
G R A P H

COMBINATORICA 7 (2) (1987) 171--191

B I S E C T I O N A L G O R I T H M S W I T H G O O D

A V E R A G E C A S E B E H A V I O R

T. N. BUI, S. CHAUDHURI, F. T. LEIGHTON and M. SIPSER

Received 31 January 1985

Revised 12 December 1985

In the paper, we describe a polynomial time algorittma that, for every input graph, either
outputs the minimum bisection of the graph or halts without output. More importantly, we show that
the algorithm chooses the former course with high probability for many natural classes of graphs.
In particular, for every fixed d-~3, all sufficiently large n and all b= o(n 1-1/t ca+~)/2j), the algorithm
finds the minimum bisection for almost all d-regular labelled simple graphs with 2n nodes and bisec-
tion width b. For example, the algorithm succeeds for almost all 5-regular graphs with 2n nodes and
bisection width o072/3). The algorithm differs from other graph bisection heuristics (as well as from
many heuristics for other NP-complete problems) in several respects. Most notably:

(i) the algorithm provides exactly the minimum bisection for almost all input graphs with
the specified form, instead of only an approximation of the minimum bisection,

(ii) whenever the algorithm produces a bisection, it is guaranteed to be optimal (i.e., the
algorithm also produces a proof that the bisection it outputs is an optimal bisection),

(iii) the algorithm works well both theoretically and experimentally,
(iv) the algorithm employs global methods such as network flow instead of local operations

such as 2-changes, and
(v) the algorithm works well for graphs with sumll bisections (as opposed to graphs with

large bisections, for which arbitrary bisections are nearly optimal).

1. Introduction

Given a 2n-node graph G, a b&ection of G is a set of edges whose removal al-
lows G to be disconnected into two n-node subgraphs. A mhdmum bisection of G is a
bisection with minimum cardinafity. The cardinality of the minimum bisection is also
known as the bisection width of the graph.

The problem of finding the minimum bisection of a graph lies at the heart of
many network problems for which solutions depend on the divide-and-conquer
paradigm. A typical example is the VLSI placement and routing problem [7, 9, 20].
Placement and routing programs typically proceed by splitting a network in halves,
recursively laying out each half, and then reinserting the wires connecting the two hal-
ves. Usually, the quality of the resulting layout depends greatly on the number of

This research was supported by Air Force contract AFOSK--82----0326, DARPA contract
N00014---8ff--C~0622, and an NSF Presidential Young Investigator Award with matching funds
from Xerox.

A preliminary version of this paper appeared in the Proceedings of the 25th Symposium on
the Foundations of Computer Science, (1984), 181--192.

AMS subject classification (1980):68 C 25

172 T . N . BUI, S. CHAUDHURI, F. T. LEIGHTON, M. SIPSER

wires that have to be reinserted in the final step, i.e., on the size of the initial bisec-
tion. This phenomenon has been observed many times over in practice and has
recently been proved formally in a naathematical model of VLSI design [4]. In ad-
dition to placement and routing, many other divide-and-conquer based algorithms
run much faster or perform much better on graphs that have small bisections (e.g.,
see [1, 17]).

Considering the widespread applications of the graph bisection problem, it is
unfortunate that it is NP-complete [11]. Even worse, there are no known approxima-
tion algorithms for graph bisection, and exact algorithms are known only for the
special case of trees and bounded-width planar graphs. Even for the case of planar
graphs (which always have bisection width O (l/n) [18]), no approximation algorithms
are known.

As a result, most practitioners are forced to resort to heuristics, which they
hope will find nearly optimal bisections most of the time. For "most" graphs, this
actually happens, but the success of a heuristic may have nothing to do with its clever-
ness: it is a simple fact that almost all graphs with n nodes and e=>(1 +e)n edges for
any fixed ~>0 (or similarly, most n-node (2e/n)-regular graphs) have only bisections
of size O (e). Hence the worst possible bisection and the minimum bisection differ by at
most a constant factor for these graphs. Moreover, as e/n+oo, this ratio goes to 1,
and the best and worst bisections differ by only a low order term.

Because "random" graphs may not serve well to distinguish really good heuris-
tics from so-so or even horrible heuristics (e.g., heuristics that try to maximize the
bisection), it is useful to examine graphs tbr which the minimum bisection is much
smaller than the average and/or largest bisections. Numerous papers (for the most
part empirical studies) have attempted to do precisely this, but most end up construct-
ing graphs according to a specified procedure that (at best) imposes an upper bound
on the bisection width of the constructed graphs. Unfortunately, it is usually not clear
what relationship exists between the behavior of an algorithm on an average graph in
such a class, and on an average graph with specified properties (such as fixed bisection
width). Of course, it is the behavior of algorithms on graphs randomly selected from
a class of the latter type that is of greatest interest.

In this paper we investigate the class N(n, d, b) of labelled simple graphs
that have 2n nodes, node degree d, and bisection width b for fixed d>=-3 and b =
=o(nl-1/t(a+l)/2)l). In other words, we consider precisely the distribution of random
2n-node, d-regular graphs conditioned on having minimum bisection b. Since every
graph with dn edges has average bisection dn/2, the minimum bisection for these
graphs is much smaller than the average bisection. Moreover, we will show that the
graph bisection problem is NP-complete for ~q(n, d, b) whenever b_->n * for any
constant e>0. Hence ~(n, d, b) is a natural and suitable class of graphs for anal-
ysis.

The main contribution of this paper is the development of a new polynomial-
time algorithm for graph bisection and its analysis. The algorithm is based on the
maxflow-mincut theorem and is especially well suited to graphs with small bisections.
In fact, for almost all graphs G in N(n, d, b) with b=o(n~-a/t(a+a)/=J), the algorithm
finds exactly the minimum bisection of G along with a proof certifying that the bisec-
tion is in fact optimal. The certification of optimality is an especially nice feature of
this algorithm that is not present in other algorithms.

BISECTION ALGORITHMS 173

The new algorithm also works weU experimentaUy. As predicted by the theory,
it almost always discovers the minimum bisection for graphs in f¢(n, d, b) with small
b. It is worth noting that standard procedures like the greedy, simulated annealing
[16] and Kernighan-Lin [15] algorithms also appear to do very well for graphs in
f#(n, d, b) when d=>4, but perform very poorly when d=3. In fact, these algorithms
often produce O (n) bisections for 2n-node trivalent graphs, even when b = 0.

The remainder of the paper is divided as follows. In Section 2, we prove several
lemmas about graphs in ~(n, d, b), and show that the graph bisection problem is
NP-complete for fq(n, d, b) whenever b ~ n ~ for any fixed ~>0. Our new algorithm
is described and analyzed in Section 3. We first consider graphs with o(t/n) bisection
width in Section 3.1, and then graphs with o (n ~- a/t(a + x)/zj) bisections in Section 3.2. We
analyze the running time of the algorithm in Section 3.3. Section 4 contains the expe-
rimental data. Remarks and directions for research are included in Section 5. We
conclude with acknowledgements and references.

2. Preliminaries

2.1. Analyzing random graphs with small bisection width

Methods of constructing d-regular graphs with uniform probability are well
known [5]. In what follows, we extend one such standard method to construct d-regu
lar graphs with bisection width b with near uniform probability for b = o (n 1-1/L(a+ ~)m)"

Step 1. Consider a set of 2n distinctly labelled nodes, and randomly designate half
of them as left nodes, and half as right nodes. Then replace each node with d distinctly
labelled points. (E.g., node 1 is replaced by points 1.1, 1.2, ..., 1.d.)

