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Abstract
We utilize the formal equivalence between the number-partitioning problem
and a harmonically trapped ideal Bose gas within the microcanonical ensemble
for characterizing the probability distribution which governs the number of
addends occurring in an unrestricted partition of a natural number n. By
deriving accurate asymptotic formulae for its coefficients of skewness and
excess, it is shown that this distribution remains non-Gaussian even when n
is made arbitrarily large. Both skewness and excess vary substantially before
settling to their constant-limiting values for n > 1010.

PACS numbers: 05.30.Jp, 05.30.Ch, 02.30.Mv

1. Introduction

Let �(n,M) denote the number of possibilities to partition the natural number n into M integer,
positive addends. For instance, for n = 5 we have

5 = 1 + 1 + 1 + 1 + 1

= 2 + 1 + 1 + 1

= 2 + 2 + 1

= 3 + 1 + 1

= 3 + 2

= 4 + 1

= 5 (1)

so that �(5, 5) = 1,�(5, 4) = 1,�(5, 3) = 2,�(5, 2) = 2 and �(5, 1) = 1; the total
number �(n) of partitions of n = 5 adds up to �(5) = 7.

The number-partitioning problem, i.e., the problem of finding and enumerating all such
partitions of a given natural number n, has a long history in mathematics [1–4], and close
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connections to topical questions in physics [5–8]. Having been treated already by Euler [1],
it leads directly to Bose–Einstein condensation: consider an ideal Bose gas of N particles,
isolated from its surrounding and confined by a one-dimensional harmonic oscillator potential
with angular frequency ω0, and assume that the total excitation energy E of this gas amounts to n
oscillator quanta, E = nh̄ω0. Then, as long as n � N , the individual partitions of n correspond
precisely to the possible microstates of the physical system: in the above example (1) with
five oscillator quanta, there exists one microstate where five different Bose particles each carry
one quantum, another microstate where one Boson carries two quanta and three other Bosons
each carry one quantum, still another microstate where two particles each carry two quanta
and another particle carries the remaining quantum, and so on. Thus, for a given partition
each addend of magnitude m > 0 corresponds to a particle carrying m quanta of excitation
energy, and the total number of addends belonging to that partition corresponds to the total
number of excited particles for that particular microstate. The fact that the numbers commute,
so that, for instance, 3 + 1 + 1 = 1 + 1 + 3, reflects the fundamental indistinguishability of
the quantum-mechanical particles: the question ‘which particle’ carries one or three quanta
is meaningless. Finally, the logarithm of the total number of microstates compatible with
the energy E = nh̄ω0 gives the Boltzmann entropy: S(n) = kB ln(�(n)), with kB denoting
Boltzmann’s constant [9]. After the experimental realization of Bose–Einstein condensates of
dilute atomic gases, the (non-)equivalence of the statistical ensembles has become a point of
concern even for the ideal gas [10–12]. The results obtained in this paper amount to a detailed
comparison of canonical and microcanonical statistics for an ideal gas in a one-dimensional
harmonic oscillator trap, while the underlying method can be applied to arbitrary trapping
potentials.

For moderately large n, it is easy to compute �(n,M) and �(n) = ∑n
M=1 �(n,M)

exactly by means of a recursion relation: if n quanta are to be distributed over M � n

particles, we first take M of the quanta and assign them to M different particles, thus fixing
the required number of addends. The remaining n − M quanta can then be distributed in
an arbitrary manner over these M excited particles; the maximum number of particles that
will finally be equipped with two or more quanta obviously cannot exceed the smaller of the
numbers n − M and M:

�(n,M) =
min{n−M,M}∑

k=1

�(n − M, k). (2)

Simple as this relation (2) may look, it does require quite substantial resources of computer
memory when n is of the order of ten thousand, say, and is impractical to evaluate numerically
when n is of the order of a million. One can then resort to approximate asymptotic formulae,
such as the Hardy–Ramanujan formula for �(n) [13]:

�(n) = 1

4
√

3n
exp

(
π

√
2n

3

)
[1 + O(n−1/2)]. (3)

We remark that the first application of this formula in physics appears to be an estimate of the
density of energy levels in a heavy nucleus due to Bohr and Kalckar [14].

In this paper, we will focus on the probability distribution pmc(n,M) for finding, in a
given partition of n, precisely M nonzero addends (or, coming back to the physical realization,
for finding M excited particles in a one-dimensional, harmonically trapped isolated ideal Bose
gas with n quanta of excitation energy), and derive asymptotic formulae for the cumulants
of this distribution. The first cumulant κ(1)

mc (n) gives the expectation value of the number of
addends (of the number of excited particles); the second cumulant κ(2)

mc (n) gives the mean-
square fluctuation of this quantity. If the distribution pmc(n,M) were Gaussian, the higher
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cumulants κ(k)
mc (n) with k � 3 would be identically zero; thus, their actual magnitude quantifies

to what extent this ‘number-of-pieces’ distribution deviates from a Gaussian. In particular, we
will evaluate the coefficient of skewness,

γ1(n) = κ(3)
mc (n)(

κ
(2)
mc (n)

)3/2 (4)

describing the asymmetry of pmc(n,M), and the coefficient of excess (or kurtosis),

γ2(n) = κ(4)
mc (n)(

κ
(2)
mc (n)

)2 (5)

describing its flatness [15]. As we will show, both skewness and excess approach constant,
nonzero values in the limit n → ∞, which means that the distribution remains non-Gaussian
even in this limit. Interestingly, the convergence turns out to be rather slow; in both cases the
respective limiting values are well approached only for n > 1010.

