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ABSTRACT
We consider the problem of reconstructing the graph un-
derlying an Ising model from i.i.d. samples. Over the last
fifteen years this problem has been of significant interest in
the statistics, machine learning, and statistical physics com-
munities, and much of the effort has been directed towards
finding algorithms with low computational cost for various
restricted classes of models. Nevertheless, for learning Ising
models on general graphs with p nodes of degree at most d,
it is not known whether or not it is possible to improve upon
the pd computation needed to exhaustively search over all
possible neighborhoods for each node.

In this paper we show that a simple greedy procedure al-
lows to learn the structure of an Ising model on an arbitrary
bounded-degree graph in time on the order of p2. We make
no assumptions on the parameters except what is necessary
for identifiability of the model, and in particular the results
hold at low-temperatures as well as for highly non-uniform
models. The proof rests on a new structural property of Ising
models: we show that for any node there exists at least one
neighbor with which it has a high mutual information.

Categories and Subject Descriptors
G.3 [Mathematics of computing ]: Probability and statis-
tics—Distribution functions; F.2 [Analysis of Algorithms
and Problem Complexity]: Nonnumerical Algorithms
and Problems

Keywords
Ising model; structure learning; Markov random field

1. INTRODUCTION
Undirected graphical models, or Markov random fields,

are a general and powerful framework for reasoning about
high dimensional distributions and are at the core of mod-
ern statistical inference. The joint probability distribution
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specified by such a model factorizes according to an under-
lying graph, and the absence of edges encodes conditional
independence [40]. The graph structure captures the com-
putational aspect inherent in tasks of statistical inference
including computing marginals, maximum a posteriori as-
signments, the partition function, or sampling from the dis-
tribution. In addition to their statistical relevance, such
computations on graphical models include as special cases
many combinatorial optimization and counting problems.

The Ising model is a Markov random field having binary
variables and pairwise potential functions. The Ising model
has a long and celebrated history starting with its introduc-
tion by statistical physicists as a model for spin systems in
order to understand the phenomena of phase transition [33,
12]. It has since been used across a wide spectrum of appli-
cation domains including finance, social networks, computer
vision, biology, and signal processing. The understanding of
the computational tractability of inference (computing the
partition function and sampling) has recently seen signifi-
cant progress [36, 74, 63, 64, 65, 30].

The inverse problem of learning models from data is equally
important. Once the underlying graph is known it is rela-
tively easy to estimate the parameters, hence the focus is
largely on the task of structure learning, i.e., estimating the
graph. Study of this problem was initiated by Chow and
Liu in their seminal 1968 paper [13], which gave a greedy
algorithm for learning tree-structured Markov random fields
with runtime on the order of p2 for graphs on p nodes. They
showed that the maximum likelihood graph is a maximum-
weight spanning tree, where each edge has weight equal to
the mutual information of the variables at its endpoints. The
maximum-likelihood tree can thus be found by a greedy al-
gorithm, for example using Kruskal’s or Prim’s algorithms,
and the running-time of the Chow-Liu algorithm is domi-
nated by the time required to compute the mutual informa-
tion between all pairs of nodes in the graph.

For graphs with loops the problem is much more chal-
lenging for two reasons: a node and its neighbor can be
marginally independent due to indirect path effects, and
moreover, this difficulty is compounded by presence of long-
range correlations in the model, in which case distant nodes
can be more correlated than nearby nodes. As discussed
next in Subsection 1.1, a basic first-order question has re-
mained unanswered: it is not known if it is possible to learn
the structure of Ising models on general graphs with p nodes
of degree at most d in time less than pd. This is roughly
the time required to exhaustively search over all

(
p
d

)
pos-

sible neighborhoods of a node and for each such candidate
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neighborhood test whether or not the implied conditional
independence holds [11].

In this paper we show that despite these challenges, a
simple greedy algorithm can learn arbitrary Ising models on

p nodes of maximum degree d in time Õ(p2), where the Õ(·)
notation hides a factor log p as well as a constant depending
(doubly-exponentially) on d. Exponential dependence on d
is unavoidable as the number of samples must itself increase
exponentially in d [60], but doubly-exponential dependence
on d is probably suboptimal. The implication of our result
is that learning Ising models on arbitrary graphs of bounded
degree has essentially the same computational complexity
as learning such models on tree graphs. The proof rests on
a new basic property of Ising models: we show that for any
node, there exists at least one neighbor with which it has
high mutual information, even conditional on any subset of
nodes.

1.1 Complexity of graphical model learning
A number of papers, including [1], [11], and [17], have

suggested to find each node’s neighborhood by exhaustively
searching over candidate neighborhoods and checking con-
ditional independence. For graphical models on p nodes of
maximum degree d, such a search takes time (at least) on
the order of pd. As d grows, the computational cost becomes
prohibitive, and much work has focused on trying to find al-
gorithms with lower complexity. Writing algorithm runtime
in the form f(d)pc(d), for high-dimensional (large p) models
the exponent c(d) is of primary importance. We will think
of efficient algorithms as having an exponent c(d) that is
bounded by a constant independent of d1.

Previous works proposing efficient algorithms either re-
strict the graph structure or the nature of the interactions
between variables. Chow and Liu [13] made a model restric-
tion of the first type, assuming that the graph is a tree; gen-
eralizations include to polytrees [19], hypertrees [66], tree
mixtures [3], and others. Among the many possible as-
sumptions of the second type, the correlation decay prop-
erty (CDP) is distinguished: until the recent paper [10], all
existing efficient algorithms required the CDP [8] or had
conditions that were not interpretable in terms of model pa-
rameters. Informally, a graphical model is said to have the
CDP if any two variables σi and σj are asymptotically in-
dependent as the graph distance between i and j increases.
The CDP is known to hold for a number of graphical mod-
els in the so-called high-temperature regime, including Ising,
hard-core lattice gas, Potts (multinomial), and others (see
the survey article [28] as well as, e.g., [22, 23, 59, 74, 29, 6]).

It was first observed in [11] that it is possible to efficiently

learn (in time Õ(p2)) models with (exponential) decay of
correlations, under the additional assumption that neigh-
boring variables have correlation bounded away from zero
(as is true for the ferromagnetic Ising model in the high
temperature regime). A variety of other papers including
[51, 56, 4] give alternative algorithms, but also require the
CDP to guarantee efficiency. Most structure learning algo-
rithms that do not explicitly require the CDP are based on
convex optimization, such as Ravikumar, Wainwright, and
Lafferty’s [54] approach using `1-regularized node-wise logis-
tic regression. This algorithm has complexity O(p4); while it

1This notion of efficiency is known as fixed-parameter
tractability [52].

is shown to work under certain incoherence conditions that
seem distinct from the CDP, Bento and Montanari [8] es-
tablished through a careful analysis that the algorithm fails
for simple families of ferromagnetic Ising models without the
CDP. Other convex optimization-based algorithms (e.g., [41,
34, 35]) assume similar incoherence conditions that are dif-
ficult to interpret in terms of model parameters, and likely
also require the CDP.

