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Honey bees (Apis mellifera) produce an enormous economic value
through their pollination activities and play a central role in the
biodiversity of entire ecosystems. Recent efforts have revealed the
substantial influence that the gut microbiota exert on bee devel-
opment, food digestion, and homeostasis in general. In this study,
deep sequencing was used to characterize prokaryotic viral commu-
nities associated with honey bees, which was a blind spot in research
up until now. The vast majority of the prokaryotic viral populations
are novel at the genus level, and most of the encoded proteins com-
prise unknown functions. Nevertheless, genomes of bacteriophages
were predicted to infect nearly every major bee-gut bacterium,
and functional annotation and auxiliary metabolic gene discovery
imply the potential to influence microbial metabolism. Furthermore,
undiscovered genes involved in the synthesis of secondary metabolic
biosynthetic gene clusters reflect a wealth of previously untapped
enzymatic resources hidden in the bee bacteriophage community.
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Pollination is an essential aspect for entire ecosystems, and
honey bees (Apis mellifera) are considered the most eco-

nomically important insect pollinators for commercial crops
worldwide. Apart from the production of honey and other
valuable products, honey bees contribute significantly to insect
pollination, of which the economic value has been estimated at
V153 billion (1). During the past decades, it has become clear
that managed honey-bee colonies are under pressure from a
wide variety of stressors, such as parasites (2), bacterial patho-
gens (3), viral pathogens (4), and others such as chemical
stressors (5). Recently, more and more attention is going toward
the bee microbiota, and a number of studies have attempted to
characterize the honey-bee-gut microbiome (6, 7). These studies
have revealed that the bacterial part of the core honey-bee-gut
microbiome is dominated by 5 to 10 different bacterial species.
The species that were identified belonged to three different
bacterial phyla, namely the Proteobacteria, Firmicutes, and
Actinobacteria (6). Transcriptome analysis further provided in-
formation on the functional potential encoded by the bacterial
gut microbiome (8). From these insights a model was proposed
for a microbial metabolic pathway, with different roles for dif-
ferent bacteria. Briefly, glycosidases and peptidases (encoded by
the aforementioned core bacterial microbiome) initially break
down plant polysaccharides and proteins. These products are
further fermented into organic acids, gases, and alcohols, which
are then further metabolized by methanogens and Clostridia
species. The fact that honey bees cannot survive on unprocessed
pollen alone (9) highlights the importance of microbial enzy-
matic digestion in honey-bee homeostasis. These findings were
recently recapitulated in a study employing system-wide metab-
olomics (10). This study confirms that the bee-gut microbiota
play a central role in the digestion and metabolization of pollen-

derived components. More evidence on the existence of host–
microbe interactions has revealed a positive influence of the bee-
gut microbiota on weight gain in the host weight of the gut
compartments, but also increasing the endogenous expression of
genes involved in development and immunity, sucrose sensitivity,
and insulin-like signaling (11).
Taken together, these results imply an essential role of the

bee-gut microbiota in nutrition availability, bee development,
and general homeostasis. This role is further strengthened by the
observation that a diet-induced gut bacterial dysbiosis is associ-
ated with detrimental effects on development, mortality, and
disease susceptibility (12). The fact that both the diet of honey
bees and the bacterial diversity present in the honey-bee gut are

Significance

This study uses viral-like particle purification and subsequent
unbiased genome sequencing to identify prokaryotic viruses
associated with Apis mellifera. Interestingly, bacteriophages
found in honey bees show a high diversity and span different
viral taxa. This diversity sharply contrasts with the state-of-the-
art knowledge on the relatively simple bee bacterial micro-
biome. The identification of multiple auxiliary metabolic genes
suggests that these bacteriophages possess the coding poten-
tial to intervene in essential microbial pathways related to
health and possibly also to disease. This study sheds light on a
neglected part of the bee microbiota and opens avenues of in
vivo research on the interaction of bacteriophages with their
bacterial host, which likely has strongly underappreciated
consequences on bee health.

Author contributions: W.D., D.C.d.G., and J.M. designed research; W.D., L.B., C.K.Y., and
P.M. performed research; W.D. and L.B. analyzed data; and W.D. and J.M. wrote
the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution-NonCommercial-
NoDerivatives License 4.0 (CC BY-NC-ND).

Data deposition: Retrieved prokaryotic viral sequences larger than 5 kb were deposited in
the National Center for Biotechnology Information (NCBI) GenBank database (accession
numbers available in SI Appendix, Table S18, available on GitHub). Raw reads were de-
posited in NCBI’s Sequence Read Archive (SRA) database under accession no.
PRJNA579886 (SRA accession numbers are also available in SI Appendix, Table S18, avail-
able on GitHub). Analysis notebooks are available at GitHub (https://github.com/
matthijnssenslab/beevir). All intermediate results files and outputs that were gener-
ated, as well as the fasta sequences for nucleotides and proteins, are also available
through the GitHub repository.

See online for related content such as Commentaries.
1To whom correspondence may be addressed. Email: ward.deboutte@kuleuven.be or
jelle.matthijnssens@kuleuven.be.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/
doi:10.1073/pnas.1921859117/-/DCSupplemental.