While there exist already several attempts in the literature to compute the leading-order
terms of the moments (rather than cumulants) of the distribution pmc(n,M) [16–19], our goal
here is somewhat more ambitious, insofar as we aim at a level of precision such that even the
absolute, rather than merely relative, error of the resulting formulae goes to zero for n → ∞.

As indicated by the subscript ‘mc’, the above programme is essentially microcanonical in
nature: finding all partitions and characterizing pmc(n,M) means determining the entropy of
a harmonically trapped Bose gas that is thermally isolated, so that the amount of energy to be
partitioned among the particles is conserved. Nonetheless, we will exploit the physical
intuition that follows from the Bose gas analogy, and will first treat the gas within the
simpler canonical ensemble. In that case, the system has a predetermined temperature T, and
exchanges energy with its environment. Most importantly, the ensuing canonical cumulants
κ(k)

cn (β) (where β = 1/(kBT ) denotes the inverse temperature) can be expressed through a
convenient integral formula that is derived in section 2. Obviously, one then does not obtain
the desired microcanonical cumulants from their canonical counterparts by simply inverting
the energy–temperature relation, that is, by expressing β as a function of n, and inserting
β(n) into the canonical expressions: for instance, thermal contact and the accompanying
energy fluctuation implies that also the number of excited Bose particles fluctuates stronger
in a canonical set-up than it does in a microcanonical one [20]. However, we will work out in
detail in section 3 how the difference between the canonical and the microcanonical cumulants
can systematically be expressed in terms of the known canonical cumulants, and therefore
be evaluated in a transparent manner. Via this detour, that is, by assigning ‘temperature’ to
the numbers n on the basis of their entropy S(n), then calculating the canonical cumulants
and finally returning to the microcanonical ensemble, we will determine skewness (4) and
excess (5) for the number-partitioning problem. Section 4 contains a comparison of exact,
numerically computed data with our asymptotic results; some mathematical details have been
collected in the appendix.

2. The canonical cumulant formula

In this section we will not restrict ourselves to one-dimensional harmonic oscillator potentials,
but consider N non-interacting Bosons in a set-up where they can occupy arbitrary, discrete
single-particle levels εν, ν � 0, and stipulate that the ground state ν = 0 be non-degenerate.
Denoting the occupation number of the νth level as nν (nν = 0, 1, 2, . . .), the total energy of
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a particular microstate of this ideal Bose gas is written as
∞∑

ν=0

nνεν =
∞∑

ν=1

nν(εν − ε0) + Nε0

≡ E + Nε0 (6)

where we have separated the total excitation energy E from the trivial N-particle ground-state
energy Nε0. (Note that the sums in equation (6) actually terminate at some finite ν, since∑

ν nν = N .) This excitation energy E is the quantity to be partitioned, i.e., shared among the
Bosons.

We then denote the total number of microstates compatible with the excitation energy
E—the total number of possibilities for distributing the energy E in an arbitrary manner among
the N Bosons—as ω(E,N). Moreover, for M = 0, 1, 2, . . . , N we introduce

�(E,M) = ω(E,M) − ω(E,M − 1). (7)

These differences count the partitions of E into exactly M pieces, corresponding to the
microstates with exactly M out of N particles in an excited state, so that the remaining
N −M particles occupy the ground state. With ω(E,−1) = 0, equation (7) obviously implies

N∑
M=0

�(E,M) = ω(E,N). (8)

When E exceeds N(ε1 − ε0), all particles can be excited. Therefore, for energies higher
than this value the circumstance that the number of particles is finite explicitly restricts the
possible partitions to partitions with at most N pieces. This restriction is removed when
the number of particles is formally taken to be infinite, so that E can be partitioned into an
arbitrary number of parts: for each fixed value of E, the number of microstates ω(E,N)

becomes independent of N when N is sufficiently large. We write

�(E) = lim
N→∞

ω(E,N) (9)

for the number of unrestricted partitions of E, and immediately obtain
∞∑

M=0

�(E,M) = �(E) (10)

keeping in mind that �(E,M) = 0 for large M.
The object of interest now is the normalized distribution

pmc(E,M) ≡ �(E,M)

�(E)
M � 0 (11)

which describes the microcanonical probability for finding M excited particles in the thermally
isolated Bose gas when the total excitation energy is E, under the further assumption that there
is an infinite supply of additional particles still residing in the ground state, i.e., a Bose–Einstein
condensate.

As pointed out in the introduction, it will be convenient to consider first the canonical
counterpart of the microcanonical distribution (11), given by

pcn(β,M) ≡
∑

E e−βE�(E,M)∑
E e−βE�(E)

(12)

where the sums run over all possible values of E, and β = 1/(kBT ). This canonical
distribution (12) gives the probability for finding M excited particles when the system is
kept at constant temperature T by contact with some thermal reservoir, again assuming the
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presence of an infinite background of Bose–Einstein-condensed ground-state particles which
render the consideration of restricted partitions unnecessary.