It is noteworthy that most computationally efficient sam-
pling algorithms (which happen to be based on MCMC) re-
quire a notion of temporal mixing, and this is closely related
to spatial mixing or a version of the CDP (see, e.g., [67, 24,
43, 74]). Thus, under a class of mixing conditions, we can
both generate samples efficiently as well as learn graphical
models efficiently from i.i.d. samples. For antiferromag-
netic Ising models on general bounded degree graphs, one
has the striking converse statement that generating samples
or approximating the partition function becomes intractable
(NP-hard) precisely at the point where the CDP no longer
holds [65].

Because all known efficient algorithms required the CDP,
and because the Ising model exhibits dramatically different
macroscopic behavior with versus without the CDP (and
this determines computational tractability of sampling), Bento
and Montanari [8] posed the question of whether or not the
CDP is necessary for tractable structure learning. A par-
tial answer was given in [10], by demonstrating that a fam-
ily of antiferromagnetic Ising models on general graphs can
be learned efficiently despite strongly violating the CDP.
Thus any relationship between the complexity of sampling
(or computing the partition function) and the problem of
structure learning from i.i.d. samples seems tenuous, and
this is corroborated by the results of this paper. In con-
trast, the recent papers [9] and [47] demonstrate an algorith-
mic connection between parameter estimation from minimal
sufficient statistics for a model on a known graph and com-
putation of the partition function.

1.2 Results
We prove that the graph structure of an arbitrary Ising

model on a bounded degree graph can be learned efficiently
from i.i.d. samples. Before discussing the algorithm, we first
state the main conceptual contribution of the paper, namely
identifying a new structural property of Ising models. Given
the structural result the algorithm is almost obvious, and
indeed it can be interpreted as a generalization of Chow and
Liu’s 1968 greedy algorithm for learning trees to models on
arbitrary graphs.

Proposition 1.1 (Structural property – informal). Let G
be a graph on p nodes of maximum degree d, and consider
an Ising model on G. Then for any node u ∈ V there exists
a neighbor i such that the mutual information between i and
u is at least some constant that is independent of p.

The property as stated is actually a consequence of Propo-
sition 5.3: we allow to condition on an arbitrary set of nodes,
and instead of mutual information, we use a certain condi-
tional influence measure. As shown in Section 5, this influ-
ence provides a lower bound on the mutual information.

The proof of the structural property starts with the fact
that at any finite temperature an Ising model on a bounded
degree graph has nontrivial randomness in each variable.
Note that this local property holds regardless of whether or
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not the model satisfies the correlation decay property (which
is a global property). The randomness in the neighbors of
a given node and an anti-concentration argument show that
the neighbors together influence the node’s value in a non-
trivial way, and this implies that at least one neighbor has
nontrivial influence. We remark that anti-concentration has
played a key role in a variety of recent structural results
(e.g., [21, 31]).

Our algorithm guarantee is stated in the following theo-
rem.

Theorem 1.2 (Algorithm performance – informal). Con-
sider an Ising model on an arbitrary graph on p nodes of
maximum degree at most d. Given n = f(d) log p samples
from the model, where the constant f(d) is a function of the
range of interaction strengths and d, it is possible to learn
the underlying graph in time f(d)p2 log p .

The factor f(d) in the sample complexity and runtime of
our algorithm depends doubly-exponentially on d, in con-
trast to the necessary exponential dependence discussed in
Subsection 2.2. While the focus of this paper is not on sam-
ple complexity, our algorithm does obtain (with a subopti-
mal constant) the optimal logarithmic dependence on p.

Our algorithm is described in Section 4 and a more de-
tailed statement of the theorem (with full dependence on
constants) is given as Theorem 4.1. The algorithm is ex-
tremely simple: in order to find the neighborhood of a node
u, it greedily (according to a measure of conditional influ-
ence) adds nodes one-by-one to form a constant-size super-
set of the neighborhood (pseudo-neighborhood). The idea
of adding spurious nodes to form a superset is not new, but
stands in contrast to algorithms that attempt to add only
correct nodes.

Adding non-neighbors to the pseudo-neighborhood is ben-
eficial: in models with long-range correlations a non-neighbor
i with high influence on u (or high mutual information) con-
tains a lot of information about many other non-neighbors,
so conditioning on i effectively eliminates many non-neighbors
from consideration. This allows us to use a potential argu-
ment, whereby each added node reduces the conditional en-
tropy of the node u by some constant, and this bounds the
size of the pseudo-neighborhood. The pseudo-neighborhood
can then be easily pruned to remove non-neighbors.

We next mention a few connections to other work and
then in Section 2 define the Ising model and structure learn-
ing problem. Section 3 introduces the notion of influence we
use and states a lemma showing that empirical estimates are
close to the population averages. Section 4 presents the al-
gorithm with performance guarantee stated in Theorem 4.1.
Section 5 contains proofs of correctness and runtime, as well
as a statement of our structural result, Proposition 5.3. The
proposition is proved in Sections 6 and 7. Finally, Ap-
pendix A contains the proof of the lemma from Section 3
and Section 8 discusses possible extensions.

1.3 Other related work
Since the 1980’s, Hinton and others have studied the prob-

lem of learning Ising models under the name of learning
Boltzmann machines [2, 32, 70]. Most approaches for learn-
ing Boltzmann machines do not assume a sparse underlying
graph and attempt to find parameters directly, using gradi-
ent optimization methods. Ising models are used to model
neuronal networks and protein interaction networks, and the

learning problem is of interest in that context [61, 14, 48, 73].
In the statistical physics community the problem is known as
the inverse Ising problem and a variety of interesting non-
rigorous methods have been proposed, including based on
truncation of expansions relating couplings to mean param-
eters or entropies [62, 15, 58, 42], message-passing [45, 57,
5], and others [20].

Structure learning of graphical models has been studied
in the statistics and machine learning communities as a
problem in high-dimensional statistics. Broadly, in high-
dimensional statistics one wishes to estimate a high-dimensional
object from samples, where the number of samples is far
less than the dimensionality of the parameter space. Solv-
ing this ill-determined problem requires that there be some
underlying structure. In our case the graph underlying the
Markov random field is a sparse graph. As discussed in
[50], optimization of regularized objective functions has been
a popular approach to many problems in high-dimensional
statistics including sparse linear regression, low-rank matrix
completion, inferring rankings, as well as learning graph-
ical models (both binary and Gaussian) [54, 44, 26, 55].
Such general methodology based on optimizing likelihood or
(pseudo-likelihood) has failed thus-far to learn Ising models
on general graphs.