Step 2. Randomly match b left points to b right points.

Step 3. Randomly match the remaining d n - b left points among themselves and the
remaining d n - b right points among themselves.

Step 4. Coalesce each set of d points back into a node.

Step 5. Output the graph, maintaining the node and point labels.

Let N*(n, d, b) be the collection of graphs (included according to multiplicity)
that are constructed by the previous routine. At first glance it is not clear that
fg*(n, d, b) has any relation at all to ~(n, d, b). For example, ~*(n, d, b) contains
graphs with multiple edges and loops as well as graphs with bisection width less than b.
No such graphs are contained in ff(n, d, b). Moreover, graphs in f~(n, d, b) occur
with varying frequencies in fg*(n, d, b), depending on the number of b-bisections in
the graph and on the number of ways of labelling points.

Despite all of these obstacles, however, we show in Theorem 1 that any con-
dition that holds with probability 1 -o (1) for N*(n, d, b) as n-~co also holds with
probability 1 -o (1) for fq(n, d, b). This result is crucial to the paper since it al-
lows us to analyze the much simpler class f¢*(n, d, b) in order to prove theorems about
the more natural class fg(n, d, b). Without such an indirect analysis, it is unlikely that
we would be able to prove anything at all about graphs randomly selected from

174 T.N. BUI, S. CHAUDHUR.I, F. T. LEIGHTON, M. SIPSER

re(n, d, b). For example, no dosed expression is known for the number of d-regular
2n-node graphs (simple or otherwise), yet the number of graphs (counted according
to multiplicity) contained in ff*(n, d, b) is easily calculated.

Before proving Theorem 1, however, we need several lemmas. These lemmas
highlight some of the more interesting properties of graphs in f#(n, d, b) and
f¢*(n, d, b), and will be used throughout the paper. We start with a lemma concerning
random pointwise-labelled d-regular graphs (possibly with nmhiple edges and loops).
Such graphs are generated in much the same fashion as graphs in ~#*(n, d, b). The
term pointwise-labelled refers to the existence of labelled points at each node, as in
Step 1 of the procedure for ~*(n, d, b).

Lemma 1, There is a constant c>0 such that for all d~3, n ~ and almost every
pointwise-labelled n-node d-regular graph G, every k-node subset S of G (for all k ~
<-n/2) is incident to at least cdk edges that connect nodes h7 S to nodes in G - S .

Proof. Let M(dn) denote the number of pointwise-labelled n-node d-regular graphs.
It is easily seen that

M(dn) = (dn/2)! 2 -'w~.

The number of pointwise-labelled n-node d-regular graphs that have a k-node
subset with exactly t connections to the rest of the graph is at most

Taking the ratio of the two formulas and simplifying, we find that the proba-
bility that such a graph has a k-node subset with only t = cdk connections is

O [[cC (1--c)(Z--c)/20~(1--c)12-- Ua (l __C l(~--c)12 (l q-l)(l +~)(ll2--1ld)]--dg)
where ~=(n-k)/k>=l. For c~1/4, d=>3 and ct~_l, this is

O ([cC(l--c)(1-c)/~e-C/2e~/6(~kl¢ }'12a]-zk } .

Since cC(1-c)(~-O/2e-C/2~l as c~0, we can conclude that

c ~ (1 - c) (a- o /%-C/2el /G >_ 1 + 5

for all sufficiently small c and some constant 5>0. Hence for small enough c>O,
the probability that a pointwise-labelled n-node d-regular graph has a k-node subset
with less than cdk connections is

t" n - k 11/24]-3k~

It is easily checked that the preceding expression converges to 0 as n-+ ~ for
all 1 <=k~n/2. In fact, the sum of these terms for 1 <=k<=n/2 is O(n -~/8) which also

BISEG'TION ALGORITHMS 175

converges to 0. Thus the claim holds simultaneously for all k-node subsets in almost
every graph. |

Results such as Lemma 1 are common in probabilistic graph theory and have
numerous useful applications. We include one such application in the following corol-
lary. Although the result is only stated for pointwise-labelled graphs, possibly contain-
ing loops and multiple edges, it is easily extended to simple labelled d-regular graphs.

Corollary 1. For all d~3, n ~ o~ and almost ever)" pointwise-labelted n-node d-regular
graph G, every bisection o f G has size between (1-e)dn/4 and (1 +e)dn/4 where

Proof. Setting k=n/2 and c~=l in the proof of Lemma 1, we find that theproba-
bility that G has a bisection of size cdn/2 is

O ([c c (1 - c) x -c 2 I- s/a]- n./~).

This expression is maximized at c = 1/2 and thus the probability that G has a
bisection of size less than (1 - e) dn/4 or greater than (1 +e)dn/4 is

Simplifying, we find that the preceding expression is

O(n[e "2j22-~Idl-d'/2)

which tends to O for ~ > 2 / d ~ e . |

Of more immediate concern to us in this paper is the following corollary to
Lemma 1. In the corollary and throughout the rest of the paper, the phrase left or
right half o f a graph in N*(n, d, b) refers to the left or right, respectively, nodes created
in Step 1 of the procedure for ~f*(n, d, b) and to the edges inserted in Step 3, but does
not include the bisection edges inserted in Step 2.

Corollary 2. There is a constant c>0 such that for all d_->3, n-~ oo and almost every
graph G that forms the left or right half of a graph in fY*(n, d, b), every m-node subset
S of G that is incident to t bisection edges, is also incident to at least c d m - t edges con-
necting S to G - S for all m<=n/2 and t<-_b.

Proof. For simplicity, assume b is even and randomly connect the b bisection points
in G with b/2 edges to form a new graph G'. It is easily observed that G' is a random
d-regular pointwise-labelled graph, possibly containing loops or multiple edges. Hence,
if G' is one of the 1 -o (1) portion of d-regular graphs satisfying Lemma 1, there will
be at least cdm edges connecting S to G ' - S . In that case, there clearly must be at
least c d m - t edges connecting S to G - S in G. |

The following lemmas will serve to further strengthen Corollary 2.

Lemma 2. Given any r---2, d=>3, m=o(n ~-1/') and n ~ o , i f m items are chosen at
random from n groups of d items each, then with probability 1 - o (1) fewer than r items
will be selected from each group. Moreover, the same conclusion hold9 provided that

176 1", N. BUI, S. CI-IAUDHURI, F. 1". LEIGHTON, M. S1PSER

each item is selected at random from some (possibly varying) subset of at least n - m
groups.

Proof. Assume that each item is selected at random from some subset of at least
n - m groups. The probability that the ith item selected comes from the j th group is at
most d/[(n -m)d-m] since there are at least n - m groups ofd i tems to choose from
and at most i - 1 < m of the items have already been chosen. Hence, the probability
that k items are chosen from the same group is at most

1

Simplifying, we find that this probability is O(mk/n ~-1) which for m =
=o(n ~-l/r) is O(nl-k/r). Summing over k>=r, we find the probability that fewer
than r items are selected from each group is 1 -o (1) . |

Lenuna 3. For all fixed d>=3, all b =o(n~-l/t(d+X)/2J), n~ co and almost every graph
G that forms the left or right ha l fo fa graph in ff*(n, d, b), every subset of G with at
most n/2 nodes that is incident to k bisection edges for any k_~b, is also incident to at
least k + 1 edges eonnecthlg nodes' in S to nodes in G - S.