Within the canonical ensemble, the M-particle partition function ZM(β) now generates
the microcanonical weights ω(E,M) according to

ZM(β) =
∑
E

ω(E,M) exp(−βMε0 − βE): (13)

these canonical partition functions (13), in their turn, are generated by the grand-canonical
partition function


(β, z) ≡
∞∑

M=0

(z eβε0)MZM(β)

=
∞∏

ν=0

1

1 − z exp[−β(εν − ε0)]
(14)

where z is a fugacity-type variable [21]. From the definition (13) it follows that 
(β, z) also
has the alternative sum representation


(β, z) =
∞∑

M=0

zM
∑
E

ω(E,M) exp(−βE) (15)

which enables us to construct a generating function for the microcanonical differences
�(E,M): multiplying equation (15) by (1 − z) and appropriately shifting the summation
index M, we have

(1 − z)
(β, z) =
∞∑

M=0

(zM − zM+1)
∑
E

ω(E,M) exp(−βE)

=
∞∑

M=0

zM
∑
E

[ω(E,M) − ω(E,M − 1)] exp(−βE)

=
∞∑

M=0

zM
∑
E

�(E,M) exp(−βE). (16)

On the other hand, the product representation (14) yields for this generating function (16) the
equivalent expression

(1 − z)
(β, z) =
∞∏

ν=1

1

1 − z exp[−β(εν − ε0)]

≡ 
ex(β, z). (17)

This identity has an interesting interpretation: multiplying 
(β, z) by (1− z) means discarding
the ground-state factor ν = 0 from the product (14) and retaining its ‘excited’ part 
ex(β, z),
so that the generating function (16) for the differences �(E,M) corresponds to the grand
partition function of an ideal Bose gas from which the single-particle ground state has been
removed.

Combining equations (16) and (17), we now find(
z

∂

∂z

)k


ex(β, z)

∣∣∣∣∣
z=1

=
∑
E

exp(−βE)

∞∑
M=0

Mk�(E,M) (18)

which means that the ground-state amputated function 
ex(β, z) furnishes, by repeated
application of the operator z ∂

∂z
, the moments of the non-normalized distribution



1832 C Weiss et al{∑
E exp(−βE)�(E,M); M � 0

}
. According to standard probability theory, this implies

that the logarithm of 
ex(β, z) generates precisely the cumulants of the canonical number-of-
pieces distribution (12):

κ(k)
cn (β) =

(
z

∂

∂z

)k

ln 
ex(β, z)

∣∣∣∣∣
z=1

(19)

hence

ln 
ex(β, z) =
∞∑

ν=0

κ(ν)
cn (β)

ν!
(ln z)ν . (20)

In general, the cumulants of a probability distribution {p(M);M � 0} belonging to an
integer-valued stochastic variable are closely related to the central moments µ(k) =∑∞

M=0 (M − m̄)kp(M), where m̄ = ∑∞
M=0 Mp(M) is the mean value; in particular, one

has [15]

κ(1) = m̄ κ(2) = µ(2) κ(3) = µ(3) κ(4) = µ(4) − 3(µ(2))2. (21)

The merit of cumulants, as opposed to the moments, lies in the fact that when Ŷ is a sum of
independent stochastic variables X̂ν , then the kth order cumulant of Ŷ equals the sum of the
kth order cumulants of its components:

κ(k)[Ŷ ] =
∑

ν

κ(k)[X̂ν]. (22)

In our context, since ln 
ex(β, z) is expressed as a sum over contributions from the excited
states ν � 1, all total cumulants κ(k)

cn (β) are given by sums over cumulants pertaining to
the individual excited states. For instance, the first cumulant κ(1)

cn (β), which is the canonical
expectation value of the number of excited particles, simply equals the sum of the expectation
values of the excited-states occupation numbers. While this is obvious, a more interesting
statement is obtained for k = 2: the canonical mean-square fluctuation κ(2)

cn (β) of the number
of excited particles equals, within the ‘infinite-condensate assumption’, the sum of the mean-
square fluctuations of the individual occupation numbers, so that these canonical occupation
numbers are uncorrelated stochastic variables.

In order to derive an expression for the canonical cumulants κ(k)
cn (β) that lends itself to

a systematic asymptotic expansion, we start from equation (17) and write ln 
ex(β, z) in the
form

ln 
ex(β, z) = −
∞∑

ν=1

ln(1 − z exp[−β(εν − ε0)])

=
∞∑

ν=1

∞∑
n=1

zn exp[−β(εν − ε0)n]

n
. (23)

Recalling now that e−a is the Mellin transform of �(t), namely

e−a = 1

2π i

∫ τ+i∞

τ−i∞
dt a−t�(t) (24)

for Re a > 0 and τ > 0, one arrives at

ln 
ex(β, z) =
∞∑

ν=1

∞∑
n=1

1

2π i

∫ τ+i∞

τ−i∞
dt �(t)

zn

n

1

(β[εν − ε0]n)t

= 1

2π i

∫ τ+i∞

τ−i∞
dt �(t)

∞∑
ν=1

1

(β[εν − ε0])t

∞∑
n=1

zn

nt+1
. (25)
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The interchange of summation and integration performed here is permissible when the resulting
series under the integral are absolutely convergent [3]; this requires that the real number τ be
chosen such that the path of integration parallel to the imaginary axis lies to the right of the
poles of these analytically continued series. We then employ the familiar notation [21]

gα(z) =
∞∑

n=1

zn

nα
(26)

for the Bose function gα(z), and introduce the Dirichlet series

Z(β, t) ≡
∞∑

ν=1

1

(β[εν − ε0])t
(27)

so that

ln 
ex(β, z) = 1

2π i

∫ τ+i∞

τ−i∞
dt �(t)Z(β, t)gt+1(z). (28)