Greedy methods have been prominent in the statistics lit-
erature for decades and recently many papers have appeared
giving theoretical guarantees for sparse linear regression and
support recovery problems. Our greedy algorithm is essen-
tially equivalent to forward step-wise regression with a prun-
ing/cleaning step, called “screen and clean” by Roeder and
Wasserman in the linear regression setting [72]. Greedy ap-
proaches have been studied in the context of approximation
theory [69], as an interpretation of boosting [27], and for
sparse linear regression [18, 49, 76]. In the graphical model
setting, several papers including [34, 56, 51] have analyzed
greedy algorithms under various further assumptions on the
model.

The theoretical computer science community has made
progress on learning a variety of high-dimensional probabil-
ity distributions from samples, including mixtures of Gaus-
sians [46, 7]. But there is a more intriguing connection
to work on learning function classes. In an Ising model,
the conditional distribution of a node given its neighbors
is specified by a logistic function, which is a soft version
of a linear threshold function (LTF). Thus our algorithm
effectively learns soft LTFs over a complicated joint distri-
bution. Arguments based on boolean Fourier analysis have
played a major role in learning boolean functions over uni-
formly random examples and also over product distributions
[37], but due to the joint dependencies in an Ising model, it
is not obvious how to apply Fourier analysis in this set-
ting. Our structural result, nevertheless, is at a high level
analogous to the statement that LTFs have non-trivial to-
tal degree-one Fourier mass (see, e.g., [53]). Other recent
works learn LTFs over non-product distributions, including
log-concave [38] and sub-Gaussian or sub-exponential [39].
These assumptions are badly violated by Ising models in the
low-temperature regime (with long-range correlations), but
the bounded graph degree assumption makes our soft LTFs
depend on few variables, and this makes learning tractable.
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2. PRELIMINARIES

2.1 Ising model
We consider the Ising model on a graph G = (V, E) with
|V| = p. The notation ∂i is used to denote the set of neigh-
bors of node i, and the degree |∂i| of each node i is assumed
to be bounded by d. To each node i ∈ V is associated a
binary random variable (spin) Xi. Each configuration of
spins x ∈ {−,+}V (‘−’ and ‘+’ are used as shorthand for
−1,+1) is assigned probability according to the probability
mass function

P (x) = exp

( ∑
{i,j}∈E

θijxixj +
∑
i∈V

θixi − Φ(θ)

)
. (1)

Here Φ(θ) is the log-partition function or normalizing con-
stant. The distribution is parameterized by the vector θ =
{θij}{i,j}∈E ∪ {θi}i∈V ∈ RE∪V , consisting of edge couplings
and node-wise external fields. The edge couplings are as-
sumed to satisfy α ≤ |θij | ≤ β for all {i, j} ∈ E for some
constants 0 < α ≤ β and the external fields are assumed
to satisfy |θi| ≤ h for all i ∈ V . The bounds α, β, h are
necessary for model identifiability, and as shown in [60] and
discussed briefly in the next subsection, must appear in the
sample complexity.

We can alternatively think of θ ∈ R(p2)+p, with θij = 0 if
{i, j} /∈ E . For a graph G, let

Ωα,β,h(G) = {θ ∈ R(p2)+p : |θi| ≤ h for i ∈ V, α ≤ |θij | ≤ β
if {i, j} ∈ E , and θij = 0 otherwise}

be the set of valid parameter vectors corresponding to G.
The distribution specified in (1) is a Markov random field,

and an implication is that each node is conditionally inde-
pendent of all other nodes given the values of its neighbors.
The conditional probability of Xu = + given the states of
all the other nodes V \ {u} can thus be written as:

P(Xu = + |XV\{u} = xV\{u}) = P(Xu = + |X∂u = x∂u)

=
exp

(
2
∑
i∈∂u θuixi + θu

)
1 + exp

(
2
∑
i∈∂u θuixi + θu

) . (2)

A useful property of bounded degree models is that the
conditional probability of a spin is always bounded away
from 0 and 1. The proof of this statement is immediate
from (2) by conditioning on the neighbors of u and using
the tower property of conditional expectation.

Lemma 2.1 (Conditional randomness). For any node u ∈
V, subset S ⊆ V\{u}, and any configuration xS ∈ {−,+}|S|,

min{P(Xu = +|XS = xS),P(Xu = −|XS = xS)}

≥ 1

2
e−2(βd+h) := δ .

The quantity δ appears throughout the paper.

2.2 Graphical model learning
Denote the set of all graphs on p nodes of degree at most

d by Gp,d. For some graph G ∈ Gp,d and parameters θ ∈
Ωα,β,h(G), one observes configurationsX(1), . . . , X(n) ∈ {−,+}p
sampled independently from the Ising model (1). A struc-
ture learning algorithm is a (possibly randomized) map

φ : ({−1,+1}p)n → Gp,d

taking n samples X1:n = X(1), . . . , X(n) to a graph φ(X1:n).
The statistical performance of a structure learning algorithm
will be measured using the zero-one loss, meaning that the
exact underlying graph must be learned. The risk, or ex-
pected loss, under some vector θ ∈ Ωα,β,h(G) of parameters
corresponding to a graphG ∈ Gp,d is given by the probability
of reconstruction error

Pθ(φ(X1:n) 6= G) ,

and for given α, β, h, p, d, the maximum risk is

sup
G∈Gp,d

θ∈Ωα,β,h(G)

Pθ(φ(X1:n) 6= G) .

Our goal is to find an algorithm with maximum risk (prob-
ability of error) tending to zero as p→∞, using the fewest
possible number of samples n. This notion of performance is
rather stringent, but also robust, being worst-case over the
entire class of graphs Gp,d and parameters θ ∈ Ωα,β,h(G).
A lower bound on the number of samples necessary was ob-
tained by Santhanam and Wainwright in Theorem 1 of [60]:

n ≥
eβd log

(
pd
4
− 1
)

4αdeα
.

This means in particular that exponential dependence of the
sample complexity (and hence runtime) on the quantity βd
is unavoidable.

3. MEASURING THE INFLUENCE OF A
VARIABLE

Our algorithm uses a certain conditional influence of a
variable on another variable. For nodes u, i ∈ V, subset of
nodes S ∈ V \ {u, i} and configuration xS ∈ {−,+}S , define

νu|i;xS := P(Xu = +|Xi = +, XS = xS)

− P(Xu = +|Xi = −, XS = xS) .

We also use a quantity we call the average conditional influ-
ence, which is obtained by performing a weighted average of
|νu|i;XS | over random configurations XS :

νavgu|i;S := E
(
λi(XS) · |νu|i;XS |

)
.

The weights are given by the function

λi(xS) = 2 · P(Xi = +|XS = xS)P(Xi = −|XS = xS) .

