
To appear in Machine Learning: Proceedings of the Thirteenth International Conference, 1996Bias Plus Variance Decomposition forZero-One Loss FunctionsRon KohaviData Mining and VisualizationSilicon Graphics, Inc.2011 N. Shoreline BlvdMountain View, CA 94043-1389ronnyk@sgi.com David H. WolpertThe Santa Fe Institute1399 Hyde Park Rd.Santa Fe, NM 87501dhw@santafe.eduAbstractWe present a bias-variance decompositionof expected misclassi�cation rate, the mostcommonly used loss function in supervisedclassi�cation learning. The bias-variancedecomposition for quadratic loss functionsis well known and serves as an importanttool for analyzing learning algorithms, yetno decomposition was o�ered for the morecommonly used zero-one (misclassi�cation)loss functions until the recent work of Kong& Dietterich (1995) and Breiman (1996).Their decomposition su�ers from some ma-jor shortcomings though (e.g., potentiallynegative variance), which our decompositionavoids. We show that, in practice, the naivefrequency-based estimation of the decompo-sition terms is by itself biased and showhow to correct for this bias. We illustratethe decomposition on various algorithms anddatasets from the UCI repository.1 IntroductionThe bias plus variance decomposition (Geman, Bi-enenstock & Doursat 1992) is a powerful tool fromsampling theory statistics for analyzing supervisedlearning scenarios that have quadratic loss functions.As conventionally formulated, it breaks the expectedcost given a �xed target and training set size into thesum of three non-negative quantities:Intrinsic \target noise" This quantity is a lowerbound on the expected cost of any learning algo-rithm. It is the expected cost of the Bayes-optimalclassi�er.

Squared \bias" This quantity measures how closelythe learning algorithm's average guess (over allpossible training sets of the given training set size)matches the target.\Variance" This quantity measures how much thelearning algorithm's guess \bounces around" forthe di�erent training sets of the given size.In addition to the intuitive insight the bias and vari-ance decomposition provides, it has several other use-ful attributes. Chief among these is the fact that thereis often a \bias-variance tradeo�." Often as one modi-�es some aspect of the learning algorithm, it will haveopposite e�ects on the bias and the variance. For ex-ample, usually as one increases the number of degreesof freedom in the algorithm, the bias shrinks but thevariance increases. The optimal number of degreesof freedom (as far as expected loss is concerned) isthe number of degrees of freedom that optimizes thistrade-o� between bias and variance.For classi�cation, the quadratic loss function is ofteninappropriate because the class labels are not numeric.In practice, an overwhelmingmajority of researchers inthe Machine Learning community instead use expectedmisclassi�cation rate, which is equivalent to the zero-one loss. Kong & Dietterich (1995) and Dietterich &Kong (1995) recently proposed a bias-variance decom-position for zero-one loss functions, but their proposalsu�ers from some major problems, such as the possibil-ity of negative variance, and only allowing the valueszero or one as the bias for a given test point.In this paper, we provide an alternative zero-one lossdecomposition that does not su�er from these prob-lems and that obeys the desiderata that bias and vari-ance should obey, as discussed in Wolpert (submit-ted). This paper is expository, being primarily con-cerned with bringing the zero-one loss bias-variance