Proof. Let G be the left half (without loss of generality) of a graph constructed accord-
ing to the procedure for ~*(n, d, b). In what follows, we will show that the nodes of G
which are incident to bisection edges have sufficiently bushy neighborhoods so that
any set S incident to k bisection edges and at most k edges that connect nodes fia S to
nodes in G - S must contain at least 4k/cd nodes, where c is the constant defined
in Corollary 2. We will then use Corollary 2 to obtain a contradiction of the hypothe-
sis that S is incident to at most k edges which link S to G - S.

Without loss of generality, we can assume that the edges created in Step 3 to
form G were generated in order of increasing distance from the bisection edges. In
particular, we are interested in the generation of edges within distance d log (l/e) of
the bisection where e is the constant defined in Corollary 2. For fixed d, there are at
most m = O(b)=o(n ~-I/t(a+x)m) such edges. Applying Lemma 2 to the node by node
generation of edges to form G, it is easily shown that, with high probability each node
of G within distance d log (1/c) is incident to fewer than [(d+ 1)/2)J previously gener-
ated edges (i.e., edges that are also incident to previously processed nodes).

Let S be a set of at most n/2 nodes of G that is incident to k bisection edges and
at most k edges that connect S to G - S. Let e~ denote the number of edges in S that
link two nodes which are of distance i from the bisection and e;,~+~ denote the number
of edges in S that link nodes which are of distance i and i + 1 from the bisection.
(Throughout this proof, distance means the length in edges of the shortest path
totally contained in S to the bisection. Nodes incident to bisection edges are consid-
ered to be of distance 1 from the bisection.) By definition, eo,~=k. Also define
n~ to be the number of nodes in S at distance i from the bisection, and fi to be the
number of edges that link a distance i node of S to G - S . By assumption f0=O and

t=O

BISECTION ALGORITHMS 177

Because the edges of S were generated in order of increasing distance from the
bisection, and since each node is incident to at most (d-1)/2 previously generated
edges, we can deduce that

ef_a,~+ef
(*) ni ~ d - 1

and that

e~.~+l => n~ ~ -e~-f~

for every i - d log (1/c). Combining the two inequalities, we find that

ei.~+l>={l+ d2-~_l)e~-a,i+ d2-~_l e~-fi

It is not difficult to show that ei,~+l is minimized for every i-<_dlog (l/e) by
setting f l = k and f~=0 for i->2. Then it is clear that

el,i+1 ~ tl + ~-~-]--- l J 1 + - - d ~ e°''
(**)

2 i-1
d - 1

m

Hence for i<=dlog(1/c) using (.) and (* *) w e get z~ni+1>4k/cdand
i

hence S contains at least 4k/cd nodes. By Corollary 2, however, this means that
there are at least cd(4k)/cd-k=3k edges linking S to G - S . This provides the
necessary contradiction and concludes the proof. |

We are now able to prove the main result of this section.

Theorem 1. For all fixed d>=3 and all b=o(nl-1/t(d+a)/2J), any condition that holds
with probability 1 -o(1) for N*(n, d, b) as n ° ~ also holds with probability 1 -o(1)
for ~ (n, d, b) as n ~ ~.

Proof. We first observe that every graph G in ~(n, d, b) that has a unique minimum
bisection is generated with the same frequency in ~*(n, d, b). This is because the
partition into left and right halves at Step 1 of the procedure for t*(n, d, b) is
precisely determined by the unique b-bisection of G. Since G is labelled, the edges
are also distinguished. Finally, since G contains no multiple edges or loops, there
are exactly d! ways to pointwise label the d edges incident to each node. Hence there
are (d!) 20 pontwise labellings for each labelled graph.

Graphs in if(n, d, b) with nonunique b-bisections appear proportionally more
often in i*(n, d, b) than do graphs with unique b-bisections. Moreover, N*(n, d, b)

178 T. N. BUI, S. CHAUDHURI, F. T. LEIGHTON, M. SIPSEIK

al~o contains graphs with multiple edges and loops, and with bisection width less
than b. However, we will show in what follows that these bad graphs constitute at
most a constant fraction of the graphs in c~*(n, d, b). We commence by showing that
f2(e -(d~-1)/2) of the graphs generated for f¢*(n, d, b) have no loops or multiple edges.
For fixed d, this is a constant fraction.

The probability of generating a multiple edge during an insertion of a bisection
edge in Step 2 is at most

(d - 1) 2 b 1
b (dn_b), ~ ~ n2 ~_--.n

Hence the probability of avoiding multiple edges altogether during Step 2 is at least

- _-> - - - = 1-o_1.()
/7

The probability of avoiding loops and multiple edges during Step 3 is at
least f2(e-(d*-l)/2). To prove this, we apply a result of Bollob~fs [5] that a random
pointwise-labelled d-regular graph contains no loops or multiple edges with proba-
bility O(e-(d2-1)14). If the left and right sides of a graph in ff*(n, d, b) are randomly
extended to become d-regular, then with probability (2(e-Cd2-1)lz), neither contains
loops or multiple edges. Hence, at least f2(e -('1~-1~/~) of the graphs in f~*(n, d, b)
contain neither loops nor multiple edges.

We conclude the proof by showing that only a small portion of the graphs
occurring in ~*(n, d, b) have bisections less than b or nmltiple bisections of size b.
This fact is an immediate consequence of Lemma 3, since the existence of such a bi-
section for a graph G in ~*(n, d, b) would imply the existence of a subset S with at most
n/2 nodes in the left or right haft of G that is incident to k bisection edges for some
k ~ b but to k or fewer other edges that link S to G - S .

In conclusion, sampling graphs in f~(n, d, b) is equivalent to sampling a con-
stant portion f2 (e- (d~- 1)/.,) of the graphs in ff*(n, d, b) and ignoring point labels. Hence,
any condition that holds for 1 -o (1) of the graphs in ~*(n, d, b) must also hold
for 1 --o(e-(d~-l)/2)=l --O(1) of the graphs in re(n, d, b). l

2.2. Proof of NP-completeness

In this section we will show that the problem of deciding whether or not a d-
regular graph has a bisection of size b or less is NP-complete whenever d=>3 and
b = n ~ for any fixed e in the range (0, 1). We will reduce the general graph bisection
problem to this problem. The proof will be done in two steps. Given a graph G and
an integer b, we transform G to a 3-regular graph G* such that G has a bisection of
size b or less if and only if G* has a bisection of size b or less. We next transform G*
into a d-regular graph G' such that G* has a bisection of size b or less if and only if G'
has a bisection of size b' or less, where b' = n ~, and n is the size of G', for any fixed
e6(0, 1). We start with the following lemma.

BISEC'TION ALGORITHMS 179

Lemma 4. Let H be an n-node honeycomb-like 3-regular graph as in Figure 1. Every
s-node subset S o f H, where s <= n/2, is adjacent to at least ~ nodes not in S. |

The proof of this lemma is not difficult and we will omit it.

Theorem 2. The problem of deciding whether or not a d-regular graph has a bisection
o f size b or less is NP-complete, whenever d~=3 and b = n ~ for any fixed 8E(0, 1).

Proof. Let G be an n-node graph and b an integer. We will construct a 3-regular graph
G* on m = O (n 6) nodes as follows. Replace each node of G with an nS-node honey-
comb-like graph H of Lemma 4. An edge between two nodes in G is replaced by
an edge connecting two edges of the two corresponding graphs H in G*, thus creating
two new nodes of degree 3 (see Figure 2). Furthermore, edges coming into a graph
H are dispersed widely so that any r-subset R of H which is incident to s incoming
edges will also be incident to at least s + r g ~ nodes in H - R. This can be done using
Lemma 4.

