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Abstract-It is shown that the partition function of the q-state Potts model on a finite d- 
dimensional hypercubic lattice in the q + 00 limit is precisely the generating function of (d - l)- 
dimensional restricted partitions of an integer. For d = 2,3, this equivalence leads to closed-form 
expressions of the q = M Potts partition function. Our discussion also establishes symmetry and 
reciprocal properties for the generating function of restricted partitions in higher dimensions. 
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1. INTRODUCTION 

An outstanding unsolved problem in statistical mechanics is the q-state Potts model in d dimen- 

sions [1,2]. For a review on the Potts model and its physical relevance, see [2]. Except in the case 

of q = 2 for which the Potts model is the Ising model and soluble in d = 2 (see [3]), the Potts 

model is generally intractable. Here we establish a connection of the q = oo Potts model in d 
dimensions with (d - 1)-dimensional restricted partitions of an integer. The connection enables 

us to solve the q = co Potts model for d = 2,3; it also leads to certain symmetry relations for 

the generating function of restricted multidimensional partitions. 

Consider a d-dimensional hypercubic lattice of size Lr x L2 - . . x Ld with lattice sites specified by 

coordinates (ni,n2,. . . ,nd), 1zi = 1,2,. . . , Li, i = 1,2,. . . , d. Introduce an extra site connected 

by edges to every site in the d (d - 1)-dimensional hyperplanes ni = Li. Particularly, the extra 

site is connected to the site {Ll, L2, . . . , Ld} by d edges. We regard the resulting lattice as a 

graph C, and there are altogether N + 1 vertices and Nd edges in C, where 

N = LiL2 * * . Ld. (1) 

An example of C for d = 2, L1 = 4, L2 = 3, N = 12 is shown in Figure 1. 

Figure 1. A graph L: with 13 vertices and 24 edges. 
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Consider the q-state Potts model on fZ, with each vertex oft occupied by a spin which can be 
in q different states. Let two neighboring spins in states u, u’ = 1,2. . . , q interact with an energy 

E(a,a*) = -J, u = I_+, 

= 0, 0 # 0’. (2) 

In statistical mechanics one is interested in evaluating the partition function 

(3) 
oi = 1 edge 

where k is the Boltzmann constant, T the temperature, the summations are taken over the spin 
states at all vertices i, and the product taken over all edges of L. 

Using the identity 
f?(o++) = 1 + (eK - 1) 6(a,cr’), (4) 

where K = J/kT, one can rewrite the partition function (3) as a graphical expansion [2]. This 
leads to the expression 

2 = C (eK _ I)~(~) qn(G), (5) 
GCL 

where the summation is taken over all subgraphs G G J& e(G) is the number of edges in G, and 
n(G) the number of connected clusters in G, including isolated vertices. Here, a subgraph of t 
contains the same set of vertices as .C and a subset of edges of C. 

Introducing 
2 = (eK - 1) q-lid, (6) 

we can rewrite the partition function (5) as 

(7) 

We consider ZN(q, x) in the limit of q --) co with x fixed. 
It is clear that for the subgraph G = C we have n(L) = 1, e(L) = Nd, and thus n(L)+e(L)/d = 

N + 1. Any other subgraph G c C can be obtained by deleting edges in C. Now, by deleting 
e(G) edges (from L) one can increase the number of clusters by at most e(G)/d; it follows that 
for any subgraph G we have 

e(G) n(G) + d 5 N + 1. (8) 

As a consequence of (8), for q large the leading term in ZN(q,x) is in the form qN+’ times a 
polynomial of degree N in xd. This permits us to introduce a reduced partition function 

The subgraphs for which the equality holds in (8) and thus contributing in (9) will be described 
in Section 3. 

2. MULTIDIMENSIONAL RESTRICTED PARTITIONS 

The generating function of (d - l)-dimensional restricted partitions associated with L’, a hy- 
percubic lattice of size Lr x L2 x . . . x Ld, is (see 141) 

G(L1, ~52,. . . , Ld;t)=1+~A,(LI,L2,...,Ld)tn, w9 
n=l 
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where A,(Ll, Lz, . . . , Ld) is the number of distinct partitions of a positive integer n into sums 

of nonnegative integers m(nl , n2, . . . , nd-1) associated with vertices {nl, n2,. . . , nd-1) of C’, or, 

explicitly, 

n= 2 $ ... ‘2 m(nl,...,nd_l), 
n1=1 nz=l n&-l=1 

such that 

017+&n;,... ,n&_,) 5 m(nl,n2,. . . ,%i-1) < Ld, 

whenever nl 5 ni,n2 5 nh,. . . ,n&l 2 n&_1. 