decomposition to the attention of the Machine Learn-ing community.After presenting our decomposition, we describe a setof experiments that illustrate the e�ects of bias andvariance for some common induction algorithms. Wealso discuss a practical problem with estimating thequantities in the decomposition using the naive ap-proach of frequency counts; the frequency-count esti-mators are biased in a way that depends on the train-ing set size. We show how to correct the estimators sothat they are unbiased.2 De�nitionsWe use the following notation.2.1 The underlying spacesLet X and Y be the input and output spaces respec-tively, with cardinalities jXj and jY j and elements xand y, respectively. To maintain consistency withplanned extensions of this paper, we assume that bothX and Y are countable. However this assumption isnot needed for this paper, provided all sums are re-placed by integrals. In classi�cation problems, Y isusually a small �nite set.The \target" f is a conditional probability distributionP (YF = yF j x), where YF is a Y -valued randomvariable. Unless explicitly stated otherwise, we assumethat the target is �xed. As an example, if the targetis a noise-free function from X to Y , for any �xed xwe have P (YF = yF j x) = 1 for one value of yF , and0 for all others.The \hypothesis" h generated by a learning algorithmis a similar distribution P (YH = yH j x), where YHis a Y -valued random variable. As an example, if thehypothesis is a single-valued function from X to Y , asit is for many classi�ers (e.g., decision trees, nearest-neighbors), then P (YH = yH j x) = 1 for one value ofyH , and 0 for all others.We will drop the explicitly delineated random variablesfrom the probabilities when the context is clear. Forexample, P (yH ) will be used instead of P (YH = yH ).Proposition 1 YF and YH are conditionally indepen-dent given f and a test point x.Proof : P (yF ; yH j f; x) = P (yF j yH ; f;x)P (yH j f;x) =P (yF j f; x)P (yH j f; x).The last equality is true because (by de�nition) yFdepends only on the target f and the test point x.

The training set d is a set of m pairs of x{y values.We do not make any assumptions about the distribu-tion of pairs. In particular, our mathematical resultsdo not require them to be generated in an i.i.d. (in-dependently and identically distributed) manner, ascommonly assumed.To assign a penalty to a pair of values yF and yH , weuse the loss function ` : Y �Y ! R. In this paper weconsider the zero-one loss function de�ned as`(yF ; yH) = 1� �(yF ; yH);where �(yF ; yH) = 1 if yF = yH and 0 otherwise.The cost, C, is a real-valued random variable de�nedas the loss over the random variables YF and YH . Sothe expected cost isE(C) = XyH;yF `(yH ; yF )P (yH ; yF ) :For zero-one loss, the cost is usually referred to asmisclassi�cation rate and is derived as follows:E(C) = XyH ;yF [1� �(yH ; yF )]P (yH ; yF )= 1�Xy2Y P (YH = YF = y) : (1)The notation used here is a simpli�ed version ofthe extended Bayesian formalism (EBF) described inWolpert (1994). In particular, the results of this pa-per do not depend on how the X-values in the test setare determined, so there is no need to de�ne a randomvariable for those X-values as is done in the full EBF.3 Bias Plus Variance for Zero-OneLossWe now show how to decompose the expected costinto its components and then provide geometric viewsof this decomposition, in particular relating it toquadratic loss in Euclidean spaces.3.1 The DecompositionWe present the general result involving the expectedzero-one loss, E(C), where the (implicit) conditioningevent is arbitrary. Then we specialize to the stan-dard conditioning used in conventional sampling the-ory statistics: a single test point, target, and training



set size.E(C) = 1�Xy2Y P (YH = YF = y) (From equation 1)= Xy2Y �P (YH = YF = y) +Xy2Y P (YH = y)P (YF = y)+Xy2Y h�P (YH = y)P (YF = y) + 12P (YF = y)2+12P (YH = y)2i+"12 � 12Xy2Y P (YH = y)2#+"12 � 12Xy2Y P (YF = y)2# :Rearranging the terms, we have E(C) =Xy2Y [P (YH = y)P (YF = y)�P (YF = YH = y)] + (\covariance")12Xy2Y (P (YF = y)� P (YH = y))2 + (\bias2")12  1�Xy2Y P (YH = y)2!+ (\variance")12  1�Xy2Y P (YF = y)2! : (\�2") (2)In this paper we are interested in E(C j f;m), theexpected cost where the target is �xed and one aver-ages over training sets of size m. One way to evaluatethis quantity is to write it as Px P (x)E(C j f;m; x)and then use Equation 2 to get E(C j f;m; x). ByProposition 1, yH and yF are independent when oneconditions on f and x, hence the \covariance" termvanishes. SoE(C) =Xx P (x) ��2x + bias2x + variancex� (3)wherebias2x � 12Xy2Y [P (YF = y j x)� P (YH = y j x)]2variancex � 12  1�Xy2Y P (YH = y j x)2!�2x � 12  1�Xy2Y P (YF = y j x)2! :(To simplify the exposition, the f and m in the con-ditioning events are still implicit even though x needs

