinen et al.
(2016).

B. Causal Markov condition

All independence-based causal discovery methods neces-
sitate the Causal Markov Condition (Spirtes et al., 2000)
which constitutes a close relationship between the process X
and its graph G.

Definition 4. (Causal Markov Condition).
The joint distribution of a time series process X with

graph G fulfills the Causal Markov Condition if and only if
for all Yt ∈ Xt with parents PYt in the graph

X−t \ PYt 
� Yt | PYt ⇒ X−t \ PYt ⊥⊥ Yt | PYt , (10)

that is, from separation in the graph (since the parents PYt

separate Yt from X−t \ PYt in the graph) follows independence.
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FIG. 4. Example of time series graph for non-markovian process given by
Model (12). Since the present is not independent of the past given its parents,
there are many spurious links if the graph is estimated with FullCI [Eq. (6)].

This includes its contraposition

X−t \ PYt ��⊥⊥ Yt | PYt ⇒ X−t \ PYt ��
� Yt | PYt , (11)

from dependence follows connectedness.
Note that if Causal Sufficiency is not fulfilled, then also

generally the Markov condition will not hold (Spirtes et al.,
2000). Intuitively, the Causal Markov Condition implies that
once we know the values of Yt’s parents, all other variables
in the past (t − τ for τ > 0) become irrelevant for predicting
Yt. Of course, Y ’s descendants at future time points can also
“predict” Yt.

Example 3. (Non-markovian processes)
A typical example of a non-markovian process is an

autoregressive process driven by 1/f noise where the power
spectrum is inversely proportional to the frequency of the
signal. Consider a process generated by

Xt = 0.4Yt−1 + ηX
t

Yt = ηY
t (12)

Zt = 0.3Yt−2 + ηZ
t ,

where ηi
t for i = X , Y , Z is 1/f noise. Such noise terms are

not independent in time anymore, even though the noise
terms between each individual variable are still independent,
i.e., ηX

t ⊥⊥ ηY
t ⊥⊥ ηZ

t . Here, PZt = {Yt−2}, but still we observe
many more links in the time series graph (estimated with
FullCI in Fig. 4), both within one variable and between vari-
ables. This means that Zt ��⊥⊥X−t \ PZt | PZt —separation in the
graph does not imply independence in the process, and the
Markov condition is violated.

Example 4. (Time aggregation)
Another example where noise terms become dependent

is time-aggregation. Consider the causal chain of processes
Xt−2 → Yt−1 → Zt shown in the top panel of Fig. 5. Time
aggregation of a time series realization with �t = 2 is here
done by constructing the new time series X̃t = 1

2 (Xt + Xt−1)∀t
and correspondingly for Y , Z. Now, we observe additional
contemporaneous links next to the directed links X̃t−1 → Ỹt

and Ỹt−1 → Z̃t in the time series graph of the aggregated

process due to the too coarse time resolution. But, fur-
thermore, we also get spurious directed links, for example
between X̃ and Z̃. In general, the causal structure of an aggre-
gated process may be very different from the original process.

Time aggregation is an important issue in many applied
fields. For example, in climate research time series are fre-
quently measured daily and then aggregated to a monthly
scale to investigate dependencies (Runge et al., 2014). Ide-
ally, the time resolution is at least as short as the shortest
causal time lag (assuming no instantaneous effects, see Sec.
IV D). See Breitung and Swanson (2002) and Barnett and Seth
(2015) for a discussion on temporal aggregation in time series
models. Ignoring time order, in some cases the recent methods
discussed in Peters et al. (2017) can help.

C. Faithfulness

The Causal Markov Condition guarantees that separation
in the graph implies independence in the process. But what
can be concluded from an estimated conditional independence
relation, that is, the reverse direction? Faithfulness guarantees
that the graph entails all conditional independence relations
that are implied by the Markov condition.

FIG. 5. Time aggregation. If the time series of the true underlying process
shown in the top panel is aggregated at �t = 2, the time series graph
of the aggregated process (bottom panel, note that t here refers to the
aggregated time) has contemporaneous dependencies due to the too coarse
time resolution compared to the lags of the causal links, but also many
spurious directed links.
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Definition 5. (Faithfulness).
The joint distribution of a time series process X with

graph G fulfills the Faithfulness condition if and only if for
all disjoint subsets of nodes (or single nodes) A, B, S ⊂ G it
holds that

XA ⊥⊥ XB | XS ⇒ A 
� B | S, (13)

that is, from independence follows separation, which includes
its logical contraposition

A ��
� B | S ⇒ XA ��⊥⊥ XB | XS , (14)

from connectedness follows dependence.
The combination of Faithfulness and the Markov prop-

erty implies that A 
� B | S ⇔ XA ⊥⊥ XB | XS and its logical
contraposition A ��
� B | S ⇔ XA ��⊥⊥ XB | XS . Both conditions
are an important assumption for causal discovery algorithms
as discussed in Spirtes et al. (2000). Intuitively, Faithfulness
together with the Causal Markov Condition allow us to con-
clude that (in the limit of infinite sample size) a measured
statistical dependency is actually due to some (not neces-
sarily direct) causal mechanism and, conversely, a measured
independence (given any set of conditions) implies that no
direct causal mechanism exists (see also Remark 1 in the
Discussion).

Example 5. (Counteracting mechanisms)
In a linear model [e.g., Eq. (1)], the coefficient values

form a real space and the set of points in this space that cre-
ate vanishing partial correlations not implied by the Causal
Markov Condition have Lebesgue measure zero (Spirtes et
al., 2000). One can, thus, argue that non-faithful distributions
arise from an unrealistic fine-tuning of dependence param-
eters. However, approximately vanishing partial correlations
despite connectedness in the graph can also occur for a distri-
bution that is faithful, but almost unfaithful, if we have only
a limited sample size available as discussed in Uhler et al.
(2013). An example of an unfaithfully fine-tuned process is

Xt = ηX
t

Yt = 0.6Xt−1 + ηY
t (15)

Zt = 0.6Yt−1 − 0.36Xt−2 + ηZ
t .

As shown in Fig. 6, here X influences Z directly as well as
indirectly through Y . Now simple algebra shows that

Zt = 0.6Yt−1 − 0.36Xt−2 + ηZ
t (16)

= 0.6(0.6Xt−2 + ηY
t−1)− 0.36Xt−2 + ηZ

t (17)

= 0.36Xt−2 − 0.36Xt−2︸ ︷︷ ︸
=0

+0.6ηY
t−1 + ηZ

t (18)

implying that Z and X are unconditionally independent since
both mechanisms counteract each other even though there
is a link in the graph. In Runge (2015) such counteracting
interdependencies are analyzed information-theoretically.

Example 6. (Determinism)
One may argue that we live in a deterministic world and

the assumption of “an independent noise term” that is per-
tinent to statistics is unrealistic. On the other hand, for a

FIG. 6. Example of unfaithfully fine-tuned process where X and Z are inde-
pendent even though they are connected in the graph. Here, the indirect
mechanism X → Y → Z with a positive effect counteracts the direct link
X → Z with a negative effect.

given observed variable Y , the complexity of the underlying
processes will almost always imply that Y does not deter-
ministically depend on its parents, but some unresolved pro-
cesses constitute “intrinsic” or “dynamical” noise that is also
driving Y .

Determinism violates Faithfulness as follows. Consider
the model

Z = ηZ

X = f (Z) (19)

Y = g(Z)+ cX + ηY ,

with c > 0 and some functions f , g. Here, we have I(X ; Y |
Z) = I[f (Z); Y | Z] = 0 {since H[f (Z) | Z] = 0 (Cover and
Thomas, 2006)} implying X ⊥⊥ Y | Z even though Y depends
on X in the model. One can argue that X should not be con-
sidered as an autonomous causal variable in this example and
instead consider Z → Y as the causal graph for this model
writing the model above as

Z = ηZ

Y = g(Z)+ cf (Z)+ ηY . (20)

Determinism in causal inference can to some extent be
addressed in the conditional independence framework (Spirtes
et al., 2000) or using structural causal models in Janzing et al.
(2012) and Daniusis et al. (2012).