First published April 27, 2020.

www.pnas.org/cgi/doi/10.1073/pnas.1921859117 PNAS | May 12, 2020 | vol. 117 | no. 19 | 10511–10519

M
IC
RO

BI
O
LO

G
Y

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 S
ta

at
s-

 u
nd

 U
ni

ve
rs

ita
et

sb
ib

lio
th

ek
 B

re
m

en
 o

n 
O

ct
ob

er
 3

, 2
02

2 
fr

om
 I

P 
ad

dr
es

s 
13

4.
10

2.
10

7.
20

2.

https://orcid.org/0000-0002-3829-1056
https://orcid.org/0000-0002-5829-7906
https://orcid.org/0000-0002-5195-5478
https://orcid.org/0000-0002-4571-5232
https://orcid.org/0000-0001-8817-0781
https://orcid.org/0000-0003-1188-9733
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1921859117&domain=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1921859117/-/DCSupplemental
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=PRJNA579886
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1921859117/-/DCSupplemental
https://github.com/matthijnssenslab/beevir
https://github.com/matthijnssenslab/beevir
http://dx.doi.org/10.1073/pnas.1921859117
mailto:ward.deboutte@kuleuven.be
mailto:jelle.matthijnssens@kuleuven.be
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1921859117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1921859117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1921859117


much less divergent than its human counterpart led to the pro-
posal to use honey bees as model systems for microbiota research
and furthermore as a useful tool in studying the evolution and
ecology of host–microbe interactions (13). Despite the recent
advances in the knowledge of the honey-bee gut metagenome,
the work done on honey-bee–associated bacteriophages has been
based on only a few isolates and thus remains biased (14, 15). It
is often postulated that (prokaryotic) viruses represent the most
prevalent biological units worldwide and execute essential roles
within their respective ecosystems. For example, bacteriophages
play a significant role in carbon, nitrogen, and phosphorous cy-
cling in the oceans (16) and are implied to influence soil ecology
(17). The presence of auxiliary metabolic genes (AMGs: here
defined as genes present in bacteriophages, but originating from
bacteria with the potential to modulate microbial metabolism)
within bacteriophages, and the recent discovery of a communi-
cation systems resulting in lysis and lysogeny decisions (18) re-
flect the important influence that these viruses play in their
putative hosts and ecosystem equilibria in general. In humans,
bacteriophages have been used as alternatives for antibiotics (19)
and even proposed to be used as biomarkers for numerous
conditions (20).
The multitude of functions that prokaryotic viruses can exert

within their biosphere, combined with the fact that the honey-
bee bacterial microbiome plays a crucial role in bee health, im-
plies that the viral microbiome could play an important role in
bee homeostasis as well. In this work we present an initial
characterization of the prokaryotic viral microbiome associated
with honey bees derived from healthy and weakened colonies
using viral-like particle enrichment strategies combined with
short read Illumina sequencing.

Results
Prokaryotic Virus Identification through Next-Generation Sequencing.
Samples comprising 300 different colonies of Flemish honey
bees, collected in the framework of the EpiloBEE study (21) (SI
Appendix, Fig. S1), were enriched for viruses (both DNA and
RNA viruses) according to the NetoVIR protocol (22) and se-
quenced. These samples were initially selected to represent the
Flemish population of honey bees as well as possible. In total,
102 pools containing samples from hives that were comparable
(derived from healthy or weak colonies) and matched geo-
graphically and by subspecies as well as possible were analyzed
(SI Appendix, Table S14, available on GitHub). Two bees from
three colonies were pooled together, except for the last three
pools, which contained two bees from one colony. Each pool was
assigned 5 million 150-bp end reads and were sequenced using
the Illumina NextSEQ platform. This approach yielded a total of
686,940,647 reads, with a median of 5,798,403 reads per pool
(minimum: 2,096,600 reads; maximum: 26,307,071 reads). After
de novo assembling the separate libraries, the resulting contigs
were collapsed on 95% nucleotide identity over a coverage of
80%, and putative prokaryotic viral sequences were identified
using VIRSorter (23) and a lowest-common-ancestor approach
using DIAMOND (24). Eukaryotic viruses were omitted by using
the virome decontamination mode in VIRSorter and by manu-
ally parsing the DIAMOND output. These approaches allowed
the identification of 4,842 nonredundant putative prokaryotic
viral contigs with a minimum length of 500 bp. Of these contigs,
20 were predicted to be circular (and thus complete genomes)
(SI Appendix, Fig. S2). Of these 20 complete genomes, 11 could
be assigned to known bacteriophage families (Microviridae,
Siphoviridae, Myoviridae, and Podoviridae), and 7 could be
assigned to a bacterial host (Bifidobacterium, Bartonella, Lacto-
bacillus, Hafnia, and Pluralibacter) (see below). Species accu-
mulation curves (assuming that the collapsed contigs reflect
distinct viral species) reveal no plateau being reached, imply-
ing that, despite the large sampling effort and viral particle