Finally, inserting this expression into equation (19), utilizing

z
d

dz
gα(z) = gα−1(z) (29)

and

gα(1) = ζ(α) (30)

where ζ(α) = ∑∞
n=1 n−α is the Riemann zeta function, we arrive at the representation

κ(k)
cn (β) = 1

2π i

∫ τ+i∞

τ−i∞
dt �(t)Z(β, t)ζ(t + 1 − k). (31)

So far, our deliberations refer to an arbitrary single-particle spectrum,and can be applied to
quite different types of partitions when this spectrum is adjusted accordingly. For application
to the standard number-partitioning problem, we now return to the one-dimensional harmonic
oscillator spectrum, so that

εν = h̄ω0(ν + 1/2) (32)

with integer quantum number ν = 0, 1, 2, . . . , and

Z(β, t) = b−t ζ(t) (33)

with scaled (dimensionless) inverse temperature

b ≡ βh̄ω0. (34)

Hence, simply writing κ(k)
cn (b) instead of κ(k)

cn

(
b

h̄ω0

)
, in this special case the canonical cumulants

adopt the form

κ(k)
cn (b) = 1

2π i

∫ τ+i∞

τ−i∞
dt b−t�(t)ζ(t)ζ(t + 1 − k). (35)

Since we are primarily interested in partitioning large numbers, corresponding to energies that
are large compared to the oscillator quantum h̄ω0, we need the asymptotic expansion of these
cumulants (35) in the regime b � 1. By means of the residue theorem, this expansion is
obtained through collecting, from right to left, the residues of the integrand in equation (35).
In this way, we obtain the cumulants of the canonical distribution (12) for harmonically
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trapped, ideal Bosons in one dimension:

κ(0)
cn (b) = π2

6b
+

1

2
ln

b

2π
− b

24
+ O(b15.5) (36)

κ(1)
cn (b) = 1

b

(
ln

1

b
+ γ

)
+

1

4
− b

144
+ O(b2.5) (37)

κ(2)
cn (b) = π2

6b2
− 1

2b
+

1

24
+ O(b14.5) (38)

κ(3)
cn (b) = 2ζ(3)

b3
− 1

12b
+

b

1440
+ O(b2.5) (39)

κ(4)
cn (b) = π4

15b4
− 1

240
+ O(b11.5) (40)

where γ ≈ 0.57722 is Euler’s constant. The error terms, as well as the mathematical
justification for these approximations, are discussed in detail in the appendix.

3. The microcanonical cumulants

The task now is to abandon the notion of temperature, and to return to the microcanonical
distribution (11) for the number-partitioning problem. To this end, we specialize equation (16)
to the spectrum of the one-dimensional harmonic oscillator. Thus, we write


ex(b, z) =
∞∑

ν=0

e−bν

∞∑
M=0

zM�(ν,M)

≡
∞∑

ν=0

e−bνY (ν, z) (41)

where

Y (ν, z) =
∞∑

M=0

zM�(ν,M) (42)

generates the microcanonical moments(
z

∂

∂z

)k

Y (ν, z)

∣∣∣∣∣
z=1

=
∞∑

M=0

Mk�(ν,M). (43)

Hence, ln Y (ν, z) generates the desired microcanonical cumulants, so that this function is of
central importance for the partitioning problem. Setting e−b ≡ x, and using the notation

ex(−ln x, z) ≡ 
̃ex(x, z), we have


̃ex(x, z) =
∞∑

ν=0

xνY (ν, z) (44)

and extract the nth coefficient Y (n, z) from this power series by means of a complex contour
integral:

Y (n, z) = 1

2π i

∮
dx


̃ex(x, z)

xn+1
(45)

where the path of integration encircles the origin of the complex x-plane counter-clockwise.
This contour integral (45) will now be evaluated with the help of the saddle-point
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approximation. Following the standard procedure [22], we define the function Fn(x, z) as
the negative logarithm of the integrand,


̃ex(x, z)

xn+1
≡ exp(−Fn(x, z)) (46)

so that

Fn(x, z) = (n + 1) ln x − ln 
̃ex(x, z). (47)

The saddle point x0(z), that is, the location where the optimal path of integration crosses the
real axis, is found by setting the first derivative

∂Fn(x, z)

∂x
= n + 1

x
− ∂

∂x
ln 
̃ex(x, z) (48)

equal to zero, giving the ‘energy–temperature’ relation

n + 1 = x
∂

∂x
ln 
̃ex(x, z)

∣∣∣∣
x0(z)

= − ∂

∂b
ln 
ex(b, z)

∣∣∣∣
b0(z)

(49)

with b0(z) = −lnx0(z). Moreover, the required second derivative of Fn(x, z) at the saddle
point is determined as

∂2Fn(x, z)

∂x2

∣∣∣∣
x0(z)

= − 1

x2
0

(
x

∂

∂x

)2

ln 
̃ex(x, z)

∣∣∣∣∣
x0(z)

= −e2b0

(
− ∂

∂b

)2

ln 
ex(b, z)