to be explicit.) To better understand these formulas,note that P (YF = y j x) is the probability (after anynoise is taken into account) that the �xed target takeson the value y at point x. To understand the quantityP (YH = y j x), one must write it in full asP (YH = y j f;m; x) == Xd P (d j f;m; x)P (YH = y j d; f;m; x)= Xd P (d j f;m)P (YH = y j d; x) : (4)In this expression, P (d j f;m) is the probabilityof generating training set d from the target f , andP (YH = y j d; x) is the probability that the learningalgorithmmakes guess y for point x in response to thetraining set d. So P (YH = y j x) is the average (overtraining sets generated from f) Y value guessed by thelearning algorithm for point x.Note that while the quadratic loss decomposition in-volves quadratic terms, and the log loss decompo-sition involves logarithmic terms (Wolpert submit-ted), our zero-one loss decomposition does not involveKronecker delta terms, but rather involves quadraticterms.Our de�nitions of \bias2," \variance," and \noise"obey some appropriate desiderata, including:1. The \bias2" term measures the squared di�erencebetween the target's average output and the al-gorithm's average output. It is a real-valued non-negative quantity and equals zero only if P (YF =y j x) = P (YH = y j x) for all x and y. Theseproperties are shared by bias2 for quadratic loss.2. The variance term measures the \variability"(over YH ) of P (YH j x). It is a real-valued non-negative quantity and equals zero for an algorithmthat always makes the same guess regardless ofthe training set (e.g., the Bayes optimal classi-�er). As the algorithm becomes more sensitive tochanges in the training set, the variance increases.Moreover, given a distribution over training sets,the variance only measures the sensitivity of thelearning algorithm to changes in the training setand is independent of the underlying target. Thisproperty is shared by variance for quadratic loss.3. The noise measures the \variance" of the target inthat the de�nitions of variance and noise are iden-tical except for the interchange of YF and YH . Inaddition, the noise is independent of the learningalgorithm. This property is shared by noise forquadratic loss.



In contrast to our de�nition of bias2, the de�nitionsof bias (for a �xed target and a given instance) sug-gested in Kong & Dietterich (1995), Dietterich & Kong(1995), and Breiman (1996) are only two-valued forbinary classi�cation; they cannot quantify subtler lev-els of mismatch between a learning algorithm and atarget. However, their decompositions have the ad-vantage that their bias is zero for the Bayes optimalclassi�er, while ours may not be.The major distinction between the decompositionsarises in the variance term. All of the desiderata forvariance listed above are violated by the decomposi-tions proposed by Kong & Dietterich (1995), Diet-terich & Kong (1995), and Breiman (1996). Speci�-cally, in their de�nitions the variance can be negativeand is not minimized by a classi�er that ignores thetraining set. Kong & Dietterich (1995) note this short-coming explicitly. The following examples illustratesthe phenomenon for the decomposition suggested byBreiman (1996). Assume a noise free target with 51%heads and 49% tails. Consider an x for which the tar-get has the value tails; the average error of a majorityclassi�er will be slightly above 50%, yet the probabil-ity of error for the \aggregate" majority classi�er willbe one. This causes the variance to be negative.Another advantage of our decomposition is that itsterms are a continuous function of the target. Anin�nitesimal change in the target, which changes theclass most commonly predicted by the learning algo-rithm for a given x, will not cause a large change inour bias, variance, or noise terms. In contrast, theother de�nitions of bias and variance do not share thisproperty.3.2 The Bias-Variance Decomposition inVector FormWe can rewrite Equation 2 in vector notation thatmay give a better geometrical interpretation to thedecomposition. De�ne ~F � P (yF ), ~H � P (yH ), and~FH � P (yF ; yH ). ~F and ~H are vectors in RjY j withtheir components indexed by Y values; ~FH is a matrixin RjY j � RjY j. If we denote dot-products by \�" andthe dot-product of a vector with itself by squaring it,thencovariance = Tr( ~FH)� ~F � ~H (Tr is the trace);bias2 = 12 �~F � ~H�2 ; variance = 12 �1� ~H2� ; and�2 = 12 �1� ~F 2� :