The former example only illustrated a static case of deter-
minism. The field of nonlinear dynamics studies the properties
of nonlinear and chaotic dynamical processes which has led to
a plethora of nonlinear time series analysis methods (Kantz
and Schreiber, 2003), often from an information-theoretic
perspective (Hlavácková-Schindler et al., 2007) including
transfer entropy. Many of these methods built on the assump-
tion that no system is perfectly deterministic, for example,
due to the coarse-graining of the system’s phase-space in the
measurement process. In Sec. VII A, we study the effect of
dynamical noise on several common time-series based causal
discovery approaches for chaotic systems.

Example 7. (Non-pairwise dependencies)
Next to the fine-tuned example on counteracting mech-

anisms, Faithfulness can also be violated for a dependency

D
ow

nloaded from
 http://pubs.aip.org/aip/cha/article-pdf/doi/10.1063/1.5025050/13283543/075310_1_online.pdf



075310-7 J. Runge Chaos 28, 075310 (2018)

FIG. 7. Schematic view of dependency network with pairwise dependencies
and a synergistic dependency of Y on (X1, X2) with X1 ⊥⊥ Y and X2 ⊥⊥ Y , but
(X1, X2)��⊥⊥ Y .

realized in an XOR-gate. Suppose, as shown in Fig. 7 among
several “faithful” pairwise dependencies, we have that Y =
X1 ⊕ X2 + ηY with X1, X2 being binary random processes
with equal probability for all values of X1 and X2. Then
I(X1; Y) = I(X2; Y) = 0 even though both are connected to
Y—a violation of Faithfulness. Here, the full information
is synergistically contained in I[(X1, X2); Y ]. Note that from
the chain rule it follows that 0 < I[(X1, X2); Y ] = I(X1; Y)+
I(X2; Y | X1) = I(X2; Y | X1). Thus, the MI is zero, but the
CMI is not and there is, hence, a link in the time series graph.
Note that already if P(X1) �= P(X2), Faithfulness is not vio-
lated anymore as analyzed in Sun et al. (2015), showing that
Faithfulness violations are rather pathological.

Another form of synergy without violation of Faithful-
ness is the case that Y = X1X2 + ηY , where we have a rather
weak MI I(X1; Y), but again a much larger I[(X1, X2); Y ]. In
Runge et al. (2015a), synergy is analyzed in the context of
optimal prediction schemes.

As pointed out in James et al. (2016) for synergistic
dependencies, the problem is that the concept of a pairwise
dependency graphical model does not apply, but hyper-graphs
are needed to represent such dependencies. Causal discovery
of such graphs, however, carries the problem of combinatorial
explosion if links between sets of nodes are considered.

D. Instantaneous effects

Granger causality and the definition of time series graphs
are examples for lagged definitions of causality. To guaran-
tee that the lagged parents defined in Eq. (8) are sufficient for
the Causal Markov Condition to hold, we need to assume that
there are no instantaneous (contemporaneous) causal effects,
i.e., X i

t → X j
t . One may argue that causality between dynam-

ical systems cannot have instantaneous effects because the
speed of light is finite and, if the process is sampled with suffi-
cient resolution (otherwise, see the Examples of sub-sampling
and aggregation), we only need to consider lagged causal
effects. However, we often do not have a sufficiently sampled
time series. Here, recent developments in causal inference
theory (Zhang and Hyvärinen, 2009; Peters et al., 2013;
Lopez-Paz et al., 2015; Spirtes and Zhang, 2016; Peters et al.,
2017) address instantaneous causality within the framework
of structural causal models which can be applied to determine
causal directionality for contemporaneous links. These mod-
els work under assumptions on the noise in the model such as
non-Gaussianity. Also, the logical causal orientation rules of

the causal discovery approaches in Spirtes et al. (2000) can be
used to partially orient contemporaneous links.

E. Stationarity

To estimate the time series graph defined in Definition 1
from time series data, we assume stationarity. Another option
would be to utilize independent ensembles of realizations of
lagged processes. Here, we define stationarity with respect to a
time index set T . For example, T can contain all time indices
belonging to a certain regime of a dynamical process, e.g.,
only winter months in the climate system.

Definition 6. (Causal stationarity).
The time series process X with graph defined in Definition

1 is called causally stationary over a time index set T if and
only if for all links X i

t−τ → X j
t in the graph

X i
t−τ ��⊥⊥ X j

t | X−t \ {X i
t−τ } holds for all t ∈ T . (21)

This constitutes actually a weaker form of stationarity
than the common definition of stationarity in mean, variance,
spectral properties, or of the value of individual coefficients in
a linear model. For example, one could require that all CMIs
are stationary,

I(X i
t−τ ; X j

t | X−t \ {X i
t−τ }) has the same value for all t ∈ T ,

(22)
which is a much stronger statement. The strength of causal
mechanisms may fluctuate over time and the causal stationar-
ity assumption only requires conditional independence to be
stationary.

Example 8. (Non-stationarity due to confounding)
Consider the data shown in Fig. 8 and suppose we first

only have access to the variables (X , Y , Z). Clearly, the time
series of this subprocess are nonstationary in a classical sense,
varying over time not only in their mean but also in their spec-
tral properties. Estimating the time series graph on these three
variables results in the graph shown in the bottom left panel
of Fig. 8, where the common nonstationary trend leads to an
almost fully connected graph.

A typical example of a common nonstationarity, albeit
not the same as in our example, is found in climate time series
which are usually all driven by solar forcing leading to a
common seasonal signal. In climate research the time series
are typically anomalized, that is, the seasonal signal is esti-
mated and subtracted from the data (Storch and Zwiers, 1999)
which is equivalent to regressing out its influence. But this
is not always possible, in our example the common signal is
not purely periodic and cannot easily be estimated from the
data. Another option for the case of piecewise stationary pro-
cesses is to include background knowledge on the stationary
regimes and estimate the graphs separately for the stationary
subsets of T . For example, the climatic seasons El Niño and
La Niña lead to different causal directions of surface tem-
perature anomalies in the tropical Pacific (Philander, 1985).
Prior knowledge of when the seasons start and end allow us to
restrict the estimation of time series graphs to samples within
a particular season.

Now suppose we actually have access to the common sig-
nal U and include it in our analysis (but without estimating the
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FIG. 8. Nonstationarity due to confounding. (Top) Example time series
(X , Y , Z) that are nonstationary in mean and spectral properties due to a
common signal U . (Bottom left) Access to only (X , Y , Z) results in a fully
connected causal graph. (Bottom right) Including U allows us to identify the
correct causal graph.

parents of U , i.e., treating U as exogenous). Then, as shown in
the bottom right panel of Fig. 8, we can recover the true causal
structure where U is a confounder of the three variables while
they are connected through the motif X ← Z → Y . Thus, here
nonstationarity is a result of confounding and can be removed
if we have access to the underlying trend.

The key point is that the causal structure, that is, the time
series graph, of the whole process (X , Y , Z, U) is invariant in
time. One may argue that causal laws are generally invariant
and non-stationarity is simply a problem of violation of causal
sufficiency. The idea of finding invariant predictors for causal
inference is explored in Peters et al. (2016).

F. Dependency type assumptions

To test conditional independence hypotheses X ⊥⊥ Y | Z,
different test statistics can be utilized. These are typically
based on making certain assumptions about the type of the
underlying dependency structure. While classical statistical
methods are often based on the assumption of linearity (which
allows us to derive rigorous results), modern statistics, the
physics community, and the recent field of machine learn-
ing have developed non-parametric or model-free methods
that allow us to better capture the nonlinear reality of many
dynamical complex systems—at the cost of weaker theoreti-
cal results. Conditional independence testing can be classified
into regression-based and model-free approaches. Here, we
only discuss tests for continuously valued variables, for dis-
crete variables one can, for example, use methods based on
contingency tables (Spirtes et al., 2000) or discrete CMI
estimation (Cover and Thomas, 2006).