∣∣∣∣∣
b0(z)

(50)

where equation (49) has been used. Thus, within the usual Gaussian approximation the
saddle-point formula [22]

Y (n, z) = exp(−Fn(x0(z), z))√−2π∂2
xFn(x0(z), z)

(51)

yields in the present case

ln Y (n, z) = ln 
ex(b0(z), z) + nb0(z) − 1

2
ln 2π − 1

2
ln

(
− ∂

∂b

)2

ln 
ex(b0(z), z) (52)

from which the sought-for cumulants are obtained by further differentiation

κ(k)
mc (n) =

(
z

d

dz

)k

ln Y (n, z)

∣∣∣∣∣
z=1

(53)

where the symbol for the total derivative is meant to indicate that also the implicit z-dependence
of the saddle point needs to be taken into account.

Let us work out the first cumulant

κ(1)
mc (n) = z

d

dz
ln Y (n, z)

∣∣∣∣
z=1

(54)

in explicit detail: we have

κ(1)
mc (n) =

[(
z

∂

∂z
ln Y (n, z)

)
b0

+ z
db0

dz

(
∂

∂b0
ln Y (n, z)

)
z

]
z=1

(55)
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where the subscripts at the round brackets are to indicate which quantity is to be held constant.
For the first of these brackets, equation (52) then gives, in a shorthand notation,(

z
∂

∂z
ln Y (n, z)

)
b0

= z
∂

∂z
ln 
ex(b0, z) − 1

2
z

∂

∂z
ln

(
− ∂

∂b0

)2

ln 
ex(b0, z)

(56)

while the second leads to(
∂

∂b0
ln Y (n, z)

)
z

= −1 − 1

2

∂

∂b0
ln

(
− ∂

∂b0

)2

ln 
ex(b0, z) (57)

where, again, equation (49) defining the saddle point has been used.
To proceed with the evaluation of equation (55), we still need to know db0/dz, i.e., the

z-dependence of the saddle point. This is found by taking the derivative of equation (49):

z
∂

∂b0

∂

∂z
ln 
ex(b0, z) + z

db0

dz

∂2

∂b2
0

ln 
ex(b0, z) = 0 (58)

which, when taken at z = 1 and keeping in mind that ln 
ex generates the canonical cumulants,
reduces to

db0

dz

∣∣∣∣
z=1

= − Dκ(1)
cn (b1)

D2κ
(0)
cn (b1)

(59)

where D indicates differentiation with respect to b0, and b1 = b0(1). Expressing, in the same
spirit, also the ingredients from equations (56) and (57) in terms of derivatives of canonical
cumulants, equation (55) finally takes the form

κ(1)
mc (n) = κ(1)

cn (b1) − 1

2

D2κ(1)
cn (b1)

D2κ
(0)
cn (b1)

+
Dκ(1)

cn (b1)

D2κ
(0)
cn (b1)

[
1 +

1

2

D3κ(0)
cn (b1)

D2κ
(0)
cn (b1)

]
. (60)

Of course, the inverse temperature has to be expressed in terms of the energy, b1 = b1(n).
Recalling ln 
ex(b, 1) = κ(0)

cn (b), equations (49) and (36) yield the relation

n + 1 = π2

6b2
1

− 1

2b1
+

1

24
(61)

which, upon inversion, gives

1

b1
=

√
6n

π
+

3

2π2
+ O(n−1/2). (62)

Inserting this expression into the canonical first cumulant (37), one is led to [16]

κ(1)
cn (b1(n)) =

√
6n

π

[
ln

(√
6n

π

)
+ γ

]
+

3

2π2

[
ln

(√
6n

π

)
+ γ + 1 +

π2

6

]
+ O(n−1/2). (63)

To arrive at the proper microcanonical first cumulant, one still has to evaluate the rest of
equation (60). Employing the expressions (36) and (37), doing the derivatives, and inserting
equation (62), we obtain the difference between the microcanonical and the canonical first
cumulant in the form

κ(1)
mc (n) − κ(1)

cn (b1(n)) = 3

2π2

[
ln

(√
6n

π

)
+ γ

]
+ O(n−1/2). (64)

Therefore, the expectation value of the number of addends in a partition of the natural number
n finally becomes

κ(1)
mc (n) =

√
6n

π

[
ln

(√
6n

π

)
+ γ

]
+

3

2π2

[
2 ln

(√
6n

π

)
+ 2γ + 1 +

π2

6

]
+ O(n−1/2). (65)
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This example shows how to proceed in the general case: starting from the microcanonical
generating function ln Y (n, z), given, within the usual saddle-point approximation, by
equation (52), the microcanonical cumulants are determined by equation (53). Although the
practical evaluation of this equation is somewhat tedious, due to the implicit dependence of the
saddle point b0 on z, there are no principal technical difficulties, so that the kth microcanonical
cumulant can eventually be expressed in terms of the �th canonical cumulants, � = 0, . . . , k,
and their derivatives with respect to the scaled temperature b. Computing the second cumulant
in the same manner, we obtain the rms fluctuation of the number of addends in a partition of n

σ(n) = (
κ(2)

mc (n)
)1/2

= √
n − 3

√
6

2π3

[
ln

(√
6n

π

)
+ γ + 1

]2

+ O(n−1/2) (66)

or, in a numerically convenient form,

σ(n) = √
n − 0.118 50[ln(

√
n)]2 − 0.314 80 ln(

√
n) − 0.209 08 + O(n−1/2). (67)