enrichment, prokaryotic viral sequence space was not fully pro-
bed (Fig. 1A). This observation is also reflected by the strong
correlation between contig length and contig tpmean coverage
(the average number of reads overlapping each base after re-
moving the 10% most- and least-covered bases) (Spearman
correlation coefficient = 0.74, P value < 1.10−4) (SI Appendix,
Fig. S3). Reads from individual pools were aligned back to the
contig representatives, and the presence of every contig in a pool
was evaluated (presence being defined as tpmean coverage >
10). Most contigs larger than 5 kb were shared between less than
five pools, and 20 contigs were shared between more than five
pools (Fig. 1B). Pairwise comparison of the contig sharing be-
tween pools is reflected in a network that represents 70 of the
102 pools sequenced (Fig. 1C). The maximum number of contigs
shared between two pools was 15. No clear clustering patterns
could be observed when applying the Markov Cluster Algorithm
(MCL) (25) or k-means clustering. The maximal clique observed
in the network contained 21 pools. Next, the dimensionality of
the coverage matrix was reduced using principal coordinate
analysis (PCoA), and the clustering patterns for sample status
(health vs. diseased), sampling year (2012 vs. 2013), and location
(Belgian provinces) were tested using the Adonis test. No sig-
nificant effect was observed for sample status, but both location
and sampling year were significant, albeit with a low R-squared
value (SI Appendix, Fig. S4). Retrieved putative prokaryotic virus
contigs show a wide range of guanine–cytosine (GC) percent-
ages, ranging from roughly 25 to 70% (Fig. 1D). After decorating
the contigs with prokaryotic virus orthologous groups [pVOGs
(26)], roughly half the contigs (2,346 contigs, or 48.5%) had a
pVOG vs. open reading frame (ORF) ratio larger than 50%
(Fig. 1E). Some of the contigs that fell below this ratio were
more than 10 kb in size, implying that a high amount of putative
viral proteins were not represented in the pVOG database.
These results suggest that a large number of retrieved viral genes
are not represented in the pVOG database. When plotting the
average “Virusness” (frequency of a pVOG being present in
viruses versus the frequency of a pVOG being present in bac-
teria) of the annotated pVOGs within a contig, it was shown that
a slight majority of the contigs fell above 0.5 (SI Appendix, Fig.
S5). The bimodal distribution reflects that a large number of
contigs show a clear viral signal (average Virusness close to 1),
while the enrichment of contigs with an average Virusness close
to zero is a consequence of contigs carrying no detectable pVOG
at all (orange dots in SI Appendix, Fig. S5).

Host Assignment of Prokaryotic Viral Contigs. Putative bacterio-
phage genomic sequences can be linked to their specific host by
taking advantage of the CRISPR-spacer sequences that they
encode and by transfer RNA (tRNA) similarity. We constructed
a bee-specific gut bacterial microbiome dataset by collating data
available on IMG/M and from Ellegaard et al. (27) (SI Appendix,
Table S15). This collated dataset includes bacterial sequences
from six different genera, including Lactobacillus, Bifidobacte-
rium, Commensalibacter, Gilliamella, Snodgrassella, and Fri-
schella. To minimize the possibility that any of the putative
prokaryotic viral contigs were of bacterial origin, the coding
density and frequency of strand shift were calculated for both the
bacterial contig set and the bacteriophage contig set (Fig. 2A).
Both these parameters were significantly different between both
sets. On average, the coding density (defined as number of
predicted genes/kilobase) was higher in the virus dataset (2.50)
than the bacterial dataset (1.07) (Mann–Whitney U test, P
value = 5.10−164). The average frequency of strand shift (defined as
the frequency that two neighboring genes start in different
frames) was higher in the bacterial dataset (0.84) than in the viral
dataset (0.63) (Mann–Whitney U test, P value = 4.10−87). These
observations, together with the fact that no single copy bacterial
marker genes [as defined by Lee et al. (28)] could be identified in
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the putative prokaryotic viral contig set, suggest that the viral
contig set contains no or very little bacterial contamination. In
total, 76 putative bacteriophage contigs could be linked to spe-
cific bacteria using these approaches. These contigs were within
the length range of 1 to 107 kb, and four were predicted to be

circular (and thus depict full-length genomes). Of these 76
contigs, 32 could be assigned to the genus Lactobacillus, 17 to the
genus Gilliamella, and 27 to the genus Bifidobacterium. No viral
contigs could be linked to the Frischella, Snodgrassella, and
Commensalibacter group of bacteria since these bacterial genomes

Fig. 1. Bee-associated prokaryotic viruses display a high interindividual diversity and contain a large number of unknown viral proteins. (A) Species accu-
mulation curves as a function of the number of pools sequenced. Vertical lines indicate SDs based on 100 permutations. (B) Swarm plot reflecting putative
viral contigs larger than 5 kb that were present in one sample or more (140 in total). Presence is defined as a coverage >10. A dot represents a single contig.
The box shows the three quartile values, and the whiskers extend to 1.5 interquartile ranges of the lower and upper quartile. All 140 dots are drawn in the
plot. (C) Edge-weighted spring-embedded layout network depicting the samples as nodes and edges as the number of contigs shared between them. Edge
thickness reflects the number of contigs. Green nodes depict pools derived from healthy colonies; red nodes depict pools derived from weak colonies. Edge
thickness ranges from 1 to 15. (D) GC percentage of all representative putative viral contigs as a function of their log10-transformed coverage in the pool of
which the representative was derived. Log10-transformed length is indicated by color intensity. (E) Number of pVOGs found back in the putative viral contigs,
normalized by the amount of predicted ORFs as a function of their log10-transformed coverage. Log10-transformed length is indicated by color intensity.
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did not contain any detectible CRISPR array. However, one
tRNA hit was found against the genus Frischella (Fig. 2B). The
majority of host-called viral contigs were linked to a single bac-
terium, but 17 of them displayed CRISPR-spacer hits against
more than one bacterial species. One putative viral contig could
even be linked to five different bacteria, but none of the host-
linked viral contigs could be assigned to more than one genus,
suggesting a restricted host range. Only five of the putative viral
contigs contained a tRNA signature that could be linked to spe-
cific bacteria. Two of those contigs gave hits against nearly all of
the Bifidobacterium or Lactobacillus species included in this
analysis. One of those contigs also gave a hit to the only Frischella
species included, although there was no CRISPR-spacer evidence
found to confirm this. Since bees sample the environment, it
cannot be excluded that some of the retrieved viral sequences