The average influence νavgu|i;S is essentially equivalent to the

conditional mutual information I(Xu;Xi|XS).
By the Markov property (2), the influence is zero for non-

neighbors conditional on neighbors, that is, for any xS ,

νu|i;xS = 0 for all i ∈ V \ {u,S} if ∂u ⊆ S . (3)

This implies the same statement for νavgu|i;S . Our structural

result, Proposition 5.3, shows that νavgu|i;S is bounded below

for at least one neighbor i ∈ ∂u \ S if S does not already
contain the neighborhood ∂u. Thus computing νavgu|i;S allows

to determine if ∂u ⊂ S or not, and our algorithm given in
Section 4 is based on this idea.

Remark 3.1. Other works using a “conditional indepen-
dence test”, for example [4, 75], use a similar measure of
influence amounting to minxS |νu|i;xS |. We do not take the
minimum over configurations xS , as there is no guarantee
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that minxS |νu|i;xS | is nonzero for any neighbor i ∈ ∂u: each
Xi can be marginally independent ofXu conditional on some
configuration xS .

The empirical conditional influence ν̂u|i;xS replaces the
probability measure by the empirical measure:

ν̂u|i;xS := P̂(Xu = +|Xi = +, XS = xS)

− P̂(Xu = +|Xi = −, XS = xS) ,

where for S, T ⊆ V,

P̂(XT = xT |XS = xS) =
P̂(XT = xT , XS = xS)

P̂(XS = xS)
and

P̂(XS = xS) =
1

n

n∑
t=1

1{X(t)
S =xS}

.

Like before we define an averaged version (with average
taken according to the empirical measure):

ν̂avgu|i;S := EXS∼P̂

(
λ̂i(XS) · ν̂u|i;XS

)
,

where

λ̂i(xS) = 2 · P̂(Xi = +|XS = xS)P̂(Xi = −|XS = xS) .

It will be necessary that these empirical influences are suf-
ficiently accurate. Let A(`, ε) denote the event that empiri-
cal influences with conditioning set up to size ` are accurate
to within an additive ε:

A(`, ε) = {|νavgu|i;S − ν̂
avg

u|i;S | ≤ ε for all {u, i} ⊂ V,

S ⊂ V \ {u, i}, |S| ≤ `} .

Lemma 3.2. Recall the notation δ := 1
2
e−2(βd+h) and sup-

pose ` ≤ p/4 − 2. If the number of samples n is at least
144(`+3)

ε2δ2`
log p

ζ
, then P(A(`, ε)) ≥ 1− ζ.

The proof of the lemma follows from Azuma’s inequality
and is similar to Theorem 2 of [11]. We give the proof in
Appendix A.

4. ALGORITHM
We now describe the structure learning algorithm, which

learns the neighborhood of an arbitrary individual node u ∈
V. Algorithm LearnNbhd takes as input the node u whose
neighborhood ∂u we wish to learn as well as the data X1:n =
X(1), . . . , X(n) and a threshold parameter τ . The first step is
to construct a superset S (which we call a pseudo-neighborhood)
of the neighborhood ∂u. This is accomplished by greedily
adding to S the node i with highest conditional influence
ν̂avgu|i;S , until there are no nodes i with ν̂avgu|i;S ≥ τ . (To sim-

plify the description we set ν̂avgu|i;S = 0 if i ∈ S∪{u}.) At each

step the conditional influences are computed with respect to
the current set S.

As will become apparent in Subsection 5.1, inclusion of
non-neighbors is important, as it allows to use a potential ar-
gument to show that the constructed pseudo-neighborhood
is not too large. Concretely, by definition of the algorithm
and a simple lemma relating influence to mutual informa-
tion, adding a node to the pseudo-neighborhood S always
reduces by at least τ the conditional entropy H(Xu|XS) of
the variable Xu whose neighborhood we are trying to find.
The entropy is non-negative and was initially at most one
(since Xu is binary), so this bounds the size of S.

The correctness of the algorithm relies on Proposition 5.3
of Subsection 5.2, which shows that there is always at least
one neighbor with influence above a constant, and we set
τ equal to this constant. This implies that the algorithm
does not terminate before all the neighbors are added. Fi-
nally, after construction of the pseudo-neighborhood, the
algorithm removes those nodes with low average influence.
Proposition 5.3 is again used to show that no neighbors are
removed.

Algorithm 1 LearnNbhd(X(1), . . . , X(n), τ, u)

Pseudo-neighborhood:

1. Let S = ∅
2. Let (i∗, η∗) = (arg maxi ν̂

avg

u|i;S ,maxi ν̂
avg

u|i;S)

3. If η∗ ≥ τ, then add i∗ to S
4. Else goto Step 6

5. Repeat Steps 2 to 4

Pruning:

6. For each i ∈ S: if ν̂avgu|i;S\{i} < τ, then remove i

7. Output S

Theorem 4.1. Let G ∈ Gp,d and θ ∈ Ωα,β,h(G). Let δ =
1
2
e−2(βd+h) and define

τ∗ =
α2δ4d+1

16dβ
, ε∗ =

τ∗

2
, `∗ =

2

(τ∗ − ε∗)2 =
8

(τ∗)2
.

Suppose we observe n samples X(1), . . . , X(n), for

n ≥ 144(`∗ + 3)

(ε∗)2δ2`∗
log

p

ζ
= exp{cα−c

′
ec
′′d(βd+h)} · log

p

ζ
,

where c, c′, c′′ denote numerical constants. Then with prob-
ability at least 1− ζ, the structure learning algorithm
LearnNbhd(X1:n, τ∗, u) returns the correct neighborhood
∂u for all u ∈ V and the runtime for each of the p nodes
is (for a numerical constant C)

C`∗pn = O(p log p) .

Remark 4.2. As stated, the algorithm has probability 1−ζ
of both returning the correct neighborhoods for all nodes
and having the claimed runtime. Obviously, the algorithm
can be terminated if the runtime exceeds the stated value,
giving a deterministic guarantee on runtime.

5. ALGORITHM CORRECTNESS
In this section we prove Theorem 4.1, first giving a bound

on the run-time in Subsection 5.1 and then showing correct-
ness in Subsection 5.2.

5.1 Entropy increment argument and run-time
bound

In this subsection we bound the size of the pseudo-neighborhood
constructed, but make no guarantee that it actually contains
the true neighborhood. We use several standard information-
theoretic quantities including entropy, Kullback-Leibler di-
vergence, and mutual information. The relevant definitions
can be found in any information theory textbook (such as
[16]). The following lemma gives a lower bound on the con-
ditional mutual information of each added node.
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Lemma 5.1. Assume that event A(`, ε) holds and suppose
that LearnNbhd added node j`+1 to the pseudo-neighborhood
of u after having added j1, . . . , j`. Then the conditional mu-
tual information I(Xu;Xj`+1 |Xj1 , . . . , Xj`) ≥ 1

2
(τ − ε)2.

We can now argue that the number of nodes added in
the pseudo-neighborhood step is not too large by using a
potential argument. The bound is stated in terms of the
quantity

`(τ, ε) =
2

(τ − ε)2 .