Fig. 1. An example
of a honeycomb-like graph

Fig. 2. The connection of two H-graphs

Let B be a minimmn bisection of G*, i.e., B is a minimum set of edges whose
removal divides G* into two subgraphs of equal size.

Claim 1. B induces a corresponding bisection of G, i.e., B contains only edges that
correspond to the original edges of G.

ProoL Suppose not, then we can rearrange the bisection to obtain a new cut by mov-
ing each copy of H that is cut by B entirely to the side of the bisection containing the
majority of its nodes. Suppose we have to move t nodes, then the new cut has at least
] / ~ f e w e r edges than the original bisection. This new cut, however, might no longer
be a bisection. To make it a bisection we have to move at most tin ~ H-graphs. This
will increase the size of the cut by at most tin 4 edges. Since the size of any bisection
of G is at most n 2, it can be easily seen that t is at most n 4. Thus the new bisection is
smaller than the original one, a contradiction. |

The next step is to transform G* into a d-regular graph G' as follows. Replace
each edge of G* with k edges where k is such that bk =(100ink) ". We then replace each
node of G* with a graph H" satisfying the following conditions:

180 T. N. BUI, S. CHAUDHURI , F. T. LEIGHTON, M. SIPSER

(i) H ' has 3k degree d - 1 nodes and 97k degree d nodes, and
(ii) every subset of H' with r<=50k nodes, s of which are degree d - 1 nodes,

is incident to at least s + 1.3r/40 nodes not in the subset.

Graphs like H" are easily constructed from expander graphs, even for d=3.

Edges in G* now can be replaced by edges connecting the (d - 1) -degree nodes
in the corresponding H" graphs. The resulting graph G' will then be d-regular.

Claim 2. G" has a bisection of size bk or le~s if and only if G* has a bisection of size b or
less.

Proof. Similar to the one before. Given a bisection of G', form a new cut by moving
each copy of H ' entirely to the side of the bisection containing the majority of its no-
des. If t nodes are moved in this step then the new cut contains at least 1.3t/40 fewer
edges than the original bisection. Although the new cut corresponds nicely to a cut
of G*, it is not necessarily a bisection. To make a bisection, move up to t/(lOOk) copies
of H ' from one side to the other. This increases the cut by at most 3t/100 edges which
is less than the 1.3t/40 edge decrease performed earlier.

Thus a bk-bisection of G' can be converted into a b-bisection of G. This proves
Claim 2 and the theorem. I

3. A bisection algorithm that almost always works

In this section, we describe a graph bisection algorithm that finds the minimum
bisection for ahnost every graph G in N(n, d, b) for fixed d>~3 and b=
=o(nX-~/t(n+a)/2J). In addition, the algorithm is constructed so that every time a
bisection is output, it is guaranteed to be optimal.

The idea of the algorithm is quite simple: we wish to convert G into an in-
stance of the maxflow problem for which the mincut is the minimum bisection. Of
course, it's hard to do this without knowing which edges comprise the mininmm bi-
section, but we can come close. In fact, we will find that by replacing the neighborhoods
around two nodes u and v with an infinite capacity source and sink, the resulting flow
problem will often have a mincut close to a bisection. By exploiting this phenomenon,
we are able to prove the desired result.

The description of the algorithm and its analysis is divided into three subsec-
tions. In Section 3.1, we present and analyze a simple algorithm for graphs with
o (]/-n-) bisections. The general algorithm is described and analyzed in Section 3.2. In
Section 3.3, we bound the running time of the algorithms.

Throughout, we will state and prove "almost all"-type theorems for graphs in
~*(n, d, b). By Theorem 1, such results also hold for graphs in fg(n, d, b). We start by
proving one such result for the size of neighborhoods around nodes in the left and
right halves of graphs in N*(n, d, b).

Lemma 5. For all fixed d~3, all b=o(nl-a/t(n+ l)/~J), n~oo and abnost every graph
G that forms the left or right half of a graph h~ ff*(n, d, b), every node of G is within
distance log(d-i)m+ 0(1) of at least m other nodes for every m=o(nX-lma+l]/2J).

BISECTION ALGORITHMS 181

Proof. Let G be a graph that forms the left or right haft of a graph in ff*(n, d, b)
and let v be a fixed node of G. We will show that with probability 1 -o(l[n), there
are m nodes within distance log(a_1)m+O(1) of v for every m=o(nl-1/t(a+x)/~J).
Hence, with probability 1 - o (1) , this condition will be true for every node of G.
(Note that distance in G is measured by paths that are contained entirely within G.
Artificial bisection edges inserted in Step 2 of the graph generating procedure are not
allowed in such paths.)

Without loss of generality, we can select the edges of G in Step 3 of the proce-
dure for ~*(n, d, b) in order of increasing distance from v. Initially, we try to select
neighbors for v. Of course, some of the points comprising v may be incident to bisec-
tion edges (thus not having a neighbor in G), some might be incident to other points in
v, and some might be incident to points in some other common node of G. Let n~
denote the number of nodes in G found to be adjacent to v via a single edge. Simi-
larly, define n~ to be the number of nodes selected only once to be adjacent to a node
of distance i - 1 from v. For each i, it is easily shown that nt+a>=ni(d-1)-2ri,
where rl is the number of points at distance i from v that become incident to a bisec-
tion edge, to another point at distance i, or to a point in a node that already is known
to be of distance i+1 from v. The probability that a point falls into one of these
classes is at most

b + nid + nld 2 _ o (n- i/t(d + 1)/~j)
nd - md

since ni<=m=o(n ~-I/t(d+a)/2j) and dis fixed.
Hence the probability that r~ of the n~(d- 1) points fall into this bad class is at

most

~. r i l

nlde]',]
= o([rit~2-~-+~)j ,"

For ni<=n 1/(a+1), choosing ri=4d is more than sufficient to make this proba-
bility o(1/nZ). Otherwise, it is sufficient to make nide/r~n ~/~a+l)<- 1/2 and r ~ 2 log n.
For ni>=nl/(a+~), this can be accomplished by setting ri=2n ~ log n/n 1/(a+~).

Thus for any m=o(nl-1/t(a+x)/2J), we can conclude that with probability
1 -o(1/n),

ni+l ~= ni(d- 1) - 8 d

for all i such that n~<=n ~/(a+l), and

4 log n
n~+~>= n~(d - I - n~/Cd+l,)

for all i such that ni<=m. Provided that n I is greater than 8d/(d-2) for some con-
stant f , the first recurrence can be solved to find that hi= 6)((d-1)i-f). The second
recm'rence extends this result to large i. Hence with probability 1 -o(1/n), v has m
neighbors within distance log(a_ 1) m + O (1). Although we have omitted the proof that
ny is greater than 8d/(d- 2) for some constant f (with probability 1 - o (l/n)), the
details are not difficult to work out. I

182 T. N. BUI, S. CHAUDIIURI, F. T. LEIGHTON, M. SIPSER

3.1. Bisecting graphs with o 0/n) bisection width

Let G be a d-regular graph. For each node v in G, define the neighborhoodN(v)
of v to be the set of all nodes within distance lOg(d- 1) J/~-- 2 of V. For each pair of nodes
u and v, the algorithm finds the mincut e(u, v) in G using the maxflow-mincut algo-
rithm when N(u) is replaced by an infinite capacity source and N(v) is replaced by an
infinite capacity sink. More precisely, the edges linking N(u) and N(v) to G - N (u) -
-N(v) are replaced by edges linking G-N(u) -N(v) directly to the source and sink,
respectively. Edges of G linking nodes contained in N(u) to nodes contained in N(v)
are replaced by edges linking the source and sink directly. If a cut with the minimum
cardinality is a bisection, then the algorithm outputs that cut. Otherwise, the algorithm
halts without output. We call this procedure Algorithm 1.