Our main result is the following proposition. 

PROPOSITION. The reduced partition function (9) is given by 

(11) 

02) 

Yd (X”) = G (Ll, L2,. . . , Ld; X”) , (13) 

where G(L1, L2, . . . , Ld; t) is the generating function of restricted partitions of an integer into 

sums of integral parts associated with a (d - 1)-dimensional hypercubic lattice Cc’ of size L1 x 
L2 x . . . x &j_ 1, with each part equal to or less than Ld. 

The following properties of the generating function of multidimensional partitions, which are 

not immediately obvious from the definition (lo), now follow from the proposition and its proof. 

COROLLARY 1. The generating function G(L1, L2, . . . , Ld; t) is symmetric in Li. 

COROLLARY 2. The generating function G( L1, L2, . . . , Ld; t) satisfies the reciprocal relation 

G(L1, L2,. . . , Ld; t) = tL1L2-‘LdG @I, ~52,. . . , Ld; t-‘) . (14 

REMARK. Properties stated in Corollaries 1 and 2 for d = 2, the linear partition, can be, resipec- 

tively, observed by taking the conjugate and the complement of a Ferrers diagram contained in 

an L1 x L2 box. 

3. PROOF OF THE PROPOSITION 

To establish the proposition, we consider the generation of the reduced partition function by 

identifying terms in (7) having the factor q Nfl. These terms come from the subgraph having no 

edges with {n,e} = {N+ l,O}, the subgraph G = L with {n, e} = (1, Nd}, and other subgraphs 

obtained by perturbing from either of these two. 

Starting from the subgraph G = L which has the weight xNd, one can generate the reduced 

partition function term by term by removing edges and modifying n and e systematically. Since 

by definition n 2 1 and we have n = 1 to begin with, the number n can only increase and the 

minimum one can do is to increase n by 1, to n = 2. To hold the number n + e/d constant, it 

is then necessary to decrease e by d. Therefore, one looks for vertices connecting to exactly d 
neighboring vertices. 

For d > 1, there is only one such vertex in L, i.e., the vertex { 1,1, . . . , 1) connected to the 

d vertices {2,1, . . . , l}, { 1,2, . . . , l}, and (1, 1, . . . ,2}. All other vertices are connected to more 

than d neighbors. Removing the d edges connecting to (1, 1, . . . , l}, one creates a subgraph L:1 

consisting of one isolated vertex with {n, e} = (2, (N - l)d}. This generates a correction. fac- 

tor xTd to the fully covered weight xNd, and hence a term x(~-‘)~ in the reduced partition 

function (9). 

In a similar fashion, to generate subgraphs with n = 3 while holding n + e/d constant, one 

looks in Cl, in which the vertex (1, 1, . . . , 1) is isolated, for vertices which are connected to 

exactly d neighboring vertices. There are now exactly d such vertices, namely, the d vertices 

originally connected to { 1, 1, . . . , 1). All other vertices are connected to more than d neighbors. 
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By removing the d edges connected to any of these vertices, one finds the next term in the 

reduced partition function having {n,e} = (3, (N - 2)d). Th e resulting subgraphs Lz now have 

two isolated vertices contributing to a term ds(N-2)d in (9). 

Continuing in this fashion, the process of generating terms in (9) is seen to be the same 

as generating subgraphs containing isolated vertices by removing d edges at a time. Denote 

subgraphs containing n isolated vertices constructed in this manner by L,, and let there be 

G7Ab, La,. . . , Ld) such subgraphs. For example, we have cl = 1, cp = d, and q = d(d + 1)/2 if 

Li 2 3. Thus, we have 

Yd (xd) = xNd 1 + 5 %&I, La.. . , Ld)x-nd 

n=l 1 = l+~~(L1,L2,...,Ld)z”d 
(15) 

n=l 

= xNdYd (x-d). 

Here, the second equality in (15) is established by considering generating Yd(zd) by perturbing 

from the subgraph with no edges, and the last line in (15) is obtained by combining the first two 

lines. 