Proceeding further, the above strategy produces the third cumulant

κ(3)
mc (n) = 12

√
6ζ(3)

π3
n3/2 − 18

π2
n

[
ln

(√
6n

π

)
+ γ + 1

]
+ O(n1/2)

= 1.1395n3/2 − 1.8238n[ln(
√

n) + 1.3283] + O(n1/2) (68)

while the fourth cumulant reads

κ(4)
mc (n) = 12

5
n2 − n3/2

(
42

√
6

5π
+

432
√

6ζ(3)

π5

[
ln

(√
6n

π

)
+ γ + 1

])
+ O(n)

= 2.4n2 − n3/2[4.1566 ln(
√

n) + 12.071] + O(n). (69)

The derivation of higher-order terms for these expansions is straightforward. In particular, we
state the coefficients of skewness (4) and excess (5) for the number-of-pieces distribution (11)
with an absolute error of the order of only O(n−3/2): the skewness becomes

γ1(n) = 1.1395 +
1√
n

[0.101 28[ln(n)]2 − 0.373 76 ln(n) − 1.7078]

+
1

n
[0.007 5008[ln(n)]4 + 0.025 681[ln(n)]3 + 0.020 024[ln(n)]2

− 0.230 28 ln(n) − 0.569 84] + O(n−3/2) (70)

and the flatness takes the form

γ2(n) = 2.4 +
1√
n

[0.284 40[ln(n)]2 − 0.567 14 ln(n) − 10.064]

+
1

n
[0.025 276[ln(n)]4 + 0.022 329[ln(n)]3 − 0.338 09[ln(n)]2

+ 0.735 38 ln(n) + 3.7863] + O(n−3/2). (71)

4. Discussion

We now check the accuracy of the preceding results by comparing the predictions of the
asymptotic formulae with exact numerical data, computed with the help of the recursion
formula (2). Figure 1 shows exact values of the expectation value κ(1)

mc (n) (full line),
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Figure 1. Numerically computed, exact values (full line) of the expectation value κ
(1)
mc (n) of the

number of addends in a partition of n, compared to the leading-order term (dotted line) of the
asymptotic formula (65), excluding terms of the order O(1). When these terms are included,
the resulting graph is, on the scale of this plot, indistinguishable from that of the exact data. The
inset quantifies the absolute value of the error term of order O(n−1/2) in equation (65).

in comparison to the leading-order term (excluding terms of order O(1), dotted line) of
equation (65). When the next-to-leading term of order O(1) is included, the plot of the
approximate data coincides, on the scale of the figure, with that of the exact ones. The inset
quantifies the absolute value � of the error term in equation (65), as resulting from the exact
numerical calculation, and confirms that this absolute error vanishes with increasing n. The
accuracy reached by equation (65) indeed is remarkable: for n = 5000, say, the number of
partitions is �(5000) ≈ 1.6982 × 1074, the exact value of the expected number of addends is
κ(1)

mc (5000) ≈ 254.70, and equation (65) is off by less than 0.01.
Figure 2 depicts the corresponding comparison for the rms fluctuation σ(n) of the number

of addends: the full line visualizes the exact data, the dotted line stems from the leading term
of equation (66), σ(n) ∼ √

n, while the long-dashed line (coinciding almost with the full line)
is obtained when the terms of order O(1) are included, so that the remaining absolute error �

again decreases with increasing n (see the inset).
As already indicated, the non-vanishing skewness (4) of the number-of-pieces

distribution (11) indicates the non-Gaussian nature of the number-partitioning problem. It is
easily seen that this non-Gaussian nature persists in the limit n → ∞,

lim
n→∞ γ1(n) = 12

√
6ζ(3)

π3
≈ 1.1395 (72)

and thus is not a finite-size effect. Moreover, it is interesting to observe that this limiting
value (72) is reached only for fairly large numbers n, due to the logarithmic corrections found
in equation (70): as illustrated by figure 3, γ1(n) significantly overshoots the limit when n is
‘merely’ of the order of 104, and well approaches that limit only for n > 1010. The same type
of ‘creeping convergence’ is also observed for the excess (5), as witnessed by figure 4: here,
the logarithmic corrections collected in equation (71) prevent γ2(n) from approaching its limit

lim
n→∞ γ2(n) = 12

5 (73)
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Figure 2. Exact values (full line) of the rms fluctuation σ(n) of the number of addends in a
partition of n, compared to the leading-order term

√
n (dotted line), and to the prediction of the

asymptotic formula (66), including terms of the order O(1) (dashed line, almost coinciding with
the full line). The inset quantifies the absolute value of the error term of order O(n−1/2).
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Figure 3. Exact values (full lines) of the coefficient of skewness (4) of the ‘number-of-pieces’
distribution (11), compared to the prediction of the asymptotic formula (70) (long-dashed lines),
and the limiting value (72) (short-dashed lines). The inset, with its logarithmic n-scale, emphasizes
the slow convergence.

as long as n stays below 1010. Finally, it should be noted that the microcanonical limiting
values (72) and (73) agree to the corresponding values for the canonical ensemble, as follows
immediately from equations (38)–(40).
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Figure 4. Exact values (full lines) of the coefficient of excess (5) of the ‘number-of-pieces’
distribution (11), compared to the prediction of the asymptotic formula (71) (long-dashed lines),
and the limiting value (73) (short-dashed lines). Again, the inset reveals the ‘creeping convergence’.