3.3 Relation to the Quadratic DecompositionTo relate the zero-one loss decomposition to the morefamiliar quadratic loss decomposition let ~YF be anRjY j-valued random variable restricted so that exactlyone of its components equals 1 and all others equal 0;that single 1-valued component is the one with indexyF . So ~YF is YF re-expressed as a vector on the unithypercube. De�ne ~YH similarly in terms of YH .Since ~YF and ~YH are real-valued, we can de�nequadratic loss over them. In particular, recalling thatsquaring a vector is taking its dot product with itself,we have ( ~yF � ~yH )2 = � 2 if yF 6= yH0 if yF = yHAccordingly,E h� ~YF � ~YH�2 j f;m; xi = 2P (yH 6= yF j f;m; x)= 2E(C0-1 loss j f;m; x) :So by transforming the Y to a vector of indicatorvariables, we see that the expected cost for zero-oneloss is one half the associated quadratic loss.4 Experimental MethodologyWe begin with a description of our experimentalmethodology, and then discuss a problem with thenaive estimation of the terms in our decomposition byusing frequency counts.4.1 Our frequency counts experimentsTo investigate the behavior of the terms in our decom-position, we ran a set of experiments on UCI repository(Murphy & Aha 1996). In each of those experiments,for a given dataset and a given learning algorithm, weestimated (the x-average of) bias2, variance, intrinsicnoise, and overall error as follows.1. We randomly divided each dataset into two parts,D and E. D was used as if it were the \world"from which we sample training sets, while E wasused to evaluate the terms in the decomposition.This idea is similar to the \bootstrap world" ideain Efron & Tibshirani (1993, Chapter 8).2. We generate N training sets from D, each gen-erated using uniform random sampling withoutreplacement. (Note that our decomposition does



not require the training sets to be sampled in anyspeci�c manner (Section 2).) To get training setsof sizem, we chose D to be of size 2m. This allowsfor �2mm � di�erent possible training sets, enoughto guarantee that we will not get many duplicatetraining sets in our set of N training sets, even forsmall values of m.3. We ran the learning algorithm on each of thetraining sets and estimated the terms in Equa-tion 3 and 4 using the generated classi�er for eachpoint x in the evaluation set E. (Equation 4 wasused to estimate p(yH jf;m; x).) At �rst, all theseterms were estimated using frequency counts.Figure 1 (left) shows the estimate for bias2 for di�erentvalues of N when ID3 (Quinlan 1986) was executed onthree datasets from the UCI repository. It is clear thatour estimate of bias2 using frequency counts shrinks aswe increase N . Since in�nite N gives the correct valueof bias2, this means that for any �nite N the bias2estimate is always itself biased upwards. The varianceterm exhibits the opposite behavior: it is always biasedlow. The right hand side of Figure 1 shows the behav-ior with the corrected estimators we propose below insubsection 4.2.To see why this biasing behavior arises, �x y 2 Yand x 2 X. We will demonstrate that the bias of ourfrequency-based estimator of bias2 holds for any suchy and x, which immediately implies that it holds whenone averages over y and x. Assume N is even and de-�ne n � N=2. Given a set of N training sets, oneoption is to estimate bias2 using two distinct sets ofn training sets, and to then average their estimates toget an average n-training-set-based estimate. Anotheroption is to average over all N training sets directly toget an N -training-set-based estimate. What we willshow is that averaged over sets of N = 2n trainingsets, the former strategy results in a higher estimateof bias2 than the latter; the expected value of the es-timate of bias2 using n training sets is larger than theexpected value using 2n training sets. Since the esti-mate using in�nite sets is exactly correct, this meansthat our estimate of bias2 is biased upwards more asfewer training sets are used.Let i 2 f1; 2g specify one of the two sets of n trainingsets we're examining. De�ne wi to be the average overthe training sets in set i of P (YH = y j x), i.e., wi �Pj P (YH = y j x; dij)=n, where dij is the j'th trainingset in set i. Let T be P (YF = y j x) (see Equation 3).We can now compute the expected di�erence betweenthe two ways of estimating the bias (estimating for