Lemma 5.2. If event A(`(τ, ε), ε) holds, then at the end
of the pseudo-neighborhood construction step the set S has
cardinality at most `(τ, ε) = 2(τ − ε)−2.

Before proving the lemma, let us quickly see how it justi-
fies the runtime claimed in Theorem 4.1. Each maximization
step in line 2 of LearnNbhd takes time O(pn), so we get
a cost of O(|S|pn) = O(`∗pn) for the pseudo-neighborhood
step, and this dominates the runtime.

Proof of Lemma 5.2. Consider the sequence of nodes added,
j1, j2, . . . , jr, with S = {j1, j2, . . . , jr}. Then

1 ≥ H(Xu)
(a)

≥ I(Xu|XS)
(b)
=

r∑
k=1

I(Xu;Xjk |Xj1 , . . . , Xjk−1)

(c)

≥ min{`+ 1, r} · 1
2
(τ − ε)2 .

(a) is by non-negativity of conditional entropy and the defini-
tion of mutual information, I(Xu|XS) = H(Xu)−H(Xu|XS),
(b) follows by the chain rule for mutual information, and (c)
is by Lemma 5.1. Since `+1 is strictly larger than 2(τ−ε)−2,
r = |S| must satisfy the bound stated in the lemma.

Proof of Lemma 5.1. Let S` = (j1, . . . , j`) consist of the first
` nodes already added to the pseudo-neighborhood. Our
goal is to show that the next node j`+1 has mutual informa-
tion I(Xu;Xj`+1 |XS`) ≥ 1

2
(τ − ε)2.

We use a shorthand for the (random) conditional mea-
sure: Q(u+) = P(Xu = +|XS`) and similarly Q(u+ |i−) =
P(Xu = +|Xi = −, XS`), with similar definitions for any
combination of ‘+’ and ‘−’. Thus we can write

νavgu|i;S`
= 2 · EXS`

(
Q(i+)Q(i−)

∣∣Q(u+ |i+)−Q(u+ |i−)
∣∣) .

Now for any i ∈ V \ (S ∪ {u}),√
1
2
· I
(
Xu;Xi|XS`

)
=

√
1
2
·
∑
xS`

P (xS`)I
(
Xu;Xi|XS` = xS`

)
(a)

≥
∑
xS`

P (xS`)
√

1
2
· I
(
Xu;Xi|XS` = xS`

)
= EXS`

√
1
2
·DKL

(
Q(u, i) ‖Q(u)Q(i)

)
(b)

≥ EXS`DTV(Q(u, i), Q(u)Q(i))

(c)

≥ EXS`

∣∣Q(u+, i+)−Q(u+)Q(i+)
∣∣

= EXS`

∣∣Q(u+ |i+)Q(i+)−Q(u+)Q(i+)
∣∣

= EXS`

(
Q(i+) ·

∣∣Q(u+ |i+)
(
Q(i+) +Q(i−)

)
−Q(u+ |i+)Q(i+)−Q(u+ |i−)Q(i−)

∣∣)
= EXS`

(
Q(i+)Q(i−) ·

∣∣Q(u+ |i+)−Q(u+ |i−)
∣∣)

= 1
2
· νavgu|i;S`

(e)

≥ 1
2
· (ν̂avgu|i;S`

− ε) .

(a) is by Jensen’s inequality applied to the (concave) square
root function, (b) Pinsker’s inequality, (c) the definition of
total variation distance, (d) Lemma 2.1, (e) is by definition
of A(`, ε) and the fact that the conditioning set has cardi-
nality |S`| ≤ `.

Finally, by definition of the algorithm, node j`+1 is only
added to S` if |ν̂avgu|j`+1;S`

| ≥ τ , so the previous displayed

equation implies that I(Xu;Xj`+1 |XS`) ≥ 1
2
(τ−ε)2 as claimed.

5.2 Key structural result and algorithm cor-
rectness

We now state our structural result, and use it to prove
correctness of the algorithm. Its proof is given in Section 6.
In this subsection we use the values τ∗, ε∗, `∗ defined in The-
orem 4.1.

Proposition 5.3. Let G be a graph of maximum degree d,
and consider an Ising model (1) on G with vector of param-
eters θ ∈ Ωα,β,h(G). For any node u ∈ V, if S ⊆ V \ {u}
such that ∂u 6⊆ S, then there exists a node i ∈ ∂u \ S with
νavgu|i;S ≥ 2τ∗.

We now show that the pseudo-neighborhood contains the
true neighborhood.

Corollary 5.4. If event A(`∗, ε∗) holds, then for any u ∈ V,
the pseudo-neighborhood S constructed by
LearnNbhd(X1:n, τ∗, u) contains the true neighborhood ∂u.

Proof. Consider an arbitrary node u ∈ V and suppose ∂u 6⊆
S. Proposition 5.3 shows that νavgu|i;S ≥ 2τ∗ for some i ∈ ∂u\
S. If event A(`∗, ε∗) holds, then |S| ≤ `∗ by Lemma 5.2, and
we have ν̂avgu|i;S ≥ νavgu|i;S − ε

∗ ≥ 3τ∗/2. But this contradicts

line 3 of algorithm LearnNbhd.

Corollary 5.5. Consider the same setup as Corollary 5.4.
After the pruning step, S = ∂u.

Proof. By Corollary 5.4, the pseudo-neighborhood S con-
tains ∂u, hence Equation (3) states that νavgu|i;S\{i} = 0 for

non-neighbors i. By Lemma 5.2, |S| ≤ `∗, and by defini-
tion of the event A(`∗, ε∗) (with our choice ε∗ = τ∗/2), we
have ν̂avgu|i;S\{i} ≤ ε∗ = τ∗/2 for all non-neighbors i, and

hence these are discarded. Conversely, by Proposition 5.3,
ν̂avgu|i;S\{i} ≥ 3τ∗/2, so no neighbors are discarded.

All the ingredients are in place to finish the proof of The-
orem 4.1.

Proof of Theorem 4.1. By Lemma 3.2, our choice of n in the
statement of the theorem guarantees P(A(`∗, ε∗)) ≥ 1 − ζ.
Together the two corollaries prove correctness of the algo-
rithm assuming event A(`∗, ε∗) holds, and this completes the
proof of Theorem 4.1, modulo Proposition 5.3.
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6. PROOF OF PROPOSITION 5.3
Fix u ∈ V and S ⊆ V \ {u}, and let U = ∂u \ S consist

of the neighbors of u not in S. Assume that U is nonempty
or there is nothing to prove. Let θuU := (θui)i∈U and recall
the definition τ∗ := α2δ4d+1/16dβ . We will prove that for
any assignment xS ∈ {−,+}S ,∑

i∈U

θui · λi(xS)νu|i;xS ≥ ‖θuU‖1 · 2τ
∗ . (4)

Averaging with respect to xS and applying the triangle in-
equality gives∑
i∈U

θui · νavgu|i;S =
∑
i∈U

θui · E
(
λi(XS)|νu|i;XS |

)
≥ ‖θuU‖1 · 2τ∗ .