We first show that Algorithm 1 never outputs a suboptimal bisection.

Theorem 3. Whenever Algorithm 1 outputs a bisection for a d-regular graph, it is guar-
anteed to be the minimum bisection.

Proof. Suppose a graph G has a bisection of size b" that is less than the bisection of
size b output by the algorithm. Since the sources and sinks are grown to a distance
of log(a-l) I /n-2, it is easily shown that every mincut has size at most l/n, and thus
b'<~.

Given that G is d-regular for some d, the number of nodes within distance r of
the b'-bisection in each half of the 2n-node graph is at most 2b'(d-1) r. Hence, at
least half of the nodes in each half of G (with respect to the b'-bisection) have distance
greater than log(d_ 1) (n/4b') >~ log(d- 1) (V~/4) from the b'-bisection. Hen ce, the algorithm
finds at least one such pair of nodes on opposite sides of the bisection. Because the
sources and sinksgrown out from these nodes extend for distance at most log(d-l)] /~-
- 2 , neither will cross the b'-bisection. Hence, the maxflow between the two can be
at most b'. This is a contradiction since the algorithm would not have output a b-bi-
section had there been a mincut of size b'<b. |

From the preceding analysis, it is clear that Algorithm 1 never outputs bisec-
tions for graphs with bisection width greater than ~ For almost all graphs with
o (I/n) bisection width, however, the smallest mincut found in Algorithm 1 is precisely
the minimum bisection.

Theorem 4. For all d>=3, all b =o0/~), n-~ ~o andahnost every graph G in fg*(n,d,b);
Algorithm t outputs the minimum bisection of G.

Proof. We will show that for almost all G, the smallest of the mincuts (over all pairs
of sources and sinks) is precisely the bisection artificially inserted into G during Step 2
of the procedure for ~*(n, d, b). The fact that this bisection is optimal then follows
from Theorem 3.

There are two cases to consider depending on whether the source and sink
originate on the same or different sides of the bisection. In either case, they encom-
pass at least 3bled nodes on their respective sides (by Lemma 5), where e is the con-
stant defined in Corollary 2. i f they are on the same side, then by Corollary 2, the
mincut separating them must contain at least cd(3b/ed)-b >=2b edges of G (includ-

BISECTION ALGORITHMS 183

ing edges incident to the source and/or sink). Such large cuts have no impact on the
output.

I f the source and sink originate on opposite sides of the bisection, there are
again two cases to consider depending on whether or not either includes one or more
edges of the bisection. By the arguments in the proof of Theorem 3, at least 1/4 of
such source-sink pairs will not reach the bisection. In this case, Corollary 2 and Lem-
ma 3 are easily combined to show that the mincut between the source and sink is
precisely the bisection. Were another cut of smaller or equal size to exist, then there
would be a cut with k or fewer edges separating the source from k of the bisection
edges in (without loss of generality) the left half of G for some k. If the smaller piece
of this cut contains the source, Corollary 2 provides a contradiction as before. Other-
wise, Lemma 3 applies to provide the contradiction.

I f the source and sink originate on opposite sides of the bisection, but one or
both includes one or more edges of the bisection, then the mincut must be greater than
b. This is because both the source and sink still encompass at least 3b/cd nodes on
their respective sides. By the argument in the preceding paragraph, however, the
implanted bisection is the only cut of size b or smaller separating two such large
sets. Since at least one edge of the bisection is included inside the source or sink, that
bisection no longer separates them. Hence, the mincut that does separate them must
be larger.

In conclusion, at least 1/8 of the source-sink pairs will produce a unique mincut
that is the bisection. The remainder will producc larger cuts. |

3.2. Bisecting graphs with larger bisection width

Algorithm 1 does not work for graphs with bisection width b=f2(1/n) since
the neighborhoods required for such graphs must be grown to a depth of log(d-l) b +
+ O (1) and, as a consequence, will almost always contain part of the minimum bisec-
tion. Hence the minimum bisection is not likely to appear as a mincut for any source-
sink pair.

However, it is possible to prove that for almost all graphs in N*(n, d, b) with
b = o (n 1-1/t(d+ 1)m), many of the mincuts will contain all the bisection edges not absor-
bed by the source and sink and, otherwise, only edges that are incident to the source
and/or sink. Hence, by summing the number of times each edge appears in a n~lcut
c(u, v) over all pairs u and v, it is possible to readily distinguish the edges in the
minimum bisection of such graphs (since they are guaranteed to appear in many more
mincuts than edges not in the bisection). This process is the first phase of Algorithm
2. Phase II is designed to verify that bisections found in Phase I are, in fact, optimal.
A more detailed description of Algorithm 2 follows.

Algorithm 2. (Do both phases for q=2, 4, 8 o0÷ -I/t(d+l)/2j) and then halt.)

Phase I. Initial computation of bisection.

Step 1. For each node v in G define the neighborhood N(v) of v to be the set of all
nodes within distance log(d- 1) q of V.

Step 2. For each pair of nodes u and v in G, compute the mincut c(u, v) in G using the
maxflow-mincut algorithm when N(n) is replaced by an infinite capacity source and

3*

184 T . N . BUI, S. CI-IAUDHURI, F. T. LEIGHTON, M. SIPSER

N(v) is replaced by an infinite capacity sink. (As in Algorithm 1, the edges linking
N(u) or N(v) to G - N (u) - N (v) are replaced by edges linking the source or sink to
G--N(u)-N(v) , respectively. Edges linking nodes contained in N(u) to nodes con-
tained in N(v) are replaced by edges linking the source and sink.)

Step3. L e t B b e t h e s e t o f b e d g e s o f G c o n t a i n e d i n a t l e a s t n 2 / 2 o f t h e (2 n) min-

cuts. If B is a bisection then proceed to Phase II. Otherwise, proceed with the next
value of q.

Phase II. Verification that B is the minimum bisection.

Step 4. Repeat Steps 1 and 2 above for all u and v on opposite sides of B, except
replace each edge of B with an edge of capacity 1 + l /d and restrict the construction
of the sources and sinks so that they do not cross from one side of B to the other.

Step 5. Check that the maxflows computed in Step 4 all have size b (1 + 1/d). I f this is
the case, then output B and halt. Otherwise, proceed with the next value ofq.

In Theorems 5 and 6 we will show that Algorithm 2 never outputs a suboptimal
bisection, and almost always finds the optimal bisection. Both theorems make use of
the following simple lemma.

Lemma 6. For every 2n-node graph G with node degree at most d, and every s-edge
subset S of G,

z~ ~(v, 7") ~ 4sr(d-1) r-1
v E 6

]'or all r, where 0 (v, r) is the number of nodes reachable by a path of length r or less ori-
ginating from v and traveling through S.

Proof. The claim is proved by bounding the number of paths of length r or less that
pass through one of the s edges of S. The n umber of such paths is clearly at most

r--1
4s ~ (d - 1)~(d- 1) ' - ' -1

i = 0

since at most 2 (d-1) ~ nodes are within distance i of the one side of an edge of S and
at most 2 (d - l) "-1-i are within distance r - 1 - i of the other side for any i. Simpli-
fying the preceding expression then gives the desired bound. II

Theorem 5. For sufficiently large n, whenever Algorithm 2 outputs a bisection, it is
guaranteed to be the minimum biseetion.