Regression-based conditional independence tests of X ⊥⊥
Y |Z are based on first regressing out the influence of Z from X
and Y and then testing the dependence between the residuals.
We first fit a model assuming

X = fX (Z)+ εX ,

Y = fY (Z)+ εY , (23)

for centered variables X , Y and independent and identically
normally distributed εX ,Y . Now further restrictions can be laid
upon the functional form of fX ,Y . For example, the partial cor-
relation test assumes linearity, while a non-parametric regres-
sion can be based on Gaussian Process regression (Rasmussen
and Williams, 2006).

Secondly, from the estimated functions f̂ , the residuals
are formed as

rX = X − f̂X (Z)

rY = Y − f̂Y (Z). (24)

Finally, the dependence between the residuals can be tested
with different pairwise association tests. For partial corre-
lation this is a t-test, while the dependence between the
residuals of a non-parametric regression can be tested with
non-parametric tests (Gretton et al., 2008; Székely et al.,
2007) such as the distance correlation coefficient R(rX , rY )

(Székely et al., 2007) (see also Sec. V C). Note that these
models all make parametric assumptions and, thus, do not
estimate conditional independence in its most general form.

The other extreme to partial correlation are model-free
methods that directly test conditional independence. The most
prominent test statistic is CMI as defined in Eq. (3), for which
non-parametric estimators based on nearest-neighbor statis-
tics exist (Kraskov et al., 2004; Frenzel and Pompe, 2007;
Vejmelka and Palus, 2008; Póczos and Schneider, 2012) [see
also Gao et al. (2015) and Lord et al. (2018) for recent
progress on nearest-neighbor entropy estimators]. Other pos-
sible conditional independence tests are Kernel Conditional
Independence Tests (Zhang et al., 2011; Strobl et al., 2017)
which essentially test for zero Hilbert-Schmidt norm of the
partial cross-covariance operator or conditional distance cor-
relation (Wang et al., 2015). Some new recent tests are based
on neural networks (Sen et al., 2017) or decision tree regres-
sion (Chalupka et al., 2018). In Runge (2018), a conditional
independence test based on CMI is introduced.

Example 9. (Nonlinearity)
Figure 9 gives an overview over different types of linear

and nonlinear relationships of the form

Zt = ηZ
t ∼ N (0, 1),

Xt = fX (Zt−1, ηX
t ), (25)

Yt = fY (Zt−2, ηY
t ).

In all cases, we have X ⊥⊥ Y | Z.
For the linear case (first row in Fig. 9), we consider f· =

cZt−1,2 + η·t and the regression-based techniques correctly
fit the dependencies of the pairs (X , Z) and (Y , Z) (red fit
lines in gray scatterplots), and, thus, correctly identify the

D
ow

nloaded from
 http://pubs.aip.org/aip/cha/article-pdf/doi/10.1063/1.5025050/13283543/075310_1_online.pdf



075310-9 J. Runge Chaos 28, 075310 (2018)

FIG. 9. Illustration of applicability of different conditional independence methods (linear and non-parametric regression-based and model-free) on different
types of linear and nonlinear common driver models. Black arrows denote correctly identified causal links and dashed gray arrows indicate spurious links.
The gray scatterplots with red fit line illustrate regressions of X and Y on Z and the black scatterplot the dependency between the residuals rX , rY . The three-
dimensional scatterplot with red cubes in the right column depicts the CMIknn test (Runge, 2018) which is based on data-adaptive nearest-neighbor estimation
(the cubes are smaller for denser regions).

independence of the residuals (black scatterplot). A model-
free test also correctly identifies the common driver motif
here.

For the nonlinear additive noise case with a quadratic
dependency f· = c·Z2

t−1,2 + η·t, partial correlation cannot fit
the dependencies of the pairs (X , Z) and (Y , Z). As a result,
the residuals are still correlated (spurious gray dashed link)
and the causal graph is completely wrong: We overlook the
links X → Z and Y → Z and get a false positive X → Y .
Since here the dependencies are still additive functions, non-
parametric regressions and model-free tests yield a correct
causal graph.

Finally, if the dependencies are multiplicative (bottom
row) as in f· = c·Zt−1,2 · η·t, both regression methods fail. Then
the residuals are nonlinearly related which is not detected with
a partial correlation test (here two errors somewhat cancel
each other out). A non-parametric test on the residuals, on the
other hand, then wrongly estimates the spurious link X → Y
(gray dashed in center bottom row).

Model-free methods in principle can deal with all these
cases, which might lead to the conclusion that they are
superior. But the “no-free-lunch-theorem” tells us that such
generality has a price and model-free methods are very
data-hungry and computationally expensive. If expert knowl-
edge pointing to a linear or otherwise parametric dependency
is available, then regression-based methods will typically
greatly outperform model-free methods.

G. Measurement error

Measurement error, unlike dynamical noise, contami-
nates the variables between which we seek to reconstruct

dependencies and constitutes a difficult problem in causal
network reconstruction (Scheines and Ramsey, 2016).

Example 10. (Observational noise)
Here, we only discuss measurement error in its simple

form as observational noise, which can be modeled as Z̃ =
Z + εZ . Such observational noise presents at least two sorts of
problems for causal discovery.

Firstly, observational noise attenuates true associations
and, therefore, lowers detection power. This is because in
general I(X̃ ; Ỹ) = I(X + εX ; Y + εY ) ≤ I(X ; Y) which is a
consequence of the data processing inequality (Cover and
Thomas, 2006): Manipulating a variable can only reduce its
information content. In Fig. 10, we added normal observa-
tional noise with σ = 20 to Z. Then the links Z → X and
Z → Y cannot be reconstructed anymore. Secondly, too much
noise on conditioning variables makes it impossible to pre-
serve conditional independence. In Fig. 10, we have I(X ; Y |
Z̃) = I(X ; Y | Z + εZ) > 0 even though I(X ; Y | Z) = 0. The

FIG. 10. Effect of observational noise on causal network reconstruction.
Shown left is the linear example from Fig. 9. Very strong observational noise
on Z (right panel) here leads to a vanishing correlation between X and Z̃ as
well as Y and Z̃. Since then the effect of Z̃ cannot be regressed out anymore,
we also get a spurious link X → Y .
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effect of observational noise on causal discovery is discussed
further in Smirnov (2013); Scheines and Ramsey (2016) and
Runge et al. (2018) give some numerical experiments for
high-dimensional causal discovery.

V. PRACTICAL ESTIMATION

The previous sections concerned fundamental assump-
tions of time-lagged causal discovery based on conditional
independence relations. We now turn to the topic of prac-
tical estimation where we introduce several common causal
discovery methods and discuss their consistency, significance
testing, and computational complexity. We restrict the analy-
sis to the class of conditional independence approaches, which
flexibly allows us to use different independence tests. But
graphical models, in general, can also be estimated with score-
based Bayesian methods, e.g., the max-min hill-climbing
algorithm (Tsamardinos et al., 2006).

A. Causal discovery algorithms

1. Granger causality/transfer entropy/FullCI

Transfer entropy, as introduced by Schreiber (2000),
is a direct information-theoretic implementation of Granger
causality (Barnett et al., 2009). In a lag-specific implemen-
tation, as given by FullCI [Eq. (6)], it tests for conditional
independence between each X i

t−τ and X j
t conditioned on the

entire past X(t−1,...,t−τmax)
t (excluding X i

t−τ ). As the experiments
in Sec. VII will demonstrate, this approach strongly suffers
from the curse of dimensionality.

2. Optimal causation entropy

Sun and Bollt (2014) and Sun et al. (2015) developed a
discovery algorithm based on the information-theoretic opti-
mal causation entropy principle (algorithm abbreviated as
OCE) which reconstructs the lagged parents of a variable X j

t

by an iterative procedure alleviating the curse of dimensional-
ity: Starting with an empty parent set P̂OCE(X j

t ) = ∅, first the
MIs I(X i

t−τ ; X j
t ) for all X i

t−τ ∈ X−t are estimated. As the first

parent X (1), the one with the largest MI with X j
t is selected.