To summarize, we have exploited the formal equivalence of the number-partitioning
problem and a thermally isolated ideal gas of infinitely many Bose particles stored in a one-
dimensional harmonic oscillator potential for studying the distribution (11) which governs
the number of addends in a partition of a natural number n. This distribution turns out to be
essentially non-Gaussian even for n → ∞. However, the standard quantities that measure
the deviations from a Gaussian, the coefficients of skewness (4) and excess (5), still vary
substantially for n < 1010, before approaching the constant limiting values (72) and (73),
respectively. In this particular sense, only numbers exceeding 1010 can be considered ‘large’.
We point out that when calculating the moments

tk(n) =
n∑

M=1

Mk�(n,M) (74)

from our cumulants κ(k)
mc (n), one does not recover the results obtained in [18]; the asymptotic

formula for the moments of partitions derived there is erroneous.
Our approach treats the ‘microcanonical’ partition problem via a detour to the canonical

ensemble, where the degree of excitation of the Bose gas is not quantified by its total energy,
but rather in terms of a temperature. In this respect, it constitutes a physical interpretation of
the strategy already implicit in the work of Meinardus [3, 17]. In contrast to that work, in
our case the return from the canonical to the microcanonical ensemble hinges on the use of
the generating function Y (ν, z) defined in equation (42). Obviously, this generating function
can be interpreted as the partition function for a statistical ensemble which uses the ‘energy’
ν and the fugacity z as its basic variables; this ensemble is precisely the ‘Maxwell’s Demon
ensemble’ recently introduced in [20].

The close connection between asymptotic number theory and statistical mechanics can
also be exploited for studying other kinds of partition problems, if the single-particle spectrum
of the ideal Bose gas is chosen appropriately. For instance, a Bose gas in a d-dimensional
oscillator trap images certain d-dimensional partitions, while partitions into sums of d squares
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correspond to an ideal gas in a d-dimensional box with hard walls. Asymptotic formulae
pertaining to these and further partitions can be obtained by exactly retracing the steps
made in this paper, the only modification consisting in the replacement of the Riemann zeta
function b−t ζ(t) in the canonical cumulant formula (35) by the appropriate generalized zeta
function (27). For example, in the case of a three-dimensional isotropic harmonic trapping
potential with oscillator frequency ω0 one has

Z(β, t) = (βh̄ω0)
−t

[
1
2ζ(t − 2) + 3

2ζ(t − 1) + ζ(t)
]
. (75)

The recurrence relation required for generating the exact numerical data for this case and
others can be found, e.g., in [23].

Appendix. The canonical cumulants

In this appendix, we provide some technical background concerning the derivation of the
canonical cumulants, equations (36)–(40).

We have to evaluate the integral (35),

κ(k)
cn (b) = 1

2π i

∫ τ+i∞

τ−i∞
dt b−tfk(t) (A1)

where

fk(t) ≡ �(t)ζ(t)ζ(t + 1 − k) (A2)

and τ > 0 is a real number such that all poles of fk(t) in the complex t-plane have real parts
less than τ . Since �(t) has poles at t = 0,−1,−2,−3, . . . , ζ(t) has a pole at t = 1, and
ζ(t + 1 − k) has a pole at t = k, this requirement means τ > 1 for k = 0 and k = 1, or τ > k

for k � 2.
As a first step, we show that the integral

I (x1, x2; y) ≡ 1

2π i

∫ x2

x1

dx b−x−iyfk(x + iy) (A3)

taken along the finite path parallel to the x-axis from x1 +iy to x2 +iy, vanishes when |y| → ∞.
To this end, we start with the estimate

|I (x1, x2; y)| � 1

2π

∫ x2

x1

dx b−x|�(x + iy)ζ(x + iy)‖ζ(x + iy + 1 − k)|. (A4)

Now the gamma function �(x + iy) becomes exponentially small in |y| for large |y| (see
equation (6.1.45) in [15]):

|�(x + iy)| ∼
√

2π |y|x−1/2 e−π |y|/2. (A5)

On the other hand, for x � 1
2 Cheng [24] has established the following explicit upper bound

on the absolute magnitude of the Riemann zeta function ζ(x + iy) for |y| � 2 (see also [25]
and references therein):

|ζ(x + iy)| �
{

175|y|46(1−x)3/2
ln2/3 |y| for 1

2 � x � 1
175 ln2/3 |y| for x � 1

. (A6)

In order to control the zeta function also for x < 1
2 , we employ the reflection formula [15]

ζ(t) = 2tπ t−1 sin
(π

2
t
)

�(1 − t)ζ(1 − t) (A7)

which gives

|ζ(x + iy)| = 2xπx−1
∣∣∣sin

(π

2
(x + iy)

)∣∣∣ |�(1 − x − iy)ζ(1 − x − iy)|. (A8)
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Using the simple inequality∣∣∣sin
(π

2
(x + iy)

)∣∣∣ � exp
(π

2
|y|

)
(A9)

together with the asymptotic expression (A5), equation (A8) leads, for large |y|, to

|ζ(x + iy)| � 2

(
2π

|y|
)x− 1

2

|ζ(1 − x − iy)| for x <
1

2
. (A10)