Proof. Suppose a 2n-node d-regular graph G has a bisection B' of size b' which
is less than the size b of the bisection B output by Algorithm 2. In what follows, we
will show that this implies that a substantial portion of the source-sink pairs compu-
ted in Step 4 have flow less than b (1 + 1/d), thus establishing a contradiction.

A simple counting argument reveals that at least half of the source-sink pairs on
opposite sides of B originated with a pair of nodes u and v that are also on opposite
sides of B'. The maximum flow for such a pair is at most

b, 1 , (1/ s +--d-(b - s) + d m <= b 1 +-~- +dm- - -~

BISECTION ALGORITHMS 185

where s is the number of edges in S = B ' - B and m is the number of nodes included
in N(u) or N(v) but that are across B" from u or v, respectively.

Since the source and sink cannot cross or include edges in B, only nodes that
have short paths through S to u or v can be opposite B ' from u or v andstiUbeinclud-
ed in the source or sink, respectively. Hence, by Lemma 6 we can deduce that

16sr(d-1) "-1
m ~

for at least 1/4 of the source-sink pairs that are on opposite sides of B and of B' ,
where r=log(a-1) q is the radius of the sources and sinks defined in Algorithm 2.
Since q<=n 1-1jt(a+~)m, dm is much less than s/d for large values of n, thus giving the
contradiction. II

By Theorem 5, we know that bisections output by Algorithm 2 are optimal
whenever n satisfies

16dlog(a_x) n < n a/t(a+l)/2j.

For small values of n, the inequality is not satisfied although the result is probably
still true.

Theorem 6. For all d>=3, all b=o(n~-a/t(a+l)/2J), n ~ oo and almost every graph G in
~*(n, d, b), Algorithm 2 outputs the minimum bisection of G.

Proof. We consider a pass of Algorithm 2 when q is much larger than b, but is still
much smaller than n 1-1/t(d+l)m. For such q, we show that with probability 1 - o (1) ,
all of the artificially inserted bisection edges of G are included in at least (1 - o (1)) n ~

of the [2nl mincuts, and that all other edges are included in only o(n2) mincuts. Hence,

precisely the artificial bisection B is identified at the end of Phase I for almost all G
in ff*(n, d, b). We conclude by showing that B almost always satisfies the conditions
checked in Phase II, thus completing the proof.

From Lemma 6 it can be deduced that no more than O(q log n) sources or
sinks which start from one side of B can include more than o(b) edges of B or nodes
and edges on the opposite side of B. Thus 1 - O (q l o g n/n)=l -o (1) of all the
sources and sinks will stay (for the most part) on the side of B from which they
start. Note that those which do not can only contribute o(n °") to the total count
of any edge, and can be safely disregarded henceforth.

We divide the remaining analysis into 2 cases: (i) the source-sink pairs that
start from the same side of B, and (ii) the source-sink pairs that start from opposite
sides of B.

Case (i). By the above observation, all but o(1) of the n~-n source-sink pairs that
start on the same side of B stay (for the most part) on the same side. Applying the
argument used in Lemma 3 (growing edges from the source and sink), we find
that the mincut for such a pair consists solely of edges incident to the source or
sink with probability 1 - o(1). Hence for 1 - o (1) of the graphs G, 1 - o (1) of the
mincuts of this type include only edges incident to the source or sink.

186 T. N. BI.II, S. CI-IAIJI}HI./RI, F. T. LEIGHTON, M. SIPSER

Since an edge can be on the frontier of a source or sink for at most O(qn) =
=o(n 2) source-sink pairs, the preceding analysis means that edges not in B are includ-
ed in at most o(n ~) mincuts during Phase I of the algorithm for almost all G.

Case (ii). This is similar to the above case. In particular we can show that for almost
all G, 1 -o (1) of the n ~ mincuts consist precisely of the edges of B not in a source
or sink along with the edges incident to a source or sink but on the opposite side of
B from the origin of the source or sink, respectively. Hence, nonbisection edges are
included in o(n ~) mincuts for almost all G. On the other hand, the observation that
every bisection edge is in at most O(b) =o(n) sources or sinks implies that each edge
o rb is included in at least n 2-o(n ~) mincuts. Hence B is distinguished for almost all
G at the end of Phase I.

The analysis of Phase lI is easier than that of Phase I since the sources and
sinks are not allowed to cross B. We need only mimic the proof of Theorem 4, substi-
tuting higher capacity edges at the bisection in the proof of Lemma 3. Thus, with
probability 1-o(1), all Phase II source-sink pairs have mincuts at B with size
b(1 +l/d). |

3.3. Running time analysis

As stated, each pass of Algorithm 2 solves O (n ~) flow problems on graphs with
2n nodes and dn edges. At most O(dq) augmenting paths (each carrying 1/d unit of
flow) need to be found for each flow problem, and each requires at most O(dn) steps
in the worst case. Hence Algorithm 2 can always be made to run in O(d2n 4-1/t(d+l)12j)
steps. However, by modifying the algorithm slightly, this bound can be substantially
improved. For example, by modifying the algorithm to check that most of the mincut s
have O (q) edges at each pass before proceeding to the next value of q, the worst case
running time can be improved to O(d2bn '~) where b is the bisection width of the graph.
(This can be proved by showing that for q-~b, this condition is almost always satis-
fied, but for q>>b the condition is never satisfied.)

A more substantial improvement can be achieved by finding the mincuts for
only a small random sample of the source-sink pairs. A more careful look at the proof
of Theorems 5 and 6 reveals that only log n source-sink pairs are needed to insure the
results with probability 1 -o(1/n) for any graph. For the upper bounds on bisection,
this probability can be incorporated into the 1 -o(1) term in Theorem 6. The ran-
domization has a more serious impact on the lower botmd, however, since lower
bound proofs would then only be correct with probability 1-o(1/n). In any case,
the running time for the probabilistic version of the algorithm is O(d'2bn log n). If
we only require correct answers with probability 1 -o(1), then the log n term can
be replaced by any increasing function. If we remove the lower bound portion of the
algorithm entirely, then the expected time is O(d2bn).

Savings can also be made in the flow algorithm itself. By restricting ourselves to
unit size flows in all but the bisection edges, one of the d factors can be removed.
Although we do not yet have a proof, it is quite possible that even greater savings can
be obtained by using the properties of random graphs to show that the augmenting
paths are usually found in far fewer than O (dn) steps. In fact, it might be the case that
the ith augmenting path can be found in O(n/(b-i)) steps. If so, this would replace

BISECTION ALGORITHMS 187

the dbn term in the preceding expressions with an n log b term. Hence, the expected
time to find the upper bound might be as fast as O(n log b).

In practice, the probabilistic version of the algorithm runs very quickly. When
computing the data in Section 4, the algorithm appeared to be much faster than both
the Kernighan--Lin algorithm and sinmlated annealing.

4. Experimental data

We have fine-tuned and tested probabilistic versions of Algorithms 1 and 2 on
over 100 graphs. Except for rare cases when a node was incident to more than
[(d- 1)/2] bisection edges or when an edge linked two nodes that were each incident
to (d - l) / 2 bisection edges, the algorithms always identified the correct bisection.
Even in the few cases when a bisection was not precisely identified, a quick look at
vertices near the cut revealed the irregularity and the optimal bisection. Such cases are
identified by asterisks in Tables, I, II and III.