The next parent X (2), however, is chosen according to the
largest CMI I(X i

t−τ ; X j
t |X (1)) among all remaining variables,

the third parent is the one with largest CMI conditional on
the two previously selected parents, etc. The process is con-
tinued until the CMI of a selected parent is non-significant.
This forward-selection stage is followed by a backward elim-
ination whereby the significance of each of the parents X i

t−τ ∈
P̂OCE(X j

t ) is tested conditional on the remaining parents:

OCE: X i
t−τ ⊥⊥ X j

t | P̂OCE(X j
t ) \ {X i

t−τ }
∀ X i

t−τ ∈ P̂OCE(X j
t ). (26)

The significance of CMIs can be tested with a nearest-
neighbor CMI estimator (Kraskov et al., 2004; Frenzel and
Pompe, 2007; Vejmelka and Palus, 2008) in combination with
a permutation test where X i

t−τ is randomly shuffled. Of course,
the conditional independencies in Eq. (26) can also be tested
with other test statistics.

3. PC algorithm

An alternative to this forward-backward scheme is the PC
algorithm (named after its inventors Peter and Clark) (Spirtes
and Glymour, 1991). The original PC algorithm was formu-
lated for general random variables without assuming a time
order. It consists of several phases where first, in the skeleton-
discovery phase, an undirected graphical model (Lauritzen,
1996) is estimated whose links are then oriented using a set of
logical rules (Spirtes and Glymour, 1991; Spirtes et al., 2000).
A later improvement led to the more robust modification
called PC-stable (Colombo and Maathuis, 2014).

For the case of time series, we can use the informa-
tion of time order which naturally provides an orientation
rule for links. The algorithm then is as follows: For every
variable X j

t ∈ Xt it starts by initializing the preliminary par-
ents P̂(X j

t ) = (Xt−1, Xt−2, . . . , Xt−τmax). In the first iteration
(p = 0), we remove a variable X i

t−τ from P̂(X j
t ) if the null

hypothesis

PC(p = 0) : X i
t−τ ⊥⊥ X j

t , (27)

cannot be rejected at a significance threshold α. Then, in each
next iteration, we increase p→ p+ 1 and remove a variable
X i

t−τ from P̂(X j
t ) if any of the null hypotheses

PC(p > 0) : X i
t−τ ⊥⊥ X j

t | S for any S with |S| = p, (28)

cannot be rejected, where S iterates (in an inner loop) through
all combinations of subsets S ⊆ P̂(X j

t ) \ {X i
t−τ }with cardinal-

ity p. The algorithm converges for a link X i
t−τ → X j

t once S =
P̂(X j

t ) \ {X i
t−τ } and the null hypothesis X i

t−τ ⊥⊥ X j
t | P̂(X j

t ) \
{X i

t−τ } is rejected (if the null hypothesis cannot be rejected,
the link is removed). Runge et al. (2018) provide pseudo-code
for this algorithm.

The forward-backward scheme of OCE conducts con-
ditional independence tests only using the conditions with
highest CMI in the preceding stage and quickly increases the
number of conditions. This can lead to wrong parents being
kept in P̂OCE(X j

t ) (see Sec. V B) which are only removed
in the backward stage where the dimensionality of the set
P̂OCE(X j

t ) can be already quite high. High dimensionality, in
principle, leads to lower detection power (Example VII C).
The PC algorithm conducts conditional independence tests
not only using the condition with highest association, but it
goes through (in theory all) combinations of conditions S
which can help to alleviate the curse of dimensionality regard-
ing the estimation dimension of I(X i

t−τ ; X j
t | S) compared to

OCE. On the other hand, the PC algorithm conducts many
more tests which increases other problems (see Sec. V C).

4. PCMCI

A more recent approach that addresses some of the
shortcomings of the PC algorithm above is PCMCI (Runge
et al., 2018). PCMCI is a two-step approach which uses a ver-
sion of the PC-algorithm only as a condition-selection step
(PC1 algorithm) to obtain P̂(X j

t ) for all X j
t ∈ Xt, followed

by the momentary conditional independence (MCI) test for
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X i
t−τ → X j

t defined as

MCI: X i
t−τ ⊥⊥ X j

t | P̂(X j
t ) \ {X i

t−τ }, P̂(X i
t−τ )

∀ X i
t−τ ∈ X−t , (29)

with X−t = (Xt−1, Xt−2, . . . , Xt−τmax). The main difference
between PC and PC1 is that PC1 tests only the condition subset
S with largest association instead of going through all possible
combinations. To this end P̂(X j

t ) is sorted after every iteration
according to the test statistic value and S is determined by the
first p variables in P̂(X j

t ) (excluding X i
t−τ ). This leads to less

tests, but still provably removes incorrect links.
The MCI test is the most important difference to the

PC algorithm and the approach by Sun and Bollt (2014).
The additional conditioning on the parents P̂(X i

t−τ ) in MCI
accounts for autocorrelation leading to well-controlled false
positive rates at the expected level (Runge et al., 2018). A
variant (PCMCI0) where the condition on the parents P̂(X i

t−τ )

is dropped leads to a very similar approach to OCE. PCMCI,
like FullCI, OCE, and PC, can be implemented with different
conditional independence tests. For further details on PCMCI,
see Runge et al. (2018). In Sec. VII we compare FullCI, OCE,
and PCMCI in a number of numerical comparison studies.

B. Consistency

Consistency is an important property of causal methods
that tells us whether the method provably converges to the
true causal graph in the limit of infinite sample size. Con-
sistency concerns the conditional independence tests on the
one hand, but also the causal algorithm in the case of iterative
approaches such as those discussed in Sec. V A.

For example, for the consistency of the non-parametric
regression independence tests in Eq. (23), we need to assume
that the function estimator converges to the true function, that
the noise in the model is additive and independent, and finally
that we have a consistent unconditional independence test for
the residuals. With a consistent test, the time series graph
can be directly estimated based on Definition 1. For itera-
tive causal algorithms, we can define universal consistency
as follows.

Definition 7. (Universal causal consistency).
Denote by Ĝn the estimated graph of some causal estima-

tor from a sample of a distribution P with sample size n and
by G the true causal graph. Then a causal estimator is said to
be universally consistent if Ĝn converges in probability to G
for every distribution P,

lim
n→∞Pr(Ĝn �= G) = 0. (30)

That is, the probability of estimating the wrong graph
becomes arbitrarily small if enough data is available, for
any distribution P (hence “universal”). Consistency has been
proven for classical causal discovery algorithms such as the
PC-algorithm (Spirtes et al., 2000), the optimal causation
approach Sun and Bollt (2014), Sun et al. (2015) and PCMCI
Runge et al. (2018), as an approach based on PC.

However, universal consistency is a weaker statement
than, for example, uniform consistency which bounds the

FIG. 11. Example where for certain a, b the MI I(X ; Y ) can be larger than any
of the MIs I(Z1; Y ) or I(Z2; Y ). Thus, the most strongly associated variable
with Y is actually not a causal driver.

error probability as a function of the sample size n giv-
ing a rate of convergence. Thus, for a non-uniform, but
only universally consistent method, the sample size at which
a given error can be guaranteed and can be different for
every distribution P. Robins et al. (2003) showed that no
uniformly consistent causal discovery algorithm from the
class of independence-based approaches (Spirtes et al., 2000)
exists since the convergence can always be made arbitrarily
slow by a distribution that is almost unfaithful with some
dependencies made arbitrarily small. Uniform consistency
for conditional-independence based algorithms can only be
achieved under further assumptions such as having strong
enough dependencies (Kalisch, 2008).