As a consequence there exists some i ∈ U such that

νavgu|i;S ≥ 2τ∗ ,

and this proves the Proposition.

We proceed with showing (4). Let S̃ = ∂u ∩ S consist

of nodes in S adjacent to u and θ̃u = θu +
∑
j∈S̃ θujxj be

the effective external field at u when we include the effect
due to xS̃ . Using the notation Q(·) for the conditional mea-
sure P( · |XS = xS), and Q(u + |xU ) = P(Xu = +|XU =
xU , XS = xS), we let

g(xU ) := Q(u+ |xU )

=
exp{2(θu +

∑
j∈U θujxj +

∑
j∈S̃ θujxj)}

1 + exp{2(θu +
∑
j∈U θujxj +

∑
j∈S̃ θujxj)}

=
exp{2(θ̃u +

∑
j∈U θujxj)}

1 + exp{2(θ̃u +
∑
j∈U θujxj)}

. (5)

Suppose i ∈ U . Conditioning on the values of the remaining
neighbors U \ {i} of u,

νu|i;xS = Q(u+ |i+)−Q(u+ |i−)

=
∑

xU\{i}

(
Q(u+ |i+, xU\{i})Q(xU\{i}|i+)

−Q(u+ |i−, xU\{i})Q(xU\{i}|i−)

)
(6)

=
∑
xU

(
Q(u+ |xU )Q(xU )

1{xi=+}

Q(i+)
(7)

−Q(u+ |xU )Q(xU )
1{xi=−}

Q(i−)

)
= E

(
g(Y )

Yi
Q(Yi)

)
. (8)

The expectation is over the random vector Y ∈ {−,+}|U|
with law P(Y ∈ ·) = P(XU ∈ ·|XS = xS), and in particular
P(Yi = +) = P(Xi = +|XS = xS) = Q(i+). The notation
Q(Yi) is understood to mean Q(i+) if Yi = + and Q(i−) if
Yi = −.

It is helpful to rescale and shift the variable Yi/Q(Yi) in (8)
so that it takes values ±1. To this end, define the quantities

si :=
1

2
·
(

1

Q(i+)
− 1

1−Q(i+)

)
and

ti :=
1

λi(xS)
=

1

2
·
(

1

Q(i+)
+

1

1−Q(i+)

)
.

(The function λi(xS) was defined at the beginning of Sec-
tion 3.) Arithmetic manipulations lead to

EYi = 2Q(i+)− 1 = −si
ti

and

Yi =
Yi

tiQ(Yi)
− si
ti

=
Yi

tiQ(Yi)
+ EYi .

Multiplying (8) by 2θui/ti and using the identities in the
last display gives

2
θui
ti
· νu|i;xS = E

(
2g(Y )

Yiθui
tiq(yi)

)
= E

(
2g(Y )

(
Yiθui − EYiθui

))
= E

(
(2g(Y )− 1)(Yiθui − EYiθui)

)
.

Summing the last displayed quantity over i ∈ U gives∑
i∈U

θui · λi(xS)νu|i;xS

= 1
2
· E
(

(2g(Y )− 1)(Y · θuU − EY · θuU )
)

≥ dβ2τ∗ ≥ ‖θuU‖1 · 2τ∗ . (9)

Here θuU = (θui)i∈U and the first inequality is by Lemma 7.3,
given in Section 7 below.

7. TECHNICAL LEMMA
The goal of this section is to justify Equation (9), which

appeared in the proof of Proposition 5.3. We start with
an observation that will be used in the proof. Recall that
Y is a random vector equal in distribution to XU condi-
tioned on XS = xS . Due to the “conditional randomness”
Lemma 2.1, Y has probability at least δ|U| of taking each
value in {−,+}|U|, where δ = 1

2
exp−2(βd+h). Hence we can

decompose the probability mass function PY of Y as

PY (y) = δ|U| + PY (y) (10)

with PY (y) ≥ 0 for all y ∈ {−,+}|U|. We will be concerned
with the random variable

Z := Y · θuU + θ̃u , (11)

and the decomposition (10) will allow us to obtain anti-
concentration for Z from anti-concentration for sums of i.i.d.
uniform ±1 random variables.

The following result of Erdös on the Littlewood-Offord
problem shows anti-concentration for weighted sums of i.i.d.
uniform ±1 random variables. (It can be found, e.g., as
Corollary 7.4 in [68] and is a simple consequence of Sperner’s
Lemma).

Lemma 7.1 (Erdös [25]). Let w1, . . . , wr be real numbers
with |wi| ≥ α for all i. Let I = {t ∈ R : t0 − α < t <
t0 + α} be an open interval of length 2α. If ξ = (ξ1, . . . , ξr)
is uniformly distributed on {−1, 1}r, then

P(w · ξ ∈ I) ≤ 1

2r
·

(
r

b r
2
c

)
≤ 1

2
.

We can use the decomposition (10) and Lemma 7.1 to
draw the following conclusion. (It is possible to show this
directly, but this approach seems clearer.) We mention that
the only place the lower bound α on the coupling strengths
appears is through the following lemma.
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Lemma 7.2. Let 2t = 2|U| · δ|U|. Consider the random
variable Z defined in (11), and let µ = EZ. Then

E[(µ− Z)1{Z≤µ−αt}] ≥
αt2

2
.

Proof. Decompose the probability mass function PY as dis-
cussed at the beginning of this section in (10). Let 2t =

2|U| ·δ|U| be the total mass assigned to the uniform part. Let

Z′ = ξ ·θuU+θ̃u where ξ ∈ {−,+}|U| is uniformly distributed

and let Z′′ = Y ′′ · θuU + θ̃u where Y ′′ ∼ (1−M)−1PY . The
variable Z can be represented as a mixture distribution: if
we define R ∼ Ber(2t), then

Z
d
= R · Z′ + (1−R) · Z′′ ,

and we can think of obtaining Z by choosing either Z′ or Z′′

with probabilities 2t or (1−2t). Let It = (µ−tα, µ+(2−t)α).
Lemma 7.1 implies that P(Z′ /∈ It) ≥ 1/2 for any t, and
hence P(Z /∈ It) ≥ t. Denote the probability that Z lies to
the left of It and inside It, respectively, as

m1 = P(Z ≤ µ− tα) and m2 = P(Z ∈ It) ≤ 1− t ,

so that 1−m1−m2 = P(Z ≥ µ+ (2− t)α). Thinking about
placing the probability mass to minimize µ subject to fixed
m1 and m2 justifies the inequality

µ = EZ = m1 · E(Z | Z ≤ µ− tα) +m2 · E(Z | Z ∈ It)
+ (1−m1 −m2)E(Z | Z ≥ µ+ (2− t)α)

≥ m1 · E(Z | Z ≤ µ− tα) +m2(µ− tα)

+ (1−m1 −m2)(µ+ (2− t)α) .