each set of n training sets and then averaging, minusestimating based on the full set of N = 2n trainingsets):E � 12Pi=1;2 (T �wi)2 � �T � 12Pi=1;2 wi�2� =12Pi=1;2 E �(T � wi)2��E ��T � 12Pi=1;2 wi�2� :By Jensen's inequality (Cover & Thomas 1991), the�rst term on the right hand side is larger or equal tothe second term. This shows that when we averageonce (over 2n instances) rather than twice (over n in-stances) we get a smaller estimate for the bias2, whichestablishes the proposition. A similar argument holdsfor variance, which gets larger as N grows.4.2 Unbiased estimators of bias2 and varianceOne way to correct these biases in our frequency countsestimators is to use a very large number of trainingsets. Although such an approach would have beenfeasible for our experiments, it is not in general; formany combinations of learning problem and learningalgorithm, the associated computational requirementsare prohibitive.Fortunately, there is a straight-forward correction wecan apply to our estimators to make them unbiased.1De�ne wN as the frequency count estimate for P (YH =yhjf;m; x) based on the N training sets. De�ne UN �wN � T , where T was de�ned above as P (YF = y j x).The frequency counts estimate of bias2 we used beforewas U2N ; our proposed estimator is VN � U2N �wN (1�wN )=(N � 1).Proposition 2 Under the assumption that we knowT 's value, VN is an unbiased estimator for bias2.Proof : Since bias2 = (E [UN j n; T ])2, we have to showthatE �U2N �wN(1� wN)=(N � 1) j N;T� = (E [UN j n; T ])2. 1It is not obvious that one would want an unbiased es-timator for the estimated quantities, since that does notnecessarily minimize expected error. (That is what thebias-variance tradeo� is all about.) However, we felt thatgetting an unbiased estimator would help understand theproblem better and experiments we did indicated that theexpected squared-error loss for our proposed unbiased es-timator is smaller than that of the estimator based on thenaive use of frequency counts.
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SoybeanFigure 1: The uncorrected bias (left) and corrected (right)An unbiased estimator for the variance of the probabil-ity in an N -sample Bernoulli process is the empiricalvariance multiplied by N=(N � 1). Furthermore, be-cause T is �xed, the variance of UN is equal to thevariance of wN . Thus we havevar(UN jT; n) = var(wN jn) = wN(1�wN )=(N � 1) (5)But by de�nition of variance, we havevar(UN jT; n) = E[U2N jT; n]� (E[UN jT; n])2 (6)Equating the right sides of Equations 5 and 6, we havethe desired result.The correction to the variance estimator is simplygiven by negative the correction to the bias2 estimator.This can be shown using reasoning similar to the proofjust above, but it also follows from the bias-variancedecomposition itself and the fact that the frequencycounts estimator of error gives an unbiased estimateof the zero-one loss.It is important to realize that Proposition 2 implicitlyassumes that training sets are formed by i.i.d. sam-pling a training-set-generating process. This is true forour experimental methodology even though each run-ning of our training-set-generating process is requiredto produce training sets that contain no duplicate x�ypairs; for the Proposition to apply it su�ces to allowduplicate training sets.We conclude this section with a few comments.1. The assumption underlying Proposition 2 that weknow T exactly is false, since we can only estimateit from the data. However, our estimate of T is aconstant, independent of the number of trainingsets or the details of the learning algorithm. Soerrors in our estimate of T are not important.