Example 11. (An inconsistent causal algorithm)
Consider again the forward-selection stage of the OCE

algorithm (Sun and Bollt, 2014; Sun et al., 2015) introduced
in Sec. V as a standalone method to reconstruct parents of a
variable Yt ∈ Xt. Even though the scheme sounds appealing
and efficient, the scheme alone is not a consistent estima-
tor of causal graphs. It yields a superset of the parents (Sun
et al., 2015) which may also contain false positives: Con-
sider the example graph shown in Fig. 11. Here, the causal
parents of Y are Z1, Z2 (dropping time subscripts t here). If
forward-selection alone was a causal approach, then in each
step the variable with strongest association would also need
to be a causal parent. But in this example the MI between
X and Y can be larger than the MIs of Z1 and Z2 with Y .
For example, for a = 0.5, b = 2 we have I(X ; Y) ≈ 0.13 nats
while I(Z1; Y) = I(Z2; Y) ≈ 0.06 nats. See Appendix A for
an information-theoretic analysis. Hence, the wrong parent X
is selected. This scheme, thus, requires the second step of the
OCE approach, given by Eq. (26).

C. Significance testing

How can we assess the statistical significance of con-
ditional independence tests on which the causal algorithms
in Sec. V A are based, such as the tests discussed in
Sec. IV F? Using a test statistic În(x; y | z) (I here stands not
only for CMI, but any conditional independence test statistic)
for the observed samples (x, y, z) = {xi, yi, zi}ni=1 we wish to
test the hypothesis

H0 : X ⊥⊥ Y | Z, (31)
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versus the general alternative

H1 : X ��⊥⊥ Y | Z. (32)

To assess the significance of an outcome of such a test using
p-values, we need to know the distribution Pr(In | H0) of the
test statistic under the null hypothesis. For partial correla-
tion tests, exact analytical expressions of the null distribution
exist under certain assumptions, but for nonlinear tests (such
as CMI or also non-parametric regression tests) these are
typically not available except for some asymptotic large sam-
ple size cases (Strobl et al., 2017). The alternative then are
permutation tests as discussed in Example 12.

Given the null distribution, the p-value is defined as the
probability—given H0—of observing a value of the test statis-
tic that is the same or more extreme than what was actually
observed. If our test statistic is non-negative (such as CMI),
the p-value for an observed test statistic value În is defined
as p = Pr(In ≥ În | H0). Choosing a significance level α, we
reject the null hypothesis if p < α.

There are two types of errors we can make. Rejecting
H0 when H0 is true is called a type I error or false positive.
Retaining H0 when H1 is true is called a type II error or false
negative. We also call one minus the type II error rate of a test
the true positive rate or detection rate.

If the test statistic has a continuous distribution, then
under H0 the p-value has a uniform (0, 1) distribution
(Wasserman, 2004). Therefore, if we reject H0 when the

FIG. 12. Permutation approach to conditional independence testing. (Top
left) Example sample drawn from a common driver scheme X ← Z → Y .
(Top right) Permuted sample with randomly shuffled data points x, which
destroys the associations between x and y, but also between x and z leading
to ill-calibrated tests. (Bottom) Schematic of local permutation scheme. Each
sample point i’s x-value is mapped randomly to one of its kperm-nearest neigh-
bors in subspace Z (see Runge, 2018) to preserve dependencies between x
and z.

FIG. 13. The problem of sequential testing for X → Y conditional on other
variables (gray boxes). (A) While the false positive rates of each individ-
ual test are as expected at α = 0.05, the combined false positive rate of the
sequence of tests is much lower. (B) Similarly, the combined true positive
rate is lower than the minimal true positive rate among the individual tests.
Gaussian noise model with coefficients a = 1, c = 0.4; rates estimated from
5000 realizations with sample size n = 100.

p-value is less than α, the probability of a type I error is α. For
a well-calibrated test under H0, we thus expect to measure on
average a false positive rate of α. If this is not the case, the
test is ill-calibrated indicating that we got the null distribu-
tion wrong because certain assumptions, such as independent
samples, are violated. In Examples 12 and 13, we discuss such
cases.

Example 12. (Permutation testing)
Permutation testing is straightforward in the bivariate

independence test case. To create an estimate of the null dis-
tribution of a test statistic În(x; y), we can simply generate a
large number of test statistics În(x∗; y) where x∗ is a permuted
version of x.

But how to permute for conditional independence testing
of X ⊥⊥ Y | Z? In the top left panel of Fig. 12, we illustrate an
example scatterplot of a sample drawn from a common driver
scheme X ← Z → Y where we have X ⊥⊥ Y | Z. If we now
permute x, we get the sample shown in the top right panel.
Here, any association between x and y is indeed destroyed,
but we also destroyed the association between x and z. That
is, for the permuted sample we have

Î(x∗; y) ≈ 0 and Î(x∗; z) ≈ 0 (33)

but what we actually want to achieve is

Î(x∗; y | z) ≈ 0 (34)

with Î(x∗; z) ≈ Î(x; z) (35)

in order to test the correct null hypothesis. The above global
permutation scheme results in inflated false positives as, for
example, shown in Runge (2018) and for FullCI and OCE in
the numerical comparison studies in Fig. 14.

To achieve a test under the correct null hypothesis, we
can use a local permutation scheme that preserves the associ-
ations between x and z. Runge (2018) suggests such a scheme
depicted in the bottom panel of Fig. 12 which only permutes
those xi and xj where zi ≈ zj. This scheme can be used for
CMI conditional independence testing or also other test statis-
tics. Other schemes are discussed in Doran et al. (2014) and
Sen et al. (2017).

Example 13. (Non-independent samples)
A basic assumption underlying many conditional inde-

pendence tests is that the samples are independent and
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identically distributed (i.i.d.). Unfortunately, time series are
typically dependent in time. To take this dependence into
account, one can either adapt the distribution under the null
hypothesis, for example, in partial correlation t-tests by esti-
mating the effective degrees of freedom, which is, however,
difficult in a multivariate setting. Or one can modify the test
statistic to explicitly account for autocorrelation (Runge et al.,
2018). Also, a permutation scheme needs to be adapted to
preserve auto-dependencies, for example, by shuffling blocks
of samples (Peifer et al., 2005). For bivariate tests such an
approach is again straightforward, but not for the multivariate
case as analyzed in the autocorrelation comparison study in
Sec. VII.

Example 14. (Sequential testing of causal links)
The preceding discussion concerned tests of an individual

conditional independence relationship. Directly testing causal
links via Definition 1, thus, gives us a well-calibrated test if
all assumptions are fulfilled.

However, in iterative causal algorithms (Sec. V A) such
as the PC algorithm, OCE, or the first step of PCMCI (PC1)
multiple tests on a particular link Xt−τ → Yt are conducted
with different condition sets that are determined by the out-
come of previous tests. If a link is found non-significant in
any of these tests, this link is removed. Since the tests are
not independent of each other (since they are typically based
on the same data sample), it is almost impossible to derive a
combined p-value of all these tests.

Figure 13 depicts an illustrative numerical example
where the combined false positive rate is much lower than
the 0.05 of each individual test and the true positive rate is
lower than the minimal true positive rate among the individual
tests. In summary, even though all assumptions may be valid,
sequential testing makes a significance assessment difficult.
These issues are further discussed in Tsamardinos and Brown
(2008) and Strobl and Spirtes (2016) and references therein
where False Discovery Rate (Benjamini and Hochberg, 1995)
approaches are discussed.

As a side remark on the previously discussed OCE
and PCMCI causal discovery approaches, in the backward-
elimination stage [Eq. (26)] OCE tests only the significance
of each of the parents X i

t−τ ∈ P̂OCE(X j
t ) conditional on the

remaining parents. PCMCI (Runge et al., 2018), on the other
hand, in the second MCI step tests all links again [Eq. (29)]
which makes the MCI test slightly less dependent on the
sequential testing issue of the condition-selection step PC1

since parents that have been removed in PC1 (false nega-
tives) are tested again in the MCI test. In particular, the false
positives are as expected as demonstrated in the comparison
studies in Sec. VII.