Bisections with less than Vn/2 edges were verified (with very high probability)
to be optimal. Larger bisections are also probably optimal but we did not verify
them.

For comparison, we also tested the Kernighan-Lin, simulated annealing and
greedy algorithms on many of the same graphs. As can be seen from the data, none of
these algorithms performed very well for degree 3 graphs, although the Kernighan-
Lin and simulated annealing algorithms performed dramatically better as the degree
was increased. Experiment with graphs of higher degree showed that the performance
of the greedy algorithm also increased but at a slower rate. The data was obtained
using the standard Kernighan-Lin algorithm [15] and the Johnson [14] version of
simulated annealing for graph bisection. We used the following version of the greedy
algorithm in our experiments. The algorithm has several passes, each pass tries to
improve the result of the previous pass. The algorithm willstop when ilo more improve-
merit can be made. The algorithm starts with a random bisection. At each step in
one pass of the algorithm, two vertices will be chosen, one in each side of the bisection.
These vertices are chosen in such a way that when they are interchanged they will
yield the largest reduction in the size of the bisection. Ties are broken arbitrarily.
For simplicity each vertex in the pair is chosen independently, i.e., each vertex is the
best choice in each half but as a pair they may not be the best choice over all pairs.
By doing this we reduce the running time significantly, and experience shows that it
does not affect the performance of the algorithm very much. Once a vertex has been
chosen to be exchanged it will not be chosen again. A pass is finished when there is no
pair that will give a positive reduction in the size of the bisection.

Since the Kernighan-Lin and greedy algorithms were discovered to be sensi-
tive to the choice of the initial bisection, we ran these algorithms several times for
each graph (each time starting with a different random bisection). The data for these
algorithms represent the bisections found for the three or five initial bisections tried for
each graph.

We have included some of the data obtained in Tables I, II and III. The data
for 3-regular graphs is in Table I. Tables II and 111 contain the data for 4-regular
and 5-regular graphs, respectively. Because of the difficulty in generating random
d-regular graphs without loops and multiple edges for d>3, only the graphs in Table

188 1". N. BUI, $. CI-IAIJ'DHURI. F. T. LEIGHTON, M. $IPSER

Table L Data for simple graphs randomly selected f rom (fl(n, 3, b)

2n b Alg. 2 S.A. Greedy K.L.

100 2 2 2 (18, 24, 42) (18, 2, 22, 8, 2)
2 2 2 (46, 48, 24) (2, 2, 2, 2, 2)
2 2 2 (14, 32, 38) (22, 2, 2, 14, 2)
6 6* 6 (40, 32, 18) (10, 14, 18, 20, 10)
6 6 6 (32, 24, 26) (12, 6, 6, 24, 10)
6 6 14 (26, 24, 18) (18, 8, 8, 6, 6)

200 2 2 20 (88, 48, 76) (2, 36, 34, 44, 2)
2 2 2 (84, 66, 68) (36, 2, 10, 2, 2)
2 2 14 (88, 50, 40) (2, 14, 44, 2, 2)

10 10" 38 (80, 50, 38) (38, 34, 24, 20, 22)
10 10" 10 (48, 42, 58) (18, 38, 28, 18, 12)
10 I0" 10 (52, 68, 54) (32, 34, 20, 24, 26)

400 2 2 2 (102, 168, 110) (2, 74, 74, 72, 50)
2 2 2 (94, 156, 138) (2, 28, 14, 72, 2)
2 2 42 (130, 128, 164) (2, 82, 84, 72, 2)

10 10 26 (82, 96, 168) (74, 68, 24)
10 10" 50 (94, 180, 90) (78, 64, 10)
14 14" 60 (92, 168, 86) (74, 80, 44)
14 14" 76 (94, 90, 98) (80, 46, 78)
16 16 70 (180, 82, 86) (72, 42, 24)
16 16" 44 (90, 102, 84) (70, 32, 82)
18 18" 74 (170, 98, 96) (74, 42, 58)
18 18 54 (100, 148, 124) (46, 72, 60)

800 2 2 104 (286, 186, 314) (94, 2, 26)
2 2 104 (346, 186, 332) (78, 8, 138)

10 I0 116 (314, 174, 190) (142, 22, 102)
10 10 102 (346, 190, 194) (146, 10, 158)
20 18" 126 (188, 198, 174) (22, 50, 46)
20 20 138 (202, 180, 180) (152, 144, 98)
24 24* 50 (174, 312, 176) (112, 90, 156)
24 24* 126 (236, 240, 186) (78, 150, 54)

Table H. Data for graphs randomly selected fi 'om ~ * (n, 4, b)

2n b AIg. 2 S.A. Greedy K.L.

100 2 2 2 (50, 44, 44) (2, 2, 2)
6 6 6 (36, 40, 36) (6, 6, 6)

12 12" 40 (52, 50, 50) (12, 12, 12)

200 2 2 2 (86, 106, 74) (2, 2, 2)
10 10 10 (82, 88, 100) (10, 10, 10)
20 20* 20 (90, 106, 110) (20, 20, 20)

400 2 2 2 (400, 378, 366) (2, 2, 2)
14 14 14 (208, 184, 190) (14, 14, 14)
20 20 20 (196, 174, 184) (20, 20, 20)
24 24* 58 (200, 218, 192) (24, 24, 24)

800 2 2 30 (400, 378, 366) (2, 2, 2)
14 14 14 (384, 404, 374) (14, 14, 14)
28 28 28 (404, 362, 390) (28, 28, 28)
50 50* 80 (404, 354, 384) (50, 50, 50)

BISECTION A L O o I ~ r H M.S

Table IIl . Data for graphs randomly selected fi'om cff*(n, 5, b)

189

2n b Alg. 2 S.A. Greedy K.L.

100 2 2 2 (2, 40, 2) (2, 2, 2)
14 14 14 (50, 76, 64) (14, 14, 14)
22 22 26 (62, 74, 64) (22, 22, 22)

200 2 2 2 (124, 158, 140) (2, 2, 2)
20 20 20 (120, 116, 142) (20, 20, 20)
32 32 32 (152, 80, 116) (32, 32, 32)

400 2 2 2 (272, 2, 224) (2, 2, 2)
30 30* 30 (266, 234, 314) (30, 30, 30)
36 36 40 (214, 180, 218) (36, 36, 36)

800 2 2 32 (430, 2, 2) (2, 2, 2)
50 50 50 (634, 622, 492) (50, 50, 50)
94 94 110 (532, 456, 378) (94, 94, 94)

I are simple. Based on our experiments with 3-regular simple graphs and 3-regular
multigraphs, the existence of loops and multiple edges has no bearing at all on the data.

Values of b in Tables I, II and III denote the b used in generating graphs from
f~(n, d, b) and ~*(n, d, b). For all but one graph, this value was also the bisection
width of the graph generated. Values of b were chosen between 2 and the largest values
for which Algorithm 2 still works. Algorithm 2 breaks down for large values of b pri-
marily because the probabilistic lemmas proved in Sections 2 and 3 do not hold for
large b.

5. Remarks

The data in Section 4 suggest several interesting conjectures. First, it appears
as through the Kernighan-Lin and simulated annealing algorithms almost always
get the optimal bisection when the node degree is large. In fact, it seems that even the
greedy heuristic almost always finds the minimum bisection when the node degree is
sufficiently large. We suspect that this can be proved by showing that there are very
few (and possibly only one) locally optimal bisections in such graphs.