2. A related point is that �2 is very di�cult to es-timate in practice. Using a frequency count es-timator the estimate of �2 would be zero if allinstances are unique (regardless of the true �2).Since in the UCI datasets, almost all instancesare unique, we elected to de�ne �2 to be zero byconsidering all instances to be unique. This canbe viewed as a calculational convenience, since weare only concerned with the variation in expectedcost as we vary the learning algorithm, and theestimate of �2 is algorithm-independent3. There is a possibility that VN will give a negativeestimate of bias2. This is to be expected, giventhat VN is unbiased. If the true bias2 equals zero,for an estimator with variance greater than zeroto produce zero as its average estimate (as it mustif it is an unbiased estimator), it must sometimesproduce negative numbers.This potentially negative estimate should be con-trasted with the negative variances accompany-ing the bias-variance decomposition in Kong &Dietterich (1995) and Breiman (1996). Unlikein their decomposition, in our decomposition thetrue bias2 and variance are always non-negative;the potential for a negative value is a re
ectionof the more problematic aspects of unbiased es-timators, rather than of the underlying quantitybeing estimated. In practice though, we alwayshad enough data so that negative bias2 estimatesnever occurred.4.3 The ExperimentsWe now present experiments demonstrating the biasand variance of induction algorithms for datasets fromthe UCI repository (Murphy & Aha 1996). Thedatasets were chosen so that they contain at least 500instances (to ensure accurate estimates of error) and
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Figure 2: The bias plus variance decomposition for nearest-neighbor with varying number of neighbors. Thenotation NN-k indicates vote among the k closest neighbors.Table 1: The Datasets and their characteristicsDataset No. Dataset Train-setfeatures Size sizeAnneal 38 898 100Chess 36 3196 250DNA 180 3186 100LED-24 24 3200 250Hypothyroid 25 3163 250Segment 19 2310 250Satimage 36 6435 250Soybean-large 35 683 100Tic-tac-toe 9 958 100to demonstrate the range of potential bias-variance be-haviors. Table 1 shows a summary of the datasets weuse. We use small training sets to make sure the eval-uation set is large. In general, we chose size 100 fordatasets with less than 1,000 instances and 250 forthose with over 1,000 instances (except DNA whichhas 180 features). We generated 50 training sets foreach learning algorithm (i.e., N = 50) and use theunbiased estimators discussed above.4.4 Varying the Number of Neighbors inNearest-NeighborFigure 2 shows the bias-variance decomposition of theerror for the nearest-neighbor algorithmwith a varyingnumber of neighbors used.

In Anneal, Chess, and Tic-tac-toe, increasing the num-ber of neighbors increases the bias and decreases thevariance; however, the bias increases much more thanthe decrease in variance and the overall error increases.In Anneal, the bias more than doubles when goingfrom one neighbor to three neighbors. In Tic-tac-toe,the variance drastically decreases (it is 0.0001 for �veneighbors). The reason for this decrease in varianceis that instances in Tic-tac-toe vary on one to ninesquares; allowing neighbors with up to �ve di�eringsquares causes NN-5 to let a large portion of the spacevote, in e�ect predicting the majority class (a constantwin for X) all the time.In DNA and Led24, both bias2 and variance decreaseas the number of neighbors increases. For DNA, bias2shrinks by 0.07 and the variance by 0.05; for led24,bias2 shrinks by 0.09 and the variance by 0.05.In Segment and Soybean, both the bias2 and varianceincrease as the number of neighbors is increased. Wehave observed a general increase in variance when thenumber of classes is large. Segment has seven classesand Soybean has 19 classes. Increasing the number ofneighbors causes many ties which are broken arbitrar-ily, thus increasing the variance.In Hypothyroid and Satimage, the changes in bias2and variance as the number of neighbors is changedare small and almost cancel. For Hypothyroid, increas-ing from one to three neighbors increases bias2 from
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Figure 3: The bias and variance of ID3 and 50 aggregated ID3, with 0.9 and 0.7 of the training set. Aggregationincreases the bias slightly but stabilizes ID3 thus reducing the variance more.0.029 to 0.035 and decreases the variance from 0.011to 0.004. For Satimage, bias2 increases from 0.103 to0.118 and the variance decreases from 0.055 to 0.037.Although most datasets exhibit a bias-variance trade-o� where one quantity goes up and the other goes downas a parameter of the induction algorithm is varied, wecan see examples where both change in the same di-rection.4.5 Combining Classi�ersThere has been a lot of work recently on combin-ing classi�ers, with the terms aggregation, averages,ensembles, classi�er combinations, voting, and stack-ing commonly used (Wolpert 1992, Breiman 1994a,Perrone 1993, Ali 1996). In the simplest scheme, mul-tiple classi�ers are generated and then vote for eachtest instance, with the majority prediction used as the�nal prediction.Figure 3 shows ID3 versus a combination of 50 ag-gregated trees. The 50 trees are generated by repeat-edly sampling a subset of the training set and runningID3. In contrast to bagging as de�ned in Breiman(1994a), the samples used here were generated by uni-form sampling without replacement. Two sample sizesare shown: training sets with 0.7 of the training setand with 0.9. Minor variations in the training setmay cause a di�erent split, which might change thewhole subtree. As a consequence, decision trees arevery unstable, and therefore they usually gain by ag-