reflect environmental bacteriophages rather than true bee-gut
viruses. To this extent, an additional CRISPR-spacer search was
ran by using the spacers present in the CRISPR database
(CRISPRdb) (29). These results confirm 19 of the 76 previous hits
against the bee-gut–specific bacteria. Furthermore, 50 additional
hits were found, of which 32 were for bacterial genera present in
the bee gut (6 Lactobacillus hits, 3 Bifidobacterium hits, 18 Barto-
nella hits, 5 Gilliomella hits). The 18 remaining putative hosts
identified potentially reflect environmental bacteria (SI Appendix,
Table S19, available on GitHub).

Classification of Prokaryotic Viral Contigs. In an attempt to classify
the newly discovered sequences, we ran vConTACT2 (30) on the
putative prokaryotic viral sequences retrieved, using the Pro-
karyotic viral REFSEQ 88 database. This method uses gene-sharing

Fig. 2. Retrieved prokaryotic viruses display a significant difference in genomic variables and infect a wide range of known bee-gut bacteria. (A) Frequency
of strand shift in function of coding density (number of ORFs per kilobase). Data from the bacterial dataset are indicated in blue; data from the viral dataset
are indicated in orange. Boxplots for individual parameters are also denoted, and asterisks designate significance (Mann–Whitney U test; P value for coding
density = 5.10−164; P value for strand shift frequency = 4.10−87). The box shows the three quartile values, and the whiskers extend to 1.5 interquartile ranges
of the lower and upper quartile. Dots independently drawn fall outside of this range. (B) Maximum-likelihood phylogenetic tree for bacterial sequences
included in the host-calling effort. Gray integers indicate bootstrap values. The tree is colored according to bacterial genera. Number of contigs linked to a
specific bacterial species are indicated by the stacked horizontal bar plots (CRISPR-spacer counts and tRNA similarity). Shades of gray indicate the number of
specific bacterial species that gave hits to a single contig (CRISPR spacers) or indicate a specific viral contig (tRNA similarity). Single contigs displaying CRISPR-
spacer hits to multiple bacteria are indicated with colored tax links between the tips. A single color corresponds to a single contig.

10514 | www.pnas.org/cgi/doi/10.1073/pnas.1921859117 Deboutte et al.
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networks to taxonomically assign prokaryotic viruses solely
based on their sequence. The algorithm classifies sequences
either as “singletons” (no shared gene content), “outliers”
(weakly connected with a cluster of sequences), or as part of a
cluster (30). Of the 4,842 nonredundant prokaryotic viral contigs
(>500 bp), 3,010 were singletons, 582 were outliers, 181 showed
strong overlap between more than one established cluster (not
allowing for their unambiguous classification), and 1,034 could
be unambiguously clustered (Fig. 3A). The clustered contigs are
represented by 403 viral genome clusters (which are said to be
equivalent to the genus taxonomic level). Of these viral genome
clusters, 368 clusters contained no REFSEQ sequences at all.
The remaining 35 clusters (representing 85 contigs) were mostly
related to the families Siphoviridae and Myoviridae, although the
families Podoviridae, Inoviridae, Microviridae, and Cystoviridae
were also represented (Fig. 3 B and C and SI Appendix, Table
S16). The resulting network of clustered genome sequences re-
veals the newly discovered sequences as widely dispersed
throughout known REFSEQ sequences (Fig. 3D), despite the
fact that this network reflects only about 20% of the recovered
sequences (the remaining sequences are singletons). Of the 537
viral contigs that were larger than 5 kb, 71 (13.2%) were sin-
gletons, 126 (23.5%) were outliers, 67 (12.5%) showed too
much overlap to be unambiguously classified, and 273 (50.1%)
could be unambiguously clustered. Of the clustered sequences,
73 could be assigned to a viral family. Although the relative
amount of assigned contigs versus the other categories was
higher in the dataset with large viral contigs (SI Appendix, Fig.
S6A) compared to the small contigs (Fig. 3A), the assignment to
different viral families remained comparable to the full dataset
(Fig. 3 B and C vs. SI Appendix, Fig. S6 B and C). The network
projection also revealed that, despite the loss of a substan-
tial number of small clusters, the viral diversity remained