Using m2 ≤ 1− t and performing arithmetic manipulations
leads to

m1 · E[(µ− αt)− Z | Z ≤µ− αt] +m12α

≥ −m22α+ (2− t)α ≥ tα .

At least one of the two terms on the left-hand side is larger
than the average, which is at least tα/2, and in either case
E[(µ−Z)1{Z≤µ−αt}] ≥ αt2/2 (using the fact that t ≤ 1).

The remainder of this section is devoted to proving the
following lemma.

Lemma 7.3. Let g and Y be as in the proof of Proposi-
tion 5.3 in Section 6. Then the quantity in Equation (9) is
lower bounded as

1
2
E
(

(2g(Y )− 1)(Y · θuU − EY · θuU )
)
≥ α2δ4|U|+1

8
≥ dβ2τ∗ .

Proof. We start by adding and subtracting θ̃u to the left-
hand side of the lemma statement:

E
((

2g(Y )− 1
)(
Y · θuU − EY · θuU

))
= E

((
2g(Y )− 1

)(
Y · θuU + θ̃u − E(Y · θuU + θ̃u)

))
.

Recalling the definition of g in (5), we make the observation

that 2g(x)−1 = tanh(x ·θuU+ θ̃u). We will use the fact that
tanh(z) is an odd, increasing function, which is concave for
t ≥ 0 and convex for t ≤ 0. Recall from (11) the definition

Z = Y · θuU + θ̃u and let µ := EZ. The lemma statement
requires that we lower bound E[tanh(Z)(Z−µ)]. We assume
from now onward that µ ≥ 0, but a (symmetrically) identical

argument applies to the opposite case µ ≤ 0. From the
definition of Z and assumptions |θui| ≤ β, |θu| ≤ h we obtain
the bound

µ = EZ ≤ (|U|+ |S̃|) · β + h ≤ βd+ h .

Next we record a few estimates on the function tanh(·).
The derivative satisfies

d

dz
tanh(z) =

4

(ez + e−z)2
≥ 1

e2|z|

and due to the concavity of tanh(z) for z ≥ 0, we have the
estimate

tanh(z) ≤ tanh(µ)− (µ− z)
e2µ

≤ tanh(µ)− (µ− z)
e2(βd+h)

= tanh(µ)− 2δ(µ− z) for 0 ≤ z ≤ µ .

We additionally use the bound tanh(t) ≥ tanh(µ) for z ≥ µ
due to monotonicity of tanh(·). Partitioning the range of Z
and using these estimates gives

E[tanh(Z)(Z − µ)]

= E[tanh(Z)(Z − µ)1{Z<0}] + E[tanh(Z)(Z − µ)1{Z∈[0,µ]}]

+ E[tanh(Z)(Z − µ)1{Z>µ}]

≥ E[tanh(Z)(Z − µ)1{Z<0}]

+ E
[(

tanh(µ)− 2δ(µ− Z)
)

(Z − µ)1{Z∈[0,µ]}

]
+ E[tanh(µ)(Z − µ)1{Z>µ}] .

Subtracting tanh(µ)E(Z − µ) = 0 from the third term, the
last expression is equal to

E[tanh(Z)(Z − µ)1{Z<0}]

+ E
[(

tanh(µ)− 2δ(µ− Z)
)

(Z − µ)1{Z∈[0,µ]}

]
− E[tanh(µ)(Z − µ)1{Z<0}]

− E[tanh(µ)(Z − µ)1{Z∈[0,µ]}]

=E[
(

tanh(Z)− tanh(µ)
)
(Z − µ)1{Z<0}]

+ E
[
2δ(µ− Z)21{Z∈[0,µ]}

]
. (12)

Both of these terms are non-negative.

Lemma 7.2 states that E[(µ−Z)1{Z≤µ−αt}] ≥ αt2

2
, where

2t = (2δ)|U|, and this means that either

E[(µ− Z)1{Z≤µ−αt}1{Z<0}] ≥
αt2

4
or

E[(µ− Z)1{Z≤µ−αt}1{Z∈[0,µ]}] ≥
αt2

4
, (13)

(or both) is true. In the former case, the first term in (12)
is lower bounded by

E[
(

tanh(Z)− tanh(µ)
)
(Z − µ)1{Z≤µ−αt}1{Z<0}]

≥ 1{µ<1}
αt2

4

(
tanh(µ)− tanh(µ− αt)

)
+ 1{µ≥1}

αt2

4
tanh(1)

(14)

(a)

≥ αt2

4
min

(αt
e2
, tanh(1)

) (b)

≥ α2t3

4e2
≥ α2t3

25
. (15)

(a) follows by bounding the first term in (14) for 0 ≤ µ < 1
by noting that [µ − αt, µ] ⊆ [−αt, 1] ⊆ [−1, 1] and lower
bounding the derivative of tanh(z) on [−1, 1] by 1/e2, and
(b) follows from the fact that tanh(1) > 1/e2 ≥ αt/e2.

778



In the latter case of (13), the second term of (12) is lower
bounded by

2δ · E
(

(µ− Z)21{Z≤µ−αt}1{Z∈[0,µ]}

)
≥ 2δα2t4

16
. (16)

This used Cauchy-Schwarz (or equivalently non-negativity
of the variance) to lower bound the expectation of (µ−Z)2

by (αt2/4)2, the square of the expectation given in (13). The
quantity in (16) is smaller than in (15), because 2δ ≤ 1 and
t ≤ 1/2. Multiplying the right-hand side of (16) by 1/2 and

plugging in t = 1
2
(2δ)|U| ≥ δ|U| completes the proof of the

lemma.

8. DISCUSSION
Our algorithm learns Ising models in time quadratic in

the number of nodes (ignoring the log factor). In light of
Valiant’s [71] algorithm for finding large correlations in less
than quadratic time, it is plausible that one could achieve an
analogous further improvement of the runtime to pc for some
constant c < 2. Perhaps even “input-sparsity” time O(pd)
is possible. As far as practical applicability, it seems most
urgent to improve upon the doubly-exponential dependence
of the run-time and sample complexity on βd. Many gen-
eralizations and extensions of the results are likely possible,
including to pairwise Markov random fields with alphabet
sizes larger than two.
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APPENDIX
A. PROOF OF LEMMA 3.2

Azuma’s inequality states that if Y ∼ Bin(n, µ), then

P (|Y − nµ| > γn) ≤ 2 exp(−2γ2n) ,

so for any subset of nodes W ⊆ V and configuration xW ∈
{−,+}|W| we have

P
(∣∣P̂(XW = xW)− P(XW = xW)

∣∣ ≥ γ) ≤ 2 exp(−2γ2n).