Since with x < 1
2 an upper bound on |ζ(1 − x − iy)| is provided again by equation (A6),

equations (A6) and (A10) state that for fixed x the magnitude |ζ(x + iy)| of the Riemann zeta
function does not increase exponentially with |y|. Because of equation (A5), we then have the
desired limit

lim
|y|→∞

I (x1, x2; y) = 0. (A11)

In a second step, this result (A11) now allows us to shift the path of integration in
equation (A1) from x = τ parallel to the imaginary axis to x = −m − 1

2 , where m > 0 is an
integer, and to employ the residue theorem

κ(k)
cn (b) =

∑
residues

+ bm+ 1
2 rk,m(b) (A12)

where the sum symbolically collects all the residues of b−tfk(t) in the stripe between
x = −m − 1

2 and x = τ , and

rk,m(b) ≡ 1

2π

∫ ∞

−∞
dy b−iyfk(−m − 1/2 + iy) (A13)

is the remainder.
We now distinguish two cases: since ζ(t) = 0 when t is a negative, even integer, it

follows that fk(t) possesses only a finite number of poles when k is even: for k = 0, there
are poles at t = 1, 0,−1; for k = 2, at t = 2, 1, 0; and for k = 4, at t = 4, 0. Choosing
some arbitrary m > 0, and calculating the respective residues, then gives equations (36), (38)
and (40), but still leaves the error terms stated therein to be explained. In contrast, for odd k
there are infinitely many poles: for k = 1, at t = 1, 0 and all odd negative integers; for k = 3,
at t = 3, 1 and all odd negative integers. Choosing m = 2 for both k = 1 and k = 3, and
collecting the residues, produces equations (37) and (39). However, this naive application of
the residue theorem only makes sense if the magnitude of the remainder,

|rk,m(b)| � 1

2π

∫ ∞

−∞
dy|fk(−m − 1/2 + iy)| (A14)

actually is small, which is what we will show next.
For even k, the reflection formula (A7) leads to

|fk(t)| = |22t+1−kπ2t−1−k|
∣∣∣sin

(π

2
t
)

cos
(π

2
t
)∣∣∣ |�(t)�(1 − t)�(k − t)ζ(1 − t)ζ(k − t)|

(A15)

for odd k, the factor
∣∣ sin

(
π
2 t

)
cos

(
π
2 t

)∣∣ has to be replaced by sin2
(

π
2 t

)
. However, for

t = −m − 1
2 + iy and integer m one has

∣∣ sin
(

π
2 t

)∣∣ = ∣∣ cos
(

π
2 t

)∣∣, so that it actually suffices to
consider equation (A15) for all integer k.

Using 2 sin(α) cos(α) = sin(2α) and the reflection formula for the gamma function [15],

�(t)�(1 − t) = π

sin(πt)
(A16)
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one finds

|fk(t)| = |22t+1−kπ2t−1−k|π
2

|�(k − t)ζ(1 − t)ζ(k − t)|. (A17)

Thus,

|fk(−m − 1/2 + iy)| = (2π)−2m−1−k |�(k + m + 1/2 − iy)|
× |ζ(m + 3/2 − iy) ζ(k + m + 1/2 − iy)|. (A18)

Using the inequality

|ζ(x + iy)| =
∣∣∣∣∣

∞∑
n=1

1

nx+iy

∣∣∣∣∣ �
∞∑

n=1

∣∣∣∣ 1

nx+iy

∣∣∣∣ = ζ(x) (A19)

which is valid for x > 1, together with

|�(k + m + 1/2 − iy)| � |(k + m − 1/2 − iy)k+m�(1/2 − iy)| (A20)

and [15]

|�(1/2 − iy)| =
√

π

cosh(πy)
�

√
2π

exp(π |y|/2)
(A21)

equation (A18) finally leads to an inequality that lends itself to numerical evaluation,

|fk(−m − 1/2 + iy)| � (2π)−2m− 1
2 −kζ(m + 3/2) ζ(k + m + 1/2)

× [(k + m − 1/2)2 + y2](k+m)/2 exp(−π |y|/2). (A22)

With the help of this inequality, one can now compute upper bounds on the remainder in
equation (A12). With m = 2 for both k = 1 and k = 3, we find

|rk,2(b)| �
{

2.1 × 10−4 for k = 1
5 × 10−4 for k = 3

(A23)

which specifies the error terms (i.e., the coefficients of b2.5) in equations (37) and (39). On the
other hand, for k = 0, k = 2, or k = 4, we are free to choose m > 0 such that the remainder
in equation (A12) is minimized: for b < 1, we then find

min
m>0

∣∣bm+ 1
2 rk,m(b)

∣∣ �


2.5 × 10−8b15.5 for k = 0

1 × 10−6b14.5 for k = 2
4 × 10−5b11.5 for k = 4.

(A24)

This estimate underlies the error terms stated in equations (36), (38) and (40), respectively.
For b � 1

2 , the estimate is even better:

min
m>0

∣∣bm+ 1
2 rk,m(b)

∣∣ �


8.6 × 10−15(2b)29.5 for k = 0
1.4 × 10−12(2b)27.5 for k = 2
2.2 × 10−10(2b)25.5 for k = 4.

(A25)
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