widespread. The relative increase in clustered viral sequences
seen only when looking at contigs above 5 kb, combined with the
observation that most of the singleton contigs are shorter in
length than the other groups (SI Appendix, Fig. S7), reflect that a
shorter sequence length hampers the classification process in this
dataset. Because viruses lack universal marker genes, and very
few of the recovered proteins could be clustered together (see
below), phylogenetic trees were drawn for the five largest protein
clusters (PCs), as identified by vConTACT2. These five largest
protein clusters contained reference proteins annotated as “Ri-
bonucleotide reductase” (PC1), “Endonuclease” (PC2), “ssDNA
binding protein” (PC3), “Endonuclease” (PC4), and “Thymidi-
late synthase” (PC5). The number of proteins (identified in this
study) in each protein cluster was highly variable. PC1 contained
27 identified proteins (400 proteins in total), PC2 contained 70
identified proteins (389 proteins in total), PC3 contained
83 identified proteins (331 proteins in total), PC4 contained 34
identified proteins (302 proteins in total), and PC5 contained 8
identified proteins (283 proteins in total). The identified se-
quences do not fall into distinct clades and seem to be dispersed
over the entire phylogenetic spectrum of their respective trees
(SI Appendix, Fig. S8A). Given the lack of large protein clusters
containing many of the identified sequences, the branch lengths
in between all tips on the protein cluster trees were calculated
and linked to the minimum path length between the corre-
sponding genomes in the vConTACT2 network. These minimum
path lengths were calculated using the Bellman–Ford algorithm.
Both metrics were significantly positively correlated (Spearman
rank correlation coefficient = 0.43; P value = 0.0), although
when breaking up between the types (bee-associated viral contig,
reference or bee-associated viral contig, and references com-
bined) the correlation coefficients ranged from 0.44 to 0.82 (SI
Appendix, Fig. S8B). These results imply that the distances

Fig. 3. The vast majority of retrieved prokaryotic viruses cannot be classified confidently. (A) Counts indicating the classification status of the putative viral
contigs using vConTACT2. “Clustered Assigned” denotes retrieved contigs falling into clusters containing reference sequences; “Clustered Not-Assigned”
denotes retrieved contigs falling in clusters without reference sequences. (B) Number of clusters that contained both confidently clustered large contigs and
reference sequences. (C) Number of clusters that contained both confidently clustered contigs and reference sequences. (D) Scalable force directed placement
layout genome network containing the retrieved clustered putative prokaryotic viruses (red) and the viral family of reference sequences (other colors). The
most prevalent viral families are indicated in yellow (Myoviridae), green (Podoviridae), and orange (Siphoviridae).
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between connected nodes within the vConTACT2 network can
also be interpreted (to some degree) as phylogenetic distances.

Functional Potential and Selection Signatures of Honey-Bee–Associated
Prokaryotic Viral Genes. To gain insights into the functional po-
tential encoded by the retrieved bacteriophages, InterProScan
(31) and eggNOG-mapper (32, 33) were utilized for domain an-
notations. To reduce computational burden, protein sequences
from predicted genes were collapsed on 50% amino acid identity
before analysis. This procedure reduced the amount of putative
proteins from 24,420 to 18,747, although the vast majority of
clusters comprised less than five protein sequences (Fig. 4A and SI
Appendix, Fig. S9A). In an attempt to identify AMGs, we blasted
the viral protein sequences against the proteins encoded in the
same bee-gut bacterial microbiome dataset used for host calling
(SI Appendix, Table S15). Prior to blasting, the bacterial protein
dataset was clustered using the same parameters as for the viral
proteins. A viral protein was considered a genuine AMG when the
alignment had an e-value smaller than 1e-5. Of the 18,747 viral
protein clusters, 2,744 were identified as AMGs (Fig. 4B). To
estimate the proportion of the identified AMGs originating from
prophage regions, PHASTER (34) was run on the bacterial con-
tigs (SI Appendix, Table S17). The bacterial proteins found in the
AMG search were evaluated whether they fell in these regions or
not. In total, 45 prophage regions were discovered, and 95 of the
1,506 (roughly 6%) bacterial counterparts of the identified AMGs
fell inside these regions. Roughly 65% of the cluster representa-
tives of the viral proteins (12,286) showed significant hits against
the EggNOG database, the different databases used by Inter-
ProScan, or both (Fig. 4A). Of all of the Clusters of Orthologous
Groups (COG) categories that the viral proteins could be assigned
to, category S had the highest number of clusters assigned
(“Function Unknown,” 4,293 clusters), followed by typical viral
replication signatures (“Replication, recombination, and repair”
[468 clusters], “Cell wall/membrane/envelope biogenesis” [212
clusters], and “Transcription” [166 clusters]) (SI Appendix, Fig.
S9B). A complete enumeration of Gene Ontology (GO) acces-
sions plotted into treemaps using REVIGO (35) reveals similar
characteristics as the COG categories and a general lack of in-

depth annotation of the retrieved viral proteins (SI Appendix, Fig.
S10). In an attempt to further elucidate functional potential, the
GO accessions were projected onto the pathways of which they are
a part of using Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway mapper (36) (Fig. 4C). Some of the retrieved
pathways reflect functions that could influence bacteria directly
and are involved in biofilm formation, quorum sensing, and bac-
terial chemotaxis. Other represented pathways reflect a wide range
of basic metabolic functions, including lipid-, carbohydrate-, nucle-
otide-, and amino acid metabolism. Interestingly, also xenobiotic
degradation, glycan biosynthesis, and terpenoid and polyketide
metabolism were represented. The bacterial annotations for the
previously defined AMGs were also projected into pathways, and
overlapping pathway annotations were identified (Fig. 4C, red-
outlined rectangles). Interestingly, nearly all of the identified path-
ways in the viral protein clusters were represented by the bacterial
annotations for the AMG set. This observation further confirms the
idea that the prokaryotic viral contigs contain the coding potential
to influence bacterial metabolic state and homeostasis.
In an attempt to further characterize the signatures of sec-