(17)

There are 2|W|
(
p
|W|

)
≤ (2p)|W| such choices of W and xW of

a given cardinality, and hence at most (`+2)(2p)`+2 choices
of W and xW with |W| ≤ `+ 2.

Suppose n ≥ (2γ2)−1 log
(
2(` + 2)(2p)`+2/ζ

)
. An appli-

cation of the union bound implies that with probability at
least

1− (`+ 2)(2p)`+2 · 2 exp(−2γ2n) ≥ 1− ζ

it holds that∣∣P̂(XW = xW)− P(XW = xW)
∣∣ ≤ γ (18)

for all W and xW with |W| ≤ ` + 2. For the remainder of
the proof assume (18) holds.

Our goal is to bound the quantity∣∣νavgu|i;S − ν̂
avg

u|i;S

∣∣
=
∣∣EXS∼P

(
λi(XS)|νu|i;XS |

)
− EXS∼P̂

(
λ̂i(XS)|ν̂u|i;XS |

)∣∣ .
The triangle inequality and the inequality

∣∣|s|− |t|∣∣ ≤ |s− t|
for real-valued s and t gives∣∣EXS∼P

(
λi(XS)|νu|i;XS |

)
− EXS∼P̂

(
λ̂i(XS)|ν̂u|i;XS |

)∣∣
=

∣∣∣∣∑
xS

[
P(XS = xS)λi(xS)|νu|i;xS |

− P̂(XS = xS)λ̂i(xS)|ν̂u|i;xS |
]∣∣∣∣

≤
∑
xS

∣∣∣P(XS = xS)λi(xS)|νu|i;xS |

− P̂(XS = xS)λ̂i(xS)|ν̂u|i;xS |
∣∣∣

≤
∑
xS

∣∣∣P(XS = xS)λi(xS)νu|i;xS

− P̂(XS = xS)λ̂i(xS)ν̂u|i;xS

∣∣∣ .
Writing out the definition of νu|i;XS and ν̂u|i;XS , the above
sum is equal to∑
XS

∣∣∣P(XS = xS)λi(xS)
(
P(Xu = +|Xi = +, XS = xS)

− P(Xu = +|Xi = −, XS = xS)
)

− P̂(XS = xS)λ̂i(xS)
(
P̂(Xu = +|Xi = +, XS = xS)

− P̂(Xu = +|Xi = −, XS = xS)
)∣∣∣

(a)
=
∑
xS

∣∣∣∣∣
[
λi(xS)

P(Xu = +, Xi = +, XS = xS)

P(Xi = +|XS = xS)

− λ̂i(xS)
P̂(Xu = +, Xi = +, XS = xS)

P̂(Xi = +|XS = xS)

]
−
[
λi(xS)

P(Xu = +, Xi = −, XS = xS)

P(Xi = −|XS = xS)

− λ̂i(xS)
P̂(Xu = +, Xi = −, XS = xS)

P̂(Xi = −|XS = xS)

]∣∣∣∣∣
(b)

≤
∑
xS

∣∣∣∣λi(xS)
P(Xu = +, Xi = +, XS = xS)

P(Xi = +|XS = xS)

− λ̂i(xS)
P̂(Xu = +, Xi = +, XS = xS)

P̂(Xi = +|XS = xS)

∣∣∣∣
+
∑
xS

∣∣∣∣λi(xS)
P(Xu = +, Xi = −, XS = xS)

P(Xi = −|XS = xS)

− λ̂i(xS)
P̂(Xu = +, Xi = −, XS = xS)

P̂(Xi = −|XS = xS)

∣∣∣∣
:= C+ + C− .
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Here (a) is by Bayes’ rule and (b) is by the triangle inequal-
ity.

We will now bound the quantity C+ in a way that does not
depend on the specific assignment of ± to Xi, so the same
bound will hold symmetrically for C−. Using the identity

ab− âb̂ = ab−ab̂+ab̂− âb̂ = a(b− b̂) + b̂(a− â), the triangle

inequality, and the definition of λ, λ̂, we have

C+

=
∑
xS

∣∣∣∣λi(xS)
P(Xu = +, Xi = +, XS = xS)

P(Xi = +|XS = xS)

− λ̂i(xS)
P̂(Xu = +, Xi = +, XS = xS)

P̂(Xi = +|XS = xS)

∣∣∣∣
≤
∑
xS

∣∣∣∣P(Xu = +, Xi = +, XS = xS)

×
( λi(xS)

P(Xi = +|XS = xS)
− λ̂i(xS)

P̂(Xi = +|XS = xS)

)∣∣∣∣
+
∑
xS

∣∣∣∣ λ̂i(xS)

P̂(Xi = +|XS = xS)

(
P(Xu = +, Xi = +, XS = xS)

− P̂(Xu = +, Xi = +, XS = xS)
)∣∣∣∣

= 2
∑
xS

P(Xu = +, Xi = +, XS = xS)

×
∣∣∣P(Xi = −|XS = xS)− P̂(Xi = −|XS = xS)

∣∣∣
+ 2

∑
xS

P̂(Xi = −|XS = xS)
∣∣∣P(Xu = +, Xi = +, XS = xS)

− P̂(Xu = +, Xi = +, XS = xS)
∣∣∣ (19)

The latter sum is bounded by 2 · 2|S|γ. In order to bound
the first sum in (19) we write∣∣∣P(Xi = −|XS = xS)− P̂(Xi = −|XS = xS)

∣∣∣
=
∣∣∣P(Xi = −, XS = xS)

P(XS = xS)
− P̂(Xi = −, XS = xS)

P̂(XS = xS)

∣∣∣
≤
∣∣∣P(Xi = −, XS = xS)

P(XS = xS)
− P̂(Xi = −, XS = xS)

P(XS = xS)

∣∣∣
+
∣∣∣ P̂(Xi = −, XS = xS)

P(XS = xS)
− P̂(Xi = −, XS = xS)

P̂(XS = xS)

∣∣∣
≤ 2γ

q
,

where q := δ` ≤ δ|S| ≤ minxS P(XS = xS) . Plugging this
into (19), the sum over xS marginalizes over these variables
and we obtain

C+ ≤ 4γ

q
· P(Xu = +, Xi = +) + 2|S|+1γ ≤ 6γ

q
.

Here we used the fact that q−1 = δ−` ≥ 2|S|, since δ ≤ 1/2.

The same bound holds for C−, so∣∣νavgu|i;S − ν̂
avg

u|i;S

∣∣
=
∣∣EXS∼P

(
λi(XS)|νu|i;XS |

)
− EXS∼P̂

(
λ̂i(XS)|ν̂u|i;XS |

)∣∣
≤ 12γ

q
.

Choosing γ = εδ`/12, we get the desired accuracy and our
earlier choice of n evaluates to

n = (2γ2)−1 log

(
2(`+ 2)(2p)`+2

ζ

)
≤ 144(`+ 3)

ε2δ2`
log

p

ζ
.
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