D. Computational complexity

Application areas of causal discovery methods vary in
the typical numbers of variables as well as available sample
sizes n. Next to the properties discussed before, an impor-
tant issue then is how a method scales with dimensionality
and sample size. High-dimensionality arises from the num-
ber of included variables N and the maximum time lag τmax

[see Fig. 1(c)] and has at least two consequences: (1) higher

computational complexity leading to longer runtimes and (2)
typically lower detection power. Independence tests may also
become ill-calibrated in high-dimensions.

For directly testing causal links via Definition 1 (FullCI),
the computational complexity depends on the complexity of
a single high-dimensional conditional independence test. In
the linear partial correlation case, OLS regression scales ∼
O(n(Nτmax)

2). FullCI estimated using nearest-neighbor esti-
mators of CMI (Kraskov et al., 2004; Frenzel and Pompe,
2007), on the other hand, will scale ∼ O(n log n) regarding
time complexity while the complexity in Nτmax will depend
on algorithmic details such as using efficient KD-tree nearest-
neighbor search procedures (Maneewongvatana and Mount,
1999).

The methods PC, OCE, or PCMCI (Sec. V A) based on
a condition-selection step avoid high-dimensional conditional
independence estimation by conducting more tests with lower
dimensional conditioning sets. Their theoretical complexities
are difficult to evaluate, for numerical evaluations see Sun
et al. (2015) and Runge et al. (2018), but typically they scale
polynomially in time.

The other major challenge with high dimensionality is
detection power as analyzed in Example VII C.

VI. PERFORMANCE EVALUATION CRITERIA

How can causal discovery methods, such as those
described in Sec. V be evaluated? Typically, we want to know
which method performs best on data from the kind of system
we wish to study. Ideally, we would like to compare different
methods on a data sample where the underlying causal truth is
known or evaluate methods by experimentally manipulating
a system, i.e., actually performing the do-experiment (Pearl,
2000) mentioned in the introduction which forms the theo-
retical basis of the present concept of causality. Since both of
these options are mostly not available, an alternative is to con-
struct synthetic model data where the underlying ground truth
is known. These can then be used to study the performance of
causal methods for realistic finite sample situations.

A. Models

To evaluate causal methods on synthetic data, several
aspects for constructing model systems are relevant:

1. Model realism: The model systems should mimic the
domain-specific properties of real data in terms of nonlin-
earity, autocorrelation, spectral properties, noise structure
(dynamical as well as observational), etc.

2. Model diversity: To avoid biased conclusions, a large
number of different randomly selected connectivity
structures should be tested [including link density
as well as properties such as small-worldness (Watts
and Strogatz, 1998)]. For example, the aforementioned
forward-selection approach failed for the example shown
in Fig. 11 but works for many other graphs. But also
consistent methods may have biases for finite samples as
studied in Runge et al. (2018).

3. Model dimensionality: As studied in Fig. 16, a method
may perform well only for a small number of variables
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and the performance for high-dimensional settings (large
networks) can quickly degrade.

4. Sample sizes: The comparative performance of different
models may vary widely for different sample sizes which
needs to be studied if no uniform consistency results are
available.

B. Metrics

The performance of a causal method on a single real-
ization of a model does not allow for reliable conclusions.
Therefore, each model needs to be evaluated from many real-
izations. Then the most straightforward evaluation metric is to
measure false positive rates and true positive rates for a given
α as shown in the comparison studies in Sec. VII. The number
of realizations should be chosen high enough since the error
of a false or true positive rate r for B realizations is given
by σr =

√
r(1− r)/B. Alternative evaluation metrics that do

not depend on a particular significance level but directly on
the p-values are the Kullback-Leibler divergence to evaluate
whether the p-values are uniformly distributed (to measure
how well-calibrated a test is) and the Area Under the Power
Curve (AUPC) to evaluate true positives.

Next to the true and false positives of a causal method
for finite samples, another performance criterion is computa-
tional runtime, though this may strongly depend on a given
implementation.

VII. COMPARISON STUDIES

In this section, we compare several common causal dis-
covery methods in three numerical comparison studies high-
lighting the effect of dynamical noise in deterministic chaotic
systems, autocorrelation, and high dimensionality.

A. Dynamical noise in deterministic chaotic systems

In Example 6, we studied a static example of determin-
ism. Here, we evaluate the effect of dynamical noise in a
system of coupled chaotic logistic maps:

Zt = Zt−1(r − rZt−1 + σηZ
t ) mod 1,

Xt = Xt−1(r − rXt−1 − Zt−1 + σηX
t ) mod 1, (36)

Yt = Yt−1(r − rYt−1 − Zt−1 + σηY
t ) mod 1,

(37)

with uniformly distributed independent noise η and r = 4
leading to chaotic dynamics. Here, σ controls the amount of
dynamical noise in the system. To evaluate true positive rates
(correctly detecting Zt−1 → Xt and Zt−1 → Yt) and false pos-
itive rates (incorrect detections for any other variable pair,
direction, or lag), 200 realizations with time series length
n = 150 were generated.

We compare three methods from an information-theoretic
framework (FullCI, OCE, PCMCI) with convergent-cross
mapping (CCM, Sugihara et al., 2012) (see also Arnhold et
al., 1999; Hirata et al., 2016) as a nonlinear dynamics-inspired
approach. The significance of CMIs in FullCI and OCE is
tested with a nearest-neighbor CMI estimator (Kraskov et al.,
2004; Frenzel and Pompe, 2007; Vejmelka and Palus, 2008) in

FIG. 14. Comparison of CCM, FullCI, OCE, and two versions of PCMCI on
common driver system of three coupled chaotic logistic maps. The top panel
shows the true graph structure. In the left and right graphs for noise levels
σ = 0 and σ = 0.4, respectively, the width of arrows denotes the detection
rate, gray edges depict false links (only false positive rates 0.08 shown). The
center panels depict average true (black, left axis) and false positive rates (red,
right axis) for different strengths σ of dynamical noise. The gray line marks
the 5% significance threshold.

combination with a permutation test where X i
t−τ is randomly

shuffled. PCMCI is implemented with the CMIknn indepen-
dence test (Runge, 2018) as discussed in Example 12. We
also evaluate a variant (PCMCI0) where the condition on the
parents P̂(X i

t−τ ) is dropped and the only difference to OCE
is the condition-selection step. CCM reconstructs the vari-
able’s state-spaces using lagged coordinate embedding and
concludes on X → Y if points on X can be well predicted
using nearest neighbors in the state space of Y . Note that CCM
and related works only use the time series of X and Y with the
underlying assumption that the dynamics of Z can be recon-
structed using delay embedding. All methods were evaluated
at a significance level of 0.05. For implementation details, see
Appendix B 1. In the top panel of Fig. 14, we depict the true
causal graph.

Figure 14 shows that in the purely deterministic regime
with σ = 0, PCMCI has almost no power, while PCMCI0

features a detection rate of 0.8 and FullCI, OCE, and CCM
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almost always detect the couplings. On the other hand,
CCM also has the highest number of false positives around
0.2 which exceeds the significance level indicating an ill-
calibrated test. FullCI, OCE, and PCMCI0 also do not control
false positives well, while with PCMCI they are around the
expected level.

For higher dynamical noise levels interesting behav-
ior emerges: FullCI and CCM have continuously decreasing
power (and slightly decreasing false positives) dropping to
almost zero at σ = 0.4, while the power of OCE and both
PCMCI versions steadily increases up to σ = 0.2 after which
power decreases with a more pronounced decrease for PCMCI
and PCMCI0 having the highest power. False positives are
above the 0.05 threshold for FullCI and OCE for a wide range
of noise levels, while for PCMCI false positives are always
well-controlled at the expected 0.05.

How can these results be understood? CCM attempts to
reconstruct the attractor manifolds underlying X and Y . With
more dynamical noise, this reconstruction becomes more dif-
ficult and CCM looses power. The fact that CCM does not
control false positives well, especially in the deterministic
regime deserved further study. FullCI suffers from the curse
of dimensionality especially for higher noise levels.