gregation techniques (Breiman 1994b). Note also thatthe smaller the internal sample, the more bias we po-tentially add (Gordon & Olshen 1984) but the moredi�erent the classi�ers will be, leading to a more sta-ble average.Our results show that in this voting scheme, the reduc-tion in error is almost solely due to the reduction invariance. While the bias goes up slightly, especially assmaller training sets are used (samples of size 0.7), thereduction in variance is signi�cant and the total errorusually decreases. For our datasets, voting samples ofsize 0.9 always reduced the error. Voting samples ofsize 0.7 reduced the error even more in all datasets butone (anneal).5 Summary and Future WorkWe presented a bias and variance decomposition formisclassi�cation error, which is equivalent to zero-oneloss, and showed that it obeys some desired criteria.This decomposition does not su�er from the short-comings of the decompositions suggested by Kong &Dietterich (1995) and Breiman (1994b). We showedhow estimating the terms in the decomposition us-ing frequency counts leads to biased estimates and ex-plained how to get unbiased estimators, which we laterused. We then gave some examples of the bias-variancetradeo� using two machine learning algorithms andseveral UCI datasets.In the future we plan to investigate many extensions



of this work. In particular, we plan to investigate thefollowing topics:1. The decomposition in Equation 2 holds for essen-tially any conditioning event. It even holds if theconditioning event is (d; x), as in Bayesian pointestimation; we have a bias-variance decomposi-tion for a Bayesian quantity. The decompositionalso holds if x is not in the conditioning event,so that no external average over x is required, asit is in this paper. We intend to explore thesealternative conditioning events.2. Since variance can be directly estimated usingthe unlabelled instances of the test set, estimat-ing overall error of a learning algorithm hingeson estimating its bias2. We would like to testwhether better error estimates can be obtained byusing cross-validation-style partitions of the train-ing set to estimate that bias and using unlabelledinstances from the test set to estimate the vari-ance.The bias and variance decomposition is an extremelyuseful tool in Statistics that has rarely been utilizedbefore in Machine Learning because no decompositionexisted for misclassi�cation rate. We hope that theproposed decomposition will overcome this problem,and thereby help us improve our understanding of su-pervised learning.AcknowledgmentsWe thank Jerry Friedman and Tom Dietterich formany discussions on the bias-variance tradeo�. The�rst author thanks Silicon Graphics Inc. The secondauthor thanks the Santa Fe Institute and TXN Inc.ReferencesAli, K. M. (1996), Learning Probabilistic RelationalConcept Descriptions, PhD thesis, University ofCalifornia, Irvine. http://www.ics.uci.edu/~ali.Breiman, L. (1994a), Bagging predictors, TechnicalReport Statistics Department, University of Cal-ifornia at Berkeley.Breiman, L. (1994b), Heuristics of instability in modelselection, Technical Report Statistics Depart-ment, University of California at Berkeley.Breiman, L. (1996), Bias, variance, and arcing clas-si�ers, Technical report, Statistics Department,
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