The observation that standard algorithms like greedy, Kernighan--Lin and
simulated annealing work better for larger degree graphs suggests an interesting varia-
tion of the algorithms for small degree graphs, namely to: 1) randomly contract edges
out of the graph to increase the average node degree, 2) run the algorithm to find
a bisection of the contracted graph, 3) tmcontract the edges to obtain the original
graph (the bisection of the contracted graph found in step 2 might not be a bisection of
the original graph, in that case randomly adjust flaat bisection to obtain a bisection for
the original graph), and4) run the algorithm again, starting with flais new bisection. We
have run such modified versions of the algorithms on many of the test graphs used to
generate the data in Section 4. The results were surprisingly consistent: even for degree
3 graphs, the modified algorithms almost always produced the optimal bisection. We
suspect that this observation can be proved using the techniques developed in

190 T. N. BUI, S. CI tAUDHURI, F. T. LEIGHTON, M. SIPSER

Section 2 and 3. (A similar strategy is also used by Goldberg and Burstein in [12]
to upgrade the performance of bisection algorithms, although less dramatic results are
observed.)

We also suspect that the results of this paper can be extended to hold for
graphs with arbitrarily large node degrees (provided that graphs with multiple edges
and loops are also considered), and for graphs with larger bisections (provided that
we 13o longer require the algorithm to find exactly the minimum bisection). It is
also likely that the results can be extended to hypergraphs and graphs with
recursive decompositions, such as bifurcators or separators [4]. The main barriers to
proving stronger generalizations are

(i) the fact that only e -°(d') of all d-regular graphs are simple combined with
the fact that simple graphs are hard to work with directly, and

(ii) the fact that almost all graphs in fg*(n, d, b) for b= f2(n a-1/t(d+l)/"l) have
bisection width less than b.

It would be nice to extend the results to classes of random graphs generated by
inserting edges to achieve average node degree d, as opposed to uniform node degree
d. Such graphs are far more common in empirical studies (e.g., see [12]) since they
are very easy to generate and to work with mathematically. Graphs generated in this
fashion suffer a serious drawback, however, since many of the nodes in such graphs
have degree zero whenever the number of edges is linear in the number of nodes. In
addition, it is not clear how to generate such graphs with known bisection uniformly,
since minimum bisections for such graphs are usually nonunique, even if they have the
same cardinality as the implanted bisection. Although the algorithms developed in the
paper can probably be modified to work well for such graphs empirically, proving that
they work optimally almost all the time may be very difficult.

Although theoretical extensions of the proofs in Sections 2 and 3 to include
graphs with larger degrees and bisections may be difficult, it would at least be nice to
extend the algorithms so that they worked on such graphs in practice. We don't yet
know how to do this, although the flow-based techniques are very good at identifying
unusually small cuts from one subset of nodes to the remaining nodes.

Lastly, it would be of great interest to find good approximation algorithms for
the graph bisection problem. We suspect that flow-based techniques can be of some
help in this respect but have not been able to prove it.

Acknowledgements. We gratefully acknowledge several helpful discussions of this
work with Charles Leiserson and Gary Miller. We are also indebted to Christopher
Heigham for providing some of the data in Section 4.

References

[1] B. BAKER, Approximation Algorithms for NP-complete Problems on Planar Graphs, FOCS
1983, 265--273.

[2] E. R. BARNES, An Algorithm for Partitioning the Nodes of a Graph, IB)~[Technical Report
RC8690, 1981.

[3] E. R. BARNES and A. J. HOFFMAN, Partitioning, Spectra and Linear Programming, IBM Rese-
arch Report, (unknown date).

14] S. N. BHArr and F. T. LEiC, rrrON, A Framework for Solving VLSI Graph Layout Problems,
Journal of Computer and System Sciences, 28 (1984).

BISECTION ALGORITHMS 191

[5] B. BoeeoBAs, A Probabilistic Proof of an Asymptotic Formula for the Number of Labelled
Regular Graphs, European J. Combinatorics, 1 (1980), 311--316.

[6] B. BOeLOBAS and W. FERNANOEZ DE t,~ VEGA, The Diameter of Random Regular Graphs,
Combinatorica, 2 (1982), 125--134.

[7] M. A. Bm~UER, Min-cut Placement, J. DesignAut. andFault Tol. Comp., 1 (1977), 343--362.
[8] W. E. DONA'm and A. J. HOFEMAN, Lower Bounds for the Partitioning of Graphs, IBM J. Res.

Develop., 17 (1973), 420---425.
[9] C. M. FrouCCtA and R. M. MArrr~Yszs, A Linear-Time Heuristic for Improving Network

Partitions, Proceedings of the 19th Design Automation Conference, IEEE Computer Society
Press. 1982, 175--181.

[10] M. R. GAREY and D. S. JOHNSON, Computers and lntractibility." A Guide to the Theory of NP-
Completeness, Freeman, San Francisco, 1979.

[I 1] M.R. GAREY, D. S. JOHNSON and L. S'rOCKMEYER, Some Simplified NP-complete Graph Prob-
lems, Theoretical Computer Science, 1 (1976), 237--267.

[12] M. K. Got.rmErtG and M. Bt.rRs'rEIrq, Heuristic Improvement Techniques for Bisection of VLSI
Networks, unpublished manuscript, 1984, Clarkson University.

[13] M. K. GOLDBERG and R. GARONER, On the Minimal Cut Problem, in: Progress in Graph Theory,
(ed: J. A. Bondy and U.S.R. Murty), Academic Press, 1984, 295--305.

[14] D. S. JOHNSON, personal communication.
[15] B. W. KEmqmr~N and S. LIN, An Efficient Heuristic Procedure for Partitioning Graphs, The

Bell System Tech. J., 49 (1970), 291--307.
[16] S. KIRKPATRICK, C. D. GELATT, Jr. and M. P. VECCHI, Optimization by Simulated Annealing,

IBM Research Report RC 9355, April 1982, Yorktown Heights, New York.
[17] R. J. LreTON and R. E. TARJAN, Applications of a Planar Separator Theorem, Proceedings of the

18th Symposium on the Foundation of Computer Science, (1977), 162--170.
[18] R. J. LIPTON and R. E. TARJAN, A Separator Theorem for Planar Graphs, SIAM J. Computing,

36 (1979), 177--189.
[19] R. M. MACGREGOR, On Partitioning a Graph : A Theoretical and Empirical Study, Ph. D. Thesis,

University of California, Berkeley, 1978, also appeared as Technical Report UCB/ERL
M78/14.

[20] R. L. RIVET, The "PI" (Placement and Intercolmeet) System, Proceedings of the 19th Annual
Design Automation Conference, IEEE 1982, 475--481, Computer Society Press.

T h a n g Nguyen Bui
EECS Dept.
Mass. Inst. of Tech.
Cambridge, Mass. 02139
U.S.A.

current address:

Comp. ScL Dept.
Penn State University
UniversiO, Park, PA 16802
U,S.A.

F. T h o m s o n Leighton
Math. Dept. and Lab. for Comp. Sci.
M~s. hlst. of Tech.
Cambridge, Mass. 02139
U.S.A.

Soma Chaudhur i
)lCath. Dept.
Mass. Inst. of Tech.
Cambridge, Mass. 02139
U.S.A.

current address:

Comp. Sci. Dept.
University of Washington
Seattle, Washington
U.S.A.

Michael Sipser
34ath. Dept. and Lab. for
Comp. Sci.
34ass. Inst. of Tech.
Cambridge, Mass. 02139
U.S.A.