The MCI test statistic for the link Zt−1 → Xt estimates
IMCI
Zt−1→Xt

= I(Zt−1; Xt | Zt−2, Xt−1). Now since for σ = 0 Zt−1

is a deterministic mapping of Zt−2, in theory we have IMCI = 0
for the same reasons as in the simple deterministic model (19)
above (and analogously for Zt−1 → Yt). In practice, we can
only measure the entropies at some coarse-grained level (here
determined by the CMI nearest-neighbor parameter) and the
deterministic dependency is never exactly recovered leading
to a non-zero MCI. In OCE and PCMCI0, only the parents of
Xt are included in the condition. The fact that FullCI, despite
conditioning on the whole past, also detects the link deserves
further study. Possible explanations are an ill-calibrated test or
dynamical properties of the logistic-map system. In summary,
purely deterministic dynamics here seem to generate too little
momentary information which is necessary for information-
theoretic coupling detection with MCI (see also Pompe and
Runge, 2011).

Given at least some dynamical noise to suffice the Faith-
fulness condition and together with the other assumptions
discussed in this paper, OCE and PCMCI provably converge
to the true causal graph in the limit of infinite sample size
(Runge et al., 2018; Sun et al., 2015, see also Sec. V B), while
no such theoretical results is available for CCM. In the infi-
nite sample limit also the inflated false positives of OCE due
to time-dependent samples vanish. For finite samples, on the
other hand, among other factors, consistency depends on how
well-calibrated the significance test is. PCMCI here always
yields expected levels of false positives. The inflated false
positives for FullCI and OCE for a wide range of noise levels
and for PCMCI0 for very low dynamical noise is related to
the way significance testing is implemented. In theory, OCE
should have less false positives than the expected 0.05 due to
the sequential testing problem (Sec. V C), but in our examples
autocorrelation and the global permutation scheme leads to ill-
calibrated tests with inflated false positives in each individual
test, see Examples 12 and 13, leading to an overall higher false

positive rate. The effect of autocorrelation is evaluated further
in the next example.

B. Autocorrelation

In Fig. 15, we evaluate the previously introduced causal
algorithms (Sec. V A) FullCI, OCE, and PCMCI on autocor-
related data which is an ubiquitous feature in real world time
series data. The full model setup is described in Appendix B
2. In short, here we only evaluate the false positive rates (for
c = 0) and true positive rates (for c �= 0) of the link Xt−1 → Yt

(top panel of Fig. 15) where the autocorrelation a is varied for
different numbers of common drivers DZ and the coefficients
b and σZ are chosen such that the unconditional dependence
stays the same, and we only investigate the effect of autocorre-
lation. The time series length is n = 150 and 1000 realizations
were run for each model setup to evaluate false positive rates
and true positive rates at an α = 0.05 significance level.

We compare partial correlation implementations (test
statistic ρ) of the following tests: (1) FullCI directly tests
Definition 1, Xt−1 ⊥⊥ Yt | X(t−1,...,t−τmax)

t \ {Xt−1} for τmax = 5.
For OCE and PCMCI, we assume that the condition-selection
steps already picked the correct parent sets and only test the
link Xt−1 → Yt in the second stages of OCE and PCMCI,
respectively: (2) OCE [Eq. (26), equivalent to PCMCI0] here
tests Xt−1 ⊥⊥ Yt | PYt , where PYt is given by the gray and
blue boxes in the top panel of Fig. 15. (3) OCEpw with
conditioning set as for OCE, but where all variables are
pre-whitened beforehand as described in Appendix B 2. (4)
OCEbs with conditioning set as for OCE, but where a block-
shuffle test was used as described in Appendix B 2. (5)
PCMCI tests Xt−1 ⊥⊥ Yt | PYt ,PXt−1 [Eq. (29)] as given by
the gray, blue, and red boxes. For all approaches, the analyti-
cal null distribution of the partial correlation test statistic was
used (t-test), except for the block-shuffle permutation test.

In the bottom four panels of Fig. 15, we depict results
for DZ = 0, that is, the bivariate case, and DZ = 4, both for
varying the autocorrelation strength a. In the bivariate case,
all approaches well control the false positive rates except
for OCE and (slightly better) OCEbs, which feature inflated
false positive rates for very high autocorrelation. The rea-
son is that when testing ρOCE = ρ(Xt−1; Yt|Yt−1) with the
t-test, we assume i.i.d.-data, but since X is autocorrelated,
this is not the case. This false positive inflation is also seen
in Fig. 14. Here, pre-whitening removes this autocorrelation
and block-shuffling remedies it to some extent. PCMCI and
FullCI both condition out autocorrelation and well-control
false positives with constant true positive levels, independent
of a, while the true positive level depends on a for OCE and
its modifications, even though the coupling coefficient c is
constant.

For DZ = 4 false positive inflation becomes even more
severe for OCE and here also pre-whitening does not help but
leads to strongly increased false positive rates since univari-
ate pre-whitening is not suitable for multivariate conditional
independence testing. The PCMCI approach conditions on the
parents of the lagged variable which helps to exclude auto-
correlation as shown in Runge et al. (2018) and allows us to
utilize analytical null distributions that assume i.i.d. data.
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FIG. 15. Comparison of FullCI, three versions of OCE, and PCMCI under
strong autocorrelation. (Top panel) Model time series graph with labels
denoting linear coefficients. The full model setup is described in Appendix B
2. FullCI has the conditioning set X−t = (Xt−1, . . . , Xt−5), OCE has condi-
tioning set depicted by gray and blue boxes, and PCMCI has conditioning
set depicted by gray, blue, and red boxes. (Bottom panel) False positive rates
and true positive rates are shown for two different dimensions DZ and various
autocorrelation strengths a.

C. Curse of dimensionality

In Fig. 16, we evaluate the causal algorithms (Sec. V
A) for high-dimensional data using the same model as in
Fig. 15 described in Appendix B 2. Here only FullCI, OCE,
and PCMCI are compared, all of them again based on partial
correlation.

As shown in Fig. 16, FullCI severely suffers from the
curse of dimensionality and the OLS-solver even becomes
ill-conditioned for DZ = 32 since then the estimation dimen-
sion exceeds the sample size. For OCE and PCMCI, we again
assume that the condition-selection algorithms selected the
correct set of parents. Then the dimensionality of OCE and

FIG. 16. Comparison of FullCI, OCE, and PCMCI under high dimensional-
ity. The model setup is the same as in Fig. 15. Shown are false positive rates
and true positive rates for different dimensions DZ and no autocorrelation
(a = 0) in the model detailed in Appendix B 2.

PCMCI increases only slightly and the power stays at higher
levels.

The problem becomes even more severe for non-
parametric tests such as multivariate transfer entropy. Another
alternative to OLS partial correlation estimation are regular-
ization techniques such as ridge regression (Hoerl et al., 1970;
Tibshirani, 1996; Tikhonov, 1963), but these come with other
difficulties, for example regarding significance testing. These
issues are further analyzed in Runge et al. (2018).

VIII. DISCUSSION AND CONCLUSIONS

The long preceding list of theoretical assumptions in Sec.
IV may make causal discovery seem a daunting task. In most
real data application, we will not have all common drivers
measured, hence violating the causal sufficiency assumption.
Then also the Markov assumption may be violated in many
cases due to time-aggregation. A conclusion on the existence
of a causal link, thus, rests on a number of partially strong
assumptions. So what can we learn from an estimated causal
graph? Let us consider what the assumptions on the absence
of a causal link are.

Remark 1. Let X̃ be measurements of a stochastic pro-
cess X. Assuming Faithfulness (Definition 5) and that all
variables in X̃ are measured without error we have that for
X̃ , Ỹ , Z̃ ∈ X̃ with X̃ , Ỹ /∈ Z̃ if

X̃t−τ ⊥⊥ Ỹt | Z̃ for any subset Z̃ ∈ X̃−t
⇒ Xt−τ ��→ Yt, (38)
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that is, if independence is measured given any subset of con-
ditions, then there is no direct causal link between Xt−τ and
Yt in G.