ondary metabolites, as well as the other pathway functions that
reflect the role of secondary metabolites, antiSMASH (37) was
run. In total, four gene clusters were identified, all containing
one gene with a bacteriocin signature (SI Appendix, Fig. S11).
The four genes containing the bacteriocin signature had amino
acid similarities with GenBank proteins ranging from 34 to 97%.
Of the gene clusters identified, 13 to 53% of neighboring genes
showed similarity to other genes represented in the antiSMASH
database. Finally, an attempt was made to characterize selection
signatures within the encoded genes. To achieve this, single-
nucleotide polymorphisms (SNPs) were called per representa-
tive contig present in every pool, and nonsynonymous vs. syn-
onymous substitution rates were calculated using SNPgenie (38).
The majority of genes had a πN/πS ratio lower than 1, but 52
proteins revealed a positive selection signature in at least one
pool (SI Appendix, Fig. S12). Of those 52 proteins, 11 were
functionally annotated. These functions included mostly capsid
and tail domains, but also transglycosylase and endopeptidase
functions (see SI Appendix, Table S18, available on GitHub).
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Fig. 4. Functional annotation reveals a large metabolic overlap between bacterial and prokaryotic virus proteins. (A) Number of viral and bacterial proteins
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Discussion
This study provides an unbiased look at the prokaryotic viral
communities associated with honey bees. The fact that the spe-
cies accumulation curve did not reach a plateau phase implies
that the full prokaryotic virus diversity has not been probed,
despite the large sampling effort in combination with viral-like
particle enrichment. The fact that some pools contained a high
number of eukaryotic viral reads [also replicating in the honey-
bee gut (39)] might have resulted in a suboptimal probing of the
bacteriophages in these pools. The retrieved prokaryotic viral
sequences display a large diversity, reflected by the number of
annotated genes and the number of pVOGs that could be de-
scribed. The general lack of classification of the contigs, and the
fact that the majority of encoded genes could not have a function
described, reflects this observation. Furthermore, the non-
flattened species accumulation curve in combination with the
strong positive correlation between coverage and length implies
that many of the contigs described are fragmented genomes. In
contrast to the gut bacterial microbiome, the prokaryotic viral
communities display a high level of individualism where very few
of the sequences are found back in many pools. Whether this
observation could be a consequence of the sampling effort, or
truly reflects the lack of a core gut virome, remains enigmatic.
No significant correlation could be described between the bac-
teriophage communities derived from healthy and weak bees,
but both location and sampling year had a significant effect
(albeit with a low R-squared value). This observation reinforces
the idea of high individuality and implies a dynamic nature of the
bacteriophage communities. Host assignment of the viral sequences
resulted in the assignment of only 1% of the contigs to their re-
spective bacteria. Because both the methods (CRISPR-spacer se-
quences and tRNA similarity) used for host assignment do not have
a very high sensitivity, it is likely that the number of viral sequences
infecting members of the core gut bacterial microbiome is much
higher. On the other hand, since entire bees were used for viral
discovery, and not dissected guts, it cannot be excluded that some
sequences represent soil- or plant-associated phage communities.
The overlapping results from the CRISPRdb search and the bee
bacterium-specific search revealed that the majority of sequences
are indeed true gut-specific bacteriophages, but that environmental
“contamination” cannot be ruled out completely. The observation
that nearly all of the members of the core gut bacterial microbiome
now have viral sequences associated with them reinforces the idea
that at least a part of the viral community described here is truly
part of the bee-gut virome. Since viral-like particle enrichment
techniques never perform perfectly, the question arises that some of
the retrieved sequences could have originated from bacteria. Since
bacteriophages can also be integrated into bacterial genomes as
prophages, the identification process can be prone to errors. To
ensure that the sequences retrieved in this study originate from
viruses, and not from bacterial contamination, coding densities and
strand shift were calculated and differed significantly from the
bacterial dataset. Both the parameters were chosen since a new
bacteriophage identification algorithm identified these as the most
informative in the discrimination between viruses and bacteria (40).
Additionally, no bacterial marker genes could be identified with
Anvi’o (41), using the single-copy gene bacterial Hidden Markov
Model (HMM) profiles defined by Lee et al. (28). Furthermore, a
large number of the GO terms associated with the putative viral
proteins contain virus-specific signatures, and the overlap between
bacterial—and viral—protein clusters (defined here as AMGs) re-
mains relatively small. One would expect a much larger overlap
between these cluster sets if contaminated by bacterial sequences.
Taken together, this evidence supports the idea that very few to
none of the sequences used in this study are of bacterial origin.
Classification of the putative viral sequences resulted in roughly
20% of all of the sequences being clustered into 403 putative viral