The proposition now follows from the second line of (15) and the identity 

%(-b,Ls,*.. ,Ld) = &(h,-h,...,Ld). (16) 

To establish (16), one observes that, by considering the set of the d integers 

{nl,n2,. . . , nd--l,m(nl,n2r... rnd-l)), (17) 

where 

m(m,n2,... , nd-1) = max{m 1 (721,722,. . . , n&_1, m) is isolated}, (18) 

one has a bijection between subgraphs C, (in which there are n isolated vertices) and the set of 

nonnegative integers m(ni, n2,. . . , n&1) satisfying (11). The example of an L, in the case of 

d = 2 is shown in Figure 2, and it is noted that the subgraphs L, are precisely those contributing 

in (9) when the equality holds in (8). Furthermore, the rule of removing the d edges connected 

to a vertex (721, ns, . . . , nd} is that the d vertices {nl, ns, . . . , ni - 1,. . . , n,j}, i = 1,2,. . . , d, are 
already isolated. But this is precisely a statement of the condition (12). Thus we have established 

the identity (16) and hence the proposition. Finally, since all Li enter on the same footing in the 

Potts partition function, it follows that the generating function (10) is symmetric in Li, and this 

establishes Corollary 1. In addition, the third line of (15) establishes Corollary 2. 

l 0 l 

Figure 2. An example of a subgraph Ln for n = 4, with n(L4) = 5, e(L4) = 16, 
corresponding to the (linear) partition {2,1,1}. 
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4. RESULTS IN d = 2,3 

Now the partition generating function G(L,;t) is explicitly known for d = 2 as the Gaussian 

polynomial (see [4,5]) and d = 3 (see [4,6]), from which one obtains 

where 

Y2w = 

E(t) = 

(t) Ll+Lz 

ML1 (t)La ’ 

~~lL1+LZ+LB-l~~lL1-l[~lLP-l[~lL3-l 

~~lLI+L*-1[~lL2+Lr1[~lLI+LJ-l ’ 

(t)L z fj(1 -tP), [t]L = fiwp. 

(1% 

(20) 

(21) 
p=l p=l 

We note that both (19) and (20) are symmetric in Li. However, the problem of restricted 

partitions and hence the evaluation of Yd(@) remain open for d > 3. 

Finally, we explicitly evaluate the “per-site” generating function in a thermodynamic limit 

defined by (see [7]) 
r . -I 

This is done by noting that the zeroes of the polynomials Yz(t) and Ys(t) in the complex t plane 

are simply superpositions of zeroes of (t)L which are all on the unit circle It) = 1. Let, the zeroes 

of Yd(t) be located at eiej. Then we can write 

Yd(t) = I-J (eiej - t) , d = 2,3. (23) 

Now the zeroes of (t)L are distributed uniformly on the unit circle in the limit of L --+ oo [;7]. It, 

follows that zeroes of Yz(t) and Y3(t) are also distributed uniformly on the unit, circle. This l.eads 

to, for d = 2,3, 

fd(t) = & Jd”” ln(eie - t) de. 

Thus, for the d = 2,3 Potts model, we have from (9) the per-site free energy 

(24) 

fd(sd) E lim lim N--rooq_m &-i lnZN(q,s) - lnq] 
[ 

1 2n 
=- 2x s ln(eie - ~8) 

0 

lnVl, 1x1 > 1, 
= 

{ 0, 1x1 < 1. 

(25) 

This leads to the occurrence of a first-order transition at, z = 1, a transition previously known to 

exist, for q > 4 in d = 2 (see [8]) and for q -+ 00 in any d (see [9]). 

It should be pointed out, that in statistical mechanics one needs to take the limit, N + (XI first 

before taking other limits or derivatives. In one dimension, our Potts model lattice is a chain of 

N + 1 sites for which one has 

ZN(Q,Z) = qN+l(z + l)N, (26) 

and from which one can see explicitly that, the two limits in the first, line of (25) commute. 

Assuming that the two limits also commute for d = 2,3, then the expression (25) solves the 

q = cm Potts model. 

Finally, we remark that the previously known first-order transition in the q -_) co limit [9] 

appears to suggest that zeroes of Yd(t) are on the unit circle in the thermodynamic limit, for 

any d. This is a highly intriguing result [lo] which is not obvious combinatorially. 
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