Note that for the practical estimation from finite data, we
also need to assume that all dependencies among lagged vari-
ables in X can be modeled with the conditional independence
test statistic, that is, no false negative errors occur. Neverthe-
less, Remark 1 rests on much weaker assumptions than the
existence of a causal link since it does not require Causal Suf-
ficiency or Causal the Markov Condition. The proof follows
almost directly from the Faithfulness assumption.

Proof. Firstly, since we assume an error-free measurement
process, we have that X̃ = X. Then X̃t−τ ⊥⊥ Ỹt | Z̃⇒ Xt−τ ⊥⊥
Yt | Z⇒ Xt−τ 
� Yt | Z. The last relation is the Faithfulness
assumption. Separation implies in particular that no direct link
Xt−τ → Yt exists in G. �

The second set of assumptions important for causal dis-
covery are the assumptions underlying significance testing
(Sec. V C). Failing to properly take into account auto-
correlation or too simple permutation schemes imply ill-
calibrated significance tests leading to inflated false posi-
tives beyond those expected by the significance level (see
the comparison studies in Sec. VII). Next to the theoreti-
cal causal assumptions, statistical reliability of reconstructed
networks is an important aspect for drawing causal conclu-
sions.

This paper is intended to recapitulate the main con-
cepts of time-lagged causal discovery from observational
time series data and accessibly illustrate important chal-
lenges. But many more challenges exist, for example, we
have not considered selection bias or issues with the definition
of variables as elaborated on in Spirtes et al. (2000). We
also have not discussed the topic of determining causal
effects (Pearl, 2000) (causal quantification) or mediation
(VanderWeele, 2015; Runge et al., 2015a, 2015b) as opposed
the pure existence or absence of causal links presented
here.

Our focus was on time series which make the causal dis-
covery problem easier in some aspects (e.g., time order can
be exploited), but more difficult in other aspects, especially
regarding statistical testing. We have briefly mentioned the
recent works based on different sets of assumptions in the
framework of structural causal modeling (Peters et al., 2017),
which do not require time-order. Also, many more techniques
and insights from the conditional independence framework
(Spirtes et al., 2000) can be utilized in the time series case. An
important conclusion is that causal discovery is a very active
area of research in many fields, from mathematics, computer
science, and physics to applied sciences, and methodologi-
cal progress can greatly benefit from more interdisciplinary
exchange.
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APPENDIX A: INCONSISTENT CAUSAL ALGORITHM

For the example graph shown in Fig. 11, consider the fol-
lowing decomposition [chain rule (Cover and Thomas, 2006),
dropping t]:

I(X , Z1, Z2; Y) = I(X ; Y)+ I(Z1, Z2; Y | X ). (A1)

Alternatively, one can decompose the same MI as

I(X , Z1, Z2; Y)

= I(Z1; Y)+ I(Z2; Y | Z1)+ I(X ; Y | Z1, Z2)︸ ︷︷ ︸
=0

, (A2)

where the last term vanishes because (Z1, Z2) separates X and
Y in the graph (Markov condition). From these two equations,
it follows that if

I(Z1, Z2; Y | X ) < I(Z2; Y | Z1) (A3)

=⇒ I(Z1; Y) < I(X ; Y). (A4)

Hence, the wrong parent X has higher MI and would be
selected with a pure forward-selection scheme.

APPENDIX B: IMPLEMENTATION DETAILS FOR
NUMERICAL EXAMPLES

1. Dynamical noise model

CCM was estimated with embedding dimension E = 2,
and the surrogate test ebisuzaki with 500 surrogates using
the R-package rEDM. CCM requires two criteria (Sugihara et
al., 2012), both a significant CCM value at library size n and
an increasing CCM value over increasing library length. As a
p-value of CCM, we thus take max(pn, pconv), where pn is the
p-value of CCM at library size n and pconv is the p-value for
the hypothesis of an increasing linear trend. OCE was esti-
mated with threshold parameter αOCE = 0.1 and τmax = 2 in
the forward step and with CMI nearest-neighbor parameter
kCMI = 15 and B = 500 permutation surrogates. FullCI was
also estimated with CMI parameter kCMI = 15 and B = 500
permutation surrogates. PCMCI was implemented with αPC =
0.1, τmax = 2 and CMIknn parameters kCMI = 15, kperm = 5
and B = 500 permutation surrogates (Runge, 2018). PCMCI
was run without restricting the number of parents pX in the
MCI step, while for PCMCI0 only the parents of the non-
lagged variable were included. For each noise level σ , we
ran the four methods on 200 time series realizations of the
model. We compute as true positives the average rates at
which the links Zt−1 → Xt and Zt−1 → Yt were detected from
the 200 realizations at an α = 0.05 significance level. We cal-
culate as false positives the average rates for i �= j ∈ {X , Y , Z}
and τ ∈ {1, 2} where there is no link. Since we use an α =
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0.05 significance level, a well-calibrated test should yield 5%
false positives. The edge color and width of the graphs in
Fig. 14 corresponds to the lag with maximum CMI/CCM
value.

2. Model for examples on autocorrelation and
high-dimensionality

The model time series graph is depicted in Fig. 15.
In the model setup, all links correspond to linear depen-
dencies. The autocorrelation a is the same for all variables
X , Y , Z1, . . . , ZDZ . The coupling coefficient c of the link
Xt−1 → Yt is zero to test false positive rates and nonzero to
test true positive rates. For nonzero c its value is chosen such
that in the corresponding bivariate model without autocorrela-
tion (DZ = 0, a = 0), we obtain a constant mutual information
I(Xt−1; Yt) = 0.03 nats for the linear coupling with partial
correlation. On the other hand, the common driver forcing
coefficient b = b(DZ , a) and the covariance among the drivers
σZ = b/2 are chosen such that in the full model for every pair
(DZ > 0, a ≥ 0) with c = 0 we have I(Xt−1; Yt) = 0.4 nats,
a relatively strong forcing corresponding to a correlation of
≈ 0.7.

This setup guarantees that the unconditional dependence
stays the same and we only investigate the effect of increasing
autocorrelation and higher dimensionality. We test additive
Gaussian noise terms η ∼ N (0, 1). For DZ = 0 the model
setup corresponds to two autocorrelated processes without a
common driver forcing. The sample lengths are n = 150 for
partial correlation. 1000 realizations were evaluated to assess
false and true positives.

3. Pre-whitening and block-shuffling

We also tested the OCE test using a pre-whitening
(OCEpw) and a block-shuffle permutation test (OCEbs). For
the pre-whitening test, we preprocessed all N time series
by estimating the univariate lag-1 autocorrelation coefficients
âi = ρ(X i

t−1; X i
t ) and regressing out the AR(1) autocorrelation

part of the signals:

X̃ i
t = X i

t − âiX
i
t−1 ∀t and i = 1, . . . , N . (B1)

Then the OCE test is applied to these residuals X̃.
Another remedy is a block-shuffle permutation test,

which is based on a block-shuffle surrogate test following
Peifer et al. (2005) and Mader et al. (2013). For the test statis-
tic T , an ensemble of M = 500 values of I(X ∗t−τ ; Yt | . . .) is
generated where X ∗t−τ is a block-shuffled surrogate of Xt−τ ,
i.e., with blocks of the original time series permuted. As an
optimal block-length, we use the method described in Peifer
et al. (2005) and Mader et al. (2013) for non-overlapping
blocks. The optimal block-length formula Eq. (6) in Mader
et al. (2013) involves the decay rate of the envelope of the
autocorrelation function γ (τ). The latter was estimated up to
a maximum delay of 5% of the samples, and the envelope was
estimated using the Hilbert transform. Then a function Cφτ

was fit to the envelope with constant C to obtain the decay
rate φ. The block length was limited to a maximum of 10% of
the sample length. Finally, the estimated values are sorted, and

a p-value is obtained as the fraction of surrogates with values
greater than or equal to the estimated value.
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