genera (genome clusters), but many of the clusters contained only
two sequences or did not contain a reference genome from an
established (International Committee on Taxonomy of Viruses
[ICTV]-recognized) virus genus or family. The fact that roughly
50% (273 of 537) of contigs larger than 5 kb could be clustered
reflects that a short sequence length can hamper the ability to
classify these sequences. Since the accuracy of the vConTACT2
algorithm is estimated at more than 95% (based on ICTV genera)
(30), the confidence in the classification performance of the large
sequences is high. The proportion of clustered sequences (roughly
20% of all sequences and roughly 50% of sequences larger than 5
kb) is higher than in a similar study on permafrost viruses (17%
sequences larger than 10 kb clustered) (42) and in human gut
datasets (18% of sequences larger than 10 kb clustered) (43). De-
spite the relatively high proportion of clustered sequences, the
classification results reflect the strikingly large diversity of pro-
karyotic viral communities associated with bees and how much of
the viral diversity still remains untapped. This is reinforced by the
fact that only very few putative bee-associated phage sequences
were present in the largest protein clusters created for classification.
The same patterns of diversity are also reflected in the protein
annotation. Most of the predicted protein clusters remain un-
annotated. Of the proteins predicted to be under strong directional
selection, only 20% could be assigned a function. Since it is prob-
able that these proteins fulfill cornerstone functions in viral repli-
cation or important functions in the viral life cycle, the lack of
annotation of these proteins reflects how little is known about these
processes. Of the proteins that could be annotated in a meaningful
way, the vast majority was specific for nucleic acid processing/me-
tabolism and are most often derived from polymerase sequences,
which are often the easiest to identify with very specific domains.
Represented pathways contained a plethora of metabolic functions,
including carbohydrate, protein, and lipid processing pathways.
Many of these functions are also represented by the bacterial
counterpart of the bee microbiome, implying that the bee-gut
virome contains the coding potential for a vast range of metabolic
functions and could directly intervene within the gut ecosystem. The
best-represented pathways, such as genetic information processing
and nucleotide metabolism, most likely reflect the rewiring strategy
of phages to tune the bacterial cell metabolism toward virus repli-
cation, which has been described before (44). The lipid and nu-
cleotide metabolism pathways most likely point in the same
direction. The presence of environmental information-processing
pathways suggests that some of the retrieved bacteriophages have
the potential to probe the environment. It has been shown that the
two-component system can be exploited by viruses to provide an
environmental sensor system (45). The presence of more basal
metabolic pathways, such as energy metabolism and carbohydrate
metabolism, implies that also in the bee microbiome bacteriophages
can modulate the metabolic state rather than hijack the microbial
cell and deplete it for resources, as has been shown before (46).
Biofilm formation, quorum sensing, and chemotaxis pathways were
also represented within the retrieved viral communities, suggesting
the potential of the viral communities to interfere in microbial
processes on the bacterial population level. The presence of met-
abolic pathways involved in secondary metabolites and even ter-
penoids and polyketides raised the question if any other genes could
be involved in bacteria–bacteria interactions. The discovery of four
bacteriocin gene clusters implies that these bacteriophages do not
directly influence only their own host and their metabolism but
encode the potential to exert an effect on other bacteria in the same
ecosystem throughout their host. Some of the identified bacteriocin
genes were rather divergent, and very few of the neighboring genes
within the cluster gave any hit at all. These findings imply that, while
the essential host–microbe interactions in honey bees are known,
the virus–bacteria interactions in the bee gut are highly intertwined.
Finally, we can highlight the potential role that the prokaryotic viral
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community can play in the gut and microbial metabolism and thus
indirectly influence bee development, health, and homeostasis.

Materials and Methods
Library Preparation and Next Generation Sequencing. Samples were taken
from the Flemish section of the EpiloBEE project from both sampling years
(autumn 2012 and 2013) from different hives. In the framework of this study,
colony health was determined retrospectively by assessing which colonies
survived the winter or not. Two honey bees per colony were taken and
homogenized for 1 min in phosphate-buffered saline, using ceramic beads
(Precellys, Bertin Technologies) at 4,000 hz using a tissue homogenizer
(Minilys, Bertin Technologies). Homogenates from three colonies were
pooled together using equal volumes for feasibility reasons. Samples were
pooled based on status (weak or healthy colonies), subspecies, and location
(see SI Appendix, Table S14, available on GitHub). After pooling, the ho-
mogenates were prepared for sequencing using the NetoVIR protocol (22).
Briefly, homogenates were centrifuged (17,000 × g for 3 min), filtered (0.8
μm), and treated with a mixture of nucleases (Benzonase, Novagen) and
micrococcal nuclease (New England Biolabs).

Next, nucleic acids (both DNA and RNA) were extracted using the RNA viral
extraction kit (Qiagen), reverse-transcribed, and amplified using the WTA2 kit
(Sigma-Aldrich) and prepared for sequencing using the Nextera XT kit (Illu-
mina). Libraries were quantified using a qubit fluorometer, and insert sizes
were asserted using a bioanalyzer (Agilent). Only libraries that had molarities
above 4 nM and an average size of 300 bp or more were considered for se-
quencing. Paired-end sequencing was performed using the Illumina NextSEQ
platform, assigning 5 million clusters per pool (10 million reads with a base
length of 150). In total, 102 pools were sequenced (representing 300 colonies).

Read Processing, Bacteriophage Contig Identification, and Classification. Reads
were clipped using Trimmomatic (version 0.38) (47), removing WTA2 and
Nextera XT adapters and the leading 19 bases, and tailing 15 bases were
cropped. Reads were trimmed using a sliding window of 4 with a PHRED
score cutoff of 20 with a minimum size of 50 bp. Trimmed reads were as-
sembled using SPAdes (version 3.12.0) (48) on metagenomic setting with kmer
sizes of 21, 33, 55, and 77. Resulting contigs larger than 500 bpwere clustered on
95% nucleotide identity over a coverage of 80% using ClusterGenomes (https://
bitbucket.org/MAVERICLab/docker-clustergenomes). Putative prokaryotic viral
sequences were identified using VIRSorter (version 1.05) (23) and by including
sequences that had a lowest-common ancestor [as assigned by KronaTools
(version 2.7.1) (49)] to any prokaryotic viral family, after alignment with the
nonredundant protein database (downloaded September 30, 2018) from Na-
tional Center for Biotechnology Information (NCBI). Reads were mapped back to
these representative putative prokaryotic viral sequences using bwa-mem (50),
and the resulting bam files were postprocessed using BamM (https://github.com/
Ecogenomics/BamM), allowing only alignments with 95% nucleotide identity
over 90% of the length. Coverages were calculated from these postprocessed
bam files with BamM using the tpmean counting option. Dimension reduction
was performed on the coverage matrix using the PCoA function implemented in
the ape package in R (51) and formally tested using the adonis test implemented
in the vegan package in R (52). Predicted viral sequences were classified using
the BLASTP mode incorporated in vConTACT2 (30), using the Prokaryotic Viral
RefsEq. 88 database MCL (25) for protein clustering and ClusterONE (53) for
genome clustering. The resulting vConTACT2 network was processed using the
graph-tool library (54) in python. Phylogenetic trees for the five biggest protein
clusters were created by aligning the protein sequences with MAFFT (L-INS-i
setting) and trimming the resulting alignment with trimAL (version 1.2) using
the gappyout preset. Trees were subsequently created with RaxML (version
8.2.12) (55) using automatic model selection. Statistics from the phylogenetic
trees were processed using the ete3 toolkit (56), implemented in python.

Host Calling. Bacterial sequences were retrieved from IMG/M database (JGI) by
using the query “honey bee” and complemented with the sequences from
Ellegaard et al. (27) (SI Appendix, Table S15). CRISPR spacers were predicted
from these bacterial sequences using MINCED (version 0.2.0) (57). This
CRISPR-spacer collection was subsequently blasted on the nucleotide level

against a database containing the retrieved bacteriophage sequences, using
the blastN algorithm with the additional settings -ungapped and -perc_
identity 100. These settings are more conservative than usual (58), but were
selected to achieve the highest possible specificity at the expense of sensi-
tivity. In parallel, tRNA genes were predicted from the retrieved bacterio-
phage sequences using Aragorn (version 1.2.38) (59) and blasted against the
bacterial sequences using the blastN algorithm with an e-value cutoff of 1e-
5. To estimate how many of the retrieved viral sequences are derived from
the environment rather than reflecting true bee-gut bacteriophages, an
additional analysis using CRISPR spacers from the CRISPRdb (29) was run
using the same blastN parameters as before. A concatenated protein
alignment for the bacterial sequences was created with Anvi’o (version 5)
(41), using the “phylogenomics” workflow. The resulting alignment was
trimmed using trimAl (version 1.2), using the gappyout preset. Protein
models were calculated with ProtTest3 (version 3.4.2) (60), and the phylog-
eny was created using RAxML (version 8.2.12) (55) under the LG + I + G + F
model. The resulting tree was visualized using ggtree (version 3.10) (61).

Functional Analysis. Putative viral genes were predicted with prodigal, using
the bacterial genetic code (11). Resulting proteins were clustered using CD-
HIT (version 4.8.1) (62) with a threshold of 50% amino acid (AA) similarity.
Bacterial genes (from the aforementioned bacterial dataset) were predicted
and clustered via the same pipeline. Representative protein sequences were
analyzed using InterProScan (version 5.30–69.0) (31) and eggNOG-mapper
(version 1.0.2) (32). Downstream analysis was performed with REVIGO (35)
and the KEGG Pathway Maps (36). Prophage regions were identified in the
bacterial contigs using PHASTER (34). Antimicrobial functions were extracted
from the InterProScan and eggNOG-mapper output and complemented
using antiSMASH (version 5.0.0) (37) output. SNPs were called using free-
bayes (version 1.2.0) (63) on the filtered bam files using flags -X, -u and -p1.
Resulting VCF files were filtered for a quality threshold of 20. SNP statistics
were subsequently calculated using SNPgenie (38).

Statistics. The species accumulation curve was calculated using the “specaccum”

function within vegan, R version 3.5.3 (52), using all 102 sequenced pools. The
difference between coding density and strand shift frequency, as well as the
difference in contig length between clustered contigs and singleton contigs was
calculated with Python using the two-tailed Mann–Whitney U test implemented
in the SciPy library. For the coding density and strand shift frequency analysis,
24,420 predicted viral genes were used and 58,704 predicted bacterial genes. For
the clustered-contig versus singleton-contig length difference, 1,034 clustered
contigs were used and 3,010 singleton contigs were used. Correlations were
calculated with the Spearman’s rank-order correlation implemented in the SciPy
library. For the correlation between coverage and length, 4,842 putative viral
contigs were used. Correlations between branch length distance and node dis-
tances in the network were calculated using 224,714 pairs.

Data Accessibility. Retrieved prokaryotic viral sequences larger than 5 kbwere
submitted to NCBI GenBank (accession numbers available in SI Appendix, Table
S19, available on GitHub). Raw reads were deposited in NCBI’s Sequence Read
Archive (SRA) database under project accession no. PRJNA579886 (SRA acces-
sion numbers are also available in SI Appendix, Table S19, available on
GitHub). Analysis notebooks have been deposited on GitHub (https://github.
com/Matthijnssenslab/beevir). All intermediate result files and outputs gener-
ated, as well as the fasta sequences for nucleotides and proteins, are also
available through the GitHub repository. A complete overview of the wet
laboratory work and data-processing pipeline is given in SI Appendix, Fig. S13.
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